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Abstract

Validation is a crucial step for the evaluation of new prediction rules. Within
the framework of high-dimensional molecular data, the assessment of the added
predictive value is of particular importance. That is, we want to verify whether the
performance of a prediction rule can be improved if molecular data is included in
addition to the standard clinical predictors. For this purpose we create combined
prediction models which contain the clinical predictors and a molecular score,
which aggregates the molecular information into a single predictor. A special
challenge arises if there is no independent data set at hand, on which the added
predictive value can be measured. When comparing the molecular score to the
clinical predictors on the same data set that has been used to generate the score,
overfitting mechanisms might make the score to seem more important than it
actually is. To elude this problem, Tibshirani and Efron’s (2002) pre-validation
approach can be used. It embeds the score construction into a cross-validation
loop which mimics the situation of training and test data to be at hand. Here we
investigate and compare the added predictive value of prediction models including
molecular scores that have been derived with and without pre-validation, within
the scope of binary classification. In general, we use two approaches for score
generation: the least absolute shrinkage and selection operator and a supervised
principal component analysis. The investigation of the added predictive value
in six different simulation studies and in a real breast cancer data set allows a
comparison of molecular scores obtained with or without pre-validation.



Notations

General conventions:

Small or capital letters, such as n or G denote scalars, small bold letters, such as
y denote vectors, and capital bold letters, such as X denote matrices. Estimates
are marked by the circumflex accent .

n Number of observations

Z ¢ R4 Matrix of clinical predictors

X € R**P Matrix of molecular predictors

y € R**! Vector of binary response

z Covariance matrix

R Correlation matrix

p Correlation coefficient

L{-}/e(") Likelihood function /log-likelihood
function

B=(0,..., ﬁp)T Coefficients of the molecular predictors
in a regression model

~y=(m,... ,'yq)T Coefficients of the clinical predictors in
a regression model

i Linear predictor for the i-th observa-
tion

Xascore = (Tacorers - - - ,:v_m,.en)T Non pre-validated molecular score

Xscore = (Tscoreys - - - ,EBW%)T Pre-validated molecular score

o(g) Set of indices of all observations in
group g

fe) Rule for generating the omics score /
Classification rule

Aft Penalty /tuning parameter for Lasso re-
gression

$ e R™*" Matrix of principal components, where

r = min(n, p)
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1 Introduction

With the aid of microarray technology which was developed in the 1990s (see, for
instance, Peterson, 2013, p. 1}, it became possible to examine thousands of genes
(more precisely gene expressions) simultaneously. These microarray gene expres-
sion data have been used for disease outcome prediction or diagnosis purposes
(Boulesteix and Sauerbrei, 2011).

In the last years, an attempt has been made to improve diagnosis and prognosis of
disease outcomes by the use of gene expressions. It means that gene expressions
have been used to upgrade rather than to substitute standard clinical predictors
for a disease outcome (De Bin, Herold and Boulesteix, 2014). While microarray
technology has brought certain advantages, it has also brought new challenges.

Firstly, there is the so-called n << p problem. Because gene expression data is
difficult and expensive to collect, the number of patients that are examined is
generally small (approximately 100 — 200). In contrast, however, it is possible
to measure thousands of gene expression values simultaneously with one microar-
ray. This means that we have a lot of potential molecular predictors but only few
observations. As a result, standard statistical methods are no longer applicable
(cf. Boulesteix, Strobl, Augustin and Daumer, 2008). The second challenge is to
determine if the omics data (high-throughput molecular data) has any additional
predictive ability compared to standard clinical information.

Before the development of microarrays well-established, easy, and cheap to collect
clinical information like patient age, tumor grade or hormone levels have, for ex-
ample, been used for predicting the probability of cancer relapse. The question
is now whether the performance of a prediction model is improved if gene expres-
sion values are included in addition to the standard clinical covariates. In other
words, one needs to verify if the inclusion of gene expressions in a prediction model
composed of clinical predictors, is able to improve its predictive ability (De Bin,
Herold and Boulesteix, 2014).

To answer the question of the added predictive value of the omics data it is not
enough to build either one classifier based on all predictors, without distinguishing
between microarray and clinical predictors, or to build two classifiers: one based
on clinical parameters, one based on microarray data (Boulesteix, Porzelius and



Daumer, 2008). In the former case, good clinical predictors may get lost in the
huge amount of microarray predictors, while in the latter case one does not know
whether microarray data do exactly the same as the clinical predictors if both
classifier have similar predictive power (Boulesteix, Porzelius and Daumer, 2008).
Thus, for assessing the added predictive value of molecular data, it is necessary to
construct more complex classifiers that include both the clinical and the molecular
predictors.

For the combination of low-dimensional clinical data and high-dimensional omics
data, it is common practice to aggregate the molecular data into a single molecu-
lar score. For this purpose, we can apply suitable statistical or machine learning
techniques that are able to handle the high-dimensionality of the omics data. The
derived omics score is then used together with the clinical predictors, as indepen-
dent covariate in a multivariate regression model. Subsequently, one can validate
the added predictive value of the omics score by different strategies.

However, a problem arises if we do not have an independent validation data set at
hand.

When comparing the omics score to the standard clinical predictors on the same
data set that was used to derive the score, the results may strongly be biased in
favor of the microarray predictor (Tibshirani and Efron, 2002). Although over-
fitting is a commonly recognized problem in microarray analysis, it continually
happens that overoptimistic conclusions are drawn during the assessment of the
added predictive value of high-dimensional molecular data (Boulesteix and Sauer-
brei, 2011). It means that if this problem is ignored, the omics score will seem to
be much more relevant than it actually is because it considerably overfits the data
at hand (Boulesteix and Sauerbrei, 2011).

To elude this problem, Tibshirani and Efron (2002) suggest to use their pre-
validation approach that mimics the situation of both training and test data to
be at hand by embedding the construction of the molecular score into a kind of
cross-validation loop. This will create a ‘fairer’ version of the omics score that in
turn allows a fairer comparison to the standard clinical predictors (Tibshirani and
Efron, 2002).

In the present thesis Tibshirani and Efron’s pre-validation approach is to be ex-
tended to the usage of the least absolute shrinkage and selection operator (Lasso)
as well as for supervised principal component analysis (superPC) for generating
the omics score.

Both approaches, the Lasso and the superPC analysis are introduced and utilized
for building omics scores, whereby each a pre-validated and a non pre-validated



molecular score can be created. Afterwards the added predictive value of each
molecular score is assessed on the same data set which has been used to generate
the score. For the validation of the added predictive value, we will focus on two
approaches: testing the molecular score in a multivariate regression model ans
evaluating the predictive accuracy of the clinical and the combined model.

The main goal of this thesis is to determine whether the pre-validated omics score
can overcome overfitting issues compared to its non pre-validated counterpart.
This comparison is based on the values of the regression coefficients and their as-
sociated p-values.

If overfitting can be avoided by pre-validating the omics score, we would expect
that the regression coefficient of a pre-validated score is smaller than its non pre-
validated equivalent. Besides that, the regression coefficient of a pre-validated
molecular score is expected to be less significant than the regression coefficient of
a non pre-validated score. We would also expect that the predictive accuracy of
the combined model including the pre-validated molecular score is smaller than
the predictive accuracy of the model including the non pre-validated score.

In Chapter 2 both the biological and the statistical background of this thesis
is clarified. Logistic regression models are introduced for binary classification.
Strategies for the combinations of low-dimensional clinical predictors and high-
dimensional molecular predictors are represented and the problem of overfitting
and its consequences is described.

Chapter 3 elucidates the fundamental idea of Tibshirani and Efron’s pre-validation
approach. Furthermore, the least absolute shrinkage and selection operator and
supervised principal component analysis are characterized and applied for generat-
ing pre-validated and non pre-validated omics scores. The implementation ensues
for the statistical software R (version 3.0.2).

A particular description of how the added predictive value of the molecular score
can be assessed on the same data set that has been used to build the score, can
be found in Chapter 4.

Chapter 5 contains specifications about the data simulation process and the real
breast cancer data set that are used for practical applications. Also the results of
the assessment of the added predictive value of pre-validated and non pre-validated
omics scores on both data sets are described in this chapter.

A summary of the thesis follows in Chapter 6.



2 Background

2.1 Biological foundations and the microarray
technology

Biological foundations

The human genome is estimated to consist of about 20,500 genes (National Hu-
man Genome Research Institute, 2012). All of these genes are located on the 23
chromosome pairs, and therefore, part of the deoxyribonucleic acid (DNA). Genes
control the production of amino acids which in turn are combined to proteins.
These proteins form the building blocks for structures within the cells and ulti-
mately the whole body (Mandal, 2014). The activity of a gene i.e., how often
it is transcribed and translated for the production of amino acids, is called gene
expression. Generally all cells of an individual are genetically homogeneous but
structurally and functionally heterogeneous owing to the differential expression of
genes (Jaenisch and Bird, 2003). The expression of a gene is regulated in every
cell by a wide range of mechanisms and determines the phenotype (e.g. a disease
outcome) of an individual (Wikipedia, 2014).

The aim of gene expression analysis is to reveal differentially expressed genes due
to the fact that the gene expression levels can give some indication about the pres-
ence or the future development of a disease. Hence, the analysis of gene expression
may serve for diagnosis or prediction of a disease outcome (Lottaz et al., 2008).
As a result, the analysis of gene expressions can, for example, be used to study
regulatory gene defects in cancer and other devastating diseases (National Center
for Biotechnology Information, 2014).

Microarray technology

The way from a gene to the phenotype leads through transcription and translation:

transcription translation . .
DNA ——————— mRNA ———— amino acid.

The messenger ribonucleic acid (mRNA) is a reverse copy of the DNA and con-
tains the genetic information for amino acid production (Nguyen et al., 2002). This
means that by quantifiying the relative amount of mRNA in a cell, one can draw
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conclusions about the amino acids/proteins, and consequently about the pheno-
type of this cell (see Duggan et al., 1999).

Referring to Science Creative Quarterly (2014}, the principle of microarray tech-
nology can be described as follows. So-called oligonucleotide arrays are based on
small base pair gene fragments (probes) which are complementary to (segments of)
specific genes. These probes are selected to have little cross-reactivity with other
genes. To cope with the problem of non-specific hybridization, a second probe
identical to the first except for a mismatched base, is placed next to the first.
The messenger RNA (mRNA) extracted from a cell is used to prepare cRNA by
reverse transcription and further transcription. Fragments of the cRNA bind to
their complementary probes on the microarray. By combining the perfect match
and the mismatch probes, a single expression value can be derived for a specific
gene. Via photolithography and chemical synthesis, the microarray can be man-
ufactured which in turn gives indication about the involved genes (for detailed
explanation, see, for instance, Dalma-Weiszhausz et al., 2006). Science Creative
Quarterly (2014), for instance, shows a schematic illustration of the measurement
of gene expressions by oligonucleotide microarrays.

2.2 Binary classification

One important objective of statistical analysis in the medical sector, is the predic-
tion or diagnosis of a disease outcome. The dependent variable which displays a
disease-related outcome, can be of different types. Typically it is categorical or a
survival outcome. In the present thesis we will emphasize the situation of a binary
outcome.

A very popular field of binary classification based on high-dimensional molecular
data is cancer research. Common outcomes in cancer research might, for exam-
ple, be the presence of a certain tumor type or the prediction of a cancer recidive
(Boulesteix, Strobl, Augustin and Daumer, 2008). So as one can see, classification
can be divided into two main challenges: diagnosis and prognosis. Both problems
are treated identically from a statistical point of view (Boulesteix, Strobl, Augustin
and Daumer, 2008).

Generally speaking, classification addresses the ability that a classifier can learn
information from the features of object, and then make an accurate prediction to
assign objects to their true class (Peterson, 2013, p. 4). In accord with Slawski
et al. (2008) (p. 3) the binary classification problem can be framed as follows: Let
us congider a predictor space X C RP and a set of class labels ), where Y = {0, 1}
in the case of a binary outcome. A prediction rule f is then constructed on the
basis of n realizations (X1,%1),- .., (Xn, ¥n) of the vector (x,y) € X x Y of random
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variables:

f: XY
fx) =y,

where x; = {Zi1,... ,:1:@,‘,,)-'_. In case of binary classification the prediction rule
assigns the probability for class ¥ = 1 to each new observation (cf. Boulesteix and
Sauerbrei, 2011).

Logistic regression

In the special case of binary classification i.e., for a dichotomous response y €
{0,1}, logistic regression models are commonly used along with linear discrimi-
nant analysis. In the present thesis, we will focus on logistic regression models.

The objective of logistic regression is the estimation of the influence of the covari-
ates on the (conditional) probability P(y; = 1|x;). Since it has to be guaranteed
that the estimated probabilities lie in the interval [0, 1|, we combine the conditional
probabilities for y; = 1 with the covariates via a logistic link function i.e.,

Ply = 1)
log (1 =

With election of the logistic response function we obtain an equivalent model
equation

)) S 60 + ﬁll'ﬂ + ﬂz.’]ﬁ-’iz +...+ ﬁPwi'P'

P(y-i = 1|X,,,) = ljz-x:—)%’

where ; = x] 8 = Bo + Buzis + Boiz + ... + Bpip is the linear predictor, 3 the
vector of regression coefficients and p the number of independent predictors.

The probability of response class y = 1 for a new observation Xpew = (Znew,s - - - » :e:,,,,,,,,p)-r

can be predicted from

ﬁ('ynew = llxnew) — exp(ﬁﬂ :|' ﬂl?newl +...+ BPTHE'!DP) |
T xplfo + Pre ¥+ P

where 3 is usually estimated via maximizing the log-likelihood function

4B) = Y- {u(x] B) ~ og(1 + expl(x] B} 21
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In the following, the linearity of the predictor n as well as the presence of only
main effects in the regression model is assumed.
Since the emphasis is on classification based on both clinical and molecular predic-
tors, we need to construct a regression model that handles both types of predictors.

Let us suppose that the conditional probability of ¥; = 1 may be modeled via a
linear combination of the available predictors. A logistic regression model might
then have the form

exp(yo +mza+...+ Yo2iq + B1Tir + ... + ﬁpfvip)
1+exp(o+mza+. ..+ Ye2ig + Brzan + ... + BpZip)’

P(y; = 1]x;,2;) =

where from now on z; = (zi1,...,2i;)' denote the clinical and x; = (T, ..., Tip) "
the molecular predictors for the i-th observation. The parameters vy, ...,v, and
B, ..., Bp are the corresponding regression coefficients, while 7, characterizes the
intercept term.

However, this regression model raises two particular problems.

