Discussion Paper No. 469

Strongly Symmetric Equilibria in Bandit Games

Johannes Hörner *
Nicolas Klein **
Sven Rady ***

* Yale University
** Université de Montréal and CIREQ
*** University of Bonn

August 2014

Financial support from the Deutsche Forschungsgemeinschaft through SFB/TR 15 is gratefully acknowledged.
Strongly Symmetric Equilibria in Bandit Games

Johannes Hörner† Nicolas Klein† Sven Rady§

This version: August 17, 2014

Abstract

This paper studies strongly symmetric equilibria (SSE) in continuous-time games of strategic experimentation with Poisson bandits. SSE payoffs can be studied via two functional equations similar to the HJB equation used for Markov equilibria. This is valuable for three reasons. First, these equations retain the tractability of Markov equilibrium, while allowing for punishments and rewards: the best and worst equilibrium payoff are explicitly solved for. Second, they capture behavior of the discrete-time game: as the period length goes to zero in the discretized game, the SSE payoff set converges to their solution. Third, they encompass a large payoff set: there is no perfect Bayesian equilibrium in the discrete-time game with frequent interactions with higher asymptotic efficiency.

Keywords: Two-Armed Bandit, Bayesian Learning, Strategic Experimentation, Strongly Symmetric Equilibrium.

JEL Classification Numbers: C73, D83.

*We thank seminar participants at Aalto University Helsinki, Collegio Carlo Alberto Turin, Frankfurt, McMaster University, Microsoft Research New England, Paris (Séminaire Roy and Séminaire Parisien de Théorie des Jeux), Toulouse, Warwick, the 2012 International Conference on Game Theory at Stony Brook, the 2013 North American Summer Meeting of the Econometric Society, the 2013 Annual Meeting of the Society for Economic Dynamics, the 2013 European Meeting of the Econometric Society, the 4th Workshop on Stochastic Methods in Game Theory at Erice, the 2013 Workshop on Advances in Experimentation at Paris II, the 2014 Canadian Economic Theory Conference, the 8th International Conference on Game Theory and Management in St. Petersburg, and the SING 10 Conference in Krakow for their comments and suggestions. Part of this paper was written during a visit to the Hausdorff Research Institute for Mathematics at the University of Bonn under the auspices of the Trimester Program “Stochastic Dynamics in Economics and Finance.” Financial support from the Cowles Foundation, Deutsche Forschungsgemeinschaft (SFB/TR 15), and the Fonds de Recherche du Québec Société et Culture is gratefully acknowledged.

†Yale University, 30 Hillhouse Ave., New Haven, CT 06520, USA. johannes.horner@yale.edu.
‡Université de Montréal and CIREQ. Mailing address: Université de Montréal, Département de Sciences Économiques, C.P. 6128 succursale Centre-ville; Montréal, H3C 3J7, Canada, kleinnic@yahoo.com.
§University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany, rady@hcm.uni-bonn.de.
1 Introduction

There is a troubling disconnect between discrete-time and continuous-time game theory. With few exceptions, games in discrete time use either subgame-perfect equilibrium or, if there is incomplete information, perfect Bayesian equilibrium as a solution concept. With few exceptions, games in continuous time are concerned with Markov equilibria only. The technical reasons for this divide are well-known: defining outcomes, strategies and equilibrium in continuous time raises serious mathematical difficulties; restricting attention to Markov strategies bypasses these. Conceptually, however, the discontinuity is artificial and deeply unsatisfactory.

This paper suggests a middle ground. It examines strongly symmetric equilibria (SSE). These are equilibria in which all players use a common continuation strategy, on and off path. However, this common continuation strategy can depend on the entire history, not only its payoff-relevant component. As we show, strongly symmetric equilibria retain the tractability of Markov perfect equilibria (MPE). Markov perfect equilibrium payoffs can be studied via a well-known functional equation, the Hamilton-Jacobi-Bellman (or Isaacs) equation. Similarly, the set of strongly symmetric equilibrium payoffs is characterized by a pair of coupled functional equations. At the same time, unlike Markov equilibrium, strongly symmetric equilibrium allows for patterns of behavior that are both empirically compelling and theoretically fundamental: punishments and rewards.

We confine our analysis to a particular class of models, the so-called two-armed bandit model, which has been extensively studied both in discrete and in continuous time; see, in particular, Keller et al. (2005) and Keller and Rady (2010). More specifically, the set-up is as in Keller and Rady (2010). The motivation for this restriction is two-fold. First, as will become clear, the characterization of the appropriate boundary condition for strongly symmetric equilibria hinges on fine details of the set-up (as is also the case for MPE). We only know how to perform such an analysis within the confines of a specific model. Second, restricting attention to such a well-studied model allows us to provide a closed-form for the equilibrium payoff set, a concrete illustration of how a slight weakening of the solution concept (from MPE to SSE) dramatically alters behavior and payoffs.

Strongly symmetric equilibria are not new. They have been studied in repeated games at least since Abreu (1986). They are known to be restrictive. To begin with, they make no sense if the model itself fails to be symmetric. But as Abreu (1986) already observes for repeated games, they are (i) easily calculated, being completely characterized by two simultaneous equations; (ii) more general than static Nash, or
even Nash reversion; and even (iii) without loss in terms of total welfare, at least in some cases. See also Abreu, Pearce and Stacchetti (1986) for optimality of symmetric equilibria within a standard oligopoly framework, and Abreu, Pearce and Stacchetti (1993) for a motivation of the solution concept based on a notion of equal bargaining power. A more general analysis for repeated games with perfect monitoring is carried out by Cronshaw and Luenberger (1994) showing how the set of SSE payoffs is obtained by finding the largest scalar solving a certain equation. Properties (i)–(iii) generalize to stochastic games, with “Markov perfect” replacing “Nash” in statement (ii).

Our first step involves establishing the rather straightforward functional analogues of the equations derived by Abreu, and Cronshaw and Luenberger, for a discretized version of our game in which all players can adjust actions on a common, equally spaced time grid only. This in turn motivates the coupled functional equations and boundary condition in continuous time that we put forth as the tool for analyzing stochastic games such as our bandit model. In our second step, we then provide a formal limiting result: as players are allowed to adjust actions more and more frequently, the upper and lower boundaries of the set of SSE payoffs of the discretized game converge to the unique solution of the functional equations subject to the boundary condition.

To be sure, we can and do (in our third step) directly construct strongly symmetric equilibria in continuous time and show that their payoff functions solve the functional equations. But given that, to the best of our knowledge, this paper is the first attempt at studying these coupled equations in continuous-time games, we view it as useful and reassuring to check that they capture precisely the strategic elements of the discrete-time game with frequent interactions in this particular instance. This is by no means a foregone conclusion: there are well-known examples in which the continuous-time definition of Markov equilibrium yields a set of payoffs that does not coincide with the limit of the set of Markov equilibrium payoffs for the discrete-time approximation. In fact, one corollary of our analysis is that the infinite-switching equilibria in Keller et al. (2005) have no counterpart in discrete time, no matter how small the time interval between consecutive choices; see also Heidhues, Rady and Strack (2012).

While proving this limit result requires some care, actually solving the continuous-time equations is a straightforward exercise in the case of the bandit model. This is where the analytical convenience of continuous time comes into play, yielding simple and exact solutions that admit intuitive interpretations. The resulting equilibrium payoff correspondence is rich: the symmetric Markov equilibrium is neither the lowest nor the highest selection. In fact, we show that the restriction to SSE is without loss

1To be more precise, they have no counterpart provided one discretizes the game as we do. Alternative discretizations might yield different boundary conditions and different predictions.
in terms of joint payoffs: as we take the length of the time intervals to zero, there is no sequence of (pure or mixed) perfect Bayesian equilibria in the discrete-time game whose limit sum of payoffs or experimentation rates would be higher than in the best SSE. The same holds true regarding the worst SSE joint payoff, which equals the single-agent payoff.

Both the best and the worst equilibrium are of the cutoff type, so that players experiment if and only if the belief exceeds a certain threshold. This contrasts with the non-existence of such equilibria within the set of Markov equilibria; see Proposition 3 of Keller and Rady (2010). Surprisingly, first-best can be attained for some parameters. Whether or not this is possible hinges on a simple comparison: does a success (the arrival of a lump-sum) at the cooperative threshold take the posterior belief above or below the single-agent threshold? If the posterior lies below the single-agent threshold, the cooperative solution can be implemented. Roughly speaking, this is because the “punishment” (applied when a non-deviant player has a success) is most effective in this case, giving a deviant player the lowest possible continuation payoff – that of everybody giving up on experimentation forever. By contrast, if a success makes the players very optimistic, the opponents’ threat to stop experimenting has little impact on a deviant player’s payoff.

We provide comparative statics regarding the cutoff in the best equilibrium and the associated payoff. In particular, the larger the number of players, the lower the cutoff, and hence the larger the amount of experimentation.

Section 2 introduces the model. Section 3 presents the main results regarding equilibrium payoffs and strategies both in the discrete and the continuous-time game. Section 4 contains the construction of SSE in the discrete-time game which underlies our main results. Section 5 concludes.

2 The Model

The basic setup is that of Keller et al. (2005) and Keller and Rady (2010). Time \(t \in [0, \infty) \) is continuous. There are \(N \geq 2 \) players, each facing the same two-armed bandit problem with one safe and one risky arm.

The safe arm \(S \) generates a known expected payoff \(s > 0 \) per unit of time. The risky arm \(R \) generates lump-sum payoffs that are independent draws from a time-invariant distribution on \(\mathbb{R} \setminus \{0\} \) with a known mean \(h > 0 \). These lump sums arrive at the jump times of a standard Poisson process whose intensity depends on an unknown state of
the world, \(\theta \in \{0, 1\} \). If \(\theta = 1 \), the intensity is \(\lambda_1 > 0 \) for all players; if \(\theta = 0 \), the intensity is \(\lambda_0 \) for all players with \(0 \leq \lambda_0 < \lambda_1 \). These constants are again known to the players. Conditional on \(\theta \), the Poisson processes that drive the payoffs of the risky arm are independent across players.

In the discrete-time versions of the experimentation game, players may only change their action at the times \(t = 0, \Delta, 2\Delta, \ldots \), for some fixed \(\Delta > 0 \). The action is binary (using the risky or safe arm). We refer to this game as the discrete game (although it is cast in continuous time), to be contrasted with the analysis that we perform in the continuous-time game (see Section 3.3). While arguably natural, our discretization remains nonetheless ad hoc, and other discretizations might possibly yield other results. Not only is it well known that limits of the discrete-time models might differ from the continuous-time solutions, but the particular discrete structure might matter; see, among others, Müller (2000), Fudenberg and Levine (2009), Sadzik and Stacchetti (2013), and Hörner and Samuelson (2013).

The expected discounted payoff increment from using \(S \) for the length of time \(\Delta \) is
\[
\int_0^\Delta r e^{-r t} s \, dt = (1 - \delta)s \quad \text{with} \quad \delta = e^{-r \Delta},
\]
where \(r > 0 \) is the common discount rate. Conditional on \(\theta \), the expected discounted payoff increment from using \(R \) is
\[
\mathbb{E} \left[\int_0^\Delta r e^{-r t} h \, dN_{\theta,t} \right],
\]
where \(N_{\theta,t} \) is a standard Poisson process with intensity \(\lambda_\theta \); as \(N_{\theta,t} - \lambda_\theta t \) is a martingale, this simplifies to
\[
\int_0^\Delta r e^{-r t} h \lambda_\theta \, dt = (1 - \delta)\lambda_\theta h.
\]
We assume that \(\lambda_0 h < s < \lambda_1 h \), so each player prefers \(R \) to \(S \) if \(R \) is good (\(\theta = 1 \)), and prefers \(S \) to \(R \) if \(R \) is bad (\(\theta = 0 \)).

Players start with a common prior belief about \(\theta \). Thereafter, they observe each other’s actions and outcomes, so they hold common posterior beliefs throughout time. With \(p \) denoting the subjective probability that \(\theta = 1 \), the expected discounted payoff increment from using \(R \) conditional on all available information is
\[
(1 - \delta)p \lambda_1 + (1 - p)\lambda_0.
\]
This exceeds the payoff increment from using \(S \) if and only if \(p \) exceeds the myopic cutoff belief
\[
p^m = \frac{s - \lambda_0 h}{(\lambda_1 - \lambda_0)h}.
\]

To derive the law of motion of beliefs, consider one of the intervals of length \(\Delta \) on which the player’s actions \((k_1, \ldots, k_N) \in \{0, 1\}^N \) are fixed, with \(k_n = 1 \) indicating

\(^2\)In Hörner and Samuelson (2013), for instance, there are multiple solutions to the optimality equations, corresponding to different boundary conditions, and to select among them it is necessary to investigate in detail the discrete-time game (see their Lemma 3). But the role of the discretization goes well beyond picking the “right” boundary condition; see Sadzik and Stacchetti (2013).
that player \(n \) uses \(R \), and \(k_n = 0 \) indicating that she uses \(S \). With \(K = \sum_{n=1}^{N} k_n \) players using the risky arm, the probability in state \(\theta \) of a total of \(j = 0, 1, 2, \ldots \) lump sums during this time interval is
\[
\frac{(K\lambda_0)\Delta^j}{j!}e^{-K\lambda_\theta}\Delta
\]
by the sum property of the Poisson distribution. Given the belief \(p \) held at the beginning of the interval, therefore, the probability assigned to \(J \) lump sums arriving within the length of time \(\Delta \) is
\[
\Lambda_{J,K}^\Delta(p) = \frac{K^J\Delta^J}{J!} \left[p\lambda_1^J\gamma_1^K + (1 - p)\lambda_0^J\gamma_0^K \right],
\]
with \(\gamma_\theta = e^{-\lambda_0\Delta} \), and the corresponding posterior belief is
\[
B_{J,K}^\Delta(p) = \frac{p\lambda_1^J\gamma_1^K}{p\lambda_1^J\gamma_1^K + (1 - p)\lambda_0^J\gamma_0^K}.
\]

For \(K > 0 \), the absence of a lump-sum payoff over the length of time \(\Delta \) makes players more pessimistic: \(B_{0,K}^\Delta(p) < p \) whenever \(p > 0 \). Throughout the paper, we shall assume \(\Delta \) small enough that \(\lambda_1\gamma_1^N > \lambda_0\gamma_0^N \). This guarantees that successes always make players more optimistic: \(B_{J,K}^\Delta(p) > p \) for all \(J \geq 1 \), \(K > 0 \) and \(p < 1 \).

For any bounded function \(w \) on \([0, 1]\) and any \(K \in \{0, 1, \ldots, N\} \), we define a bounded function \(\mathcal{E}_K^\Delta w \) by
\[
\mathcal{E}_K^\Delta w(p) = \sum_{J=0}^{\infty} \Lambda_{J,K}^\Delta(p) w(B_{J,K}^\Delta(p)).
\]
This is the expectation of \(w \) with respect to the distribution of posterior beliefs when the current belief is \(p \) and \(K \) players use \(R \) for a length of time \(\Delta \).

A history of length \(t = \Delta, 2\Delta, \ldots \) is a sequence
\[
h_t = (k_{n,0})_{n=1}^{N}, (j_{n,\Delta})_{n=1}^{N}, \ldots, (k_{n,t-\Delta})_{n=1}^{N}, (j_{n,t})_{n=1}^{N},
\]
such that \(k_{n,\tau} = 0 \Rightarrow j_{n,\tau+\Delta} = 0 \). This history specifies all actions \(k_{n,\tau} \in \{0, 1\} \) taken by the players, and the resulting number of realized lump-sums \(j_{n,\tau+\Delta} \in \mathbb{N}_0 \). We write \(H_t \) for the set of all histories of length \(t \), set \(H_0 = \{\emptyset\} \), and let \(H = \bigcup_{t=0,\Delta,2\Delta,\ldots}^\infty H_t \).

In addition, we assume that players have access to a public randomization device in every period, namely, a draw from the uniform distribution on \([0, 1]\), which is assumed to be independent of \(\theta \) and across periods. Following standard practice, we omit its realizations from the description of histories.

Along with the prior belief \(p_0 \), each profile of strategies induces a distribution over \(H \). Given a history \(h_t \), we can recursively define the beliefs \(p_\Delta, p_{2\Delta}, \ldots, p_t \) through
\[p_\tau = B_{J_\tau,K_{\tau-\Delta}}(p_{\tau-\Delta}) \], where \(J_\tau = \sum_{n=1}^{N} j_{n,\tau} \) and \(K_{\tau-\Delta} = \sum_{n=1}^{N} k_{n,\tau-\Delta} \).²

A behavioral strategy \(\sigma_n \) for player \(n \) is a sequence \((\sigma_{n,t})_{t=0,\Delta,2\Delta, \ldots}\), where \(\sigma_{n,t} \) is a map from \(H_t \) to the set of probability distributions on \(\{0,1\} \); a pure strategy takes values in the set of degenerate distributions only. A (pure or behavioral) strategy is a Markov (stationary) strategy if it depends on \(h_t \) only through the posterior belief \(p_t \). A Markov strategy profile is symmetric if this map is the same for all players.

Player \(n \) seeks to maximize the average discounted expected payoff

\[
(1-\delta) \mathbb{E} \left[\sum_{\ell=0}^{\infty} \delta^\ell \left\{ (1-k_{n,\ell\Delta})s + k_{n,\ell\Delta}\lambda \theta h \right\} \right].
\]

By the law of iterated expectations, this equals

\[
(1-\delta) \mathbb{E} \left[\sum_{\ell=0}^{\infty} \delta^\ell \left\{ (1-k_{n,\ell\Delta})s + k_{n,\ell\Delta}\lambda (p_{\ell\Delta}) h \right\} \right].
\]

Nash equilibrium, perfect Bayesian equilibrium and Markov perfect equilibrium of the game with period length \(\Delta \) are defined in the usual way.⁴

Our focus is on strongly symmetric equilibria. By definition, a strongly symmetric equilibrium (SSE) is a perfect Bayesian equilibrium in which all players use the same strategy: \(\sigma_n(h_t) = \sigma_{n'}(h_t) \), for all \(n, n' \) and \(h_t \in H \). This implies symmetry of behavior after any history, not just on the equilibrium path of play.⁵ For \(\lambda_0 > 0 \), we shall actually restrict ourselves to pure-strategy SSE; as we shall see, this entails no loss in terms of equilibrium payoffs when we take the period length \(\Delta \) to 0.⁶ Endowing the set of histories with the product topology, the set of SSE outcomes for a given initial belief is compact, and so is the set of SSE payoffs. If non-empty, this set is simply an interval in \(\mathbb{R} \). Its characterization is the subject of the next section.

³Anticipating on the solution concept, this requires Bayes’ rule to be applied off-path as well. As the game has observable actions, this raises no particular difficulty.

⁴While we could equivalently define this Bayesian game as a stochastic game with the common posterior belief as a state variable, no characterization or folk theorem applies to our set-up, as the Markov chain (over consecutive states) does not satisfy the sufficient ergodicity assumptions; see Dutta (1995) and Hörner, Sugaya, Takahashi and Vieille (2011).

⁵Note that any symmetric Markov perfect equilibrium is a strongly symmetric equilibrium.

⁶When \(\lambda_0 = 0 \), there exists no pure-strategy SSE. The equilibria we construct in this scenario involve mixed actions over a range of beliefs that vanishes as \(\Delta \to 0 \), so that the resulting outcome in continuous time is achieved by a (pure-strategy) automaton as defined in Section 3.3.
3 Main Results

In this section, we present the main results, discuss the intuition behind them and sketch the strategy of proof.

3.1 SSE Payoffs in the Discrete Game

Fix $\Delta > 0$. For $p \in [0, 1]$, let $W^\Delta_{\text{SS}}(p)$ and $W^\Delta_{\text{SS}}(p)$ denote the supremum and infimum, respectively, of the set of payoffs over pure-strategy strongly symmetric equilibria, given prior belief p. If such an equilibrium exists, these extrema are achieved, and $W^\Delta_{\text{SS}}(p) \geq W^\Delta_{\text{SS}}(p)$.

Proposition 1 Suppose that $W^\Delta_{\text{SS}} \geq W^\Delta_{\text{SS}}$. The pair of functions $(\bar{w}, w) = (W^\Delta_{\text{SS}}, W^\Delta_{\text{SS}})$ solve the functional equations

$$
\bar{w}(p) = \max_{\kappa \in \mathcal{K}(p; \bar{w}, w)} \left\{ (1 - \delta) \left[(1 - \kappa) s + \kappa \lambda(p) h \right] + \delta \mathcal{E}^\Delta_{N\kappa} \bar{w}(p) \right\}, \quad (1)
$$

$$
w(p) = \min_{\kappa \in \mathcal{K}(p; \bar{w}, w)} \max_{k \in \{0, 1\}} \left\{ (1 - \delta) \left[(1 - k) s + k \lambda(p) h \right] + \delta \mathcal{E}^\Delta_{(N-1)\kappa + k} w(p) \right\}, \quad (2)
$$

where $\mathcal{K}(p; \bar{w}, w) \subseteq \{0, 1\}$ denotes the set of all κ such that

$$
(1 - \delta) \left[(1 - \kappa) s + \kappa \lambda(p) h \right] + \delta \mathcal{E}^\Delta_{N\kappa} \bar{w}(p)
$$

$$
\geq \max_{k \in \{0, 1\}} \left\{ (1 - \delta) \left[(1 - k) s + k \lambda(p) h \right] + \delta \mathcal{E}^\Delta_{(N-1)\kappa + k} w(p) \right\}. \quad (3)
$$

Moreover, $W^\Delta_{\text{SS}} \leq w \leq \bar{w} \leq W^\Delta_{\text{SS}}$ for any solution (\bar{w}, w) of (1)--(3).

