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Abstract 
 
The goal of this Bachelor thesis is to derive the influential predictors of the loss-to-follow-up (LTFU) of an 

infant Tuberculosis (Tb) study. Several statistical classification models and data mining methods are 

compared in order to determine the best prediction model. In particular these approaches are classical 

logistic regression, discriminant analysis, regularized regression with different lasso penalties, 

classification trees, Boosting (with trees and regressions), Random Forests, Support Vector Machines 

and Neural Nets. To honestly assess the method performance, 50-fold random splits into training and 

test data are used. The best methods create an AUC (area under the curve) of approximately 0.7, which 

justifies the confidence in the predictive power of the data and the used covariates. But no dominant 

method, that highly outperformed the others, results. Thus, to assess the important covariates, a 

synthesis of the best prediction models is given, with substantial interpretation due to an extended 

logistic regression comprising interactions and non-parametric modeling of covariate effects. This 

approach suggests that higher mother’s age prevents from LTFU. The same holds for mothers already 

having a HDSS-ID (health and demographic surveillance system identification) at enrolment. Salaried 

working mothers without a HDSS-ID should be avoided; here Farmers are preferred (regarding mother’s 

occupation). Furthermore, families with lower socio-economic status regarding housing type or education 

level should be favored, as well as mothers with less additional children for whom it is advantageous to 

be recruited as soon as possible (lower infant’s age). These results can help in creating better retention 

strategies for future trials. From a methodic point of view, it is important that classical logistic regression 

was among the best models, which not only justifies the application in similar data situations, but helps in 

deriving the right conclusion, as this method supports detailed interpretation of covariate influence.  
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1 Introduction and Motivation 

Tuberculosis is the deadliest infectious disease worldwide. Therefore the importance of developing new 

and improved vaccination is evident. For the supporting clinical trials a low loss-to-follow-up (LTFU) is 

inevitable and represents an important factor for the quality of the clinical trial, as a high LTFU might lead 

to underpowered studies and biased results. 

Direct prediction of LTFU as well as identification of influential variables for LTFU can help in excluding 

potential subjects in advance, or in developing accurate retention strategies. 

 

Above task is a classical classification problem, which is typically modeled by logistic regression or 

discriminant analysis. However, in recent years several new methods for such prediction tasks were 

invented. Some of them extend the logistic regression regarding the important step of covariate 

selection. But there are also some new methods that aim direct prediction and originate from the 

machine learning or data mining community and have proven to perform extremely well in classification 

problems. This promising fact encourages their application in predicting the LTFU of a study, even 

though some of them are black boxes, i.e. interpretation of covariate effects is limited.    

On the other hand, the classical logistic regression is highly embedded in a statistical inference 

framework. Furthermore it allows flexible modeling of covariate effects including interactions and non-

parametric (or additive) effects. Therefore logistic regression provides highly interpretable models, which 

makes it a favorable modeling technique not only in the statistical community. 

When it comes to the selection of influential variables, the classical approach with logistic regression is 

just to compare p-values or conduct a selection based on procedures, which discriminate between 

models by means of a criterion, e.g. AIC. For this task some new methods were invented in the past 

decade. These are subsumed under the term regularization. One of these methods is represented by 

penalization of a model’s likelihood. Different penalties result in different characteristics of the 

regularization. E.g. the lasso penalty might shrink the logistic regression parameters of non-influential 

covariates to exactly zero, depending on the extent of penalization, which results in an implicit variable 

selection or, in case of a categorical variable, an identification of relevant categories. In contrast, the 

alternative group-lasso tries to keep categories of the same categorical predictor together, which means 

that either all parameters of the dummy coded covariate are zero, or all are non-zero.  

Another method which also shrinks regression parameters is Boosting. This approach was originally 

invented for pure classification in the machine learning community, but was then adapted to regression 

models. The original version uses classification trees as a so-called base-learner for classification 

purpose. The adaption for regression models exchanges the tree with a linear regression model. 

A very handy tool for classification in terms of intuitive usability are CARTs (classification and regression 

trees). This classical method subsequently splits the data by binary decisions. As a result the user just 

has to follow the branches of the tree to conduct the prediction for a new case, which makes this 

approach somewhat attractive for users, even though it shows high variability/instability. 

The latter problem can be circumvented by Random Forest, which let several trees vote for the resulting 

class. As a cost, the easy decision path of CARTs gets lost. 

Another widely used classification method in the machine learning community are Support Vector 

Machines. This technique is very successful in separating the data in the space of basis functions, build 

from the predictors, by maximizing the margin between points of the corresponding two target classes.  

For already a long time Neural Nets are playing a very important role for classification problems in the 

data mining field. By pushing some “hidden” modeling layers between the input variables and the target, 

especially nonlinear variable influence can be automatically fitted.  

 

The aim of this thesis is to compare all above mentioned methods in terms of their LTFU prediction 

performance for an infant Tb study. If one technique would outperform the classical logistic regression, it 
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could be used to provide priceless low LTFU rates for forthcoming trials. But as it will be seen in 

forthcoming chapters, no clearly superior method yields. This not only encourages to elaborately 

analyzing the study data with the highly interpretable logistic regression, but also puts quite good 

confidence in its results. Furthermore the outcome of the other prediction methods can be used to better 

assess the importance of the predictors. 

 

The first chapter comprises an explanation of the study data, followed by an extensive descriptive 

analysis of used variables. This is already accompanied by an initial exploration of covariate influence. 

Chapter 2 starts with presenting the results of the logistic regression. A first variable selection is 

conducted, followed by an extended design, using non-parametric fitting procedures, as well as 

interaction modeling. The final regression model provides the deepest insight into data relations. The 

following subsequent chapters introduce all used prediction methods theoretically. This is facilitated by 

applying the methods directly to the study data and, if meaningful, presenting results. Chapter 4 

prepares the comparison of the predictive power of all methods by first explaining how to sensibly 

measure classifier performance. Then the results of the evaluation are presented and assessed together 

with a listing of used R packages and functions together with their parameter settings. The final 

synthesis of covariate influence is followed by a summary in the last chapter. 

 

 



 

3 

2 Initial Analysis 

2.1 The Study 

The analyzed data originate from an infant tuberculosis study, conducted with newborn of age 0-6 weeks 

in Kenya, lasting 2009-2011. It was not the real Phase III efficacy trial, but a preparatory study in order to 

measure Tb incidence. Furthermore it was intended to help in collecting information and experience 

regarding the willingness of the population to participate and the LTFU rate.  

 

The relevant covariates comprise characteristics of the child like age, sex or place of birth (Health facility 

or Home), etc. and attributes of the mother at baseline, e.g. mother’s age, education level, etc. (see also 

Table 2.1). The target event LTFU is given if – roughly speaking – 3 planned visits were missed. The 

planned visits are one after 6 weeks, plus additional every 4 months for 1-2 years. In order to keep LTFU 

rate low, several supporting actions were undertaken, like transport reimbursement, reminder visits, etc. 

 

More than 20% of enrolled children were LTFU (or “Not Retained”). A usual target in clinical trials is less 

than 10%. Therefore creating effective prediction models and identification of influential variables can be 

crucial in attempting to reach this target. 

 

2.2 Data Transformation 

The original dataset has 2900 observations/patients. The analysis is done on a reduced dataset of 2695 

subjects, which comprises all patients without the ones who died. The exclusion of died subjects is due 

to the fact, that in such cases, it cannot be decided whether a mother would have been retained or not if 

the children wouldn’t have died. For an overview of used variables see Table 2.1. 

 

Missings (NAs) and nominations of “Other” (for categorical variables) are imputed in the following way: 

For metric variables the median value is used, for categorical variables the mode category respectively. 

For the NAs this is done in order to keep as many data as possible. Possible “Other” categories of 

nominal variables are very sparsely filled (4 cases for PlaceOfBirth, 12 cases for HousingType) and 

therefore do not offer a reasonable category on their own. A complete case dataset was also kept aside, 

and the final analysis was also processed for this data. It should already be mentioned that no 

considerable differences to the analysis with imputed data resulted.  

Interestingly, most missings show a special pattern, which can also be seen in Table 2.1. The missing 

values for some variables completely correspond to the missings of other variables. E.g. records with 

missings for MomEducationLevel show also missings for MomOccupation, MothersOwn, Residence and 

MomAge. The same happens for ReceivedAnteNtlCare and HIVResultsAs. This is probably due to the 

fact, that the corresponding variables are recorded on the same, electronically based, CRF (case report 

form). So it might be, that these CRFs were either not used, or overlooked for some patients, or not 

saved.  

 

Furthermore the metric variables are centered. These centered variables are used instead of the original 

ones, starting with chapter 2.4, i.e. after descriptive analysis is completed. The centering not only 

supports numerical stability, but also gives the regression intercepts a meaningful interpretation as the 

effect of an “average patient”.  

 

For categorical variables, the reference category (assigned numerical value 1, see Table 2.1) is mostly 

chosen as the mode. Furthermore, for variables with more than 2 categories, the internal coding also 
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Variable Description Total Retained Not Retained 

    
Mean (Sd; Min-Max; NAs)  
/ n (%) 

Mean (Sd; Min-Max; NAs)  
/ n (% of total) 

Mean (Sd; Min-Max; NAs)  
/ n (% of total) 

Retained Subject retained?   
 