Arising problems of regression with different types of predictors

Firstly, there is the high-dimensionality of the molecular data matrix X, which
is challenging even in the absence of clinical predictors (De Bin, Sauerbrei and
Boulesteix, 2014). As mentioned above thousands of gene expression levels can be
measured with one DNA-microarray. But since the manufacturing of microarrays
is expensive, there are usually only less observations (Lai et al., 2006). This circum-
stance is often called the n << p problem where n is the number of observations
and p the number of predictors. Due to the n << p problem standard statistical
prediction methods are inapplicable (Boulesteix, Strobl, Augustin and Daumer,
2008). It means that the regression coefficients cannot be simply estimated as
usual by maximization of the likelihood (De Bin, Sauerbrei and Boulesteix, 2014).
The reason for this is that in the n << p case XX has not full rank and is thus
not invertible. This issue can be handled via either variable selection, dimension
reduction or regularization techniques (De Bin, Sauerbrei and Boulesteix, 2014).
Section 3 describes two appropriate strategies for handling high-dimensional data
(the least absolute shrinkage and selection operator and supervised principal com-
ponent analysis) in detail.

And secondly, we need to find an adequate strategy for the combination of pre-
dictors with different characteristics and dimensions, which is not straightforward
(De Bin, Sauerbrei and Boulesteix, 2014).

Boulesteix and Sauerbrei (2011) (pp. 218) delineate five strategies that will be

!See Appendix A for the derivation.
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briefly introduced below.

2.3 Combination strategies for predictors with
different dimensionalities

Strategy 1: naive

In the first strategy the clinical and molecular predictors are treated in the ex-
act same manner. That is the simplest way for combination. Variable selection,
dimension reduction or regularization is applied to all of the available predictors.
That is, the clinical predictors are considered as X variables (De Bin, Sauerbrei
and Boulesteix, 2014). A benefit of this strategy is that one can use every pre-
diction method which is convenient for high-dimensional data. However, the risk
exists that the few clinical predictors (which are generally on average more pre-
dictive than omics predictors) may mostly be disregarded compared to the huge
amount of molecular information (De Bin, Sauerbrei and Boulesteix, 2014).

Strategy 2: residuals
The basis of the second strategy is the derivation of a fix clinical prediction model
(e.g. logistic regression in case of binary outcome). The resulting linear predictor
is then used as an offset and updated by the molecular predictors. It should be
noted that the clinical predictors may be subject to selection bias if variable selec-
tion has been executed. For further modifications of this strategy see Boulesteix
and Sauerbrei (2011) (pp. 218).

Strategy 3: favoring
In this version clinical and molecular predictors are treated simultaneously in a
prediction model. The distinct to Strategy 1 is that the clinical predictors are fa-
vored for the reason that they are approved predictors for the interesting outcome.
Thus, the information content of the clinical predictors is more taken into account.
Nevertheless, the influence of clinical predictors in the prediction model is affected
by molecular predictors (Boulesteix and Sauerbrei, 2011).

Strategy 4: dimension reduction
This way of creating a combined prediction model is composed of two stages: The
molecular predictors are first aggregated to one new component (hereinafter re-
ferred to as omics score) by the use of a dimension reduction technique. After this
step the new molecular score and the clinical predictors are simultaneously used
as independent covariates in a multivariate prediction model.

14



Strategy 5: replacement
Within the last strategy the clinical information is represented by a clinical in-
dex/a clinical score. If one of the components which build the clinical score has
low relative importance it might be replaced by more objective molecular infor-
mation.

In the present thesis we will focus on Strategy 4 and aggregate the molecular
data to a single omics score. Referring to Boulesteix and Sauerbrei (2011), it can
be drawn as follows:

Xscore = W1 * X1 +Wa-Xg+ w3 - Xz +...Wp Xp, (2.2)

where the phrases x,...,X, and wy,...,w, stand for the gene expression levels
and their weights, respectively.

Since not all gene expressions are necessarily connected to the outcome of inter-
est, it is definitely possible that some of the weights equal zero. If so, these gene
expressions are not incorporated to the omics score.

As mentioned above, several possibilities are available for the construction of the
omics score. In the following we will emphasize on two popular techniques: the
regularization approach least absolute shrinkage and selection operator (Lasso)
and a supervised principal component analysis (SPC) which is a combination of
univariate variable selection and subsequent principal component analysis for di-
mension reduction. A detailed description of how these two approaches can be
used for generating an omics score can be found in Sections 3.2.2 and 3.3.3.

After the omics score has been built, it is in a way considered as a ‘new predictor’
(Boulesteix and Sauerbrei, 2011). Subsequently, this molecular score as well as the
clinical predictors will be used as independent covariates in a multivariate logistic
regression model to appreciate their relation to the outcome of interest:

eXP(T?i) (23)

Pl = 1 2) = 1o e,

where
Ni=Yo+ Y21 +Y Zzt ...+ Vg Zig + Bscore - Tscore,i

denotes the linear predictor. The application of this regression model enables us
to compare the predictive power of the omics score to the predictive power of the
standard clinical covariates Z = (z1,...,%,)' in predicting the outcome y.

Thus, we can verify if the inclusion of the molecular score in the prediction model
yields to an improvement of its prediction ability (De Bin, Herold and Boulesteix,
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2014). If so, the molecular score provides an added predictive value compared to
the clinical predictors.

However, due to the problem of overfitting, the assessment of the added predictive
value should be performed on independent validation data, anyway. This leads
us to a substantial issue: How can we evaluate the added predictive value of the
molecular score if there is no independent validation data set available?

2.4 Overfitting and its consequences

Especially in the n << p setting, overfitting represents a general problem. As
a result of high dimension, it is almost always possible to find a combination of
molecular predictors that are associated with the outcome in the considered data
set, independently of the predictive power (Boulesteix and Sauerbrei, 2011). Since
the molecular score was derived by ‘fishing’ for relevant predictors, it is likely
that the score is strongly correlated with the outcome even in the case of non-
informative molecular predictors (Boulesteix and Sauerbrei, 2011).

Aside from that, overfitting arises since the outcome y has already been used in
the construction of the molecular score (Tibshirani and Efron, 2002).
Consequently, the assessment of the added predictive value of the omics score on
the same data which has been used to generate the score, is strongly biased in
favor of the microarray predictor (Tibshirani and Efron, 2002). The molecular
score will seem to be much more important than it realistically is the case.

To avoid the problem of overfitting and to create a ‘fairer’ version of the omics
score, Tibshirani and Efron (2002) suggest to use their pre-validation approach.
Pre-validation is supposed to ensure an unbiased comparison of the different pre-
dictors on the same data set on which the molecular score has been built. It should
be applied to the dimension reduction step during the score generation (Boulesteix
and Sauerbrei, 2011). In the following section the process of pre-validation will be
described in detail.

16



3 Pre-validation

3.1 Fundamental idea

The primary reason for the usage of pre-validation is the creation of an omics score
that acts if it hasn’t seen the response y (Tibshirani and Efron, 2002). The prac-
tical realization is effected through a kind of cross-validation. The pre-validated
omics score is then used as independent covariate in a multivariate regression
model which is adjusted for the clinical predictors, to measure its influence on the
response. This will allow us to verify if the molecular data i.e., the omics score
adds any predictive power to the standard clinical predictors.

Referring to Tibshirani and Efron {2002) the process of pre-validation can be for-
mulated as follows:

1. Divide the present observations into G (approximately) equal-sized groups.

2. Set aside one group g. Use the gene expression levels of the remaining ob-
servations for the derivation of the (linear) molecular score.

3. Apply the rule for generating the molecular score on the left-out observations
of group g which yields the pre-validated molecular score.

4. Repeat steps 2-3 for each groupg=1,...,G.

5. Fit a logistic regression model using both the pre-validated omics score and
the ¢ clinical predictors as independent covariates (cf. expression (2.3)).

Since steps 1-4 are used for the generation of the molecular predictor, the molec-
ular data is exclusively required. Figure 3.1 gives a schematic illustration of this
procedure.

As mentioned above, special nature of this pre-validation approach is that it cre-
ates a molecular score without the direct use of the response y. This implies that
the predictor for observation ¢ has not seen the true class label for observation %
and is thus, not biased in favor of the molecular data (Tibshirani and Efron, 2002).
The procedure of pre-validation tries to mimic the situation of both a learning and
a validation data set to be at hand. Usually, we would use a learning data set
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Figure 3.1: Schematic illustration of the pre-validation process referring to Tibshi-
rani and Efron (2002).

to obtain the rules for generating the omics score. Afterwards, we would apply
it to the validation data to asses its predictive ability while predicting y,q1i4 from
Xyatia and Zyauq. In this way, a fair comparison of the predictive power of both
the molecular score and the clinical predictors is ensured.

In a formal way pre-validation can be expressed as follows:

xlo@)] — fx[_a(g)],y[_a(g)] Xk, g=1,...,G. (3.1)

score

The term o(g) denotes the set of indices which represent the observations included
in group g. Vice versa, —o(g) stands for the indices of all observations not included
in group g.

More precisely, the values of the omics score for observations in group g i.e., E[Z(Eﬂ)!_.
are generated by applying the rule for score generation fx(—o() yl-oa)] (which has
been deduced from the observations X[~°@) and y[=°() not included in group g)
on the reduced data matrix XP®)! (containing all molecular predictors but only
from observations of group g). As mentioned above, we realize the generation of
the omics score in two different ways in the present thesis.

On the one hand the least absolute shrinkage and selection operator {Lasso) and
on the other hand a supervised principal component analysis (superPC) is used.
The next sections will describe both approaches and their application within the
scope of pre-validation.
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3.2 Least absolute shrinkage and selection
operator (Lasso)

3.2.1 Motivation and definition

In practice one can see two reasons why ordinary least squares regression yields
no adequate models: prediction accuracy and interpretation (cf. Tibshirani, 1996).
The former indicates that the ordinary least squares estimator often has a high
variance which may affect the overall prediction accuracy, while the latter refers to
the amount of potential predictors (cf. Tibshirani, 1996). The higher the number
of predictors, the more difficult is the interpretation. To avoid these two problems
one can use the least absolute shrinkage and selection operator (Lasso).

By the fact that the Lasso technique shrinks some coefficients and sets others to 0
a more precise prediction and a better interpretability of the resulting regression
model can be ensured (Tibshirani, 1996). Furthermore, Lasso regression entails
the great advantage that it can in addition handle the consequences of the n << p
problem.

Due to the situation of having more independent predictors than observations,
the design matrix X has not full rank which leads to the issue that XX is not
invertible. The Lasso provides a combination of good prediction accuracy and an
intrinsic variable selection coupled with computational feasibility (Bithlmann and
van de Geer, 2011, p. 7).

Since the results of Lasso regression are dependent on scaling, we hereinafter as-
sume to have a standardized data matrix X. The following elucidations are mainly
based on Tibshirani (1996).

The Lasso

The Lasso is a so-called regularization approach which means that very small as
well as very large regression coefficients are penalized. Within the scope of Lasso
regression the £;-penalty term is used.

The regression parameters are estimated via

Brauso = argmin{ (v —XB)" (v = X8) + X- 18Il }

where (y — X@8)" (y — X8) = i (yi - x{ﬂ)z denotes the residual square sum,

i=

P
A > 0 the penalization parameter, and ||B3|: = »_|5;| the #1-penalty for the
i=1
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restriction of the absolute regression coefficients (see, for instance, Fahrmeir et al.,
2013, p. 208).
As well as the least squares estimator, the Lasso estimator minimizes the residual

P
square sum, but under the restriction }_ |5;| < t. The tuning parameter { > 0
i=1

J
controls the amount of shrinkage in this expression.

The Lasso for binary response

A great advantage of the £;-penalization is that it can be used with any linear
regression model, which means that it is also suitable for a logistic regression
model with binary response (Hastie et al., 2009, p. 125). For Lasso regression (;-
penalty), a penalized version of the log-likelihood function (cf. expression (2.1)) is
to be maximized (Hastie et al., 2009, p. 125):

n

boenatized(B) = Y [ui(x{ B) — log(1 + exp(x{ B))] — Al|BI|1- (3.2)

i=1

Geometric properties of the Lasso

The specific about the Lasso is that some of the estimated regression parameters
may exactly be zero, which implies a variable selection. The reason for this is the
£1-geometry which is based on the #;-norm (Biihlmann and van de Geer, 2011, p.
9). For a graphical description of the #;-geometry let us assume p = 2. Because of
the quadratic form of the parameters which results from solving the least squares
criterion, the contour lines of these parameter values are ellipses with the specific
shape determined by XX, and center at the least squares estimator (Fahrmeir
et al., 2013, p. 211). For p = 2 the £;-geometry defines diamond-shaped contour
lines (Fahrmeir et al., 2013, p. 213). See figure 3.2 for a graphical illustration.
The Lasso regression estimators arise as the points of intersections between the
£1-penalty and the ellipses, based on the least squares criterion. If the contact
point is located in one of the corners of the diamond, some of the coeflicients will
be estimated to be zero (Fahrmeir et al., 2013, p. 213).

The tuning parameter ¢

The estimations of the Lasso coefficients and especially the number of selected pre-
dictors are dependent on the hyperparameter ¢ or A (see, for instance, Tibshirani,
1996). The hyperparameter controls the strength of penalization.

A = 0 leads to the non-penalized least squares estimator (in the case of its exis-
tence), whereas the regression parameters shrink with increasing A. Vice versa, for
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Figure 3.2: Graphical illustration of the least shrinkage and selection operator (cf.,
for instance, Tibshirani, 1996).

t = 0 all estimators equal zero and the penalization decreases with increasing £.
The choice of an appropriate penalty parameter is crucial, since it influences the
whole analysis. Tibshirani (1996) describe three methods for the estimation of
an optimal tuning parameter £: cross-validation, generalized cross-validation and
an analytical unbiased estimate of risk. The first two methods are appropriate in
the case where the observations (X,y) are drawn from some unknown distribu-
tion (Tibshirani, 1996). The third analytical estimate applies to the X-fixed case
(Tibshirani, 1996).

It is prohibited to perform the parameter tuning a posteriori and to just report the
best results (see Slawski et al., 2008). In the present thesis the tuning parameter
t is chosen via a 5-fold cross-validation. The corresponding criterion is the error
rate which has to be minimized. See Appendix B for a detailed description of the
parameter tuning process.

3.2.2 Derivation of the omics score using the Lasso

The regression coefficients ﬂ},am,l, ey 31,0,,_,,,,,, (hereinafter, for generating the omics
score, no intercept term ﬁmsso,g is used) of the p available gene expressions, which
has been estimated via the Lasso, can be used as weights wy,...,w, to compute
the linear molecular score (cf. expression 2.2).

Let again X = (x,...,X,)" denote the gene expression levels of n observations,
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n o n T
and 8;,.,, = (ﬁLM,ao,l, . ,ﬁLaaso,p) their corresponding estimated Lasso coeffi-

cients, derived by the regression model

P(yi = 1|x1) = exp(BLEsso’l Tat.. BL(issso,P ) x‘iP) )
1+ exp('BLa‘”a’l 2 R O ﬁLasso,p ' -'Eip)

For an observation 7 the omics score can be generated as

Lscorei = JBLasso,l " Ty + ﬂLasso,Z "Tipg+...+ ;BLasso,p * Tip- (33)

Since our primarily objective is the comparison of non pre-validated and pre-
validated molecular scores, we will also adapt the pre-validation approach for the
usage of the Lasso.