The proof of this result, which is given in Appendix C, relies on arguments that are familiar from Cronshaw and Luenberger (1994). The above equations can be understood as follows. The ideal conditions for a given (symmetric) action profile to be incentive compatible is that, if each player conforms to it, the continuation payoff is the highest possible, while a deviation triggers the lowest possible continuation payoff. These actions are precisely the elements of $\mathcal{K}(p; \bar{w}, w)$, as defined by equation (3). Given this set of actions, equation (2) gives the recursion that characterizes the constrained minmax payoff under the assumption that, if a player were to deviate to his myopic best-reply to the constrained minmax action profile, the punishment would be restarted next period, resulting in a minimum continuation payoff. Similarly, equation (1) gives the highest payoff under this constraint, but here, playing the best action (within the set) is on the equilibrium path.
Our next step is to study the system (1)–(3) as the reaction lag Δ vanishes.

3.2 SSE Payoffs in the Continuous Limit

As Δ tends to 0, equations (1)–(2) transform into differential-difference equations involving terms that are familiar from Keller and Rady (2010). A formal Taylor approximation shows that for any $\kappa \in \{0, 1\}$ and $K \in \{0, 1, \ldots, N\}$,

\[
(1 - \delta)[(1 - \kappa)s + \kappa \lambda(p)h] + \delta \mathcal{E}_K w(p) = w(p) + r \left\{ (1 - \kappa)s + \kappa \lambda(p)h + K b(p, w) - w(p) \right\} \Delta + o(\Delta),
\]

where

\[
b(p, w) = \frac{\lambda(p)}{r} [w(j(p)) - w(p)] - \frac{\lambda_1 - \lambda_0}{r} p(1 - p) w'(p),
\]

and

\[
j(p) = \frac{\lambda_1 p}{\lambda(p)}. \tag{7}
\]

As in Keller and Rady (2010), we can interpret $b(p, w)$ as the expected benefit of playing R when continuation payoffs are given by the function w. It weighs a discrete improvement in the overall payoff after a single success, with the belief jumping up from p to $j(p)$, against a marginal decrease in the absence of such a success.\footnote{As the belief is updated downward in the absence of a success we can compute $b(p, w)$ whenever w possesses a left-hand derivative at p.}

Applying this approximation to (1)–(2), cancelling the terms of order 0 in Δ, dividing through by Δ, letting $\Delta \to 0$ and using the notation

\[
c(p) = s - \lambda(p)h
\]

for the opportunity cost of playing R, we obtain the coupled differential equations which are at the heart of the following result.

Proposition 2 As $\Delta \to 0$, the pair of functions $(\overline{W}^\Delta, \underline{W}^\Delta)$ converges uniformly (in p) to a pair of functions $(\overline{w}, \underline{w})$ solving

\[
\overline{w}(p) = s + \max_{\kappa \in \mathcal{K}(p)} \kappa \left[Nb(p, \overline{w}) - c(p) \right], \tag{4}
\]

\[
\underline{w}(p) = s + \min_{\kappa \in \mathcal{K}(p)} \left(N - 1 \right) \kappa b(p, w) + \max_{k \in \{0, 1\}} k \left[b(p, w) - c(p) \right], \tag{5}
\]

where

\[
b(p, w) = \frac{\lambda(p)}{r} [w(j(p)) - w(p)] - \frac{\lambda_1 - \lambda_0}{r} p(1 - p) w'(p),
\]

and

\[
j(p) = \frac{\lambda_1 p}{\lambda(p)}. \tag{7}
\]
where

$$K(p) = \begin{cases} \{0, 1\} & \text{for } p \geq p, \\ \{0\} & \text{for } p < p. \end{cases} \tag{6}$$

and

$$\lambda(p) \left[N\overline{w}(j(p)) - (N - 1)w(j(p)) - s \right] = rc(p). \tag{7}$$

Proposition 2 will be proved jointly with our next result; more details are provided below.

Equation (7), which characterizes the threshold below which no experimentation takes place, admits a simple interpretation. An instant before all players switch to the safe arm in the absence of a success, they afford the risky arm one last chance. The right-hand side of (7) is each player’s instantaneous opportunity cost of using the risky arm rather than the safe one. The left-hand side is the long-term benefit from doing so, which only accrues in the event that a lump-sum arrives in the next instant. Because it is exceedingly unlikely that more than one player is successful, we may decompose this benefit into two terms, according to who receives the lump-sum. If one’s own experimentation succeeds (an event of instantaneous probability \(\lambda(p)\)), but no one else’s, the continuation payoff \(\overline{w}(j(p))\) results; because everyone else’s experimentation fails, deviating to safe would result in a continuation payoff of \(s\), as the belief would necessarily drop below the threshold. If instead someone else’s experimentation succeeds (an event of instantaneous probability \((N - 1)\lambda(p)\)), the common belief would jump up to \(j(p)\), and deviating to the safe arm would trigger a punishment, lowering the continuation payoff from \(\overline{w}(j(p))\) to \(w(j(p))\). Adding up these two benefits of conforming to the equilibrium strategy yields the left-hand side of (7).

Plainly, the system given in Proposition 2 appears more tractable than the one given in Proposition 1. Therein lies the benefit of continuous time. In fact, we now derive an explicit solution for the unknowns \((\overline{w}, w)\) and \(p\) that appear in Proposition 2.

Taking the threshold \(p\) and associated correspondence \(K\) as given at first, we can use results from Keller and Rady (2010) to solve the equations (4)–(5). Adopting the same notation as there, let \(V^*_N\) be the \(N\)-player cooperative value function in continuous time. It satisfies \(V^*_N(p) = s\) for \(p \leq p^*_N\), and \(V^*_N(p) > s\) for \(p > p^*_N\), where

$$p^*_N = \frac{\mu_N(s - \lambda_0 h)}{\left(\mu_N + 1\right)(\lambda_1 h - s) + \mu_N(s - \lambda_0 h)}.$$
and μ_N is implicitly defined as the unique positive root of
\[\frac{r}{N} + \lambda_0 - \mu_N (\lambda_1 - \lambda_0) = \lambda_0 \left(\frac{\lambda_0}{\lambda_1} \right)^{\mu_N}. \]

On $(p_N^*, 1]$, we have
\[V_N^*(p) = \lambda(p) h + \frac{c(p_N^*)}{u(p_N^*; \mu_N)} u(p; \mu_N), \]
with
\[u(p; \mu) = (1 - p) \left(\frac{1 - p}{p} \right)^{\mu}. \]

V_N^* is once continuously differentiable, so that $Nb(p, V_N^*) - c(p)$ is continuous in p. This difference has a single zero at p_N^*, being positive to the right of it and negative to the left. Setting $N = 1$, we obtain the single-agent value function V_1^* and corresponding cutoff p_1^*. Clearly, V_1^* always solves (5). In fact, as $b(p; V_1^*) \geq 0$ everywhere, we have $\min_{\kappa \in \{0, 1\}} (N - 1)\kappa b(p, V_1^*) = 0$, and (5) with this minimum set to zero is just the Bellman equation for V_1^*. Moreover, if $p \leq p_N^*$, then (4) is trivially solved by V_N^*.

Next, we define a continuous function $V_{N, p}$ by setting
\[V_{N, p}(p) = \lambda(p) h + \frac{c(p)}{u(p; \mu_N)} u(p; \mu_N) \]
for $p > p$, and $V_{N, p}(p) = s$ otherwise. From Keller and Rady (2010), we know that $V_{N, p}$ is the players’ common payoff function in continuous time when all N of them use the risky arm on $(p, 1]$ and there is no experimentation otherwise; in particular, $V_{N, p}(p) = s + Nb(p, V_{N, p}) - c(p)$ on $(p, 1]$. For $p = p_N^*$, this is again the cooperative value function V_N^*. For $p > p_N^*$, we have $V_{N, p} < V_N^*$ on $(p_N^*, 1)$, and $V_{N, p}$ is continuously differentiable except for a convex kink at p, which implies a discontinuity in $Nb(p; V_{N, p}) - c(p)$: this difference is positive on $(p, 1]$, approaches zero as p tends to p from the right, is positive at p itself, and then decreases monotonically as p falls further, eventually assuming negative values. All this implies that $V_{N, p}$ solves (4) when $p \geq p_N^*$. It now remains to pin down p.

Proposition 3 The unique solution to the system (4)–(7) is $(\overline{w}, \overline{w}, \overline{p}) = (V_{N, \hat{p}}, V_1^*, \hat{p})$ where \hat{p} is the unique belief in $[p_N^*, p_1^*]$ satisfying
\[\lambda(\hat{p}) [NV_{N, \hat{p}}(j(\hat{p})) - (N - 1)V_1^*(j(\hat{p})) - s] = rc(\hat{p}). \]

Moreover, $\hat{p} = p_N^*$ if and only if $j(p_N^*) \leq p_1^*$, and $\hat{p} = p_1^*$ if and only if $\lambda_0 = 0$.

10
Figure 1 illustrates the cooperative continuous-time payoff V_N^*, the lowest SSE limit payoff V_1^*, as well as the highest SSE limit payoff $V_{N,\hat{p}}$, which lies in between.

As alluded to before, Propositions 2 and 3 will be proved together. First, Lemma B.1 in Appendix B establishes the existence of a unique belief \hat{p} satisfying the defining identity in Proposition 3 and proves the conditions under which this belief equals p_N^* or p_1^*. Second, Section 4.1 shows that the functions $V_{N,\hat{p}}$ and V_1^* constitute upper and lower bounds, respectively, on SSE payoffs in the discrete game as Δ vanishes. Third, Sections 4.2–4.3 construct SSE of the discrete game which in the limit get as close to these bounds as one wishes, so that Section 4.4 can establish uniform convergence $W^\Delta \rightarrow V_{N,\hat{p}}$ and $W^\Delta \rightarrow V_1^*$, and thus the validity of Propositions 2 and 3.

A remarkable implication of Proposition 3 is that for a range of parameters, first-best experimentation can be achieved in the limit. Furthermore, the necessary and sufficient condition for this to be the case is simply that a jump in the belief when a success is observed, starting from the cooperative threshold p_N^*, does not take the common belief above the single-player threshold p_1^*. This is because, in such a configuration, there is no benefit from free-riding at (or right above) the threshold p_N^*: failing to partake in the cooperative effort leads to the (single-player) continuation payoff of s, whether or not another player experiences a success or not. On the other hand, when $j(p_N^*) > p_1^*$, the punishment for deviating at p_N^* which is specified when another player has a success is not enough: the deviating player can still secure a payoff above the safe arm’s return, which depresses his incentives to experiment. Nonetheless, for $\lambda_0 > 0$, this punishment is not entirely ineffective, and helps push the experimentation threshold below the threshold that would prevail in the symmetric Markov equilibrium.\footnote{When $\lambda_0 = 0$, there is no difference between the best and worst continuation payoffs after a success: both equal $\lambda_1 h$. This is the reason that experimentation cannot be sustained below p_1^*.} We have the following result, proved in Appendix C (as are the two results that follow it).

Corollary 1 For $\lambda_0 > 0$, the cutoff \hat{p} is strictly lower than the belief at which all experimentation stops in the symmetric MPE of the continuous-time game.

The unique symmetric Markov perfect equilibrium in Keller and Rady (2010) exhibits a double-barrel inefficiency. Not only is the overall amount of experimentation too small, \textit{i.e.} there is an inefficiently high probability of never finding out the true state of the world in the long run; the speed of experimentation is inefficiently slow to boot. Strongly symmetric equilibria do better along both dimensions.\footnote{This holds even though the action set used in the continuous-time game defined by Keller and Rady (2010) is larger (an action is a fraction allocated to the risky arm) and there is no requirement that the symmetric MPE be the limit of a sequence of discrete-time equilibria.}
Figure 1: Payoffs V_1^* (dotted), V_N^* (solid) and $V_{N,\hat{p}}$ (dashed). Here, $(r, s, h, \lambda_1, \lambda_0, N) = (1, 1, 1.5, 1, 0.2, 5)$, implying $(p_N^*, \hat{p}, p_1^*) \simeq (.27, .40, .45).

It is also instructive to consider what happens when the players become infinitely impatient or patient. If players are myopic, they will not react to future rewards and punishments. It is therefore no surprise that in this case the cooperative solution cannot be sustained in equilibrium. By contrast, if players are very patient, the planner’s solution can be sustained provided the number of players is large enough.

Corollary 2 For $\lambda_0 > 0$,

$$\lim_{r \to \infty} \frac{j(p_N^*)}{p_1^*} = \frac{\lambda_1 h}{s},$$

and

$$\lim_{r \to 0} \frac{j(p_N^*)}{p_1^*} = \frac{\lambda_1}{N\lambda_0}.$$

Finally, in the case $\lambda_0 > 0$, the more players participate in the game the more experimentation can be sustained. (Recall that for $\lambda_0 = 0$, the threshold belief \hat{p} is independent of N.)

Corollary 3 For $\lambda_0 > 0$, \hat{p} is decreasing in N.

This corroborates the comparative statics of the symmetric Markov equilibrium in Keller and Rady (2010): experimentation and payoffs increase in the number of players.
However, there are two important differences with the SSE that we construct below: first, the symmetric MPE is necessarily inefficient; second, behavior in the MPE is not of the cutoff type.

3.3 SSE Strategies in the Continuous-Time Game

Markov equilibria allow a simple characterization of the set of equilibrium payoffs (via dynamic programming) as well as a description of the corresponding strategies in a manner that unambiguously defines the equilibrium outcome, by requiring them to be measurable functions of the state variable. A similar description can be given here. Instead of considering a single measurable function, we must describe play by two functions – depending upon whether the continuation payoff is maximum or minimum – and a point process that acts as public randomization device. Given these three elements, we define a two-state automaton which unambiguously defines an outcome. We can then provide a definition of SSE in continuous time, relative to this class of strategies. (As with MPE, a player cannot gain from deviating to any other adapted process as long as the other players follow the equilibrium strategy.)

To be more formal, let \(\mathcal{L} \) be the set of all mappings from \(\{0, 1\} \times [0, 1] \) to \(\{0, 1\} \) that are left-continuous with respect to the second argument on the open unit interval and switch between the two possible actions only finitely many times as the second argument increases from 0 to 1. Any \(f \in \mathcal{L} \) is considered as an augmented Markov strategy, with \(f(\psi_t, p_t) \) being the action taken at time \(t \). A two-state automaton (with the “reward state” 1 and the “punishment state” 0) is determined by the initial state-belief pair \((1, p)\), a strategy \(\kappa \in \mathcal{L} \) and a measurable function \(\eta : [0, 1] \to [0, \infty) \) which governs the rate of transitions from the punishment state to the reward state when all players conform to the punishment action \(\kappa(0, p_t) \); transitions in the other direction occur instantaneously at the time of a unilateral deviation from the suggested common action \(\kappa(1, p_t) \). More precisely, given \((\kappa, \eta)\) and any profile of strategies \((k_n)_{n=1}^{N} \in \mathcal{L}^{N} \), the joint dynamics of the state and the belief are defined through a random number of stages as in Murto and Välimäki (2013); the details of this construction are presented in Appendix A.

Given an automaton \((\kappa, \eta)\), each initial state-belief pair \((\psi, p)\) and profile \((k_n)_{n=1}^{N} \) of strategies is associated with well-defined payoffs

\[
\mathbb{E} \left[\int_0^\infty r e^{-rt} \left\{ \left[1 - k_n(\psi_t, p_t) \right] s + k_n(\psi_t, p_t) \lambda(p_t) h \right\} \right| (\psi_0, p_0) = (\psi, p) \right] \quad (n = 1, \ldots, N).
\]

Let \(u^{\kappa, \eta}(\psi, p|k) \) denote a player’s payoff from using strategy \(k \in \mathcal{L} \) when all other
players use the strategy κ.

Definition 1 The automaton (κ, η) is an equilibrium if $u^{\kappa, \eta}(\psi, p|\kappa) \geq u^{\kappa, \eta}(\psi, p|k)$ for all $k \in L$ and all state-belief pairs (ψ, p). The pair of functions $(u^{\kappa, \eta}(1, \cdot|\kappa), u^{\kappa, \eta}(0, \cdot|\kappa))$ are then called the equilibrium payoffs.

This definition encompasses symmetric MPE as the special case in which the function κ does not depend on its first argument. Note that it does not require the strategy profile to be a limit of equilibria of the discrete game.

We now turn to the equilibrium that achieves the extreme payoffs determined in Proposition 3. While this equilibrium can be understood as the (pointwise) limit of the SSE of the discrete game that we construct to prove Propositions 2–3, working directly in continuous time again results in a significantly cleaner description.

Proposition 4 The two-state automaton defined by

$$
\kappa(1, p) = 1_{p > \hat{p}}, \quad \kappa(0, p) = 1_{p = 1} \quad \text{and} \quad \eta(p) = 1_{p^*_1 < p < 1} \frac{r [b(p, V^*_1) - c(p)]}{V_{N, \hat{p}}(p) - V^*_1(p)}
$$

is an equilibrium of the continuous-time game with payoffs $(V_{N, \hat{p}}, V^*_1)$.

The proof of this result can be found in Appendix A. In fact, it is shown there that all pairs $(V_{N, \bar{p}}, V^*_1)$ with $\bar{p} \in [p_N^*, p_1^*]$ (including the first best) are equilibrium payoffs in the sense of Definition 1. Yet, by Propositions 2–3, only those with $\bar{p} \geq \hat{p}$ can be approximated by SSE payoffs of the discrete game.

3.4 Limit PBE Payoffs

How restrictive are pure-strategy SSE? One’s intuition suggests that it might be easier to reward only one player for playing risky (with some positive probability) than it is to give incentives to all the players to do so. Similarly, it might be more effective to punish just a single player who deviates unilaterally than to impose a punishment phase on all players.

However, as our next result shows, the restriction to strongly symmetric equilibria is without loss when it comes to the players’ average payoff (and hence, to the range of beliefs at which experimentation is possible).
Proposition 5 Fix a prior \(p \). In the limit as \(\Delta \to 0 \), the best and worst average payoff (per player) over all perfect Bayesian equilibria is achieved by an SSE. If \(\lambda_0 > 0 \), these SSE are in pure strategies.

This implies, in particular, that for any \(\epsilon > 0 \), there is a \(\Delta_\epsilon > 0 \) such that for all \(\Delta \in (0, \Delta_\epsilon) \), the set of beliefs at which experimentation can be sustained in a perfect Bayesian equilibrium of the discrete game with period length \(\Delta \) is contained in the interval \((\hat{p} - \epsilon, 1] \).

The proof, presented in Appendix C, relies on an argument that is very similar to, but technically more complex than the one provided for SSE in Section 4.1.

Loosely speaking, this result relies on the linearity of transition probabilities and payoffs in the players’ actions: averaging actions over the set of players does not affect the sum of instantaneous payoffs or the probability of a lump sum occurring. And the linearity also ensures that averaging actions over the set of players preserves incentive compatibility.

4 SSE in the Discrete Game

4.1 Upper and Lower Bounds on Equilibrium Payoffs

For \(\Delta > 0 \), let \(\bar{p}^\Delta \) be the infimum of the set of prior beliefs at which the experimentation game with period length \(\Delta \) admits a strongly symmetric equilibrium with payoff exceeding \(s \). Let \(\bar{p} = \lim \inf_{\Delta \to 0} \bar{p}^\Delta \). For small \(\epsilon > 0 \), consider the problem of maximizing the average of the players’ payoffs in the discretized setting subject to symmetry of actions at all times and no use of \(R \) at beliefs \(p \leq \bar{p} - \epsilon \). Denote the corresponding value function by \(\tilde{W}^{\Delta, \epsilon} \). By definition of \(\bar{p} \), there exists a \(\bar{\Delta}_\epsilon > 0 \) such that for \(\Delta \in (0, \bar{\Delta}_\epsilon) \), the function \(\tilde{W}^{\Delta, \epsilon} \) provides an upper bound on the players’ common payoffs in any strongly symmetric equilibrium, and hence \(\tilde{W}^\Delta \leq \tilde{W}^{\Delta, \epsilon} \). As the solution to this constrained optimization problem is feasible for the unconstrained planner in continuous time, we have \(\tilde{W}^{\Delta, \epsilon} \leq V^*_N \), implying \(\tilde{W}^\Delta \leq V^*_N \) for all \(\Delta > 0 \), and hence \(\bar{p} \geq p^*_N \). Lemma D.3 in the Appendix establishes that \(\tilde{W}^{\Delta, \epsilon} \to V_{N,p_\epsilon} \) uniformly as \(\Delta \to 0 \), where \(p_\epsilon = \max\{\bar{p} - \epsilon, p^*_N\} \).

