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Abstract

This paper develops a simple framework to characterize the distribution of income and wealth

in a real business cycle model. Agents are of two types depending on the human factor of

production they own and they are located in separated markets, cities. In each city the two

types of agent match to produce a composite factor, human service. We show that if the

population is an exchangeable sequence of agents’ types generated according to a Pòlya urn

then (i) the share of agents’ type follows a Beta distribution and (ii) the functional form of the

matching function belongs to the family of the constant elasticity of substitution, with agent

shares that depend on the composition of the population.

We nest this structure into a standard Bewley economy, in which the aggregate supply of

human service is combined with physical capital to produce the homogeneous output. Given

the results (i)-(ii) we perform the exact aggregation of income, consumption and asset holding

across agents, leading to the solution of the real business cycle model with heterogeneous agents.

Our framework predicts that the theoretical distributions of income and wealth are known real

valued transformations of a Beta distribution. This result provides a simple way to characterize

the equilibrium of macroeconomic models with heterogeneous agents.

This paper is the revised version of a co-authored chapter from Suverato’s Ph.D. dissertation at Bocconi University.

Davide Suverato wants to thank the German Research Foundation for financing. The authors are grateful for useful
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1 Introduction

The existing macroeconomic literature is rapidly growing in the direction of models able to account for the distribution

of income, consumption and assets across heterogeneous agents. The quest for heterogeneity is motivated by the failure

of the representative agent approach. For example, Heathcote et al. (2009) discuss the limitations of a representative

agent framework when assessing the effect of macroeconomic policies on insurance, precautionary savings and welfare.

Kirman (1992) shows how the assumption of a representative agent whose choices coincide with the aggregation over

decisions of the heterogeneous individuals appears to be unjustified. Neglecting heterogeneity will in general lead to a

trivial equilibrium in which agents do not trade. On the other hand, the aggregation over an heterogeneous population

requires further assumptions on the similarity between agents (i.e. identical tastes or identical income) in order to

guarantee the uniqueness of the equilibrium (Sonnenschein, Mantel and Debreu theorem).

We propose a new framework in which both (i) the distribution of agent types and (ii) the technology that

matches agents of different types are endogenously determined. As a consequence, the measure for aggregating

individual decisions across agents is derived in closed form and the macroeconomic outcome is the exact aggregation

of the decentralized equilibrium with heterogeneous agents. In addition to aggregate resource allocation and prices,

our approach allows to determine income, consumption and asset distributions across agents.

In this paper the economy is a collection of a agents located in separated cities. Agents are of two types differenti-

ated by the human factor of production they own: labor for workers, managerial skills for managers. The match of the

two factors gives a composite factor, human service. In each city competitive firms match workers and managers such

that the supply of human service is maximized subject to the composition of the local population. The constrained

optimization problem links the shape of the production function of human service to the composition of the population

in each productive location. Under the assumption that the population in each city is a sequence of exchangeable

binary random variables generated by a Pòlya urn, the share of agent types follows a Beta distribution; this result has

been proved in Muliere et al. (2005). Under this framework, we show that the optimal matching function has to be of

the C.E.S. form, with factor shares that depend on the composition of the population.

This methodology is new in the macroeconomic analysis, at least to the best of our knowledge. Nevertheless,

we argue that the assumption of exchangeability is already common in the literature. As an example, consider the

matching between agents of different types: the outcome of a matching process will in general depend on the number

of agents of different types, whereas the order in which agents match is irrelevant. In this case agents are exchangeable

across types, since the probability associated with a given permutation of the sequence of matches does not depend on

the order in which types enter the sequence. Exchangeability is a very common property in Bayesian statistics and we

choose this approach because it contains a broad class of experiments we are used to deal with in economics as pointed

out by McCall (1991)1. The convenience of this setup is due to the fact the de Finetti representation theorem applies

to a sequence of exchangeable random variables and, in our context, it guarantees the existence and uniqueness of a

prior distribution for the share of workers over the total population across cities.