3.2.3 Pre-validation adapted for the Lasso

For this purpose, the estimation of the Lasso coefficients is included into the pre-
validation loop:

1. Divide the available observations into G approximately equal-sized groups.

2. Leave group g out and perform a Lasso regression on the remaining obser-

vations to derive the vector 3 Lasf,o’ “ including regression coefficients for every

molecular predictor.

3. Compute the linear molecular score for person ¢ € o(g) as weighted sum over

all molecular predictors with 8 Laaia) I used as weights.

o) fo@] | Bl Lot

Tscorei = MLasso,l * il Lasso,p * Tip

4. Repeat steps 2-3 for every group g =1,...,G.

In comparison with Equation (3.1), in step 3 of this routine the omics scores for

observations of group g are computed by applying the Lasso regression coefficients

J¢] Las(j,)] (derived on observations not in group g) on the reduced data X[,

3.2.4 Implementation in R

The generation of the omics score using the Lasso has been implemented in R
through two functions: lasso.with.prevalidation(-) and lasso.without.pre-
validation(-). The former computes the pre-validated omics score, while the
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latter computes the non pre-validated version of the molecular score.

The input consists of the binary response vector y, the matrix of gene expression
values X, and the term norm.fraction which corresponds to the tuning param-
eter ¢ (smaller values yield higher penalization). As default, ¢ is chosen via a
5-fold cross-validation. If the pre-validated molecular score should be computed
the number of pre-validation folds has to be additionally inputted.

The Bioconductor package CMA developed by Slawski et al. (2008) forms the basis
of both functions. The package allocates the function LassoCMA(-) for estimating
£;-penalized regression models for binary outcomes. Furthermore, the function
tune(-) is used to chose the optimal value for the tuning parameter ¢ via a cross-
validation.

Both functions, lasso.with.prevalidation(-) and lasso.without.prevalida-
tion(-), output the estimated Lasso coefficients for every molecular predictor. In
case of pre-validation, a list containing the vectors of the Lasso estimators for ev-
ery pre-validation fold is outputted. If the omics score has been obtained without
pre-validation, the output is the single vector of the Lasso regression coefficients.
Subsequently, the function score(-} has to be invoked. After the deliveration of
an outcome object obtained from on of the two functions lasso.with.prevali-
dation(-) or lasso.without.prevalidation(-), it computes the score values for
every observation.

Among regularization approaches, dimension reduction techniques are frequently
used for classification in high-dimensional settings. In the present thesis also a
supervised principal component analysis is applied to derive the molecular score.
Details of this procedure are given in the next section.

3.3 Supervised principal component analysis

3.3.1 Principal component analysis

Generally speaking, principal components are a sequence of the data, mutually
uncorrelated and ordered in variance (Hastie et al., 2009, p. 534). With the aid
of principal component analysis, the latent structure of a data set can be revealed
i.e., genes with similar component loadings can be identified to construct groups
of genes with similar expression profiles (Peterson, 2013, p. 161).

The main goal of principal component analysis is to represent the data in terms
of a smaller number of variables which already comprise a large amount of the
whole variability (Nikulin and McLachlan, 2010, p. 82). These new variables i.e.,
the principal components can then be used as covariates in a regression model,
instead of the original variables. This special form of regression is called principal
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component regression (see, for instance, Fahrmeir et al., 2013, p. 159).

The principal components, which are uncorrelated linear combinations of the orig-
inal variables, capture the largest proportion of the variance in the original data
in a minimal number of dimensions (Nikulin and McLachlan, 2010, p. 82). It
means that although a dimension reduction is performed, the loss of information
is minimal.

Following Tutz (2013), the statistical background of principal component analysis
based on observations will be described below.

1
Let us assume that 8§ = ——X "X € RP*? is the empirical covariance matrix of

the (column-) centered data matrix X = (xy,...,%,)" with x] = (21;,...,%a;).
For the derivation of the first principal component ¢; € R*™, we need to find
a vector a; = (oq1,...,01,)" € RP*! which maximizes the variance of the linear
combination

¢1 = aIX =anX1+...+ X1pXp.

It means that
Var(¢,) = Var(a{ X)
= a, Sy
— ﬁ [a] X" Xay
- = [47@]

1 = 5
=n_12¢41—>ﬂggx
=

under the constraint ||c||> = o] @y = 1. The constraint is necessary since the

variance could be increased without limit by increasing the components of o
(Tutz, 2013). ¢, then denotes the first principal component which contains the
largest variability.

Further (maximal » = min(n,p)) principal components are obtained by looking
for weights which maximize the variance under the additional restriction that the
weight is orthogonal to the weights of the previous principal components (Tutz,
2013). This restriction implicates that the principal components are independent
from each other.

So the challenge is to find vectors a, ..., o, such that

Var(¢;) = Var (a] X) = o Sa; — max
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subject to ||a;|? = 1 and oz;,-rcx,‘j =0,8=1,...,7 — 1. With the use of the
Lagrange multiplier A, this maximization problem can be restated to an eigenvalue
problem (see, for instance, Tutz, 2013). So the maximization term is solved by the
eigenvectors a, . .., a, of S, that correspond to the largest eigenvalues Ay > ... >
Ar (Tutz, 2013). For the derivation of the eigenvectors the spectral decomposition
of the covariance matrix is recommended:

S = PAP'.

The columns of P = (e,...,a,) € R™" characterize the eigenvectors of S,
and A € R™ is a diagonal matrix containing the corresponding eigenvalues
(A1,.-.,Ar). So the principal components are represented by & = PTX € R™"
and thus, uncorrelated linear combinations of the original predictors (Tutz, 2013).
The covariance of the principal components is the defined by

Cov(®)=Cov (P'X)=P'SP=A

with Var(e¢;) = A; and Cov(¢h;, ¢;) =0, i # j.

3.3.2 Supervised principal component analysis

As one can see from the definitions above, only the data matrix X is used for
the derivation of the principal components. Such procedures are called “unsuper-
vised”.

This means that the response y is not used to build the principal components
which leads to the problem that there is no guarantee that the principal compo-
nents are correlated to the clinical outcome (Bair and Tibshirani, 2004). Another
disadvantage of unsupervised principal component analysis is the fact that a com-
bination of all available molecular predictors is used to predict the outcome (Bair
and Tibshirani, 2004). Based on the assumption that most of the gene expression
values in the available data set are unrelated to the binary outcome, the predic-
tive ability of the deduced classifier is lessened. Thus, methods, which use only a
subset of genes, generally perform better (Bair and Tibshirani, 2004).

For that reason Bair and Tibshirani (2004) developed a supervised principal com-
ponent analysis for survival prediction. After accomplishing some modifications,
this approach can also be used for binary classification. It will be described below.

The basic idea of supervised principal component analysis is to use only molecular
predictors which are related to the outcome for the generation of the principal
components, instead of using all of them (Bair and Tibshirani, 2004). For the
identification of subsets of gene expressions which are correlated to the binary
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outcome, several methods are available.

In contrast to Bair and Tibshirani (2004) who analyze data with survival outcome,
we will not rank the gene expression values on basis of a so-called Cox score but
regarding to their p-values from the Wald test.

The hypotheses Hy : §; = 0 versus H, : B; # 0 are tested for every available
molecular predictor x;,7 =1,...,p, in an univariate logistic regression model.
During the univariate variable selection it is possible to adjust for the clinical pre-
dictors. Bgvelstad et al. (2009) and Ntzani and Ioannidis (2003) recommend to use
the adjusted version of variable selection to ensure that the principal components
are associated to the outcome in the multivariate model.

From the top-list of gene expressions (sorted in descending order by their p-values),
the first k predictors are used to generate the principal components. For the deter-
mination of k, we can, for example, define a threshold for the p-value, or perform
a cross-validation to tune this parameter. Following van Wieringen et al. (2009},
in this thesis & is not estimated but set fix to & = 25. This will guarantee sets of
molecular predictors of equal size for every pre-validation fold.

After variable selection was performed, X is only composed of the & top molecular
predictors, not of all available gene expressions. Apart from that, the super-
vised principal component analysis follows the same principal component analysis
scheme as depicted above.

Because the intended aim is the generation of a molecular score, the next section
will describe how supervised principal component analysis can be used in this
scope.

3.3.3 Derivation of the omics score using supervised
principal components

For this purpose an (univariate) variable selection must be performed on the omics
data to obtain a top-list of relevant molecular predictors. The first k predictors of
this list (i.e. the &k predictors with the smallest p-values) create the data matrix
X, whose principal components shall be determined. The other omics predictors
are not further considered for the principal component analysis.

The obtained principal components can then be used as independent covariates in
a principal component regression model. Bair and Tibshirani (2004), for example,
only use the estimated first or second principal components for predicting the
survival outcome. But they recommend to take a linear combination of several
principal components rather than simply taking the first two principal components
to improve the predictive power of the model (Bair and Tibshirani, 2004). In the
present thesis, the number m of principal components that should be used in the
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prediction model, is determined via a 5-fold cross-validation, where the maximal
number of principal components is chosen to be 10.

Currently, we have obtained m supervised principal components that are linear
combinations of the original molecular predictors and which are chosen for outcome
prediction in the regression model

Py =1|¢;) = exp(Bauperpc,t - $ir + - - - BouperPC,m * Pim)
' ) 1+ exp(l@superPC,l ' ¢il +... ﬁsuperPC,m ) ¢:’m)

" ~ ~ T
This yields a vector of regression coefficients B,,,c.pc = (ﬁmpﬂ PC1s- s BeuperPCm

for every principal component which are then used as weights for obtaining the
molecular score Xg.,r.. In other words, the omics score for an observation i =
1,...,n is computed as

Lscare; = l@superPC,l * ‘;bil +...+ }BauperPC,m ' ¢im-

3.3.4 Pre-validation adapted for supervised principal
component analysis

To use supervised principal component analysis in the scope of pre-validation, one
can use the following routine:

1. Divide the available observations into G approximately equal-sized groups.

2. Leave group g out and

a) perform (univariate) variable selection on the remaining observations to
obtain a top-list of the molecular predictors.

b) Perform a principal component analysis on the basis of the first & = 25
predictors in the top-list.

¢) Determine the number of principal components m that should be used
as predictors via a 5-fold cross-validation.

d) Use the first m of the derived principal components as independent

covariates in a multivariate (logistic) regression model to estimate the
A[—o(g)]
vector ﬁsuper PO
component.

including the regression coefficients for every principal

3. Compute the linear molecular score for person ¢ € o(g) as weighted sum over

the m principal components with ﬁ;:;fﬂ po used as weights

[—e(g)] ¢[_t;(g)] + .+ B[—O(g)] [o(g)]

Tscorei = 6auperPC,1 ) superPC,m ~ Yim
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4. Repeat steps 2-3 for every group g = 1,...,G.

3.3.5 Implementation in R

For the computation of the supervised principal component score on basis of the
molecular data, two functions have been implemented in R: superpc.with.preva-
lidation(-) and superpc.without.prevalidation(-), whereby the former gen-
erated the omics score with pre-validation, and the latter without pre-validation.
The number of genes in the top-list (default £ = 25), the maximum number of
principal components to use as predictors (default max{m) = 10) as well as the
number of cross-validation folds for the determination of m can be given as argu-
ments.

The variable selection can either be performed while adjusting for the clinical pre-
dictors, or not. The first & = 25 predictors of the derived top-list are passed to the
R-function prcomp(-) from the package stats which performs an R-mode principal
component analysis via the singular value decomposition of the correlation matrix
of X, since the results of the principal component analysis are scale-dependent.
The m chosen principal components which are determined via a cross-validation
within the function number. of .pes.cv(-), are then used as independent covariates
in a multivariate logistic regression model. To deal with the problem of separa-
tion which leads to infinite estimates and standard errors, we use the function
brglm(-) from the R-package of the same name. It fits a generalized linear model
using Firth’s (1993) modified score procedure. That is, the maximum likelihood
estimate f; is not solution to the score function

6;%?) = Z(% — m)3 =0

i=1

but to the modified score function

n

Z (yf _772""’%(% —Wi)) i (G=1,---,p)

i=1
where h; denotes the i-th diagonal element of the hat matrix
H= WX (XTWX) " X"W'2,

with W = diag {m;(1 — m)}. For further details see, for instance, Heinze (1999).

Following this, the supervised principal components and their related coefficients
outputted from the functions superpc.with.prevalidation(-) or superpc.with-
out.prevalidation(-), are passed to the function score(-) which in turn com-
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putes the score values of the pre-validated or non pre-validated omics score for
every observation in the data.

After the omics score has been generated and the prediction rule has been built,

we can focus on the actual problem of how the added predictive value can be
measured.
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4 Assessment of the added
predictive value

Boulesteix and Sauerbrei (2011} and De Bin et al. (2014) provide different tech-
niques to assess the added predictive value. In the present thesis we will focus on
two of them:

e testing the molecular score in a multivariate regression model adjusting for
clinical predictors, and

e evaluating the predictive accuracy of the models with (combined model) and
without (clinical model) the molecular score.

Since the main objective of this thesis is to determine whether pre-validation fulfills
its tasks during the assessment of the added predictive value, we will describe the
following approaches under the assumption that the molecular score is tested on
the same data set on which it has been generated. Besides that, we follow the
manner of De Bin et al. (2014) in the description below.

4.1 Testing the molecular score in a multivariate
regression model

With respect to the multivariate regression model in expression (2.3) and its cor-
responding linear predictor

i = Yo —+ Y- Za +...+ ’Yq : zz'q + )Bscoremsom‘e,‘ia

we assess the added predictive value of the molecular predictor by testing the
hypotheses
Hy: Bscore =0 versus Hj : Boeore 0.

This allows to draw conclusions about the connection between the molecular score
and the response y. For this purpose we use the Wald test in the present thesis.
However, the likelihood ratio test or the score test would also be possible.

If the resulting p-value is smaller than a pre-defined significance level, the regression
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coefficient B,.ore differs significantly from zero.

As mentioned above, the omics score usually tends to overfit the data at hand,
whereby the regression coefficient Bcore as well as the corresponding p-value is
biased. For that reason we will check these results against the results brought
from the pre-validated omics score. It means that we will also test the significance
of the regression coefficient Hgeore Of the pre-validated molecular score from the
following model:

exp(’yO + s +...+ Yq * Zig + B’sco‘re : Escore,i)
1 + exp(’)'ﬂ + Y12 +...+ fYq - ziq + ﬁscore ° Escore,'i)

Py = 1|x;,2:) =

In the case that we can overcome the problem of overfitting by the usage of pre-
validation, we expect on the one hand that the regression coefficient of the pre-
validated omics score is smaller than the coefficient of the non pre-validated omics
score i.e., Byeore < Bscore- And on the other hand, we expect the p-value of the
pre-validated omics score to be larger than the p-value of the non pre-validated
omics score § > p.

