
Silke Janitza, Harald Binder, Anne-Laure Boulesteix

Pitfalls of hypothesis tests and model selection on
bootstrap samples: causes and consequences in
biometrical applications

Technical Report Number 163, 2014
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

http://www.stat.uni-muenchen.de/
http://www.stat.uni-muenchen.de/


Pitfalls of hypothesis tests and model selection on
bootstrap samples: causes and consequences in

biometrical applications

Silke Janitza1∗ Harald Binder2 Anne-Laure Boulesteix1

June 27, 2014

1 Department of Medical Informatics, Biometry and Epidemiology, University of Munich, Marchion-
inistr. 15, 81377 Munich, Germany.

2 Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Cen-
ter Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany.

Abstract

The bootstrap method has become a widely used tool that has been applied in diverse
areas where results based on asymptotic theory are scarce. It can be applied for example
for assessing the variance of a statistic, a quantile of interest or for significance testing by
resampling from the null hypothesis. Recently some approaches have been suggested in the
biometrical field where hypothesis testing or model selection is performed on a bootstrap
sample as if it was the original sample. From the literature, however, there is evidence that
these procedures might lead to more significant results or overcomplex models, respectively,
when ignoring that the bootstrap sample is not a direct realization of the true underlying
distribution. We explain why this is the case and illustrate that tests on bootstrap samples
do not provide valid p-values, using the Z-test and likelihood ratio test as examples. We
also illustrate that information criteria when computed based on bootstrap samples are not
reliable, as suggested by known theory. Furthermore, we revisit four approaches in light
of these considerations: estimation of the p-value distribution, model complexity selection,
variable inclusion frequencies, and model averaging. Using simulation studies and evidence
from the literature we demonstrate that these approaches might give misleading conclusions
and discuss possible solutions to this problem.

Keywords: Bootstrap; Bootstrap test statistic; Model selection; Model stability; Tests on bootstrap

samples.
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1 Introduction

The bootstrap method proposed by Efron (1979) has become a popular tool that is applied in

diverse areas. It is becoming more and more widely used, e.g., as indicated by a larger number of

textbooks (Chernick; 2011; Manly; 2006; Good; 2005; Davison; 1997). Bootstrapped statistics can

for example be used to compute the variability of the statistic, a quantile of interest, a confidence

interval or simply approximate the whole underlying distribution of the statistic. When considering

biostatistical model building, there are however some results indicating problematic properties of

the bootstrap, in particular when using approaches based on p-values.

The problem of deriving p-values from bootstrap samples is the fact that, even if the null

hypothesis was true, when drawing a bootstrap sample from the original sample one is not sampling

from a distribution where the null hypothesis holds. The empirical distribution is always slightly

different from the true underlying distribution, and the estimated value of the parameter of interest

computed from the observed sample randomly varies around the value of the population parameter

but is never exactly equal to this true value.

This problem has already been reported in literature (Bollen and Stine; 1992; Strobl et al.;

2007) and has also been shown to be relevant when computing information criteria based on

bootstrap samples (Steck and Jaakkola; 2003; Wagenmakers et al.; 2004). Suggestions have been

made – for example Bollen and Stine (1992) derive a transformation of the empirical sample in the

context of goodness-of-fit measures in structural equation models – to guarantee that one draws

from a sample for which the null hypothesis holds. A straightforward and easy-to-use approach

which in principle can be universally applied is to replace bootstrap sampling by subsampling, i.e.

to draw from the original sample without replacement instead of drawing with replacement. This

has for example been suggested by Strobl et al. (2007) in the context of the random forest method.

To address the considered issue in the context of information criteria for graphical models, Steck

and Jaakkola (2003) proposed a corrected version of the AIC.

However, the literature on problematic properties of the bootstrap when used for deriving

p-values or for model building purposes is sparse and unfortunately, these problematic results

are scattered over different scientific areas and research communities. Thus no comprehensive

guidance on potential problems of using the bootstrap for model building is available for bio-

statistical applications. This will be addressed in the following. In this paper we collect theo-

retical and empirical evidence for these problems from studies published in heterogenous liter-

ature probably largely unknown to the biometrical community. Furthermore we extend these

results from the literature both from a theoretical and empirical point of view (through own

simulations) to provide better insight into the considered issues and their practical consequences

in biometrical applications. All R codes implementing our simulation studies are provided on

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070 drittmittel/

janitza/index.html for reproducibility purposes.

This paper is divided into two parts. In the first part of this paper we extend evidence

from the literature for the increased type I error of tests performed on bootstrap samples, using as

examples the Z-test and the likelihood ratio (LR) test. We furthermore motivate that this problem

is also present when computing information criteria like the AIC from a bootstrap sample. Our

considerations build on the previously reported results by Bollen and Stine (1992), Steck and

Jaakkola (2003) and Wagenmakers et al. (2004). The previously published literature on this

problem is very specific to a certain context and addresses readers from a very specific field.
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In order to make this problem more accessible to applied (bio)statisticians we formulate it in a

general and less technical manner and also provide empirical evidence. In the second part of

this paper we discuss a selection of existing approaches used in biometrical applications, where

a statistical test or model selection is – sometimes subconsciously – performed on a bootstrap

sample. In the first approach the bootstrap is used for assessing the variability of p-values. The

second approach deals with the selection of the optimal tuning parameter, where tuning parameter

selection is done using an information criterion or cross-validation on a bootstrap sample in order

to use the observations that were not drawn into the bootstrap sample for model evaluation. The

third approach deals with model selection performed on each bootstrap sample that is commonly

done in biometrical applications for assessing the stability of a model selection procedure. The

last approach is a model averaging procedure in which AIC values are computed from models

that were fit on bootstrap samples. Using simulation studies and evidence from the literature we

illustrate that such bootstrap approaches might lead to misleading conclusions and provide the

readers with tentative practical recommendations on how to proceed in these situations.