  

  1 = Retained 2090 (77.6) 
 

  

  2 = Not Retained 605 (22.4)     

Age* Infant's age (days) 11.7 (10.8; 0-66; 0) 11.3 (10.7; 0-48; 0) 12.9 (11.3; 0-66; 0) 

WeightHeight* Infant's birth weight/height (g/cm) 65.6 (10.3; 34.9-118.4; 0) 65.7 (10.2; 34.9-118.4; 0) 65.5 (10.8; 39.1-110.9; 0) 

Temperature* Infant's birth temperature (°C) 36.5 (0.4; 34.2-39.9; 0) 36.5 (0.4; 34.8-39.9; 0) 36.5 (0.4; 34.2-38.4; 0) 

MomAge* Mother's age (years) 25.6 (6.8; 9.9-51.9; 26) 26.4 (7; 9.9-51.9; 17) 22.9 (5.4; 13-50.8; 9) 

PlaceofEnrolment Place of enrolment   
 

  

  1 = Home 2600 (96.5) 2019 (77.7) 581 (22.3) 

  2 = Health Facility 93 (3.5) 71 (76.3) 22 (23.7) 

  NA 2 (0.1) 0 (0) 2 (100) 

PlaceOfBirth Place of birth       

  1 = Home 1685 (62.5) 1350 (80.1) 335 (19.9) 

  2 = Health Facility 986 (36.6) 725 (73.5) 261 (26.5) 

  3 = Other 2 (0.1) 1 (50) 1 (50) 

  NA 22 (0.8) 14 (63.6) 8 (36.4) 

Sex Infant's sex   
 

  

  1 = Male 1370 (50.8) 1064 (77.7) 306 (22.3) 

  2 = Female 1325 (49.2) 1026 (77.4) 299 (22.6) 

InfantsDelivered Number of infants delivered       

  1 = Singleton 2616 (97.1) 2022 (77.3) 594 (22.7) 

  2 = Twins 79 (2.9) 68 (86.1) 11 (13.9) 

MomEducationLevel Mother's education level       

  1 = None 97 (3.6) 83 (85.6) 14 (14.4) 

  2 = Primary 2184 (81) 1742 (79.8) 442 (20.2) 

  3 = Secondary 352 (13.1) 231 (65.6) 121 (34.4) 

  4 = Tertiary 36 (1.3) 17 (47.2) 19 (52.8) 

  NA 26 (1) 17 (65.4) 9 (34.6) 

MomOccupation Mother's occupation       

  1 = Salaried worker 1538 (57.1) 1131 (73.5) 407 (26.5) 

  2 = Farming 983 (36.5) 836 (85) 147 (15) 

  3 = Labor 67 (2.5) 43 (64.2) 24 (35.8) 

  4 = Business 63 (2.3) 47 (74.6) 16 (25.4) 

  5 = Fishing 18 (0.7) 16 (88.9) 2 (11.1) 

  NA 26 (1) 17 (65.4) 9 (34.6) 

HousingType Housing type       

  1 = Mud 1767 (65.6) 1442 (81.6) 325 (18.4) 

  2 = Semi-permanent 488 (18.1) 366 (75) 122 (25) 

  3 = Permanent 408 (15.1) 261 (64) 147 (36) 

  4= Other 6 (0.2) 4 (66.7) 2 (33.3) 

  NA 26 (1) 17 (65.4) 9 (34.6) 

ReceivedAnteNtlCare Mother received antenatal care?       

  1 = Yes 2386 (88.5) 1847 (77.4) 539 (22.6) 

  2 = No 264 (9.8) 206 (78) 58 (22) 

  NA 45 (1.7) 37 (82.2) 8 (17.8) 

HIVResultsAs HIV test result       

  1 = Non-reactive 2283 (84.7) 1745 (76.4) 538 (23.6) 

  2 = Reactive 352 (13.1) 296 (84.1) 56 (15.9) 

  3 = Indeterminent 15 (0.6) 12 (80) 3 (20) 

  NA 45 (1.7) 37 (82.2) 8 (17.8) 

MothersOwn Mother’s own children (additional)       

  1 = ≤3 children 1408 (52.2) 1105 (78.5) 303 (21.5) 

  2 = >3 children 1261 (46.8) 968 (76.8) 293 (23.2) 

  NA 26 (1) 17 (65.4) 9 (34.6) 

continued … 
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Residence Residence       

  1 = Temporary 1537 (57) 1097 (71.4) 440 (28.6) 

  2 = Permanent 1132 (42) 976 (86.2) 156 (13.8) 

  NA 26 (1) 17 (65.4) 9 (34.6) 

*: For metric variables centered versions are derived, getting a suffix “c” in their name 

Table 2.1: Description of used variables. For metric variables the mean, standard deviation (sd), minimum and 

maximum value and number of missings (NA) are listed. For categorical variables the total count and percentage is 

given. For the strata (Retained, Not Retained) values the latter is relative to the total count in the specific category 

of the categorical variable (% of total).  

 

follows the total frequency count, with more frequent categories coming first (e.g. MomOccupation). Only 

for the variables recorded on an order scale this is different, and the coding is due to the natural ordering 

(e.g. MomEducationLevel). Sometimes both assignment strategies accidentally coincide (e.g. for 

HousingType). 

To prevent sparsely filled categories, MomOccuption=“Small business” and “Business owner (e.g. duka)” 

were merged to “Business”, also “Skilled labor (e.g. carpenter)” and “Unskilled labor (e.g. construction 

worker)” to “Labor”. 

 

Further variables (beside the ones listed in Table 2.1) were available, but disregarded due to high rate of 

missings (e.g. Father’s education) or obvious lack of influence (e.g. Head circumference). One comment 

must be given to the special variable Visits. This variable records whether a mother came for an 

unscheduled visit, and can be shown to be highly influential in the sense that, having such a visit, 

prevents from LTFU. This variable is disregarded, because of two reasons: First it is not known at 

enrolment time and therefore does not help in choosing promising mothers-child combinations. Secondly 

it is kind of confounded with the target variable, as retained subjects just have more time to conduct an 

unscheduled visit, just because they did not already drop out of the trial. This can be underlined by 

comparing the average time difference between enrolment and first unscheduled visit, which is much 

higher for retained patients. 

 

2.3 First Descriptive Analysis 

Table 2.1 gives an overview of statistical characteristics of variables used in the analysis. It is visually 

split in target variable (Retained), metric and categorical covariates. The overview still lists the number of 

missing values (NAs) and the number of occurrences of category “Other”. Both are imputed (see also 

chapter 2.2) in forthcoming analyses, starting with Figure 2.1 and Figure 2.2.  

 

The characteristics of the used variables can be summarized as follows: 

Target Variable 

- Retained: A total of 605 (22.4%) patients are not retained (LTFU). This is high above the “target” of 

10%. 

 

Metric Covariates (see also Figure 2.1) 

- Age: The infant’s age at enrolment is recorded in days. As it can be seen in Figure 2.1, the 

distribution is heavily right skewed for both strata (“Retained”, “Not Retained”), which is due to the 

enrolment strategy: Potential mothers were asked to participate already before birth and are 

immediately contacted after birth, so that the typical enrolment age is probably low. The maximum 

age is 66. Even though this is, together with another child aged 54, outside the eligibility criterion of 
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0-6 weeks (0-49 days) it is not assumed that these outliers are due to miscoding and therefore kept 

for analysis. The mean age for LTFU infants is just slightly (especially when accounting the standard 

deviation) above the one for retained subjects (12.9 to 11.3, see Table 2.1). 

- WeightHeight: This variable measures the weight:height ratio in g/cm and is an indicator of the 

constitution of the infant. For both strata, similar symmetric shapes of the distribution (see Figure 2.1) 

result, as well as statistical metrics. The broad range of values (34.9 - 118.4) seems quite high, as 

two children with same height but weight:height ratios at the edges of this band would differ in weight 

by a factor of more than 3. But as this is not due to an extreme outlier (see Figure 2.1), it just hints at 

the highly variable constitution of the study population. 

- Temperature: The temperature of the infant at birth might indicate a possible illness and therefore an 

influence on LTFU. Albeit, the marginal (without controlling for all other covariates) metrics and 

distribution plots do not suggest this effect.  

- MotherAge: The average mother is 25.6 years. The maximum of 51.9 years, as well as the minimum 

of 9.9 years, are uncommon but not impossible. Figure 2.1 shows a right-skewed distribution for both 

strata. For the LTFU stratum the distribution is narrower and obviously more located at younger 

ages. 

 

Categorical Covariates (see also Figure 2.2) 

- PlaceOfEnrolment: Mostly mothers are enrolled at home. This also holds for both strata. 

- PlaceOfBirth: Interestingly, almost 2/3rd of births occurring at home and not at a health facility. For the 

latter the fraction of patients not retained is slightly higher (26.5% to 19.9%) than for home births. 

 

Figure 2.1: Distribution of metric variables, split by target (with missing values already imputed). 
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- Sex: 50.8% of enrolled children are male. This slight imbalance is usual and can be due to biological 

factors (see www.prb.org). The strata show equally distributed portions. 

- InfantsDelivered: Only 2.9% of patients come as twins and are less probable to LTFU (13.9% to 

22.7%) than singleton children. But the low portion of twins narrows the importance of this variable. 

- MomEducationLevel: Nearly 85% of enrolled mothers have at most just a primary education level. 

Remarkably, the rate of LTFU subjects clearly increases with higher level of education, ranging from 

“None” over “Primary” and “Secondary” to “Tertiary” (14.4% – 20.2% – 34.4% – 52.8%) 

- MomOccupation: Most mothers are salaried workers (57.1%). And 36.5% are working as farmers. 

Interestingly, none of the mothers is unemployed or characterizes herself as house wife, even though 

these categories (“Not working”, “House wife”) were available. Mothers with seemingly more 

 

Figure 2.2: Distribution of categorical variables, split by target (NAs (missings) and “Other” nominations already 

imputed). 
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ambitious jobs (“salaried worker”, “labor”, “business” in comparison to “farmer” and “fisher”) have 

higher LTFU rates. This corresponds with above described education level influence as well as with 

the next categorical variable (in terms of the socio-economic status influence). 

- HousingType: Nearly 2/3rd of enrolled mothers are living in a mud house and have a lower LTFU rate 

than mothers with at least a semi-permanent (mix of mud and cement) house. 

- ReceivedAnteNtlCare: Most mothers received antenatal care (88.5%) and do not differ, regarding 

LTFU, to other mothers that haven’t received it. 

- HIVResultsAs: Mothers, who did not have a HIV test, are merged with the ones whose test was non-

reactive and comprise 85% of study population in total. They have a higher LTFU rate (23.6%) than 

mothers with a positive result (15.9%). 

- MothersOwn: Nearly half of enrolled children have more than 3 siblings and are retained as often as 

children with less. 

- Residence: This variable needs some explanation: It describes whether a mother has a HDSS-ID 

(Residence=”Permanent”). The health and demographic surveillance system (HDSS) identification is 

given every four months for people who have moved into the HDSS area (see also 

www.cdckemri.org). Mothers, who at the time of study had no HDSS identification, were given a 

temporary one (Residence=”Temporary”). The latter show a clearly higher rate of “Not Retained” 

participants (28.6% in comparison to 13.8%). 

 

2.4 Explorative Analysis 

As seen above, Figure 2.1 and Figure 2.2 provide a first impression about potential influential covariates. 

This exploration can be extended in order to show the influence on the main statistical metric for binary 

outcome, the odds ratio. As the relevant event is a patient that is not retained, here the odds measures 

the probability for a patient to be not retained, divided by the probability to be retained. The 

corresponding ratio is then the quotient relative to the reference category in case of a categorical 

covariate. For a metric covariate the odds for the minimum covariate value can be set to 1 to get a 

reference (see e.g. Figure 2.3).  

 

2.4.1 Marginal Metrics 

In Figure 2.3 and Figure 2.4 the crude, or marginal odds ratios (without controlling for other covariate 

influence), are shown together with 95% confidence intervals. These are calculated by a logistic 

regression with just one influential variable.  

 

Figure 2.3 shows ascending odds ratios for higher infant’s age and temperature, and a very slight 

decrease for weight:height ratio. For the latter, the confidence interval would also comprise a constant 

line at 1. The same holds for infant’s temperature, even though the constant would not be at 1. 