However, with reference to Altman and Royston (2000) usefulness is determined
by how well a model works in practice, not by how many zeros there are in the
associated p-values. Furthermore, it should be emphasized that the p-value de-
creases with increasing sample size and we will not get any information about the
predictive ability of the prediction model while using this approach.

Thus, besides assessing the added predictive value by testing the significance in a
multivariate regression model, it is also common practice to evaluate the prediction
accuracy of the obtained model via investigating the discrimination ability within
the scope of model validation. But also for this validation strategy, overfitting
displays a serious issue.

4.2 Evaluating the predictive accuracy of the
clinical and the combined model

For this approach, we usually need to fit two prediction models. Both of them are
multivariate logistic regression models

exp(m:)

Py, = 1|x;,2;) = T+ exp(m)’

but they differ in their linear predictor.
Model 1, the clinical model, consists of the clinical predictors and has the linear
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predictor .

Tifhﬂ=’}’o+71'Zz'1+---+’7q'zzrq-
The second model considers the clinical predictors and the molecular score. The
corresponding linear predictor is represented by

n:“""b:r}ro+fyl-zil-l-...-l-’)/q'Z¢q+ﬁscore‘-'5score.--

Afterwards, the prediction accuracies of both models are compared.

The omics score provides additional predictive power if the prediction accuracy of
the combined model is superior to the prediction accuracy of the clinical model
(De Bin, Herold and Boulesteix, 2014).

Since the combined model is again fitted on the same data set which has been used
for score generation, we expect this model to overfit the data at hand. If so, the
combined model would seem to have better predictive power than it actually has.
To avoid overfitting, we will also fit a third prediction model including the clinical
predictors and the pre-validated molecular score, with the linear predictor

nfre"="m—|—"yl-Zﬂ+...+’Yq'zéq+i§soore'isca'r‘eu

and compare it to the clinical and combined model from above.

In case of pre-validation fulfills its tasks, we expect the third model to perform
worse than the second one, since the outcome y has not directly been used for
score generation.

For the measurement of the prediction accuracies of these three prediction rules, we
consider their discriminative ability. It measures how well the obtained prediction
rule can distinguish between the two response classes y = 0 and y = 1.

Discrimination

To determine the discriminative ability we can proceed as follows with reference
to Giancristofaro and Salmaso (2003).

First, we split our observations into two sub-groups, with one group containing all
observations with positive outcome, and the other group containing all observa-
tions with y = 0. Afterwards, we use the prediction rule to predict the probabilities
P(y = 1) for a positive outcome for every observation. When plotting the distri-
butions of f’(y = 1) for both sub-groups, we will see how well the prediction rule
distinguishes between positive and negative outcomes. The discriminative ability
is the better the less the two curves overlap each other. Figure 4.1 illustrates ex-
amples for good and bad discriminative abilities. The blue and red curves show
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Good discrimination

cut-off

Bad discrimination

cut-off

Figure 4.1: Examples of good and bad discrimination, modified according to Gi-
ancristofaro and Salmaso (2003). The red and blue areas display false
negative and false positive classifications, respectively.
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respectively the density functions of the observed negative and positive outcomes.

All observations with a predicted probability for a positive outcome greater or equal
than a selected cut-off value are predicted to have jj = 1. Vice versa, observations
with P(y = 1) < cut-off are classified to response class § = 0:

. [1 P(y=1)> cutoff
0 P(y=1) < cut-off.

The natural consequence is the occurrence of misclassification which is illustrated
by the colored areas in Figure 4.1. The blue areas display false positive classifica-
tions and the red areas false negative classifications. The best cut-off value is the
probability where the chance for a wrong classification is minimal.
If a cut-off value is chosen, we can construct the classification table (fourfold ta-
ble) which contains the frequencies of correct and incorrect classifications (see
Table 4.1).

With the aid of Table 4.1 the (conditional) probabilities of correct and incorrect

0

y=1|y

7=

y=10

e T

Table 4.1: Classification table

classifications can be computed.
Sensitivity denotes the probability of correct positive classifications, i.e.

a
itivity = Plg=1ly=1) = .
sensitivity (=1ly=1) p
On the contrary,
e . d
specificity = P(§ =0y =0) = —

measures the probability of correct negative classifications.

Both sensitivity and specificity are computed for every possible cut-off value.
When afterwards plotting sensitivity against 1— speci ficity i.e., the true positives
against the false positives, we derive the so-called receiver operating characteristic
(ROC) curve. The area under the ROC curve (AUC) is a measurement of the
discriminative ability of the prediction model (Giancristofaro and Salmaso, 2003).
The AUC ranges from 0.5 to 1, where 0.5 corresponds to a random classification —
for example by coin tossing — and 1 corresponds to perfect discrimination. Thus,
a prediction rule performs the better the closer its AUC is to 1.
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4.3 Implementation in R

For the practical realization of these two validation strategies, we use already ex-
isting R-functions. To fit the multivariate regression models, we again use the
function brglm(-) from the R-package of the same name. It computes the bias-
reduced regression coefficients developed by Firth (1993} and also outputs the
p-values derived by the Wald test. The area under the receiver operating char-
acteristic curve, which represents the discriminative ability, is computed with the
aid of the R-function performance(-) from the package ROCR.
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5 Practical application

For the data-based comparison of pre-validated and non pre-validated molecular
scores in binary classification both simulated and real data are used. Firstly, the
simulation design and its implementation in R will be described. Later, the real
data set used in this thesis is introduced.

5.1 Data simulation

The simulation of the data consists in artificially generating a data set with char-
acteristics similar to real examples. It is an established procedure to test new
methods, like the classification rules introduced in this thesis. The main advan-
tage of this kind of data is that the truth is known. So we are able to compare the
results with the truth and to figure out how well, for example, the classification
rule works.

For the purposes of this thesis, it is necessary to simulate both clinical and omics
data. Following the procedure of Oelker and Boulesteix (2013), we assume that the
clinical predictors Z = (z,...,%,) and the molecular predictors X = (xy,...,%;)
follow a normal distribution. Consequently, all predictors (Z, X) € R"*(¢+?) can be
generated from a multivariate normal distribution MV N(u,3), where the mean
is chosen to be zero for every predictor, g = (0, ...,0)" € R@®x1,

Before specifying the covariance matrix

( UZ1,Z1 ‘s Uzl,zq 021,X1 [P O'thp \
3= 0z92n -~ 9242y | TZg, X, - 9ZyXp € R(Q+P)X(‘J+P)
H
Ox1,20 -+ O0X1,Z, | 0X1, X1 -+ OX1,X,
\ O—Xp,Zl UXp,Zq UXp,X]_ UXp,Xp /

we will make some conjectures about the correlation structure which is closely re-
lated to 3. To be as close to truth as possible, we assume that some of the clinical
and the molecular predictors are to be correlated among themselves and to each
other.
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The correlation matrix is a symmetric block matrix which can be written as

Pz Pzx
R = c R(‘I+P)X(Q+P), (5.1)

Pxz Px

where the blocks p;, px and p,x = pi, denote the correlation matrices of the
clinical, the molecular and among the clinical and the molecular predictors, re-
spectively. Appendix C contains a detailed description of the correlation matrix.
To simulate data sets with a pre-specified correlation structure, different techniques
can be used. One possibility is to use the correlation matrix directly as covariance
matrix. Therefore, it is necessary to make two restrictions. Firstly, the correlation
matrix and the covariance matrix are identical if the standard deviations of two
variables is 1. The consequence of this is that diag(3) = 1, i.e. the variables are
standardized.

The other important restriction refers to the property of positive (semi-) definite-
ness of both correlation and covariance matrices. Thus, R, must be positive (semi-)
definite. Because it is not very likely that an arbitrary created matrix R, is pos-
itive (semi-) definite, the most similar positive definite matrix to the given matrix
is compiled.

For this purpose we use the algorithm described by Higham (2002) which com-
putes the nearest correlation matrix R achieving the minimum of the distance
||Rers — R|| based on a weighted version of the Frobenius norm. Furthermore,
R has to be symmetric. If these restrictions are complied, we can simulate the
predictors from the distribution MV N (g, R).

Another possible way to simulate correlated predictors following a multivariate
normal distribution is to use the Cholesky decomposition of the given correlation
matrix R = U U. In order to do that, every predictor is simulated from a stan-
dard normal distribution N(0,1). Multiplication of the upper triangular matrix
U, derived by the Cholesky decomposition of the correlation matrix, with the
matrix of the standard normal distributed predictors (Z, X), yields a transformed
data set ((Z,X)U) € R™*+? with the pre-specified correlation structure. For
this approach the correlation matrix must also be symmetric and positive (semi-)
definite with diag(R) = 1.

Up to this point, both the clinical and the molecular predictors Z and X are
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simulated. After the specification of the regression coefficients 3 and -y, the linear
predictor can be computed for every observation ¢, i = 1,...,n. On basis of a
logistic regression model, the probability for a positive response can be computed.
The response variable is a Bernoulli random variable, where

eXPiTi
Ply; = 1|xi,25) = l—Fe—JEp()n-)'

The values of the binary outcome y; are then generated with the aid of a Bernoulli
distribution with probability #;.
In the present thesis six different simulation settings are generated. They have
been developed in collaboration with Dr. Riccardo De Bin from the Department
of Medical Informatics, Biometry and Epidemiology of the University of Munich,
who will also use similar simulation settings in future publications.

5.1.1 Simulation Settings

For every setting n = 200 observations are simulated. The number of clinical and
molecular predictors is set to ¢ = 10 and p = 1000, respectively. In every setting
we discern between informative and non-informative predictors. It means that
the clinical as well as the omics predictors may influence the response (regression
coefficient # 0} or not (regression coefficient = 0).

The number of informative clinical predictors is specified to be 6, while the number
of non-informative clinical predictors is to be 6. The regression coefficients of the
clinical predictors are

v={m,.--,10) =(-2,-15,-1,1,1.5,2,0,0,0,0)"

in each setting.

Within the molecular predictors, 20 of them are determined to influence the out-
come while the other 980 are not related to y in the first four simulation settings.
As for the clinical predictors, we also fix regression coefficients for the omics pre-
dictors in settings 1-4,

B=(6,-..,80, 81, Boo0) =(0.75,...,0.75,0,...,0)" .

Within the last two settings, B is equal to 0. It means that the molecular covariates
do not influence the outcome at all. In general, we simulate six settings which vary
in terms of the predictive ability of both the clinical and the omics predictors. See
table 5.1 for an overview of the simulation settings.
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Predictive ability

of clinical data

high low
Prfe(.ilctlve high | setting 1 setting 3
ability of . .
molecular low | setting 2 setting 4
data no | setting 5 setting 6

Table 5.1: Overview of the simulation settings.

Setting 1

In the first simulation scenario both the clinical and the molecular predictors affect
the outcome strongly. With the aid of the correlation structure of the predictors
we can additionally exert influence on the predictive ability. In this case, we want
the clinical and the molecular predictors to be only low correlated to each other
and among themselves. This will cause both predictor types to be crucial for
predicting the response and thus, the omics predictors to supply a large added
predictive value. As well as QOelker and Boulesteix (2013) we will use the values
p = 0.2 and p = 0.8 for low and high correlations, respectively.

Setting 2

In the first simulation setting the 20 informative molecular predictors are supposed
to have low predictive power. If the clinical predictors have high predictive ability,
such as in this case, it is advisable to take a low correlation as basis. This has the
consequence that the outcome mainly depends on the clinical predictors, which
already explain a crucial part of the outcome variability. As opposed to this,
the molecular predictors, which should provide a small contribution to outcome
prediction, are simulated with high correlations among them and to the clinical
predictors. As a result, they can merely explain a minor amount of the outcome
variability.

Setting 3

In contrast to setting 2, the molecular predictors are supposed to have a high
added predictive value. The clinical predictors, however, shall have just low pre-
dictive ability. To emphasize the predictive abilities, the clinical predictors are
high correlated among themselves. As a result, the predictive power of the clinical
part ig narrowed. Vice versa, the omics predictors should have a small correlation
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coefficient. Thus, added predictive value of the molecular predictors is increased.

Setting 4

In the fourth scenario, the clinical and the molecular predictors are highly corre-
lated to each other and among themselves. Consequently, the added predictive
value of the molecular data is small.

Setting 5

In contrast to the first four simulation settings, the molecular predictors should
have no predictive power. Their correlation structure is neglected for this situation.
It means that the molecular predictors are neither correlated among themselves
nor to the clinical predictors. The other way round, the clinical predictors should
strongly be related to y. They are low correlated to each other.

Setting 6

The last simulation setting differs from Setting 5 with regard to the predictive
ability of the clinical predictors. They are strongly correlated to each other and
thus their prediction power is narrowed.

5.1.2 Implementation in R

For the practical realization of the simulation the R-function simulation(-) has
been implemented. For the generation of a data set, the following parameters
have to be pre-specified and provided to the function: the number of ohservations
n, the number of both the clinical and the molecular predictors, the regression
parameters <y and 3, defining the influence of the predictors on the outcome, and
the block correlation matrix R € R{#+P)x{e+P) containing the correlation structure
that shall be achieved in the resulting data matrix.

The normal distributed data are either generated with aid of the R-function rnorm(-)
from the package stats, or the function mvrnorm(-) from the package MASS, de-
pending on whether Cholesky’s decompositions is used or not.

To ensure that the inputted correlation matrix is at least positive semi-definite,
its eigenvalues are checked to be greater than or equal to zero. Otherwise, the
R-function nearPD(:) from the package Matrix computes the nearest positive def-
inite matrix.

After the simulation of the clinical and molecular predictors is completed, the vec-
tor of the outcome y can be simulated using the function rbinom(-).
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Besides simulated data, we will also use real data to compare the pre-validated
and the non pre-validated omics scores. The description of the real data can be
found in the following section.

5.2 Breast cancer data

The real data set to be analyzed in the present thesis is taken from Hatzis et al.
(2011). A huge advantage of this data is that it is freely accessibly online.
Originally, this data set served for predicting response and survival outcome from
chemotherapy for newly diagnosed invasive breast cancer (Hatzis et al., 2011). The
goal was to figure out whose clinical-pathologic risk at presentation favors the use
of chemotherapy since it improves survival prognosis (Hatzis et al., 2011).

The collected data originate from a prospective multicenter study conducted from
June 2000 to March 2010 at the M. D. Anderson Cancer Center in Houston, Texas
(Hatzis et al., 2011) . They included a total of 310 patients in the training data
and 198 patients in the validation data with newly diagnosed ERBB2 (HER2
or HER2/neu)- negative breast cancer treated with chemotherapy (Hatzis et al.,
2011). For our purpose, we will only use the training data from Hatzis et al.
(2011). After the exclusion of the missing values, we have 281 observations left.
Furthermore, patients with indeterminate progesterone status are not further con-
sidered, since this group only includes 4 observations. Likewise, the two patients
with tumor grade “T0” are excluded from further analysis. Altogether the data
set consists of 275 patients.

With the aid of gene expression microarrays from Affymetrix, different predictive
signatures for resistance and response to preoperative (necadjuvant) chemother-
apy have been developed (Hatzis et al., 2011).