2 Theoretical Considerations

2.1 Principle of the bootstrap

Let θ be the parameter of interest from the true underlying distribution F . In practical applications

there is usually one sample available that was drawn from F which can be used to compute an

estimate θ̂ for the true population parameter θ. Since F is unknown it is not possible to draw

additional samples from F in order to compute several estimates for the statistic θ. This is

the point where the bootstrap comes into play. The idea is that in the “bootstrap world” one

knows the true distribution F ∗ such that one can generate as many samples from F ∗ as desired.

From each sample a bootstrapped statistic θ̂∗ can be computed which is an approximation of the

estimate θ̂. F ∗ is chosen based on the available sample. In nonparametric bootstrap, which we

are considering in this paper, it is simply the empirical distribution F̂ . In the case of parametric

bootstrap one assumes a distribution type (e.g., a normal distribution) from which the data could

come and estimates its parameters using the observed sample. For many statistics it can be shown

that the behavior of the bootstrapped statistic θ̂∗ is a good approximation of the behaviour of the

statistic θ̂ derived from the original sample. In this paper we are interested in the reliability of

bootstrapped statistics if a test statistic or the corresponding p-value is the statistic of interest.

In the following we will explore this in detail for the special case of the Z-test statistic. We derive

theoretical results and also give empirical evidence. For the LR test this issue has already been

addressed by Bollen and Stine (1992) and their results are briefly sketched here and underlined

using empirical results.

2.2 Hypothesis testing on bootstrap samples

Z-test

For the moment let us assume that we want to perform a Z-test using data from the original

distribution F , which is the normal distribution, and that the variance σ2 is known. Let Xi ∼
N(µ, σ2), i = 1, . . . , n be independent and identically distributed (iid) random variables and xi, i =

1, . . . , n the corresponding realizations. This set of realizations is termed “original sample” and
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denoted by x = (x1, . . . , xn)>. The considered null hypothesis states that µ is equal to a pre-

defined value µ0. The sample mean x̄ = 1
n

∑n
i=1 xi has expectation µ and variance σ2

n . The test

statistic for the Z-test is then given by

Z =
√
n
x̄− µ0

σ
.

As known from theory the test statistic Z follows a standard normal distribution with E(Z) =
√
nµ−µ0

σ and Var(Z) = 1.

Now we derive the expectation and variance of Z when x̄ is computed from a bootstrap sample

x∗ = (x∗1, . . . , x
∗
n)> that was drawn from the empirical distribution F̂ of the original sample. The

resulting test statistic is denoted by Z∗ in the following. The expectation of Z∗, in which we are

interested, will be denoted E(Z∗|F ) to underline that this is the expected value we expect for the

“real world” with true distribution F . The expectation of Z∗ that is expected in the “bootstrap

world” is termed E(Z∗|F̂ ). To derive E(Z∗|F ) we make use of the law of iterated expectations

which states that

E(Z∗|F ) = E(E(Z∗|F̂ )|F ).

We first compute the inner expected value E(Z∗|F̂ ). This is the value of Z∗ that is expected in the

“bootstrap world”. It exactly equals the test statistic Z that is observed in the “real world” since

in the “bootstrap world” we draw the samples from the empirical distribution F̂ (Bollen and Stine;

1992). Taking the expectation of Z with respect to the “real world” gives E(Z|F ) =
√
nµ−µ0

σ .

Thus the expectations E(Z|F ) and E(Z∗|F ) are equal.

To derive the variance Var(Z∗|F ) of Z∗ we use the law of total variance which states that we

can decompose the variance as follows:

Var(Z∗|F ) = Var(E(Z∗|F̂ )|F ) + E(Var(Z∗|F̂ )|F ). (1)

Since E(Z∗|F̂ ) = Z the first term in Eq. (1) reduces to Var(Z|F ) = 1. As far as the second term

is concerned, the basic assumption underlying bootstrap estimation of the variance, which can be

easily shown in the present simple special case (Davison; 1997), is that Var(Z∗|F̂ ) approximates

Var(Z|F ). Since Var(Z|F ) = 1 the second term in Eq. (1) becomes 1. Summing up both terms

yields Var(Z∗|F ) = 2; the variance of Z∗ is thus twice as large as the variance of Z. With this

result it is proven that the test statistic Z∗ that is computed from a bootstrap sample x∗ does

not follow the same distribution as the test statistic Z that is computed from the original sample

x.

This can also be observed from empirical results in a small simulation study. For computing

Z and Z∗ we draw n = 1000 independent observations from the standard normal distribution.