As any player can choose to ignore the information contained in the other players’ experimentation results, the value function \(W^\Delta_1 \) of a single agent experimenting in

\(^{10}\)The proof of this convergence result relies on the safe action being imposed on a closed interval. This is the reason why we work with the interval \([0, \bar{p} - \epsilon]\) and then take \(\epsilon \to 0 \).
isolation constitutes an obvious lower bound on a player’s payoff in any (not just strongly symmetric) equilibrium, and so we have $W^\Delta \geq W^\Delta_1$. Lemma D.4 (applied for $\bar{p} = 1$) establishes uniform convergence $W^\Delta_1 \rightarrow V^*_1$ as $\Delta \rightarrow 0$.

Now, fix $\epsilon > 0$ and consider a sequence of Δ’s smaller than $\tilde{\Delta}_\epsilon$ and converging to 0 such that the corresponding beliefs \hat{p}^Δ converge to \tilde{p}. For each Δ in this sequence, choose $p^\Delta > \hat{p}^\Delta$ such that $B_{0,N-1}^\Delta(p^\Delta) < \hat{p}^\Delta$, and hence $B_{0,N}^\Delta(p^\Delta) < \hat{p}^\Delta$ as well. If the players start at the belief p^Δ, therefore, and $N - 1$ or all of them use R for Δ units of time without success, then the posterior belief ends up below \hat{p}^Δ and there is no further experimentation in equilibrium. Now, playing R at p^Δ (against $N - 1$ players who do so) yields at most

$$
(1 - \delta) \lambda(p^\Delta) h + \delta \left\{ \Lambda^\Delta_0 N(p^\Delta) s + \sum_{j=1}^{\infty} \Lambda^\Delta_{j,N}(p^\Delta) \tilde{W}^\Delta \epsilon(B^\Delta_{1,N}(p^\Delta)) \right\}
$$

$$
= r \Delta \lambda(p^\Delta) h + (1 - r \Delta) \left\{ [1 - N \lambda(p^\Delta) \Delta] s + N \lambda(p^\Delta) \Delta \tilde{W}^\Delta \epsilon(B^\Delta_{1,N}(p^\Delta)) \right\} + o(\Delta)
$$

$$
= s + \left\{ r [\lambda(\bar{p}) h - s] + N \lambda(\bar{p}) [V_{N,p^\Delta}(j(\bar{p})) - s] \right\} \Delta + o(\Delta),
$$

while playing S yields at least

$$
(1 - \delta) s + \delta \left\{ \Lambda^\Delta_{0,N-1}(p^\Delta) s + \sum_{j=1}^{\infty} \Lambda^\Delta_{j,N-1}(p^\Delta) W^\Delta_1(B^\Delta_{j,N-1}(p^\Delta)) \right\}
$$

$$
= r \Delta s + (1 - r \Delta) \left\{ [1 - (N - 1) \lambda(p^\Delta) \Delta] s + (N - 1) \lambda(p^\Delta) \Delta W^\Delta_1(B^\Delta_{1,N-1}(p^\Delta)) \right\} + o(\Delta)
$$

$$
= s + \left\{ (N - 1) \lambda(\bar{p}) [V^*_1(j(\bar{p})) - s] \right\} \Delta + o(\Delta).
$$

Incentive compatibility of R at p^Δ for small Δ requires

$$
\lambda(\bar{p}) \left[NV_{N,p^\Delta}(j(\bar{p})) - (N - 1)V^*_1(j(\bar{p})) - s \right] - rc(\bar{p}) \geq 0.
$$

Letting $\epsilon \rightarrow 0$, we have $p_\epsilon \rightarrow \hat{p}$ and thus

$$
\lambda(\bar{p}) \left[NV_{N,\bar{p}}(j(\bar{p})) - (N - 1)V^*_1(j(\bar{p})) - s \right] - rc(\bar{p}) \geq 0.
$$

By Lemma B.1, this means $\bar{p} \geq \hat{p}$, which in turn implies the following result.
Proposition 6 For any $\epsilon > 0$, there is a $\Delta_\epsilon > 0$ such that for all $\Delta \in (0, \Delta_\epsilon)$, the set of beliefs at which experimentation can be sustained in a strongly symmetric equilibrium of the discrete game with period length Δ is contained in the interval $(\hat{p} - \epsilon, 1]$. In particular, $\limsup_{\Delta \to 0} W^\Delta(p) \leq V_{N,\hat{p}}(p)$ for all p.

Proof: The statement about the range of experimentation follows immediately from the fact (established at the start of this section) that for $\Delta < \tilde{\Delta}_\epsilon$, we have $W^\Delta \leq W^{\Delta,\epsilon}$, and hence $W^\Delta = W^{\Delta,\epsilon} = s$ on $[0, \hat{p} - \epsilon] \supseteq [0, \tilde{p} - \epsilon]$.

The statement about the supremum of equilibrium payoffs follows from the inequality $W^\Delta \leq W^{\Delta,\epsilon}$ for $\Delta < \tilde{\Delta}_\epsilon$, convergence $W^{\Delta,\epsilon} \to V_{N,p}$ as $\Delta \to 0$, convergence $V_{N,p} \to V_{N,\tilde{p}}$ for $\epsilon \to 0$, and the inequality $V_{N,\tilde{p}} \leq V_{N,\hat{p}}$. \hfill ■

In addition, we obviously have $\liminf_{\Delta \to 0} W^\Delta(p) \geq V^*_1(p)$ for all p. In the following subsections, we show constructively that these bounds on the range of experimentation and the best and worst equilibrium payoffs are tight, that is, $\tilde{p} = \hat{p}$ and, for all p, $\lim_{\Delta \to 0} W^\Delta(p) = V_{N,\tilde{p}}(p)$ and $\lim_{\Delta \to 0} W^\Delta(p) = V^*_1(p)$. Our construction depends upon whether $\lambda_0 > 0$ or $\lambda_0 = 0$. Accordingly, we divide the analysis into two parts.

4.2 The Non-Revealing Case ($\lambda_0 > 0$)

The equilibrium construction for $\lambda_0 > 0$ is inspired by the first part of the proof of Proposition 1. For sufficiently small $\Delta > 0$, we shall exhibit a strongly symmetric equilibrium that can be summarized by two functions, $\overline{\kappa}$ and $\underline{\kappa}$, which will not depend on Δ. The equilibrium strategy is characterized by a two-state automaton. In the “good” state, play proceeds according to $\overline{\kappa}$ and the equilibrium payoff satisfies

$$
\overline{w}^\Delta(p) = (1 - \delta)[(1 - \overline{\kappa}(p))s + \overline{\kappa}(p)\lambda(p)h] + \delta E_{N\overline{\kappa}(p)} \overline{w}^\Delta(p),
$$

while in the “bad” state, play proceeds according to $\underline{\kappa}$ and the payoff satisfies

$$
\underline{w}^\Delta(p) = \max_k \left\{ (1 - \delta)[(1 - k)s + k\lambda(p)h] + \delta E_{(N-1)\underline{\kappa}(p)+k} \underline{w}^\Delta(p) \right\}.
$$

That is, \overline{w}^Δ is the value from a player’s best response to all other players following $\overline{\kappa}$.

A unilateral deviation from $\overline{\kappa}$ in the good state is punished by a transition to the bad state in the following period; otherwise we remain in the good state. If there is no unilateral deviation from $\underline{\kappa}$ in the bad state, a draw of a public randomization device determines whether the state next period is good or bad (and guarantees that the payoff is indeed given by \overline{w}^Δ); otherwise we remain in the bad state.
With continuation payoffs given by \overline{w}^Δ and w^Δ, the common action $\kappa \in \{0, 1\}$ can be sustained at a belief p if and only if

\[
(1 - \delta)[(1 - \kappa)s + \kappa \lambda(p)\overline{h}] + \delta \mathcal{E}_{N,\kappa}^\Delta \overline{w}^\Delta(p) \geq (1 - \delta)[\kappa s + (1 - \kappa)\lambda(p)\overline{h}] + \delta \mathcal{E}_{(N-1)\kappa+1-\kappa}^\Delta w^\Delta(p).
\]

(10)

The functions $\overline{\pi}$ and κ define an SSE, therefore, if and only if (10) holds for $\kappa = \overline{\pi}(p)$ and $\kappa = \kappa(p)$ at all p.

The probability $\eta^\Delta(p)$ of a transition from the bad to the good state in the absence of a unilateral deviation from $\kappa(p)$ is then pinned down by the requirement that

\[
\overline{w}^\Delta(p) = (1 - \delta)[(1 - \kappa(p))s + \kappa(p)\lambda(p)\overline{h}] + \delta \left\{ \eta^\Delta(p) \mathcal{E}_{N,\kappa(p)}^\Delta \overline{w}^\Delta(p) + [1 - \eta^\Delta(p)] \mathcal{E}_{N,\kappa(p)}^\Delta \overline{w}^\Delta(p) \right\}.
\]

(11)

If $k = \kappa(p)$ is optimal in (9), we simply set $\eta^\Delta(p) = 0$. Otherwise, (9) and (10) imply

\[
\delta \mathcal{E}_{N,\overline{\pi}(p)}^\Delta \overline{w}^\Delta(p) \geq \overline{w}^\Delta(p) - (1 - \delta)[(1 - \kappa(p))s + \kappa(p)\lambda(p)\overline{h}] > \delta \mathcal{E}_{N,\kappa(p)}^\Delta \overline{w}^\Delta(p),
\]

so (11) holds with

\[
\eta^\Delta(p) = \frac{\overline{w}^\Delta(p) - (1 - \delta)[(1 - \kappa(p))s + \kappa(p)\lambda(p)\overline{h}] - \delta \mathcal{E}_{N,\overline{\pi}(p)}^\Delta \overline{w}^\Delta(p)}{\delta \mathcal{E}_{N,\kappa(p)}^\Delta \overline{w}^\Delta(p) - \delta \mathcal{E}_{N,\overline{\pi}(p)}^\Delta \overline{w}^\Delta(p)} \in (0, 1].
\]

We specify the functions $\overline{\pi}$ and κ as follows: given $p \in (\hat{p}, p^*_1)$ and $\overline{p} \in (p^m, 1)$, let $\overline{\pi}(p) = 1_{p \leq \overline{p}}$ and $\kappa(p) = 1_{p > \overline{p}}$. Note that punishment and reward strategies agree outside of (\hat{p}, \overline{p}) and that the strategies in Proposition 4 are obtained upon letting $p \downarrow \hat{p}$ and $\overline{p} \uparrow 1$. The continuous-time payoff function associated with the common Markov strategy $\overline{\pi}$ is $V_{N,\overline{\pi}}$; we write $V_{1,\overline{p}}$ for the continuous-time payoff function obtained from a best response against the opponents’ common strategy κ. In Appendix D, we establish uniform convergence $\overline{w}^\Delta \rightarrow V_{N,\overline{\pi}}$ and $w^\Delta \rightarrow V_{1,\overline{p}}$ as $\Delta \rightarrow 0$, and $V_{1,\overline{p}} \rightarrow V_1^*$ as $\overline{p} \rightarrow 1$.

Proposition 7 For $\lambda_0 > 0$, there are beliefs $p^* \in (\hat{p}, p^*_1)$ and $p^\Delta \in (p^m, 1)$ such that for all $p \in (\hat{p}, p^*)$ and $\overline{p} \in (p^\Delta, 1)$, there exists $\Delta > 0$ such that for all $\Delta \in (0, \Delta)$, the two-state automaton with functions $\overline{\pi}$ and κ defines a strongly symmetric perfect Bayesian equilibrium of the experimentation game with period length Δ.

Proof: See Appendix C.
4.3 The Fully Revealing Case ($\lambda_0 = 0$)

In the case $\lambda_0 > 0$, we were able to provide incentives in the potentially last round of experimentation by threatening punishment conditional on there being a success. This option is no longer available in the case $\lambda_0 = 0$. Indeed, now any success takes us to a posterior of 1, so that everyone will play risky forever in any equilibrium. This means that irrespective of whether a success occurs or not, continuation strategies will be independent of past behavior, conditional on the players’ belief about the state of the world. This raises the possibility of unravelling. If we cannot support incentives just above the candidate threshold below which play proceeds according to the symmetric Markov equilibrium, will the actual threshold not “shoot up”?

To settle whether unravelling occurs or not requires us to study the discrete game in considerable detail.\(^{11}\) Because the optimality equations for the discrete game are less tractable than their continuous-time analogue, their detailed analysis is relegated to the Appendix.\(^{12}\)

First, we show that there is no perfect Bayesian equilibrium with any experimentation at beliefs below the single-agent cutoff $p_1^\Delta = \inf\{p: W_1^\Delta(p) > s\}$.

Lemma 1 Let $\lambda_0 = 0$. Fix $\Delta > 0$ and any prior belief $p < p_1^\Delta$. Then the unique perfect Bayesian equilibrium outcome specifies that all players play safe in all periods.\(^{13}\)

Proof: See Appendix E.

Lemma 1 already rules out the possibility that the asymmetric equilibria of Keller et al. (2005) with an infinite number of switches can be approximated in discrete time. The highest payoff that can be hoped for, then, involves all players experimenting above p_1^Δ.

\(^{11}\)As already mentioned, we do not claim that the specific choice of the discrete game is innocuous: it might well be that requiring players to move in alternate periods, for instance, would yield different conclusions.

\(^{12}\)These difficulties are already present in the study of symmetric Markov equilibria in discrete time. Unlike in the continuous-time limit, in which an explicit solution is known (see Keller et al. (2005)), the symmetric MPE in discrete time does not seem to admit an easy characterization. In fact, there are open sets of beliefs for which there are multiple symmetric Markov equilibria in discrete time, no matter how small Δ. It is not known whether these discrete-time equilibria all converge (in some sense) to the symmetric equilibrium of Keller et al. (2005); in fact, it is not known whether some discrete-time MPE converges to it.

\(^{13}\)This does not extend to off-path behavior, of course. If a player deviates by pulling the risky arm and obtains a success, players all switch to the risky arm from that point on.
Unlike for the case $\lambda_0 > 0$ (see Proposition 7), an explicit description of a two-state automaton implementing strongly symmetric equilibria whose payoffs converge to the obvious upper and lower bounds appears elusive. Partly, this is because equilibrium strategies are necessarily mixed for beliefs that are arbitrarily close to (but above) p_1^Δ, as it turns out.

The proof of the next Proposition establishes that the length of the interval of beliefs for which this is the case is vanishing as $\Delta \to 0$. In particular, for higher beliefs (except for beliefs arbitrarily close to 1, when playing R is strictly dominant), both pure actions can be enforced in some equilibrium.

Proposition 8 For $\lambda_0 = 0$, and any beliefs p and \bar{p} such that $p^*_1 < p < p^m < \bar{p} < 1$, there exists $\bar{\Delta} > 0$ such that for all $\Delta \in (0, \bar{\Delta})$, there exists

- a strongly symmetric equilibrium in which, starting from a prior above \underline{p}, all players experiment on the path of play as long as the belief remains above \underline{p}, and stop experimenting once the belief drops below p^*_1;
- a strongly symmetric equilibrium in which, given a prior in between p and \bar{p}, the players’ payoff is no larger than their best-reply payoff against opponents who experiment if and only if the belief lies in $[p^*_1, \underline{p}] \cup [\bar{p}, 1]$.

Proof: See Appendix E.\[\square\]

While this proposition is somewhat weaker than Proposition 7, its implications for limit payoffs as $\Delta \to 0$ are the same. Intuitively, given that the interval $[p^*_1, \underline{p}]$ can be chosen arbitrarily small (actually, of the order Δ, as the proof establishes), its impact on equilibrium payoffs starting from priors above \underline{p} is of order Δ. This suggests that for the equilibria whose existence is stated in Proposition 8, the payoff converges, respectively, to the payoff from all players experimenting above p^*_1 and to the best-reply payoff against none of the opponents experimenting. We now turn to proving this claim rigorously and establishing uniform convergence.

4.4 Limit SSE Payoffs

Recall that, for fixed Δ, we write W^Δ and W^Δ for the pointwise supremum and infimum, respectively, of the set of strongly symmetric equilibrium payoff functions, which, by Proposition 5, in the limit coincide with the pointwise supremum and infimum of average perfect Bayesian equilibrium payoffs, as the period length vanishes. The main result of this section is a characterization of the limit of W^Δ and W^Δ.
Proposition 9 \(\lim_{\Delta \to 0} \overline{W}^\Delta = V_{N,\bar{p}} \) and \(\lim_{\Delta \to 0} \underline{W}^\Delta = V_1^* \), uniformly on \([0, 1]\).

PROOF: For \(\lambda_0 > 0 \) and a given \(\epsilon > 0 \), the explicit representation for \(V_{N,\bar{p}} \) in Section 3.2 and the uniform convergence \(V_{1,\bar{p}} \to V_1^* \) as \(\bar{p} \to 1 \) (established in Lemma D.5) allow us to choose \(\xi > 0 \), \(p \in (\bar{p}, \bar{p}^\delta) \) and \(\bar{p} \in (p^\delta, 1) \) such that \(\|V_{N,\bar{p}-\xi} - V_{N,\bar{p}}\| < \epsilon \), \(\|V_{N,\bar{p}} - V_{N,\bar{p}-\xi}\| < \epsilon \) and \(\|V_{1,\bar{p}} - V_1^*\| < \frac{\epsilon}{2} \), with \(\| \cdot \| \) denoting the supremum norm. Next, Proposition 7, Lemma D.7, Section 4.1 and Lemma D.4 imply the existence of a \(\Delta^1 > 0 \) such that for all \(\Delta \in (0, \Delta^1) \), the two-state automaton defined by the cutoffs \(\underline{p} \) and \(\bar{p} \) constitutes an SSE of the game with period length \(\Delta \) and the following inequalities hold: \(\overline{w}^\Delta \geq V_{N,\underline{p}}, \overline{W}^\Delta \leq V_{N,\bar{p}-\xi}, \|\underline{w}^\Delta - V_{1,\bar{p}}\| < \frac{\epsilon}{2} \) and \(\|\underline{W}^\Delta - V_1^*\| < \epsilon \). For \(\Delta \in (0, \Delta^1) \), we thus have
\[
V_{N,\bar{p}} - \epsilon < V_{N,\underline{p}} \leq \overline{W}^\Delta \leq V_{N,\bar{p}-\xi} < V_{N,\bar{p}} + \epsilon
\]
and
\[
V_1^* - \epsilon < W_1^* \leq \underline{W}^\Delta \leq \underline{w}^\Delta < V_{1,\bar{p}} + \frac{\epsilon}{2} < V_1^* + \epsilon,
\]
so that \(\|\overline{W}^\Delta - V_{N,\bar{p}}\| \) and \(\|\underline{W}^\Delta - V_1^*\| \) are both smaller than \(\epsilon \), which was to be shown.

For \(\lambda_0 = 0 \), the proof of Proposition 8 establishes that there exists a natural number \(M \) such that, given \(p \) as stated, we can take \(\tilde{\Delta} \) to be \((p - p_1^*)/M \). Equivalently, \(p_1^* + M\tilde{\Delta} = \underline{p} \). Hence, Proposition 8 can be restated as saying that, for some \(\tilde{\Delta} > 0 \), \(\bar{p} \), and all \(\Delta \in (0, \tilde{\Delta}) \), there exists \(p_{\Delta} \in (p_1^*, p_1^* + M\Delta) \) such that the two conclusions of the proposition hold with \(\underline{p} = p_{\Delta} \). Fixing the prior, let \(\overline{w}^\Delta, \underline{w}^\Delta \) denote the payoffs in the first and second SSE from the proposition, respectively.\(^{14}\) Given that \(\underline{p} \to p_1^* \) and \(\overline{w}^\Delta(p) \to s, \underline{w}^\Delta(p) \to s \) for all \(p \in (p_1^*, p_{\Delta}) \), it follows that we can pick \(\Delta^1 \in (0, \tilde{\Delta}) \) such that for all \(\Delta \in (0, \Delta^1) \), \(\overline{w}^\Delta \geq V_{N,\underline{p}} - \epsilon \), and as before, \(\overline{W}^\Delta \leq V_{N,\bar{p} - \xi}, \|\underline{W}^\Delta - V_{1,\bar{p}}\| < \frac{\epsilon}{2} \) and \(\|W_1^\Delta - V_1^*\| < \epsilon \). The obvious inequalities follow as before, subtracting an additional \(\epsilon \) to the left-hand side of the first one; and the conclusion follows as before, using \(2\epsilon \) as an upper bound. \(\blacksquare \)

5 Conclusion

This paper has characterized the strongly symmetric equilibrium payoffs in a standard model of strategic experimentation. As a proof of concept, our analysis demonstrates that this solution concept offers a good compromise between two objectives: preserving the flexibility of dynamic programming, even in continuous time (replacing the

\(^{14}\)Hence, to be precise, these payoffs are only defined on those beliefs that can be reached given the prior and the equilibrium strategies.
HJB equation by a pair of coupled optimality equations), yet allowing for the rewards and punishments that are the hallmark of dynamic games. Our point is not that this concept is necessarily preferable to either Markov equilibrium or perfect Bayesian equilibrium, if a model lends itself to systematic analysis. Each yields specific insights.