For the usage of Hatzis’ breast cancer data in the context of binary classification,
the response of the tumor to neoadjuvant chemotherapy forms the new outcome.
The residual cancer burden (RCB) developed by Symmans et al. (2007), helps with
the quantification of residual tumor and is based upon the fact that the neoad-
juvant chemotherapy influences the morphologic changes of the residual tumor
(Schermann, 2014). Generally, there are four groups of residual cancer burden:

RCB-0: no residual disease,
RCB-I: minimal residual disease,
RCB-II: moderate residual disease, and
RCB-III: extensive residual disease.

It could be shown that residual cancer burden is highly associated to the tumor
response, wherefore the binary outcome is built as ¥ = 0 if residual cancer burden
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is of RCB-0 or RCB-I which equals a high advantage of neoadjuvant chemotherapy
and y = 1 if residual cancer burden is of RCB-II or RCB-III. Thus, ¥ = 1 repre-
sents a poor prognosis for patients despite neoadjuvant chemotherapy (Schermann,
2014).

Summarized, the outcome variable can be outlined as

__ |0 chemosensitivity (no or minimal residual disease)
1 chemoresistance (moderate or extensive residual disease)

after neoadjuvant chemotherapy. For the prediction of the residual cancer burden
six clinical predictors are used. The age of the patients, the progesterone receptor
status, the estrogen receptor status, the tumor stage, the nodal status, and the
tumor grade. The baseline characteristics of the clinical predictors are described
in Table 5.2.
Furthermore, for every patient 22,283 probe sets (gene expression values) have
been collected for outcome prediction.

In the next section the classification results of the simulated as well as the real
data is represented.

5.3 Results

Altogether, seven regression models have been fit to the simulated data.

Three models each with a non pre-validated and a 5-fold pre-validated omics score
have been fit using the Lasso, the superPC analysis without adjustment for the
clinical predictors during variable selection, and the superPC analysis with ad-
justment for the clinical predictors during variable selection. The seventh model
is the clinical model, only containing the clinical predictors. An overall view of all
results are represented in Appendix D.

The value G = 5 for the number of pre-validation folds has been chosen since it is
a common value for cross-validation, which is very similar to pre-validation (see,
for instance Tibshirani and Efron, 2002). Leave-one-out (G = n) pre-validation
would be deterministic and the variance estimates would be high. Small values
for G would lead to too small training sets relative to the full training set (Tib-
shirani and Efron, 2002). Furthermore, G = 5 leads to good tradeoff between the
complexity of pre-validation and computation time.

Simulation setting 1

Looking at the results of simulation setting 1 in Table 5.3, we can as anticipated
see that the regression coefficients of the pre-validated scores (right part of the
table) are all smaller than their non pre-validated counterparts.
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Training cohort Validation cohort

Age

Mean(SD) 50.29 (10.68) 49.7 (11.04)
Progesterone receptor status

Negative 148 (0.53) 50 (0.46)

Positive 129 (0.47) 58 (0.54)
Estrogen receptor status

Negative 117 (0.42) 33  (0.31)

Positive 160 (0.58) 75 (0.69)
Tumeor stage

1 19 (0.07) 3 (0.03)

2 153 (0.55) 58 (0.54)

3 57 (0.21) 28 (0.26)

4 46 (0.17) 18 (0.17)
Nodal status

0 84 (0.30) 41 (0.38)

1 127 (0.46) 46 (0.43)

2 37 (0.13) 15 (0.14)

3 29 (0.10) 6 (0.06)
Tumor grade

1 18 (0.06) 9 (0.08)

2 113 (0.41) 36 (0.33)

3 146 (0.53) 63 (0.58)

Table 5.2: Baseline characteristics of the clinical predictors in Hatzis’ breast cancer
data.

It is also recognizable that the p-values of the Wald test are clearly higher than
common significance levels like 1 % or 5 %. This result is according to our ex-
pectations since in the first simulation setting the molecular predictors own high
prediction ability and are thus important for outcome prediction.

Furthermore, the results of the supervised principal component analysis show
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Without 5-fold

pre-validation pre-validation

% Bacore 2.09091 1.36930
= Pocore  9.75:107° 2.69-10~7
AUC 0.95280 0.92069

o E g Brooe 1.1550 0.45038
T F E Dure 294107 1.11-10~5
% é’ AUC 0.97560 0.89999
= Bascore 1.77087 0.77207

? Pocore  1.88-1078 1.67-10°
AUC 0.98880 0.90929

Table 5.3: Comparison of pre-validated and non pre-validated molecular scores in
logistic regression models on simulation setting 1.

higher regression coeflicients if adjustment for the clinical predictors has been per-
formed during the variable selection process. Looking at the values of the AUC,
it occurs that the combined model including the pre-validated omics score clearly
has lower values and thus, less discriminative ability. The clinical model has an
AUC of the value 0.85839 i.e., it has lower discriminative ability than all of the
combined prediction models.

Simulation setting 2

As well as in the first setting, all of the pre-validated omics scores have regression
coefficients of larger (absolute) values than the non pre-validated molecular scores,
as can be seen from Table 5.4. However, the different signs of the regression
coefficients of the superPC-scores catch the eye.

For each of the three approaches, the non pre-validated omics scores significantly
influence the response. The p-values of the superPC-scores are clearly larger in
case of pre-validation has been performed. Both of them exceed commonly used
significance levels. The pre-validated molecular score derived by Lasso regression
generates less obvious results. Admittedly, the p-value decreases but it lies in the
borderline between the two mentioned significance levels. It means that for the
choice of 0.05 as significance level, the regression coefficient of the score differs
significantly from zero, whereas it does not for the significance level 0.01.
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Without 5-fold

pre-validation pre-validation

% Bocore 4119985 1.78445
= Pacore 0.000729 0.040145
AUC 0.99130 0.98289
o E g Brooe 0.96547 -0.002267
% F E Duwe  0.004812 0.994465
% é’ AUC 0.98709 0.98099
= Bscore 4.77079 -0.61718
? Pocore  0.000259 0.276850
AUC 0.99950 0.98279

Table 5.4: Comparison of pre-validated and non pre-validated molecular scores in
logistic regression models on simulation setting 2.

The AUC's in this simulation setting are again smaller if pre-validation has been
used to generate the omics score. Except for the model with the pre-validated
superPC-score with adjustment, all combined models have a higher AUC than
the clinical model (AUC=0.98099). However, the differences between the AUC
of the clinical model and the combined models containing pre-validated molecular
scores, is not huge.

Simulation setting 3

Within the scope of simulation setting 3 we can observe similar results as in setting
1, where the omics score also provides a large added predictive value. The results
are shown in Table 5.5.

The values of the regression coefficients decrease while the p-values increase when
the score has been derived by pre-validation. Both [-coefficients of the pre-
validated superPC-scores are clearly significant, whereas the p-value of the pre-
validated Lasso-score again lies in the borderline between 0.01 and 0.05. Without
pre-validation each of the molecular scores shows significance.

Also in this setting, the AUC is reduced in the case of pre-validation has been per-
formed during score generation. The discriminative ability of the clinical model
(AUC=0.85343) is exceeded by each combined model.
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Without 5-fold

pre-validation pre-validation

% Bacore 0.74370 0.16428
= Pacore 2.79-10~6 0.010838
AUC 0.90085 0.86416

o E g Breore 1.05846 0.47376
% T B puowe  1.04107° 0.000155
% é’ AUC 0.95599 0.88521
= Bscore 1.59978 0.718874

? Docore  2.33-107° 7.58.10~6
AUC 0.97614 0.89995

Table 5.5: Comparison of pre-validated and non pre-validated molecular scores in
logistic regression models on simulation setting 3.

Simulation setting 4

Without 5-fold
pre-validation pre-validation

% Bucore 1.68618 1.19081
= Pacore 0.000124 0.005002
AUC 0.97949 0.99179

E ;:2: £ Bscore 0.7899 0.36192
5 B E Peeore 1.13-1075 0.005157
§ % AUC 0.98920 0.97109
= Biscore 1.23909 0.36265

g Pscore  5.68-107° 0.057260
AUC 0.99130 0.96639

Table 5.6: Comparison of pre-validated and non pre-validated molecular scores in
logistic regression models on simulation setting 4.
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Simulation setting 4 indicates low predictive ability for both the clinical and the

omics covariates. It can be observed from Table 5.6 that without pre-validation
each regression coefficient differs significantly from zero. With pre-validation the
coefficients decrease but only the S-coefficient of the superPC-score with adjust-
ment looses its significance.
We can see that the model with the pre-validated Lasso-score has a higher AUC-
value than its non pre-validated counterpart. The superPC-score lead to lower
AUC's in case of pre-validation. All of the combined models outperform he dis-
criminative ability of the clinical model (AUC=0.96239).

Simulation setting 5

Without 5-fold
pre-validation pre-validation
% Bscore 0.05065 0.06716
~ Dscore 0.301241 0.160883
AUC 0.9373 0.9384
E g £ Bacore 0.70669 -0.252203
5 B % Dscore 1.21-10°5 0.086206
§ _% AUC 0.9626 0.9393
= Bacore 1.23909 0.36265
g Dscore 1.11-1078 0.84399
AUC 0.9914 0.9355

Table 5.7: Comparison of pre-validated and non pre-validated molecular scores in
logistic regression models on simulation setting 5.

In the fifth simulation setting the differences between pre-validation and non
pre-validation are not as clear as expected. The results are displayed in Table 5.7.
Applying pre-validation to the Lasso yields a larger regression coefficient ans a
smaller p-value in marked contrast to our expectation. It is noteworthy that
the non pre-validated Lasso score is closer to the truth than its pre-validated
counterpart. In line with setting 2, the signs of the superPC-scores reverse when
pre-validation is performed. However, none of the regression coeflicients of the pre-
validated scores shows significance. The AUC of the clinical model is 0.9353 and
thus very close to the AUCs of the combined models including the pre-validated

47



scores. It means that altogether no added predictive value can be revealed which
is in common with the simulation design.

Simulation setting 6

Without 5-fold
pre-validation pre-validation

% Bscore -0.09667 -0.210018
S Pscore 0.07981 0.005996
AUC 0.96140 0.96620

0 E £ Bacore 1.02174 0.067696
T B E Puwe 139107 0.60744
% .§= AUC 0.98830 0.96030
= Bacore 3.12020 0.26675
g Pacore 1.05:1075 0.48099
AUC 0.99330 0.96010

Table 5.8: Comparison of pre-validated and non pre-validated molecular scores in
logistic regression models on simulation setting 6.

As in the setting before, the molecular data provides no predictive power and the
clinical data owns only low prediction ability. Looking at Table 5.8 we again can
observe that the Lasso-score behaves conversely than expected. The pre-validated
version has a higher (absolute) coefficient value and a smaller associated p-value
than the non-pre-validated molecular score. Both of the superPC-scores are sig-
nificant in case of non pre-validation. However, when applying pre-validation both
of them have p-values clearly higher than the common significance levels. The
clinical model has an AUC-value of 0.95880 which is close to the results of the
pre-validated scores. Also the model including the non pre-validated Lasso-score
leads to similar results.

Altogether, in each of the simulation settings the superPC approach with adjust-
ment for the clinical predictors yields larger (absolute) regression coefficients than
without adjustment. This seems to be consistent with Bgvelstad’s (2009) advice to
adjust for the clinical predictors since then the superPC-score is stronger related
to the outcome. On basis of the simulation results, we cannot generally confirm
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Tibshirani and Efron’s result that the clinical predictors strengthen in case of
pre-validation has been performed. However, in the settings 5 and 6, when the
molecular data has no influence on the response, the regression coefficients of the
clinical predictors become larger when the omics score has been derived with the
usage of pre-validation.

In the following, the results of the analysis of Hatzis’ breast cancer data will be
described.

Hatzis' breast cancer data

Without 5-fold

pre-validation pre-validation
% Bacore 0.35718 0.04025
= Pscore 0.0988 0.34821
AUC 0.78032 0.77487
o E g Pure 112201 0.44676
T E B Peore 243107 0.01195
g _%‘ AUC 0.84077 0.78583
= Bucore 1.02228 0.09555
g Docore  4.68:1071 0.34871
AUC 0.88865 0.77391

Table 5.9: Comparison of pre-validated and non pre-validated molecular scores in
logistic regression models on Hatzis’ breast cancer data.

When looking at Table 5.9 it is recognizable that all pre-validated omics scores have
smaller regression coefficients with larger p-values than their non pre-validated
versions. Both superPC-scores are significant without pre-validation. The non
pre-validated Lasso-score as well as the pre-validated Lasso-score and the pre-
validated superPC-score with adjustment are clearly not significant. The p-value
of the pre-validated superPC-score obtained without adjustment for the clinical
predictors during variable selection, lies in the borderline between 0.01 and 0.05.

The area under the ROC curve is for all models including pre-validated molecular
scores smaller than for the prediction models which contain the non pre-validated
scores, Compared with the AUC = 0.77183 of the clinical model, the inclusion of
the pre-validated omics score leads to higher AUC-values but the difference is not
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huge.

In contrast to all simulation settings, we cannot observe that the adjustment for
clinical predictors during the generation of the superPC-score yvields larger regres-
sion coefficients. Furthermore, only few of the clinical predictors strengthen in
case of pre-validation has been performed.

Considering these results the omics data does not seem to provide an added pre-
dictive value compared to the clinical data. This finding is also consistent with
conclusions of De Bin, Sauerbrei and Boulesteix (2014).

The results can be found in detail in Appendix E.
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6 Summary

High-dimensional molecular data such as microarray data display an actual and
important research area. The handling of the n << p problem and the combi-
nation of low- and high-dimensional predictors is a serious challenge. Also the
validation of the added predictive value of the omics data — in form of a new gen-
erated molecular score — compared to standard clinical predictors on the identical
data set that has already been used to build the score, is a non-trivial issue. Since
microarray predictors tend to overfit the available data, the omics score might
seem to be more relevant for outcome prediction than it actually is.

Goal of the present thesis was on the one hand the implementation of the Lasso
and the superPC analysis in the scope of generating omics scores, and on the other
hand the verification whether pre-validation is an appropriate approach to solve the
problem of overfitting, and allows a fairer comparison between the different types
of predictors. The results of both, the simulated and the real breast cancer data
from Hatzis show that molecular scores which have been derived by pre-validation
have smaller estimated coeflicients in the multivariate regression model adjusted
for the clinical predictors than their non pre-validated counterparts. Analogously,
when applying a Wald test for the determination whether a regression coefficient
significantly differs from zero, we can observe that the pre-validated omics scores
are all less significant than the non-prevalidated ones. Also the measurement of
the area under the receiver operating characteristic curve shows that, apart from
one exception (Lasso-score in simulation setting 4), the prediction models con-
taining pre-validated molecular scores have lower discriminative ability than the
regression models including a non pre-validated score.