A well-known result in Bayesian statistics shows that Pòlya urns generate sequences of exchangeable random

1Notice that i.i.d. random variables are exchangeable, and any weighted average of i.i.d. sequences of random
variables is exchangeable; moreover, exchangeable sequences are stationary. These example shows that most of the
current literature on heterogeneous agents that makes use of idiosyncratic shocks is actually working with exchangeable
sequences.
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variables. This class of urns models with reinforcement is not the only data generating process with this property,

but it has been extensively studied Johnson and Kotz (1997) and widely applied to social sciences Mahmoud (2008).

Choosing a Pòlya urn we want to capture the (natural) idea that the composition of the population across productive

locations and the adoption of a certain technology are two processes that mutually influenced each other over time. In

fact, if this is the case, then in our framework: (i) the owners of the factor that is most intensively used in production

should account for a larger share of the population; (ii) the distribution of the share of workers over total population

across cities must be unimodal and the mode should be in a neighborhood of that particular factor intensity that

maximizes production. Choosing a Pòlya urn as data generating process for the population of agent we obtain a

theoretical framework that is consistent with this fundamental idea.

Our approach is related to several lines of research. First, the microfoundation of the production function as the

outcome of a stochastic process of factors (or idea) has been studied in growth theory; from the seminal contribution

of Houthakker (1955) to the more recent frameworks developed by Kortum (1997) and Jones (2005). Moreover,

the distribution of agents we derive in this paper is a special case of Hill (1970). With respect to this literature, we

endogenously characterize the distribution of the stochastic process and we apply its convenient aggregation properties

to the solution of macroeconomic models with heterogeneous agents. Second, our approach applies to a class of

macroeconomic models with heterogeneous agents, incomplete financial markets and idiosyncratic income shocks; as

in Huggett (1993) and Aiyagari (1994). The advantage of our methodology is that we solve in closed form for the

cross sectional distribution of types across agents. Therefore, our approach allows to determine the cross sectional

distribution of income, consumption and asset each point in time. Third, the methodology we propose is alternative

to several approaches to the macroeconomics of heterogeneous agents that focus on complexity of interacting agents

Durlauf and Ioannides (2010) and Durlauf (2012), agent based computational economics, Gaffeo et al. (2008) and

Lengnick (2013), and the combinatorial approach introduced by Aoki (1998) and discussed in Aoki and Yoshikawa

(2007). This literature departs from recursive analytical solutions, therefore we could hardly reconcile our approach to

these methodologies. Nevertheless the Bayesian structure that is behind our framework is a point of contact between

the different techniques. In this respect our methodology establishes a possible bridge between the analytical solutions

of the mainstream literature and these computational approaches.

The remainder of the paper is structured as follows. In the next section we discuss the economic framework. In

the third section we introduce exchangeability and Pòlya urns and we determine the distribution of agent types in the

population. In the fourth section we define and characterize the dynamic stochastic general equilibrium. In section

five we illustrate the application of our methodology to the solution of a simple DSGE model with heterogeneous

agents. The last section concludes and discusses several developments of this project.

2 A Population Based Production Economy

Our aim is to characterize an economy segmented in a continuum of productive locations. The composition of local

population determines factor supply in each productive location.
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2.1 Endowments and market structure

The economy is populated by a continuum of agents and a continuum of firms. Agents and firms are located in

spatially separated markets. We call each of these markets city and we index those with the letter j. Agents are of

two types, according to the factor of production they own. In a given city j a number of Wj workers are endowed

with one unit of labor each and a number of Mj managers are endowed with one unit of human capital. Each city is

populated by agents of both types. The share of workers out of total population in a city j is given by:

Xj =
Wj

Wj +Mj

(1)

where Xj is a random variable that follows a distribution F (xj). In the third section we provide the sufficient

assumptions to determine the distribution endogenously.

Firms are competitive and the same technological solutions are available to all firms in the economy. Output is

homogeneous and tradable across cities. Factor markets are segmented, such that firms hire workers and managers

who belong to the same city. It follows that firms maximize profit taking the output price and the factor prices as

given.