Relative to the literature on strategic experimentation, the paper delivers three findings. First, it validates some of the comparative statics of Markov equilibria: payoffs and experimentation increase with the number of players (for \(\lambda_0 > 0 \)), despite the free-riding incentives. Second, and more importantly, in terms of behavior: the highest and lowest joint surpluses are achieved by equilibria in which players adhere to a simple common conduct; unlike in any Markov equilibrium, on-path play is of the cutoff type, with players experimenting at maximum rate until some threshold is reached.\(^\text{15}\) Third, in terms of efficiency: when information accrues at sufficiently moderate speed (in the sense that lump-sums are not too informative), the best equilibrium achieves the first best.

Obviously, some of these conclusions will not carry over to other applications. For instance, it is known that strongly symmetric equilibria are restrictive when actions are imperfectly monitored, at least if the monitoring structure permits statistical discrimination among deviations by different players; see Fudenberg, Levine and Takahashi (2007). Clearly, the linearity and symmetry of both payoffs and transition probabilities in the players’ actions also play a role in our argument. Nonetheless, such features are common in applications; the model of Bolton and Harris (1999), for example, in which the players learn about the drift of a Brownian motion, shares them with our setup. It would be interesting to get more general sufficient conditions for the restriction to strongly symmetric equilibria to be innocuous, just as it would be to apply the solution concept to specific applications where it is not.

\(^\text{15}\)Recall that in the symmetric MPE in Keller et al. (2005) and Keller and Rady (2010), players choose an interior level of experimentation at intermediate beliefs. More generally, Keller and Rady (2010) show that there is no MPE in which all players use a cutoff strategy.
Appendix

A Two-State Automata in Continuous Time

Consider an automaton \((\kappa, \eta)\) as defined in Section 3.3 and any profile of strategies \((k_n)_{n=1}^N\) in \(L^N\). The first stage of the game is a reward stage with the initial state-belief pair \((1, p)\). While this stage lasts, the state remains unchanged and the belief evolves according to Bayes’ law:

\[
\dot{p}_t = - (\lambda_1 - \lambda_0) p_t (1 - p_t) \sum_{n=1}^N k_n(1, p_t);
\]

see Keller and Rady (2010) for a derivation of this law of motion. The stage ends at the first time \(\tau \geq 0\) at which there is a breakthrough on a risky arm or \(k_n(1, p_\tau) \neq \kappa(1, p_\tau)\) for some \(n\). In particular, the stage ends at time 0 if \(k_n(1, p) \neq \kappa(1, p)\) for some \(n\).

If the first stage ends because of a breakthrough, another reward stage starts at time \(\tau\) with the initial state-belief pair \((1, j(p_{r-}))\). Play then proceeds exactly as in the first stage.

If a reward stage ends because \(k_n(1, p_\tau) \neq \kappa(1, p_\tau)\) for some \(n\), a punishment stage starts at time \(\tau\) with the initial state-belief pair \((0, p_\tau)\). While this stage lasts, the state remains unchanged and the belief evolves according to

\[
\dot{p}_t = - (\lambda_1 - \lambda_0) p_t (1 - p_t) \sum_{n=1}^N k_n(0, p_t).
\]

The stage ends at the random time \(\min\{\tau', \tau''\}\) where \(\tau'\) is the time of the first breakthrough on a risky arm in that stage and \(\tau''\) a random time in \([\tau, \infty]\) with

\[
\Pr(\tau'' \leq t) = 1 - \exp \left(- \int_{\tau}^t \prod_{n=1}^N 1_{k_n(0, p_s) = \kappa(0, p_s)} \eta(p_s) \, ds \right).
\]

Conditional on no breakthrough occurring, therefore, the rate of transition out of the punishment stage is \(\eta(p_\tau)\) if all players act as prescribed by \(\kappa(0, \cdot)\), and zero otherwise. If \(\tau' \leq \tau''\), another punishment stage starts at time \(\tau'\) with initial state-belief pair \((0, j(p_{r-}))\). If \(\tau'' < \tau'\), a reward stage starts at time \(\tau''\) with the initial state-belief pair \((1, p_{r''})\).

The pair \((\kappa, \eta)\) is an equilibrium if and only if the payoff functions \(\pi = u^{\kappa, \eta}(1, \cdot | \kappa)\), \(\mu = u^{\kappa, \eta}(0, \cdot | \kappa)\), the state-contingent strategies \(\pi = \kappa(1, \cdot)\) and \(\mu = \kappa(0, \cdot)\) and the transition rate \(\eta\) satisfy the following four conditions at all beliefs \(p\):

\[
\begin{align*}
\pi(p) &= s + \pi(p) [Nb(p, \pi) - c(p)], \quad (A.1) \\
\pi(p) &> \mu(p) \quad \text{or} \\
\pi(p) &= \mu(p) \geq s + (N - 1)\pi(p)b(p, \mu) + (1 - \pi(p)) [b(p, \mu) - c(p)] \quad (A.2) \\
\mu(p) &= s + \kappa(p) [Nb(p, \mu) - c(p)] + \frac{\eta(p)}{\pi} [\pi(p) - \mu(p)] \quad (A.3) \\
\mu(p) &\geq s + (N - 1)\kappa(p)b(p, \mu) + (1 - \kappa(p)) [b(p, \mu) - c(p)]. \quad (A.4)
\end{align*}
\]
Equations (A.1) and (A.3) characterize a player’s payoffs when conforming to the strategy suggested by the automaton. Inequalities (A.2) and (A.4) state that there is no incentive to deviate from that strategy. In the reward state, such a deviation amounts to applying an impulse control that immediately moves the state-belief pair from (1, p) to (0, p). Whenever $\overline{u}(p) > \underline{u}(p)$, the resulting discrete drop in continuation payoffs suffices to deter deviations. If $\overline{u}(p) = \underline{u}(p)$, however, the rate at which continuation payoffs change when a player conforms must be at least as large as when he deviates, hence the second part of (A.2).

If the action $\kappa(p)$ suggested in the punishment state satisfies

$$ (2\kappa(p) - 1) [b(p, \underline{u}) - c(p)] \geq 0, $$

then (A.4) holds for any nonnegative $\eta(p)$; the harshest possible punishment is then generated by setting $\eta(p) = 0$. If

$$ (2\kappa(p) - 1) [b(p, \underline{u}) - c(p)] < 0, $$

then we must have $\overline{u}(p) > \underline{u}(p)$ in (A.2), and (A.3) implies (A.4) for any

$$ \eta(p) \geq \frac{r (1 - 2\kappa(p)) [b(p, \underline{u}) - c(p)]}{\overline{u}(p) - \underline{u}(p)}. $$

In this case, it is without loss of generality to set $\eta(p)$ equal to this lower bound. In either case, we see that conditions (A.3)–(A.4) can be replaced by the equation

$$ \underline{u}(p) = s + (N - 1)\kappa(p)b(p, \underline{u}) + \max_{k \in \{0, 1\}} k [b(p, \underline{u}) - c(p)]. $$

(A.5)

For any $p \in [p^*_N, p^*_1]$, the strategies $\kappa = \mathbb{1}_{p > \underline{p}}$ and $\kappa = \mathbb{1}_{p = 1}$ can be supported in an equilibrium. In fact, the corresponding payoff functions $\overline{u} = V^*_N, \underline{p}$ and $\underline{u} = V^*_1$ satisfy conditions (A.1) and (A.5) by construction, and (A.2) holds because $b(p, \underline{u}) \leq c(p)$ on $[0, p]$, $\overline{u} > \underline{u}$ on $(p, 1)$, and $b(p, \overline{u}) = b(p, \underline{u}) = 0 > c(p)$ at $p = 1$.

B An Auxiliary Result

Lemma B.1 There is a belief $\hat{p} \in [p^*_N, p^*_1]$ such that

$$ \lambda(p) \left[NV_N, \lambda(j(p)) - (N - 1)V^*_1(j(p)) - s \right] - rc(p) $$

is negative if $0 < \underline{p} < \hat{p}$, zero if $\underline{p} = \hat{p}$, and positive if $\hat{p} < \underline{p} < 1$. Moreover, $\hat{p} = p^*_N$ if and only if $j(p^*_N) \leq p^*_1$, and $\hat{p} = p^*_1$ if and only if $\lambda_0 = 0$.

Proof: We start by noting that given the functions V^*_1 and V^*_N, the cutoffs p^*_1 and p^*_N are uniquely determined by

$$ \lambda(p^*_1)[V^*_1(j(p^*_1)) - s] = rc(p^*_1) $$

(B.6)
and
\[
\lambda(p_N^*)[NV_\mu^*(j(p_N^*)) - Ns] = rc(p_N^*),
\]
respectively.

Consider the differentiable function \(f \) on \((0, 1)\) given by
\[
f(p) = \lambda(p)[NV_\mu^*(j(p))] - (N - 1)V_1^*(j(p)) - s - rc(p).
\]

For \(\lambda_0 = 0 \), we have \(j(p) = 1 \) and \(V_{N,p}(j(p)) = V_1^*(j(p)) = \lambda_1 h \) for all \(p \), so \(f(p) = \lambda(p)[V_1^*(j(p)) - s] - rc(p) \), which is zero at \(p = p_1^* \) by (B.6), positive for \(p > p_1^* \), and negative for \(p < p_1^* \).

Assume \(\lambda_0 > 0 \). For \(0 < p < p_1 \), we have \(V_{N,p}(p) = \lambda(p)h + c(p)u(p; \mu_N)/u(p; \mu_N) \) with the function \(u(p; \mu) = (1 - p) \left(\frac{1 - \mu}{p} \right)^\mu \) which is strictly convex for \(\mu > 0 \). Moreover, we have \(V_1^*(p) = s \) when \(p \leq p_1^* \), and \(V_1^*(p) = \lambda(p)h + Cu(p; \mu_1) \) with a constant \(C > 0 \) otherwise. Using the fact that
\[
u(j(p); \mu) = \frac{\lambda_0}{\lambda(p)} \left(\frac{\lambda_0}{\lambda_1} \right)^\mu u(p; \mu),
\]
we see that the term \(\lambda(p)NV_\mu^*(j(p)) \) is actually linear in \(p \). When \(j(p) \leq p_1^* \), the term
\[-\lambda(p)(N - 1)V_1^*(j(p)) \]
is also linear in \(p \); when \(j(p) > p_1^* \), the nonlinear part of this term simplifies to \(-(N - 1)\lambda_1^{n+1} u(p; \mu_1)/\lambda_1^n \). This shows that \(f \) is concave, and strictly concave on the interval of all \(p \) for which \(j(p) > p_1^* \). As \(\lim_{p \to 1} f(p) > 0 \), this in turn implies that \(f \) has at most one root in the open unit interval; if so, \(f \) assumes negative values to the left of the root, and positive values to the right.

As \(V_{N,p_1^*}(j(p_1^*)) > V_1^*(j(p_1^*)) \), moreover, we have
\[
f(p_1^*) = \lambda(p_1^*)[V_1^*(j(p_1^*)) - s] - rc(p_1^*) = 0
\]
by (B.6). The potential root of \(f \) must thus lie in \([0, p_1^*)\). If \(j(p_N^*) \leq p_1^* \), then \(V_1^*(j(p_N^*)) = s \) and
\[
f(p_N^*) = \lambda(p_N^*)[NV_\mu^*(j(p_N^*)) - Ns] - rc(p_N^*) = 0
\]
by (B.7). If \(j(p_N^*) > p_1^* \), then \(V_1^*(j(p_N^*)) > s \) and \(f(p_N^*) < 0 \), so \(f \) has a root in \((p_N^*, p_1^*)\).

C Proofs

Proof of Proposition 1: Fix a pair \((\underline{w}, \underline{w})\) that satisfies (1)–(3). Note that (1)–(2) imply that \(\underline{w} \leq \underline{w} \). Given such a pair, and any prior \(p \), we construct two SSE whose payoffs are respectively \(\underline{w} \) and \(\underline{w} \). It then follows that \(\underline{W}^\Delta \leq \underline{w} \leq \underline{W}^\Delta \). Let \(\overline{N} \) and \(\underline{N} \) denote a selection of the maximum and minimum of (1)–(2). The equilibrium strategies are described by a two-state automaton, whose states are referred to as “good” or “bad.” The difference between the two equilibria lies in the initial state: \(\overline{w} \) is achieved when the initial state is
good, \(w \) when it is bad. In the good state, play proceeds according to \(\kappa \); in the bad state, according to \(\kappa \). Transitions are as follows. If the state is good and all players play \(\kappa \), play remains in the good state; otherwise, play shifts to the bad state. If after some history \(h \), the state is bad and all players play \(\kappa \), play switches from the bad state to the good state with some probability \(\eta(p) \in [0, 1] \) where \(p \) is the belief held after history \(h \). This switch is determined by the public randomization device (i.e., the switch is a deterministic function of its realization). Otherwise, play remains in the bad state. The probability \(\eta(p) \) is chosen so that

\[
\eta(p) = (1 - \delta)[(1 - \kappa(p))s + \kappa(p)\lambda(p)h + \delta \{ \eta(p) C^{\Delta}_{\kappa}(\tilde{p}(\kappa)) + 1 - \eta(p) \} C^{\Delta}_{\kappa}(\tilde{p}(\kappa))],
\]

(C.8)

with (1)–(3) ensuring that \(\eta(p) \in [0, 1] \). This completes the description of the strategies. The choice of \(\eta \) along with (1)–(2) rules out profitable one-shot deviations in either state, so that the automaton describes equilibrium strategies, and the desired payoffs are obtained.

It remains to show that \((\underline{W}^\Delta, \underline{W}^\Delta) \) solve the functional equations whenever \(\underline{W}^\Delta \geq W^\Delta \).

Note that in any SSE, given \(p \), the action \(\kappa(p) \) must be an element of \(\mathcal{K}(p; \underline{W}^\Delta, \underline{W}^\Delta) \). This is because the left-hand side of (3) with \(\underline{W}^\Delta = \underline{W}^\Delta \) is an upper bound on the continuation payoff if no player deviates, and the right-hand side with \(\underline{W}^\Delta = W^\Delta \) a lower bound on the continuation payoff after a unilateral deviation. Consider the equilibrium that achieves \(\underline{W}^\Delta \).

Then

\[
\underline{W}^\Delta(p) \leq \max_{\kappa \in \mathcal{K}(p; \underline{W}^\Delta, \underline{W}^\Delta)} \left\{ (1 - \delta)[(1 - \kappa)s + \kappa\lambda(p)h + \delta \underline{W}^\Delta(p)] \right\},
\]

as the action played must be in \(\mathcal{K}(p; \underline{W}^\Delta, \underline{W}^\Delta) \) and the continuation payoff is at most given by \(\underline{W}^\Delta \). Similarly, \(\underline{W}^\Delta \) must satisfy (2) with \(\geq \) instead of \(= \). Suppose now that the \(\leq \) were strict. Then we can define a strategy profile given prior \(p \) that (i) in period 0, plays the maximizer of the right-hand side, and (ii) from \(t = \Delta \) onward, abides by the continuation strategy achieving \(\underline{W}^\Delta(p_\Delta) \). Because the initial action is in \(\mathcal{K}(p; \underline{W}^\Delta, \underline{W}^\Delta) \), this constitutes an equilibrium; and it achieves a payoff strictly larger than \(\underline{W}^\Delta(p) \), a contradiction. Hence, (1) must hold with equality for \(\underline{W}^\Delta \). The same reasoning applies to \(\underline{W}^\Delta \) and (2).

Proof of Corollary 1: Keller and Rady (2010) establish that in the unique symmetric Markov perfect equilibrium of the continuous-time game, all experimentation stops at the belief \(\tilde{p}_N \) implicitly defined by \(r c(\tilde{p}_N) = \lambda(\tilde{p}_N)[\tilde{u}(j(\tilde{p}_N)) - s] \), where \(\tilde{u} \) is the players’ common equilibrium payoff function. The results of Keller and Rady (2010) further imply that \(V^{\Delta}_{N, \tilde{p}_N}(j(\tilde{p}_N)) > \tilde{u}(j(\tilde{p}_N)) > V^{\star}_{N, \tilde{p}_N}(j(\tilde{p}_N)) \), so that \(NV^{\Delta}_{N, \tilde{p}_N}(j(\tilde{p}_N)) - (N - 1)V^{\star}_{N, \tilde{p}_N}(j(\tilde{p}_N)) > \tilde{u}(j(\tilde{p}_N)) \), and hence \(\hat{p} < \tilde{p}_N \) by Lemma B.1.

Proof of Corollary 2: Simple algebra yields

\[
\frac{j(p^*_N)}{p^*_1} = \frac{\lambda_1 \mu_N}{\lambda_0} \frac{\lambda_0 \mu_1}{\mu_N + 1} \frac{(\mu_1 + 1)(\lambda_1 h - s) + \mu_1(s - \lambda_0 h)}{(\mu_N + 1)(\lambda_1 h - s) + (\lambda_1 / \lambda_0)\mu_N(s - \lambda_0 h)}.\]
From the implicit definitions of \(\mu_1 \) and \(\mu_N \), we obtain \(\lim_{r \to 0} \mu_1 = \lim_{r \to 0} \mu_N = 0 \) (so that the third fraction in the previous expression converges to 1) and

\[
\lim_{r \to 0} \frac{\partial \mu_1}{\partial r} = \left[\lambda_1 - \lambda_0 + \lambda_0 \ln \frac{\lambda_0}{\lambda_1} \right]^{-1} = N \lim_{r \to 0} \frac{\partial \mu_N}{\partial r}
\]

implying

\[
\lim_{r \to 0} \frac{\mu_N}{\mu_1} = \frac{1}{N}
\]

by l'Hôpital's rule.

Furthermore, we note that we can write equivalently

\[
\frac{j(p^*_N)}{p^*_1} = \frac{\lambda_1}{\lambda_0} \left(\frac{1}{\mu_N} \right) (\lambda_1 h - s) + (s - \lambda_0 h)
\]

As \(\lim_{r \to \infty} \lambda_1 = \lim_{r \to \infty} \lambda_N = \infty \), we can immediately conclude that

\[
\lim_{r \to \infty} \frac{j(p^*_N)}{p^*_1} = \frac{\lambda_1 h}{s}.
\]

Proof of Corollary 3: For the case that \(\hat{p} = p^*_N \), this is shown in Keller and Rady (2010). Thus, in what follows we shall assume that \(\hat{p} > p^*_N \).

Recall the defining equation for \(\hat{p} \) from Lemma B.1,

\[
\lambda(\hat{p}) V_{N, \hat{p}}(j(\hat{p})) - \lambda(\hat{p}) s - rc(\hat{p}) = (N - 1)\lambda(\hat{p}) V^*_1(j(\hat{p})).
\]

We make use of the closed-form expression for \(V_{N, \hat{p}} \) to rewrite its left-hand side as

\[
N\lambda(\hat{p})j(\hat{p})h + Nc(\hat{p})\left[\lambda_0 - \mu_N(\lambda_1 - \lambda_0) \right] - \lambda(\hat{p})s.
\]

Similarly, by noting that \(\hat{p} > p^*_N \) implies \(j(\hat{p}) > j(p^*_N) > p^*_1 \), we can make use of the closed-form expression for \(V^*_1 \) to rewrite the right-hand side as

\[
(N - 1)\lambda(\hat{p})j(\hat{p})h + (N - 1)c(p^*_1) \frac{u(\hat{p}; \mu_1)}{u(p^*_1; \mu_1)} [r + \lambda_0 - \mu_1(\lambda_1 - \lambda_0)].
\]

Combining, we have

\[
\frac{\lambda(\hat{p})j(\hat{p})h + Nc(\hat{p})\left[\lambda_0 - \mu_N(\lambda_1 - \lambda_0) \right] - \lambda(\hat{p})s}{(N - 1)[r + \lambda_0 - \mu_1(\lambda_1 - \lambda_0)]c(p^*_1)} = \frac{u(\hat{p}; \mu_1)}{u(p^*_1; \mu_1)}.
\]

It is convenient to change variables to

\[
\beta = \frac{\lambda_0}{\lambda_1} \quad \text{and} \quad y = \frac{\lambda_1}{\lambda_0} \frac{\lambda_1 h - s}{\lambda_0 h - \lambda_0 h (1 - \hat{p})}.
\]
The implicit definitions of \(\mu_1 \) and \(\mu_N \) imply

\[
N = \frac{\beta^{1+\mu_1} - \beta + \mu_1(1-\beta)}{\beta^{1+\mu_N} - \beta + \mu_N(1-\beta)},
\]

allowing us to rewrite the defining equation for \(\hat{p} \) as the equation \(F(y, \mu_N) = 0 \) with

\[
F(y, \mu) = 1 - y + [\beta(1 + \mu)y - \mu] \frac{1 - \beta}{\beta} \frac{\beta^{1+\mu_1} - \beta + \mu_1(1-\beta)}{(\mu_1 - \mu)(1-\beta) + \beta^{1+\mu_1} - \beta^{1+\mu}}
\]

\[
- \frac{\mu_1^{\mu_1}}{(1 + \mu_1)^{1+\mu_1}} y^{-\mu_1}.
\]

As \(y \) is a strictly increasing function of \(\hat{p} \), we know from Lemma B.1 that \(F(\cdot, \mu_N) \) admits a unique root, and that it is strictly increasing in a neighborhood of this root.