Special attention should be given to the results of simulation settings 5 and 6,
where the molecular data has no predictive ability. With exception of the Lasso-
score in setting 6, none of the pre-validated molecular scores is significant in the
multivariate regression model, while most of the non pre-validated scores are. How-
ever, analysis of the AUC do not show such clear results. The clinical model does
not lead to an higher AUC-value compared to the combined models, although the
molecular data has no predictive ability in both simulation settings.

The results of this thesis are altogether consistent with Tibshirani and Efron’s
assertion that pre-validation is a suitable method to at least reduce the problem of
overfitting during the assessment of the added predictive value. However, it should
be noted that pre-validation cannot replace proper validation if independent val-
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idation data is available. Also the application of a permutation test instead of
a standard Wald test should be considered. Since the i.i.d. assumption in the
generalized linear model is violated, the asymptotic distribution of the test statis-
tic is not a t- or normal distribution (Oelker and Boulesteix, 2013, Hofling and
Tibshirani, 2008).

Aside from that, someone should consider that we have many degrees of freedom
in this thesis. Firstly, the binary classification has not necessarily be performed by
a logistic regression model. For example, a probit regression would also be possi-
ble. Extension concerning the linearity of the predictor and interactions between
covariates are not precluded.

Secondly, in the context of pre-validation, the number of pre-validation folds is
optional. Also, for example, in the superPC approach, other selection methods
for generating the top-list would be possible. Boulesteix and Slawski (2009) have
implemented a lot of alternates in their Bioconductor package geneSelector. Ad-
ditionally, besides the Lasso and superPC analysis, other conceivable methods can
be used for score generation, like partial least squares, Ridge regression or random
forests, to name just a few.

Moreover, in the process of data simulation many decisions need to be taken.
The number of observations, the number of clinical and molecular predictors, the
regression coefficients and the correlation structure is freely selectable.
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Appendix

A Derivation of the log-likelihood function in
logistic regression
Assumptions:

i.i.d.

Y ~ B(].,Tf,;),
where m; = P(y; = 1) = E(y;) = h(x/ 8)

Density function:

Flaslm) =78 (1 — ﬂ-i)l—m
Likelihood function:

L(B) " ]_:_[ L(B) = ]_:_[ ¥ (1 —m)' %

Log-likelihood function:

4p) = > _log(Li(8))

= Z {y;log({m;) — y; log(1l — m;) + log(1 — m;)}

i=1
= Z Y log (
i=1

exp(x; B)

Fr i = —————=—— foll
om T. T+ exp(x] B) ollows

1 i ) +log(1 — m;)

i

€B) =3 _ {u(x/ B) — log(1 + exp(x/ B))} .

59



B Tuning of the penalization parameter

The error rate is best explained by using the the classification matrix for two pos-

sible outcomes y = 0 versus y = 1 below.

Truth
y=10 y=1
true false
.5 7 = 0 | negative | negative
kS TN FN
E false true
Ay | 4 =1 | positive | positive
FpP TP

According to this table the error rate £ i.e., the fraction of false predictions, can
be estimated with reference to Slawski et al. (2008) (p. 10) as follows:

B FP+ FN
- TN+TP+FN+FP’

where F'P denotes the number of false positive predictions, TN the number of

true negative predictions, et cetera.
The tuning parameter ¢ can be estimated via the following cross-validation loop:

£

1. Divide the available observations into I subsets of approximate equal size.

2. Leave subset £ out and generate a classifier for every “candidate value” of ¢
based on the Lasso.

3. Estimate the error rate for every candidate value on the left-out cases.
4. Repeat steps 2-3 for every £ € L.

5. Choose the candidate value with the smallest cross-validated error rate for
t.
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C Correlation matrix

Pz Pzx
R = ,
Pxz Px
where
Pz,,2, -+ P22 | PZ1,27 -+ PZ1,Z100
PZg,2, -+ PZ¢,Z¢ | PZ6,27 -+ PZg,Z10
Pz7.2, - PZ7,26 | PZr, 27 --- PZr,Z10
Pz = .
Pzy0,2y + -+ PZr0,%6|PZ10,87 - -+ PZio,Z1wo
L - . - 7
. informative non-ioformative
clinical predictors clinical predictors
Px1.%x1 -+ PX1,Xz0 PX1. Xz -+ PX1,Xw000
PXap, X1 PXa0,X20 | PX20,X21 -+ PXa0,X1000
. Pxa1,X%: PXo1,X20 | PXa1,X21 +++ PXo1,X1000
Px = ) )
PX1000,X1 -+ PX1000,X20 | PX1000,X21 - - PX1000,X1000
informative non-informative

molecular predictors

molecular predictors
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and

Pz X1 -+ P2y, Xao | P21, X021 -+« PZ1,X1000
. . informative

. . . . . . clinical predictors

Pzg.Xy -+ PZgXa | PZe.Xa1 -+ PZs,X1o000

. Pz X1 -+ PZyXoo | P20, Xo1 - PZr, X000
Pzx = : : : non-informative
' ) ‘ * ) ' clinical predictors

PZi0,X1 -+ PZio,X20 |PZ10, X2 -+ + PZ10,X1000

informative non-informative
molecular predictors molecular predictors

The correlation matrix R will have the same structure for the first four simulation
settings, but different values for the strength of correlations between the predic-
tors. It is constructed as follows.

e Informative clinical predictors:
— 73, Zy are correlated to informative omics predictors X, ..., X;;
— Z,, Zy are correlated among themselves;
—+ Xi,..., X5 are correlated among themselves;
— Z3, Z4 are correlated to informative omics predictors X, ..., Xi0;
— Z3, Z, are correlated among themselves;
— Xe, ..., X0 are correlated among themselves;

— Zx is uncorrelated to other clinical predictors, but correlated to non-
informative omics predictors Xs1,. .., Xas;

— Xo,...,Xo5 are correlated among themselves;

— Zg is correlated to non-informative clinical predictors Z;, Zz, and to
informative omics predictors Xy, ..., Xap;

— Zg,...,Zg are correlated among themselves;

— X0, ...,Xop are correlated among themselves;

e Non-informative clinical predictors:
— Zg is correlated to non-informative omics predictors Xog, . .., X30;
— Xgg,...,X3p are correlated among themselves;
— Zjg is correlated to non-informative omics predictors Xsy, ..., X3s;

— Xa1,...,X35 are correlated among themselves;

62



e Informative molecular predictors:

— X is correlated to non-informative omics predictors Xsg, . .., Xa0;
— Xag, ..., Xy are correlated among themselves;

— X3 is correlated to non-informative omics predictors Xy, ..., X4s;
—+ X4, ...,Xys are correlated among themselves;

— X5 is correlated to non-informative omics predictors Xigg, . . ., X110;
— Xiypg, - .., X119 are correlated among themselves;

In simulation designs 5 and 6, the correlations regarding to the (non-informative)
molecular predictors is neglected. That is, the molecular predictors are neither
correlated among themselves nor to the clinical predictors. The clinical predictors
retain the same correlation structure as described above with the exception that
none of them is correlated to any molecular predictor.
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D Results of the analysis of the simulated data

Setting 1

Lasso

Without pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.04249 0.24034  0.177 0.859688

zl -0.76003 0.25993 -2.924 0.003456
z2 -0.46998 0.24188 -1.943 0.052015
z3 -0.21053 0.23044 -0.914 0.360917
z4 1.01431 0.27254  3.722 (0.000198
z5 0.94424 0.27188  3.473 0.000515
z6 1.32174 0.31408  4.208 2.57-107°
z7 -0.04291 0.30935 -0.139 (.889689
z8 0.40820 0.26295 1.552 0.120566
z9 -0.11246 0.23620 -0.476 0.633974
z10 -0.29257 0.22680 -1.290 0.197066
score 2.09091 0.36459 5735 9.75.107°

With 5-fold pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.05845 0.21154  0.276 0.782307

zl -0.64501 0.22516 -2.865 0.004174
72 -0.29824 0.20645 -1.445 0.148571
z3 -0.11581 0.20755 -0.558 0.576868
74 0.89425 0.23873  3.746 0.000180
z5 0.77144 0.23061  3.345 0.000822
76 1.38153 0.27864 4.958 7.12-10°7
z7 0.04164 0.26700 0.156 0.876063
z8 0.46689 0.23053  2.025 0(.042838
z9 -0.01239 0.21138 -0.059 0.953269
z10 -0.15789 0.19564 -0.807 0.419631
score 1.36930 0.26619  5.144 2.69-10~7
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SuperPC, without adjustment

Without pre-validation

(Intercept)
zl
z2
z3

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

Estimate Std. Error

-0.1321
-1.1836
-0.4738
-0.2700
0.8559
0.9586
1.6405
-0.2708
0.1314
0.4145
-0.2096
1.1550

0.2803
0.3435
0.2848
0.2816
0.3203
0.3293
0.4046
0.3576
0.3165
0.2737
0.2714
0.1946

Estimate Std. Error

0.03656
-0.60562
-0.32721
-0.11339

0.83867

0.76962

1.31246

0.02210

0.30165

0.02400
-0.09041

0.45938

0.19934
0.21345
0.20704
0.19515
0.23376
0.21662
0.26334
0.25559
0.22087
0.19545
0.18600
0.10455

z value
-0.471
-3.445
-1.664
-0.959

2.672
2.912
4.055
-0.757
0.415
1.515
-0.772
5.935

z value
0.183
-2.837
-1.580
-0.581
3.588
3.553
4984
0.086
1.366
0.123
-0.486
4.394
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Pr(>z)

0.637386
0.000571
0.096191
0.337629
0.007545
0.003596
5.01-107°
0.448877
0.677985
0.129896
0.439885
2.94.107°

Pr(>|z])

0.854482
0.004550
0.114018
0.561219
0.000334
0.000381
6.23-107
0.931106
0.172018
0.902276
0.626909
1.11:1075



SuperPC, with adjustment

Without pre-validation

(Intercept)
zl
z2
z3

z10
score

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

Estimate Std. Error

-0.11065
-1.40397
-1.00104
-0.01714
1.74784
1.82258
2.56292
-0.40147
0.64259
-0.02074
-0.28120
1.77087

0.33245
0.39023
0.38492
0.32759
0.45793
0.47115
0.58666
0.42981
0.37948
0.32200
0.30889
0.31495

Estimate Std. Error

0.04098
-0.74096
-0.46388
-0.02111

0.87458

0.75098

1.40541

0.08026

0.23377
-0.13486

0.09421

0.77207

0.20536
0.23284
0.21706
0.21086
0.23704
0.21659
0.27907
0.26100
0.22541
0.19303
0.19045
0.16117

z value
-0.333
-3.598
-2.601
-0.052

3.817
3.868
4.369
-0.934
1.693
-0.064
-0.910
5.623

z value
0.200
-3.182
-2.137
-0.100
3.690
3.467
5.036
0.307
1.037
-0.699
0.495
4.790
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Pr(>z)

0.739258
0.000321
0.009304
0.958263
0.000135
0.000110
1.25-107°
0.350267
0.090391
(0.948645
0.362635
1.88.1078

Pr(>|z])

0.841829
0.001461
0.032590
0.920249
0.000225
0.000526
4.75-107
0.758470
0.299684
0.484773
0.620836
1.67-1076



Clinical model

(Intercept)
zl
z2
z3

Estimate
0.022292
-0.525239
-0.232260
-0.006647
0.772416
0.688903
1.245375
0.357658
0.459904
-0.143343
-0.026256

Std. Error
0.183758
0.193095
0.188395
0.183096
0.204234
0.199851
0.232310
0.222872
0.197327
0.178033
0.165133

z value
0.121
-2.720
-1.233
-0.036
3.782
3.447
5.361
1.605
2.331
-0.805
-0.159
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Pr(>z|)

0.903442
0.006526
0.217637
0.971042
0.000156
0.000567
8.28-1078
0.108546
0.019771
0.420734
0.873668



Setting 2

Lasso

Without pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.318312 0.372822 -0.854 0.393221

zl -0.110318  0.406392 -0.271 0.786039
72 0.843967  0.417882  2.020 0.043422
z3 -0.0115564  0.491621 -0.024 0.981250
z4 1.308445  0.598572  2.186 0.028820
zd 2.040548  0.573397  3.559 0.000373
z6 2.801141 1.159962  2.415 0.015741
z7 -0.587921 1.067398 -0.551 0.581772
z8 -0.571177  0.808422 -0.707 0.479857
z9 0.420072  0.349538  1.202 0.229444
z10 0.008594  0.280819  0.031 0.975586
score 4119985  1.219508  3.378 0.000729

With 5-fold pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.40746 0.34373 -1.185 0.235859

zl 0.04488 0.35946  0.125 0.900640
z2 0.59583 0.35882  1.661 0.096803
z3 0.44137 0.43116  1.024 0.305988
z4 1.54266 0.47601  3.241 0.001192
zd 1.35848 0.38240  3.553 0.000382
z6 3.29285 097472  3.378 0.000729
z7 0.74121 0.93849  0.790 0.429651
z8 0.76136 0.69712  1.092 0.274774
z9 0.27295 0.30353  0.899 0.368514
z10 0.00913 0.25868  0.035 0.971845
score 1.78445 0.86951  2.052 0.040145
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SuperPC, without adjustment
Without pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.08909 0.32496  0.274 0.783958

zl -0.27381 0.38137 -0.718 0.472786
z2 0.04520 0.34584  0.131 0.896008
z3 0.12180 0.50347  0.242 0.808836
z4 0.85421 0.55347  1.543 0.122739
z5 1.34592 0.40676  3.309 0.000937
z6 2.32403 1.07185  2.168 0.030140
z7 0.43384 0.90620 0.479 0.632114
z8 0.17502 0.76367  0.229 0.818732
z9 0.23636 0.31886  0.741 (.458519
z10 0.14615 0.26633  0.549 0.583187
score 0.96547 0.34245  2.819 0.004812

With 5-fold pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.088580  0.294121 -0.301 0.763285

zl 0.156963  0.330707  0.475 0.635052
72 0.270047  0.304156  0.888 0.374617
z3 0.925657  0.487317  1.899 0.057499
z4 1.856048  0.539904  3.438 0.000587
z5 1.231106  0.352854  3.489 0.000485
z6 4.504160  1.090238  4.131 3.61-107°
z7 23127556  0.950741  2.433 0.014992
z8 1.950174  0.757715  2.574 0.010060
z9 0.081463  0.291023  0.280 0.779539
z10 0.109967  0.247601  0.444 0.656948
score -0.002267  0.326776 -0.007 0.994465
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SuperPC, with adjustment

Without pre-validation

(Intercept)
zl
z2
z3

z10
score

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

Estimate Std. Error

-0.26398
0.03333
0.84266
2.09549
3.47637
2.20744
8.78544
3.57839
3.36487

-0.24357

-0.05414
4.77079

0.48327
0.57382
0.59535
0.94949
0.99853
0.67771
2.12398
1.22181
0.95649
0.54209
0.40143
1.30602

Estimate Std. Error

-0.03641
0.20671
0.25466
0.91697
1.83078
1.27652
4.62370
2.36651
1.97538
0.03255
0.11873

