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The linear GMM model with singular
covariance matrix due to the elimination of a
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Hans Schneeweiss

Abstract

When in a linear GMM model nuisance parameters are eliminated by
multiplying the moment conditions by a projection matrix, the co-
variance matrix of the model, the inverse of which is typically used
to construct an efficient GMM estimator, turns out to be singular and
thus cannot be inverted. However, one can show that the generalized
inverse can be used instead to produce an efficient estimator. Various
other matrices in place of the projection matrix do the same job, i.e.,
they eliminate the nuisance parameters. The relations between those
matrices with respect to the efficiency of the resulting estimators are
investigated.

Key Words: generalized method of moments, orthogonal projection, nuisance pa-
rameter, singular covariance matrix, weighting matrix, generalized inverse, panel
data model.

1 Introduction

A Generalized Method of Moments (GMM) model is essentially a vector valued
function ψ(v,γ) of an observable random data vector v and an unknown param-
eter vector γ such that the so-called moment conditions Eψ(v,γ0) = 0 hold for a
unique value γ0 of γ , the “true” parameter value, Hansen (1982), Hall (2005). The
moment conditions can be used to construct an estimator of γ on the basis of an
i.i.d. sample vn, n = 1, . . . ,N, of the data vector v by minimizing the quadratic
form Q := ∑N

1 ψ(vn,γ)V ψ(vn,γ)> with respect to γ , where V is some weighting
matrix. We obtain an efficient estimator if V is chosen to be the inverse of an
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estimate of the covariance matrix of ψ , i.e., of Ω := Eψ(v,γ0)ψ(v,γ0)
>, which is

assumed to be nonsingular.

Here we focus on a linear GMM model, where ψ is a linear function in γ . In
particular we suppose that the statistician is interested in estimating only a sub-
vector β of γ = (α>,β>)>, and the complementary sub-vector α is a nuisance
parameter. The function ψ then takes the form ψ(a,A,B,α,β ) = a−Aα −Bβ ,
where a, A, and B are observable data matrices. This scenario is common in the
context of a linear model, where the intercept term is often of minor interest. It
also turns up in the GMM case. A typical example is a panel data model, where the
individual effects are nuisance parameters. In addition one may have measurement
errors in a panel data model, where the measurement error variance is treated
as a nuisance parameter, Wansbeek (2001), Xiao et al. (2007), Schneeweiss et
al.(2014).

One way to deal with this problem is to eliminate the nuisance parameter by mul-
tiplying the function ψ from the left by some matrix K>, often taken to be a
projection matrix, such that K>EA = 0. We then work with the new moment
conditions EK>ψ(a,B,β ) = 0. The corresponding covariance matrix of K>ψ is
K>ΩK. Quite often, in particular if K is a projection matrix, this matrix is singu-
lar and so its inverse cannot be used as an optimal weighting matrix. It turns out,
however, that the generalized inverse can be used as a weighting matrix and this
will lead to an efficient estimator of β ; in the context of panel data models and
instrumental variables see Biørn and Klette (1998) and White (1986). When the
covariance matrix of ψ is singular for some other reason we can still use the gen-
eralized inverse, but this will not necessarily result in an efficient estimator. The
paper investigates these propositions and clarifies some of the relations between
various choices of the matrix K.

Similar investigations can be found in Xiao et al. (2007) and Xiao et al. (2010),
although these papers are mainly interested in panel data models with measure-
ment errors and do not discuss the singularity problem in its general setting, as
is done here. Dorana and Schmid (2006) also use the generalized inverse of the
covariance matrix as a weighting matrix, however after having modified the co-
variance matrix by reducing it to some of its principal components. They do this
to improve the small sample properties of the GMM estimator, which is not the
focus of the present paper.

It may be noted that the results presented in this paper have their analogues in
linear regression models, e.g., Rao et al. (2008), Seber and Lee (2006), Puntanen
et al. (2013), see also White (1986). But their are two main differences. Fist,
in a linear model, y = Xβ + u, say, the residual vector u is independent of or
at least uncorrelated with the data matrix X , whereas a−Aα −Bβ need not be
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independent of the data (A,B). Secondly, the number of rows N, say, of (y,X)
increases with the sample size N and indeed (y,X) is the sample, whereas (a,A,B)
has a fixed number of rows and there is a sample (an,An,Bn), n = 1 . . . ,N, of data
to be used in the estimation procedure. Consequently, the results on the efficiency
of estimators in the linear model are concerned with finite sample properties while
in the linear GMM model they are of an asymptotic nature.