2.2 Preferences

An homogeneous good is consumed in the economy. Agents are infinitely living and in every period they order their

preferences according to a period utility function u : R+ → R that is increasing and concave in consumption of the

homogeneous good and it satisfies the Inada conditions. Since, there is not a a loss of utility to supply of labor and

human capital, each agent supplies one unit of the factor she is endowed with. The total supply of labor and human

capital in a city j are simply:

Lj ≡ Wj , Hj ≡ Mj (2)

2.3 Technology

Given the market structure a representative producer exists in each city, indeed without loss of generality we assume

that one and only one representative firm runs production in every city. The representative firm j rents labor l and

human capital h in the city j to produce service according to a technology T (l, h) : R2
+ → R+ that is homogeneous of

degree one, it is increasing and concave in both arguments, it satisfies Inada conditions and it obeys to the normalization

T (1, 1) = 1. The total amount of service in the economy is S =
∫ 1

0
Sj (xj) dxj ; which over a measure one of cities

yields S =
∫ 1

0
Sj (xj) dF

′ (xj). Let qj ∈ (0,∞) be the value of the density F ′ (xj) evaluated at the realization Xj = xj .

The technology that supplies service in every city j attains the maximum value of service Sj that can be produced by

choosing labor and human capital subject to the composition of the population:

Sj = max
l,h>0

T (l, h) (3)

s.t. : F ′ (xj) = qj
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The distribution F is unknown and the functional form of T is determined such that xj = inv (F ′ (qj)), for every

given value qj . Notice that cities that are associated with the same density qj will adopt the same technology Sj .

Nevertheless, cities with the same qj might be characterized by a different worker share. Therefore, the existence of the

inverse function is restored with the additional constraint that F (xj) ≤ Qj , where Qj is the value of the cumulative

density function associated to Xj ≤ xj for a given distribution F (xj).

The goal of the next section is to determine the distribution of worker shares across cities F (xj).

3 Characterizing the population in a city

We investigate the sequence of agents that describes the population in a city. We proceed building a statistical model,

that is a triplet (Z,F ,P) where Z is the space of possible realizations of the experiment, F is the σ−algebra associated

to Z, and P is the family of probability measures over the measurable space (Z,F). The family P is parametrized by

the random variable θ ∈ Θ, where Θ is the parameter space.

The object of observation is the population of a city. The single object in a population is an agent, which is a

random variable because it takes one out of two possible types. Define the binary random variable Ai that takes

values ai = 1 if the agent i is a worker and ai = 0 if the agent i is a manager. The statistical model that characterizes

an agent is therefore a Bernoulli; we refer to this as the baseline model. Assume in each city we observe n agents,

then the population in a city is a sequence of random variables A(n) = (A1, ..., An). One possible realization of the

experiment is then the sequence of values z(n) = (a1, ..., an) and Z is the set of all sequences z(n). Under Bernoullian

sampling, the joint density of n observations of the baseline model is equal to n times the marginal densities.2 Since

the baseline model is Bernoulli, the marginal density is θai (1− θ)
1−ai , with success probability 0 ≤ θ ≤ 1. The family

of probability measure takes the form P =
∏n

i=1 θ
ai (1− θ)

1−ai where θ is a random variable defined on the parameter

space Θ = [0, 1].

Our goal is to characterize the composition of the population in a city. Given the structure we frame the problem

into, our task is now to find the joint density of the event (A1 = a1, A2 = a2, ..., An = an). By construction,

conditionally on the value of θ the random variables (A1, A2, ..., An) are independent and identically distributed.

Nevertheless, modeling the population in a city without knowledge about the value of θ requires to choose the type of

dependence that links the elements Ai within the sequence {Ai}
n
i=1. There is a number of alternatives, we opt for a

very simple form that describes a very large class of experiments in human sciences: exchangeability ; that we discuss

in the next section.