Nevertheless, this makes the marginal effect also questionable. The crude odds ratio for mother’s age is 

remarkable, especially when noticing that the visual effect of such odds ratio plots depend on the 

reference. For example, if the reference for mother’s age is taken at the maximum age, the odds ratio 

would rise from 1 to a value of nearly 40.  

The same effect must be kept in mind when viewing Figure 2.4. E.g. using “Permanent” instead of 

“Temporary” as the reference category for Residence would show an odds ratio of 2.5, visually seeming 

to be more far away from the reference value of 1.  
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Figure 2.4: Crude odds ratios of categorical variables with 95% confidence intervals. The reference category has 

value „1.00 [1.00, 1.00]“. The number of patients of each category is listed in brackets after the category. The x-

axis is cut at a value of 8; confidence intervals spreading beyond are marked with an arrow on the right side. 

 

 

Figure 2.3: Crude odds ratio effects of centered metric variables with 95% confidence intervals (pointwise). The 

odds ratio for the minimum input value is scaled to 1. Additional ticks showing input x-axis values. 
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Figure 2.5: Adjusted odds ratio effects of centered metric variables with 95% confidence intervals (pointwise), see 

also Figure 2.3. In fact one sees the predicted odds ratio for the corresponding covariate holding the values of the 

other covariates at typical values (mean value for metric, mode category for categorical covariates). 

 

Furthermore it can be seen that the width of the confidence intervals corresponds to the category cell 

frequencies (listed in brackets behind the category name). All in all, the odds ratios confirm the first 

visual influence analysis from chapter 2.3. Additionally it gives a better visual comparison of the effects 

of the different covariates and quantifies the uncertainty of the effects through the confidence intervals; 

thereby showing that the Number of infants delivered is not significant for instance. 

 

In summary, the following categorical variables indicate an influence on LTFU, due to their marginal 

odds ratios: Place of birth, Mother’s education level (categories “Secondary” and “Tertiary”), Mother’s 

occupation (category “Farming”), Housing type, HIV result (category “Reactive”), Residence. 

 

2.4.2 Adjusted Metrics 

In order to get a direct comparison with the odds ratios, controlled for all other covariates, the results of 

the logistic regression (chapter 3.1) are already shown in Figure 2.5 and Figure 2.6.  

For the odds ratio effects of the metric variables, it can be seen that the absolute value of the effects 

change slightly for infant’s age, weight:height ratio and temperature.  

Together with the broadening confidence intervals only mother’s age keeps to be influential. This effect 

is more reduced than it visually seems: Making the same consideration as above and exchange the 

reference with the maximum age, the odds ratio would be less than 20 (in comparison with a value of 40 

in a marginal setting, see Figure 2.3). 
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The odds ratios for the categorical variables also change when controlling for all covariates. The most 

remarkable differences to the marginal analysis are: 

- Place of birth: Odds ratio is nearly disappearing (0.99 [0.80, 1.23] in comparison to 1.43 [1.19, 1.72]). 

- Mother’s education level: Odds ratios decrease. For “Secondary” to a non-significant value of 1.88 

[0.99, 3.58] (compared to 3.11 [1.69, 5.70] crude odds ratio). The same holds for “Tertiary” (3.78 

[1.45, 9.85], marginal: 6.63 [2.79, 15.74]) but which is still significant. 

- Mother’s occupation: Effect for “Farming” is also lowered from 0.49 [0.39, 0.60] to 0.71 [0.56, 0.89]. 

- Housing Type: Effects decreasing with “Semi-permanent” being no more significant (1.27 [0.99, 

1.64], marginal: 1.45 [1.15, 1.84]). 

- HIV result: “Reactive” is no more significant: 0.77 [0.56, 1.06] (marginal: 0.62 [0.46, 0.83] ) 

Altogether, the influential categorical covariates are: Mother’s education level (“Tertiary”), Mother’s 

occupation (“Farming”), Housing type (“Permanent”) and Residence. 

 

 

Figure 2.6: Adjusted odds ratios of categorical variables with 95% confidence intervals. The reference category 

has value „1.00 [1.00, 1.00]”, see also Figure 2.4.  
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3 Prediction Methods 

3.1 Logistic Regression 

3.1.1 Basic Modeling 

Logistic regression (cf. Fahrmeir (2013)) is the most popular method to model classification problems. 

Here the expected value of the Bernoulli distributed target is modeled. In order to face the problem that 

the linear predictor � = ��� =	�� + �
�
 +⋯+ �� can take any value, but the expected value is 

restricted to [0;1], both are connected by a link function. In case of the logit link this results into: ��� � �1 − �� = �					 	⇔					 �1 − � = ������� ∗ �����
�
� ∗ …∗ ������� (3.1) 

Using the logit link allows modeling the odds ratio as multiplicative model for the exponentiated covariate 

effects. The logs of the odds are called logits. 

 

Applying logistic regression to the study data (using all covariates) yield the results shown in Table 3.1. A 

discussion of the effects was already done in chapter 2.4.2.  

 

Checking model prerequisites 

A critical assessment of model assumptions and a check for outliers and influential observations has to 

be done as well.  

 

Due to the fact that Mother’s occupation, Mother’s education level and Housing type might be correlated 

(as they characterize the socioeconomic status), a potential collinearity problem, which would lead to 

highly increased confidence intervals, must be checked. Typically the variance inflation factor (VIF) is 

assessed. This figure quantifies the increase of variance of a covariate due to the linear dependence 

with other variables. All VIFs were below 2, which is highly below the rule-of-thumb critical value of 10 

(see Fahrmeir (2013)). 

 

Influential observations and outliers can be identified with Cook’s distance. This figure characterizes the 

influence of the ith observation on the estimated ��-vector of effects by calculating the Mahalanobis 

distance of the leave-one-out estimation ����� to �� (cf. Tutz (2012). A plot of these distances can be 

accompanied by an additional graph contrasting the leverage (hatvalues) of observations with the 

studentized residuals (rstudent), see Figure A.1, Appendix A (cf. Faraway (2005)). Even though no 

extreme observations could be identified, the most conspicuous ones are checked for uncommon 

values, e.g. extreme in the sense of lying on the edge of the value ranges. A dfbetas plot (cf. 

SAS9.2OnlineDoc) helps in identifying the relevant variables, as it basically shows the scalar Cook’s 

distance for one covariate (see Figure A.2). When checking observation variable values, no abnormalities 

popped up. 

 

Unfortunately there is no possibility to provide a powerful goodness-of-fit test. The usual tests, based on 

deviance and Pearson’s � !, need sufficient cell counts for applying a fixed cell asymptotic, which is not 

given in case of metric predictors (see also Tutz (2012)). An alternative Hosmer-Lemeshow test (H1: lack 

of fit) result in a p-value of 0.76. It is well known, that this test has moderate power and therefore favors 

H0 (no lack of fit). Nevertheless the high p-value suggests that there is no crucial lack of fit. 

 

Usually for logitstic regression also the rigid assumption of data variance being π ∗ �1 − π� must be 

proven. Often this is violated, which means that the data shows overdispersion. But for cell counts=1 as 

it is the case for the Tb data due to the metric covariates, no overdispersion can occur.  
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Covariate exp(β) 95% CI p-value 

(Intercept) 0.27 [0.15; 0.50] <0.001 

Agec 1.01 [1.00; 1.02] 0.059 

WeightHeightc 0.99 [0.98; 1.00] 0.195 

Temperaturec 1.17 [0.93; 1.48] 0.179 

MomAgec 0.93 [0.92; 0.95] <0.001 

PlaceOfEnrolmentHealth Facility 0.72 [0.42; 1.21] 0.215 

PlaceOfBirthHealth Facility 0.99 [0.80; 1.23] 0.931 

SexFemale 1.02 [0.84; 1.23] 0.876 

InfantsDeliveredTwins 0.54 [0.27; 1.09] 0.086 

MomEducationLevelPrimary 1.09 [0.60; 2.00] 0.771 

MomEducationLevelSecondary 1.88 [0.99; 3.58] 0.055 

MomEducationLevelTertiary 3.78 [1.45; 9.85] 0.006 

MomOccupationFarming 0.71 [0.56; 0.89] 0.003 

MomOccupationLabor 1.12 [0.63; 2.01] 0.697 

MomOccupationBusiness 0.70 [0.38; 1.30] 0.264 

MomOccupationFishing 0.32 [0.07; 1.46] 0.142 

HousingTypeSemi-permanent 1.27 [0.99; 1.64] 0.065 

HousingTypePermanent 1.71 [1.31; 2.23] <0.001 

ReceivedAnteNtlCareNo 1.19 [0.85; 1.66] 0.311 

HIVResultsAsReactive 0.77 [0.56; 1.06] 0.106 

HIVResultsAsIndeterminent 0.90 [0.24; 3.33] 0.873 

MothersOwn>3 children 1.14 [0.94; 1.38] 0.196 

ResidencePermanent 0.50 [0.41; 0.62] <0.001 

Table 3.1: Odds ratio results of logistic regression. Reference categories for categorical covariates are not listed. 

Naming of categorical covariates follows the rule “VariablenameCategoryname”. Effects of categorical variables 

correspond to values shown in Figure 2.6. Significant p-values (α=0.05) are shaded. 

 

Even though there might be two patients with exactly the same covariate values, this very unlikely case 

can be disregarded  when accounting  for overdispersion.  

 

For checking the linearity assumption of the metric predictors it is not helpful to plot the usual residual 

plots (residuals vs. predicted values, residuals vs. values of one covariate) as the residuals can take only 

two values for a binary target. In case of low cell counts (due to metric covariates) these plots show 

confusing curved lines, corresponding to the limited number of observed responses (see Faraway 

(2006)). A much more convenient way for testing non-linearity, is to model the influence of the metric 

variables in a non-parametric manner, i.e. applying a generalized additive model. This approach is 

introduced in more detail below (chapter 3.1.2). For now, only the results shown in Figure 3.1 are 

discussed. When assessing the nonlinear influence, it is important to recognize also the confidence 

intervals in the logit plot. As a rule of thumb, one can still assume a linear influence if a straight line fits 

into these intervals. As it can be seen, this is only not possible for MomAgec but not in a dramatic 

manner. Thus for now, a model with just linear effects is assumed to be sufficient. Adapting the model 

due to this issue is invented in the next chapter 3.1.2.  
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Selection procedure 

In order to reduce the number of covariates, an often used approach is variable selection through AIC 

(Akaike Information Criterium) comparison. Three different strategies are usually applied: Forward, 

Backward and Stepwise selection (cf. Fahrmeir (2013)). 