In the next section the linear GMM model and its corresponding GMM estimators
are recapitulated. Section 3 shows how to estimate the parameter of interest in the
presence of a nuisance parameter by estimating the complete parameter vector. In
Section 4 the same is done by first eliminating the nuisance parameter, and various
possibilities of doing so are discussed and compared to each other. Section 5 deals
with the important special case of a fixed matrix A. The more general case of a
singular covariance matrix at the outset is studied in Section 6. Some concluding
remarks are found in Section 7.

2 The linear GMM model

The linear GMM model consists of an i.i.d. sample (an,Cn) of observable (q×1)
random vectors an and (q×c) random matrices Cn, n = 1, · · · ,N, and an unknown
(c× 1) parameter vector γ such that for some γ = γ0 the following q moment
conditions hold

E(an−Cnγ0) = 0. (1)

We use a bar to denote averages over n, e.g., ā = 1
N ∑N

n=1 an and C̄ = 1
N ∑N

n=1Cn,
and we use a tilde to denote expectations, e.g., ã = Ean and C̃ = ECn.

The matrix C̃ is assumed to have full column rank thereby guaranteeing the unique-
ness of γ0 (identifiability condition for γ). In particular this implies that q ≥ c.
There is a sample analogue to the identifiability condition, viz., that C̄ has full
column rank. When the population identifiability condition is satisfied, its finite
sample analogue will also be satisfied, at least with high probability and for suffi-
ciently large N. We will therefore always tacitly assume the finite sample analogue
to be valid, too, whenever the population condition is assumed to be valid. This
remark also applies to other sample analogues in the sequel.

In addition to the moment conditions it is assumed that an−Cnγ0 has a nonsingular
covariance matrix

Ω := E(an−Cnγ0)(an−Cnγ0)
>.

The objective is to estimate γ0 with the help of the sample (an,Cn), n = 1, · · · ,N.
Let me briefly state the well-known basic facts of this estimation problem.
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A General Method of Moments (GMM) estimator of γ0 is found by applying a
weighted least squares approach to (1) and is given by

γ̂V = (C̄>V̂C̄)−1C̄>V̂ ā, (2)

where V̂ is a c× c positive semi-definite weighting matrix to be chosen such that
plim(V̂ ) = V exists and VC̃ has full column rank (admissibility condition for the
weighting matrix). γ̂V is consistent and asymptotically normal. The simplest
choice of V̂ is V̂ = I, but an optimal choice is V̂ = Ω̂−1, where

Ω̂ = (a−Cγ̂1)(a−Cγ̂1)> (3)

and γ̂1 is a provisional (first step) estimate of γ found from (2) with, e.g., V̂ = I.
The estimator with weighting matrix Ω̂−1,

γ̂opt = (C̄>Ω̂−1C̄)−1C̄>Ω̂−1ā, (4)

is optimal in the sense that it is (asymptotically) efficient in the class of estimators
γ̂V . For an estimator of this class the asymptotic variance is given by

Avar(γ̂V ) =
1
N
(C̃>VC̃)−1C̃>V ΩVC̃(C̃>VC̃)−1,

whereas for the efficient GMM estimator it is given by

Avar(γ̂opt) =
1
N
(C̃>Ω−1C̃)−1. (5)

That γ̂opt is at least as efficient as γ̂V means that Avar(γ̂V )≥Avar(γ̂opt) in the sense
that Avar(γ̂V )−Avar(γ̂opt) is positive semi-definite, and this can be shown in the
present case, e.g., Hall (2005). γ̂opt corresponds to the GLS estimator in linear
regression analysis.

So much for the basics of traditional GMM theory as far as it is restricted to linear
models. It may be noted that the i.i.d. assumption can be generalized by assuming
stationarity instead, but we stick to the simpler i.i.d. case.

3 Estimating a sub-vector

Now suppose we are only interested in estimating a p×1 sub-vector β of γ . Let
γ = (α>,β>)>, and partition Cn correspondingly as Cn = (An,Bn), then the mo-
ment conditions (1) become

E(an−Anα0−Bnβ0) = 0. (6)
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β is the parameter of interest and α is regarded as a nuisance parameter.

The following very simple example may serve to illustrate this kind of model.

Example 1: Let yn and xn be observable i.i.d. random variables, n = 1, . . . ,N,
and α and β unknown parameters. Assume the following linear relation to hold:

yn = α + xnβ +un, Eun = 0. (7)

(For simplicity we refrain from denoting the true parameter value by the subscript
0). For some reason (e.g., missing variables that are correlated with xn, the equa-
tion is part of a multi-equation system, errors in the variables) the unobservable
random variable un is not independent of xn. But some q instrumental variables
zin, i = 1, . . . ,q, are available, which by definition are independent of all the un
but correlated with xn. Let zn = (z1n, . . . ,zqn)

> and multiply (7) by zn. We get

znyn = znα + znxnβ + znun,

which corresponds to (6) with an = znyn, An = zn, and Bn = znxn. The covariance
matrix is

Ω = σ2
uEznz>n .

