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Abstract 

Validation is a crucial step for the evaluation of new prediction rules. Within 
the framework of high-dimensional molecular data, the assessment of the added 
predictive value is of particular importance. That is, we want to verify whether the 
performance of a prediction rule can be improved if molecular data is included in 
addition to the standard clinical predictors. For this purpose we create combined 
prediction models which contain the clinical predictors and a molecular score, 
which aggregates the molecular information into a single predictor. A special 
challenge arises if there is no independent data set at hand, on which the added 
predictive value can be measured. When comparing the molecular score to the 
clinical predictors on the same data set that has been used to generate the score, 
overfitting mechanisms might make the score to seem more important than it 
actually is. To elude this problem, Tibshirani and Efron's (2002) pre-validation 
approach can be used. lt embeds the score construction into a cross-validation 
loop which mirnies the situation of training and test data to be at hand. Here we 
investigate and compare the added predictive value of prediction models including 
molecular scores that have been derived with and without pre-validation, within 
the scope of binary classification. In general, we use two approaches for score 
generation: the least absolute shrinkage and selection operator and a supervised 
principal component analysis. The investigation of the added predictive value 
in six different simulation studies and in a real breast cancer data set allows a 
comparison of molecular scores obtained with or without pre-validation. 



Notations 

General conventions: 
Small or capital letters, such as n or G derrote scalars, small hold letters, such as 
y derrote vectors, and capital hold letters, such as X derrote matrices. Estimates 
are marked by the circumfiex accent' . 
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Number of observations 
Matrix of clinical predictors 
Matrix of molecular predictors 
Vector of binary response 
Covariance matrix 
Correlation matrix 
Correlation coefficient 
Likelihood function/log-likelihood 
function 
Coefficients of the molecular predictors 
in a regression model 
Coefficients of the clinical predictors in 
a regression model 
Linear predictor for the i-th observa­
tion 
Non pre-validated molecular score 
Pre-validated molecular score 
Set of indices of all o bservations in 
group g 
Rule for generating the omics score / 
Classification rule 
Penalty/tuningparameter for Lasso re­
gression 
Matrix of principal components, where 
r = min(n,p) 
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1 lntroduction 

With the aid of microarray technology which was developed in the 1990s (see, for 
instance, Peterson, 2013, p. 1), it became possible to examine thousands of genes 
(more precisely gene expressions) simultaneously. These microarray gene expres­
sion data have been used for disease outcome prediction or diagnosis purposes 
(Boulesteix and Sauerbrei, 2011). 
In the last years, an attempt has been made to improve diagnosis and prognosis of 
disease outcomes by the use of gene expressions. It means that gene expressions 
have been used to upgrade rather than to substitute standard clinical predictors 
for a disease outcome (De Bin, Herold and Boulesteix, 2014). While microarray 
technology has brought certain advantages, it has also brought new challenges. 

Firstly, there is the so-called n < < p problem. Because gene expression data is 
difficult and expensive to collect, the number of patients that are examined is 
generally small (approximately 100 - 200). In contrast, however, it is possible 
to measure thousands of gene expression values simultaneously with one microar­
ray. This means that we have a Iot of potential molecular predictors but only few 
observations. As a result, standard statistical methods are no Ionger applicable 
(cf. Boulesteix, Strobl, Augustin and Daumer, 2008). The second challenge is to 
determine if the omics data (high-throughput molecular data) has any additional 
predictive ability compared to standard clinical information. 

Before the development of microarrays well-established, easy, and cheap to collect 
clinical information like patient age, tumor grade or hormone Ievels have, for ex­
ample, been used for predicting the probability of cancer relapse. The question 
is now whether the performance of a prediction model is improved if gene expres­
sion values are included in addition to the standard clinical covariates. In other 
words, one needs to verify if the inclusion of gene expressions in a prediction model 
composed of clinical predictors, is able to improve its predictive ability (De Bin, 
Herold and Boulesteix, 2014). 

To answer the question of the added predictive value of the omics data it is not 
enough to build either one classifier based on all predictors, without distinguishing 
between microarray and clinical predictors, or to build two classifiers: one based 
on clinical parameters, one based on microarray data (Boulesteix, Porzelius and 
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Daumer, 2008). In the former case, good clinical predictors may get lost in the 
huge amount of microarray predictors, while in the latter case one does not know 
whether microarray data do exactly the same as the clinical predictors if both 
classifier have similar predictive power (Boulesteix, Porzelius and Daumer, 2008). 
Thus, for assessing the added predictive value of molecular data, it is necessary to 
construct more complex classifiers that include both the clinical and the molecular 
predictors. 

For the combination of low-dimensional clinical data and high-dimensional omics 
data, it is common practice to aggregate the molecular data into a single molecu­
lar score. For this purpose, we can apply suitable statistical or machine learning 
techniques that are able to handle the high-dimensionality of the omics data. The 
derived omics score is then used together with the clinical predictors, as indepen­
dent covariate in a multivariate regression model. Subsequently, one can validate 
the added predictive value of the omics score by different strategies. 
However, a problern arises if we do not have an independent validation data set at 
hand. 

When comparing the omics score to the standard clinical predictors on the same 
data set that was used to derive the score, the results may strongly be biased in 
favor of the microarray predictor (Tibshirani and Efron, 2002). Although over­
fitting is a commonly recognized problern in microarray analysis, it continually 
happens that overoptimistic conclusions are drawn during the assessment of the 
added predictive value of high-dimensional molecular data (Boulesteix and Sauer­
brei, 2011). lt means that if this problern is ignored, the omics scorewill seem to 
be much more relevant than it actually is because it considerably overfits the data 
at hand (Boulesteix and Sauerbrei, 2011). 
To elude this problem, Tibshirani and Efron (2002) suggest to use their pre­
validation approach that mirnies the situation of both training and test data to 
be at hand by embedding the construction of the molecular score into a kind of 
cross-validation loop. This will create a 'fairer' version of the omics score that in 
turn allows a fairer comparison to the standard clinical predictors (Tibshirani and 
Efron, 2002). 

In the present thesis Tibshirani and Efron's pre-validation approach is to be ex­
tended to the usage of the least absolute shrinkage and selection operator (Lasso) 
as well as for supervised principal component analysis (superPC) for generating 
the omics score. 
Both approaches, the Lasso and the superPC analysis are introduced and utilized 
for building omics scores, whereby each a pre-validated and a non pre-validated 
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molecular score can be created. Afterwarcis the added predictive value of each 
molecular score is assessed on the same data set which has been used to generate 
the score. For the validation of the added predictive value, we will focus on two 
approaches: testing the molecular score in a multivariate regression model ans 
evaluating the predictive accuracy of the clinical and the combined model. 
The main goal of this thesis is to determine whether the pre-validated omics score 
can overcome overfitting issues compared to its non pre-validated Counterpart. 
This comparison is based on the values of the regression coefficients and their as­
sociated p-values. 
If overfitting can be avoided by pre-validating the omics score, we would expect 
that the regression coefficient of a pre-validated score is smaller than its non pre­
validated equivalent. Besides that, the regression coefficient of a pre-validated 
molecular score is expected to be less significant than the regression coefficient of 
a non pre-validated score. We would also expect that the predictive accuracy of 
the combined model including the pre-validated molecular score is smaller than 
the predictive accuracy of the model including the non pre-validated score. 

In Chapter 2 both the biological and the statistical background of this thesis 
is clarified. Logistic regression models are introduced for binary classification. 
Strategies for the combinations of low-dimensional clinical predictors and high­
dimensional molecular predictors are represented and the problern of overfitting 
and its consequences is described. 
Chapter 3 elucidates the fundamental idea of Tibshirani and Efron's pre-validation 
approach. Furthermore, the least absolute shrinkage and selection operator and 
supervised principal component analysis are characterized and applied for generat­
ing pre-validated and non pre-validated omics scores. The implementation ensues 
for the statistical software R (version 3.0.2). 
A particular description of how the added predictive value of the molecular score 
can be assessed on the same data set that has been used to build the score, can 
be found in Chapter 4. 
Chapter 5 contains specifications about the data simulation process and the real 
breast cancer data set that are used for practical applications. Also the results of 
the assessment of the added predictive value of pre-validated and non pre-validated 
omics scores on both data sets are described in this chapter. 
A summary of the thesis follows in Chapter 6. 
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2 Background 

2.1 Biological foundations and the 
technology 

Biological foundations 

. 
m1croarray 

The human genome is estimated to consist of about 20,500 genes (National Hu­
man Genome Research Institute, 2012). All of these genes are located on the 23 
chromosome pairs, and therefore, part of the deoxyribonucleic acid (DNA). Genes 
control the production of amino acids which in turn are combined to proteins. 
These proteins form the building blocks for structures within the cells and ulti­
mately the whole body (Mandal, 2014). The activity of a gene i.e., how often 
it is transcribed and translated for the production of amino acids, is called gene 
expression. Generally all cells of an individual are genetically homogeneous but 
structurally and functionally heterogeneous owing to the differential expression of 
genes (Jaenisch and Bird, 2003). The expression of a gene is regulated in every 
cell by a wide range of mechanisms and determines the phenotype ( e.g. a disease 
outcome) of an individual (Wikipedia, 2014). 
The aim of gene expression analysis is to reveal differentially expressed genes due 
to the fact that the gene expression Ievels can give some indication about the pres­
ence or the future development of a disease. Hence, the analysis of gene expression 
may serve for diagnosis or prediction of a disease outcome (Lottaz et al., 2008). 
As a result, the analysis of gene expressions can, for example, be used to study 
regulatory gene defects in cancer and other devastating diseases (National Center 
for Biotechnology Information, 2014). 

Microarray technology 

The way from a gene to the phenotype Ieads through transcription and translation: 

DNA transcription RNA translation • "d m ammo ac1 . 

The messenger ribonucleic acid (mRNA) is a reverse copy of the DNA and con­
tains the genetic information for amino acid production (Nguyen et al., 2002). This 
means that by quantifiying the relative amount of mRNA in a cell, one can draw 
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condusions about the amino acids/proteins, and consequently about the pheno­
type of this cell (see Duggan et al., 1999). 

Referring to Science Creative Quarterly (2014), the principle of microarray tech­
nology can be described as follows. So-called oligonudeotide arrays are based on 
small basepair gene fragments (probes) which are complementary to (segments of) 
specific genes. These probes are selected to have little cross-reactivity with other 
genes. To cope with the problern of non-specific hybridization, a second probe 
identical to the first except for a mismatched base, is placed next to the first. 
The messenger RNA (mRNA) extracted from a cell is used to prepare cRNA by 
reverse transcription and further transcription. Fragments of the cRNA bind to 
their complementary probes on the microarray. By combining the perfect match 
and the mismatch probes, a single expression value can be derived for a specific 
gene. Via photolithography and chemical synthesis, the microarray can be man­
ufactured which in turn gives indication about the involved genes (for detailed 
explanation, see, for instance, Dalma-Weiszhausz et al., 2006). Science Creative 
Quarterly (2014), for instance, shows a schematic illustration ofthe measurement 
of gene expressions by oligonudeotide microarrays. 

2.2 Binary classification 

One important objective of statistical analysis in the medical sector, is the predic­
tion or diagnosis of a disease outcome. The dependent variable which displays a 
disease-related outcome, can be of different types. Typically it is categorical or a 
survival outcome. In the present thesis we will emphasize the situation of a binary 
outcome. 
A very popular field of binary dassification based on high-dimensional molecular 
data is cancer research. Common outcomes in cancer research might, for exam­
ple, be the presence of a certain tumor type or the prediction of a cancer recidive 
(Boulesteix, Stroh!, Augustin and Daumer, 2008). So as one can see, dassification 
can be divided into two main challenges: diagnosis and prognosis. Both problems 
are treated identically from a statistical point of view (Boulesteix, Stroh!, Augustin 
and Daumer, 2008). 
Generally speaking, dassification addresses the ability that a dassifier can learn 
information from the features of object, and then make an accurate prediction to 
assign objects to their true dass (Peterson, 2013, p. 4). In accord with Slawski 
et al. (2008) (p. 3) the binary dassification problern can be framed as follows: Let 
us consider a predictor space X <:::; JRP and a set of dass Iabels Y, where Y = {0, 1} 
in the case of a binary outcome. A prediction rule f is then constructed on the 
basis of n realizations (xlo y1), •.. , (:x"., Yn) of the vector (x, y) E X x Y of random 
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variables: 

f:X---+Y 

f(x) ---+ y, 

where x; = (x;b ... ,x;p)T. In case of binary classification the prediction rule 
assigns the probability for class y = 1 to each new observation ( cf. Boulesteix and 
Sauerbrei, 2011). 