If the number of covariates is moderate, also an exhaustive search can be processed by calculating 

AICs for all possible models (regarding the combination of covariates). Each of these strategies applied 

to the Tb data result in the following variable selection: InfantsDelivered, MomEducationLevel, 

MomOccupation, HousingType, MothersOwn, Residence, Agec, MomAgec . This corresponds to the p-

values listed in Table 3.1, in the sense that these variables represent the ones with the lowest p-values, 

but are not necessarily significant.  

 

3.1.2 Extended modeling 

As it can be seen in chapter 4.2, above main effects regression is already under the best prediction 

models. This encourages extending the model by 2 approaches: First by additive modeling of effects as 

already indicated in above chapter, secondly by inserting interactions. 

 

Modeling additive terms 

In order to flexibly adapt a possible nonlinear covariate influence, nonparametric regression techniques 

can be used. Basically a covariate x is therefore replaced by several basis functions #$���.  

 

Figure 3.1: Additive modeling of (centered) metric covariate influence (P-splines with 20 knots). Shaded regions 

are bayesian pointwise 95% confidence intervals (see Wood (2006)). Additional ticks showing input x-axis values. 

-10 10 30 50

-2
0

2
4

Agec

L
o

g
it

-20 0 20 40

-2
0

2
4

WeightHeightc

L
o

g
it

-2 -1 0 1 2 3

-2
0

2
4

Temperaturec

L
o

g
it

-10 0 10 20

-2
0

2
4

MomAgec

L
o

g
it



3 Prediction Methods 

 

16 

Different function “categories” can create this basis extension. So-called B-Splines are special polynom 

pieces, which are connected in a continuous manner. Every piece is associated with one knot from of a 

set of equidistant knots, distributed over the range of x, in the sense that the spline is non-null only in a 

local neighborhood of its knot. Usually a high number, e.g. 20, of B-Splines (or knots) is chosen in 

conjunction with a penalization of the β-parameters in order to prevent overfitting. The penalization 

parameter can be determined by cross-validation (see also chapter 4.1.2 for an explanation of cross-

validation). 

The results for this approach, applied to the Tb data, are shown in Figure 3.1. A likelihood ratio test 

against a linear influence can be executed for each metric covariate in order to decide which influence is 

not linear. It must be noticed that the resulting p-values are not exact due to several approximations for 

the test and because of the uncertainty introduced by the estimation of the penalization parameter (see 

Wood (2006)). The p-values should therefore just be treated as a rule of thumb, in the sense that only 

highly significant tests indicate nonlinearity. Taking this into account, only MomAgec should be modeled 

non-parametrically. 

In order to guarantee asymptotic inference, it can be tried to transfer the additive effect of MomAgec into 

a parametric model. The shape of the effect (see Figure 3.1) suggests a cubic parameterization on the 

level of the linear predictor. But the difference in the final effects (see Figure 3.2 ) is too drastic (even 

though the effective degrees of freedom for the nonparametric effect are just slightly different from 3), so 

the additive is model is kept.  

 

Modeling interactions 

It is also important to test the data for interactions of covariates.  

Candidates for interactions were derived from: 

- Conspicuous marginal interaction plots (see Figure A.3 and Figure A.4). 

 

Figure 3.2: Effects for Mother’s age for different modeling approaches. 
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- All combinations of significant variables from the main effects logistic regression, as such variables 

often show significant interaction effects. 

- All combinations of variables of a classification tree (see chapter 3.4), because this method 

automatically detects interactions. 

This ended up in nearly 50 interaction candidates and a likelihood ratio test was conducted for each.  

 

In order to consider the multiple test problem, a Bonferroni adaption of the α-error (% = 0.05 50 = 0.001⁄ ) 

was made. It must be noticed, that this might not be sufficient to keep the confidence level, as the 

candidates were derived by kind of “data snooping”. Therefore only interactions with a p-value clearly 

below 0.001 are taken into account. Furthermore the candidate PlaceOfBirth:InfantsDelivered was 

disregarded because of low importance due to low cell count for InfantsDelivered=”Twins”. Eventually 

the following interactions were included in the final model: Agec:MothersOwn + 

MomOccupation:Residence  

 

Final model 

As is can be seen in Figure 3.3 (compared to Figure 2.5) Infant’s age become a remarkable effect for 

mothers with less children (“<=3 children”). Furthermore the decreasing effect of Mother’s age starts not 

before MomAgec=-5, which corresponds to an age of roughly 20. 

Regarding the categorical variables, also some remarkable changes occur, due to the interaction of 

MomOccupation:Residence. When comparing Figure 3.4 with Figure 2.6, one can see that the relevant 

(in terms of cell count) category MomOccuption=“Farming” does prevent from LTFU (compared to 

 

Figure 3.3: Odds ratio effects of metric variables for final logistic regression model with 95% confidence intervals 

(pointwise).  
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MomOccuption=”Salaried worker”) only for “temporary” mothers whereas for “permanent” mothers this is 

reversed. Notice that Residence=”Permanent” itself prevents from LTFU.  

Furthermore MomEducationLevel (“Tertiary”) stays significant, but due to low cell count, it is not 

“practically significant” in contrast to HousingType (“Permanent”). And MothersOwn becoming significant 

is possibly due to the interaction with Agec. 

A tabular listing of effect values, together with confidence intervals for the final (full) model is attached in 

appendix A (Figure A.4). 

The AIC is remarkably reduced compared to the main effects linear logistic regression model (2611 to 

2637). An additional stepwise AIC selection drops variables PlaceOfEnrolment, PlaceOfBirth, Sex, 

ReceivedAnteNtlCare and HIVResultsAs. But improvement in AIC is slight (∆AIC=6). Nonetheless the 

final assessment of classifier performance in chapter 4.2 is also done with the reduced model (even 

though this is not crucial for identifying the most important covariates). 

 

Last but no least it should be mentioned that applying this model to complete case data does not yield 

any relevant changes. Also conducting the model prerequisite tests from chapter 3.1.1 do not result in 

any new abnormalities with the extended model. 

 

 

Figure 3.4: Odds ratio effects of categorical variables for final logistic regression model with 95% confidence 

intervals. 
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3.2 Discriminant Analysis 

In discriminant analysis (cf. Fahrmeir (1996)) the statistical approach is very different to logistic 

regression, even though both often yield similar results. This can be explained by the fact, that a logistic 

regression model with logit link can be motivated by linear discriminant analysis (see Tutz (2012)). 

Basically the method can be summarized as follows: 

The estimation of class membership is based on the Bayesian decision rule, i.e. in case of a binary 

target, choose * = 1 if  

 ��* = 1|�� ≥ ��* = 0|��	  
	⇔	-��|* = 1�	��* = 1� ≥ -��|* = 0�	��* = 0�  

	⇔	���.-��|* = 1�/ + ���.��* = 1�/ ≥ 	���.-��|* = 0�/ + ���.��* = 0�/ 
 

(3.2) 

 

 

Here the second row results from Bayes formula and the third from the monotonic character of the log 

function. 

 

The distribution of � (having dimension p) in each class 0 ∈ 20; 14 is chosen as multivariate Gaussian: 

 15�2��7det	�;<� exp	?−	.� − @</
A;<BC�� − @<�2 D (3.3) 

 

Applying this to (3.2) results in the discriminant function which defines the separating hyperplane: 

 

 

Figure 3.5: ROC curves (cumulated) for LDA and QDA created by the design discussed in chapter 4.2. Points 

indicate probability cutoff-values for predicting “Not Retained”. Reference lines cross axis at “best” prediction 

(where sensitivity+specificity is maximized). For a detailed explanation of the ROC curve, see chapter 4.1.1. 
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(ŷ
=

1
|y

=
1
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0

0.1

0.2

0.3

0.4

0.5

0.6
0.70.80.91

AUC:
Best sensit.:

Best specif.:

0.704
0.71

0.61

QDA

1 - specificity: P(ŷ=1|y=0)
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										− 12 �� − @C�E;CBC�� − @C� − 12 log�det�;C�� + 	���.��* = 1�/	 
≥				− 12 �� − @I�E;IBC�� − @I� − 12 log�det�;I�� + 	���.��* = 0�/ (3.4) 

 

Choosing equal covariance matrices for both classes ;C = ;I results in linear (LDA), different matrices in 

quadratic discriminant analysis (QDA), as the separating hyperplane is linear in � in the first case and 

quadratic in the second case respectively (e.g. see Fahrmeir (1996)). The unknown parameters in (3.4) 

can be estimated by the data. 

The same linear decision rule (LDA) also arises from Fisher’s discriminant approach, which is 

nonparametric and based on a heuristic argument: minimizing intra-class variance and simultaneously 

maximize inter-class variance. This fact theoretically supports the experience, that the linear discriminant 

analysis is robust against violation of the Gaussian distribution assumption (which is obvious for 

categorical covariates). Hastie (2009) suggests giving these two simple techniques (LDA and QDA) 

always a try, as they perform very well in classification problems. This might be due to stable simple 

decision boundaries based on Gaussian models, which implies less variance. The latter is less valid for 

QDA and might be the reason why QDA, although it is more flexible, is often outperformed by LDA (cf. 

Tutz (2012)). This also holds for the analyzed Tb data (see Figure 3.5). 

 

3.3 Lasso Regularization 

Regularization or shrinkage methods can function as an alternative to classical variable selection (cf. 

Tutz (2012)). The main idea here is to penalize the log-likelihood ���� of the regression problem: 

 

�7��� =J ���� − K2 L���M
�N
  (3.5) 

 

Using L��� = ∑ �P!7PN
  results in the well-known ridge penalization, which was originally invented to cope 

with singularity problems in linear regression estimation. This yields smoothly shrinked parameters �P 
(depending on the shrinkage parameter λ). 

But when using the lasso penalty L��� = ∑ Q�PQ7PN
  an implicit variable selection can occur, as shown in 

Figure 3.6, which presents the solution of equation (3.5) for different values of λ. By selecting just the 

variables which have non-zero coefficients for the tuning parameter λ chosen by 10-fold cross-validation 

(see also chapter 4.1.2), some covariates are dropped. Obviously the solution of (3.5) depends on the 

scaling of the covariates. Therefore the variables are standardized before estimation. This has the 

positive side effect, that the plot of lasso paths provide a useful visual tool to assess the importance of 

the influential variables, as their β’s are directly comparable. 

It can be seen, that in order of importance Mother’s age, Residence, Housing type (“Permanent”), 

Mother’s education level (“Secondary” and “Tertiary”) and Mother’s occupation (“Farming”) are the Top 

5, regarding influence. Interestingly, the coefficient for MomEducationLevel=”Primary” decreases to 0 

after first being the most important category of mother’s education level. 