Of course, we can still estimate the complete parameter vector γ and then select
the sub-vector β̂V from the estimate γ̂V . In doing so we find the efficient GMM
estimator β̂opt , using Ω̂−1 as optimal weighting matrix, by solving the following
equations system

(
Ā>Ω̂−1Ā Ā>Ω̂−1B̄
B̄>Ω̂−1Ā B̄>Ω̂−1B̄

)(
α̂opt

β̂opt

)
=

(
Ā>Ω̂−1ā
B̄>Ω̂−1ā

)
,

which results in

β̂opt = (B̄>Ω̂−
1
2 P̂ΩΩ̂−

1
2 B̄)−1B̄>Ω̂−

1
2 P̂ΩΩ̂−

1
2 ā (8)

with the orthogonal projection matrix

P̂Ω = I− Ω̂−
1
2 Ā(Ā>Ω̂−1Ā)−1Ā>Ω̂−

1
2 . (9)

(The same result exists in asymptotic regression analysis, Putanen et al. (2013),
10.34 (c)). The asymptotic variance of β̂opt is given by

Avar(β̂opt) =
1
N
(B̃>Ω−

1
2 PΩΩ−

1
2 B̃)−1, (10)
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where
PΩ = I−Ω−

1
2 Ã(Ã>Ω−1Ã)−1Ã>Ω−

1
2 .

(To verify (10) note that

β̂opt−β0 = (B̄>Ω̂−
1
2 P̂ΩΩ̂−

1
2 B̄)−1B̄>Ω̂−

1
2 P̂ΩΩ̂−

1
2 (ā− B̄β0).

Because P̂ΩΩ̂−
1
2 Ā = 0, we can replace the term ā− B̄β0 with ā− Āα0− B̄β0 =

ā−C̄γ0. Equation (10) then easily follows.)

4 Correcting for nuisance parameter

Another way of estimating the parameter of interest β is to first eliminate the
nuisance parameter α together with its data matrix A and then to estimate β from
the remaining moment conditions. In the linear model this is usually done by
applying an orthogonal projection matrix. However, one can also use any matrix
that nullifies A. We will construct an efficient estimator of β using such a matrix
and will then study its relation to orthogonal projection matrices as well as to the
estimator introduced in Section 3.

Let K̂ be an observable q×k matrix (depending on N) such that K̂>Ā = 0. We say
that K̂ eliminates Ā. Assume K̂ to converge in probability: plim(K̂) = K. Then
K>Ã = 0 (i.e., K eliminates Ã). Let us assume that, at least for large N, K̂ and
K have the same rank. A case in point might be that K̂ is a constant matrix and
K̂ = K, see Section 5 below. If we multiply the moment conditions (6) by K>

from the left, we get rid of the nuisance parameter α and obtain new moment
conditions as follows:

E[K>(an−Bnβ0)] = 0, (11)

Even if B̃ (together with Ã) identifies β , this need not be so for K>B̃. In order
to be able to identify β from the new moment conditions (11) we must adopt the
further condition that K>B̃ has full column rank (identifiability condition for β
given K). (Note that K>B̃ has k rows instead of the original q rows of B̃).

We can use (11) to construct GMM estimators of β . However, as K is generally
unknown, we have to replace it by its estimate K̂. Let V̂ be a k× k weighting ma-
trix , which converges in probability to some positive semi-definite matrix V (not
necessarily the same V as in Section 2), for which we assume that V K>B̃ has full
column rank (admissibility condition for the weighting matrix). The correspond-
ing GMM estimator is then given by

β̂KV = (B̄>K̂V̂ K̂>B̄)−1B̄>K̂V̂ K̂>ā, (12)
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As, due to K̂>Ā = 0,

β̂KV −β0 = (B̄>K̂V̂ K̂>B̄)−1B̄>K̂V̂ K̂>(ā− Āα0− B̄β0)

and
√

N(ā− Āα0− B̄β0)
d−→ N(0,Ω), it is clear that β̂KV is consistent and asymp-

totically normal with asymptotic variance

Avar(β̂KV ) =
1
N
(B̃>KV K>B̃)−1B̃>KV K>ΩKV K>B̃(B̃>KV K>B̃)−1.