We then draw a bootstrap sample out of this original sample and compute the test statistic for a

Z-test with null hypothesis H0 : µ = 0 from both original and bootstrap samples. This procedure

is repeated 500000 times, yielding 500000 values of Z and Z∗, respectively. Figure 1 shows the

resulting empirical density function of Z and Z∗. As expected from theory the distribution of the

test statistic Z coincides with the standard normal distribution since the respective lines in Figure

1 show a perfect coverage. The distribution of the test statistic Z∗ in contrast systematically

deviates from the standard normal distribution. There is a remarkable difference in variances of

the test statistics Z and Z∗ while the expected value seems to be equal. The empirical expectation

of Z and Z∗ are both close to the value zero with values −0.0010 and 0.0018, respectively. In
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contrast to that the empirical variance of Z∗ is, at 2.0011, larger by factor 2 than the variance

of Z, which is, at 1.0009, very close to the variance of the standard normal distribution. These

empirical results are thus in line with our theoretical derivations.
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Figure 1: Empirical density functions for test statistics Z (solid black line) and Z∗ (dashed black
line) of the Z-test. The density of the standard normal distribution is indicated by the red line.

One can now ask what happens if the test statistic Z∗ computed from bootstrap samples is

used in combination with a significance threshold taken from the null distribution of the original

test statistic Z to compute a p-value. To answer this question we consider the distribution of Z

and Z∗ if the null hypothesis H0 : µ = µ0 holds in the “real world”. According to our results

presented above, under the null hypothesis Z has expectation 0 and variance 1 (thus following a

standard normal distribution) while Z∗ has expectation 0 and variance 2. Using this information

one can derive the actual type I error for the test with test statistic Z∗ and significance threshold

taken from the test distribution for Z. Since Z follows a standard normal distribution under the

null hypothesis, the significance threshold is the 1− α
2 quantile of the standard normal distribution.

It can be easily derived that when using the significance threshold z1−α
2

for a two-sided test with

test statistic Z∗, the actual type I error is 2 · (1 − Φ( 1√
2
z1−α

2
)), where Φ is the standard normal

distribution function. For a one-sided lower (upper) test with significance threshold zα (z1−α)

one has an actual type I error of Φ( 1√
2
zα) (and 1 − Φ( 1√

2
z1−α), respectively). Table 1 shows

examples for the supposed and actual type I error when performing Z-tests using test statistic

Z∗ and significance thresholds for Z. It can be seen that the actual type I error is substantially

increased when performing Z-tests on bootstrap samples.

Likelihood ratio test

The likelihood ratio (LR) test is used for example when comparing the fit of two nested models,

where one model contains restrictions that are not imposed in the other. The likelihood of the

restricted model, called submodel in the following, is termed L0 while L1 corresponds to the

likelihood of the unrestricted model. The test statistic for the LR test is defined as twice the
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Supposed type I error Actual type I error
two-sided Z-test one-sided Z-test

0.10 0.24 0.18
0.05 0.17 0.12
0.01 0.07 0.05

Table 1: Supposed and actual type I error when performing Z-tests using test statistic Z∗ computed
from bootstrap sample with significance thresholds taken from the standard normal distribution.

difference in log-likelihoods:

T = −2(log(L0)− log(L1)). (2)

The test statistic T asymptotically follows a non-central χ2-distribution with df degrees of freedom

that are obtained from the difference in degrees of freedom of the two models and with non-

centrality parameter κ. The asymptotic expectation of the test statistic is given by AE(T ) = df+κ

and the asymptotic variance is AVar(T ) = 2df + 4κ. Under the null hypothesis which states that

the submodel is true, the non-centrality parameter is zero and thus T asymptotically follows a

central χ2(df)-distribution and has asymptotic expectation AE(T ) = df and asymptotic variance

AVar(T ) = 2df . This is proven to hold for models derived from the original sample x.
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Figure 2: Empirical density functions for test statistics T (solid black line) and T ∗ (dashed black
line) of the LR test with 1 degree of freedom. The density of the χ2(1)-distribution is indicated
by the red line.

Bollen and Stine (1992) gave an approximation for the asymptotic expectation of the test

statistic T ∗ that is derived from bootstrap sample x∗. They report it being twice as large as the

asymptotic expectation of T in the original sample. They also report the asymptotic variance of

T ∗ to be larger than the asymptotic variance of T . These theoretical results are in line with our

empirical results from a simulation study where we used a very large sample size of n = 100000.

We draw predictor values Xi ∼ N(0, 1) and independently of the predictor values we draw response

values Yi ∼ N(0, 1) for observations i = 1, . . . , n. Subsequently a bootstrap sample is drawn from
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this original sample. A LR test with one degree of freedom is performed on the original sample

and on the bootstrap sample to test if the linear regression model including predictor X gives

a better model fit than the intercept model. From this test we obtain test statistics T for the

original sample and T ∗ for the bootstrap sample. The data generation and computation of the

test statistics are repeated 500000 times in order to obtain empirical distributions of T and T ∗.