-0.61718

0.29496
0.32914
0.30525
0.35411
0.44349
0.36303
0.90412
0.65881
0.47136
0.28606
0.24241
0.56756

z value
-0.546
0.058
1.415
2.207
3.481
3.257
4,136
2.929
3.518
-0.449
-0.135
3.653

z value
-0.123
0.628
0.834
2.590
4.128
3.516
5.114
3.592
4.191
0.114
0.490
-1.087
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Pr(>z)

0.584902
0.953685
0.156948
0.027316
0.000499
0.001125
3.53-1075
0.003403
0.000435
0.653203
0.892712
0.000259

Pr(>[z)

0.901757
0.529987
0.404145
0.009611
3.66-107°
0.000438
3.15-10°7
0.000328
2.78-107°
0.909405
0.624289
0.276850



Clinical model

(Intercept)

zl
z2
z3

0.15721
0.27141
0.93476
1.87947
1.24613
4.56033
2.34648
1.97200
0.08208
0.11150

Estimate Std. Error
-0.09166

0.29409
0.32626
0.30558
0.36024
0.45327
0.35627
0.89684
0.64898
0.47692
0.28635
0.24504

Z value
-0.312
0.482
0.888
2.595
4.146
3.498
5.085
3.616
4.135
0.287
0.455
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Pr(>z)

0.755290
0.629914
0.374453
0.009464
3.38.107°
0.000469
3.68-10°7
0.000300
3.55-1075
0.774376
0.649105



Setting 3

Lasso

Without pre-validation

(Intercept)
zl

z2

z3

z4

Zh

z6

z7

z8

79
z10
score

Estimate
-0.13588
-0.77277
-0.39344
-0.03491

0.47403
0.69350
1.54399
-0.54616
0.23528
-0.13588
0.15297
0.74370

Std. Error
0.19978
0.33855
0.31508
0.34263
0.32139
0.21403
0.45947
0.42708
0.41388
0.19194
0.19031
0.15871

With 5-fold pre-validation

(Intercept)
zl

z10
score

Estimate
-0.11104
-0.65040
-0.27964
-0.05842

0.47570
0.56998
1.39222
-0.28828
0.16212
-0.10284
0.20940
0.16428

Std. Error
0.18606
0.31606
0.29820
0.31157
0.29971
0.19573
0.41384
0.37774
0.37022
0.17740
0.17448
0.06448

z value
-0.680
-2.283
-1.249
-0.102

1.475
3.240
3.360
-1.279
0.568
-0.708
0.804
4.686

z value
-0.597
-2.058
-0.938
-0.187

1.587
2.912
3.364
-0.763
0.438
-0.580
1.200
2.548
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Pr(>z])

0.496420
0.022452
0.211775
0.918839
0.140226
0.001195
0.000778
0.200959
0.569705
0.478984
0.421501
2.79-10~6

Pr(>|z)
0.550643
0.039602
0.348379
0.851274
0.112466
0.003590
0.000768
0.445353
0.661464
0.562102
0.230095
0.010838



SuperPC, without adjustment

Without pre-validation

(Intercept)
zl
z2
z3

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

Estimate Std. Error

0.03554
-1.24688
-0.01197
-0.33816

0.70420

0.74521

2.19757
-0.71724
-0.32259

0.07278

0.16504

1.05846

0.24030
0.46261
0.40081
0.42417
0.41855
0.27136
0.57851
0.49175
0.49748
0.23801
0.22513
0.17342

Estimate Std. Error

0.01618
-0.85292
-0.16331
-0.03504

0.43963

0.60993

1.70854
-0.47949

0.01217
-0.04334

0.22019

0.47376

0.19201
0.34225
0.31499
0.32719
0.31530
0.20477
0.44488
0.39309
0.38248
0.18412
0.18075
0.12523

z value
0.148
-2.695
-0.030
-0.797
1.682
2.746
3.799
-1.459
-0.648
0.306
0.733
6.103

z value
0.084
-2.492
-0.518
-0.107
1.394
2.979
3.840
-1.220
0.032
-0.235
1.268
3.783
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Pr(>z])

0.882417
0.007032
0.976169
0.425324
0.092476
0.006030
0.000145
0.144689
0.516701
0.759773
0.463500
1.04.107°

Pr(>|z])
0.932855
0.012698
0.604129
0.914709
0.163225
0.002895
0.000123
0.222537
0.974607
0.813904
0.204794
0.000155



SuperPC, with adjustment

Without pre-validation

(Intercept)
zl
z2
z3

z10
score

Estimate Std. Error
0.19460 0.28998
-1.85091 0.56887
-0.09849 0.43609
-0.23410 0.47994
1.14692 0.50387
1.25336 0.35229
2.96283 0.73747
-0.92074 0.54675
-0.28659 0.59085
-0.06738 0.27059
0.32675 0.26606
1.59978 0.26785

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

Estimate Std. Error
0.025703  0.199300
-0.924588 0.348223
-0.196820 0.315128
0.002161  0.334559
0.454078 0.320861
0.722984  0.214914
1.812805 0.462253
-0.398837  0.389789
-0.100955 0.402137
-0.096367  0.188545
0.271766  0.185307
0.718874  0.160584

z value
0.671
-3.254
-0.226
-0.488
2.276
3.558
4,018
-1.684
-0.485
-0.249
1.228
5.973

z value
0.129
-2.655
-0.625
0.006
1.415
3.364
3.922
-1.023
-0.251
-0.511
1.467
4477
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Pr(>z)

0.502174
0.001139
0.821313
0.625706
0.022833
0.000374
5.88-107°
0.092178
0.627646
0.803353
0.219413
2.33-107°

Pr(>|z])

0.897384
0.007927
0.532251
0.994846
0.157014
0.000768
8.79-10~%
0.306208
0.801778
0.609275
0.142492
7.58-107°



Clinical model

(Intercept)
zl
z2
z3

Estimate Std. Error

-0.06399
-0.68046
-0.21243
-0.01756
0.46131
0.56590
1.44754
-0.12585
0.06621
-0.09352
0.23791

0.18125
0.31419
0.29808
0.30340
0.29191
0.19354
0.40188
0.35802
0.35539
0.17658
0.16859

Z value
-0.353
-2.166
-0.713
-0.058

1.580
2.924
3.602
-0.352
0.186
-0.530
1.411

75

Pr(>z)
0.724051
0.030331
0.476056
0.953853
0.114035
0.003456
0.000316
0.725192
0.8522056
0.596383
0.158197



Setting 4

Lasso

Without pre-validation

(Intercept)
zl

z2

z3

z4

Zh

z6

z7

z8

79
z10
score

With 5-fold pre-validation

(Intercept)
zl

z10
score

Estimate
-0.33611
-0.67402

0.45765
-0.49747
1.77878
1.26020
1.50799
0.85214
0.77826
0.08865
0.17741
1.68618

Std. Error

0.29583
0.53090
0.50014
0.52386
0.60817
0.34174
0.62410
0.73392
0.57826
0.28753
0.24807
0.43937

Estimate Std. Error

-0.25806
-0.39063
0.24087
-0.28590
1.62200
1.10447
1.58672
1.04448
0.90086
-0.02299
0.17849
1.19081

0.27150
0.47074
0.45166
0.47805
0.563478
0.30359
0.58993
0.68368
0.54325
0.25749
0.23051
0.42424

z value
-1.136
-1.270

0.915
-0.950
2.925
3.688
2.416
1.161
1.346
0.308
0.715
3.838

z value
-0.950
-0.830

0.533
-0.598
3.033
3.638
2.690
1.528
1.658
-0.089
0.774
2.807
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Pr(>z])
0.255889
0.204230
0.360164
0.342301
0.003447
0.000226
0.015680
0.245604
0.178344
0.757857
0.474512
0.000124

Pr(>|z])
0.341865
0.406639
0.593825
0.549801
0.002421
0.000275
0.007152
0.126581
0.097261
0.928846
0.438728
0.005002



SuperPC, without adjustment

Without pre-validation

(Intercept)
zl
z2
z3

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

0.1116
-0.3029
0.2014
-0.8674
1.6194
1.1797
1.3580
0.3818
0.6690
0.2710
0.2806
0.7899

0.03177
-0.24722
0.07646
-0.38928
1.49214
1.15204
1.51533
1.07469
0.85358
0.09666
0.23620
0.36192

Estimate Std. Error

0.3325
0.5264
0.5197
0.6377
0.7047
0.4153
0.7957
0.8895
0.6603
0.3269
0.2911
0.1799

Estimate Std. Error

0.26787
0.46007
0.44549
0.46378
0.51959
0.30470
0.60367
0.67680
0.55099
0.26220
0.23653
0.12939

z value
0.336
-0.575
0.388
-1.360
2.298
2.841
1.707
0.429
1.013
0.829
0.964
4.390

z value
0.119
-0.537
0.172
-0.839
2.872
3.781
2.510
1.588
1.549
0.369
0.999
2.797
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Pr(>|z])
0.7372
0.5651
0.6984
0.1738
0.0216
0.0045
0.0879
0.6678
0.3110
0.4071
0.3351
1.13.1075

Pr(>|z])
0.905581
0.591016
0.863733
0.401269
0.004082
0.000156
0.012067
0.112309
0.121336
0.712394
0.317988
0.005157



SuperPC, with adjustment

Without pre-validation

(Intercept)
zl
z2
z3

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

-0.09813
-0.65784
043134
0.13352
2.73819
1.50923
1.57377
1.61507
1.26184
0.37316
0.29423
1.23909

-0.24154
-0.22441
0.05785
0.12019
1.66862
0.97146
1.90066
1.20111
0.96741
0.11918
0.20686
0.36265

Estimate Std. Error

0.34769
0.61551
0.57686
0.58448
0.76479
0.44381
0.76757
0.80045
0.67808
0.36851
0.29243
0.27305

Estimate Std. Error

0.26132
0.44785
0.43672
0.41812
0.47929
0.29197
0.58296
0.62651
0.52995
0.26180
0.21952
0.19074

z value
-0.282
-1.069

0.748
0.228
3.580
3.401
2.050
2.018
1.861
1.013
1.006
4.538

z value
-0.924
-0.501

0.132
0.287
3.481
3.327
3.260
2.061
1.825
0.455
0.942
1.901
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Pr(>z)

0.777754
0.285172
0.454620
0.819308
0.000343
0.000672
0.040332
0.043622
0.062756
0.311245
0.314333
5.68-107¢

Pr(>[z)
0.3556324
0.616304
0.894619
0.773765
0.000499
0.000877
0.001113
0.039322
0.067933
0.648955
0.346025
0.057260



Clinical model

Estimate Std. Error

(Intercept) -0.15320

zl -0.10367
z2 0.01355
z3 0.05617
z4 1.70649
z5 1.03004
z6 1.98483
z7 1.66752
z8 1.32588
z9 -0.03197
z10 0.18210

0.25095
0.42931
0.41297
0.40965
0.46924
0.28642
0.57523
0.61207
0.50831
0.24894
0.21336

Z value
-0.610
-0.241

0.033
0.137
3.637
3.596
3.450
2.724
2.608
-0.128
0.853

79

Pr(>z)
0.541539
0.809190
0.973830
0.890932
0.000276
0.000323
0.000560
0.006442
0.009097
0.897822
0.393387



Setting 5

Lasso

Without pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.05924  0.22285  0.266 0.790354

zl -1.49025 0.27410 -5.437 5.42-10°8
72 -1.22899 0.28090 -4.375 1.21.107°
z3 -0.52856 0.22980 -2.300 0.021442
74 0.95391 0.26613  3.584 0.000338
25 1.27598 0.27750  4.598 4.26-10°°
6 1.48059 0.29795  4.969 6.72-10~°7
27 -0.05725 0.27037 -0.212 0.832307
z8 -0.15816 0.24801 -0.638 0.523645
z9 -0.25045 0.20871 -1.200 0.230155
z10 -0.05686 0.20934 -0.272 0.785910
score 0.05065 0.04809  1.034 0.301241

With 5-fold pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.05497 0.22335 0.246 0.805605

zl -1.49560 027429 -5.453 4.96.107%
z2 -1.21392 028114 -4.318 1.58-107°
z3 -0.53854 0.22886 -2.353 0.018614
z4 0.96526 0.26581  3.631 0.000282
zd 1.27315 027646  4.605 4.12-10°°
z6 1.54387 0.30779  5.016 5.28-10°7
z7 -0.03223 0.27046 -0.119 0.905137
z8 -0.12601 0.25073 -0.503 0.615262
z9 -0.29603 0.21144 -1.400 0.161502
z10 -0.04170 0.21188 -0.197 0.843991
score 0.06716 0.04790  1.402 0.160883
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SuperPC, without adjustment

Without pre-validation

(Intercept)
zl
z2
z3

z10
score

Estimate Std. Error

0.14503
-1.10605
-1.02042
-0.38661

0.79932

0.88844

1.21647
-0.19607
-0.06327
-0.15877
-0.06638

0.70669

0.25358
0.29945
0.30027
0.26206
0.29560
0.28424
0.32006
0.31006
0.28230
0.23828
0.22812
0.16151

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

Estimate
0.019219
-1.537303
-1.325769
-0.540766
0.987115
1.368888
1.549643
-0.005321
-0.194767
-0.282099
-0.074753
-0.252203

Std. Error
0.226287
0.281614
0.290774
0.232793
0.272667
0.283169
0.309140
0.262913
0.249967
0.210255
0.211040
0.146992

z value
0.572
-3.694
-3.398
-1.475
2.704
3.126
3.801
-0.632
-0.224
-0.666
-0.291
4.375

z value
0.085
-5.459
-4.559
-2.323
3.620
4.834
5.013
-0.020
-0.779
-1.342
-0.354
-1.716
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Pr(>z])

0.567367
0.000221
0.000678
0.140131
0.006851
0.001774
0.000144
0.527142
0.822654
0.505214
0.771050
1.21.1075

Pr(>|z|)

0.932315
4.79-10-8
5.13-10~%
0.020182
0.000294
1.34.10°%
5.37-10~7
0.983854
0.435879
0.179692
0.723181
0.086206



SuperPC, with adjustment

Without pre-validation

(Intercept)
zl
z2
z3

z10
score

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

Estimate Std. Error

0.37881
-2.88013
-2.40592
-1.07622

1.72074

2.32981

3.10514

0.06504
-0.21016
-0.58047
-0.73167

3.48984

0.38824
0.57617
0.58271
0.40744
0.49496
0.49434
0.65258
0.43714
0.42072
0.29694
0.34758
0.71632

Estimate Std. Error

0.04486
-1.47341
-1.25514
-0.53187

0.97766

1.32117

1.48693
-0.02617
-0.16136
-0.26193
-0.05936
-0.06299

0.22539
0.27123
0.28133
0.22940
0.26545
0.27868
0.29991
0.26910
0.25081
0.21288
0.20644
0.32010

z value
0.976
-4.999
-4.129
-2.641
3.477
4,713
4,758
0.149
-0.500
-1.955
-2.105
4.872

z value
0.199
-5.432
-4.461
-2.318
3.683
4.741
4.958
-0.097
-0.643
-1.230
-0.288
-0.197
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Pr(>z)