In looking for an optimal GMM estimator within the class of estimators β̂KV with
an admissible weighting matrix V̂ , we might think of choosing for the weighting
matrix the inverse of Ω (or rather of its estimate Ω̂) as in Section 2. But this turns
out not to be optimal. Instead one should try to use the inverse of K>ΩK (or of
its estimate). But if rank(K) < k, which may well be possible, in particular if K
is a projection matrix, K>ΩK (just as its estimate) will be singular and cannot be
inverted. However, we can always use the (Moore-Penrose) generalized inverse
(K̂>Ω̂K̂)+ instead. We are thus led to the optimal estimator

β̂K = [B̄>K̂(K̂>Ω̂K̂)+K̂>B̄]−1B̄>K̂(K̂>Ω̂K̂)+K̂>ā, (13)

which has asymptotic variance

Avar(β̂K) =
1
N
[B̃>K(K>ΩK)+K>B̃]−1. (14)

Note that, due to the identifiability assumption given K (i.e., K>B̃ has full column
rank), the matrix in brackets B̃>K(K>ΩK)+K>B̃ is nonsingular (i.e., (K>ΩK)+

is an admissible weighting matrix) and so its inverse exists. This follows from the
subsequent lemma:

Lemma 1 For any (q× p) matrix B, (q×k) matrix K, and positive definite (q×q)
matrix Ω

rank[B>K(K>ΩK)+K>B] = rank(K>B).

Proof : First note that B>K(K>ΩK)+K>B = B>0 P0B0, where B0 := Ω−
1
2 B, P0 :=

K0(K>0 K0)
+K>0 , and K0 := Ω

1
2 K. P0 is an orthogonal projection matrix. Therefore

the rank of the matrix B>K(K>ΩK)+K>B equals

rank(B>0 P0B0) = rank(P0B0) = rank(K>0 B0) = rank(K>B),

where the middle equality follows from

rank(K>0 B0)≥ rank(P0B0)≥ rank(K>0 P0B0) = rank(K>0 B0). �

The optimality of β̂K is asserted in the following theorem:
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Theorem 1 For a given elimination matrix K̂ such that K>B̃ has full column rank,
p, the estimator β̂K given by (13) is efficient within the class of estimators β̂KV
given by (12).

Proof : The proof is a slight modification of the corresponding efficiency proof for
γ̂opt , e.g., Harris and Mátyás (1999), Arellano (2003). Let

D> = (B̃>KV K>B̃)−1B̃>KV K>Ω
1
2

F> = B̃>K(K>ΩK)+K>Ω
1
2 .

Then D>D = N Avar(β̂KV ) and (F>F)−1 = N Avar(β̂K). Because of the identity

K>ΩK(K>ΩK)+K> = K>

it follows that D>F = I, and so, with G := F(F>F)−1F>,

N
(

Avar(β̂KV )−Avar(β̂K)
)
= D>D− (F>F)−1 = D>(I−G)D≥ 0. �

In Example 1, the efficient estimator (13) is

β̂K = [zx>K̂(K̂>Ω̂K̂)+K̂>zx]−1zx>K̂(K̂>Ω̂K̂)+K̂>zy.

The optimal estimator β̂K depends, of course, on the choice of the matrix K̂. Apart
from the requirement that K̂>Ā = 0 we are free to choose K̂. It turns out, however,
that β̂K depends only on the column space of K̂. (Note that the property of elim-
inating Ā also depends only on the column space of K̂). If we denote the column
space of a matrix by {·}, we can state the following theorem.

Theorem 2 Let K̂i, i = 1,2, be two elimination matrices of dimensions q× ki
with rank(K̂i)≥ p, then the optimal estimators β̂K1 and β̂K2 given by (13) with Ki
in place of K are equal for all ā and all B̄ with rank(K̂>i B̄) = p if, and only if,
{K̂1}= {K̂2}.
Note that the condition rank(K̂>i B̄) = p is necessary and sufficient for the exis-
tence of β̂Ki , see Lemma 1.

The proof of the theorem is based on the following lemma:

Lemma 2 Let Ki, i = 1,2, be two (q× ki) matrices with rank(Ki) ≥ p. Let B =
{b ∈ Rq |K>i b 6= 0, i = 1,2}. Then
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1. For any b ∈ B there are p− 1 further b j ∈ B, j = 2, . . . , p such that the
matrix B := (b,b2, . . . ,bp) satisfies rank(K>i B) = p, i = 1,2.

2. The set B contains q vectors b1, . . . ,bq which form a basis for Rq.

Proof :

1. Define the projection matrices Pi := Ki(K>i Ki)
+K>i , i = 1,2. Then B =

{b |Pib 6= 0, i = 1,2}. For any given b ∈B select p−1 vectors b2, . . . ,bp ∈
{P1} such that the tupel (P1b,b2, . . . ,bp) is linearly independent. This can
be done because {P1} has dimension ≥ p. For each b j choose a suffi-
ciently small neighborhood U j so that whatever b′j ∈ U j are chosen the
tupel (P1b,P1b′2, . . . ,P1b′p) remains linearly independent and thus the matri-
ces B′ := (b,b′2, . . . ,b

′
p) satisfy rank(P1B′) = p. Finally choose b′2, . . . ,b

′
p

in such a way that also rank(P2B′) = p. As by Lemma 1 rank(PiB) =
rank(K>i B) for any (q× p) matrix B, this proves part 1 of the lemma.