Other penalties can be used. E.g. the adaptive lasso uses L��� = ∑ RPQ�PQ7PN
  (with RP = 1 Q�S� QT⁄  and  �S�  

least square estimate). The advantage of this more complicated penalty is, that it yields consistent �P-
estimates (cf. Hastie (2009)). The resulting paths in dependence of the shrinkage parameter λ (instead 

of shrinkage factor ‖�‖/WX�‖�‖ like in Figure 3.6) are compared with ordinary lasso in Figure 3.7. There 

is no obvious difference, which in this case supports the assumption of consistent estimates, even with 
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the standard lasso. Furthermore this plot shows that the visual impression is highly dependent on 

whether the shrinkage parameter or factor is listed on the x-axis. 

The lasso also explicitly selects and therefore splits off the important categories of a nominal variable. 

This might not be the wished behavior if one wants to keep all categories, in terms of originating equally 

from one covariate. The group lasso can accomplish this by using another penalty, which encourages 

sparsity by favoring either �YZ ≠ 0	 or �YZ = 0	for all categories s=1..k of covariable �P. As it is shown in 

Figure 3.8, this results in keeping categories of the same variable “together”. Dependent on the optimal 

shrinkage factor, this might lead to changed importance interpretation of specific categories, which is not 

the case in a crucial manner for the Tb data (see Figure 3.8). 

 

Figure 3.6: Lasso paths for Tb data. Metric variables are drawn in black. Categories belonging to same 

categorical variable have same color. On the x-axis the shrinkage factor  ‖�‖/WX�‖�‖ is listed, rather than the 

shrinkage parameter λ (both are linked in a non-linear way). The vertical axis indicates the values of the 

coefficients for standardized covariables, which are therefore directly comparable in terms of importance. Vertical 

reference line shows optimal shrinkage, resulting from 10-fold cross-validation. 
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At last is should be noted, that the lasso has limitations in case of highly correlated predictors. It then 

tends to select just one of the correlated variables as a representative (cf. Hastie (2009)). 

This can be circumvented by using a penalty which is “between” lasso and ridge and called elastic net: L��� = �1 − %�∑ Q�PQ + % ∑ �P!7PN
 	7PN
 . Regression with this penalty shows the grouping effect, i.e. 

coefficients of highly correlated variables tend to be equal. It should just be noticed, that no grouping 

effect occurred when testing different values of α between 0 and 1 for the Tb data, which also 

corresponds to lack of collinearity (cf. chapter 3.1.1). Thus, together with the results of the adaptive lasso 

comparison and the group lasso this confirms above mentioned Top 5 “consistent” rates of the ordinary 

lasso. 

 

 

Figure 3.7: Comparison of lasso and adaptive lasso paths for Tb data. Presentation differs to Figure 3.6 (x-axis 

indicate shrinkage parameter λ and not shrinkage factor ‖�‖/WX�‖�‖) 
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3.4 CART (Classification and Regression Tree) 

In CARTs (see Tutz (2012)) a series of binary data splits segments the data into a tree, which provides 

an intuitive instrument to understand the classification process. At each split a criterion is evaluated for 

all covariates and corresponding possible value partitioning. The best covariate-partitioning combination 

is finally used to define the split. For binary classification problems (i.e. classification trees) the split-

criterion is usually based on minimizing an impurity measure like the Gini index (2p(1-p), with p equal to 

the proportion of one class), deviance (-plog(p)-(1-p)log(1-p)) or misclassification error (1-max(p,1-p)) 

(see e.g. Hastie (2009)). This process can be stopped if a node has fewer observations than a defined 

value, or if the splitting criterion is above or below a threshold. But usually a tree is fully grown and 

pruned again due a complexity criterion, which can be optimized by cross-validation.  

 

 

Figure 3.8: Group-lasso paths. Presentation is equivalent to Figure 3.6. 
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Alternatively the split can be based on conditional inference, where the association of each covariate to 

the target is measured by a p-value, corresponding to a test for the null hypothesis of independence 

between covariate and target (see help for ctree-function in R-package party). Stopping is then due to 

non-significance of a global independence hypothesis test. This approach circumvents the problem of 

selection bias, which occurs for example for binary outcomes when using the Gini index as split criterion, 

as variables with lower number of categories are preferred (see Tutz (2012)). 

A general advantage of CARTs is the automatic detection of interactions, which naturally results from 

consecutive splits of different variables. This is also used to suggest possible interactions for the 

regression approach in chapter 3.1.2. Furthermore important predictors are automatically selected. For 

the Tb data a tree based on the conditional independence framework was build (see Figure 3.9) and 

Mother’s age, Residence, Mother’s education level, Mother’s occupation, Weight:height ratio, Mother’s 

own and Housing type result as influential covariates. 

 

Figure 3.9: CART based on conditional inference framework. Category labels are abbreviated (but might still 

overlap). P-values are not shown: They are ≤0.001 for all splits except for the second MomAgec (0.044) and the 

HousingType (0.04) splits 
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One disadvantage of CARTs is the instability because of small changes in data might result in a very 

different series of splits. The high variance of CARTs AUC metric of for the Tb data shown in chapter 4.2 

is a direct consequence of this issue.  

When looking at the tree terminal nodes in Figure 3.9, the most promising ones, in terms of getting a low 

LTFU rate together with a high enrolment count, are node number 4 and 10 (counted from the left),. A 

possible strategy suggested by these nodes could be: Choose older (than the average) mothers with low 

education level; for younger mothers the same holds but just for “permanent” (Residence) mothers. Also 

for younger mothers the rule would extend to: the fewer children they have the better. For the actual Tb 

data this would result in a total count of 1254 patients with a LTFU below 10%.  

 

3.5 Boosting 

3.5.1 Boosting with Trees 

Boosting (cf. Hastie (2009)) is, like Random Forests (see chapter 3.6), an ensemble method, which 

means that several classifiers vote for the predicted class. It originates in the data mining field; its most 

popular member is AdaBoost, where basically a weak classifier, i.e. one that is just a little better than 

guessing, is repeatedly processed on the training data, which itself is adapted at each run. The 

misclassified observations in each run then get a higher weight in the following run. Finally the prediction 

is a weighted majority vote of the classifiers of all runs, with the weight proportional to the 

misclassification rate for the whole training data.  

 

It can be shown, that AdaBoost can also be approximated by means of a loss function 

  \�-� = ∑ \.*� , -����/�̂N
 , (3.6) 

 

which is minimized with respect to the predicting function f. In case of using CARTs as a classifier, f can 

be expressed as a sum of trees: -��� = ∑ A��; _$�$̀N
  (with _$ denoting the parameters of the tree), 

and the minimization is reached in a forward stagewise manner, i.e. by repeatedly solving  

 

_�$ = Xa�min_e J \�*� , -$B
���� + A.��, _�$/�^
�N
  (3.7) 

 

yielding -$��� = 	-$B
��� + A.�; _�$/ in each step. 

 

The loss function for the AdaBoost is the exponential loss \�*, -� = �Bfg, with the binary target y coded 

as 2−1; 14, like it is usual in the machine learning field. 

Alternatively the minimization of (3.6) can be solved with Gradient Boosting. With this approach just 

pseudo residuals 

 

a�$ =	− hi\.*� , -����/i-���� jgNgekl
 (3.8) 

 

are fitted by A.�; _�$/ in each step and the predicting function is updated using a learning rate 0<ν<1 by 

 -$��� = 	-$B
��� + m ∗ A��; _$� (3.9) 

 



3 Prediction Methods 

 

26 

The learning parameter ν should be sufficiently small, which prevents from overfitting. A��; _$� is then 

also denoted as a weak base learner. 

 

The loss function and the base learner determine the type of Boosting. Alternative loss function to the 

exponential loss �Bfg  are e.g. binomial deviance: ���.1 + �B!fg/, squared error: �* − -�! or hinge loss: �1 − *-�n. As already noted, the exponential loss exactly yields the AdaBoost. But from a statistical 

perspective this is not the ideal loss function. Using e.g. binomial deviance loss might improve the 

original AdaBoost in case of noisy settings (see Hastie (2009)), as it represents a more robust loss, 

which gives outliers less weight. This loss function is also used for all Boosting algorithms applied to the 

Tb data. In contrast, the hinge loss is used in conjunction with Support Vector Machines (see also 

chapter 3.7). 

 

Unfortunately the final model is a black box, which means that the influence of a single covariate cannot 

be directly rated. But a variable importance plot can be derived in the following way: For each variable 

the sum of the improvements, regarding the impurity criterion, in each node where the interesting 

variable is used, can be calculated. Averaging over all trees used in Boosting, provides a relative 

importance metric. Figure 3.10 shows this for the Tb data (using trees with a maximum of 6 terminal 

nodes). It can be seen that MomAgec is by far the most important variable, followed by Residence, 

MomOccupation, MomEducationLevel and HousingType, completing the Top 5.  

 

Figure 3.10: Relative influence of variables in Tree-Boosting. The most important predictor (MomAgec) is scaled 

to 100. 
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But this still hides how e.g. the course of the influence of MomAgec is, or which categories of a nominal 

covariate are important. For this problem a generic approach exists (see Hastie (2009)), which can be 

applied to any black box. The univariate (but controlled for other covariates) partial dependence of the 

classifier f�p� on the kth covariate Xr can be defined as the expected value Et\vf.Xr, p\r/ with p\r	denoting the covariable vector without the kth variable.This metric can be estimated at every value of Xr by  lw∑ f �Xr, x\ry�zyN
  . Usually this requires a high number of fitting processes and is computationally 

intensive (except for Tree-Boosting, see Hastie (2009)). For the Tb data an appropriate plot is presented 

in Figure 3.11. Interestingly, the dependencies actually correspond to the logistic regression model (see 

chapter 3.1.2), most striking for Mother’s age (cf. Figure 3.3). 

 

Figure 3.11: Tree-Boosting: Partial dependence plots. Ticks are showing input x-axis deciles for metric variables. 
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3.5.2 Boosting with Regression Models 

The above mentioned squared error loss is used in case of quantitative targets and, together with 

Gradient Boosting and a linear predictor as base learner, just results in iteratively fitting of the regression 

residuals. For binary targets (with sufficient cell counts) this can be adapted by applying the logit 

transformation to the target, resulting in the LogitBoost (cf. Tutz (2012)). 

 

For the latter a more generalized approach exists, the likelihood Boosting. This technique allows 

extending the boosting idea, which basically is forward stagewise fitting with weak base learners, to all 

generalized regression models. Here the weak learner just updates an offset of the linear predictor in 

 

Figure 3.12:  GLM-Boosting paths. Vertical line shows optimal shrinkage due to 10-fold cross-validation.  
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each Boosting step, which is therefore a standard generalized regression fit including a constant/offset 

(see Tutz (2012)): {� = ℎ ��̂�~����� + ����, ���, with �̂�~����� as predictor from previous step. 

