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 Introduction

Trend extraction from time series is often performed by using the filter proposed by L

(), also known as the Hodrick-Prescott filter, or HP-Filter. Practical problems arise,

however, if the time series contains structural breaks (as produced by German unification

for German time series, for instance), or if some data are missing. This note proposes a

method for coping with these problems.

 The Leser Filter

The idea proposed by L () for the case where all data are available is to look for a

trend y ∈ R
T such that deviation

u = x − y ()

is “small” and the trend is “smooth.” The size of the deviation is measured by the sum of

squared residuals u′u, and the smoothness of the trend is measured by the sum of squares of

changes in the direction of the trend v′v where the trend disturbances v ∈ R
T−2 are defined

as

vt = ((yt − yt−1) − (yt−1 − yt−2)) t = 3, 4, ... , T

or

v = P y ()

with

P :=











1 −2 1 0

1 −2 1

. . .

0 1 −2 1











of order (T − 2) × T .

The decomposition of the original series x into trend y and and residual u is obtained by

minimizing the weighted sum of squares

V = u′u + α · v′v = (x − y)′ (x − y) + α · y′P ′P y ()

with respect to y. The smoothing constant α denotes the weight given for the trend

deviations. It is typically selected in an arbitrary way but may also be estimated from the

 The formalization below follows S ().
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time series (S, ). Minimization of () entails the first-order condition

(IT + α · P ′P ) y = x. ()

As (I + α P ′P ) is positive definite, the second order condition is satisfied in any case.

Equation () has the unique solution

y = (IT + α P ′P )
−1

x ()

which defines the Leser-Filter. It associates a trend y with the time series x, depending on

the smoothing parameter α.

From () and () we obtain

V = x′

(

IT − (IT + α · P ′P )
−1

)

x ()

as the value of the criterion function ().

 Formalizing Structural Breaks and Missing Observations

Practical problem arise with time series containing structural breaks and missing observa-

tions. Equation () would interpret structural breaks as changes in the trend, and cannot

even be applied if some data points are missing. The obvious way to generalize the filter in

order to cope with this problem is to introduce dummies for the structural breaks, and to

substitute missing values of the time series by numbers that minimize the criterion function

() and generate a trend as smooth as possible. This can be done as follows.

Consider a raw time series x of length T with m structural breaks and n missing data

points. We require m + n ≤ T − 2 and m ≥ 0 and n ≥ 0. The structural breaks occur at

points in time b = (b1, b2, ...bm) ∈ Z
m
+ , where Z+denotes the set on non-negative integers.

If the first break point is at t = 3, we would have b1 = 3, for instance. The missing data

are missing at points c = (c1, c2, ...cn) ∈ Z
n
+. If the first missing data point is at t = 5, we

would have c1 = 5, for instance.

Given this information, we define the filled time series x̃ ∈ R
T by taking the raw time

series x and replacing all undefined elements by zero, viz. x̃ci
= 0 for all i = 1, 2, ..., n.

Further, we define a T × m matrix D with elements di,j = 0 for i < bj and di,j = 1 for





i ≥ bj . For T = 5 and break points at b1 = 2 and b2 = 4 we would have, for example

D =















0 0

1 0

1 0

1 1

1 1















.

In a similar way, we define a T × n matrix E with elements ei,1 = 1 if the first missing

variable is xi, ej,2 = 1 if the second missing variable is xj , etc., and all other components of

E being zero. For T = 5 and variables  and  missing we would have, for example

E =















0 0

1 0

0 0

0 1

0 0















.

The block matrix

F = (D, E)

combines these two matrices and will be used for further computations. It is of order

T × (m + n), and we require that it is of full rank m + n. This assumption assures that

missing observations do not mask structural breaks fully. With the above example we would

have rank (D, E) = 4, and the requirement would be satisfied, but if we had D as above

and

E =















0 0

0 0

0 0

1 0

0 1















we would have rank (D, E) = 3 and the requirement would not be met; a structural break

would entirely be masked by missing data.

Define further the vector of dummies d ∈ R
m, where di is the dummy for the i-th

structural break and define the vector e ∈ R
n of replacements for the missing (or empty)
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observations. We combine these two vectors in the vector f ′ = (d′, e′) ∈ R
m+n. Given

these definitions, the stage is set for dealing with the estimation problem.

 Estimation

Define the amended vector of observations as

x∗ = x̃ + Ff. ()

It is a function of the filled time series x̃, the values assumed for the dummies d and the

replacements e comprised in the vector f . The vector f can now easily be determined by

replacing x by x∗ in (), and minimizing this expression. Thus we obtain the quadratic

form

V = (x̃′ + f ′F ′)
(

IT − (IT + α · P ′P )
−1

)

(x̃ + Ff) ()

that is to be minimized with respect to f . The necessary condition for a minimum is

∂V

∂s
= 2F ′

(

IT − (IT + α · P ′P )
−1

)

(x̃ + Ff) = 0. ()

and the second-order condition is that F ′
(

IT − (IT + α · P ′P )−1
)

F be positive definite.

As

(IT + αP ′P )
−1

= IT − αP ′P + (αP ′P )
2
− (αP ′P )

3
+ ...

we can write

(

IT − (IT + α · P ′P )
−1

)

= αP ′ (IT−2 + α · PP ′)
−1

P.