2. Part 2 is a consequence of the fact that B is the set-theoretic complement in
Rq of the union N(P1)∪N(P2) of the two null-spaces N(Pi) of the projec-
tions Pi and both N(Pi) are linear subspaces of Rq of dimension less than q,
see also Xiao et al. (2010), Lemma 1 for a similar proposition. �

Proof of Theorem 2: The equality β̂K1 = β̂K2 is equivalent to

(B̂>P̂1B̂)−1B̂>P̂1â = (B̂>P̂2B̂)−1B̂>P̂2â (15)

with P̂i := Ω̂
1
2 K̂i(K̂>i Ω̂K̂i)

+K̂>i Ω̂
1
2 , B̂ := Ω̂−

1
2 B̄, and â := Ω̂−

1
2 ā. The two or-

thogonal projection matrices P̂1 and P̂2 are equal iff they have identical image
spaces, i.e., iff {Ω̂ 1

2 K̂1} = {Ω̂
1
2 K̂2}, which is equivalent to {K̂1} = {K̂2}. There-

fore {K̂1}= {K̂2} implies (15) and thus β̂K1 = β̂K2 .

Conversely suppose (15) is true for all â and all B̂= Ω̂−
1
2 B̄ such that rank(K̂>i B̄) =

p. We need to prove that P̂1 = P̂2. Now if (15) is true for all â, then

(B̂>P̂1B̂)−1B̂>P̂1 = (B̂>P̂2B̂)−1B̂>P̂2,

which implies
P̂1B̂ = P̂2B̂Ĉ (16)

with Ĉ := (B̂>P̂2B̂)−1B̂>P̂1B̂. Multiplying (16) by B̂> yields B̂>P̂1B̂ = B̂>P̂2B̂Ĉ
and squaring (16) yields B̂>P̂1B̂= Ĉ>B̂>P̂2B̂Ĉ. The last two equations imply Ĉ = I
and thus (16) reduces to P̂1B̂ = P̂2B̂, or equivalently,

P̂1Ω̂−
1
2 B̄ = P̂2Ω̂−

1
2 B̄ (17)
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for all B̄ such that rank(K̂>i B̄) = p. Now consider the set B of Lemma 2 with
Ki = K̂i. For any b ∈B construct B according to Lemma 2, part 1, and call it B̄.
Then, by Lemma 2, rank(K̂>i B̄) = p and therefore (17) holds for this B̄. As b is
a column of B̄, (17) implies P̂1Ω̂−

1
2 b = P̂2Ω̂−

1
2 b for any b ∈B. As by Lemma 2,

part 2, one can select a basis for Rq out of the set B, it follows that P̂1 = P̂2 and
thus {K̂1}= {K̂2}. �
Theorem 2 has some interesting consequences:

1. Let PK = K̂(K̂>K̂)+K̂> be the orthogonal projection matrix derived from
K̂. Then {PK}= {K̂} and thus β̂PK = β̂K . Thus we can always resort to or-
thogonal projection matrices if we want to eliminate Ā. A typical projection
matrix to this purpose is

P̂ := I− Ā(Ā>Ā)−1Ā>. (18)

Its limit is P := I− Ã(Ã>Ã)−1Ã>. One can show that, due to the identifia-
bility condition of the original model (1), rank(PB̃) = rank(B̃) = p so that
the identifiability condition given P is satisfied.

Taking a more general elimination matrix K̂ does not improve the efficiency
of β̂K .

2. On the other hand, we need not take a projection matrix to eliminate Ā. We
can use other elimination matrices K̂, thereby enhancing flexibility, even
though we cannot increase efficiency. For example, suppose An = Ā = ι , ι
being a q×1 vector consisting of ones. Then we can use the q×q projection
matrix P = I− 1

q ιι> to eliminate ι , but we may just as well use the q× (q−
1) differencing matrix

K̂ = ∆ :=




1 0 · · · 0
−1 1 · · · 0

...
... . . . ...

0 0 · · · 1
0 0 · · · −1



,

which has the same column space as P but in contrast to P has full column
rank, in fact, P∆ := ∆(∆>∆)−1∆> = P. Alternatively, we may simply delete
the last column of P, which can formally be achieved by multiplying P
from the right by the q× (q− 1) matrix J = (I,0)> and use K̂ = PJ, see
Schneeweiss et al.(2014) for a more complex example. The advantage of
these alternative procedures is that in both cases the resulting matrix K̂ has
full column rank and the generalized inverse (K̂>Ω̂K̂)+ in (13) becomes a
simple inverse.
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3. More generally, any given K̂ can be replaced with any matrix K̂0 the columns
of which form a basis of {K̂}, so that β̂K = β̂K0 and K̂>0 Ω̂K̂0 is invertible and
its inverse can be used as an optimal weighting matrix. A matrix K̂0 can be
found by a singular value decomposition or a rank factorization of K̂.