Interestingly, if the fitting step just updates the coefficient of the “best” covariate, an implicit selection 

procedure, similar to the lasso regularization (see chapter 3.3) results. Moreover, it can be shown (see 

Hastie (2009)), that the resulting Boosting path equals the lasso path in case all lasso coefficients 

increase monotonically (as Boosting paths are monotone due to construction). This can be seen in 

Figure 3.12 which shows the Boosting paths for the Tb data. The paths are very similar to the lasso of 

Figure 3.6, except for the categories of MomEducationLevel, as the lasso path for “Primary” is not 

monotonic. 

 

3.6 Random Forest 

CARTs (see chapter 3.4) can be extended to Random Forests (cf. Hastie (2009)), which represent an 

ensemble method, i.e. several trees, which vote for the most popular class, are processed. This helps in 

coping with the already mentioned high variance of trees and makes Random Forest one the best 

predictors in many studies (see Tutz (2012)). Basically the Random Forest algorithm is as follows:  

Repeatedly draw bootstrap samples of the data. Then build a tree on each sample, consisting of the best 

variable-split-point combination of m , at each split point, randomly (!) chosen predictor variables out of 

the p covariates. In case of a binary target, the final prediction is the majority vote from the trees. If a 

probability value for the target event is needed, the average over the individual class votes can be taken. 

 

The number m of predictors in each tree is a tuning parameter, but is often chosen according to the 

recommendation of 5� in classification problems (cf. Hastie (2009)). The number of trees must also be 

tuned, but because Random Forests seldom overfit as a result of the tree-number (see Hastie (2009)), it 

is adequate to use a sufficient high number of trees.  This number can be derived by applying the 

method just once on the whole dataset, as Random Forests have kind of a build-in cross-validation by 

 

Figure 3.13: OOB (out-of-bag) error depending on number of trees for a Random Forest on Tb data. 
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calculating the OOB (out-of-bag) error on the bootstrap samples (see Hastie (2009)). E.g. see Figure 

3.13, which shows that the method stabilizes at roughly 200 trees. Therefore a value of 500 might be 

used for the measurement of classifier performance (see chapter 4.2). 

 

Unfortunately the influence of the individual predictors gets lost. But a variable importance plot can be 

drawn, in the same way as for Boosting models (see chapter 3.5), and is presented in Figure 3.14.  

It shows that Mother’s age is again the most important variable. Then a group with HousingType, 

MomEducationLevel, MothersOwn, MomOccupation and Residence follows with each having 

approximately “half the importance of Mother’s age”. It must be stated that the internal ordering for this 

group, regarding importance, might change for a second run with different bootstrap samples. 

 

3.7 Support Vector Machine 

The Support Vector Machine (SVM) classifier (cf. Hastie (2009)) originated from the machine learning 

community. The idea behind is to maximize the feature space margin between two classes (see Figure 

3.15). It can be shown that the signed distance of any point �� to a separating hyperplane defined by ��� + �� = 0 is 

‖�‖ ����� + ��� , see Hastie (2009). If the target is coded as *� ∈ 2−1,14, with *� = 1 having 

positive distance from the hyperplane (or identifying the interesting event respectively), the idea results 

in the maximization problem: 

 

 

Figure 3.14: Random forest importance plot. The most important predictor (MomAgec) is scaled to 100. 

HIVResultsAs

PlaceOfEnrolment

Agec

InfantsDelivered

ReceivedAnteNtlCare

Sex

Temperaturec

WeightHeightc

PlaceOfBirth

Residence

MomOccupation

MothersOwn

MomEducationLevel

HousingType

MomAgec

Relative importance

0 20 40 60 80 100



3.7 Support Vector Machine 

 

31 

max�,�� �*� 1‖�‖ ����� + ���� (3.10) 

 

This can be equivalently formulated as: 

 min�,��  ‖�‖	, R��ℎ	���Z�aX���:	*������ + ��� ≥ ���Z�. > 0 (3.11) 

 

Choosing the constant arbitrarily as 1 and because of ‖�‖ > 0, an equivalent formulation is: 

 min�,��  

! ‖�‖!	, R��ℎ	���Z�aX���:	*������+ ��� ≥ 1 (3.12) 

 

Usually the data is not completely separable in this way, as there are always points on the false side of 

the hyperplane. Therefore so-called slack variables are invented and the minimization problem (3.12) is 

relaxed in order to allow some overlap:   

 min�,��  

! ‖�‖!, R��ℎ	���Z�aX���Z:	*������ + ��� ≥ 1 − �� 	, �� > 0,∑ �� ≤ ���Z�. (3.13) 

 

This is usually written in the form: 

 min�,��  

! ‖�‖! + � ∑ ���̂N
 	 , R��ℎ	���Z�aX���Z:	*������+ ��� ≥ 1 − �� 	, �� > 0 (3.14) 

 

C is the “cost” parameter and influences how large the separating margin is. Therefore it is a tuning 

parameter, which is usually derived by cross-validation. 

Equation (3.14) represents a convex minimization problem, i.e. it has one and only one solution. As the 

constraints imply inequalities, the Lagrangian function, which has to be minimized, is accompanied by 

so-called Karush-Kahn-Tucker conditions (e.g. see Bishop (2006)). One of the derivatives of the 

Lagrangian, together with the Karush-Kahn-Tucker conditions, results in � = ∑ %�*����̂N
 , with nonzero %� 
only for the observations for which the constraint is exactly met, i.e. the points lying on the boundary of 

 

Figure 3.15: Idea of SVM including slack variables. Support vectors are marked with black border. Separating 

hyperplane lies in the middle of the margin 
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the margin. So � is determined exclusively by these support vectors, which explains the name of the 

method. This also means that points, lying inside the correct region, do not have an influence on the 

separation! 

The whole approach can be extended by enlarging the feature space with basis expansions like splines. 

Basically this corresponds to the additive modeling of the linear predictor in regression problems (see 

also chapter 3.1.2). So �� is replaced by a set of basis functions ���� → .ℎ
����, … , ℎ`����/ . The 

separating hyperplane can then be written as 

 -��� = ������ + �� = ∑ %�*�	�����������̂N
 + �� (3.15) 

 

Thus the solution just depends on the so-called kernel ���, ��� = ���������� which can be computed very 

cheaply for a special choice of �. Popular members are the radial kernel: ���, ��� = ����−�‖� − ��‖!� 
(which is also used for measuring the SVM performance for the Tb data in chapter 4.2) or the dth-degree 

polynomial ���, ��� = �1 + ������. For d=2 the corresponding basis functions are ℎ
��� = 1, ℎ!��� = √2�
,ℎ���� = √2�!, ℎ���� = �
!, ℎ���� = �!!, ℎ���� = √2�
�! for instance. 

 

Remarkably the SVM can also be expressed as a penalization method (see Hastie (2009)). It can be 

shown that 

 min�,��  ∑ �1 − *�-�����n + �! ‖�‖!�̂N
  (3.16) 

 

(with subscript “+” indicating the positive part) has the same solution as (3.14). So, from a technical 

aspect it is the same as the regularization methods from chapter 3.3 with a different loss function called 

the hinge loss: �*, -� = �1 − *-�n . 

 

3.8 Neural Net 

Originally Neural Networks (cf. Hastie (2009) and Tutz (2012)) tried to mimic the function of the human 

brain. In Figure 3.16 each unit represent a neuron and the connections between them stand for the 

synapses. Technically they are just nonlinear statistical models. This is explained in the following for the 

single hidden layer Neural Net. 

 

If the hidden units �~ are given by a nonlinear transformation (or activation function) �~ = ��%~� + ∑ %~P�P7PN
 � , as well as the output unit = ��.R� + ∑ R~�~~N
 / , the combination of these terms 

yield: 

 

   * = �� �R� + ∑ R~~N
 ��%~� + ∑ %~P�P7PN
 �  (3.17) 

 

In the neural net context the intercepts %~� and R�  are called “biases” and the parameters %~P and R~ 
“weights”. For the activation functions � and �� usually the sigmoid (or logistic) function ��X� =1 �1 + �B¡�⁄  is used. Alternatives are sometimes Gaussian radial basis functions (see Tutz (2012)). 

Notice that with choosing �� as sigmoid and � as the identity, just an ordinary logistic regression model 

results.  
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The estimation of the parameters in the binary target case is usually done by minimizing the cross 

entropy ¢�£,¤� = −∑ *�	����� + �1 − *�	�����1 − ����̂N
  which is nothing else than the negative log-

likelihood. The minimization problem is solved by gradient descent (see Hastie (2009)) and called back-

propagation. Unfortunately it is not a convex problem, i.e. several local minima might exist. Therefore 

several starting points must be tested. 

 

As Neural Nets provide a very flexible modeling tool, the global minimum often overfits. This might be 

faced by early stopping (before global minimum) or usage of regularization methods which is called 

“weight decay” in case of Neural Nets: ¢�£,¤� + K ∗ L�£,¤�, with L�£,¤� = 	∑ R~!~ + ∑ %~P!~P  . 

The parameter λ functions as a tuning parameter as usual. When using regularization, the number of 

hidden units can be set to a high level, somewhere between 5 and 100; the weight decay then prohibits 

overfitting (see Hastie (2009)). For the Tb data, a single hidden layer model together with 20 hidden units 

chosen which results in decays of roughly 1 (see chapter 4.2), which hints to a moderate regularization.  

Usually the number of hidden layers represents a design question and should be guided by background 

knowledge, which makes Neural Nets with more than one hidden unit often kind of an art. 

At last it must be noticed that Neural Nets are also black boxes regarding the assessment of variable 

interpretation. This is due to the fact that the predictors enter the model by nonlinear variable 

combinations, which makes it extremely difficult to quantify their influence. Nonetheless, because of the 

nonlinear approach, they provide a powerful tool for classification that might outperform other methods. 

 

 

 

 

Figure 3.16: Idea of Neural Nets with one binary output and one hidden layer. 

�
 �� = 1 �7 ….. Input layer 

….. Hidden layer 

layer 

�
 � 

* 

Output layer 

layer 

Activation function � 

Activation function �� 

% − R���ℎ�Z 
R − R���ℎ�Z 

�� = 1 





 

35 

4 Comparison of Method-Performance 

4.1 Measuring Classifier Performance 

4.1.1 Metrics for Classifier Performance 

Several metrics for measuring classifier performance exist (cf. Tutz (2012)). Some of them can be 

expressed in terms of a loss function. E.g. the 0-1 loss: \�
�*, *¥� = ¦�* ≠ *¥� (with I as the indicator 

function) has the expected value  §	\�
�*, *¥� = ¨�* ≠ *¥|�� = 1 − ¨�* = *¥|��, which is the probability of 

misclassification and can be estimated by the misclassification error:  

 

   

̂ ∑ ¦�*� ≠ *¥���̂N
  (4.1) 

 

This error is minimized by the Bayes classifier, which is *¥ = argmaxN�,
 ¨�* = 0|�� (or equivalently *¥ = 1	�-	¨�* = 1|�� > 0.5) in the binary target case. 