Figure 2 shows the empirical density functions of T and T ∗. The distribution of T approximates

the χ2-distribution with 1 degree of freedom very well (the respective lines in Figure 2 coincide)

which indicates that the number of observations was chosen high enough. It is remarkable that the

distribution of T ∗ noticeably deviates from the χ2-distribution. It has a much higher variability so

that the probability mass in the tail is larger compared to that of T . To quantify the discrepancy

between the empirical distributions of T and T ∗ we compute the empirical expectation and variance

of T and T ∗. While the empirical expected value of T is, at 0.9977, very close to the true asymptotic

expectation of 1, the empirical value of T ∗ is 2.0005 and is thus approximately twice as large, as

suggested by the approximation provided by Bollen and Stine (1992). The empirical variance of

T is, at 1.9819, also close to the theoretical approximate variance of 2. The variance of T ∗ in

contrast is with a value of 8.0140 higher by a factor of 4. From these results it is obvious that the

type I error is increased when performing a LR test on bootstrap samples using the critical values

from a χ2-distribution.

2.3 Information criteria based on bootstrap samples

Information criteria like the AIC and BIC are similarly affected when derived from models built on

bootstrap samples. In the context of graphical models Steck and Jaakkola (2003) proved that the

bootstrapped information criteria systematically deviate from information criteria derived from

original samples. We illustrate their findings using the correspondence between the likelihood ratio

test statistic (LRT) and information criteria for nested models. For this purpose we assume that

we aim to compare two nested models using the AIC and that the models differ in the inclusion

of only one parameter (similar considerations can be made in the case of nested models differing

by the inclusion of more than one parameter). The definition of the AIC is:

AIC = −2log(L) + 2p, (3)

where L denotes the likelihood and p denotes the number of parameters included in the model.

If AIC1 denotes the AIC of the unrestricted model that includes p parameters and AIC0 denotes

the AIC of the submodel that includes p− 1 parameters, then the LRT on one degree of freedom

can be expressed in terms of AIC0 and AIC1 (cf. Chapter 6.9.3 in Burnham and Anderson; 2002):

LRT = AIC0 −AIC1 + 2. (4)

From Eq. (4) we see that if both models fit the data equally well according to the AIC (i.e.

AIC0 = AIC1), we have LRT = 2. Further, the unrestricted model is chosen over the submodel

if its AIC is smaller, corresponding to AIC0 − AIC1 > 0 and, according to Eq. (4), LRT > 2. In

contrast, the submodel is chosen if it has a smaller AIC value: AIC0 − AIC1 < 0 corresponding

to LRT < 2. These considerations illustrate that in the case of two nested models one can also

use the value of the LRT to decide which of the models is better in terms of the AIC; values for

the LRT below 2 are in favor of the submodel and values above 2 indicate that the unrestricted
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model is better. Both models are considered equally good in terms of the AIC if the LRT takes

the value 2. As shown in the first part of this section, bootstrapped LRT values are not valid. Due

to the correspondence between the LRT and the AIC under the specific setting of nested models

it is proven that bootstrapped information criteria like the AIC are thus not valid as well.

Steck and Jaakkola (2003) show that information criteria like the BIC and the AIC used for

structure learning for Bayesian networks are not valid when computed from bootstrap samples.

They give a thorough technical description which we will not present here. In particular, they

show that the log-likelihood terms in bootstrapped information criteria are not valid and should

be decreased by 1
2p. By subtracting this term from the log-likelihood – or equivalently by adding p

to the information criterion – one obtains an almost unbiased information criterion. According to

Steck and Jaakkola (2003) in order to learn the structure of graphical models using the bootstrap

one can use a bias corrected version of the AIC, denoted by AICBC . This is defined as:

AICBC = −2

(
log(L)− 1

2
p

)
+ 2p

= −2log(L) + 3p. (5)

As noted by the authors, since the bias originates from the log-likelihood the same bias correction

term can be applied to any information criterion that is computed from the log-likelihood and a

penalty term.

The studies by Steck and Jaakkola (2003) show that more complex models, in terms of in-

cluded parameters, have actually too high a likelihood. This fact is ignored when computing the

traditional AIC for models built from bootstrap samples: When selecting the model that was built

from a bootstrap sample by using the uncorrected AIC, one would select a more complex model

on average. This model would possibly not have been selected if the model has been built from the

original sample. The bias corrected version of the AIC in Eq. (5) for learning graphical models,

if compared to the original version of the AIC given in Eq. (3), suggests that in a bootstrap

sample the number of parameters should be more strongly penalized (by factor 3) than in the

original sample (factor 2) in order to obtain comparable results for the AIC value computed from

bootstrap and original samples in the context of graphical models.

3 Practical Consequences

In this section we discuss four approaches based on the bootstrap which use the information

of p-values or information criteria that were derived from bootstrap samples. Keeping in mind

the results presented in the previous section, we illustrate that these approaches might lead to

misinterpretations and provide evidence through simulation studies.

3.1 Variability of p-values

In their paper Boos and Stefanski (2011) introduce a bootstrap approach to explore the variability

of p-values. In this approach a p-value is computed from each bootstrap sample such that the

variability of p-values (or -log10(p-value)) can be assessed. However, this approach is not valid; the

problem in computing the variability of p-values from bootstrap samples is that the p-value distri-

bution is different when computed on bootstrap samples. This has been theoretically motivated

in important special cases (Z-test and LR test) in the first part of this paper and will be confirmed
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by the use of simulation studies here. For a Z-test we independently draw n = 1000 observations

from the standard normal distribution for testing the null hypothesis that the population mean

equals zero. Under the alternative we draw from N(0.08, 1). A bootstrap sample is generated by

drawing from the original data and a Z-test is performed separately for the original sample and

the bootstrap sample. This process is repeated 5000 times.