When the column spaces of K̂1 and K̂2 differ, the two corresponding optimal es-
timators also differ, at least for some B̄. Intuitively it seems clear that if {K̂1} ⊃
{K̂2}, then β̂K1 is more efficient than β̂K2 . Actually, when we compare the asymp-
totic variances of the two estimators we do not compare the matrices K̂1 and K̂2 but
rather their limits K1 and K2 and it is their column spaces which are relevant for
the efficiency comparison. Before we state the corresponding theorem let us note
that {K1} ⊇ {K2} if, and only if, K2 = K1S with some k1× k2 matrix S. Clearly
K>1 Ã = 0 implies K>2 Ã = 0, and if K>2 B̃ has full column rank so also has K>1 B̃.

Theorem 3 Let K̂1 and K̂2 be two matrices that eliminate Ā and let K1 and K2 be
their respective limits. Assume that rank(Ki) ≥ p and rank(K>i B̃) = p. Then β̂K1

is at least as efficient as β̂K2 if, and only if, {K1} ⊇ {K2}.
Proof : According to (14), β̂K1 is at least as efficient as β̂K2 iff

[B̃>K1(K>1 ΩK1)
+K>1 B̃]−1 ≤ [B̃>K2(K>2 ΩK2)

+K>2 B̃]−1, (19)

Similarly as in the proof of Theorem 2 one can show with the help of Lemma 2
that (19) is true for all identifying B̃ given Ki, i = 1,2, iff

Ω
1
2 K1(K>1 ΩK1)

+K>1 Ω
1
2 ≥Ω

1
2 K2(K>2 ΩK2)

+K>2 Ω
1
2 . (20)

Now these last two matrices are orthogonal projection matrices, which we may
denote by P1 and P2, respectively, so that (20) reads P1 ≥ P2. This is equivalent to
{Ω 1

2 K1} ⊇ {Ω
1
2 K2}, which again is equivalent to {K1} ⊇ {K2}. �

As a consequence of Theorem 3, a matrix KA that eliminates Ā and for which
{KA} contains the column space of any other matrix K̂ that eliminates Ā is most
efficient among the class of GMM estimators that use any matrix K̂ and an optimal
weighting matrix. Such a KA exists. It is given by the above mentioned orthogonal
projection matrix (18) with its limit

P := I− Ã(Ã>Ã)−1Ã> = I−PA,

or by any equivalent matrix KA. (Indeed, for any K, K>Ã = 0 implies PKPA = 0
and thus PKP = PK , which implies {K} ⊆ {P}). Thus

β̂P = [B̄>P̂(P̂Ω̂P̂)+P̂B̄]−1B̄>P̂(P̂Ω̂P̂)+P̂ā
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is the most efficient estimator. Its asymptotic variance is

Avar(β̂P) =
1
N
[B̃>P(PΩP)+PB̃]−1.

As might have been expected from linear regression theory, this most efficient
estimator is the same as the optimal estimator of Section 3, see Putanen et al.
(2013), 10.51.

Theorem 4 The two estimators β̂opt and β̂P are the same if they use the same
estimate Ω̂ of the covariance matrix Ω.

Proof : We need to show that

Ω̂−
1
2 P̂ΩΩ̂−

1
2 = P̂(P̂Ω̂P̂)+P̂,

where P̂Ω is given by (9). Equivalently, we have to show that

P̂Ω = Ω̂
1
2 P̂(P̂Ω̂P̂)+P̂Ω̂

1
2 =: Q.

Obviously Q is an orthogonal projection matrix, and so in order to prove the equal-
ity of P̂Ω and Q we need only show that both matrices have the same nullspace.
Now the nullspace of P̂Ω is N(P̂Ω) = {Ω̂−

1
2 Ā}, and since QΩ̂−

1
2 Ā = 0, we have

N(P̂Ω)⊆N(Q). Conversely let x ∈N(Q), then Qx = 0, which implies

0 = P̂Ω̂P̂(P̂Ω̂P̂)+P̂Ω̂
1
2 x = P̂Ω̂

1
2 x,

which means that Ω̂
1
2 x ∈N(P̂). But N(P̂) = {Ā} and so x ∈ {Ω̂− 1

2 Ā} =N(P̂Ω),
so that N(Q)⊆N(P̂Ω). �

5 Special case: A fixed

An important special case of the GMM model (6) arises when the matrix An is a
fixed (i.e., non-stochastic) known matrix A independent of n. In this case, Ā= Ã=
A and P̂A = PA = A(A>A)−1A>. More generally, we may have a fixed projection
matrix P (or a corresponding fixed matrix K) such that PAn = 0 for all n. In
either case, things simplify greatly, the most important simplification being that
now PΩP = PWP, where W = E(an−Bnβ ). This implies that in computing the
optimal weight matrix we need only have a (preliminary) estimate of β and not an
additional one of α , because now we can use

Ŵ = (a−Bβ̂1)(a−Bβ̂1)
>

12



instead of Ω̂.