3.1 Exchangeability and the de Finetti representation theorem

Exchangeability is a powerful and elegant theoretical framework that applies to experiments that takes the form of

sequence of events in which the order of the realization of a single event does not matter to determine the outcome of

the experiment itself. In our framework, the random variable Xj characterizes the composition of the population in

city j. We apply exchangeability to model the probability associated with a particular composition of the population

2The practice to assume a Bernoullian sampling is very common in statistics and in this paper is due to technical
convenience.
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Xj = xj because the order in which we observe managers and workers, as realizations ai of the variable Ai, does not

affect the probability associated to the composition of the population (A1 = a1, A2 = a2, ..., An = an).

We now introduce the definitions and theorems that are strictly necessary to perform the following analysis. Proofs

and a more general discussion of the results can be found in Savage (1956).

Definition (1). Random variables (A1, A2, ..., An) are called exchangeable if the cumulative distribution function

of each (Aρ1
, Aρ2, ..., Aρn

), where (ρ1, ρ2, ..., ρn) is any permutation of (1, 2, ..., n), coincides with the cumulative

distribution of (A1, A2, ..., An).

Definition (2). The sequence {Ai}
n
i=1 is exchangeable if each finite subsequence is exchangeable.

The population in each city is an exchangeable sequence of Bernoulli random variables. It follows by definition that all

couples, triplets and tuple of variables Ai are identically distributed. It is possible to show that given an exchangeable

sequence with n elements, finite and positive variance, then the linear correlation between any given couple of random

variables is corr (Ai, Ak) ≥ − 1
n−1 for i 6= k and if the sequence is infinite, n → ∞, then corr ≥ 0. Working with

infinite exchangeable sequence we can apply de Finetti representation theorem (1937)3:

Theorem (1). Let {Ai}
n
i=1 be an infinite sequence of exchangeable random variables such that each random variable

takes on values 0 and 1 then the probability associated to each of the possible realizations (a1, ..., an) takes the form:

Prob (A1 = a1, A2 = a2, ..., An = an) =

∫ 1

0

θ
∑n

i=1
ai (1− θ)

n−
∑n

i=1
ai dF (θ) (4)

where F (θ) is the almost sure limit of 1
n

∑n
i=1 Ai:

F (θ) = lim
n→∞

Prob

{

1

n

n
∑

i=1

Ai ≤ θ

}

(5)

and its distribution is uniquely determined by the sequence {Ai}
n
i=1.

The probability distribution F is the de Finetti measure. Let {Aij}
n

i=1 be the sequence that describes the population

of agents i in city j, then notice that the worker share in city j is Xj ≡ 1
n

∑n
i=1 Aij . We assume that in each city

the population is large enough that the asymptotic case n → ∞ applies then F is the distribution of the worker share

across cities.

The distribution F is a prior, because it adds an à priori information to the data, a subjective belief of the

researcher on the unknown data generating process that does not originate from the observation of the data. The

selection of a prior allows us to characterize the composition of the population across cities.

3.2 Select the prior with a Pòlya urn

One simple way to generate sequences of exchangeable random variables is the Pòlya urn. According to this mental

exercise, the data generating process is described as a sequence of stages that starts with an urn containing an initial

3We state the theorem in its origenal version, de Finetti (1937), that applies to the Bernoulli distribution, because
this our case. But the theorem has been proved in general and it became a pillar of the subjective probability approach.
The interest reader could refer to Savage (1956).
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number of balls of different colors. At each stage of the experiment a ball is randomly drawn from the urn, the color

is observed and the ball is put back in the urn with in addition a given number of balls of the same color; that number

of additional balls is called reinforcement. The distribution of the proportion of balls of one color in the urn is the

outcome of repeating draws and reinforcements for a large number of stages.