A straightforward computation shows that

\[
\frac{\partial F(y, \mu_N)}{\partial \mu} = 1 - \beta \frac{\beta^{1+\mu_1} - \beta + \mu_1(1-\beta)}{((\mu_1 - \mu_N)(1-\beta) + \beta^{1+\mu_1} - \beta^{1+\mu_N})^2} \zeta(y, \mu_N)
\]

with

\[
\zeta(y, \mu) = \beta(1-\beta)(1 + \mu_1)y - (1-\beta)\mu_1 + (1-\beta)y(\beta^{1+\mu} - \beta^{1+\mu_1}) + \beta^{1+\mu}(\beta(1+\mu)y - \mu) \ln(\beta).
\]

As \(p_N^* < \hat{p} < p_1^* \), we have

\[
\frac{\mu_N}{1 + \mu_N} < \beta y < \frac{\mu_1}{1 + \mu_1},
\]

which implies

\[
\zeta(y, \mu_1) = (\beta(1 + \mu_1)y - \mu_1)(1 - \beta + \beta^{1+\mu_1} \ln(\beta)) < 0
\]

and

\[
\frac{\partial \zeta(y, \mu)}{\partial \mu} = \beta^{1+\mu}[\beta(1+\mu)y - \mu] \ln(\beta)^2 > 0
\]

for all \(\mu \in [\mu_N, \mu_1] \). This establishes \(\zeta(y, \mu_N) < 0 \).

By the implicit function theorem, therefore, \(y \) is increasing in \(\mu_N \). Recalling from Keller and Rady (2010) that \(\mu_N \) is decreasing in \(N \), we have thus shown that \(y \) (and hence \(\hat{p} \)) are decreasing in \(N \).

Proof of Proposition 5: For any given \(\Delta > 0 \), let \(\hat{p}^\Delta \) be the infimum of the set of beliefs at which there is some (possibly asymmetric) perfect Bayesian equilibrium that gives a payoff \(w_n(p) > s \) to at least one player. Let \(\hat{p} = \liminf_{\Delta \to 0} \hat{p}^\Delta \). By construction, \(\hat{p} \leq \hat{p} \).

For any fixed \(\epsilon > 0 \) and \(\Delta > 0 \), consider the problem of maximizing the players’ average payoff subject to no use of \(R \) at beliefs \(p \leq \hat{p} - \epsilon \). The corresponding value function \(\hat{W}_r^{\Delta, \epsilon} \) is the unique fixed point (in the space of bounded functions on the unit interval) of the
contract mapping given by
\[
\tilde{T}^{\Delta, \epsilon} w(p) = \begin{cases}
 \frac{1}{N} \max_{K \in \{0, \ldots, N\}} \left\{ (1 - \delta)[K \lambda(p)h + (N - K)s] + \delta \mathcal{E}_K w(p) \right\} & \text{if } p > \bar{p} - \epsilon, \\
 (1 - \delta)s + \delta w(p) & \text{if } p \leq \bar{p} - \epsilon.
\end{cases}
\]

Let \(\bar{p}_\epsilon = \max\{\bar{p} - \epsilon, p^*_N\} \). Uniform convergence \(\tilde{W}^{\Delta, \epsilon} \to V_{N, \bar{p}} \) follows from the same arguments as in the proof of Lemma D.3.

Consider a sequence of \(\Delta \)'s converging to 0 such that the corresponding beliefs \(\tilde{p}^\Delta \) converge to \(\bar{p} \). For each \(\Delta \) in this sequence, select a perfect Bayesian equilibrium as well as a belief \(\tilde{p}^\Delta > \bar{p}^\Delta \) starting from which a single failed experiment takes us below \(\bar{p}^\Delta \). Let \(L^\Delta \) be the number of players who, at the initial belief \(p^\Delta \), play \(R \) with positive probability in the selected equilibrium. Let \(L \) be an accumulation point of the sequence of \(L^\Delta \)'s. After selecting a subsequence of \(\Delta \)'s, we can assume without loss of generality that player \(n = 1, \ldots, L \) plays \(R \) with probability \(\alpha_n^\Delta > 0 \) at \(p^\Delta \), while player \(n = L + 1, \ldots, N \) plays \(S \); we can further assume that \((\alpha_n^\Delta)_{n=1}^L \) converges to a limit \((\alpha_n)_{n=1}^L \) in \([0, 1]^L\).

For player \(n = 1, \ldots, L \) to play optimally at \(p^\Delta \), it must be the case that

\[
(1 - \delta) \left[\alpha_n^\Delta \lambda(p^\Delta)h + (1 - \alpha_n^\Delta)s \right] + \delta \left\{ \Pr^\Delta(\emptyset) w^\Delta_{n, \emptyset} + \sum_{K=1}^L \sum_{|I|=K} \Pr^\Delta(I) \sum_{J=0}^\infty \Lambda_{J,K}^\Delta(p^\Delta) w^\Delta_{n,I,J} \right\}
\geq (1 - \delta)s + \delta \left\{ \Pr_{-n}^\Delta(\emptyset) w^\Delta_{n, \emptyset} + \sum_{K=1}^{L-1} \sum_{|I|=K, n \notin I} \Pr_{-n}^\Delta(I) \sum_{J=0}^\infty \Lambda_{J,K}^\Delta(p^\Delta) w^\Delta_{n,I,J} \right\},
\]

where we write \(\Pr^\Delta(I) \) for the probability that the set of players experimenting is \(I \subseteq \{1, \ldots, L\} \), \(\Pr_{-n}^\Delta(I) \) for the probability that among the \(L - 1 \) players in \(\{1, \ldots, L\} \setminus \{n\} \) the set of players experimenting is \(I \), and \(w^\Delta_{n,I,J} \) for the conditional expectation of player \(n \)'s continuation payoff given that exactly the players in \(I \) were experimenting and had \(J \) successes (\(w^\Delta_{n,\emptyset} \) is player \(n \)'s continuation payoff if no one was experimenting). As \(\Pr^\Delta(\emptyset) = (1 - \alpha_n^\Delta) \Pr_{-n}^\Delta(\emptyset) \leq \Pr_{-n}^\Delta(\emptyset) \), the inequality continues to hold when we replace \(w^\Delta_{n, \emptyset} \) by its lower bound \(s \). After subtracting \((1 - \delta)s \) from both sides, we then have

\[
(1 - \delta)\alpha_n^\Delta \left[\lambda(p^\Delta)h - s \right] + \delta \left\{ \Pr(\emptyset)s + \sum_{K=1}^L \sum_{|I|=K} \Pr(I) \sum_{J=0}^\infty \Lambda_{J,K}^\Delta(p^\Delta) w^\Delta_{n,I,J} \right\}
\geq \delta \left\{ \Pr_{-n}(\emptyset)s + \sum_{K=1}^{L-1} \sum_{|I|=K, n \notin I} \Pr_{-n}(I) \sum_{J=0}^\infty \Lambda_{J,K}^\Delta(p^\Delta) w^\Delta_{n,I,J} \right\}.
\]
Summing up these inequalities over \(n = 1, \ldots, L \) and writing \(\bar{\alpha} = \frac{1}{L} \sum_{n=1}^{L} \alpha_n^\Delta \) yields

\[
(1 - \delta)L\bar{\alpha}^\Delta \left[\lambda(p^\Delta)h - s \right] + \delta \left\{ \Pr^\Delta(\emptyset)Ls + \sum_{K=1}^{L} \sum_{|I|=K} \Pr^\Delta(I) \sum_{J=0}^{\infty} \Lambda_{I,K}^\Delta(p^\Delta) \sum_{n=1}^{L} w_{n,I,J}^\Delta \right\}
\geq \delta \left\{ \sum_{n=1}^{L} \Pr_{\emptyset}^\Delta(n) s + \sum_{n=1}^{L-1} \sum_{K=1}^{L} \sum_{|I|=K, n \notin I} \Pr_{\emptyset}^\Delta(I) \sum_{J=0}^{\infty} \Lambda_{I,K}^\Delta(p^\Delta) w_{n,I,J}^\Delta \right\}.
\]

By construction, \(w_{n,I,\emptyset}^\Delta = s \) whenever \(I \neq \emptyset \). For \(|I| = K > 0 \) and \(J > 0 \), moreover, we have \(w_{n,I,J}^\Delta \geq W_{1}^\Delta(B_{I,K}^\Delta(p^\Delta)) \) for all players \(n = 1, \ldots, N \), and hence \(\sum_{n=1}^{L} w_{n,I,J}^\Delta \leq NW_{1}^\Delta(B_{I,K}^\Delta(p^\Delta)) \). So, for the preceding inequality to hold it is necessary that

\[
(1 - \delta)L\bar{\alpha}^\Delta \left[\lambda(p^\Delta)h - s \right] + \delta \left\{ \Pr^\Delta(\emptyset)Ls + \sum_{K=1}^{L} \sum_{|I|=K} \Pr^\Delta(I) \Lambda_{0,K}^\Delta(p^\Delta)Ls \right. \\
+ \left. \sum_{K=1}^{L} \sum_{|I|=K} \Pr^\Delta(I) \sum_{J=1}^{\infty} \Lambda_{I,K}^\Delta(p^\Delta) \left[NW_{1}^\Delta(s_{K}^\Delta)(B_{I,K}^\Delta(p^\Delta)) - (N - L)W_{1}^\Delta(B_{I,K}^\Delta(p^\Delta)) \right] \right\}
\geq \delta \left\{ \sum_{n=1}^{L} \Pr_{\emptyset}^\Delta(n) s + \sum_{n=1}^{L-1} \sum_{K=1}^{L} \sum_{|I|=K, n \notin I} \Pr_{\emptyset}^\Delta(I) \Lambda_{0,K}^\Delta(p^\Delta)s \right. \\
+ \left. \sum_{n=1}^{L} \sum_{K=1}^{L-1} \sum_{|I|=K, n \notin I} \Pr_{\emptyset}^\Delta(n) \sum_{J=1}^{\infty} \Lambda_{I,K}^\Delta(p^\Delta)W_{1}^\Delta(B_{I,K}^\Delta(p^\Delta)) \right\}.
\]

As

\[
\Pr^\Delta(\emptyset) + \sum_{K=1}^{L} \sum_{|I|=K} \Pr^\Delta(I) = 1 \quad \text{and} \quad \sum_{K=1}^{L} \sum_{|I|=K} \Pr^\Delta(I)K = L\bar{\alpha},
\]

we have the first-order expansions

\[
\Pr^\Delta(\emptyset) + \sum_{K=1}^{L} \sum_{|I|=K} \Pr^\Delta(I) \Lambda_{0,K}^\Delta(p^\Delta) = \Pr^\Delta(\emptyset) + \sum_{K=1}^{L} \sum_{|I|=K} \Pr^\Delta(I) \left(1 - K\lambda(p^\Delta)\Delta \right) + o(\Delta)
\]

\[
= 1 - L\bar{\alpha} \lambda(p^\Delta)\Delta + o(\Delta)
\]

and

\[
\sum_{K=1}^{L} \sum_{|I|=K} \Pr^\Delta(I) \Lambda_{I,K}^\Delta(p^\Delta) = \sum_{K=1}^{L} \sum_{|I|=K} \Pr^\Delta(I)K\lambda(p^\Delta)\Delta + o(\Delta) = L\bar{\alpha} \lambda(p^\Delta)\Delta + o(\Delta),
\]
so the left-hand side of the last inequality expands as
\[
Ls + L \left\{ r\bar{\alpha} \left[\lambda(\bar{p})h - s \right] - rs + \bar{\alpha}\lambda(\bar{p}) [NV_{N,\bar{p}}(j(\bar{p})) - (N - L)V^*_1(j(\bar{p})) - Ls] \right\} \Delta + o(\Delta)
\]
with \(\bar{\alpha} = \lim_{\Delta \to 0} \bar{\alpha}^\Delta \). In the same way, the identities
\[
\Pr^\Delta_n(\emptyset) + \sum_{K=1}^{L-1} \sum_{I=K, n \not\in I} \Pr^\Delta_n(I) = 1 \quad \text{and} \quad \sum_{K=1}^{L-1} \sum_{I=K, n \not\in I} \Pr^\Delta_n(I) K = L\bar{\alpha}^\Delta - \alpha^\Delta_n
\]
imply
\[
\sum_{n=1}^{L} \Pr^\Delta_n(\emptyset) + \sum_{n=1}^{L} \sum_{K=1}^{L-1} \sum_{I=K, n \not\in I} \Pr^\Delta_n(I) \Lambda^\Delta_{0,K}(p^\Delta) = L - L(L - 1)\bar{\alpha}^\Delta \lambda(p^\Delta) \Delta + o(\Delta)
\]
and
\[
\sum_{n=1}^{L} \sum_{K=1}^{L-1} \sum_{I=K, n \not\in I} \Pr^\Delta_n(I) \Lambda^\Delta_{1,K}(p^\Delta) = L(L - 1)\bar{\alpha}^\Delta \lambda(p^\Delta) \Delta + o(\Delta),
\]
and so the right-hand side of the inequality expands as
\[
Ls + L \left\{ -rs + (L - 1)\bar{\alpha}\lambda(\bar{p}) [V^*_1(j(\bar{p})) - s] \right\} \Delta + o(\Delta)
\]
Comparing terms of order \(\Delta \), dividing by \(L \) and letting \(\epsilon \to 0 \), we obtain
\[
\bar{\alpha} \left\{ \lambda(\bar{p}) [NV_{N,\bar{p}}(j(\bar{p})) - (N - 1)V^*_1(j(\bar{p})) - s] - rc(\bar{p}) \right\} \geq 0.
\]
By Lemma B.1, this means \(\bar{p} \geq \bar{p} \) whenever \(\bar{\alpha} > 0 \).

For the case that \(\bar{\alpha} = 0 \), we write the optimality condition for player \(n \in \{1, \ldots, L\} \) as
\[
(1 - \delta)\lambda(p^\Delta)h + \delta \left\{ \sum_{K=0}^{L - 1} \sum_{I=K, n \not\in I} \Pr^\Delta_n(I) \sum_{J=0}^{\infty} \Lambda^\Delta_{J,K+1}(p^\Delta) w^\Delta_{n,I \cup \{n\},J} \right\} \geq (1 - \delta)s + \delta \left\{ \Pr^\Delta_n(\emptyset) w^\Delta_{n,\emptyset} + \sum_{K=1}^{L - 1} \sum_{I=K, n \not\in I} \Pr^\Delta_n(I) \sum_{J=0}^{\infty} \Lambda^\Delta_{J,K}(p^\Delta) w^\Delta_{n,I,J} \right\}.
\]
As above, \(w^\Delta_{n,\emptyset} \geq s \), and \(w^\Delta_{n,I,0} = s \) whenever \(I \neq \emptyset \). For \(|I| = K > 0 \) and \(J > 0 \), moreover, we have \(w^\Delta_{n,I,J} \geq W^\Delta_1(B^\Delta_{J,K}(p^\Delta)) \), \(w^\Delta_{n,I \cup \{n\},J} \geq W^\Delta_1(B^\Delta_{J,K+1}(p^\Delta)) \) and \(w^\Delta_{n,I \cup \{n\},J} \leq NW^\Delta \epsilon(B^\Delta_{J,K+1}(p^\Delta)) - (N - 1)W^\Delta_1(B^\Delta_{J,K+1}(p^\Delta)) \). So, for the optimality condition to hold, it
is necessary that

\[(1 - \delta)\lambda(p^\Delta)h + \delta \left\{ \sum_{K=0}^{L-1} \sum_{|I|=K, n \notin I} \Pr_n^\Delta(I) \Lambda_{0,K+1}^\Delta(p^\Delta) s \right. \]

\[+ \left. \sum_{K=0}^{L-1} \sum_{|I|=K, n \notin I} \Pr_n^\Delta(I) \sum_{J=1}^{\infty} \Lambda_{J,K+1}^\Delta(p^\Delta) \left[N\tilde{V}^\Delta_{\epsilon,J,K+1}(p^\Delta) - (N-1)W_1^\Delta(J,J,K+1)(p^\Delta) \right] \right\} \]

\[\geq (1 - \delta)s + \delta \left\{ \Pr_n^\Delta(\emptyset)s + \sum_{K=1}^{L-1} \sum_{|I|=K, n \notin I} \Pr_n^\Delta(I) \Lambda_{0,K}^\Delta(p^\Delta)s \right. \]

\[+ \left. \sum_{K=1}^{L-1} \sum_{|I|=K, n \notin I} \Pr_n^\Delta(I) \sum_{J=1}^{\infty} \Lambda_{J,K}^\Delta(p^\Delta)W_1^\Delta(J,J,K+1)(p^\Delta) \right\}. \]

Now,

\[\sum_{K=1}^{L-1} \sum_{|I|=K, n \notin I} \Pr_n^\Delta(I) K = L\bar{\alpha}^\Delta - \alpha_n^\Delta \to 0 \]

as \(\Delta\) vanishes. Therefore, the left-hand side of the above inequality expands as

\[s + \left\{ r \left[\lambda(p^\Delta)h - s \right] + \lambda(p^\Delta) \left[NV_{N,p}^\Delta(j(p)) - (N-1)V_1^\Delta(j(p)) - s \right] \right\} \Delta + o(\Delta), \]

and the right-hand side as \(s + o(\Delta)\). Comparing terms of order \(\Delta\), letting \(\epsilon \to 0\) and using Lemma B.1 once more, we again obtain \(\bar{p} \geq \tilde{p}\).

Given that we have \(\bar{p} = \tilde{p}\), therefore, the result follows directly from Proposition 9. \(\blacksquare\)

Proof of Proposition 7: We take \(p^\delta\) as in Lemma D.8; Lemma D.9 ensures that \(p^\delta > \bar{p}\). We fix a \(p \in (\bar{p}, p^\delta)\). By Lemma B.1,

\[\lambda(p)[NV_{N,p}(j(p)) - (N-1)V_1^*(j(p)) - s] - rc(p) > 0 \]

on \([p, 1]\. As \(V_{N,p}(j(p)) \leq V_{N,p}(j(p))\) for \(p \geq p_1\), this implies

\[\lambda(p)[NV_{N,p}(j(p)) - (N-1)V_1^*(j(p)) - s] - rc(p) > 0 \]

on \([p, 1]\. By Lemma D.5, there exists a belief \(p^\delta > p^m\) such that for all \(\bar{p} > p^\delta\), \(\inf\{p : V_1^*(p) > s\} \in (p^\delta, p^*]\) and

\[\lambda(p)[NV_{N,p}(j(p)) - (N-1)V_1^*(j(p)) - s] - rc(p) > 0 \quad (C.9) \]

on \([p, 1]\. We fix a \(\bar{p} \in (p^\delta, 1)\) and define \(p^\dagger = \inf\{p : V_1^*(p) > s\}\).

By Lemmas D.7 and D.8, there is a \(\Delta_0 > 0\) such that \(\bar{\alpha}^\Delta \geq V_{N,p} \geq \bar{\alpha}^\Delta\) on the unit interval for all \(\Delta < \Delta_0\. For any such \(\Delta\) and any \(p \in [0, \bar{p}]\), the common action \(\kappa = \bar{\alpha}(p) = \kappa(p) = 0\) trivially satisfies the incentive constraint (10). In fact, since \(\bar{\alpha}^\Delta(p) = s\), we have
\[(1 - \delta)s + \delta E^\Delta_0 w^\Delta(j) \geq (1 - \delta)\lambda(p)h + \delta E^\Delta_1 w^\Delta(p) \] by (9); as \(\delta E^\Delta \geq w^\Delta\), this in turn implies \((1 - \delta)s + \delta E^\Delta_0 w^\Delta(p) \geq (1 - \delta)\lambda(p)h + \delta E^\Delta w^\Delta(p)\).

For all \(\Delta < \Delta_0\) and \(p \in (\bar{p}, 1)\), moreover, the common action \(\kappa = \pi(p) = \kappa(p) = 1\) satisfies the incentive constraint (10) because \(\lambda(p)h > s\) and \(E^\Delta w^\Delta(p) \geq E^\Delta_{N-1} V_{N,p}(p) \geq E^\Delta_{N-1} w^\Delta(p)\), where the second of these inequalities follows from convexity of \(V_{N,p}\).