Logistic regression 

In the special case of binary classification i.e., for a dichotomaus response y E 

{ 0, 1}, logistic regression models are commonly used along with linear discrimi­
nant analysis. In the present thesis, we will focus on logistic regression models. 

The objective of logistic regression is the estimation of the influence of the covari­
ates on the (conditional) probability P(y; = 1IX;). Since it has tobe guaranteed 
that the estimated probabilities lie in the interval [0, 1], we combine the conditional 
probabilities for y; = 1 with the covariates via a logistic link function i.e., 

With election of the logistic response function we obtain an equivalent model 
equation 

exp(ry;) 
P(y; = 1IX;) = 1 + ( ) , exp '17; 

where '17; = X;T ß = ßo + ß1x;1 + ß2x;2 + ... + ßpxip is the linear predictor, ß the 
vector of regression coefficients and p the number of independent predictors. 

The probability of response class y = 1 for a new Observation Xnew = ( Xnew1 , ••• , Xnew•) T 
can be predicted from 

PA ( - 11 ) - exp(ßo + ßlXnew, + ... + ßpXnewp) 
Ynew- Xnew- "' .... ,.. , 

1 + exp(ßo + ß1Xnew1 + · · · + ßpXnewp) 

where /3 is usually estimated via maximizing the log-likelihood nmction 

n 

l(ß) = L {y;(X;T ß) - log(1 + exp(X;T ß))} .1 (2.1) 
i=l 
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In the following, the linearity of the predictor 'f/ as weil as the presence of only 
main effects in the regression model is assumed. 
Since the emphasis is on classification based on both clinical and molecular predic­
tors, we need to construct a regression model that handles both types of predictors. 

Let us suppose that the conditional probability of y; = 1 may be modeled via a 
linear combination of the available predictors. A logistic regression model might 
then have the form 

where from now on Z; = (zi!, ... , Z;q) T denote the clinical and X; = (xi!, ... , X;p) T 

the molecular predictors for the i-th Observation. The parameters /l, ... , /q and 
ß1 , ... , ßv are the corresponding regression coefficients, while 'Yo characterizes the 
intercept term. 
However, this regression model raises two particular problems. 

Arising problems of regression with different types of predictors 

Firstly, there is the high-dimensionality of the molecular data matrix X, whicll 
is challenging even in the absence of clinical predictors (De Bin, Sauerbrei and 
Boulesteix, 2014). As mentioned above thousands of gene expression Ievels can be 
measured with one DNA-microarray. But since the manufacturing of microarrays 
is expensive, there are usually only less observations (Lai et al., 2006). This circum­
stance is often called the n << p problern where n is the number of observations 
and p the number of predictors. Due to the n << p problern standard statistical 
prediction methods are inapplicable (Boulesteix, Strobl, Augustin and Daumer, 
2008). It means that the regression coefficients cannot be simply estimated as 
usual by maximization of the likelihood (De Bin, Sauerbrei and Boulesteix, 2014). 
The reason for this isthat in the n << p case XTX has not full rank and is thus 
not invertible. This issue can be handled via either variable selection, dimension 
reduction or regularization teclmiques (De Bin, Sauerbrei and Boulesteix, 2014). 
Section 3 describes two appropriate strategies for handling high-dimensional data 
(the least absolute shrinkage and selection operator and supervised principal com­
ponent analysis) in detail. 
And secondly, we need to find an adequate strategy for the combination of pre­
dictors with different characteristics and dimensions, which is not Straightforward 
(De Bin, Sauerbrei and Boulesteix, 2014). 
Boulesteix and Sauerbrei (2011) (pp. 218) delineate live strategies that will be 

1See Appendix A for the derivation. 
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briefly introduced below. 

2.3 Combination strategies for predictors with 
different d i mensiona I ities 

Strategy 1: naive 
In the first strategy the clinical and molecular predictors are treated in the ex­
act same manner. That is the simplest way for combination. Variable selection, 
dimension reduction or regularization is applied to all of the available predictors. 
That is, the clinical predictors are considered as X variables (De Bin, Sauerbrei 
and Boulesteix, 2014). A benefit of this strategy is that one can use every pre­
diction method which is convenient for high-dimensional data. However, the risk 
exists that the few clinical predictors ( which are generally on average more pre­
dictive than omics predictors) may mostly be disregarded compared to the huge 
amount of molecular information (De Bin, Sauerbrei and Boulesteix, 2014). 

Strategy 2: residuals 
The basis of the second strategy is the derivation of a fix clinical prediction model 
( e.g. logistic regression in case of binary outcome). The resulting linear predictor 
is then used as an offset and updated by the molecular predictors. It should be 
noted that the clinical predictors may be subject to selection bias if variable selec­
tion has been executed. For further modifications of this strategy see Boulesteix 
and Sauerbrei (2011) (pp. 218). 

Strategy 3: favoring 
In this version clinical and molecular predictors are treated simultaneously in a 
prediction model. The distinct to Strategy 1 is that the clinical predictors are far 
vored for the reason that they are approved predictors for the interesting outcome. 
Thus, the information content of the clinical predictors is more taken into account. 
N evertheless, the influence of clinical predictors in the prediction model is affected 
by molecular predictors (Boulesteix and Sauerbrei, 2011). 

Strategy 4: dirnension reduction 
This way of creating a combined prediction model is composed of two stages: The 
molecular predictors are first aggregated to one new component (hereinafter re­
ferred to as omics score) by the use of a dimension reduction technique. After this 
step the new molecular score and the clinical predictors are simultaneously used 
as independent covariates in a multivariate prediction model. 
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Strategy 5: replacement 
Within the last strategy the clinical information is represented by a clinical in­
dex/ a clinical score. If one of the components which build the clinical score has 
low relative importance it might be replaced by more objective molecular infor­
mation. 

In the present thesis we will focus on Strategy 4 and aggregate the molecular 
data to a single omics score. Referring to Boulesteix and Sauerbrei (2011), it can 
be drawn as follows: 

(2.2) 

where the phrases X1, •.• ,Xp and w1, ... ,wp stand for the gene expression Ievels 
and their weights, respectively. 
Since not all gene expressions are necessarily connected to the outcome of inter­
est, it is definitely possible that some of the weights equal zero. If so, these gene 
expressions are not incorporated to the omics score. 

As mentioned above, several possibilities are available for the construction of the 
omics score. In the following we will emphasize on two popular techniques: the 
regularization approach least absolute shrinkage and selection operator (Lasso) 
and a supervised principal component analysis (SPC) which is a combination of 
univariate variable selection and subsequent principal component analysis for di­
mension reduction. A detailed description of how these two approaches can be 
used for generating an omics score can be found in Sections 3.2.2 and 3.3.3. 

After the omics score has been built, it is in a way considered as a 'new predictor' 
(Boulesteix and Sauerbrei, 2011). Subsequently, this molecular score as weil as the 
clinical predictors will be used as independent covariates in a multivariate logistic 
regression model to appreciate their relation to the outcome of interest: 

where 

exp(17;) 
P(y; = 1IX;, z;) = 1 + ( ) , 

exp 17; 

1/i = 'Yo + 'Yl · Zi! + 'Y2 · Z;2 + · · · + ')'q • Z;q + ßscare • Xscore,i 

(2.3) 

denotes the linear predictor. The application of this regression model enables us 
to compare the predictive power of the omics score to the predictive power of the 
standard clinical covariates Z = (z1, ... ,zq)T in predicting the outcome y. 
Thus, we can verify if the inclusion of the molecular score in the prediction model 
yields to an improvement of its prediction ability (De Bin, Herold and Boulesteix, 

15 



2014). If so, the molecular score provides an added predictive value compared to 
the clinical predictors. 
However, due to the problern of overfitting, the assessment of the added predictive 
value should be performed on independent validation data, anyway. This Ieads 
us to a substantial issue: How can we evaluate the added predictive value of the 
molecular score if there is no independent validation data set available? 

2.4 Overfitting and its consequences 

Especially in the n < < p setting, overfitting represents a generat problem. As 
a result of high dimension, it is almost always possible to find a combination of 
molecular predictors that are associated with the outcome in the considered data 
set, independently of the predictive power (Boulesteix and Sauerbrei, 2011). Since 
the molecular score was derived by 'fishing' for relevant predictors, it is likely 
that the score is strongly correlated with the outcome even in the case of non­
informative molecular predictors (Boulesteix and Sauerbrei, 2011). 
Aside from that, overfitting arises since the outcome y has already been used in 
the construction of the molecular score (Tibshirani and Efron, 2002). 
Consequently, the assessment of the added predictive value of the omics score on 
the same data which has been used to generate the score, is strongly biased in 
favor of the microarray predictor (Tibshirani and Efron, 2002). The molecular 
score will seem to be much more important than it realistically is the case. 
To avoid the problern of overfitting and to create a 'fairer' version of the omics 
score, Tibshirani and Efron (2002) suggest to use their pre-validation approach. 
Pre-validation is supposed to ensure an unbiased comparison of the different pre­
dictors on the same data set on which the molecular score has been built. lt should 
be applied to the dimension reduction step during the score generation (Boulesteix 
and Sauerbrei, 2011). In the following section the process of pre-validation will be 
described in detail. 
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3 Pre-validation 

3.1 Fundamental idea 

The primary reason for the usage of pre-validation is the creation of an omics score 
that acts if it hasn't seen the response y (Tibshirani and Efron, 2002). The prac­
tical realization is effected through a kind of cross-validation. The pre-validated 
omics score is then used as independent covariate in a multivariate regression 
model which is adjusted for the clinical predictors, to measure its infl.uence on the 
response. This will allow us to verify if the molecular data i.e., the omics score 
adds any predictive power to the standard clinical predictors. 
Referring to Tibshirani and Efron (2002) the process of pre-validation can be for­
mulated as follows: 

1. Divide the present observations into G ( approximately) equal-sized groups. 

2. Set aside one group g. Use the gene expression Ievels of the remairring Ob­
servations for the derivation of the (linear) molecular score. 

3. Apply the rule for generating the molecular score on the left-out observations 
of group g which yields the pre-validated molecular score. 

4. Repeat steps 2-3 for each group g = 1, ... , G. 

5. Fit a logistic regression model using both the pre-validated omics score and 
the q clinical predictors as independent covariates ( cf. expression (2.3)). 

Since steps 1-4 are used for the generation of the molecular predictor, the molec­
ular data is exclusively required. Figure 3.1 gives a schematic illustration of this 
procedure. 

As mentioned above, special nature of this pre-validation approach is that it cre­
ates a molecular score without the direct use of the response y. This implies that 
the predictor for observation i has not seen the true dass Iabel for observation i 
and is thus, not biased in favor of the molecular data (Tibshirani and Efron, 2002). 
The procedure of pre-validation tries to mirnie the situation of both a learning and 
a validation data set to be at hand. Usually, we would use a learning data set 
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z Xscore X y 

group g 

Figure 3.1: Schematic illustration of the pre-validation process referring to Tibshi­
rani and Efron (2002). 

to obtain the rules for generating the omics score. Afterwards, we would apply 
it to the validation data to asses its predictive ability while predicting Yvalid from 
Xva!id and Zvalid· In this way, a fair comparison of the predictive power of both 
the molecular score and the clinical predictors is ensured. 