Another important aspect of this case is that the nuisance parameter, in an exten-
sion of the model, can now be an unknown random parameter. In this case the
estimation of the whole model, as in Section 3, does not work but the elimination
procedure still works. The following example illustrates this point.

Example 2: Consider a linear panel data model

yn = ιαn + xnβ +un, Eun = 0, (21)

where yn, xn, and un are T × 1 i.i.d. random vectors , n = 1, . . . ,N, the former
two observable, and ι is a T × 1 vector of ones. Again, for similar reasons as
in Example 1, un may not be independent of xn, but m instrumental variables
zin, i = 1, . . . ,m, may be available. Let zn = (z1n, . . . ,zmn)

>, then we can set up
the following system of equations

zn⊗ yn = (zn⊗ ι)αn +(zn⊗ xn)β + zn⊗un,

from which the moment conditions

E[zn⊗ yn− (zn⊗ ι)αn− (zn⊗ xn)β ] = 0

follow, which correspond to (6) with an = zn ⊗ yn, An = zn ⊗ ι = (Im ⊗ ι)zn,
Bn = zn⊗ xn, and q = mT , however, with one notable difference. This time αn
is not a fixed parameter but rather a varying or random parameter, as the case may
be, and possibly not independent of xn or zn. With the fixed projection matrix
P⊗ := Im⊗ (I− 1

T ιι>) we have P⊗An = 0. Instead of P⊗ we may also use Im⊗∆>

and (Im⊗J>)P⊗, where here ∆ and J are T × (T −1), see the second remark after
Theorem 2.

The following is a more elaborate example.

Example 3: Wansbeek (2001) studies a panel data model similar to the one in
Example 2 but with measurement errors v in the x-variables:

yn = ιT αn +ξnβ + εn

xn = ξn + vn

vn, εn and ξn are supposed to be independent. In this case the (error prone) xtn
can be taken as instrumental variables. He ends up with the following moment
conditions

E{MR(IT ⊗AT )[xn⊗ (yn− xnβ )]}= 0, (22)

13



where AT = IT − 1
T ιT ι>T , MR = IT 2 −R(R>R)+R>, R = (IT ⊗AT )R0, and R0 is a

known T 2×m matrix describing the structure of the measurement error variances
and covariances, see also Xiao et al. (2010). Now M := MR(IT ⊗AT ) is a fixed
projection matrix eliminating both IT ⊗ ι and the measurement error structure ma-
trix R0. So (22) corresponds to (11) with an = xn⊗ yn, Bn = xn⊗ xn, and K = M.
The optimal weighting matrix in this case is

Vopt = (MWM)+,

where W = E{[xn⊗ (yn− xnβ )][xn⊗ (yn− xnβ )]>}, and the efficient estimator of
β according to (13) is

β̂M =
[
(x⊗ x)

>
M(MŴM)+M(x⊗ x)

]−1
(x⊗ x)

>
M(MŴM)+M(x⊗ y),

where
Ŵ = [x⊗ (y− xβ̂1)][x⊗ (y− xβ̂1)]>.

According to (14) it has asymptotic variance

Avar(β̂M) =
1
N
{E(xn⊗ xn)

>M(MWM)+ME(xn⊗ xn)}−1.

6 Singular covariance matrix

The difficulty we encountered in finding an optimal weighting matrix originated
from the singularity of the covariance matrix of the moment conditions after these
were corrected for nuisance parameters. This difficulty, however, was easily over-
come by using a generalized inverse instead of the more common ordinary inverse
of the covariance matrix as weighting matrix. The question is whether the same
strategy can be applied when the covariance matrix Ω and its estimate Ω̂ happen
to be singular at the outset for whatever reason. Thus suppose that in the original
model (1) of Section 2 the covariance matrix Ω is singular even without multiply-
ing (1) by some eliminating matrix K>. For simplicity let us also suppose that
Ω is known so that we need not estimate it. Then a valid estimator of γ can be
constructed by replacing Ω̂−1 in (4) by Ω+. Thus let

γ̂∗ = (C̄>Ω+C̄)−1C̄>Ω+ā (23)

be our new estimator of γ in this case. Its asymptotic variance is given by

Avar(γ̂∗) =
1
N
(C̃>Ω+C̃)−1,

14



assuming that C̃>Ω+C̃ is nonsingular. However, this estimator is not necessarily
optimal in the class of estimators (2). The following counterexample demonstrates
this. For q = 2 and c = 1, let

Cn =

(
c1n
c2n

)
, an =

(
a1n
a2n

)
, Ω =

(
ω11 0
0 0

)
, c̃1 6= 0, c̃2 6= 0, ω11 6= 0.