Now, let \(\nu_1 > 0\) be such that
\[
\lambda(p)[N V_{N,p}(j(p)) - (N - 1) V_1, p(j(p)) - s] - r c(p) > \nu_1
\]
for all \(p \in [\bar{p}, \bar{p}]\). Such a \(\nu_1\) exists by (C.9) and the continuity of its left-hand side in \(p\). Fix \(p^\dagger \in (p, \bar{p})\) such that
\[
(N \lambda(p^\dagger) + r) \left[V_{N,p}(p^\dagger) - s \right] < \nu_1 / 3.
\]
By Lemma D.4, there exists a \(\Delta_1 \in (0, \Delta_0)\) such that for \(\Delta < \Delta_1\), \(w^\Delta(p) = s\) on \([0, p^\dagger]\). By the same argument as above, this implies that for these \(\Delta\), the common action \(\kappa = \kappa(p) = 0\) satisfies the incentive constraint (10) on \([p, p^\dagger]\) as well.

In the remainder of the proof, we simplify the notation by writing \(p^\dagger_K\) for \(B^\Delta_{J,K}(p)\), the posterior belief starting from \(p\) when \(K\) players use the risky arm and \(J\) lump-sums arrive within the length of time \(\Delta\).

For \(p \in [\bar{p}, p^\dagger]\) and \(\kappa = \pi(p) = 1\), the left-hand side of the incentive constraint (10) expands as
\[
\begin{align*}
 r \Delta \lambda(p)h + (1 - r \Delta) \left\{ N \lambda(p) \Delta w^\Delta(p^\dagger_N) + (1 - N \lambda(p) \Delta) w^\Delta(p_0^N) \right\} + O(\Delta^2) \\
 = w^\Delta(p_0^N) + \left\{ r \lambda(p)h + N \lambda(p)w^\Delta(p^\dagger_N) - (N \lambda(p) + r) w^\Delta(p_0^N) \right\} \Delta + O(\Delta^2),
\end{align*}
\]
and the right-hand side as
\[
\begin{align*}
 & r \Delta s + (1 - r \Delta) \left\{ (N - 1) \lambda(p) \Delta w^\Delta(p_0^{N-1}) + [1 - (N - 1) \lambda(p) \Delta] w^\Delta(p_0^{N-1}) \right\} + O(\Delta^2) \\
 & = w^\Delta(p_0^{N-1}) + \left\{ rs + (N - 1) \lambda(p) w^\Delta(p_0^{N-1}) - [(N - 1) \lambda(p) + r] w^\Delta(p_0^{N-1}) \right\} \Delta + O(\Delta^2).
\end{align*}
\]
For \(\Delta < \Delta_1\), we have \(w^\Delta(p_0^N) \geq s = w^\Delta(p_0^{N-1})\), so the difference between the left-hand and right-hand sides is no smaller than \(\Delta\) times
\[
\lambda(p) \left[N w^\Delta(p^\dagger_N) - (N - 1) w^\Delta(p_0^{N-1}) - s \right] - r c(p) - (N \lambda(p) + r) [w^\Delta(p_0^N) - s]
\]
plus terms of order \(\Delta^2\) and higher.

Let \(\epsilon = \frac{\nu_1}{6(N \lambda(p) + r)}\). By Lemmas D.6 and D.4 as well as Lipschitz continuity of \(V_{N,p}\) and \(V_1, p\), there exists \(\Delta_2 \in (0, \Delta_1)\) such that for \(\Delta < \Delta_2\), \(|\|w^\Delta - V_{N,p}\||, ||w^\Delta - V_1, p\||, \max_{p \leq p \leq p^\dagger} |V_{N,p}(p_0^N) - V_{N,p}(j(p))|\) and \(\max_{p \leq p \leq p^\dagger} |V_{1, p}(p_0^{N-1}) - V_{1, p}(j(p))|\) are all smaller.
than ϵ. For $\Delta < \Delta_2$, we thus have

$$\begin{align*}
\bar{w}^\Delta(p_1^N) &> V_{N,p}(j(p)) - 2\epsilon, \\
\underline{w}^\Delta(p_{N-1}^N) &< V_{1,p}(j(p)) + 2\epsilon, \\
\bar{w}^\Delta(p_0^N) &< V_{N,p}(p_0^N) + \epsilon,
\end{align*}$$

so that the expression displayed above is larger than $\nu_1 - [(5N - 2)\lambda(p) + r]\epsilon - \nu_1/3 > \nu_1/3$ by (C.10), (C.11) and the definition of ϵ. This implies that there is a $\Delta_3 \in (0, \Delta_2)$ such that for all $\Delta < \Delta_3$, the incentive constraint (10) holds for $\bar{\pi}$ on (\underline{p}, \bar{p}).

As $V_{N,p} > V_{1,p}$ on $(\underline{p}, 1)$, there exist $\Delta_4 \in (0, \Delta_3)$ and $\nu_2 > 0$ such that

$$V_{N,p}(p_{N-1}^N) - V_{1,p}(p_{N-1}^N) > \nu_2$$

for all $\Delta < \Delta_4$ and $p \in (\underline{p}, \bar{p})$. At any belief p in this interval, the difference between the left-hand and right-hand sides of (10) for $\kappa = \bar{\pi}(p) = 1$ is $\bar{w}^\Delta(p_0^N) - \underline{w}^\Delta(p_0^N) + O(\Delta)$. By Lemmas D.6 and D.4 and Lipschitz continuity of $V_{N,p}$, there exists $\Delta_4 \in (0, \Delta_3)$ such that for $\Delta < \Delta_4$, $||\bar{w}^\Delta - V_{N,p}||$, $||\underline{w}^\Delta - V_{1,p}||$ and $\max_{p^{\downarrow} \leq p \leq \bar{p}} |V_{N,p}(p_0^N) - V_{N,p}(p_{N-1}^N)|$ are all smaller than $\nu_2/4$. For $\Delta < \Delta_4$ and $p \in (\underline{p}, \bar{p})$, we thus have $\bar{w}^\Delta(p_0^N) > V_{N,p}(p_0^N) - \nu_2/4 > V_{N,p}(p_{N-1}^N) - \nu_2/2$ and $\underline{w}^\Delta(p_{N-1}^N) < V_{1,p}(p_{N-1}^N) + \nu_2/4$, so that by (C.12) the difference between the left-hand and right-hand sides of (10) for $\kappa = \bar{\pi}(p) = 1$ is larger than $\nu_2/4 + O(\Delta)$. Thus, there is a $\Delta_5 \in (0, \Delta_4)$ such that for all $\Delta < \Delta_5$, (10) holds for $\bar{\pi}$ on (\underline{p}, \bar{p}).

For $p \in (\underline{p}, \bar{p})$ and $\kappa = \bar{\pi}(p) = 0$, the difference between the left-hand and right-hand sides of (10) is $\bar{w}^\Delta(p) - \underline{w}^\Delta(p_0^N) + O(\Delta)$, and the same steps as in the previous paragraph yield existence of a $\Delta \in (0, \Delta_5)$ such that for all $\Delta < \Delta$, the incentive constraint (10) for κ is also satisfied on (\underline{p}, \bar{p}).

\section{Convergence and Comparison Results}

To establish uniform convergence of certain discrete-time value functions to their continuous-time limits, we will need the following result.\footnote{To the best of our knowledge, the earliest appearance of this result in the economics literature is in Biais et al. (2007). A related approach is taken in Sadzik and Stacchetti (2013).}

\begin{lemma}
Let $\{T^\Delta\}_{\Delta > 0}$ be a family of contraction mappings on the Banach space $(\mathcal{W}; ||\cdot||)$ with moduli $\{\beta^\Delta\}_{\Delta > 0}$ and associated fixed points $\{w^\Delta\}_{\Delta > 0}$. Suppose that there is a constant $\rho > 0$ such that $1 - \beta^\Delta = \rho \Delta + o(\Delta)$ as $\Delta \to 0$. Then, a sufficient condition for w^Δ to converge in $(\mathcal{W}; ||\cdot||)$ to the limit v as $\Delta \to 0$ is that $||T^\Delta v - v|| = o(\Delta)$.

\begin{proof}
As

$$||w^\Delta - v|| = ||T^\Delta w^\Delta - v|| \leq ||T^\Delta w^\Delta - T^\Delta v|| + ||T^\Delta v - v|| \leq \beta^\Delta ||w^\Delta - v|| + ||T^\Delta v - v||,$$

\end{proof}

\end{lemma}
the stated conditions on \(\beta^\Delta \) and \(\|T^\Delta v - v\| \) imply
\[
\|w^\Delta - v\| \leq \frac{\|T^\Delta v - v\|}{1 - \beta^\Delta} = \frac{\Delta f(\Delta)}{\rho \Delta + \Delta g(\Delta)} = \frac{f(\Delta)}{\rho + g(\Delta)}
\]
with \(\lim_{\Delta \to 0} f(\Delta) = \lim_{\Delta \to 0} g(\Delta) = 0. \)

In our applications of this lemma, we shall take \(W \) to be the Banach space of bounded functions on the unit interval, equipped with the supremum norm. The operators \(T^\Delta \) will be Bellman operators for certain optimal strategies in the experimentation game with period length \(\Delta \); the corresponding moduli will be \(\beta^\Delta = \delta = e^{-r\Delta}. \)

The limit functions will belong to the set \(V \) of all continuous \(v \in W \) with the following properties: there are finitely many beliefs \(\{ p_\ell \}_{\ell=0}^L \) with \(0 = p_0 < p_1 < \ldots < p_{L-1} < p_L = 1 \) such that for all \(\ell = 1, \ldots, L \), (i) the function \(v \) is once continuously differentiable with bounded derivative \(v' \) on the interval \([p_{\ell-1}, p_\ell) \), (ii) \(\lim_{p \to p_\ell} v'(p) \) equals the left-hand derivative of \(v \) at \(p_\ell \), and (iii) \(\lim_{p \to p_{\ell-1}} v'(p) \) equals the right-hand derivative of \(v \) at \(p_{\ell-1} \). In the following, we shall always take \(v'(p_\ell) \) to mean the left-hand derivative at \(p_\ell \) for \(\ell \geq 1 \), and the right-hand derivative for \(\ell = 0 \).

With this convention, the term
\[
b(p, v) = \frac{\lambda(p)}{r} [v(j(p)) - v(p)] - \frac{\lambda_1 - \lambda_0}{r} p(1 - p) v'(p)
\]
is well-defined on the entire unit interval for any \(v \in V \). We can now provide a first-order expansion for the discounted expectation \(\delta \mathcal{E}_K^\Delta \) that will appear in the Bellman operators of interest.\(^\text{17}\)

Lemma D.2 For \(K \in \{0, 1, \ldots, N\} \) and \(v \in V \),
\[
\lim_{\Delta \to 0} \frac{1}{\Delta} \left\| \delta \mathcal{E}_K^\Delta v - v - r[Kb(\cdot, v) - v] \right\| = 0.
\]

Proof: This follows from a straightforward Taylor expansion. \(\blacksquare \)

Our first application of Lemmas D.1 and D.2 concerns the upper bound on equilibrium payoffs introduced at the start of Section 4.1. Take \(\bar{p} \) as defined there. Given \(\Delta > 0 \), \(\epsilon > 0 \) and any bounded function \(w \) on \([0, 1]\), define a bounded function \(\tilde{T}^{\Delta, \epsilon} w \) by
\[
\tilde{T}^{\Delta, \epsilon} w(p) = \left\{ \begin{array}{ll}
\max \left\{ (1 - \delta) \lambda(p) h + \delta \mathcal{E}_N^\Delta w(p), (1 - \delta) s + \delta w(p) \right\} & \text{if } p > \bar{p} - \epsilon, \\
(1 - \delta) s + \delta w(p) & \text{if } p \leq \bar{p} - \epsilon.
\end{array} \right.
\]

The operator \(\tilde{T}^{\Delta, \epsilon} \) satisfies Blackwell’s sufficient conditions for being a contraction mapping with modulus \(\delta \) on the Banach space \(W \) of bounded functions on \([0, 1]\) equipped with the

\(^{17}\) Up to discounting, this is nothing but the computation of the infinitesimal generator of the process of posterior beliefs, of course.
supremum norm $\|\cdot\|$: monotonicity ($v \leq w$ implies $T_{\Delta}^\epsilon v \leq T_{\Delta}^\epsilon w$) and discounting ($T_{\Delta}^\epsilon(w + c) = T_{\Delta}^\epsilon w + \delta c$ for any real number c). By the contraction mapping theorem, T_{Δ}^ϵ has a unique fixed point in \mathcal{W}; this is the value function $\widehat{W}_{\Delta}^\epsilon$ of the constrained planner’s problem considered in Section 4.1.

From Keller and Rady (2010), we know that the corresponding continuous-time value function is V_{N,p_ϵ} with $p_\epsilon = \max\{\bar{p} - \epsilon, p_N^*\}$. It belongs to \mathcal{V} and satisfies $V_{N,p_\epsilon}(p) = \lambda(p)h + Nb(p, V_{N,p_\epsilon}) > s$ on $(p_\epsilon, 1]$. For $p_\epsilon = p_N^*$, moreover, $\lambda(p)h + Nb(p, V_{N,p_\epsilon}) - s$ is zero at p_ϵ and negative on $[0, p_\epsilon)$.

Lemma D.3 $\widehat{W}_{\Delta}^\epsilon \to V_{N,p_\epsilon}$ uniformly as $\Delta \to 0$.

Proof: To ease the notational burden, we write v instead of V_{N,p_ϵ}. Lemma D.2 then implies

$$(1 - \delta)\lambda(p)h + \delta \mathcal{E}_N^\Delta v(p) = v(p) + r[\lambda(p)h + Nb(p, v) - v(p)]\Delta + o(\Delta),$$

$$(1 - \delta)s + \delta v(p) = v(p) + r[s - v(p)]\Delta + o(\Delta).$$

Suppose first that $p_\epsilon = \bar{p} - \epsilon > p_N^*$. For $p > \bar{p} - \epsilon$, we have $v(p) = \lambda(p)h + Nb(p, v) > s$, and hence $T_{\Delta}^\epsilon v(p) = (1 - \delta)\lambda(p)h + \delta \mathcal{E}_N^\Delta v(p) = v(p) + o(\Delta)$ for small Δ.

Next, suppose that $p_\epsilon = p_N^* \geq \bar{p} - \epsilon$. For $p > p_N^*$, the same argument as in the previous paragraph yields $T_{\Delta}^\epsilon v(p) = (1 - \delta)\lambda(p)h + \delta \mathcal{E}_N^\Delta v(p) = v(p) + o(\Delta)$ for small Δ. For $p \in (\bar{p} - \epsilon, p_N^*]$, we have $v(p) = s \geq \lambda(p)h + Nb(p, v)$, which once more implies $T_{\Delta}^\epsilon v(p) = v(p) + o(\Delta)$ for small Δ.

As $T_{\Delta}^\epsilon v(p) = s = v(p)$ trivially on $[0, \bar{p} - \epsilon]$, we have established that $\|T_{\Delta}^\epsilon v - v\| = o(\Delta)$. As the modulus of the contraction T_{Δ}^ϵ is $\delta = e^{-r\Delta} = 1 - r\Delta + o(\Delta)$, uniform convergence $\widehat{W}_{\Delta}^\epsilon \to v$ now follows from Lemma D.1.

The second application of Lemmas D.1 and D.2 concerns the payoffs in the bad state of the equilibrium constructed in Section 4.2. Fix a cutoff $\bar{p} > p^m$, and let $K(p) = N - 1$ when $p > \bar{p}$, and $K(p) = 0$ otherwise. Given $\Delta > 0$, and any bounded function w on $[0, 1]$, define a bounded function $\mathcal{T}^\Delta w$ by

$$\mathcal{T}^\Delta w(p) = \max\{(1 - \delta)\lambda(p)h + \delta \mathcal{E}_K^\Delta(p + 1)w(p), (1 - \delta)s + \delta \mathcal{E}_K^\Delta(p)w(p)\}.$$

The operator \mathcal{T}^Δ also satisfies Blackwell’s sufficient conditions for being a contraction mapping with modulus δ on \mathcal{W}. Its unique fixed point in this space is the payoff function w^Δ (introduced in Section 4.2) from playing a best response against $N - 1$ opponents who all play risky when $p > \bar{p}$, and safe otherwise. For $\bar{p} = 1$, the fixed point is the single-agent value function W_1^Δ.

In Section 4.2, we introduced the notation $V_{1,\hat{p}}$ for the continuous-time counterpart to this payoff function. The methods employed in Keller and Rady (2010) can be used to establish that $V_{1,\hat{p}}$ has the following properties. First, there is a cutoff $p^\uparrow < p^m$ such that $V_{1,\hat{p}} = s$ on $[0, p^\uparrow]$, and $V_{1,\hat{p}} > s$ everywhere else. Second, $V_{1,\hat{p}} \in \mathcal{V}$, being continuously differentiable
everywhere except at \bar{p}. Third, $V_{1,\bar{p}}$ solves the Bellman equation

$$v(p) = \max \left\{ \lambda(p)h + [K(p) + 1]b(p,v), \ s + K(p)b(p,v) \right\}.$$

Fourth, because of smooth pasting at p^\dagger, the term $\lambda(p)h + b(p, V_{1,\bar{p}}) - s$ is continuous in p except at \bar{p}; it has a single zero at p^\dagger, being positive to the right of it and negative to the left. Finally, we note that $V_{1,\bar{p}} = V_1^*$ and $p^\dagger = p_1^*$ for $\bar{p} = 1$.

Let $p^\dagger, \Delta = \inf\{p : w^\Delta(p) > s\}$.

Lemma D.4 $w^\Delta \to V_{1,\bar{p}}$ uniformly as $\Delta \to 0$, and $\liminf_{\Delta \to 0} p^\dagger, \Delta = p^\dagger$.

Proof: To ease the notational burden, we write v instead of $V_{1,\bar{p}}$.

For $p > \bar{p}$, we have $K(p) = N - 1$, and Lemma D.2 implies

$$(1 - \delta)\lambda(p)h + \delta E_{K(p)+\dagger}^\Delta v(p) = v(p) + r [\lambda(p)h + N b(p,v) - v(p)] \Delta + o(\Delta),$$

$$(1 - \delta) s + \delta E_{K(p)}^\Delta v(p) = v(p) + r [s + (N - 1) b(p,v) - v(p)] \Delta + o(\Delta).$$

As $v(p) = \lambda(p)h + N b(p,v) > s + (N - 1) b(p,v)$, we thus have $T^\Delta v(p) = (1 - \delta)\lambda(p)h + \delta E_{K(p)+\dagger}^\Delta v(p) = v(p) + o(\Delta)$ for small Δ.

On (p^\dagger, \bar{p}), we have $K(p) = 0$ and

$$(1 - \delta)\lambda(p)h + \delta E_{K(p)+\dagger}^\Delta v(p) = v(p) + r [\lambda(p)h + b(p,v) - v(p)] \Delta + o(\Delta),$$

$$(1 - \delta) s + \delta E_{K(p)}^\Delta v(p) = v(p) + r [s - v(p)] \Delta + o(\Delta).$$

As $v(p) = \lambda(p)h + b(p,v) > s$, we again have $T^\Delta v(p) = (1 - \delta)\lambda(p)h + \delta E_{K(p)+\dagger}^\Delta v(p) = v(p) + o(\Delta)$ for small Δ.

For $p \leq p^\dagger$, finally, we have $K(p) = 0$ and $v(p) = s$, hence

$$(1 - \delta)\lambda(p)h + \delta E_{K(p)+\dagger}^\Delta v(p) = s + r [\lambda(p)h + b(p,v) - v(p)] \Delta + o(\Delta),$$

$$(1 - \delta) s + \delta E_{K(p)}^\Delta v(p) = s.$$

As $v(p) = s \geq \lambda(p)h + b(p,v)$, this once more implies $T^\Delta v(p) = v(p) + o(\Delta)$ for small Δ.

We have thus shown that $\|T^\Delta v - v\| = o(\Delta)$. Uniform convergence $w^\Delta \to v$ now follows from Lemma D.1.