In a formal way pre-validation can be expressed as follows: 

~[o(g)] - JA (X[o(g)]) - 1 G 
Xscore- X[-o(g)J,y[-o(g)] , 9- , ... , . (3.1) 

The term o(g) derrotes the set of indices which represent the Observations included 
in group g. Vice versa, -o(g) stands for the indices of allobservationsnot included 
in group g. 

More precisely, the values of the omics score for observations in group g i.e., xl~l 
are generated by applying the rule for score generation fxl-o(g)J,yl-o(g)J (which has 
been deduced from the Observations X[-o(g)] and y[-o(g)J, not included in group g) 
on the reduced data matrix X[o(g)] (containing all molecular predictors but only 
from Observations of group g). As mentioned above, we realize the generation of 
the omics score in two different ways in the present thesis. 

On the one hand the least absolute shrinkage and selection operator (Lasso) and 
on the other hand a supervised principal component analysis (superPC) is used. 
The next sections will describe both approaches and their application within the 
scope of pre-validation. 
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3.2 Least absolute shrinkage and selection 
operator (Lasso) 

3.2.1 Motivation and definition 

In practice one can see two reasons why ordinary least squares regression yields 
no adequate models: prediction accuracy and interpretation (cf. Tibshirani, 1996). 
The former indicates that the ordinary least squares estimator often has a high 
variance which may affect the overall prediction accuracy, while the latter refers to 
the amount of potential predictors (cf. Tibshirani, 1996). The higher the number 
of predictors, the more difficult is the interpretation. To avoid these two problems 
one can use the least absolute shrinlmge and selection operator (Lasso). 

By the fact that the Lasso technique shrinks some coefficients and sets others to 0 
a more precise prediction and a better interpretability of the resulting regression 
model can be ensured (Tibshirani, 1996). Furthermore, Lasso regression entails 
the great advantage that it can in addition handle the consequences of the n < < p 
problem. 
Due to the situation of having more independent predictors than observations, 
the design matrix X has not full rank which leads to the issue that XTX is not 
invertible. The Lasso provides a combination of good prediction accuracy and an 
intrinsic variable selection coupled with computational feasibility (Bühlmann and 
van de Geer, 2011, p. 7). 
Since the results of Lasso regression are dependent on scaling, we hereinafter as­
sume to have a standardized data matrix X. The following elucidations are mainly 
based on Tibshirani (1996). 

The Lasso 

The Lasso is a so-called regularization approach which means that very small as 
well as very large regression coefficients are penalized. Within the scope of Lasso 
regression the P1-penalty term is used. 
The regression parameters are estimated via 

ßLasso = argmin { (y- Xß)T (y- Xß) + A ·llßll1}, 
ß 

T n ( )2 where (y - Xß) (y - Xß) = E y; - X;,T ß derrotes the residual square sum, 
i=l 

p 

A ?: 0 the penalization parameter, and llßll1 = E lß;l the P1-penalty for the 
j~l 
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restriction of the absolute regression coefficients (see, for instance, Fahrmeir et al., 
2013, p. 208). 
As well as the least squares estimator, the Lasso estimator minimizes the residual 

p 

square sum, but under the restriction ~ lßil :<::; t. The tuning parameter t 2': 0 
j=l 

controls the amount of shrinkage in this expression. 

The Lasso for binary response 

A great advantage of the l 1-penalization is that it can be used with any linear 
regression model, which means that it is also suitable for a logistic regression 
model with binary response (Hastie et al., 2009, p. 125). For Lassoregression (l1-

penalty), a penalized version of the log-likelihood function (cf. expression (2.1)) is 
to be maximized (Hastie et al., 2009, p. 125): 

n 

lpena!ized(ß) = L [y;(xJ ß) -log(1 + exp(X;T ß))] - .AIIßlll· (3.2) 
i=l 

Geometrie properties of the Lasso 

The specific about the Lasso is that some of the estimated regression parameters 
may exactly be zero, which implies a variable selection. The reason for this is the 
l 1-geometry which is based on the lrnorm (Bühlmann and van de Geer, 2011, p. 
9). Fora graphical description of the l 1-geometry Iet us assume p = 2. Because of 
the quadratic form of the parameters which results from solving the least squares 
criterion, the contour lines of these parameter values are ellipses with the specific 
shape determined by XTX, and center at the least squares estimator (Fahrmeir 
et al., 2013, p. 211). For p = 2 the l 1-geometry defines diamond-shaped contour 
lines (Fahrmeir et al., 2013, p. 213). See figure 3.2 for a graphical illustration. 
The Lasso regression estimators arise as the points of intersections between the 
l 1-penalty and the ellipses, based on the least squares criterion. If the contact 
point is located in one of the corners of the diamond, some of the coefficients will 
be estimated to be zero (Fahrmeir et al., 2013, p. 213). 

The tuning parameter t 

The estimations of the Lasso coefficients and especially the number of selected pre­
dictors are dependent on the hyperparameter t or >. (see, for instance, Tibshirani, 
1996). The hyperparameter controls the strength of penalization. 
>. = 0 Ieads to the non-penalized least squares estimator (in the case of its exis­
tence), whereas the regression parameters shrink with increasing .>.. Vice versa, for 
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Figure 3.2: Graphical illustration of the least shrinkage and selection Operator ( cf., 
for instance, Tibshirani, 1996). 

t = 0 all estimators equal zero and the penalization decreases with increasing t. 
The choice of an appropriate penalty parameter is crucial, since it influences the 
whole analysis. Tibshirani (1996) describe three methods for the estimation of 
an optimal tuning parameter t: cross-validation, generalized cross-validation and 
an analytical unbiased estimate of risk. The first two methods are appropriate in 
the case where the observations (X, y) are drawn from some unknown distribu­
tion (Tibshirani, 1996). The third analytical estimate applies to the X-fixed case 
(Tibshirani, 1996). 
It is prohibited to perform the parameter tuning a posteriori and to just report the 
best results (see Slawski et al., 2008). In the present thesis the tuning parameter 
t is chosen via a 5-fold Cross-validation. The corresponding criterion is the error 
rate which has to be minimized. See Appendix B for a detailed description of the 
parameter tuning process. 

3.2.2 Derivation of the omics score using the Lasso 

The regression coefficients ß Lasso,!, ... , ß Lasso,p (hereinafter, for generating the omics 
score, no intercept term ßLasso,o is used) of the p available gene expressions, which 
has been estimated via the Lasso, can be used as weights w1 , ... , wp to compute 
the linear molecular score (cf. expression 2.2). 
Let agairr X = (x~, ... , Xp) T derrote the gene expression levels of n observations, 
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A (' A )T and ßLasso = ßLasso,b ... , ßLasso,p their corresponding estimated Lasso coefli-

cients, derived by the regression model 

P( . _ 11 ·) _ exp(ßLasso,l. Xü + · · · + ßLasso,p · X;p) y,-X;- A A 

1 + exp(ßLasso,l • Xi1 + · · · + ßLasso,p • X;p) 

For an observation i the omics score can be generatedas 

Xsrore,i = ßLasso,l · Xü + ßLasso,2 · X;2 + • • • + ßLasso,p · Xip• (3.3) 

Since our primarily objective is the comparison of non pre-validated and pre­
validated molecular scores, we will also adapt the pre-validation approach for the 
usage of the Lasso. 

3.2.3 Pre-validation adapted for the Lasso 

For this purpose, the estimation of the Lasso coeflicients is included into the pre­
validation loop: 

1. Divide the available observations into G approximately equal-sized groups. 

2. Leave group g out and perform a Lasso regression on the remaining obser-

t . t d · th t ß•[-o(g)] · I d' · fli · t ' va 10ns o enve e vec or Lasso mc u mg regress10n coe cwn s 10r every 
molecular predictor. 

3. Compute the linear molecular score for person i E o(g) as weighted sum over 

all molecular predictors with ßt.:~l1 used as weights. 

- ß'[-o(g)] [o(g)] ß'[-o(g)] [o(g)] 
Xscore,i = Lasso,l • Xil + · · · + Lasso,p • Xip · 

4. Repeat steps 2-3 for every group g = 1, ... , G. 

In comparison with Equation (3.1), in step 3 of this routine the omics scores for 
observations of group g are computed by applying the Lasso regression coeflicients 
·~o0ß [()] 

ßLasso (derived on observationsnot in group g) on the reduced data X 0 g • 

3.2.4 lmplementation in R 

The generation of the omics score using the Lasso has been implemented in R 
through two functions: las so . wi th. prevalidat ion ( ·) and las so . wi thout . pre­
validation ( ·). The former computes the pre-validated omics score, while the 
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latter computes the non pre-validated version of the molecular score. 
The input consists of the binary response vector y, the matrix of gene expression 
values X, and the term norm.fraction which corresponds to the tuning param­
eter t (smaller values yield higher penalization). As default, t is chosen via a 
5-fold cross-validation. If the pre-validated molecular score should be computed 
the number of pre-validation folds has to be additionally inputted. 
The Bioconductor package CMA developed by Slawski et al. (2008) forms the basis 
of both functions. The package allocates the function LassoCMA ( ·) for estimating 
f 1-penalized regression models for binary outcomes. Furthermore, the function 
tune ( ·) is used to chose the optimal value for the tuning parameter t via a Cross­
validation. 
Both functions, las so. wi th. prevalidation( ·) and las so. wi thout. prevalida­
tion ( ·), output the estimated Lasso coefficients for every molecular predictor. In 
case of pre-validation, a Iist containing the vectors of the Lasso estimators for ev­
ery pre-validation fold is outputted. If the omics score has been obtained without 
pre-validation, the output is the single vector of the Lasso regression coefficients. 
Subsequently, the function score ( ·) has to be invoked. After the deliveration of 
an outcome object obtained from on of the two functions lasso. with.prevali­
dation( ·) or lasso. without. prevalidation(·), it computes the score values for 
every observation. 

Among regularization approaches, dimension reduction techniques are frequently 
used for classification in high-dimensional settings. In the present thesis also a 
supervised principal component analysis is applied to derive the molecular score. 
Details of this procedure are given in the next section. 

3.3 Supervised principal component analysis 

3.3.1 Principal component analysis 

Generally speaking, principal components are a sequence of the data, mutually 
uncorrelated and ordered in variance (Hastie et al., 2009, p. 534). With the aid 
of principal component analysis, the latent structure of a data set can be revealed 
i.e., genes with similar component loadings can be identified to construct groups 
of genes with similar expression profiles (Peterson, 2013, p. 161). 
The main goal of principal component analysis is to represent the data in terms 
of a smaller number of variables whicll already comprise a !arge amount of the 
whole variability (Nikulin and McLachlan, 2010, p. 82). These new variables i.e., 
the principal components can then be used as covariates in a regression model, 
instead of the original variables. This special form of regression is called principal 
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component regression (see, for instance, Fahrmeir et al., 2013, p. 159). 
The principal components, which are uncorrelated linear combinations of the orig­
inal variables, capture the largest proportion of the variance in the original data 
in a minimal number of dimensions (Nikulin and McLachlan, 2010, p. 82). It 
means that although a dimension reduction is performed, the loss of information 
is minimal. 
Following Thtz (2013), the statistical background of principal component analysis 
based on observationswill be described below. 