Then Ω+ =

(
ω−1

11 0
0 0

)
and, assuming c̄1 6= 0,

γ̂∗ = (ω−1
11 c̄2

1)
−1ω−1

11 c̄1ā1 =
ā1

c̄1
,

which has asymptotic variance

Avar(γ̂∗) =
1
N

ω11

c̃2
1
.

But the alternative estimator
γ̂∗∗ =

ā2

c̄2

of γ has asymptotic variance 0, because a2n = c2nγ holds exactly due to ω22 = 0.
Thus γ̂∗, which was constructed with weighting matrix Ω+, is not optimal.

But when is the weighting matrix Ω+ optimal? The next theorem gives an answer.
(For an analogous result in linear regression analysis see Putanen et al. (2013),
10.20).

Theorem 5 Suppose that in the linear GMM model (1) {Ω} ⊇ {C̃} and C̃>Ω+C̃
is nonsingular, then the estimator γ̂∗ of (23) is efficient in the class of estimators
γ̂V of (2).

Proof : First note that {Ω} ⊇ {C̃}is equivalent to the relation ΩH = C̃ with some
(q× c) matrix H. Now let

D> := (C̃>VC̃)−1C̃>V Ω
1
2

F> := C̃>Ω+Ω
1
2 .

Then

D>F = (C̃>VC̃)−1C̃>V ΩΩ+C̃

= (C̃>VC̃)−1C̃>V ΩΩ+ΩH

= (C̃>VC̃)−1C̃>V ΩH

= (C̃>VC̃)−1C̃>VC̃ = I
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Therefore, with G = F(F>F)−1F>,

N [Avar(γ̂V )−Avar(γ̂∗)] = D>D− (F>F)−1 = D>(I−G)D≥ 0. �

We may note that there is a strong connection of this section with Section 4. The-
orem 1 can be seen to follow from Theorem 5. Let K be the matrix defined in
Section 4 which eliminates Ã and let Ω be the nonsingular covariance matrix of
Section 4. Define Ω0 := K>ΩK, ã0 := K>ã, and B̃0 := K>B̃. Then the model of
Theorem 1 is ã0− B̃0β0 = 0, which corresponds to the model of Theorem 5 if we
let Ω0, ã0, B̃0, β0 correspond to Ω, ã, C̃, γ0, respectively. We see that the main
condition of Theorem 5 is satisfied because, for any k×1 vector x, Ω0x= 0 implies
Kx = 0 and thus B̃>0 x = 0, i.e., N(Ω0) ⊆ N(B̃>0 ) or, equivalently, {Ω0} ⊇ {B̃0}.
Also the identifiability condition of Theorem 1, i.e., rank(K>B̃) = p implies that
B̃>0 Ω+

0 B̃0 is nonsingular. So we can apply Theorem 5, from which follows that
an estimate of Ω+

0 = (K>ΩK)+ is the optimal weighting matrix for the GMM
estimator of β in Theorem 1.

7 Conclusion

The paper discusses the linear GMM model with a singular covariance matrix. To
construct an efficient GMM estimator one needs to have an optimal weighting ma-
trix. Typically one would take the inverse of the covariance matrix, but when the
latter is singular, its generalized (Moore-Penrose) inverse has to be taken instead.
In the last section of the paper a criterion is developed that makes sure that this,
indeed, produces an efficient estimator. The column space of the covariance ma-
trix should contain the column space of the mean of the data matrix. This criterion
is satisfied when in a linear GMM model the moment conditions are transformed
by multiplying them with some matrix, with the purpose of eliminating nuisance
parameters together with the corresponding sub-matrix of the data matrix. There
are various ways to select such a “purging” matrix and their relations to each other
are discussed.

Acknowledgment: Thanks go to Shalabh for pointing out some important litera-
ture.

8 Bibliography

Arellano M. (2003): Panel Data Econometrics. Oxford University Press, Oxford.

16



Biørn E. and Klette T.J. (1998): Panel data with errors-in-variables: Essential and
redundant orthogonality conditions in GMM-estimation. Economics Letters 59,
275-282.

Dorana H. and Schmidt P. (2006): GMM estimators with improved finite sample
properties using principal components of the weighting matrix, with an applica-
tion to the dynamic panel data model. Journal of Econometrics 133, 387-409.

Hall A. R. (2005): Generalized Method of Moments. Oxford University Press,
Oxford.
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