Turning to the second part of the lemma, we define $p^{\dagger,0} = \liminf_{\Delta \to 0} p^\dagger, \Delta$. For a sequence of Δ’s converging to 0 such that the corresponding beliefs p^\dagger, Δ converge to $p^{\dagger,0}$, choose $p^\Delta > p^\dagger, \Delta$ such that $B_{0,1}^\Delta(p^\Delta) < p^\dagger, \Delta$. Along the sequence, we have $w^\Delta(p^\Delta) > s = w^\Delta(B_{0,1}^\Delta(p^\Delta))$ and $(1 - \delta)\lambda(p^\Delta)h + \delta E_{1}^\Delta w^\Delta(p^\Delta) > (1 - \delta) s + \delta w^\Delta(p^\Delta) > s$. As

$$(1 - \delta)\lambda(p^\Delta)h + \delta E_{1}^\Delta w^\Delta(p^\Delta)$$

$$= r\lambda(p^\Delta)h + (1 - r\Delta) \left\{ (1 - \lambda(p^\Delta)\Delta)s + \lambda(p^\Delta)\Delta w^\Delta(B_{1,1}^\Delta(p^\Delta)) \right\} + o(\Delta)$$

$$= s + \left\{ r[\lambda(p^{\dagger,0})h - s] + \lambda(p^{\dagger,0})[v(j(p^{\dagger,0})) - s] \right\} \Delta + o(\Delta),$$

37
we can conclude that \(\lambda(p^\dagger, 0)[v(j(p^\dagger, 0)) - s] \geq rc(p^\dagger, 0) \). As \(v'(p) = 0 \) and \(\lambda(p)[v(j(p)) - s] = rb(p, v) < rc(p) \) for \(p < p^\dagger \), this implies \(p^\dagger, 0 \geq p^\dagger \). And since the inequality \(p^\dagger, 0 > p^\dagger \) would imply \(v(p) > s = \lim_{\Delta \to 0} w^\Delta(p) \) immediately to the right of \(p^\dagger \), we must have \(p^\dagger, 0 = p^\dagger \).

Our third uniform convergence result also concerns the continuous-time limits of equilibrium payoffs in the bad state. As it is straightforward to establish with the methods used in Keller and Rady (2010), we state it without proof.

Lemma D.5 \(V_{1, \bar{p}} \to V_1^* \) uniformly as \(\bar{p} \to 1 \). The convergence is monotone in the sense that \(\bar{p}' > \bar{p} \) implies \(V_{1, \bar{p}'} < V_{1, \bar{p}} \) on \(\{ p: s < V_{1, \bar{p}}(p) < \lambda_1 h \} \).

Our last result on uniform convergence concerns the payoffs in the good state of the equilibrium constructed in Section 4.2. Fix a cutoff \(p \) and consider the strategy profile where all \(N \) players play risky for \(p > p \), and all play safe otherwise. As in Section 4.2, we write \(w^\Delta \) for the players’ common payoff function from this strategy profile when actions are frozen for a length of time \(\Delta \). The corresponding payoff function in continuous time is \(V_{N, p} \). The following result can be obtained from first principles; its proof does not rely on Lemmas D.1 and D.2.

Lemma D.6 \(w^\Delta \to V_{N, \bar{p}} \) uniformly as \(\Delta \to 0 \).

Proof: As \(w^\Delta(p) = V_{N, \bar{p}}(p) = s \) for \(p \leq \bar{p} \), there is nothing to show for these beliefs. Fix an initial belief \(p > \bar{p} \), therefore, and consider the process of beliefs \(\{p_t\} \) starting from \(p_0 = p \) that corresponds to \(N \) players using the risky arm. Let \(\tau = \inf\{t \geq 0: p_t \leq \bar{p}\} \) and \(\tau^\Delta = \inf\{t = \Delta, 2\Delta, 3\Delta, \ldots: p_t \leq \bar{p}\} \). Then,

\[
V_{N, \bar{p}}(p) = E \left[\int_0^\tau r e^{-rt} h dN_{\theta, t} + e^{-rt}s \right],
\]

\[
\bar{w}^\Delta(p) = E \left[\int_0^{\tau^\Delta} r e^{-rt} h dN_{\theta, t} + e^{-rt\Delta}s \right]
\]

where \(N_{\theta} \) is a Poisson process with intensity \(\lambda_\theta \). As \(\tau \leq \tau^\Delta \leq \tau + \Delta \) almost surely, we have

\[
|\bar{w}^\Delta(p) - V_{N, \bar{p}}(p)| \leq E \left[\int_\tau^{\tau^\Delta} r e^{-rt} h dN_{\theta, t} + |e^{-rt\Delta} - e^{-rt}|s \right] \\
\leq E \left[\int_0^{\Delta} r e^{-rt} h dN_{1, t} \right] + (1 - e^{-r\Delta})s \\
= (1 - e^{-r\Delta})(\lambda_1 h + s),
\]

and hence \(\lim_{\Delta \to 0} \|ar{w}^\Delta - V_{N, \bar{p}}\| = 0 \) as claimed.

The remaining auxiliary results needed for the proof of Proposition 7 are comparison results for \(\bar{w}^\Delta \) and \(w^\Delta \) as \(\Delta \) becomes small. We start with equilibrium payoffs in the good state.
Lemma D.7 Let \(\underline{p} > p_N^* \). Then \(\bar{w}^{\Delta} \geq V_{N,\underline{p}} \) for \(\Delta \) sufficiently small.

Proof: In addition to the stopping times \(\tau \) and \(\tau^{\Delta} \) introduced in the proof of Lemma D.6, we define \(\tau^{\Delta} = \inf\{t \geq 0: p_t \leq p_N^* \} \), which is the stopping time that an \(N \)-player cooperative would use in continuous time. As \(\underline{p} > p_N^* \), we have \(\tau^* \geq \tau + \Delta^* \) where \(\Delta^* > 0 \) is the (deterministic) length of time needed for the posterior belief to decay from \(\underline{p} \) to \(p_N^* \) when no lump sum arrives. For \(\Delta \leq \Delta^* \), therefore, we have \(\tau \leq \tau^{\Delta} \leq \tau + \Delta \leq \tau^* \); so \(\tau^{\Delta} \) yields an expected payoff no smaller than \(\tau \); that is, \(\bar{w}^{\Delta} \geq V_{N,\underline{p}} \).

Turning to equilibrium payoffs in the bad state, we define

\[
\bar{p}^b = \frac{\mu^b(s - \lambda_0 h)}{(\mu^b + 1)(\lambda_1 h - s) + \mu^b(s - \lambda_0 h)},
\]

where

\[
\mu^b = \mu_N + \frac{(N - 1)r}{N(\lambda_1 - \lambda_0)}.
\]

Lemma D.8 For \(\underline{p} < \bar{p}^b \) and \(\Delta \) sufficiently small, \(\bar{w}^{\Delta} \leq V_{N,\underline{p}} \).

Proof: To ease the notational burden, we write \(v \) instead of \(V_{N,\underline{p}} \). It suffices to show that \(T^{\Delta} v \leq v \) for sufficiently small \(\Delta \).

Recall that for \(\underline{p} > \bar{p} \), \(v(p) = \lambda(p)h + Cu(p) \) with \(u(p) = (1 - p) \left(\frac{1 - \bar{p}}{p} \right)^{1 \text{st}} \) where the constant \(C > 0 \) is chosen to ensure continuity at \(\underline{p} \). It follows from Keller and Rady (2010) that \(v \) is strictly increasing on \([\underline{p}, 1]\).

The function \(u \) is strictly decreasing and strictly convex, and a straightforward computation reveals that \(\delta \epsilon_K^\Delta u(p) = \delta^{1-K} u(p) \) for all \(\Delta > 0 \), \(K \in \{1, \ldots, N\} \) and \(p \in (0,1] \). We further note that \(\epsilon_K^\Delta \lambda(p) = \lambda(p) \) for all \(K \) by the martingale property of beliefs.

We define a belief \(\bar{\rho}^{\Delta} \) by requiring that \(B_{N,1}^\Delta(\bar{\rho}^{\Delta}) = \underline{p} \). Starting from \(p > \bar{\rho}^{\Delta} \), when one player experiments for a length of time \(\Delta \) without receiving a lump sum, the resulting posterior belief remains above \(\underline{p} \).

On \([\bar{p}, 1] \), we now have

\[
T^{\Delta} v(p) = \max \left\{ (1 - \delta)\lambda(p)h + \delta \epsilon_N^{\Delta} v(p), \ (1 - \delta)s + \delta \epsilon_{N-1}^{\Delta} v(p) \right\}
\]

\[
= \max \left\{ (1 - \delta)\lambda(p)h + \lambda(p)h + C\delta \epsilon_N^{\Delta} u(p), \ (1 - \delta)s + \delta \lambda(p)h + C\delta \epsilon_{N-1}^{\Delta} u(p) \right\}
\]

\[
= \lambda(p)h + C\delta \epsilon_N^{\Delta} u(p)
\]

\[
= v(p).
\]

The third equality holds because \(\delta \epsilon_N^{\Delta} u(p) > \delta \epsilon_{N-1}^{\Delta} u(p) \) (by strict convexity of \(u \)) and \(\lambda(p)h > s \) (as \(\bar{p} > p^* \) by assumption), the fourth holds because \(\delta \epsilon_N^{\Delta} u(p) = u(p) \).
On \((\bar{p}^\Delta, \bar{p})\), we have
\[
T^\Delta v(p) = \max \left\{ (1 - \delta) \lambda(p) h + \delta \mathcal{E}_1^\Delta v(p), \ (1 - \delta) s + \delta v(p) \right\}
\]
\[
= \max \left\{ \lambda(p) h + C \delta \mathcal{E}_1^\Delta u(p), \ (1 - \delta) s + \delta v(p) \right\}
\]
\[
< v(p),
\]
with the inequality holding because \(\delta \mathcal{E}_1^\Delta u(p) = \delta \frac{N-1}{2} u(p) < u(p)\) and \(s < v(p)\).

On \((\underline{p}, \bar{p}^\Delta)\), we still have \((1 - \delta) s + \delta v(p) < v(p)\), while
\[
(1 - \delta) \lambda(p) h + \delta \mathcal{E}_1^\Delta v(p)
\]
\[
= (1 - \delta) \lambda(p) h + \delta \Lambda^\Delta_{0,1}(p) s + \delta \sum_{j=1}^\infty \Lambda^\Delta_{j,1}(p) v(B^\Delta_{j,1}(p))
\]
\[
= (1 - \delta) \lambda(p) h + \delta \Lambda^\Delta_{0,1}(p) s - \lambda(\Delta_{0,1}(p)) h - Cu(\Delta_{0,1}(p)) + \delta \mathcal{E}_1^\Delta [\lambda h + Cu(p)]
\]
\[
\lambda(p) h + \delta \Lambda^\Delta_{0,1}(p) s - \lambda(\Delta_{0,1}(p)) h - Cu(\Delta_{0,1}(p)) + C \delta \frac{1}{\bar{p}} u(p)
\]
\[
v(p) + \delta F(p, \Delta)
\]
with
\[
F(p, \Delta) = C(\delta - \frac{1}{\bar{p}} - \delta^{-1}) u(p) + \Lambda^\Delta_{0,1}(p) \left[s - \lambda(\Delta_{0,1}(p)) h - Cu(\Delta_{0,1}(p)) \right].
\]
As \(\delta^{-\frac{1}{\bar{p}}} = e^{\frac{1}{\bar{p}} - \frac{1}{\Delta}} < e^{\frac{1}{\Delta}} = \delta^{-1}\), we have \(F(\bar{p}^\Delta, \Delta) < 0\). Moreover, as \(\Lambda^\Delta_{0,1}(p) = p \gamma_1 + (1-p) \gamma_0\) and \(B^\Delta_{0,1}(p) = p \gamma_1 / \Lambda^\Delta_{0,1}(p)\), we have
\[
\Lambda^\Delta_{0,1}(p) \lambda(\Delta_{0,1}(p)) = p \lambda_1 \gamma_1 + (1-p) \lambda_0 \gamma_0
\]
and
\[
\Lambda^\Delta_{0,1}(p) u(\Delta_{0,1}(p)) = \gamma_0 \left(\frac{\Delta_{0,1}}{\gamma_1} \right)^{\mu N} u(p),
\]
hence
\[
F(p, \Delta) = C \left[\delta^{-\frac{1}{\bar{p}}} - \delta^{-1} - \gamma_0 \left(\frac{\gamma_0}{\gamma_1} \right)^{\mu N} \right] u(p) + [p \gamma_1 + (1-p) \gamma_0] s - [p \lambda_1 \gamma_1 + (1-p) \lambda_0 \gamma_0] h,
\]
which is continuously differentiable at any \((p, \Delta) \in (0,1) \times \mathbb{R}\). For \(\Delta \geq 0\), the nonlinear part of \(F\) is a negative multiple of \(u\), so \(F\) is strictly concave in \(p\). As \(F_p(p,0) = - C u'(p) - \lambda'(p) h = - u'(p^+) < 0\), we see that for sufficiently small \(\Delta > 0\), \(F_p(p, \Delta) < 0\) and hence \(F(p, \Delta) < F(p, \Delta)\) for \(p > \underline{p}\). As \(F(p, 0) = - C u(p) + s - \lambda(p) h = s - v(p) = 0\), we thus have \(T^\Delta v < v\) on \((\underline{p}, \bar{p}^\Delta)\) for sufficiently small \(\Delta\) if we can show that \(F(\Delta, 0) < 0\). Computing
\[
F_\Delta(p, 0) = \left[\frac{1}{\bar{p}} - r + \lambda_0 - \mu_N(\lambda_1 - \lambda_0) \right] (s - \lambda(p) h) + (p) \lambda_1^2 + (1-p) \lambda_0^2 h - \lambda(p) s,
\]
it is straightforward to check that \(F_\Delta(p, 0) < 0\) if and only if \(\underline{p} < p^\prime\).
Thus, \(j \) already the desired result in the case that \(\lambda > \mu \).

Proof: In the proof of Lemma D.9, we have

\[
(1 - \delta) \lambda(p) h + \delta \mathcal{E} v(p) \leq (1 - \delta) \lambda(p) h + \delta \mathcal{E} v(p) = v(p) + \delta F(p, \Delta) < v(p) = s
\]

and hence \(\mathcal{T} v(p) = s = v(p) \).

Lemma D.9 If \(\lambda_0 > 0 \), then \(\hat{p} < p^* < p_1^* \).

Proof: As \(\mu_N < \mu_1 \) and

\[
r + \lambda_0 - \mu^0(\lambda_1 - \lambda_0) = \frac{r}{N} + \lambda_0 - \mu_N(\lambda_1 - \lambda_0) = \lambda_0 \left(\frac{\lambda_0}{\lambda_1} \right)^{\mu_N} > \lambda_0 \left(\frac{\lambda_0}{\lambda_1} \right)^{\mu_1},
\]

we have \(\mu^0 < \mu_1 \). Combined with the fact that \(\mu^0 > \mu_N \), this implies \(p_1^* < p^* < p_1^* \), which is already the desired result in the case that \(j(p_N^*) \leq p_1^* \) and \(\hat{p} = p_N^* \).

Suppose therefore that \(j(p_N^*) > p_1^* \) and \(\hat{p} > p_N^* \). From Lemma B.1, we know that \(p^* > \hat{p} \) if and only if

\[
\lambda(p^*) |N v_N, p^*(j(p^*)) - (N - 1) v_1(j(p^*)) - s| - rc(p^*) > 0.
\]

Arguing as in the proof of that lemma, we can rewrite the left-hand side of this inequality as

\[
[p^* \lambda_1^2 (1 - p^*) \lambda_0^2] h + N \lambda_0 \left(\frac{\lambda_0}{\lambda_1} \right)^{\mu_N} c(p^*) - (N - 1) \lambda_0 \left(\frac{\lambda_0}{\lambda_1} \right)^{\mu_1} \frac{c(p_1^*)}{u(p_1^*; \mu_1)} u(p^*; \mu_1) - \lambda(p^*) s - rc(p^*) = 0.
\]

From the proof of Lemma D.8, moreover, we know that \(F_\Delta(p^*, 0) = 0 \), which is equivalent to

\[
[p^* \lambda_1^2 (1 - p^*) \lambda_0^2] h + \lambda_0 \left(\frac{\lambda_0}{\lambda_1} \right)^{\mu_N} c(p^*) - \lambda(p^*) s - rc(p^*) = 0.
\]

Thus, \(p^* > \hat{p} \) if and only if

\[
\frac{[r + \lambda_0 - \mu^0(\lambda_1 - \lambda_0)] c(p^*)}{u(p^*; \mu_1)} > \frac{[r + \lambda_0 - \mu_1(\lambda_1 - \lambda_0)] c(p_1^*)}{u(p_1^*; \mu_1)}.
\]

Now, for \(\mu > 0 \) and

\[
p(\mu) = \frac{\mu(s - \lambda_0 h)}{(\mu + 1)(\lambda_1 h - s) + \mu(s - \lambda_0 h)},
\]

a straightforward computation reveals that

\[
\frac{c(p(\mu))}{u(p(\mu); \mu_1)} = \frac{(s - \lambda_0 h) \left(\frac{s - \lambda_0 h}{\lambda_1 h - s} \right)^{\mu_1}}{(\mu + 1) \left(\frac{\mu + 1}{\mu} \right)^{\mu_1}}.
\]
Applying this to \(p^\flat = p(\mu^2) \) and \(p_1^* = p(\mu_1) \), we see that \(p^\flat > \hat{p} \) if and only if the function

\[
g(\mu) = \frac{r + \lambda_0 - \mu(\lambda_1 - \lambda_0)}{(\mu + 1)(\frac{\mu + 1}{\mu})^\mu_1}
\]

satisfies \(g(\mu^\flat) > g(\mu_1) \).

It is straightforward to show that \(g'(\mu) \) has the same sign as \(\mu^* - \mu \) where

\[
\mu^* = \frac{\mu_1(r + \lambda_0)}{r + \lambda_1 + \mu_1(\lambda_1 - \lambda_0)} < \mu_1.
\]

It is thus enough to show that \(\mu^\flat > \mu^* \). Our assumption that \(j(p_N^*) > p_1^* \) translates into

\[
\mu_N > \frac{\mu_1\lambda_0}{\lambda_1 + \mu_1(\lambda_1 - \lambda_0)}.
\]

As \(\frac{N-1}{N} \geq \frac{1}{2} \), this implies that \(\mu^\flat \) is greater than

\[
\bar{\mu} = \frac{\mu_1\lambda_0}{\lambda_1 + \mu_1(\lambda_1 - \lambda_0)} + \frac{r}{2(\lambda_1 - \lambda_0)}.
\]

The proof is complete, therefore, if we can show that \(\bar{\mu} > \mu^* \).

Simple algebra shows that this inequality is equivalent to the concave quadratic

\[
q(\mu) = \lambda_1(r + \lambda_1) + (\lambda_1 - \lambda_0)(r + 2\lambda_0)\mu - (\lambda_1 - \lambda_0)^2\mu^2
\]

being positive at \(\mu_1 \). We know from Keller and Rady (2010) that \(\frac{r}{\lambda_1 - \lambda_0} < \mu_1 < \frac{r + \lambda_0}{\lambda_1 - \lambda_0} \). As \(q(\frac{r}{\lambda_1 - \lambda_0}) = \lambda_1(r + \lambda_1) + 2\lambda_0 r \) and \(q(\frac{r + \lambda_0}{\lambda_1 - \lambda_0}) = \lambda_1(r + \lambda_1) + \lambda_0(r + \lambda_0) \) are both positive, we can indeed conclude that \(q(\mu_1) > 0 \).

\[\text{E Analysis of the Fully Revealing Case} \ (\lambda_0 = 0)\]

Modifying notation slightly, we write \(\Lambda \) for the probability that, conditional on \(\theta = 1 \), a player has at least one success on his own risky arm in any given round, and \(g \) for the corresponding expected payoff per unit of time.\(^\diamond\)

Consider an SSE played at a given prior \(p \), with associated payoff \(W \). If \(K \geq 1 \) players unsuccessfully choose the risky arm, the belief jumps down to a posterior denoted \(p_K \). Note that an SSE allows the continuation play to depend on the identity of these players. Taking the expectation over all possible combinations of \(K \) players who experiment, however, we can associate with each posterior \(p_K \), \(K \geq 1 \), an expected continuation payoff \(W_K \). If \(K = 0 \), so that no player experiments, the belief does not evolve, but there is no reason that the continuation strategies (and so the payoff) should remain the same. We denote

\[\text{\(I.e., \ \Lambda = 1 - e^{-\lambda_1\Delta} = 1 - \gamma_1 \) and \(g = \lambda_1h \).}\]
the corresponding payoff by W_0. In addition, we write $\alpha \in [0, 1]$ for the probability with which each player experiments at p, and Q_K for the probability that at least one player has a success, given p, when K of them experiment. The players’ common payoff must then satisfy the following optimality equation:

$$W = \max \left\{ (1 - \delta)p_0 + \delta \sum_{K=0}^{N-1} \binom{N-1}{K} \alpha^K (1 - \alpha)^{N-1-K} [Q_{K+1}g + (1 - Q_{K+1})W_{K+1}] , \right.$$

$$(1 - \delta)s + \delta \sum_{K=1}^{N-1} \binom{N-1}{K} \alpha^K (1 - \alpha)^{N-1-K} (Q_Kg + (1 - Q_K)W_K) + \delta (1 - \alpha)^{N-1}W_0 \right\} .$$

The first term corresponds to the payoff from playing risky, the second from playing safe.

As it turns out, it is more convenient to work with odds ratios $l = \frac{p}{1 - p}$ and $l_K = \frac{p_K}{1 - p_K}$ which we refer to as “belief” as well. Note that $p_K = \frac{p (1 - \Lambda)^K}{p (1 - \Lambda)^K + 1 - p}$ implies that $l_K = (1 - \Lambda)^K l$. Note also that $1 - Q_K = p (1 - \Lambda)^K + 1 - p = (1 - p)(1 + l_K)$, $Q_K = p - (1 - p)l_K = (1 - p)(l - l_K)$.