For the LR test p metric predictor variables xi1, . . . , xip are independently drawn for i =

1, . . . , 1000 from a multivariate normal distribution with expected value µ = (0, . . . , 0)> ∈ Rp

and variance Ip corresponding to the identity matrix of dimension p. The response variable Yi is

generated according to the linear regression model

Yi = β0 + β1xi1 + . . .+ βpxip + εi

with εi ∼ N(0, σ2). The global null hypothesis states that none of the p predictors is associated

with the response, i.e. H0 : β1 = β2 = . . . = βp = 0 and the alternative hypothesis is that at

least one of the coefficients is associated, i.e. H1 : βj 6= 0 for at least one j ∈ {1, . . . , p}. The

corresponding LR test compares the likelihood of the submodel L0 containing only the intercept

to the likelihood L1 of the model containing all predictor variables. If the null hypothesis is true

the LR test statistic (2) follows a central χ2-square distribution with p degrees of freedom. In our

simulations all beta coefficients are set to the value zero for the setting under the null hypothesis

and to the value 0.02 if the alternative hypothesis is true. For simulations on the LR test we

perform several simulation settings with different numbers of predictor variables p. These show

slight to severe differences to the true p-value variability when computed on bootstrap samples.

Here we show only the results for the setting with p = 10 predictor variables (corresponding to a

LR test with 10 degrees of freedom) in which the discrepancy with the true p-value variability is

rather extreme.

Figure 3 shows the distribution of p-values for the Z-test and the LR test: it is obvious that

the p-value distribution derived from bootstrap samples is not a good approximation of the p-

value distribution that is obtained for original samples. The corresponding standard deviations

of the p-value (or -log10(p-value)) computed on bootstrap samples do not reflect the true p-value

variability in our studies, neither under the null hypothesis nor under the alternative hypothesis.

In practical applications one should thus be aware that misleading results might be obtained when

deriving p-values from bootstrap samples or other statistics that are based on p-values, such as

the p-value variability. Subsampling is not a reasonable alternative here if more than estimation

of the p-value distribution under the null hypothesis and type I error control is wanted. Figure

4 shows the corresponding results for the Z-test and the LR test when the test is performed on

subsamples of size 0.632n. The value 0.632 was chosen because this is the expected number of

unique observations in a bootstrap sample. One can see that tests performed on subsamples do

preserve the α-level but one obtains higher p-values under the alternative hypothesis, which is

attributable to the decreased statistical power. Tests performed on subsamples thus do not reflect

the p-value variability in original samples, either.

3.2 Tuning parameter selection

Fitting a prediction model and evaluating its prediction error on the same data is not a trivial task,

especially if the model involves one or several tuning parameters. To avoid overoptimism a data

splitting procedure should be applied in which the model is fit on one part of the data and evaluated
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Figure 3: p-value distribution for Z-test (left two columns) and LR test with 10 degrees of freedom
(right two columns) computed on 5000 original samples (left boxplot) and 5000 bootstrap samples
(right boxplot) under the null hypothesis and under the alternative hypothesis.

on the other part of the data (see e.g. Boulesteix et al.; 2008). One option is to use a bootstrap

sample to fit the model (model building step) and to use the remaining observations which were

not part of the bootstrap sample (often termed “out-of-bag” observations) to compute the model’s

prediction error (model evaluation step). This process is usually repeated a large number of times

and the average error over the replications is obtained. If the statistical model integrates tuning

parameters such as the number of boosting steps for gradient boosting algorithms (Friedman;

2001; Bühlmann et al.; 2007), the optimal value for the tuning parameter is often determined by

using information criteria or through application of an internal cross-validation procedure. In the

following we illustrate that when performing either of these procedures on a bootstrap sample

a tuning parameter is selected which leads to (at least slightly) more complex models. We will

also investigate the use of the subsampling procedure for splitting the data into a training and a

test set to see whether the subsampling procedure could be used to solve this problem. We first

consider the case where the tuning parameter is selected by the use of an information criterion

and then investigate the use of cross-validation procedures for tuning parameter selection. As

an example we here consider the selection of the optimal number of boosting steps for gradient

boosting algorithms.

Selection via information criteria

As illustrated in the first part of this paper, when computing the AIC for models that were fit

on bootstrap samples and deciding for the model with the minimal AIC, one would select a more

complex model, i.e. more parameters. In the specific context of gradient boosting algorithms more

complex models are obtained when performing a larger number of boosting steps. Accordingly,
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Figure 4: p-value distribution for Z-test (left two columns) and LR test with 10 degrees of freedom
(right two columns) computed on 5000 original samples (left boxplot) and 5000 subsamples (right
boxplot) under the null hypothesis and under the alternative hypothesis.

when determining the number of boosting steps that leads to the minimal AIC value, one would

select a higher number of boosting steps. This can also be seen in simulation studies where the AIC

is used to determine the optimal number of boosting steps. In our simulation studies we compare

the optimal number of boosting steps for which the AIC is minimized on the original data (i.e.,

we use the whole data as training set), on a bootstrap sample and on a subsample of size 0.632n.