Applying the Pòlya urn scheme to our framework, Ak is the random variable that records the type of the agent

we observe at the k − th stage in a given city. Workers and managers in the city before the k + 1 stage are Wk and

Mk. For a given initial allocation (W0,M0), the dynamics of processes Ak+1, Wk+1 and Mk+1 conditionally on the

information at time k are described by:

Ak+1 =







1 with probability Wk

Wk+Mk

0 with probability Mk

Wk+Mk

(6)

(Wk+1,Mk+1) =







(Wk + r,Mk) with probability Wk

Wk+Mk

(Wk,Mk + r) with probability Mk

Wk+Mk

where r > 0 is the reinforcement. The following theorem guarantees that the population in a city is an exchangeable

sequence of agents of two types.

Theorem (2). The sequence {Ak}
n
k=0 generated by the Polya urn {Wk,Mk}

n
k=0 is exchangeable and its de Finetti

measure is a Beta Distribution with parameters
(

W0

r
, M0

r

)

.

The limit behavior of the proportion of workers conditional on the previous information about the city is known.

Theorem (3). Given the Polya urn {Wk,Mk}
n
k=0, as n grows to infinity, the worker share at the n-th stage Xn =

Wn

Wn+Mn
converges almost surely to a random limit. Moreover, the distribution of the limit is a Beta with parameters

(

W0

r
, M0

r

)

.

If each city is populated by an infinite numerable set of agents, then according to Theorem (3) the prior distribution

of the worker share across cities is a Beta with parameters α0 = W0

r
> 0, β0 = M0

r
> 0:

F (θ) =

∫ θ

0

θα0−1 (1− θ)
β0−1

B (α0, β0)
dθ (7)

where B (α0, β0) =
∫ 1

0
vα0−1 (1− v)

β0−1
dv is the beta function, a constant given the couple (α0, β0).

4 The Shape of the Matching Function

The properties of the technology T imply that in every city j the efficient production of human service Sj employs the

total endowment of human factors Lj , Hj . The disposal of factors Lj , Hj is fixed by the factor supply (2). Indeed,

a solution to the problem (3) has to satisfy Sj (qj) = T (Wj ,Mj). From equation (7) the density of the distribution

of worker shares is F ′ (xj) = xα0−1
j (1− xj)

β0−1
B (α0, β0)

−1
. Let n > 0 be the arbitrary size of the population in a

city. Workers share is xj , workers and managers are respectively: Wj = xjn and Mj = (1− xj)n. For a given value
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of the density F ′ (xj) = qj , the problem (3) is equivalent to:

Sj = max
Wj ,Mj>0

T (Wj ,Mj) (8)

s.t. : W
(α0−1)
j M

(β0−1)
j = q̃j

where q̃j = qjB (α0, β0)n
α0+β0−2 > 0. The first order conditions of this problem imply that the production function

Sj belongs to the class of technologies with constant elasticities of substitution between factors:

ǫ =

∂Sj

∂Lj

Lj

Sj

∂Sj

∂Hj

Hj

Sj

=

∂Sj

∂Wj

Wj

Sj

∂Sj

∂Mj

Mj

Sj

=
α0 − 1

β0 − 1
(9)

A functional form that satisfies condition (9) is given by Sj =
[

γL
ǫ−1

ǫ

j + (1− γ)H
ǫ−1

ǫ

j

]

ǫ
ǫ−1

, for γ > 0 that has to be

determined. A unique solution Sj satisfies the properties of the technology T : homogeneity of degree one and the

normalization of units T (1, 1) = 1. The first feature yields
Sj

Hj
= T

(

Lj

Hj
, 1
)

; the second feature implies that if Lj = Hj

then Sj = Hj = Lj . The elasticity of substitution in the point Lj = Hj = 1 is equivalent to the marginal rate of

technical substitution
∂Sj

∂Lj
/

∂Sj

∂Hj
= α0−1

β0−1 . The function Sj passes through a point that satisfies Sj = Hj = Lj = 1 and

the condition γ
1−γ

= α0−1
β0−1 . The constraint fixes the labor share γ:

γ =
α0 − 1

α0 + β0 − 2
(10)