If the prediction results in a probability for the event �¥, a more precise metric represents the quadratic or 

Brier score. Here the loss function is the quadratic loss applied to the real values y and the estimated 

probabilities �¥ : \!�*, �¥	� = �* − �¥�! . This metric has an interesting expected value: §	\!�*, �¥	� =	\!��, �¥	� + ªXa�*� (see Tutz (2012)). The last term depends only on the true probability; therefore the 

whole metric is a measure for the distance of the true probability � to the estimate �¥. It can be estimated 

by: 

 

   

̂ ∑ �*� − �¥��!�̂N
  (4.2) 

 

In order to understand why the sheer misclassification error can be misleading in contrast to the Brier 

score regarding the discriminative power of a method, the following example is given: In the next chapter 

it can be seen that the misclassification rate of the logistic regression is approximately 22%. But this is 

also the overall percentage of LTFU. Therefore, if applying the naive classification rule of assigning a 

probability of �¥=22% to each patient or equivalently a y=0 (“Not Retained”), would also end up in a 22% 

misclassification rate. One says that this rule calibrates perfectly but has poor shapness. On the other 

hand the Brier score would be 0.222+0.782=0.66, which is much worse than the 0.16 which e.g. results 

from logistic regression. So the Brier score accounts for both, calibration and sharpness. 

 

The mostly used method for assessing discriminative capability (or sharpness) is represented by the 

ROC (receiver operating characteristic) curve (see e.g. Sachs (2006)), see Figure 4.1. It plots the 

sensitivity: ¨�*¥ = 1|* = 1� (or equivalently true positive rate) against “1-specificity”: ¨�*¥ = 1|* = 0� (or 

equivalently false positive rate), depending on the cutoff value �¥«¬®gg for assigning  *¥ = 1. It is much 

more informative than the misclassification rate or the Brier score, as it provides the discriminative power 

for all possible cutoff values. The best prediction in terms of maximizing sensitivity+specificity is the 

curve point which lies as far as possible in the upper left corner. If the importance of sensitivity and 

specificity are taken unequal, this obviously would change. 

In order to summarize the performance of a classification method into one metric, the AUC (area under 

the curve) of the ROC curve can be given. 

Notice that, when the classification method is uninformative, i.e. not better than guessing, the ROC curve 

would be a straight diagonal from the lower left to the upper right corner, yielding an AUC of 0.5.  
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4.1.2 Honest Assessment of Classifier Performance 

When deriving above metrics from the whole data, the misclassification and the Brier score would be 

underestimated and the AUC overestimated respectively. This happens as the methods try to fit the data 

as good as possible and would therefore also fit the noise in the data. Applying the resulting model to 

new data would show much lower performance. This overfitting is getting worse, when a tuning 

parameter has to be adapted by the data as well.  

 

One approach to assess the generalization capability of a model is represented by the AIC metric (see 

also chapter 3.1.1), as it provides an estimate of the test error (see Hastie (2009)). Unfortunately the AIC 

is not available for all used methods. A better strategy, which is also applicable to every predictive 

model, is to split the data into training and test data. The model is trained on the training data and the 

predictive power assessed on the test data, providing a “honest” out-of-sample error. Possible tuning 

parameters can be derived by cross-validation on the training data. Therefore the training data itself is 

split (in case of 5-fold cross-validation) into 5 equal-sized bunches. Then, for each value of the tuning 

parameter, out of a predefined list of possible sensible values, the model is repeatedly (5 times in total) 

trained on 4 of the 5 bunches and evaluated by means of a criterion (misclassification rate, AUC, etc.) on 

the remaining bunch. The parameter value with results in the best average criterion value is taken as 

tuning value. 

The derivation of the tuning parameter can alternatively based on a third data split; the validation data. 

The terms “test” and “validation” are sometimes interchanged in literature.  

 

Figure 4.1: ROC curve (for final logistic regression on Tb data). Points indicate probability cutoff-values for 

predicting “Not Retained”. Reference lines cross axis at “best” prediction (where sensitivity+specificity is 

maximized). 
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In the next chapter the different methods are compared, regarding their predictive capability, by 50-times 

3:1 random split into training and test data, with possible tuning parameters evaluated by cross-

validation on the training data. The resulting average (test data) AUC for the best models is around 0.7, 

whereas this metric derived from the whole data can get up to a value of e.g. AUC=1 for Random 

Forests. This underlines the importance of a correct estimation strategy for the generalization 

capabilities. 

 

4.2 Performance Comparison of Classifier Methods 

Figure 4.2 shows misclassification rate, Brier score and AUC for 50 random 3:1 splits into training and 

test data. 

 

Used methods together with applied R-packages and parameters are described in the following. If a 

tuning parameter must be derived, the default evaluation criterion of the used method is taken. This 

criterion might differ from one method to another; actually sometimes the R help does not clearly state 

which criterion (deviance, misclassification rate, AUC, etc.) is used. The list or range of tested tuning 

parameter values was usually suggested by some pretests. 

- reg_main: Logistic regression, just with all main effects.  

- reg_mainbestaic: Same as reg_main, but relevant variables were selected by stepwise AIC search 

on training data (function stepwise, package MASS). For the whole data stepwise and exhaustive 

AIC result in the same model and because an exhaustive search takes a long time, it was decided to 

process just a stepwise search. This approach was tested as it represents a typical procedure used 

in the field. 

- reg_final: Logistic regression with non-parametric modeling of MomAgec and additional interaction 

effects Agec:MothersOwn and  MomOccupation:Residence. 

- reg_finalreduced: Same as reg_final, but with reduced set of covariates (which was suggested by an 

AIC selection on the whole data, see chapter 3.1.2).  

- lda: Linear discriminant analysis with all covariates (function lda, package MASS) 

- qda: Quadratic discriminant analysis with all covariates (function qda, package MASS). For some 

runs estimation problems occurred. In such cases no simulation was processed. 

- lasso: Logistic regression with all covariates and lasso regularization (function cv.glmnet, package 

glmnet). Tuning parameter λ is selected by 5-fold cross-validation on training data.  

- grplasso: Same as lasso, but with group lasso regularization for categorical variables with more than 

2 categories (function cv.gglasso, package gglasso: data must be scaled before processing). Tuning 

parameter selected in same manner as for lasso. 

- cart: Classification tree based on conditional inference framework (function ctree, package party). It 

was decided not to use the classical tree, as the used function rpart from package rpart resulted in 

just a root node. 

- boosttree_mboost: Boosting with trees (based on conditional inference framework) of fixed depth=6 

terminal nodes (function blackboost, package mboost). Tuning parameter (number of Boosting 

iterations, max=1000) is selected by 5-fold cross-validation on training data. Learning parameter is 

fixed at ν=0.01. 

- boosttree_gbm: Analogous to boosttree_mboost but with “standard” classification trees (function 

gbm, package gbm).  

list continued… 
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Figure 4.2: Misclassification rate, Brier score and AUC for the different prediction models (Diamond indicate mean 

value). For the first two metrics a lower value is better, for the AUC a higher. 
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- boostreg: Boosting with logistic regression (function glmboost, package mboost). Tuning (max=500) 

and learning parameter (ν=0.1) determined as in boostee_mboost. 

- rf_randomforest: Random Forest using “standard” trees as base learners (function randomForest, 

package randomForest). Number of randomly chosen predictors is fixed at 3, which is also the 

default for the used covariate structure. A maximum of 500 trees is processed. 

- rf_party: Same as rf_randomforest but with conditional inference trees as base learners (function 

cforest, package party) 

- svm: Support Vector Machine with Gaussian radial kernel (function kvsm, package kernlab, kernel 

parameter internally optimized: kpar=”automatic” ). Cost parameter C is chosen from the values 

(0.005, 0.5, 5, 10, 20, 50) by 5-fold cross validation (function tune, package e1071). For some runs 

estimation problems occurred; in such cases no simulation was processed. 

Initially the function svm from package e1071 was used, but resulted in absolutely bad predictions for 

some simulations, i.e. much worse than guessing, which might be a software bug. 

- nnet: Neural net with one hidden layer and 20 hidden units (function nnet, package nnet). Weight 

decay is determined by 5-fold cross validation (function tune, package e1071). Range of possible 

decay values was (0, 0.5, 1, 1.5, 2). 

 
Figure 4.2 indicates that SVM, Neural Net and QDA show lowest performance: QDA is highly 

outperformed by LDA for all 3 metrics, which is a typical behavior (cf. chapter 3.2). SVM shows best 

performance for misclassification rate. But this is an artifact, as described in chapter 4.1.1, and stands in 

contradiction to the (more sensitive) Brier score and also the AUC, which show that the SVM, regarding 

the predictive performance, is performing worse. This is confirmed by the ROC curve in Figure 4.3.  

The CART performance confirms the high variability mentioned in chapter 3.4. 

Taking variance into account, all other prediction methods show similar performance regarding the three 

metrics. Also the shapes of their ROC curves are comparable (see Figure 4.3), which indicates that the 

discriminative capability is also similar for different cutoff values for predicting LTFU.  

The final logistic regression model performs best regarding the AUC, but the difference to other methods 

is so slight, that it might dissapear for a second simulation. Nevertheless this fact justifies the results and 

effect interpretation of the logistic regression, even though the main effects probably dominate the 

interactions, as the main effects model perform reasonably well. 

Furthermore the AUC of approximately 0.7 for the best methods not only puts quite good confidence in 

the predictive power of the data, but also indicate that this might be an upper limit for it, as different 

methods result in this value.  

 

4.3 Final Assessment of Variable Importance 

Mother’s age and Residence are the most influential variables for LTFU. The standardized coefficients 

for the lasso confirm this for the whole lasso path and therefore also for the main effects model 

(shrinkage parameter = 1). Both variables are also at the top of the Boosting importance plot (Figure 

3.10) and occur as split variables for the CART (with a p-value of <0.001), see Figure 3.9. Only in case 

of the Random Forest, Residence is also comparable to other covariates, regarding relative importance. 

In order to give an estimate of the influence, the results of the final logistic model can be consulted: The 

odds ratio for LTFU for “permanent” mothers (42% of all mothers) is 0.36 [0.27, 0.48] times the LTFU of 

“temporary” mothers on average (see Figure 3.4). To give an impression of the influence of Mother’s age 

on LTFU, a 30 years (approx. 3rd quartile) old mother can be compared with a 20 years (approx. 1st 

quartile) old one (as the odds ratio starts to decrease at Mother’s age ≈ 20, see Figure 3.3). Here the 

odds ratio is lowered by a factor of 0.58 on average for the older mother. 
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Furthermore HousingType occurs under the Top 5 in every plot or listing that allows relevance 

comparison. Regarding the coefficients of the final regression model, the odds ratio rises by a factor of 

1.24 [0.96, 1.61] for families living in semi-permanent houses (18% of all families) and 1.72 [1.32, 2.26] 

for “permanent” houses (15% of all families) compared to “mud” houses (66% of all families).  