Let us assume that S = -
1
-XTX E JRPXP is the empirical covariance matrix of 

n-1 
the (column-) centered data matrix X = (x1, ... ,Xp)T with xJ = (x1j, ... , Xnj)· 

For the derivation of the first principal component r{J1 E lR 1 xn, we need to find 
a vector a 1 = (a11 , ... ,a1p)T E JRPX1 which maximizes the variance of the linear 
combination 

It means that 

Var(r/11) = Var(aJX) 

= aJSa1 

1 [ T T l = -- a 1X Xa1 
n-1 

= n ~ 1 [ r/JJ r/11] 
1 n 

= --"' l/J~1 -+ max n-1~ "" i=l 

under the constraint lla1W = a! a1 = 1. The constraint is necessary since the 
variance could be increased without Iimit by increasing the components of a 1 

(Thtz, 2013). r/11 then derrotes the first principal component which contains the 
largest variability. 
Further (maximal r = min(n,p)) principal components are obtained by looking 
for weights which maximize the variance under the additional restriction that the 
weight is orthogonal to the weights of the previous principal components (Thtz, 
2013). This restriction implicates that the principal components are independent 
from each other. 
So the challenge is to find vectors ab ... , ar such that 

Var(r{Ji) = Var (aJX) = aJSai-+ ~ax 
' 
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subject to llaiW = 1 and aJ a, = 0, s = 1, ... ,j- 1. With the use of the 
Lagrange multiplier A, this maximization problern can be restated to an eigenvalue 
problern (see, for instance, Tutz, 2013). So the maximization term is solved by the 
eigenvectors a 1 , ... , O!r of S, that correspond to the largest eigenvalues A1 :::>: ... :::>: 

Ar (Tutz, 2013). For the derivation of the eigenvectors the spectral decomposition 
of the covariance matrix is recommended: 

The columns of P = ( 0!1, ..• , O!r) E !Rrxr characterize the eigenvectors of S, 
and A E !Rrxr is a diagonal matrix containing the corresponding eigenvalues 
(Al, ... , Ar)· So the principal components are represented by ~ = pTx E !Rrxn 
and thus, uncorrelated linear combinations of the original predictors (Tutz, 2013). 
The covariance of the principal components is the defined by 

Cov(~) = Cov (PTX) = pTgp = A 

with Var(r/>;) = A; and Cov(r/>;, rj>i) = 0, i o1 j. 

3.3.2 Supervised principal component analysis 

As one can see from the definitions above, only the data matrix X is used for 
the derivation of the principal components. Such procedures are called "unsuper­
vised". 
This means that the response y is not used to build the principal components 
which Ieads to the problern that there is no guarantee that the principal compo­
nents are correlated to the clinical outcome (Bair and Tibshirani, 2004). Another 
disadvantage of unsupervised principal component analysis is the fact that a com­
bination of all available molecular predictors is used to predict the outcome (Bair 
and Tibshirani, 2004). Based on the assumption that most of the gene expression 
values in the available data set are unrelated to the binary outcome, the predic­
tive ability of the deduced classifier is lessened. Thus, methods, which use only a 
subset of genes, generally perform better (Bair and Tibshirani, 2004). 
Forthat reason Bairand Tibshirani (2004) developed a supervised principal com­
ponent analysis for survival prediction. After accomplishing some modifications, 
this approach can also be used for binary classification. lt will be described below. 

The basic idea of supervised principal component analysis is to use only molecular 
predictors whicll are related to the outcome for the generation of the principal 
components, instead of using all of them (Bair and Tibshirani, 2004). For the 
identification of subsets of gene expressions which are correlated to the binary 
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outcome, several methods are available. 
In cantrast to Bairand Tibshirani (2004) who analyze data with survival outcome, 
we will not rank the gene expression values on basis of a so-called Cox score but 
regarding to their p-values from the Wald test. 
The hypotheses Ho : ß1 = 0 versus H 1 : ß1 i' 0 are tested for every available 
molecular predictor x1, j = 1, ... , p, in an univariate logistic regression model. 
During the univariate variable selection it is possible to adjust for the clinical pre­
dictors. B!!!velstad et al. (2009) and Ntzani and Ioannidis (2003) recommend to use 
the adjusted version of variable selection to ensure that the principal components 
are associated to the outcome in the multivariate model. 
From the top-!ist of gene expressions (sorted in descending order by their p-values), 
the first k predictors are used to generate the principal components. For the deter­
mination of k, we can, for example, define a threshold for the p-value, or perform 
a cross-validation to tune this parameter. Following van Wieringen et al. (2009), 
in this thesis k is not estimated but set fix to k = 25. This will guarantee sets of 
molecular predictors of equal size for every pre-validation fold. 
After variable selection was performed, X is only composed of the k top molecular 
predictors, not of all available gene expressions. Apart from that, the super­
vised principal component analysis follows the same principal component analysis 
scheme as depicted above. 

Because the intended aim is the generation of a molecular score, the next section 
will describe how supervised principal component analysis can be used in this 
scope. 

3.3.3 Derivation of the omics score using supervised 
principal components 

Forthis purpose an (univariate) variable selection must be performed on the omics 
data to obtain a top-!ist of relevant molecular predictors. The first k predictors of 
this Iist (i.e. the k predictors with the smallest p-values) create the data matrix 
X, whose principal components shall be determined. The other omics predictors 
are not further considered for the principal component analysis. 
The obtained principal components can then be used as independent covariates in 
a principal component regression model. Bairand Tibshirani (2004), for example, 
only use the estimated first or second principal components for predicting the 
survival outcome. But they reconnend to take a linear combination of several 
principal components rather than simply taking the first two principal components 
to improve the predictive power of the model (Bair and Tibshirani, 2004). In the 
present thesis, the number m of principal components that should be used in the 
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prediction model, is determined via a 5-fold cross-validation, where the maximal 
number of principal components is chosen to be 10. 
Currently, we have obtained m supervised principal components that are linear 
combinations of the original molecular predictors and which are chosen for outcome 
prediction in the regression model 

P(y; = 1lr/>;) = exp(ßauperPC,l ·1/Jil + 0 0 0 ßauperPC,m ·1/J;m) 0 

1 + exp(ßauperPC,l · 1/Jil + · · · ßauperPC,m · 1/J;m) 

• ( • • )T This yields a vector ofregression coefficients ßauperPC = ßauperPC,l, ••• , ßauperPC,m 

for every principal component which are then used as weights for obtaining the 
molecular score Xscore· In other words, the omics score for an observation i = 

1, ... , n is computed as 

Xscorei = ßsuperPC,l · </Jil + · · · + ßsuperPC,m' </Jim· 

3.3.4 Pre-validation adapted for supervised principal 
component analysis 

To use supervised principal component analysis in the scope of pre-validation, one 
can use the following routine: 

1. Divide the available observations into G approximately equal-sized groups. 

2. Leave group g out and 

a) perform ( univariate) variable selection on the remaining observations to 
obtain a top-list of the molecular predictors. 

b) Perform a principal component analysis on the basis of the first k = 25 
predictors in the top-list. 

c) Determine the number of principal components m that should be used 
as predictors via a 5-fold cross-validation. 

d) Use the first m of the derived principal components as independent 
covariates in a multivariate (logistic) regression model to estimate the 

t ?.z[-o(g)] , 1 d' th , ffi , t c , , 1 vec or /JsuperPC> mc u mg e regresswn coe c1en s 10r every prmc1pa 
component. 

3. Compute the linear molecular score for person i E o(g) as weighted sum over 

the m principal components with ß;:;:;PC used as weights 

X - ß•[-o(g)] . -~,[o(g)] + + ß•[-o(g)] . -~,[o(g)] 
score,t - superPC,l V'il · · · superPC,m o/im 
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4. Repeat steps 2-3 for every group g = 1, ... , G. 

3.3.5 lmplementation in R 

For the computation of the supervised principal component score on basis of the 
molecular data, two functions have been implemented in R: superpc. wi th. preva­
lidation( ·) and superpc. wi thout. prevalidation( ·), whereby the former gen­
erated the omics score with pre-validation, and the latter without pre-validation. 
The number of genes in the top-list (default k = 25), the maximum number of 
principal components to use as predictors (default max(m) = 10) as weil as the 
number of cross-validation folds for the determination of m can be given as argu­
ments. 
The variable selection can either be performed while adjusting for the clinical pre­
dictors, or not. The first k = 25 predictors of the derived top-!ist are passed to the 
R-function prcomp(·) from the package stats which performs an R-mode principal 
component analysis via the singular value decomposition of the correlation matrix 
of X, since the results of the principal component analysis are scale-dependent. 
The m chosen principal components which are determined via a cross-validation 
within the function number. of .pcs. cv(·), are then used as independent covariates 
in a multivariate logistic regression model. To deal with the problern of separar 
tion which Ieads to infinite estimates and standard errors, we use the function 
brglm(·) from the R-package of the same name. It fits a generalized linear model 
using Firth's (1993) modified score procedure. That is, the maximum likelihood 
estimate /Jj is not solution to the score function 

ßf(ß) n ! 
-- = ~)Y; - 7r;)X;j = 0 
aßj i=l 

but to the modified score function 

where h; derrotes the i-th diagonal element of the hat matrix 

with W = diag { 7r;(l- 7r;)}. For further details see, for instance, Heinze (1999). 
Following this, the supervised principal components and their related coefficients 
outputted from the functions superpc. wi th. prevalidation( ·) or superpc. wi tb­
out. prevalidation( ·), are passed to the function score ( ·) which in turn com-

28 



putes the score values of the pre-validated or non pre-validated omics score for 
every observation in the data. 

After the omics score has been generated and the prediction rule has been built, 
we can focus on the actual problern of how the added predictive value can be 
measured. 
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4 Assessment of the added 
predictive value 

Boulesteix and Sauerbrei (2011) and De Bin et al. (2014) provide different tech­
niques to assess the added predictive value. In the present thesis we will focus on 
two ofthem: 

• testing the molecular score in a multivariate regression model adjusting for 
clinical predictors, and 

• evaluating the predictive accuracy of the models with ( combined model) and 
without ( clinical model) the molecular score. 

Since the main objective of this thesis is to determine whether pre-validation fulfills 
its tasks during the assessment of the added predictive value, we will describe the 
following approaches under the assumption that the molecular score is tested on 
the same data set on which it has been generated. Besides that, we follow the 
manner of De Bin et al. (2014) in the description below. 

4.1 Testing the molecular score in a multivariate 
regression model 

With respect to the multivariate regression model in expression (2.3) and its cor­
responding linear predictor 

'f]; = /'O + /'1 · Zil + · · · + /'q • Z;q + ßscoreXscure,i, 

we assess the added predictive value of the molecular predictor by testing the 
hypotheses 

Ho : ßscure = 0 versus H1 : ßscore 'I 0. 

This allows to draw conclusions about the connection between the molecular score 
and the response y. Forthis purpose we use the Waldtest in the present thesis. 
However, the likelihood ratio test or the score test would also be possible. 
If the resulting p-value is smaller than a pre-defined significance Ievel, the regression 
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coefficient ßscure differs significantly from zero. 
As mentioned above, the omics score usually tends to overfit the data at hand, 
whereby the regression coefficient ßscure as weil as the corresponding p-value is 
biased. For that reason we will check these results against the results brought 
from the pre-validated omics ~core. I t means that we will also test the significance 
of the regression coefficient ßscure of the pre-validated molecular score from the 
following model: 

P( 
. - 11 . ·) - exp(ro + /1 . Z;1 + ... + /q. Z;q + ßscure. Xscure,i) 

y,- X;, z, - - -
1 + exp(/o + /1 · Zil + ... + /q · Z;q + ßscure · Xscure,i) 

In the case that we can overcome the problern of overfitting by the usage of pre­
validation, we expect on the one hand that the regression coefficient of the pre­
validated O,!!lics score is smaller than the coefficient of the non pre-validated omics 
score i.e., ßscure < ßscure· And on the other hand, we expect the p-value of the 
pre-validated omics score to be !arger than the p-value of the non pre-validated 
omics score p > p. 

However, with reference to Altman and Royston (2000) usefulness is determined 
by how weil a model works in practice, not by how many zeros there are in the 
associated p-values. Furthermore, it should be emphasized that the p-value de­
creases with increasing sample size and we will not get any information about the 
predictive ability of the prediction model while using this approach. 
Thus, besides assessing the added predictive value by testing the significance in a 
multivariate regression model, it is also common practice to evaluate the prediction 
accuracy of the obtained model via investigating the discrimination ability within 
the scope of model validation. But also for this validation strategy, overfitting 
displays a serious issue. 