The data generating process is the same as that described by Binder and Schumacher (2008) for

the simulation study on binary response gradient boosting. Data is simulated for the uncorrelated

setting, where p ∈ {200, 1000, 5000} predictors are independently drawn from a standard normal

distribution for n = 100 observations. The covariate effects are defined as follows:

βj =





ce, if j · 200/p ∈ {1, 3, 5, 7, 9}
−ce, if j · 200/p ∈ {2, 4, 5, 6, 10}

0, otherwise

where ce = 1 (setting with weak effects) and ce = 2 (setting with medium effects), as per the

simulation studies by Binder and Schumacher (2008). The binary response value for an ob-

servation with covariates xi is simulated from a binomial distribution with success probability

πi = exp(x>i β)/(1 + exp(x>i β)). We determine the optimal number of boosting steps on the

original data, a bootstrap sample and a subsample. This is repeated 1000 times.

Figure 5 shows the optimal number of boosting steps for the setting with weak effects. The

results for the setting with moderate effects are comparable and are thus not shown. The re-

sults of the simulation studies support our hypothesis that a higher number of boosting steps, or

equivalently, a higher complexity of gradient boosting models, is chosen when performing tuning
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Figure 5: Optimal number of boosting steps selected via AIC for binary response gradient boosting
in 1000 original samples, bootstrap samples and subsamples for the setting with weak effects
(ce = 1).

parameter selection on bootstrap samples. Interestingly, however, the amount of overcomplexity

induced by the bootstrap is negligible in our studies since only a marginally higher number of

boosting steps is chosen. The discrepancy in selected boosting steps for original samples and for

subsamples is much more pronounced than the difference in selected boosting steps for original

samples and bootstrap samples. In contrast to the bootstrap, when using subsamples a substan-

tially smaller number of boosting steps is selected. To conclude, the results have shown that

tuning parameter selection via AIC on bootstrap samples results in slightly more complex boost-

ing models. Though, the amount of overcomplexity seems to be negligible in our studies. Using

subsampling for splitting the data into training and test sets, in contrast, yields considerably

smaller numbers of boosting steps that lead to considerably sparser models. Thus, although the

bootstrap systematically induces a higher complexity, in our studies the induced overcomplexity

is negligible and comes much closer to the true model complexity than the subsampling approach

that chooses considerably more simplistic models.

Selection via cross-validation

Alternatively, instead of using information criteria one may use cross-validation for selecting the

optimal value for a tuning parameter. Binder and Schumacher (2008) investigated cross-validation

on bootstrap samples to select the optimal number of boosting steps. Their simulation results

consistently show that the number of boosting steps is considerably higher when performing tuning

parameter selection on bootstrap samples compared to original samples. The consequence of the

considerably high number of boosting steps was overcomplex models with decreased accuracy.

The preference for overcomplex models can be explained as follows: In a bootstrap sample the

same original observation can occur several times. Thus when performing cross-validation on a

bootstrap sample the same original observation may be present in the training as well as in the

test set. If a model is evaluated on observations that were already used for fitting the model,

more complex models might imply a better fit. However, these have poor predictive accuracy on

new data. A solution to this problem might be to prevent an overlap of training and test sets.

Hothorn et al. (2005), for example, propose deleting the observations from the test set that are
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also present in the training set. Here we consider a different approach for preventing an overlap,

in which all duplications of the same observation in a bootstrap sample are regarded as one unit

and randomly split the units – instead of the observations – into k sets, in which each set contains

an equal number of units. To investigate if this latter approach, or subsampling, might be used

for tuning parameter selection via k-fold cross-validation on bootstrap samples, we perform a

simulation study. The data is generated the same way as described in the preceding paragraph.

We compute the optimal number of boosting steps for which the cross-validated empirical loss is

minimized when 5-fold cross-validation is performed on original samples, on bootstrap samples

allowing training and test sets to overlap, on bootstrap samples not allowing training and test sets

to overlap and on subsamples of size 0.632n containing no duplicated observations. The results

for 1000 original samples, bootstrap samples and subsamples are shown in Figure 6 for the setting

with weak effects (ce = 1).
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Figure 6: Optimal number of boosting steps selected by 5-fold cross-validation for binary response
gradient boosting in 1000 original samples, bootstrap samples (with and without allowing training
and test sets from 5-fold cross-validation to overlap), and subsamples, for the setting with weak
effects (ce = 1).

As already seen in the studies by Binder and Schumacher (2008), a considerably higher number

of boosting steps is obtained when performing cross-validation on classical bootstrap samples

(where training and test sets may overlap) compared to original samples. Interestingly, when

performing cross-validation on bootstrap samples with the restriction that training and test sets

cannot overlap there is no tendency towards a higher number of boosting steps. More precisely,

the median number of boosting steps is much lower than for original samples and comes very

close to the results obtained for subsamples. Since subsamples are drawn such that the number

of unique observations is approximately the same as for bootstrap samples (i.e., 63.2% of the

original sample), one might hypothesize that the information content in a bootstrap sample and

in the subsample is approximately the same and that duplicated observations do not affect the

boosting algorithm as long as training and test sets do not overlap. The results suggest that the

larger number of boosting steps for the classical bootstrap approach, or equivalently, the higher

complexity of gradient boosting models, results from the overlap of training and tests sets when

performing cross-validation on bootstrap samples.