Hence
(

IT − (IT + α · P ′P )−1
)

is non-negative definite of rank T − 2 and

F ′
(

IT − (IT + α · P ′P )−1
)

F = αF ′P ′ (IT−2 + α · PP ′)−1
PF has full rank and is

positive definite. Therefore equation () defines the unique minimizing choice of the

dummies and missing terms as

f ∗ = −

(

F ′

(

IT − (IT + α · P ′P )
−1

)

F
)

−1

F ′

(

IT − (IT + α · P ′P )
−1

)

x̃. ()
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The refurbished time series is obtained now by inserting () into ()

x∗ = x̃ + Ff ∗

and the trend is obtained by using the refurbished series x∗ instead of the original series x

in ():

y∗ = (IT + α P ′P )
−1

(x̃ + Ff ∗) .

This gives the trend of the time series with structural breaks and missing observations x.

 Example: Structural Breaks

As an example for treating structural breaks, consider the time series of US unemployment

(Figure ). Beginning with period , a structural break has been introduced by adding

 percentage points to the original time series. The correction obtained by the method

sketched above overcorrects this break by subtracting . percentage points. The corrected

trend estimation is overcorrected as well. As can be seen, the correction produces a smoother

trend than the original one, as is implied by the logic of the method. A manual correction

would look not very much different, or would look even worse if the adjustment is made

such that the adjacent data points  and  are made to have identical values. (The

correction would have been -. rather than -. in this case.)

The example illustrates the functioning, as well as the problematic, of introducing dum-

mies, as these will not only correct for structural breaks, but will also mask changes in the

underlying trend.

Another illustration is provided in Figure (a). It depicts the time series with the structural

break, as given in Figure (a) together with the estimated trend of the corrected series plus

the estimated structural break.

 Digression: Locating Structural Breaks

Sometimes the analyst may be in doubt about the exact positioning of the structural break.

A simple way to deal with such uncertainty would be to estimate corrected time paths x∗ for

alternative break points and evaluate the criterion () for these alternative time-paths. The

preferred break point would be the one giving the smallest value for the criterion. Figure

 All computations done with the package by L ().
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Figure : (a) The original US unemployment rate - has been augmented

by adding, beginning with period 25, five percentage points to the original se-

ries. The corrected series overcorrects the structural break in this case. (b) The

smoothed series reproduce this pattern. (Smoothing constant is α =100, data

from the Bureau of Labor Statistics.)
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(a) Time series and estimated trend with esti-

mated break
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25

(b) The criterion () for alternative break points

Figure : (a) The time series with breaks (the top time series from Fig. (a))

together with the the estimated trend (the bottom series from Fig. (b)), increased

by the estimated jump of 7.2 from period 25 upwards. (b) The criterion () for

the time series depicted in Figure (a) corrected for alternative assumed break

points. The minimum occurs at point 25, which is the correct break point.
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Figure : US Unemployment -, original series and smoothed series, using

a smoothing constant α = 100. The arrow indicate values that have been omitted

in order to produce a time series with missing data. (Data Source: Bureau of

Labor Statistics.)

(b) depicts the value of the criterion for alternative break points and the corresponding

corrected time paths. The minimum is attained at the correct break point 25.

 Example: Missing Observations

Consider again the time series of US unemployment (Figure ). I have deleted two data

points, numbers 3 and 27, with values of 2.9% and 7.0%, respectively, to obtain a time

series with missing observations. The gap at 27 is uncritical because the point sits in the

middle of the data range, and assumes also a middle position between adjacent data points.

The gap at  is critical, as it is close to the boundary of the time series, and is also extreme in

its deviation from the trend.

Dropping these values and estimating replacements according to the method outlined

above yields estimated values 4.2% and 6.9%. This is illustrated in Figure . The two

trend series are depicted in Figure . It can be seen that the omission at data point 3 has a

noticeable effect, while the omission at data point 27 does not change the trend estimate in

any significant way.

Looking at the substitutions illustrated in Figure , it may be asked whether a simple

linear interpolation would not do as well. In a way, this seems a reasonable position to take.


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Figure : Deleted values and their computed replacements at data points 3 (a)

and 27 (b).
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Figure : (a) Original trend estimation and trend estimated from incomplete data

(b) the difference between these two trend estimates. The arrows indicate the

position of the gaps in the data.
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However, and practically speaking, with contemporary computing power, gap detection

and the substitution would be done automatically in both cases. If adjacent gaps occur,

linear interpolation would require case distinctions that are not necessary with the method

proposed here. In this sense, the proposed method is computationally simpler.

 Concluding Comments

The unified treatment of structural breaks and missing observations proposed here may

not, practically speaking, be very much different from doing similar adjustments “by

hand,” as is common practice. The treatment proposed here can easily be automated,

though, and appears less arbitrary. Further, the dummies selected here, and the substitutes

for missing values can be interpreted as maximum-likelihood estimates, if the stochastic

interpretation of the Leser method proposed by S () is adopted, and the

smoothing constant may be estimated by the method given there. In short, the method

is more systematically linked to the smoothing method at hand than other methods of

adjustment and interpolation are.
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