4.2 Evaluating the predictive accuracy of the 
clinical and the combined model 

For this approach, we usually need to fit two prediction models. Both of them are 
multivariate logistic regression models 

exp(TJ;) 
P(y; = 1IX;, z;) = 

1 
+ ( ) , 

exp TJ; 

but they differ in their linear predictor. 
Model 1, the clinical model, consists of the clinical predictors and has the linear 
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predictor 
clin + + + 'f/; = 'Yo 'Yl · Zil • • • 'Yq · Ziq• 

The second model considers the clinical predictors and the molecular score. The 
corresponding linear predictor is represented by 

comb- ß 'f/; - 'YD + 'Yl · Zil + · · · + 'Yq • Z;q + score • Xscore;· 

Afterwards, the prediction accuracies of both models are compared. 
The omics score provides additional predictive power if the prediction accuracy of 
the combined model is superior to the prediction accuracy of the clinical model 
(De Bin, Herold and Boulesteix, 2014). 

Since the combined model is agairr fitted on the same data set which has been used 
for score generation, we expect this model to overfit the data at hand. If so, the 
combined model would seem to have better predictive power than it actually has. 
To avoid overfitting, we will also fit a third prediction model including the clinical 
predictors and the pre-validated molecular score, with the linear predictor 

.J»"•• ß- -'Ii = 'Yo + 'Yl · Zil + · · · + 'Yq · Z;q + score • Xscorep 

and compare it to the clinical and combined model from above. 
In case of pre-validation fulfills its tasks, we expect the third model to perform 
worse than the second one, since the outcome y has not directly been used for 
score generation. 

For the measurement of the prediction accuracies of these three prediction rules, we 
consider their discriminative ability. lt measures how weil the obtained prediction 
rule can distinguish between the two response classes y = 0 and y = 1. 

Discrimination 

To determine the discriminative ability we can proceed as follows with reference 
to Giancristofaro and Salmaso (2003). 
First, we split our observations into two sub-groups, with one group containing all 
observations with positive outcome, and the other group containing all observa­
tions with y = 0. Afterwards, we use the prediction rule to predict the probabilities 
P(y = 1) forapositive outcome for every observation. When plotting the distri­
butions of P(y = 1) for both sub-groups, we will see how weil the prediction rule 
distinguishes between positive and negative outcomes. The discriminative ability 
is the better the less the two curves overlap each other. Figure 4.1 illustrates ex­
amples for good and bad discriminative abilities. The blue and red curves show 
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Good discrimination 

Bad discrimination 

cut-off 

Figure 4.1: Examples of good and bad discrimination, modified according to Gi­
ancristofaro and Salmaso (2003). The red and blue areas display false 
negative and false positive classifications, respectively. 
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respectively the density functions of the observed negative and positive outcomes. 

Allobservations with a predicted probability forapositive outcome greater or equal 
than a selected cut-off value are predicted to have f) = 1. Vice versa, observations 
with P(y = 1) < cut-off are classified to response dass f) = 0: 

, {1 P(y=1)~cut-off 
y = 0 P(y = 1) < cut-off. 

The natural consequence is the occurrence of misclassification which is illustrated 
by the colored areas in Figure 4.1. The blue areas display false positive classificar 
tions and the red areas false negative classifications. The best cut-off value is the 
probability where the chance for a wrong classification is minimal. 
If a cut-off value is chosen, we can construct the classification table ( fourfold ta­
ble) which contains the frequencies of correct and incorrect classifications (see 
Table 4.1). 
With the aid of Table 4.1 the (conditional) probabilities of correct and incorrect 

I II Y = 1 I Y = o I 

I~:~ II : I : I 
Table 4.1: Classification table 

classifications can be computed. 
Sensitivity denotes the probability of correct positive classifications, i.e. 

On the contrary, 

a 
sensitivity = P(f) = 1ly = 1) = --. 

a+c 

specificity = P(f) = Oiy = 0) = b! d 

measures the probability of correct negative classifications. 
Both sensitivity and specificity are computed for every possible cut-off value. 
When afterwards plotting sensitivity against 1-specificity i.e., the true positives 
against the false positives, we derive the so-called receiver operating characteristic 
(ROC) curve. The area under the ROC curve (AUC) is a measurement of the 
discriminative ability of the prediction model (Giancristofaro and Salmaso, 2003). 
The AUC ranges from 0.5 to 1, where 0.5 corresponds to a random classification­
for example by coin tossing - and 1 corresponds to perfect discrimination. Thus, 
a prediction rule performs the better the closer its AU C is to 1. 
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4.3 lmplementation in R 

For the practical realization of these two validation strategies, we use already ex­
isting R-functions. To fit the multivariate regression models, we agairr use the 
function brglm(·) from the R-package of the same name. lt computes the bias­
reduced regression coefficients developed by Firth (1993) and also outputs the 
p-values derived by the Wald test. The area under the receiver operating char­
acteristic curve, which represents the discriminative ability, is computed with the 
aid of the R-function performance ( ·) from the package ROCR. 
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5 Practical application 

For the data-based comparison of pre-validated and non pre-validated molecular 
scores in binary classification both simulated and real data are used. Firstly, the 
simulation design and its implementation in R will be described. Later, the real 
data set used in this thesis is introduced. 

5.1 Data simulation 

The simulation of the data consists in artificially generating a data set with char­
acteristics similar to real examples. It is an established procedure to test new 
methods, like the classification rules introduced in this thesis. The main advan­
tage of this kind of data is that the truth is known. So we are able to compare the 
results with the truth and to figure out how weil, for example, the classification 
rule works. 

For the purposes of this thesis, it is necessary to simulate both clinical and omics 
data. Following the procedure of Oelker and Boulesteix (2013), we assume that the 
clinical predictors Z = (zl> ... , zq) and the molecular predictors X = (xl> ... , :xp) 
follow anormal distribution. Consequently, all predictors (Z, X) E ~nx(q+p) can be 
generated from a multivariate normal distribution MV N(p., ~), where the mean 
is chosen to be zero for every predictor, p. = ( 0, ... , 0) T E ~ ( q+p l x 1. 

Before specifying the covariance matrix 

~= 
Uz,x E ~(q+p)x(q+p)' 

we will make some conjectures about the correlation structure which is closely re­
lated to ~. To be as close to truth as possible, we assume that some of the clinical 
and the molecular predictors are to be correlated among themselves and to each 
other. 
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The correlation matrix is a symmetric block matrix which can be written as 

Pz II Pzx 

R= E ~(q+p)x(q+p)' (5.1) 

Pxz II Px 

where the blocks pz, Px and Pzx = Pkz denote the correlation matrices of the 
clinical, the molecular and among the clinical and the molecular predictors, re­
spectively. Appendix C contains a detailed description of the correlation matrix. 
To simulate data sets with a pre-specified correlation structure, different techniques 
can be used. One possibility is to use the correlation matrix directly as covariance 
matrix. Therefore, it is necessary to make two restrictions. Firstly, the correlation 
matrix and the covariance matrix are identical if the standard deviations of two 
variables is 1. The consequence of this is that diag('E) = 1, i.e. the variables are 
standardized. 
The other important restriction refers to the property of positive ( semi-) definite­
ness of both correlation and covariance matrices. Thus, R must be positive ( semi-) 
definite. Because it is not very likely that an arbitrary created matrix Rarb is pos­
itive (semi-) definite, the most similar positive definite matrix to the given matrix 
is compiled. 
For this purpose we use the algorithm described by Higham (2002) which com­
putes the nearest correlation matrix R achieving the minimum of the distance 
IIRarb - Rll based on a weighted version of the Frobenius norm. Furthermore, 
R has to be symmetric. If these restrictions are complied, we can simulate the 
predictors from the distribution MV N(JL, R). 

Another possible way to simulate correlated predictors following a multivariate 
normal distribution is to use the Cholesky decomposition of the given correlation 
matrix R = UTU. In order to do that, every predictor is simulated from a stan­
dard normal distribution N(O, 1). Multiplication of the upper triangular matrix 
U, derived by the Cholesky decomposition of the correlation matrix, with the 
matrix of the standardnormal distributed predictors (Z, X), yields a transformed 
data set ((Z, X)U) E ~nx(q+p) with the pre-specified correlation structure. For 
this approach the correlation matrix must also be symmetric and positive (serni-) 
definite with diag(R) = 1. 

Up to this point, both the clinical and the molecular predictors Z and X are 
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simulated. After the specification of the regression coefficients ß and 1, the linear 
predictor can be computed for every observation i, i = 1, ... , n. On basis of a 
logistic regression model, the probability for a positive response can be computed. 
The response variable is a Bernoulli random variable, where 

exp(ry,) 
P(y; = llxi> z;) = 1 ( ) 

+exp "'i 
The values of the binary outcome y; are then generated with the aid of a Bernoulli 

distribution with probability 7r;. 

In the present thesis six different simulation settings are generated. They have 
been developed in collaboration with Dr. Riccardo De Bin from the Department 
of MedicaJ Informatics, Biometry and Epidemiology of the University of Munich, 
who will also use similar simulation settings in future publications. 

5.1.1 Simulation Settings 

For every setting n = 200 observations are simulated. The number of clinical and 
molecular predictors is set to q = 10 and p = 1000, respectively. In every setting 
we discern between informative and non-informative predictors. lt means that 
the clinical as weil as the omics predictors may influence the response ( regression 
coefficient oF 0) or not (regression coefficient = 0). 
The number of informative clinical predictors is specified to be 6, while the number 
of non-informative clinical predictors is to be 6. The regression coeffi.cients of the 
clinical predictors are 

1 = (1'1> ... ,")'10)T = (-2,-1.5,-1, 1, 1.5,2,0,0,0,0)T 

in each setting. 
Within the molecular predictors, 20 of them are determined to influence the out­
come while the other 980 are not related to y in the first four simulation settings. 
As for the clinical predictors, we also fix regression coefficients for the omics pre­
dictors in settings 1-4, 

ß = (ßl, .. ·, ß2o, ß21, ... , ßwoo) T = (0.75, ... , 0.75, 0, ... , 0) T. 

Within the last two settings, ß is equal to 0. lt means that the molecular covariates 
do not influence the outcome at all. In general, we simulate six settings whicll vary 
in terms of the predictive ability of both the clinical and the omics predictors. See 
table 5.1 for an overview of the simulation settings. 
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Setting 1 

Predictive 
ability of 
molecular 
data 

high 

low 

no 

Predictive ability 

of clinical data 

high low 

setting 1 setting 3 

setting 2 setting 4 

setting 5 setting 6 

Table 5.1: Overview of the simulation settings. 

In the first simulation scenario both the clinical and the molecular predictors affect 
the outcome strongly. With the aid of the correlation structure of the predictors 
we can additionally exert influence on the predictive ability. In this case, we want 
the clinical and the molecular predictors to be only low correlated to each other 
and among themselves. This will cause both predictor types to be crucial for 
predicting the response and thus, the omics predictors to supply a large added 
predictive value. As weil as Oelker and Boulesteix (2013) we will use the values 
p = 0.2 and p = 0.8 for low and high correlations, respectively. 

Setting 2 

In the first simulation setting the 20 informative molecular predictors are supposed 
to have low predictive power. If the clinical predictors have high predictive ability, 
such as in this case, it is advisable to take a low correlation as basis. This has the 
consequence that the outcome mainly depends on the clinical predictors, which 
already explain a crucial part of the outcome variability. As opposed to this, 
the molecular predictors, which should provide a small contribution to outcome 
prediction, are simulated with high correlations among them and to the clinical 
predictors. As a result, they can merely explain a minor amount of the outcome 
variability. 

Setting 3 

In cantrast to setting 2, the molecular predictors are supposed to have a high 
added predictive value. The clinical predictors, however, shall have just low pre­
dictive ability. To emphasize the predictive abilities, the clinical predictors are 
high correlated among themselves. As a result, the predictive power of the clinical 
part is narrowed. Vice versa, the omics predictors should have a small correlation 
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coefficient. Thus, added predictive value of the molecular predictors is increased. 

Setting 4 

In the fourth scenario, the clinical and the molecular predictors are highly corre­
lated to each other and among themselves. Consequently, the added predictive 
value of the molecular data is small. 

Setting 5 

In contrast to the first four simulation settings, the molecular predictors should 
have no predictive power. Their correlation structure is neglected for this situation. 
lt means that the molecular predictors are neither correlated among themselves 
nor to the clinical predictors. The other way round, the clinical predictors should 
strongly be related to y. They are low correlated to each other. 