13



We conclude from these studies that with the classical bootstrap approach too complex models

are promoted, as already seen in the studies by Binder and Schumacher (2008). Performing cross-

validation on ordinary bootstrap samples for choosing the optimal number of boosting steps is

thus not recommendable. With the modified bootstrap approach (that prevents an overlap of

training and test sets) and the subsampling approach sparser models are chosen compared to

models derived on original samples but the difference is rather small in our studies indicating that

both approaches may be used for tuning parameter selection.

3.3 Model stability issues

A major field where several bootstrap-based approaches have been developed in the past is model

selection for multivariable regression. It is well known that model selection strategies suffer from

instability. The bootstrap method is an attractive tool for stability investigations since it offers

the possibility to obtain slightly perturbed datasets from the original data. Chen and George

(1985), Altman and Andersen (1989) and Sauerbrei and Schumacher (1992) for example proposed

performing model selection on bootstrap samples. With each bootstrap sample one obtains a

model, in this way enabling stability investigations. The LR test can for example be used to

decide on the inclusion or exclusion of a variable in each step of the model selection procedure.

Other criteria like the AIC or BIC could also be used. Using this approach one can investigate

the importance of variables via so-called bootstrap inclusion frequencies. These correspond to the

relative frequency a variable is included in the resulting models. Roughly speaking a variable

with a high bootstrap inclusion frequency indicates a variable with a high prognostic importance,

while a variable with a low bootstrap inclusion frequency is thought to have only little prog-

nostic importance (see Sauerbrei and Schumacher; 1992, for more detailed information, e.g., on

the handling of correlated variables). The bootstrap-based approach proposed by Sauerbrei and

Schumacher (1992) can be seen as a reasonable tool to assess the importance of predictor variables

while addressing the instability of classical approaches.

However, recent studies showed that model selection performed on bootstrap samples results

in models including more predictor variables and that categorical predictors with many categories

are more often included than predictors with fewer categories or metric predictors when compared

to samples drawn from the original distribution (Rospleszcz et al.; 2014). The inclusion of more

predictor variables on bootstrap samples results from the fact that the LR test has an increased

type I error when performed on bootstrap samples, thus finding more significant associations

during the model selection process and including more predictor variables in the model. This issue

is thus directly related to our considerations from Section 2. If the inflation were independent of

the type of predictor (e.g., categorical or metric) this overcomplexity would not be a problem, since

the significance level can be seen as more or less arbitrary in the context of model selection for

multivariable regression and one could just decrease the significance level to achieve a less complex

model. However, the type I error increase depends on the degrees of freedom of the LR test, which

are determined by the number of parameters being tested. The more categories a variable has, the

more degrees of freedom the test has and the more increased is the type I error. In the context of the

χ2-test, this result was already noted by Strobl et al. (2007), who provided evidence via simulation

studies. In their studies the p-value distribution computed from χ2-tests conducted on bootstrap

samples is more skewed towards smaller values the more categories a predictor has. When using

the described model selection approach on bootstrap samples for data with different types of
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predictors, it might happen that categorical predictors with many categories are preferentially

selected due to a more extreme increase in type I error. Bootstrap inclusion frequencies might

not be reliable in reflecting the relative importance of predictors if different types of predictors

are present in the data since categorical predictors with many categories have systematically

higher bootstrap inclusion frequencies than categorical predictors with fewer categories and metric

predictors even under the null hypothesis, as documented by Rospleszcz et al. (2014). A solution

to this problem is to perform the described approach on subsamples instead of bootstrap samples.

The resulting “subsample inclusion frequencies” can be computed likewise and were shown to

reliably reflect the importance of predictors (Rospleszcz et al.; 2014).

3.4 Model averaging

A model averaging method based on the bootstrap was suggested by Buckland et al. (1997) (see

also Burnham and Anderson; 2002). In model averaging inference regarding a quantity of interest

is not only based on one best model, determined for example by the minimal AIC, but on a

set of plausible models, this way incorporating model uncertainty into inference. A quantity of

interest might for example be a regression parameter or a predicted value. In model averaging,

the quantity of interest is averaged over several plausible models where model k has a weight wk

that reflects its plausibility. The estimated quantity of interest averaged over all K models is then

given by:

θ̂ =

K∑

k=1

wkθ̂k,

where θ̂k is the model-specific quantity of interest for model k.

Buckland et al. (1997) and Burnham and Anderson (2002) introduce two approaches in which

the bootstrap is used to determine weights wk for models k = 1, . . . ,K. One approach, here

termed the selection frequency method, consists of fitting all K candidate models to each bootstrap

sample and selecting the most plausible model (determined for example by the smallest AIC) in

each bootstrap sample. The weight for model k is then determined by the fraction of bootstrap

samples in which model k had been selected. Another approach, called the average weight method,

was proposed by Burnham and Anderson (2002). In this approach they use the so-called Akaike

weights that are derived from the AIC values. A model k is attributed a weight

wk =
exp(−∆k/2)

∑K
i=1 exp(−∆i/2)

, (6)

where ∆k = AICk −min(AIC1, . . . ,AICK) measures the distance between model k and the best

model with the minimal AIC, where AICk denotes the AIC for model k. From Eq. (6) it can

be seen that the bigger the distance ∆k, the smaller is the weight wk and thus the plausibility of

model k (Burnham and Anderson; 2002, p. 75). These weights are computed separately on each

bootstrap sample and finally averaged over all B bootstrap samples to obtain a weight for each

model (Burnham and Anderson; 2002, p. 172).