From an economic point of view we want positive factors shares, then either α0 > 1 and β0 > 1 > 2 − α0 or α0 < 1

and β0 < 1 < 2− α0. Remarkably notice that if α0, β0 > 1 then the labor share is the mode of the Beta distribution

describing the composition of the population. The technology that combines labor and human capital to produce

service takes the form:

S (Lj , Hj) =

[(

α0 − 1

α0 + β0 − 2

)

L
ǫ−1

ǫ

j +

(

β0 − 1

α0 + β0 − 2

)

H
ǫ−1

ǫ

j

]
ǫ

ǫ−1

(11)

It is important to notice that the elasticity of substitution between factors and the distribution of agent types are

linked. Consider the limit case of a Cobb-Douglas. Notice that ǫ → 1 if and only if α0 = β0, then the distribution of

worker share is symmetric around 1
2 . When α0 > β0 the elasticity of substitution between factors is larger than one.

The opposite is true for β0 > α0.

4.1 Service and income across cities

Since Lj = Wj = xjn and Hj = Mj = (1− xj)n then, the production function of service can be written in terms of

the worker share xj , given the population size n:

S (xj ;n) = n

[(

α0 − 1

α0 + β0 − 2

)

x
ǫ−1

ǫ

j +

(

β0 − 1

α0 + β0 − 2

)

(1− xj)
ǫ−1

ǫ

]
ǫ

ǫ−1

(12)

Service is traded in the economy and the production of service within a city is competitive. Let ps > 0 be the

price of human service in the economy, then worker’s wage w and manager’s reward m are equal to the value of
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marginal productivities: respectively
wj

ps =
(

α0−1
α0+β0−2

)

Sj

Lj
and

mj

ps =
(

β0−1
α0+β0−2

)

Sj

Hj
. As in the case of service output,

competitive factor rewards are given as a function of worker share:

wj = w (xj ; p
s) = ps

[

(

α0 − 1

α0 + β0 − 2

)

+

(

β0 − 1

α0 + β0 − 2

)(

1− xj

xj

)

ǫ−1

ǫ

]

ǫ
ǫ−1

(13)

mj = m (xj ; p
s) = ps

[

(

α0 − 1

α0 + β0 − 2

)(

xj

1− xj

)

ǫ−1

ǫ

+

(

β0 − 1

α0 + β0 − 2

)

]

ǫ
ǫ−1

(14)

Service S (xj ;n), wage w (xj ; p
s) and managerial income m (xj ; p

s) are continuous, differentiable and real valued

functions of the random variable Xj . Therefore, the distributions of service, wage and managerial income across cities

are derived from the distribution of worker share (7).

Service per capita sj = s (xj) =
S(xj ;n)

n
, real wage w̃j = w̃ (xj) =

w(xj ;n)
ps and real managerial income m̃j =

m̃ (xj) =
m(xj ;n)

ps depend on the worker share only and not on city size n and price of service ps. Average service E [S],

wage E [w] and managerial income E [m] are the product of two components:

E [S] = n E [s (xj)] , E [w] = ps E [w̃ (xj)] , E [m] = ps E [m̃ (xj)] (15)

one that does not depend on the composition of the population (n and ps); the second one that is fixed uniquely by

the distribution of worker shares. The dichotomy emerges endogenously, since it is due to the functional form of the

production function S that is induced by the statistical process behind the distribution of worker shares. This feature

is desirable while addressing the aggregation problem. The aggregate the supply of service and agent incomes across

cities is obtained in exact form, as the distribution of the worker share Xj is known. Service and income are scaled

up by city size n and service price ps which are independent on the aggregation problem.

5 A Simple DSGE Model with Income Distribution

In this section we outline a simple dynamic stochastic general equilibrium model in which agents face idiosyncratic

uncertainty. No contingent assets are traded, indeed, agents cannot insure against income uncertainty.