Setting 6 

The last simulation setting differs from Setting 5 with regard to the predictive 
ability of the clinical predictors. They are strongly correlated to each other and 
thus their prediction power is narrowed. 

5.1.2 lmplementation in R 

For the practical realization of the simulation the R-function simulation(.) has 
been implemented. For the generation of a data set, the following parameters 
have to be pre-specified and provided to the function: the number of observations 
n, the number of both the clinical and the molecular predictors, the regression 
parameters 'Y and {3, defining the influence of the predictors on the outcome, and 
the block correlation matrix RE JR(q+p)x(q+p), containing the correlation structure 
that shall be achieved in the resulting data matrix. 
The normal distributed data are either generated with aid of the R-function rnorm ( ·) 
from the package stats, or the function mvrnorm(·) from the package MASS, de­
pending on whether Cholesky's decompositions is used or not. 
To ensure that the inputted correlation matrix is at least positive semi-definite, 
its eigenvalues are checked to be greater than or equal to zero. Otherwise, the 
R-function nearPD(·) from the package Matrix computes the nearest positive def­
inite matrix. 
After the simulation of the clinical and molecular predictors is completed, the vec­
tor of the outcome y can be simulated using the function rbinom ( ·) . 
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Besides simulated data, we will also use real data to compare the pre-validated 
and the non pre-validated omics scores. The description of the real data can be 
found in the following section. 

5.2 Breast cancer data 

The real data set to be analyzed in the present thesis is taken from Hatzis et al. 
(2011). A huge advantage of this data is that it is freely accessibly online. 
Originally, this data set served for predicting response and survival outcome from 
chemotherapy for newly diagnosed invasive breast cancer (Hatzis et al., 2011). The 
goal was to figure out whose clinical-pathologic risk at presentation favors the use 
of chemotherapy since it improves survival prognosis (Hatzis et al., 2011). 
The collected data originate from a prospective multicenter study conducted from 
June 2000 to March 2010 at the M. D. Anderson Cancer Center in Houston, Texas 
(Hatzis et al., 2011) . They included a total of 310 patients in the training data 
and 198 patients in the validation data with newly diagnosed ERBB2 (HER2 
or HER2/neu)- negative breast cancer treated with chemotherapy (Hatzis et al., 
2011). For our purpose, we will only use the training data from Hatzis et al. 
(2011). After the exclusion of the missing values, we have 281 observations left. 
Furthermore, patients with indeterminate progesterone status are not further con­
sidered, since this group only includes 4 observations. Likewise, the two patients 
with tumor grade ''TO" are excluded from further analysis. Altogether the data 
set consists of 275 patients. 
With the aid of gene expression microarrays from Affymetrix, different predictive 
signatures for resistance and response to prooperative (neoadjuvant) chemother­
apy have been developed (Hatzis et al., 2011). 

For the usage of Hatzis' breast cancer data in the context of binary classification, 
the response of the tumor to neoadjuvant chemotherapy forms the new outcome. 
The residual cancerburden (RCB) developed by Symmans et al. (2007), helps with 
the quantification of residual tumor and is based upon the fact that the neoad­
juvant chemotherapy influences the morphologic changes of the residual tumor 
(Schermann, 2014). Generally, there are four groups of residual cancer burden: 

• RCB-0: no residual disease, 

• RCB-1: minimal residual disease, 

• RCB-11: moderate residual disease, and 

• RCB-III: extensive residual disease. 

lt could be shown that residual cancer burden is highly associated to the tumor 
response, wherefore the binary outcome is built as y = 0 if residual cancer burden 

41 



is of RCB-0 or RCB-1 which equals a high advantage of neoadjuvant chemotherapy 
and y = 1 if residual cancerburden is of RCB-11 or RCB-111. Thus, y = 1 repre­
sents a poor prognosis for patients despite neoadjuvant chemotherapy (Schermann, 
2014). 
Summarized, the outcome variable can be outlined as 

= {0 chemosensitivity 
y 1 chemoresistance 

(no or minimal residual disease) 
(moderate or extensive residual disease) 

after neoadjuvant chemotherapy. For the prediction of the residual cancer burden 
six clinical predictors are used. The age of the patients, the progesterone receptor 
status, the estrogen receptor status, the tumor stage, the nodal status, and the 
tumor grade. The baselirre characteristics of the clinical predictors are described 
in Table 5.2. 
Furthermore, for every patient 22,283 probe sets (gene expression values) have 
been collected for outcome prediction. 

In the next section the classification results of the simulated as weil as the real 
data is represented. 

5.3 Results 

Altogether, seven regression models have been fit to the simulated data. 
Three models each with a non pre-validated and a 5-fold pre-validated omics score 
have been fit using the Lasso, the superPC analysis without adjustment for the 
clinical predictors during variable selection, and the superPC analysis with ad­
justment for the clinical predictors during variable selection. The seventh model 
is the clinical model, only containing the clinical predictors. An overall view of all 
results are represented in Appendix D. 
The value G = 5 for the number of pre-validation folds has been chosen since it is 
a common value for cross-validation, which is very similar to pre-validation (see, 
for instance Tibshirani and Efron, 2002). Leave-one-out (G = n) pre-validation 
would be deterministic and the variance estimates would be high. Small values 
for G would Iead to too small training sets relative to the full training set (Tib­
shirani and Efron, 2002). Furthermore, G = 5 Ieads to good tradeoff between the 
complexity of pre-validation and computation time. 

Simulation setting 1 

Looking at the results of simulation setting 1 in Table 5.3, we can as anticipated 
see that the regression coefficients of the pre-validated scores (right part of the 
table) are all smaller than their non pre-validated Counterparts. 
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Training cohort Validation cohort 

Age 

Mean(SD) 50.29 (10.68) 49.7 (11.04) 

Progesterone receptor status 

Negative 148 (0.53) 50 (0.46) 

Positive 129 (0.47) 58 (0.54) 

Estrogen receptor status 

Negative 117 (0.42) 33 (0.31) 

Positive 160 (0.58) 75 (0.69) 

Tumorstage 

1 19 (0.07) 3 (0.03) 

2 153 (0.55) 58 (0.54) 

3 57 (0.21) 28 (0.26) 

4 46 (0.17) 18 (0.17) 

Nodal status 

0 84 (0.30) 41 (0.38) 

1 127 (0.46) 46 (0.43) 

2 37 (0.13) 15 (0.14) 

3 29 (0.10) 6 (0.06) 

Tumor grade 

1 18 (0.06) 9 (0.08) 

2 113 (0.41) 36 (0.33) 

3 146 (0.53) 63 (0.58) 

Table 5.2: Baselirre characteristics of the clinical predictors in Hatzis' breast cancer 
data. 

lt is also recognizable that the p-values of the Wald test are clearly higher than 
common significance Ievels like 1 % or 5 %. This result is according to our ex-
pectations since in the first simulation setting the molecular predictors own high 
prediction ability and are thus important for outcome prediction. 
Furthermore, the results of the supervised principal component analysis show 
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Without 5-fold 

pre-validation pre-validation 

ßscqre 2.09091 1.36930 

Pscore 9.75·10-9 2.69·10-7 

AUC 0.95280 0.92069 

1:l ßscqre 1.1550 0.45938 

"' s Pscore 2.94·10-9 1.11·10-5 .., 
~ AUC 0.97560 0.89999 
~ 

ßscqre 1.77087 0.77207 

Pscore 1.88·10-8 1.67·10-6 

AUC 0.98880 0.90929 

Table 5.3: Comparison of pre-validated and non pre-validated molecular scores in 
logistic regression models on simulation setting 1. 

higher regression coefficients if adjustment for the clinical predictors has been per­
formed during the variable selection process. Looking at the values of the AUC, 
it occurs that the combined model including the pre-validated omics score clearly 
has lower values and thus, less discriminative ability. The clinical model has an 
AUC of the value 0.85839 i.e., it has lower discriminative ability than all of the 
combined prediction models. 

Simulation setting 2 

As well as in the first setting, all of the pre-validated omics scores have regression 
coefficients of !arger (absolute) values than the non pre-validated molecular scores, 
as can be seen from Table 5.4. However, the different signs of the regression 
coefficients of the superPC-scores catch the eye. 
For each of the three approaches, the non pre-validated omics scores significantly 
influence the response. The p-values of the superPC-scores are clearly !arger in 
case of pre-validation has been performed. Both of them exceed connonly used 
significance Ievels. The pre-validated molecular score derived by Lasso regression 
generates less obvious results. Admittedly, the p-value decreases but it lies in the 
borderline between the two mentioned significance Ievels. It means that for the 
choice of 0.05 as significance Ievel, the regression coefficient of the score differs 
significantly from zero, whereas it does not for the significance Ievel 0.01. 
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Without 5-fold 

pre-validation pre-validation 

ßscqre 4.119985 1.78445 

Pscore 0.000729 0.040145 

AUC 0.99130 0.98289 

1:l ßscqre 0.96547 -0.002267 

"' s Pscore 0.004812 0.994465 .., 
~ AUC 0.98709 0.98099 
~ 

ßscqre 4.77079 -0.61718 

Pscore 0.000259 0.276850 

AUC 0.99950 0.98279 

Table 5.4: Comparison of pre-validated and non pre-validated molecular scores in 
logistic regression models on simulation setting 2. 

The AUCs in this simulation setting are agairr smaller if pre-validation has been 
used to generate the omics score. Except for the model with the pre-validated 
superPC-score with adjustment, all combined models have a higher AUC than 
the clinical model (AUC=0.98099). However, the differences between the AUC 
of the clinical model and the combined models containing pre-validated molecular 
scores, is not huge. 

Simulation setting 3 

Within the scope of simulation setting 3 we can observe similar results as in setting 
1, where the omics score also provides a !arge added predictive value. The results 
are shown in Table 5.5. 
The values of the regression coefficients decrease while the p-values increase when 
the score has been derived by pre-validation. Both ß-coefficients of the pre­
validated superPC-scores are clearly significant, whereas the p-value of the pre­
validated Lasso-score again lies in the borderline between 0.01 and 0.05. Without 
pre-validation each of the molecular scores shows significance. 
Also in this setting, the AUC is reduced in the case of pre-validation has been per­
formed during score generation. The discriminative ability of the clinical model 
(AUC=0.85343) is exceeded by each combined model. 
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Without 5-fold 

pre-validation pre-validation 

ßscqre 0.74370 0.16428 

Pscore 2.79·10-6 0.010838 

AUC 0.90085 0.86416 

1:l ßscqre 1.05846 0.47376 

"' s Pscore 1.04·10-9 0.000155 .., 
~ AUC 0.95599 0.88521 
~ 

ßscqre 1.59978 0.718874 

Pscore 2.33-lo-9 7.58·10-6 

AUC 0.97614 0.89995 

Table 5.5: Comparison of pre-validated and non pre-validated molecular scores in 
logistic regression models on simulation setting 3. 

Simulation setting 4 

Without 5-fold 

pre-validation pre-validation 

ßscqre 1.68618 1.19081 

Pscore 0.000124 0.005002 

AUC 0.97949 0.99179 

1:l ßscqre 0.7899 0.36192 

"' s Pscore 1.13-10-5 0.005157 .., 
"' ;:l AUC 0.98920 0.97109 ;.a' 
ctl 

ßscqre 1.23909 0.36265 

Pscore 5.68·10-6 0.057260 

AUC 0.99130 0.96639 

Table 5.6: Comparison of pre-validated and non pre-validated molecular scores in 
logistic regression models on simulation setting 4. 
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Simulation setting 4 indicates low predictive ability for both the clinical and the 
omics covariates. It can be observed from Table 5.6 that without pre-validation 
each regression coefficient differs significantly from zero. With pre-validation the 
coefficients decrease but only the ß-coefficient of the superPC-score with adjust­
ment looses its significance. 
We can see that the model with the pre-validated Lasso-score has a higher AUC­
value than its non pre-validated Counterpart. The superPC-score Iead to lower 
AUCs in case of pre-validation. All of the combined models outperform he dis­
criminative ability of the clinical model (AUC=0.96239). 