This corresponds, in terms of the socio-economic status, to the higher odds ratio (for being “not 

retained”) for better educated mothers. Even though MomEducation=”Secondary” (13% of all mothers) is 

not significant in the final regression model, its remarkable coefficient of 1.84 should not be disregarded 

as MomEducation is an important variable for Lasso regularization, all Boosting methods, CART and 

 

Figure 4.3: Cumulative (over all simulations) ROC curves for the different prediction models. Dots indicate “best” 

prediction (maximizing sensitivity+specificity). The listed AUCs might differ slightly from the mean AUCs of Figure 

4.2 as the cumulated version puts predictions of all simulations “into one pot”. 
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Random Forest. In contrast the significant category “Tertiary” (1% of all mothers) has no practical 

relevance, due to the low cell count and therefore low recruitment capability. 

For Mother’s occupation, also listed under Top 5 in all importance plots or listings, the only relevant 

category (in terms of cell count) is “Farming” (37% of all mothers) compared to the reference “Salaried 

worker” (57% of all mothers). In the boosttree importance plot MomOccupation already comes at third 

place and the random forest importance plot shows it is under the Top 6, which might also be due to the 

interaction with Residence, detected in the final logistic regression model. Notice that all tree based 

methods can find interactions implicitly. Interestingly, Farmers have a lower odds ratio (resulting from 

logistic regression) compared to Salaried Workers only for Residence=”Temporary” (0.56 [0.42, 0.74]) 

whereas for “permanent” Farmers this is reversed (2.13 [1.34, 3.37]). 

MothersOwn is relatively high rated in Random Forests and shows slight significance in logistic 

regression. Regarding the final regression model its importance might be due to the interaction with Age, 

even though the variable itself is significant (1.31 [1.05; 1.62]): For Mothers with less children (<= 3 

children, 52% of all mothers) the odds ratio for LTFU increases e.g. for a baby enrolled with an age of 30 

days compared to 0 days by 70% (see Figure 3.3). But this interaction is not detected by the boosttree, 

random forest or CART method. Furthermore Agec does not pop up as influential in any method (except 

for logistic regression), which makes this interaction at least questionable. The good performance of the 

main effects logistic model supports this tentativeness. 

All other variables do not seem to have an important impact on the LTFU rate. 

 

Summarizing all above results, a recruiting advice can be (in order of importance): Enroll older mothers 

having a HDSS-ID (Residence=”Permanent”) and avoid salaried workers without. Generally families with 

lower socio-economic status regarding housing type or education level are preferred as well as mothers 

with less additional children, for whom it might be advantageous to be recruited as soon as possible 

(lower infant’s age). 
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5 Summary 

An analysis of 2695 patients (originally 2900, with died patients excluded) of an infant’s Tuberculosis 

(Tb) study, conducted with newborn 0-6 weeks old, was performed in order to best predict the loss-to-

follow-up (LTFU), which will help in creating appropriate retention strategies for future trials.  

Potential covariates are characteristics of the child like Age, Sex, WeightHeight (Infant’s birth 

weight/height ratio), Temperature (Infant’s birth temperature), PlaceOfBirth and of the mother like 

PlaceOfEnrolment, InfantsDelivered (Number of infants delivered: “Singleton” or “Twins”), 

MomEducationLevel (Mother’s education level), MomOccupation (Mother’s occupation), HousingType 

(Housing type =”Mud”, “Semi-permanent” or “Permanent”), ReceivedAnteNtlCare (Mother received 

antenatal care?), HIVResultsAs (HIV test result), MothersOwn (Mother’s own additional children), 

Residence (HDSS-ID status: Health and demographic surveillance system identification). The binary 

target variable is Retained=”Retained” or “Not Retained” (approx. 20% of total). 

Values of 91 observations with missings or nomination of “Other” category are imputed with median (for 

metric variables) or mode (for categorical variables) values. Metric variables are additional centered. 

 

A first descriptive analysis was conducted to search for outliers and unusual observations. No 

conspicuous observations were found.  

Adjusted (controlled for all covariates) odds ratios for all variables were derived, with significant p-values 

already indicating the relevant predictors increasing LTFU rate: Lower MomAge (p-value <0.001), 

MomEducationLevel (“Tertiary” compared to “None”, p-value=0.006), MomOccupation (“Salaried worker” 

compared to “Farming”, p-value=0.003), HousingType (“Permanent” compared to “Mud”, p-value<0.001) 

and Residence (“Temporary” compared to “Permanent”, p<0.001). An AIC analysis additionally 

suggested the variables Age, InfantsDelivered and MothersOwn. 

 

An extended logistic regression comprising also Interactions and non-parametric modeling of metric 

covariates with splines resulted in additional remarkable effects: Interactions Age:MothersOwn and 

MomOccupation:Residence and a non-parametric effect for MomAge advises that higher Infant’s age 

negatively influences LTFU only for MothersOwn<=3 children; MomOccuption effect reverses for 

Residence=”Permanent” mothers and MomAge reduces LTFU rate not until an age of approximately 20. 

 

In the following several statistical models and data mining methods for classification were introduced and 

applied to the Tb data. In particular these are discriminant analysis, regularized regression with different 

lasso penalties, CART (“classification and regrssion trees”), Boosting (with trees and regressions), 

Random Forests, Support Vector Machines and Neural Nets. Noticeable results are represented e.g. by 

the main effects lasso paths, which provide a visual tool for comparing variable importance (also in 

dependence of shrinked coefficient values): MomAge, Residence, HousingType, MomEducationLevel 

and MomOccupation (in order of importance) again popped up here. These variables are also selected 

by a classification tree. Applying Boosting with trees not only confirms the importance of aforementioned 

predictors but also their dependency nature with the target (through partial depedance plots). The former 

also holds for Random Forest prediction of Tb data. 

A final assessment is given (chapter 4.3), which also rates the practical significance of the relevant 

predictors for LTFU. 

 

The central analysis of this thesis from a methodical standpoint is represented by the comparison of the 

performance of above mentioned classifier methods. Therefore misclassification rate, Brier score and 

AUC (area under the curve) are assessed by 50 fold 3:1 splits into training and test data. The models are 

trained on the training split with possible tuning parameters derived by 5-fold cross-validation and finally 

tested on the test split. This approach allows a honest assessment of classifier performance. Used R-
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functions and packages together with parameter settings are listed for every method. The final logistic 

regression model performs best regarding AUC (most informative metric according predictive capability), 

but are just slightly better than several other methods, except quadratic discriminant analysis, Support 

Vector Machine and Neural Net, which all perform worse. For the latter two methods this result came 

relatively unexpected as both have high reputation in machine learning community. A more detailed 

modeling, e.g. by testing other kernels for SVM or a more ambitioned hidden layer architecture for the 

Neural Net might help. 

Approximately an average AUC of 0.7 resulted for the best prediction methods which confirms the 

predictive power of the data (and methods). Therefore the aforementioned interpretation of predictors 

based on the extended logistic regression modeling best describes the underlying model, even though 

the main effects might dominate the discriminative capability, as a pure main effects model could 

compete. 
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A Supporting Plots and Tables 

 

Figure A.1: Searching influential observations. As cutoff values (reference lines) for Cook’s distance are 

controversy discussed in literature, an arbitrary value of 0.01 is taken just in order to pick some observations with 

highest distance. For the hatvalues a cutoff of 2 * #coefficients / #observations is taken. The ±2 cutoff for the 

studentized residuals are oriented at the linear model, even though the residuals of logistic regression usually are 

not gauss-distributed. 

 

 
 
Figure A.2: Dfbetas plot. Cutoff values for reference lines are chosen like in Figure A.1. 
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Figure A.3: Marginal interactions of metric with categorical covariates (y-Axis show percentage “Retained”). Metric 

variables are discretized in quartile bins. Size of points represent cell count of corresponding category and 

therefore indicate importance. 

 



A Supporting Plots and Tables 

 

47 

 

Figure A.4: Marginal interactions of categorical covariates (y-Axis show percentage “Retained”). Size of points 

represent cell count of corresponding category and therefore indicate importance.  
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Covariate exp(β) 95% CI p-value 

(Intercept) 0.27 [0.14;  0.50] <0.001 

Agec 1.02 [1.01;  1.04] 0.001 

WeightHeightc 0.99 [0.98;  1.00] 0.168 

Temperaturec 1.19 [0.95;  1.50] 0.137 

s(MomAgec) n.a. n.a. <0.001 

PlaceOfEnrolmentHealth Facility 0.73 [0.43;  1.24] 0.241 

PlaceOfBirthHealth Facility 0.97 [0.78;  1.21] 0.799 

SexFemale 1.04 [0.85;  1.26] 0.723 

InfantsDeliveredTwins 0.50 [0.24;  1.01] 0.055 

MomEducationLevelPrimary 1.11 [0.60;  2.05] 0.736 

MomEducationLevelSecondary 1.87 [0.98;  3.60] 0.059 

MomEducationLevelTertiary 3.63 [1.37;  9.61] 0.009 

MomOccupationFarming 0.56 [0.42;  0.74] <0.001 

MomOccupationLabor 0.78 [0.39;  1.55] 0.472 

MomOccupationBusiness 0.24 [0.08;  0.73] 0.012 

MomOccupationFishing 0.46 [0.09;  2.31] 0.349 

HousingTypeSemi-permanent 1.24 [0.96;  1.61] 0.097 

HousingTypePermanent 1.72 [1.32;  2.26] <0.001 

ReceivedAnteNtlCareNo 1.18 [0.84;  1.65] 0.340 

HIVResultsAsReactive 0.77 [0.56;  1.07] 0.124 

HIVResultsAsIndeterminent 0.77 [0.20;  2.90] 0.699 

MothersOwn>3 children 1.31 [1.05;  1.62] 0.017 

ResidencePermanent 0.36 [0.27;  0.48] <0.001 

Agec:MothersOwn>3 children 0.97 [0.96;  0.99] 0.003 

MomOccupationFarming:ResidencePermanent 2.13 [1.34;  3.37] 0.001 

MomOccupationLabor:ResidencePermanent 3.89 [1.20; 12.56] 0.023 

MomOccupationBusiness:ResidencePermanent 7.26 [1.91; 27.63] 0.004 

MomOccupationFishing:ResidencePermanent 0.00 [0.00;   Inf] 1 

Table A.1: Odds ratio results of final logistic regression (notation follows Table 3.1, s(MomAgec) indicates the 

additive effect for Mother’s age). 
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