5.1 Decentralized equilibrium with heterogeneous agents

At the aggregate level, human service and physical capital are combined to produce an homogeneous output, that is

taken as the numeraire. The relative price of service in terms of the homogeneous good is p > 0, the (real) rental

rate of capital is r > 0. Period consumption and (non-contingent) asset holding of an agent of type k = {w,m} are

respectively ck ≥ 0 and ak ≥ −b, where the value b ≥ 0 is a borrowing constraint. The period income of workers and

managers are respectively: iw = pw̃ (xj) + (1− d+ r) aw and im = pm̃ (xj) + (1− d+ r) am; where where 0 ≤ d ≤ 1

is the depreciation rate of capital in a period.

Workers and managers have the same preferences, which are represented by a continuous, increasing and concave

utility function u : R+ → R that satisfies the Inada conditions. Agents of type k conditionally on being in city j solve
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the following maximization problem in recursive form:

v (ak, xj ; p, r) = sup
a′

k
∈[−b,ik]

{u (ik − a′k) + δE [v (a′k, xj ; p
′, r′) |ϕ]} (16)

where the variables with prime superscript refer to the next period and δ ∈ (0, 1). The pair of values {a, xj} is

the individual state of the dynamic problem, while the aggregate state is given by {p, r}. The expectation operator

E [v (·; p′, r′) |ϕ] applies to the next period realization of the aggregate state.

The total endowment of capital in the economy in a given period K consists of the aggregation asset holdings

across agents and cities. The total amount of human service in an economy is the aggregation of service across cities.

Split the economy in a measure one of cities, each city is populated by a measure one of agents of two types, then

aggregate consumption, capital and service are:

C =
1

2
E [xjcw (xj) + (1− xj) cm (xj)] (17)

K =
1

2
E [xjaw (xj) + (1− xj) am (xj)]

S = E [s (xj)]

Notice that the service is constant over time, as it only depends on the population of agents.

A representative firm produces the homogeneous output according to a Cobb-Douglas technology Y = ϕKσS(1−σ),

with total factor productivity ϕ > 0 and capital share 0 < σ < 1. Express the aggregate variables per unit of service:

c = C
S
, y = Y

S
and k = K

S
. Production reads:

y = ϕkσ (18)

Let investment be I = Y − C and next period capital K ′ = (1− d)K + I. The aggregate budget constraint implies:

c+ k′ − (1− d) k = y (19)

The competitive factor rewards for capital and service are respectively:

r = σϕkσ−1 (20)

p = (1− σ)ϕkσ

When the aggregate conditions (17)-(20) are understood, a solution to the agent’s problem (16) is a policy function,

a′k (xj) = π (ak (xj) ;ϕ, k) (21)

that prescribes the next period asset holding as a function of the current individual state {ak, xj} and aggregate state

{ϕ, k}.

10



5.2 Income distribution

The aim of this section is to present the simplest specification of the model outlined in equations (16)-(21), such that

we can obtain a closed form solution and discuss the distribution of income across agents.

We restrict the discussion in three directions: (i) utility takes the log form u = ln (c); (ii) there is full capital

depreciation d = 1; (iii) the share of total capital fk (xj) hold by an agent of type k = {w,m} in city j does

not depend on the aggregate state, such that ak (xj) = fk (xj) k. Under these restrictions, the model is just an

extension of the classical Brock and Mirman (1972). The income of an agent reads ik = ιk (xj)ϕk
σ where ιw =

[(1− σ) w̃ (xj) + σfw (xj)] and ιm = [(1− σ) m̃ (xj) + σfm (xj)]. In order to derive the solution, guess that an optimal

path for asset holding satisfies: a′k (xj) = gk (xj)ϕk
σ. The first order condition for an interior solution of the inter-

temporal problem (16) implies:

1

[ιk (xj)− gk (xj)]ϕkσ
= δE

{

σϕ′k′σ−1

[ιk (xj)− gk (xj)]ϕ′k′σ
|ϕ

}

Therefore, the stock of capital in the economy evolves according to the policy:

k′ = σδϕkσ (22)

Substituting for k′ =
a′

k(xj)
fk(xj)

yields gk (xj) = fk (xj)σδ and the policy for asset holding is determined:

a′w (xj) = aw (xj) δσϕk
σ−1 (23)

a′m (xj) = am (xj) δσϕk
σ−1

The agent budget constraint and the policy for asset holding (23) imply the consumption decisions: cw (xj) = pw̃ (xj)+

(1− δ) raw (xj) and cm (xj) = pm̃ (xj)+ (1− δ) ram (xj). The solution of the model is given for an initial distribution

of asset across agents and cities
{

a0w (xj) , a
0
m (xj)

}

that satisfies the aggregate conditions (17).