Simulation setting 5 

Without 5-fold 

pre-validation pre-validation 

ßscare 0.05065 0.06716 

Pscore 0.301241 0.160883 

AUC 0.9373 0.9384 

1:1 ßscore 0.70669 -0.252203 

"' s Pscore 1.21-10-5 0.086206 
tl 
;; 

AUC 0.9626 0.9393 j 
ßscare 1.23909 0.36265 

Pscore l.U.l0-6 0.84399 

AUC 0.9914 0.9355 

Table 5.7: Comparison of pre-validated and non pre-validated molecular scores in 
logistic regression models on simulation setting 5. 

In the fifth simulation setting the differences between pre-validation and non 
pre-validation arenot as clear as expected. The results are displayed in Table 5.7. 
Applying pre-validation to the Lasso yields a !arger regression coefficient ans a 
smaller p-value in marked cantrast to our expectation. It is noteworthy that 
the non pre-validated Lasso score is closer to the truth than its pre-validated 
counterpart. In line with setting 2, the signs of the superPC-scores reverse when 
pre-validation is performed. However, none of the regression coefficients of the pre­
validated scores shows significance. The AUC of the clinical model is 0.9353 and 
thus very close to the AUCs of the combined models including the pre-validated 
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scores. It means that altogether no added predictive value can be revealed which 
is in common with the simulation design. 

Simulation setting 6 

Without 5-fold 

pre-validation pre-validation 

ßscore -0.09667 -0.210018 

Pscore 0.07981 0.005996 

AUC 0.96140 0.96620 

'l:l ßscore 1.02174 0.067696 

s Pscore 1.39·10-5 0.60744 
t.; 
=' AUC 0.98830 0.96030 
~ 

ßscore 3.12020 0.26675 

Pscore L05-lo-5 0.48099 

AUC 0.99330 0.96010 

Table 5.8: Comparison of pre-validated and non pre-validated molecular scores in 
logistic regression models on simulation setting 6. 

As in the setting before, the molecular data provides no predictive power and the 
clinical data owns only low prediction ability. Looking at Table 5.8 we again can 
observe that the Lasso-score behaves conversely than expected. The pre-validated 
version has a higher (absolute) coefficient value and a smaller associated p-value 
than the non-pre-validated molecular score. Both of the superPC-scores are sig­
nificant in case of non pre-validation. However, when applying pre-validation both 
of them have p-values clearly higher than the common significance Ievels. The 
clinical model has an AUC-value of 0.95880 which is close to the results of the 
pre-validated scores. Also the model including the non pre-validated Lasso-score 
Ieads to similar results. 

Altogether, in each of the simulation settings the superPC approach with adjust­
ment for the clinical predictors yields !arger (absolute) regression coefficients than 
without adjustment. This seems tobe consistent with Bri!Velstad's (2009) advice to 
adjust for the clinical predictors since then the superPC-score is stronger related 
to the outcome. On basis of the simulation results, we cannot generally confirm 
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Tibshirani and Efron's result that the clinical predictors strengthen in case of 
pre-validation has been performed. However, in the settings 5 and 6, when the 
molecular data has no influence on the response, the regression coefficients of the 
clinical predictors become !arger when the omics score has been derived with the 
usage of pre-validation. 
In the following, the results of the analysis of Hatzis' breast cancer data will be 
described. 

Hatzis' breast cancer data 

Without 5-fold 

pre-validation pre-validation 

ßscore 0.35718 0.04025 

Pscore 0.0988 0.34821 

AUC 0.78032 0.77487 

~ ßscore 1.12291 0.44676 
<!) 

s Pscore 2.43-lo-7 0.01195 _,_ 
"' ;:l 

AUC 0.84077 0.78583 :.0 
"' ßscore 1.02228 0.09555 

Pscore 4.68·10-11 0.34871 

AUC 0.88865 0.77391 

Table 5.9: Comparison of pre-validated and non pre-validated molecular scores in 
logistic regression models on Hatzis' breast cancer data. 

When looking at Table 5.9 it is recognizable that all pre-validated omics scores have 
smaller regression coefficients with !arger p-values than their non pre-validated 
versions. Both superPC-scores are significant without pre-validation. The non 
pre-validated Lasso-score as weil as the pre-validated Lasso-score and the pre­
validated superPC-score with adjustment are clearly not significant. The p-value 
of the pre-validated superPC-score obtained without adjustment for the clinical 
predictors during variable selection, lies in the borderline between 0.01 and 0.05. 
The area under the ROC curve is for all models including pre-validated molecular 
scores smaller than for the prediction models which contain the non pre-validated 
scores. Compared with the AUC = 0.77183 of the clinical model, the inclusion of 
the pre-validated omics score Ieads to higher AUC-values but the difference is not 
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huge. 
In contrast to all simulation settings, we cannot observe that the adjustment for 
clinical predictors during the generation of the superPC-score yields !arger regres­
sion coefficients. Furthermore, only few of the clinical predictors strengthen in 
case of pre-validation has been performed. 
Considering these results the ornics data does not seem to provide an added pre­
dictive value compared to the clinical data. This finding is also consistent with 
conclusions of De Bin, Sauerbrei and Boulesteix (2014). 
The results can be found in detail in Appendix E. 

50 



6 Summary 

High-dimensional molecular data such as microarray data display an actual and 
important research area. The handling of the n < < p problem and the combi­
nation of low- and high-dimensional predictors is a serious challenge. Also the 
validation of the added predictive value of the omics data - in form of a new gen­
erated molecular score - compared to standard clinical predictors on the identical 
data set that has already been used to build the score, is a non-trivial issue. Since 
microarray predictors tend to overfit the available data, the omics score might 
seem to be more relevant for outcome prediction than it actually is. 
Goal of the present thesis was on the one hand the implementation of the Lasso 
and the super PO analysis in the scope of generating omics scores, and on the other 
hand the verification whether pre-validation is an appropriate approach to solve the 
problern of overfitting, and allows a fairer comparison between the different types 
of predictors. The results of both, the simulated and the real breast cancer data 
from Hatzis show that molecular scores which have been derived by pre-validation 
have smaller estimated coefficients in the multivariate regression model adjusted 
for the clinical predictors than their non pre-validated Counterparts. Analogously, 
when applying a Wald test for the determination whether a regression coefficient 
significantly differs from zero, we can observe that the pre-validated omics scores 
are all less significant than the non-prevalidated ones. Also the measurement of 
the area under the receiver operating characteristic curve shows that, apart from 
one exception (Lasso-score in simulation setting 4), the prediction models can­
tairring pre-validated molecular scores have lower discriminative ability than the 
regression models including a non pre-validated score. 
Special attention should be given to the results of simulation settings 5 and 6, 
where the molecular data has no predictive ability. With exception of the Lasso­
score in setting 6, none of the pre-validated molecular scores is significant in the 
multivariate regression model, while most of the non pre-validated scores are. How­
ever, analysis of the AUC do notshowsuch clear results. The clinical model does 
not Iead to an higher AUC-value compared to the combined models, although the 
molecular data has no predictive ability in both simulation settings. 
The results of this thesis are altogether consistent with Tibshirani and Efron's 
assertion that pre-validation is a suitable method to at least reduce the problern of 
overfitting during the assessment of the added predictive value. However, it should 
be noted that pre-validation cannot replace proper validation if independent val-
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idation data is available. Also the application of a permutation test instead of 
a standard Wald test should be considered. Since the i.i.d. assumption in the 
generalized linear model is violated, the asymptotic distribution of the test statis­
tic is not a t- or normal distribution (Oelker and Boulesteix, 2013, Höfling and 
Tibshirani, 2008). 

Aside from that, someone should consider that we have many degrees of freedom 
in this thesis. Firstly, the binary classification has not necessarily be performed by 
a logistic regression model. For example, a probit regression would also be possi­
ble. Extension concerning the linearity of the predictor and interactions between 
covariates are not precluded. 
Secondly, in the context of pre-validation, the number of pre-validation folds is 
optional. Also, for example, in the superPC approach, other selection methods 
for generating the top-list would be possible. Boulesteix and Slawski (2009) have 
implemented a Iot of alternates in their Bioconductor package geneSelector. Ad­
ditionally, besides the Lasso and superPC analysis, other conceivable methods can 
be used for score generation, like partialleast squares, Ridge regression or random 
forests, to name just a few. 
Moreover, in the process of data simulation many decisions need to be taken. 
The number of observations, the number of clinical and molecular predictors, the 
regression coefficients and the correlation structure is freely selectable. 
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Appendix 

A Derivation of the log-likelihood function in 
logistic regression 

Assumptions: 

Yi i.!j. B(l, 1ri), 
where 7r; = P(y; = 1) = JE(y;) = h(xT {3) 

Density function: 

Likelihood function: 
n n 

L(f3) i.~. II L;(/3) = II 7rr (1 - 7r;)l-y, 

i=l i=l 

Log-likelihood function: 

n 

€({3) = L log( L; ({3)) 
i=l 

n 

= L {y; log(1r;)- y; log(1- 1r;) + log(1- 1r;)} 
i=l 

= ~ y; log (~) + log(1 - 1r;) 
L...J 1- ?r· 
i=l t 

exp(x.,T {3) 
From 7r; = ( T {3) follows 

1 + exp X., 

n 

€({3) = L {y;(xT {3) -log(1 + exp(x.,T {3))}. 
i=l 
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B Tuning of the penalization parameter 

The error rate is best explained by using the the classification matrix for two pos­
sible outcomes y = 0 versus y = 1 below. 

'nuth 
y=O y=l 
true false 

y=O negative negative 
TN FN 
false true 

:Q=l positive positive 
FP TP 

According to this table the error rate e i.e., the fraction of false predictions, can 
be estimated with reference to Slawski et al. (2008) (p. 10) as follows: 

FP+FN 
e = ---------

TN+TP+FN+FP' 

where F P derrotes the number of false positive predictions, T N the number of 
true negative predictions, et cetera. 
The tuning parameter t can be estimated via the following Cross-validation loop: 

1. Divide the available observations into L subsets of approximate equal size. 

2. Leave subset f out and generate a classifier for every "candidate value" of t 
based on the Lasso. 

3. Estimate the error rate for every candidate value on the left-out cases. 

4. Repeat steps 2-3 for every f E L. 

5. Choose the candidate value with the smallest cross-validated error rate for 
t. 
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C Cerrelation matrix 

Pzx 

R= 

Pxz II Px 

where 

Px= 

Pz11z1 PZI,Z6 

Pzs,ZI Pzs,Zs 
Pz1,z, Pz1,Zo 

Pz= 

Pzw,ZI Pzw,Zs 

informative 
clinical predictors 

Px1,X1 PX1,X2o 

PX2o,X1 PX2o,X2o 

Px21,X1 PX21,X2o 

PXwoo,X1 PXwoo,X2o 

informative 
molecular predictors 

Pz1,Z1 Pz1,Zw 
} informative 

clinical predictors 

Pzs,Z7 Pzs,Zw 
Pz1,Z7 Pz7,Z10 

} non-informative 

Pzw,Z7 Pzw,Zw 
clinical predictors 

non-informative 
clinica.I predictors 

Px1,X21 PX1,Xwoo 

PX2o,X21 PX2o,Xwoo 
Px21,X21 PX21,Xwoo 

PXwoo,X21 p X 1000 ,X 1000 

non-informative 
molecular predictors 
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and 

pz,,x, Pz,,X2o PZ1,X21 PZ1,X1ooo 
} informative 

clinical predictors 

Pza,Xl Pza,X2o Pza,X21 Pzs,Xwoo 

Pz1,X1 Pz1,X2o Pz1,X21 Pz1,X1ooo 
Pzx = 

} non-informative 

Pzw,Xl · · · PZ1o,X2o Pzw,X21 · · · PZ1o,Xwoo 
clinical predictors 

informative non-informative 
molecular predictors molecular predictors 

The correlation matrix R will have the same structure for the first four simulation 
settings, but different values for the strength of correlations between the predic­
tors. lt is constructed as follows. 