We define $m = \frac{s}{g - s}$, $\omega = \frac{W - s}{(1 - p)(g - s)}$, $\omega_K = \frac{W_K - s}{(1 - p_K)(g - s)}$. Note that $\omega \geq 0$ in any equilibrium, as s is a lower bound on the value. Simple computations now give

$$\omega = \max \left\{ l - (1 - \delta)m + \delta \sum_{K=0}^{N-1} \binom{N-1}{K} \alpha^K (1 - \alpha)^{N-1-K} (\omega_{K+1} - l_{K+1}) , \right.$$

$$\delta l + \delta \sum_{K=0}^{N-1} \binom{N-1}{K} \alpha^K (1 - \alpha)^{N-1-K} (\omega_K - l_K) \right\} .$$

It is also useful to introduce $w = \omega - l$ and $w_K = \omega_K - l_K$. We then get

$$w = \max \left\{ -(1 - \delta)m + \delta \sum_{K=0}^{N-1} \binom{N-1}{K} \alpha^K (1 - \alpha)^{N-1-K} w_{K+1} , \right.$$

$$-(1 - \delta)l + \delta \sum_{K=0}^{N-1} \binom{N-1}{K} \alpha^K (1 - \alpha)^{N-1-K} w_K \right\} . \quad (E.13)$$

43
We define
\[l^* = \frac{m}{1 + \frac{\delta}{1 - \delta} \Lambda}. \]
This is the odds ratio corresponding to the single-agent cutoff \(p_1^\Delta \), i.e., \(l^* = p_1^\Delta / (1 - p_1^\Delta) \).
Note that \(p_1^\Delta > p_1^* \) for \(\Delta > 0 \).

We are now ready to prove Lemma 1, which establishes that no perfect Bayesian equilibrium involves experimentation below \(p_1^\Delta \) or, in terms of odds ratios, \(l^* \).

Proof of Lemma 1: Let \(\underline{l} \) be the infimum over all beliefs for which a positive probability of experimentation by some player can be implemented in a perfect Bayesian equilibrium. Note that \(\underline{l} > 0 \): This is because the social planner’s solution is a cutoff policy, with cutoff bounded away from 0. Below this cutoff, \(s \) is both the minmax payoff of a player (which he can secure by always playing safe) and the highest average payoff that is feasible (given that this is the social optimum). Hence this must be the unique perfect Bayesian equilibrium payoff, and the unique policy that achieves it (from the social planner’s problem) specifies that all players play safe.

Consider some prior belief \(l \in [\underline{l}, \underline{l} / (1 - \Lambda)] \), so that a single failed experiment takes the posterior belief below \(\underline{l} \), and fix an equilibrium in which at least one player experiments with positive probability in the first period. Let this be player \(n \). As the normalized equilibrium payoff \(w \) at the belief \(l \) is bounded below by \(-l \), and since by construction the payoff equals \(-l_K \) at any belief \(l_K \) for \(K \geq 1 \), player \(n \)’s payoff from playing safe is at least
\[-(1 - \delta)l - \delta \sum_{I \subseteq N \setminus \{n\}} \prod_{i \in I} \alpha_i \prod_{i \in N \setminus (I \cup \{n\})} (1 - \alpha_i) \ l_{|I|}, \]
while the payoff from playing risky is
\[-(1 - \delta)m - \delta \sum_{I \subseteq N \setminus \{n\}} \prod_{i \in I} \alpha_i \prod_{i \in N \setminus (I \cup \{n\})} (1 - \alpha_i) \ l_{|I|+1}. \]

Thus, we must have
\[(1 - \delta)(m - l) \leq \delta \sum_{I \subseteq N \setminus \{n\}} \prod_{i \in I} \alpha_i \prod_{i \in N \setminus (I \cup \{n\})} (1 - \alpha_i) \ (l_{|I|} - l_{|I|+1}) \]
\[= \delta \Lambda \sum_{I \subseteq N \setminus \{n\}} (1 - \Lambda)^{|I|} \prod_{i \in I} \alpha_i \prod_{i \in N \setminus (I \cup \{n\})} (1 - \alpha_i) \]
\[\leq \delta \Lambda l. \]
(The sum in the second line achieves its maximum of 1 when \(\alpha_i = 0 \) for all \(i \neq n \).) This implies
\[l \geq \frac{m}{1 + \frac{\delta}{1 - \delta} \Lambda} = l^* \]
and hence \(\underline{l} \geq l^* \), establishing the lemma. \[\square \]
For all beliefs \(l < l^* \), therefore, any equilibrium has \(w = -l \), or \(\omega = 0 \), for each player. We now turn to the proof of Proposition 8.

Proof of Proposition 8: Following terminology from repeated games, we say that we can *enforce* action \(\alpha \in \{0, 1\} \) at belief \(l \) if we can construct an SSE for the prior belief \(l \) in which players prefer to choose \(\alpha \) in the first round rather than deviate unilaterally.

Our first step is to derive sufficient conditions for enforcement of \(\alpha \in \{0, 1\} \). The conditions to enforce these actions are intertwined, and must be derived simultaneously.

To enforce \(\alpha = 0 \) at \(l \), it suffices that one round of using the safe arm followed by the best equilibrium payoff at \(l \) exceeds the payoff from one round of using the risky arm followed by the resulting continuation payoff at belief \(l_1 \) (as only the deviating player will have experimented). See below for the precise condition.

What does it take to enforce \(\alpha = 1 \) at \(l \)? If a player deviates to \(\alpha = 0 \), we jump to \(w_{N-1} \) rather than \(w_N \) in case all experiments fail. Assume that at \(l_{N-1} \) we can enforce \(\alpha = 0 \). As explained above, this implies that at \(l_{N-1} \), a player’s continuation payoff can be pushed down to what he would get by unilaterally deviating, which is at most

\[-(1 - \delta)m + \delta w_N \]

where \(w_N \) is the highest possible continuation payoff at belief \(l_N \). To enforce \(\alpha = 1 \) at \(l \), it then suffices that

\[w = -(1 - \delta)m + \delta w_N \geq -(1 - \delta)l + \delta(-(1 - \delta)m + \delta w_N), \]

with the same continuation payoff \(w_N \) on the left-hand side of the inequality. The inequality simplifies to

\[\delta w_N \geq (1 - \delta)m - l; \]

by the formula for \(w \), this is equivalent to \(w \geq -l \), *i.e.*, \(\omega \geq 0 \). Given that

\[\omega = l - (1 - \delta)m + \delta(\omega_N - l_N) = (1 - \delta(1 - \Lambda))^N l - (1 - \delta)m + \delta \omega_N, \]

to show that \(\omega \geq 0 \), it thus suffices that

\[l \geq \frac{m}{1 + \frac{\delta}{1 - \delta}(1 - (1 - \Lambda)^N)} = \tilde{l}, \]

and that \(\omega_N \geq 0 \), which is necessarily the case if \(\omega_N \) is an equilibrium payoff. Note that

\[(1 - \Lambda)^N \tilde{l} \leq l^* \]

so that \(l_N \geq l^* \) implies \(l \geq \tilde{l} \). In summary, to enforce \(\alpha = 1 \) at \(l \), it suffices that \(l_N \geq l^* \) and \(\alpha = 0 \) be enforceable at \(l_{N-1} \).

How about enforcing \(\alpha = 0 \) at \(l \)? Suppose we can enforce it at \(l_1, l_2, \ldots, l_{N-1}, \) and that \(l_N \geq l^* \). Note that \(\alpha = 1 \) is then enforceable at \(l \) from our previous argument, given our hypothesis that \(\alpha = 0 \) is enforceable at \(l_{N-1} \). It then suffices that

\[-(1 - \delta)l + \delta(-(1 - \delta)m + \delta w_N) \geq -(1 - \delta^N)m + \delta^N w_N, \]
where again it suffices that this holds for the highest value of \(w_N \). To understand this expression, consider a player who deviates by experimenting. Then the following period the belief is down one step, and if \(\alpha = 0 \) is enforceable at \(l_1 \), it means that his continuation payoff there can be chosen to be no larger than what he can secure at that point by deviating and experimenting again, etc. The right-hand side is then obtained as the payoff from \(N \) consecutive unilateral deviations to experimentation (in fact, we have picked an upper bound, as the continuation payoff after this string of deviations need not be the maximum \(w_N \)). The left-hand side is the payoff from playing safe one period before setting \(\alpha = 1 \) and getting the maximum payoff \(w_N \), a continuation strategy that is sequentially rational given that \(\alpha = 1 \) is enforceable at \(l \) by our hypothesis that \(\alpha = 0 \) is enforceable at \(l_{N-1} \).

Plugging in the definition of \(\omega_N \), this inequality simplifies to

\[
(\delta^2 - \delta^N)\omega_N \geq (\delta^2 - \delta^N)(l_N - m) + (1 - \delta)(l - m),
\]

which is always satisfied for beliefs \(l \leq m \), i.e. below the myopic cutoff \(l^m \) (which coincides with the normalized payoff \(m \)).

To summarize, if \(\alpha = 0 \) can be enforced at the \(N - 1 \) consecutive beliefs \(l_1, \ldots, l_{N-1} \), with \(l_N \geq l^* \) and \(l \leq l^m \), then both \(\alpha = 0 \) and \(\alpha = 1 \) can be enforced at \(l \). By induction, this implies that if we can find an interval of beliefs \([l_N, l] \) with \(l_N \geq l^* \) for which \(\alpha = 0 \) can be enforced, then \(\alpha = 0, 1 \) can be enforced at all beliefs \(l' \in (l, l^m) \).

Our second step is to establish that such an interval of beliefs exists. This second step involves itself three steps. First, we derive some “simple” equilibrium, which is a symmetric Markov equilibrium. Second, we will show that we can enforce \(\alpha = 1 \) on sufficiently (finitely) many consecutive values of beliefs building on this equilibrium; third, we show that this can be used to enforce \(\alpha = 0 \) as well.

It will be useful to distinguish beliefs according to whether they belong to the interval \([l^*, (1 + \lambda_1 \Delta)l^*), [(1 + \lambda_1 \Delta)l^*, (1 + 2\lambda_1 \Delta)l^*), \ldots \). For \(\tau \in \mathbb{N} \), let \(I_{\tau + 1} = [(1 + \tau \lambda_1 \Delta)l^*, (1 + (\tau + 1)\lambda_1 \Delta)l^*) \). For fixed \(\Delta \), every \(l \geq l^* \) can be uniquely mapped into a pair \((x, \tau) \in [0, 1) \times \mathbb{N} \) such that \(l = (1 + \lambda_1(x + \tau)\Delta)l^* \), and we alternatively denote beliefs by such a pair. Note also that, for small enough \(\Delta > 0 \), one unsuccessful experiment takes a belief that belongs to the interval \(I_{\tau+1} \) to (within \(O(\Delta^2) \) of) the interval \(I_\tau \). (Recall that \(\Lambda = \lambda_1 \Delta + O(\Delta^2) \).)

Let us start with deriving a symmetric Markov equilibrium. Hence, because it is Markovian, \(\omega_0 = \omega \) in our notation, that is, the continuation payoff when nobody experiments is equal to the payoff itself.

Rewriting the equations, using the risky arm gives the payoff\(^{19} \)

\[
\omega = l - (1 - \delta)m - \delta(1 - \Lambda)(1 - \alpha \Lambda)^{N-1}l + \delta \sum_{K=0}^{N-1} \binom{N-1}{K} \alpha^K (1 - \alpha)^{N-1-K} \omega_{K+1}.
\]

\(^{19}\)To pull out the terms involving the belief \(l \) from the sum appearing in the definition of \(\omega \), use the fact that \(\sum_{K=0}^{N-1} \binom{N-1}{K} \alpha^K (1 - \alpha)^{N-1-K} (1 - \Lambda)^K = (1 - \alpha \Lambda)^N/(1 - \alpha \Lambda) \).
while using the safe arm yields

\[\omega = \delta(1 - (1 - \alpha \Lambda)^{N-1}) l + \delta(1 - \alpha)^{N-1} \omega + \delta \sum_{K=1}^{N-1} \binom{N-1}{K} \alpha^K (1 - \alpha)^{N-1-K} \omega_K. \]

In the Markov equilibrium we derive, players are indifferent between both actions, and so their payoffs are the same. Given any belief \(l \) or corresponding pair \((\tau, x)\), we conjecture an equilibrium in which \(\alpha = a(\tau, x) \Delta^2 + O(\Delta^3) \), \(\omega = b(\tau, x) \Delta^2 + O(\Delta^3) \), for some functions \(a, b \) of the pair \((\tau, x)\) only. Using the fact that \(\Lambda = \lambda_1 \Delta + O(\Delta^2) \), 1−δ = rΔ + O(Δ^2), we replace this in the two payoff expressions, and take Taylor expressions to get, respectively,

\[0 = \left(rb(\tau, x) + \frac{\lambda_1 m}{\lambda_1 + r} (N-1)a(\tau, x) \right) \Delta^3 + O(\Delta^4). \]

and

\[0 = \left[b(\tau, x) - rm \lambda_1 (\tau + x) \right] \Delta^2 + O(\Delta^3). \]

We then solve for \(a(\tau, x) \), \(b(\tau, x) \), to get

\[\alpha_- = \frac{r(\lambda_1 + r)(x + \tau)}{N-1} \Delta^2 + O(\Delta^3), \]

with corresponding value

\[\omega_- = \lambda_1 mr(x + \tau) \Delta^2 + O(\Delta^3). \]

This being an induction on \(K \), it must be verified that the expansion indeed holds at the lowest interval, \(I_1 \), and this verification is immediate.\(^{20}\)

We now turn to the second step and argue that we can find \(N - 1 \) consecutive beliefs at which \(\alpha = 1 \) can be enforced. We will verify that incentives can be provided to do so, assuming that \(\omega_- \) are the continuation values used by the players whether a player deviates or not from \(\alpha = 1 \). Assume that \(N - 1 \) players choose \(\alpha = 1 \). Consider the remaining one. His incentive constraint to choose \(\alpha = 1 \) is

\[-(1 - \delta)m + \delta \omega_N - \delta(1 - \Lambda)^{N} l \geq -(1 - \delta)l - \delta(1 - \Lambda)^{N-1} l + \delta \omega_{N-1}, \quad (E.14) \]

where \(\omega_N, \omega_{N-1} \) are given by \(\omega_- \) at \(l_N, l_{N-1} \). The interpretation of both sides is as before, the payoff from abiding with the candidate equilibrium action vs. the payoff from deviating. Fixing \(l \) and the corresponding pair \((\tau, x)\), and assuming that \(\tau \geq N - 1,^{21} \) we insert our

\(^{20}\)Note that this solution is actually continuous at the interval endpoints. It is not the only solution to these equations; as mentioned in the text, there are intervals of beliefs for which multiple symmetric Markov equilibria exist in discrete time. It is easy to construct such equilibria in which \(\alpha = 1 \) and the initial belief is in (a subinterval of) \(I_1 \).

\(^{21}\)Considering \(\tau < N - 1 \) would lead to \(\omega_N = 0 \), so that the explicit formula for \(\omega_- \) would not apply at \(l_N \). Computations are then easier, and the result would hold as well.
formula for ω_-, as well as $\Lambda = \lambda_1 \Delta + O(\Delta), 1 - \delta = r\Delta + O(\Delta)$. This gives

$$\tau \geq (N - 1) \left(2 + \frac{\lambda_1}{\lambda_1 + r} \right) - x.$$

Hence, given any integer $N' \in \mathbb{N}, N' > 3(N - 1)$, there exists $\Delta > 0$ such that for every $\Delta \in (0, \bar{\Delta}), \alpha = 1$ is an equilibrium action at all beliefs $l = l^*(1 + \tau \Delta)$, for $\tau = 3(N - 1), \ldots, N'$ (we pick the factor 3 because $\lambda_1 / (\lambda_1 + r) < 1$).

Fix $N - 1$ consecutive beliefs such that they all belong to intervals I_τ with $\tau \geq 3(N - 1)$ (say, $\tau \leq 4N$), and fix Δ for which the previous result holds, i.e. $\alpha = 1$ can be enforced at all these beliefs. We now turn to the third step, showing how $\alpha = 0$ can be enforced as well for these beliefs.

Suppose that players choose $\alpha = 0$. As a continuation payoff, we can use the payoff from playing $\alpha = 1$ in the following round, as we have seen that this action can be enforced at such a belief. This gives

$$\delta l + \delta(-(1 - \delta)m - \delta(1 - \Lambda)l + \delta \omega_-(l_N)).$$

(Note that the discounted continuation payoff is the left-hand side of (E.14).) By deviating from $\alpha = 0$, a player gets at most

$$l + (-(1 - \delta)m - \delta(1 - \Lambda)l + \delta \omega_-(l_1)).$$

Again inserting our formula for ω_-, this reduces to

$$\frac{m r(N - 1) \lambda_1}{\lambda_1 + r} \Delta \geq 0.$$

Hence we can also enforce $\alpha = 0$ at all these beliefs. We can thus apply our induction argument: there exists $\bar{\Delta} > 0$ such that, for all $\Delta \in (0, \bar{\Delta})$, both $\alpha = 0, 1$ can be enforced at all beliefs $l \in (l^*(1 + 4N\Delta), l_m)$.

Note that we have not established that, for such a belief l, $\alpha = 1$ is enforced with a continuation in which $\alpha = 1$ is being played in the next round (at belief $l_N > l^*(1 + 4N\Delta)$). However, if $\alpha = 1$ can be enforced at belief l, it can be enforced when the continuation payoff at l_N is highest possible; in turn, this means that, as $\alpha = 1$ can be enforced at l_N, this continuation payoff is at least as large as the payoff from playing $\alpha = 1$ at l_N as well. By induction, this implies that the highest equilibrium payoff at l is at least as large as the one obtained by playing $\alpha = 1$ at all intermediate beliefs in $(l^*(1 + 4N\Delta), l)$ (followed by, say, the worst equilibrium payoff once beliefs below this range are reached).

Similarly, we have not argued that, at belief l, $\alpha = 0$ is enforced by a continuation equilibrium in which, if a player deviates and experiments unilaterally, his continuation payoff at l_1 is what he gets if he keeps on experimenting alone. However, because $\alpha = 0$ can be enforced at l_1, the lowest equilibrium payoff that can be used after a unilateral deviation at
must be at least as low as what the player can get at \(l_1 \) from deviating unilaterally to risky again. By induction, this implies that the lowest equilibrium payoff at belief \(l \) is at least as low as the one obtained if a player experiments alone for all beliefs in the range \((l^*(1 + 4N\Delta), l)\) (followed by, say, the highest equilibrium payoff once beliefs below this interval are reached).

Note that, as \(\Delta \to 0 \), these bounds converge (uniformly in \(\Delta \)) to the cooperative solution (restricted to no experimentation at and below \(l = l^* \)) and the single-agent payoff, respectively, which was to be shown. (This is immediate given that these values correspond to precisely the cooperative payoff (with \(N \) or 1 player) for a cutoff that is within a distance of order \(\Delta \) of the cutoff \(l^* \), with a continuation payoff at that cutoff which is itself within \(\Delta \) times a constant of the safe payoff.)

This also immediately implies (as for the case \(\lambda_0 > 0 \)) that for fixed \(l > l^m \), both \(\alpha = 0, 1 \) can be enforced at all beliefs in \([l^m, l] \) for all \(\Delta < \Delta \), for some \(\Delta > 0 \): the gain from a deviation is of order \(\Delta \), yet the difference in continuation payoffs (selecting as a continuation payoff a value close to the maximum if no player unilaterally defects, and close to the minimum if one does) is bounded away from 0, even as \(\Delta \to 0 \).

Hence, all conclusions extend: fix \(l \in (l^*, \infty) \); for every \(\epsilon > 0 \), there exists \(\Delta > 0 \) such that for all \(\Delta < \Delta \), the best SSE payoff starting at belief \(l \) is at least as much as the payoff from all players choosing \(\alpha = 1 \) at all beliefs in \((l^* + \epsilon, l) \) (using \(s \) as a lower bound on the continuation once the belief \(l^* + \epsilon \) is reached); and the worst SSE payoff starting at belief \(l \) is no more than the payoff from a player whose opponents choose \(\alpha = 1 \) if and only if \(l \in (l^*, l^* + \epsilon) \), and 0 otherwise.

The first part of the Proposition follows immediately, picking arbitrarily \(p \in (p^1, p^m) \) and \(\bar{p} \in (p^m, 1) \). The second part follows from the fact that (i) \(p^1 > p^\Delta \), as noted, and (ii) for any \(p \in [p^\Delta, \bar{p}] \), player \(i \)'s payoff in any equilibrium is weakly lower than his best-reply payoff against \(\kappa(p) = 1 \) for all \(p \in [p^1, \bar{p}] \), as easily follows from (E.13), the optimality equation for \(w \).