Steady state. The aggregate steady state is determined by an allocation of capital such that k′ = k. The total

amount of service only depends on the composition of the population, indeed it is constant over time. Let ϕ̄ > 0 be

the steady state level of total factor productivity, that is exogenous to the model. From the law of motion for capital

(22), the steady state level of capital per unit of service is k̄ = (σδϕ̄)
1

1−σ . The aggregate budget constraint (19) and

the production function (18) yield the steady state level of aggregate consumption per unit of service c̄ = ϕ̄k̄σ − k̄ > 0.

Factor prices in steady state are r̄ = σϕ̄k̄σ−1 and p̄ = (1− σ) ϕ̄k̄σ, as it follows from (20).

Initial allocation. We determine the initial allocation by conjecture: if at the beginning of time agents settled

freely across cities then they had to be indifferent among alternative locations. Under this assumption, consider the

economy to be endowed with a steady state level of capital k0. Let c
(

k0
)

= E [s (xj)]
(

ϕ0k0σ − k0
)

be the per capita

consumption at the beginning of time in each city of the economy. Then combining the budget constraint and the

optimal policy for asset holding yields the initial wealth allocation,

a′w
(

xj ; k
0
)

= aw
(

xj ; k
0
)

= z ×
p
(

k0
)

w̃ (xj)− c
(

k0
)

(1− δ) r (k0)
(24)

a′m
(

xj ; k
0
)

= am
(

xj ; k
0
)

= z ×
p
(

k0
)

m̃ (xj)− c
(

k0
)

(1− δ) r (k0)
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for every value of the scaling factor z > 0. An initial endowment of asset across agents that satisfies the aggregate

condition (17) must be a solution to the following equation:

E
[

xjaw
(

xj ; k
0
)

+ (1− xj) am
(

xj ; k
0
)]

=
p
(

k0
)

k0E [xjw̃ (xj) + (1− xj) m̃ (xj)]

c (k0)− k0 (1− δ) r (k0)
(25)

which fixes the first moment of asset per agent xjaw
(

xj ; k
0
)

+ (1− xj) am
(

xj ; k
0
)

across cities for a given capital k0.

Notice that the system of (24) and (25) yields the unique value for the scaling factor z. If k0 is a steady state level of

capital then k0 = k̄ gives the initial distribution of wealth.

6 Conclusion

This paper provides a simple framework to handle heterogeneity across agents in a real business cycle model. Agents

are of two types differentiated by the human factor of production they own and they are located in separated cities.

In each city competitive firms choose the technology that maximizes output subject to the composition of the local

population. Assuming the population of agents is a collection of exchangeable random variables we microfound the

distribution of agent types in the population and the matching function that combines human factors. Aggregation

of individual decisions over the known distribution of agent types yields macroeconomic variable outcomes together

with the distribution of income, consumption and asset holdings across agents.

The current framework has at least two major limitations from an empirical point of view. First, the composition

of the population is independent across productive locations. A natural development of this paper is to introduce

dependence across productive locations. One way to incorporate this is to allow for the population of agents being a

sequence of partially exchangeable random variables in which one can control for the dependence across productive

locations. The second limitation is the choice of two types of agents only. This issue can be overcome extending the

present framework with a Bernoullian statistical model to a non parametric approach based on the Dirichelet process.

We think that this direction of research will provide a tractable framework to fit income distributions and their pattern

of change over the business cycle.
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