0.329208
5.77-1077
3.65-1075
0.008255
0.000508
2.44-107F
1.95-1078
0.881719
0.617420
0.050099
0.035288
1.11.10°

Pr(>|z])
0.84222
5.56-10%
8.14-107°
0.02042
0.00023
2.13-10~6
7.12-10~7
0.92252
0.51999
0.21854
0.77369
0.84399



Clinical model

(Intercept)
zl
z2
z3

0.05541
-1.48823
-1.26881
-0.53980

0.98132

1.32595

1.50443
-0.01854
-0.17564
-0.27356
-0.06174

Estimate Std. Error

0.22197
0.27291
0.28200
0.22905
0.26598
0.27845
0.30142
0.26786
0.24872
0.20680
0.20726

Z value
0.250
-5.453
-4.499
-2.357
3.689
4.762
4.991
-0.069
-0.706
-1.323
-0.298
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Pr(>|z])

0.802888
4951078
6.82:10°
0.018437
0.000225
1.92:107
6.00-107
0.944810
0.480076
0.185885
0.765786



Setting 6

Lasso

Without pre-validation

(Intercept)
zl

z2

z3

z4

Zh

z6

z7

z8

79
z10
score

Estimate
0.15388
-1.38330
-1.53228
-1.26615
1.32798
1.68280
1.65327
0.10970
0.26634
-0.01623
0.08002
-0.09667

Std. Error
0.25185
0.49330
0.47832
0.46675
0.48062
0.34145
0.57347
0.52496
0.51368
0.23194
0.23167
0.05519

With 5-fold pre-validation

(Intercept)
zl

z10
score

Estimate
0.053355
-1.155869
-1.948020
-1.467208
1.665782
1.791102
1.736589
0.305695
0.085362
-0.078525
0.006057
-0.210018

Std. Error
0.260590
0.509650
0.556712
0.489608
0.522880
0.359534
0.589805
0.546495
0.535544
0.247634
0.241498
0.076425

z value
0.611
-2.804
-3.203
-2.713
2.763
4.928
2.883
0.209
0.518
-0.070
0.345
-1.752

z value
0.205
-2.268
-3.499
-2.997
3.186
4.982
2.944
0.559
0.159
-0.317
0.025
-2.748

84

Pr(>|z)
0.54120
0.00504
0.00136
0.00667
0.00573
8.26.10~7
0.00394
0.83447
0.60412
0.94421
0.72979
0.07981

Pr(>|z])

0.837771
0.023331
0.000467
0.002729
0.001444
6.3-10~7

0.003236
0.575907
0.873359
0.751168
0.979991
0.005996



SuperPC, without adjustment
Without pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.01193 0.33727 -0.035 0.971794

zl -1.36701 0.66764 -2.048 (.040608
z2 -1.47153 0.62841 -2.342 0.019198
z3 -1.07439 0.59695 -1.800 0.071892
z4 0.96639 0.57826  1.671 0.094680
z5 1.49787 0.41639  3.597 0.000322
z6 1.28508 0.73188  1.756 0.079113
z7 0.20126 0.65219  0.309 0.757633
z8 0.89622 0.69102  1.297 0.194652
z9 -0.16829 0.29317 -0.574 0.565933
z10 -0.08910 0.28060 -0.308 0.758342
score 1.02174 023513 4.345 1.39-10°°

With 5-fold pre-validation

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.136608  0.249357  0.548 0.58380

zl -1.398810  0.485898 -2.879 0.00399
72 -1.477466  0.476619 -3.100 0.00194
z3 -1.150635  0.449992 -2.557 0.01056
z4 1.196240  0.458929  2.607 0.00914
z5 1.686582  0.349057 4.832 1.35-107®
z6 1.644784  0.577631  2.847 0.00441
z7 0.008917  0.511990  0.017 0.98610
z8 0.382793  0.507295  0.755 0.45050
z9 -0.004641  0.228406 -0.020 0.98379
z10 0.107201  0.228027 0.470 0.63827
score 0.067696  0.131772  0.514 0.60744
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SuperPC, with adjustment

Without pre-validation

(Intercept)
zl
z2
z3

z10
score

Estimate Std. Error
0.03139 0.37473
-2.35045 0.84844
-3.01706 0.85955
-1.95224 0.76330
1.72421 0.75132
2.40155 0.53641
3.32800 1.00855
0.48242 0.71389
0.62727 0.80800
-0.05259 0.29316
0.45406 0.37884
3.12020 0.70800

With 5-fold pre-validation

(Intercept)
zl

z2

z3

z4

zh

z6

z{

z8

z9
z10
score

Estimate Std. Error
0.12454 0.25045
-1.38228 0.48400
-1.53080 0.48345
-1.14472 0.45049
1.21206 0.46372
1.71218 0.35001
1.67072 (0.57887
-0.03710 0.51100
0.42911 0.51047
-0.01430 0.22642
0.08855 0.22757
0.26675 0.37853

z value
0.084
-2.770
-3.510
-2.558
2.295
4477
3.300
0.676
0.776
-0.179
1.199
4.407

Pr(>z])

0.933244
0.005600
0.000448
0.010538
0.021738
7.57-107°
0.000968
0.499190
0.437557
0.857623
0.230701
1.05.107°

z value
0.497
-2.856
-3.166
-2.541
2.614
4.892
2.886
-0.073
0.841
-0.063
0.389
0.705

Pr(>|z])
0.61901
0.00429
0.00154
0.01105
0.00895
9.99-10~7
0.00390
0.94212
0.40057
0.94962
0.69721
0.48099
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Clinical model

(Intercept)
zl
z2
z3

Estimate
0.134412
-1.416797
-1.490707
-1.140743
1.182022
1.702642
1.638541
0.009583
0.382295
-0.015820
0.105006

Std. Error
0.250183
0.484356
0.476718
0.449685
0.458241
0.349198
0.575852
0.511925
0.507403
0.230082
0.229398

z value
0.537
-2.925
-3.127
-2.537
2.579
4.876
2.845
0.019
0.753
-0.069
0.458
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Pr(>|z])
0.59109
0.00344
0.00177
0.01119
0.00989
1.08-10°
0.00444
0.98507
0.45119
0.94518
0.64714



The following table shows the percentage of true informative molecular variables
selected for building the omics score. In brakes stands the absolute number of
selected genes in the Lasso approach. For the supervised principal component
analysis the number of genes used to build the principal components is fixed to 25.

Setting 1
Lasso

superPC.

superPC adj.

Setting 2
Lasso

superPC.

superPC adj.

Setting 3
Lasso

superPC.

superPC adj.

Setting 4
Lasso

superPC.

superPC adj.

Setting 5
Lasso

superPC.

superPC adj.

Setting 6
Lasso

superPC.

superPC adj.

w/o PV | fold 1 fold 2 fold 3 fold 4 fold 5
0.30 (47) | 0.25 (36) | 0.21 (43) | 0.22 (54) | 0.25 (48) | 0.24 (41)
0.48 0.48 0.52 0.44 0.4 0.44
0.36 0.32 0.28 0.32 0.24 0.36
0.39 (23) | 047 (19) | 0.38(21) | 0.44 (18) | 0.39 (23) | 0.45 (20)
0.64 0.6 0.6 0.6 0.6 0.6

0.0 0.0 0.0 0.04 0.04 0.0

0.13 (98) | 0.09 (107) | 0.09 (106) | 0.12 (109) | 0.12 (106) | 0.12 (103)
0.44 0.48 0.4 0.44 0.4 0.36
0.44 0.44 0.48 0.28 0.32 0.44
0.43 (21) | 047 (19) | 0.41 (17) | 0.53 (17) | 0.47 (15) | 0.30 (20)
0.6 0.6 0.6 0.6 0.6 0.6

0.32 0.24 0.16 0.24 0.12 0.24

0.0 (154) | 0.0 (128) | 0.0 (133) | 0.0 (129) | 0.0 (121) | 0.0 (127)
0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 (146) | 0.0 (118) | 0.0 (125) | 0.0 (110) | 0.0 (124) | 0.0 (106)
0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0
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E Results of the analysis of Hatzis’ breast cancer

data

Lasso

Without pre-validation

Estimate
(Intercept) -15.47602
age 0.02062
progesterone receptor status (negative) 0.42210
estrogen receptor status (positive) 0.82660
tumor stage (T2) 0.61783
tumor stage (T3) 0.77328
tumor stage (T4) 1.53867
nodal status (N1) 0.88404
nodal status (N2) 1.05891
nodal status (N3) 0.72300
tumor grade (2) -0.13939
tumor grade (3) -1.11832
score 0.35718

With 5-fold pre-validation

Estimate
(Intercept) -3.02340
age 0.02173
progesterone receptor status (negative)  0.45545
estrogen receptor status (positive) 0.76428
tumor stage (T2) 0.76328
tumor stage (T3) 0.89985
tumor stage (T4) 1.55776
nodal status (N1) 0.93492
nodal status (N2) 1.04473
nodal status (N3) 0.65676
tumor grade (2) -0.11584
tumor grade (3) -1.05566
score 0.04025
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Std. Error
8.53086
0.01426
0.40629
0.42138
0.57313
0.62181
0.68509
0.35539
0.51287
0.55005
0.75723
0.77580
0.21635

Std. Error
1.97001
0.01421
0.40410
0.41722
0.55538
0.60566
0.67308
0.35525
0.51624
0.54747
0.75753
0.77119
0.04290

z value
-1.814
1.447
1.039
1.962
1.078
1.244
2.246
2.488
2.065
1.314
-0.184
-1.442
1.651

z value
-1.535
1.529
1.127
1.832
1.374
1.486
2.314
2.632
2.024
1.200
-0.153
-1.369
0.938

Pr(>|z])
0.0697
0.1480
0.2988
0.0498
0.2810
0.2136
0.0247
0.0129
0.0390
0.1887
0.8540
0.1494
0.0988

Pr(>|z])
0.12485
0.12624
0.25970
0.06697
0.16934
0.13735
0.02065
0.00849
0.04300
0.23029
0.87847
0.17104
0.34821



SuperPC, without adjustment
Without pre-validation

Estimate
(Intercept) -1.88089
age 0.01178
progesterone receptor status (negative)  0.35258
estrogen receptor status (positive) -0.68927
tumor stage (T2) 0.64012
tumor stage (T'3) 0.72313
tumor stage (T4) 1.46904
nodal status (N1) 1.03988
nodal status (N2) 1.05348
nodal status (N3) 0.87044
tumor grade (2) 0.19863
tumor grade (3) -0.22185
score 1.12291

With 5-fold pre-validation

Estimate
(Intercept) -1.78392
age 0.01810
progesterone receptor status (negative)  0.39614
estrogen receptor status (positive) 0.07913
tumor stage (T2) 0.81538
tumor stage (T'3) 0.97208
tumor stage {T4) 1.67004
nodal status (N1) 0.92912
nodal status (N2) 0.90229
nodal status (N3) 0.61652
tumor grade (2) 0.05564
tumor grade (3) -0.69890
score 0.44676
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Std. Error
1.31250
0.01531
0.43260
0.52568
0.62327
0.67398
0.75243
0.38067
0.55570
0.57684
0.80705
0.83007
0.21750

Std. Error
1.24261
0.01446
0.40499
0.50172
0.57442
0.62445
0.69735
0.35780
0.51527
0.54947
0.76551
0.78681
0.17773

z value
-1.433
0.769
0.815
-1.311
1.027
1.073
1.952
2.732
1.896
1.509
0.246
-0.267
5.163

z value
-1.436
1.252
0.978
0.158
1.419
1.557
2.395
2.597
1.751
1.122
0.073
-0.888
2.514

Pr(>z|)
0.1518
0.4416
0.4151
0.1898
0.3044
0.2833
0.0509
0.0063
0.0580
0.1313
0.8056
0.7893
2.43-.1077

Pr(>|z])
0.15111
0.21059
0.32799
0.87468
0.15576
0.11954
0.01663
0.00941
0.07993
0.26185
0.94206
0.37439
0.01195



SuperPC, with adjustment
Without pre-validation

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.31393 1.50687 -2.863 0.00420
Age 0.02196 0.01625 1.352 0.17650
Progesterone receptor status (negative)  0.09498 0.48316  0.197 0.84416
Estrogen receptor status (positive) 0.48004 0.49922 0.962 0.33626
tumor stage (T2) 1.15670 0.69187  1.672 0.09455
tumor stage (T'3) 1.23403 0.75091 1.643 0.10031
tumor stage (T4) 2.15727 0.85019  2.537 0.01117
nodal status (N1) 1.29342 0.41750 3.098 0.00195
nodal status (N2) 1.37676 0.59661 2.308 0.02102
nodal status (N3) 1.06972 0.63738 1.678 0.09329
tumor grade (2) 1.02808 0.88670 1.159 0.24627
tumor grade (3) 0.74855 0.91689  0.816 0.41427
score 1.02228 0.15534  6.581 4.68.1071

With 5-fold pre-validation

Estimate Std. Error z value Pr(>|z|)

(Intercept) 179182 125193 -1431 0.15236
Age 0.02055 0.01419 1.449 0.14740
Progesterone receptor status (negative)  0.44378 0.40150 1.106 0.26904
Estrogen receptor status (positive) 0.69463 0.42217  1.645 0.09990
tumor stage (T2) 0.79790 0.56402 1415 0.15716
tumor stage (T'3) 0.88973 0.61195 1.454 0.14596
tumor stage (T4) 1.62638 0.68476  2.375 0.01754
nodal status (N1) 0.91158 0.35360 2.578 0.00994
nodal status (N2) 0.96988 0.50968  1.903 0.05705
nodal status (N3) 0.71034 0.54407 1.306 0.19169
tumor grade (2) 0.01445 0.76428  0.019 0.98491
tumor grade (3) -0.85893 0.79378 -1.082 0.27922
score 0.09555 0.10196  0.937 0.34871
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Clinical model

Estimate Std. Error

(Intercept) -1.59035
Age 0.02110
Progesterone receptor status (negative)  0.46566
Estrogen receptor status (positive) 0.77623
tumor stage (T2) 0.77686
tumor stage (T'3) 0.89264
tumor stage (T4) 1.58264
nodal status (N1) 0.90394
nodal status (N2) 0.98365
nodal status (N3) 0.70581
tumor grade (2) -0.08394
tumor grade (3) -1.04042
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1.22952
0.01415
0.40164
0.41506
0.55889
0.60841
0.67711
0.35277
0.50836
0.54508
0.75555
0.77004

z value
-1.293
1.491
1.159
1.870
1.390
1.467
2.337
2.562
1.935
1.295
-0.111
-1.351

Pr(>|z])
0.1958
0.1359
0.2463
0.0615
0.1645
0.1423
0.0194
0.0104
0.0530
0.1954
0.9115
0.1767
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