By using simulation studies Wagenmakers et al. (2004) showed that both types of weights are

biased when computed on bootstrap samples. Their argumentation is based on the correspondence

between the LR test and the information criteria for nested models, as illustrated in Section 2.3.

They showed that both weighting methods provide larger weights for more complex models when

derived from bootstrap samples and concluded that, when using these model averaging approaches,
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the plausibility of more complex models would be overestimated and inference would be affected

since parameter estimates are more variable for more complex models.

4 Discussion

Bootstrap procedures are widely used in biometry to solve problems that are difficult to address

using asymptotic theory. They can be applied for example to assess the variance of a statistic, a

quantile of interest or for significance testing by resampling from the null hypothesis. With the

introduction of the bootstrap in 1979 more and more approaches based on the bootstrap have

been developed. However, when performing hypothesis tests on bootstrap samples as if they were

original samples the type I error is increased. Similarly, information criteria like the AIC or BIC

computed from a bootstrap sample depart from that of original samples. Unfortunately, such

problematic results are scattered over many papers and communities, and so far have not been

comprehensively considered for biostatistical modeling. Evidence or indications for the increased

type I error or the discrepancy in information criteria when computed on bootstrap samples can

be found in Bollen and Stine (1992) in the context of structural equation models, in Strobl et al.

(2007) in the context of random forest methodology, in Wagenmakers et al. (2004) in the context of

model averaging and in Steck and Jaakkola (2003) in the context of graphical models. In addition

in almost all cases the title of the work does not reveal that this kind of “bootstrap bias” is dealt

with, which aggravates the problem.

In the first part of this article we have illustrated in a general context that there is a discrep-

ancy in variance, and for some test statistics also in the expected value, when computing test

statistics from original and from bootstrap samples. This discrepancy in variability (as well as

the discrepancy in the expected value for some tests) leads to an increased type I error when

performing hypothesis tests on a bootstrap sample. The discrepancy arises from the fact that

when drawing bootstrap samples from the empirical distribution – presuming that no modifica-

tion is made to the data beforehand, which is usually the case – one is not drawing from the

true distribution, since the empirical distribution is never exactly equal to the true distribution,

due to sampling variability. Through the relationship between the LR test and the AIC we have

illustrated that information criteria are not reliable when computed from bootstrap samples, as

well. This had been shown before by Steck and Jaakkola (2003) who also derived a bias-corrected

version of information criteria for learning graphical models and this issue had also been reported

by Wagenmakers et al. (2004) in a letter to the editor in the context of model averaging procedures.

For the vast majority of approaches that make use of bootstrapped p-values or information

criteria, the practical consequences are unknown and remain to be investigated. In the second part

of this article we outlined four bootstrap approaches from the biometrical field and discussed the

consequences of a possible bias induced by the bootstrap in these applications. For the first two

approaches we discussed possible consequences and provided evidence through simulation studies.

For the latter two approaches we used evidence from the literature to illustrate that the bootstrap

approaches might give misleading results. We also investigated possible alternative strategies to

circumvent a bias induced by the bootstrap, such as subsampling, which has often been men-

tioned as a promising alternative to the bootstrap. A recent approach to stability selection which

is based on subsampling has been introduced by Meinshausen and Bühlmann (2010). Their studies

impressively show that subsampling is a powerful tool to investigate the stability of models in dif-

ferent contexts such as penalized likelihood estimation and graphical modeling. However, we have
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demonstrated that subsampling should not be regarded as an universally applicable alternative

to the bootstrap. For selecting the optimal number of boosting steps via information criteria for

example, with the subsampling procedure a considerably too small number of boosting steps was

selected in our simulation studies and thus cannot be recommended if the aim is to investigate

the distribution of model complexity parameters. This might potentially affect other uses, for

example when prediction performance is to be investigated. For investigating the variability of

p-values subsampling is not appropriate either, if more than type I error control is wanted. This

makes clear that for some approaches subsampling might be an alternative to the bootstrap that

gives reliable results while for other approaches it cannot be applied for obtaining reliable results.

Applied researchers should be careful when using approaches where hypothesis tests or infor-

mation criteria are computed based on a bootstrap sample. If no investigations exist that indicate

the reliability of a bootstrap approach, simulation studies are a helpful tool to investigate this.

It is important to keep in mind that the bootstrap cannot be applied to any procedure as if it

were the original sample. It might be advisable for methodologists to check the validity of their

proposed bootstrap approaches by using simulation studies and comparing the results of their

bootstrap approach to those that are obtained when using original samples from the true un-

derlying distribution instead of bootstrap samples. In this way unexpected results can easily be

discovered and adjustments may be made.

Supplementary material

R code implementing our simulation studies is available at http://www.ibe.med.uni-muenchen.de/

organisation/mitarbeiter/070_drittmittel/janitza/index.html
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