• Informative clinical predictors: 

Z1, Z2 are correlated to informative omics predictors X 1 , ... , X5 ; 

-+ zl, z2 are correlated among themselves; 

-+ X1, ... , X5 are correlated among themselves; 

Z3 , Z4 are correlated to informative omics predictors X 6 , .•. , X 10; 

-+ z3, z4 are correlated among themselves; 

-+ X 6 , .•. , X 10 are correlated among themselves; 

Z5 is uncorrelated to other clinical predictors, but correlated to non­
informative omics predictors x21, ... , x25i 

-+ x21, ... , x25 are correlated among themselves; 

Z6 is correlated to non-informative clinical predictors Z7 , Z8 , and to 
informative omics predictors X 10 , .•. , X20 ; 

-+ Z6 , ••• , Z8 are correlated among themselves; 

-+ Xw, ... , X20 are correlated among themselves; 

• Non-informative clinical predictors: 

Z9 is correlated to non-informative onrics predictors X26 , ... , X30 ; 

-+ X26, ••• , X 30 are correlated among themselves; 

Z10 is correlated to non-informative omics predictors X31 , ..• , X35 ; 

-+ x31, ... , x35 are correlated among themselves; 
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• Informative molecular predictors: 

- X 1 is correlated to non-informative omics predictors X36 , ••• , X 40 ; 

-+ Xa6, ... , X40 are correlated among themselves; 

- X 2 is correlated to non-informative omics predictors X41 , ... , X 45 ; 

-+ X41, ... , X45 are correlated among themselves; 

- X15 is correlated to non-informative omics predictors X 106, ... , X110 ; 

-+ Xw6 , •.. , X 110 are correlated among themselves; 

Insimulationdesigns 5 and 6, the correlations regarding to the (non-informative) 
molecular predictors is neglected. That is, the molecular predictors are neither 
correlated among themselves nor to the clinical predictors. The clinical predictors 
retain the same correlation structure as described above with the exception that 
none of them is correlated to any molecular predictor. 
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D Results of the analysis of the simulated data 

Setting 1 

Lasso 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.04249 0.24034 0.177 0.859688 
z1 -0.76003 0.25993 -2.924 0.003456 
z2 -0.46998 0.24188 -1.943 0.052015 
z3 -0.21053 0.23044 -0.914 0.360917 
z4 1.01431 0.27254 3.722 0.000198 
z5 0.94424 0.27188 3.473 0.000515 
z6 1.32174 0.31408 4.208 2.57-lo-5 

z7 -0.04291 0.30935 -0.139 0.889689 
z8 0.40820 0.26295 1.552 0.120566 
z9 -0.11246 0.23620 -0.476 0.633974 
z10 -0.29257 0.22680 -1.290 0.197066 
score 2.09091 0.36459 5.735 9.75·10-9 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.05845 0.21154 0.276 0.782307 
z1 -0.64501 0.22516 -2.865 0.004174 
z2 -0.29824 0.20645 -1.445 0.148571 
z3 -0.11581 0.20755 -0.558 0.576868 
z4 0.89425 0.23873 3.746 0.000180 
z5 0.77144 0.23061 3.345 0.000822 
z6 1.38153 0.27864 4.958 7.12·10-7 

z7 0.04164 0.26700 0.156 0.876063 
z8 0.46689 0.23053 2.025 0.042838 
z9 -0.01239 0.21138 -0.059 0.953269 
z10 -0.15789 0.19564 -0.807 0.419631 
score 1.36930 0.26619 5.144 2.69·10-7 
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SuperPC, without adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.1321 0.2803 -0.471 0.637386 
z1 -1.1836 0.3435 -3.445 0.000571 
z2 -0.4738 0.2848 -1.664 0.096191 
z3 -0.2700 0.2816 -0.959 0.337629 
z4 0.8559 0.3203 2.672 0.007545 
z5 0.9586 0.3293 2.912 0.003596 
z6 1.6405 0.4046 4.055 5.01·10-5 

z7 -0.2708 0.3576 -0.757 0.448877 
z8 0.1314 0.3165 0.415 0.677985 
z9 0.4145 0.2737 1.515 0.129896 
z10 -0.2096 0.2714 -0.772 0.439885 
score 1.1550 0.1946 5.935 2.94·10-9 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.03656 0.19934 0.183 0.854482 
z1 -0.60562 0.21345 -2.837 0.004550 
z2 -0.32721 0.20704 -1.580 0.114018 
z3 -0.11339 0.19515 -0.581 0.561219 
z4 0.83867 0.23376 3.588 0.000334 
z5 0.76962 0.21662 3.553 0.000381 
z6 1.31246 0.26334 4.984 6.23·10-7 

z7 0.02210 0.25559 0.086 0.931106 
z8 0.30165 0.22087 1.366 0.172018 
z9 0.02400 0.19545 0.123 0.902276 
z10 -0.09041 0.18600 -0.486 0.626909 
score 0.45938 0.10455 4.394 1.11-10-5 
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SuperPC, with adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.11065 0.33245 -0.333 0.739258 
z1 -1.40397 0.39023 -3.598 0.000321 
z2 -1.00104 0.38492 -2.601 0.009304 
z3 -0.01714 0.32759 -0.052 0.958263 
z4 1.74784 0.45793 3.817 0.000135 
z5 1.82258 0.47115 3.868 0.000110 
z6 2.56292 0.58666 4.369 1.25·10-5 

z7 -0.40147 0.42981 -0.934 0.350267 
z8 0.64259 0.37948 1.693 0.090391 
z9 -0.02074 0.32200 -0.064 0.948645 
z10 -0.28120 0.30889 -0.910 0.362635 
score 1.77087 0.31495 5.623 1.88·10-8 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.04098 0.20536 0.200 0.841829 
z1 -0.74096 0.23284 -3.182 0.001461 
z2 -0.46388 0.21706 -2.137 0.032590 
z3 -0.02111 0.21086 -0.100 0.920249 
z4 0.87458 0.23704 3.690 0.000225 
z5 0.75098 0.21659 3.467 0.000526 
z6 1.40541 0.27907 5.036 4.75·10-7 

z7 0.08026 0.26100 0.307 0.758470 
z8 0.23377 0.22541 1.037 0.299684 
z9 -0.13486 0.19303 -0.699 0.484773 
z10 0.09421 0.19045 0.495 0.620836 
score 0.77207 0.16117 4.790 1.67-lo-6 
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Clinical model 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) 0.022292 0.183758 0.121 0.903442 
z1 -0.525239 0.193095 -2.720 0.006526 
z2 -0.232260 0.188395 -1.233 0.217637 
z3 -0.006647 0.183096 -0.036 0.971042 
z4 0.772416 0.204234 3.782 0.000156 
z5 0.688903 0.199851 3.447 0.000567 
z6 1.245375 0.232310 5.361 8.28·10-8 

z7 0.357658 0.222872 1.605 0.108546 
z8 0.459904 0.197327 2.331 0.019771 
z9 -0.143343 0.178033 -0.805 0.420734 
z10 -0.026256 0.165133 -0.159 0.873668 
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Setting 2 

Lasso 

Without pre-validation 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -0.318312 0.372822 -0.854 0.393221 
z1 -0.110318 0.406392 -0.271 0.786039 
z2 0.843967 0.417882 2.020 0.043422 
z3 -0.011554 0.491621 -0.024 0.981250 
z4 1.308445 0.598572 2.186 0.028820 
z5 2.040548 0.573397 3.559 0.000373 
z6 2.801141 1.159962 2.415 0.015741 
z7 -0.587921 1.067398 -0.551 0.581772 
z8 -0.571177 0.808422 -0.707 0.479857 
z9 0.420072 0.349538 1.202 0.229444 
zlO 0.008594 0.280819 0.031 0.975586 
score 4.119985 1.219508 3.378 0.000729 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -0.40746 0.34373 -1.185 0.235859 
z1 0.04488 0.35946 0.125 0.900640 
z2 0.59583 0.35882 1.661 0.096803 
z3 0.44137 0.43116 1.024 0.305988 
z4 1.54266 0.47601 3.241 0.001192 
z5 1.35848 0.38240 3.553 0.000382 
z6 3.29285 0.97472 3.378 0.000729 
z7 0.74121 0.93849 0.790 0.429651 
z8 0.76136 0.69712 1.092 0.274774 
z9 0.27295 0.30353 0.899 0.368514 
zlO 0.00913 0.25868 0.035 0.971845 
score 1.78445 0.86951 2.052 0.040145 
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SuperPC, without adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.08909 0.32496 0.274 0.783958 
z1 -0.27381 0.38137 -0.718 0.472786 
z2 0.04520 0.34584 0.131 0.896008 
z3 0.12180 0.50347 0.242 0.808836 
z4 0.85421 0.55347 1.543 0.122739 
z5 1.34592 0.40676 3.309 0.000937 
z6 2.32403 1.07185 2.168 0.030140 
z7 0.43384 0.90620 0.479 0.632114 
z8 0.17502 0.76367 0.229 0.818732 
z9 0.23636 0.31886 0.741 0.458519 
z10 0.14615 0.26633 0.549 0.583187 
score 0.96547 0.34245 2.819 0.004812 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.088580 0.294121 -0.301 0.763285 
z1 0.156963 0.330707 0.475 0.635052 
z2 0.270047 0.304156 0.888 0.374617 
z3 0.925657 0.487317 1.899 0.057499 
z4 1.856048 0.539904 3.438 0.000587 
z5 1.231106 0.352854 3.489 0.000485 
z6 4.504160 1.090238 4.131 3.61-lo-s 
z7 2.312755 0.950741 2.433 0.014992 
z8 1.950174 0.757715 2.574 0.010060 
z9 0.081463 0.291023 0.280 0.779539 
z10 0.109967 0.247601 0.444 0.656948 
score -0.002267 0.326776 -0.007 0.994465 
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SuperPC, with adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.26398 0.48327 -0.546 0.584902 
z1 0.03333 0.57382 0.058 0.953685 
z2 0.84266 0.59535 1.415 0.156948 
z3 2.09549 0.94949 2.207 0.027316 
z4 3.47637 0.99853 3.481 0.000499 
z5 2.20744 0.67771 3.257 0.001125 
z6 8.78544 2.12398 4.136 3.53·10-5 

z7 3.57839 1.22181 2.929 0.003403 
z8 3.36487 0.95649 3.518 0.000435 
z9 -0.24357 0.54209 -0.449 0.653203 
z10 -0.05414 0.40143 -0.135 0.892712 
score 4.77079 1.30602 3.653 0.000259 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.03641 0.29496 -0.123 0.901757 
z1 0.20671 0.32914 0.628 0.529987 
z2 0.25466 0.30525 0.834 0.404145 
z3 0.91697 0.35411 2.590 0.009611 
z4 1.83078 0.44349 4.128 3.66·10-5 

z5 1.27652 0.36303 3.516 0.000438 
z6 4.62370 0.90412 5.114 3.15·10-7 

z7 2.36651 0.65881 3.592 0.000328 
z8 1.97538 0.47136 4.191 2.78·10-5 

z9 0.03255 0.28606 0.114 0.909405 
z10 0.11873 0.24241 0.490 0.624289 
score -0.61718 0.56756 -1.087 0.276850 
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Clinical model 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.09166 0.29409 -0.312 0.755290 
z1 0.15721 0.32626 0.482 0.629914 
z2 0.27141 0.30558 0.888 0.374453 
z3 0.93476 0.36024 2.595 0.009464 
z4 1.87947 0.45327 4.146 3.38·10-5 

z5 1.24613 0.35627 3.498 0.000469 
z6 4.56033 0.89684 5.085 3.68·10-7 

z7 2.34648 0.64898 3.616 0.000300 
z8 1.97200 0.47692 4.135 3.55·10-5 

z9 0.08208 0.28635 0.287 0.774376 
z10 0.11150 0.24504 0.455 0.649105 
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Setting 3 

Lasso 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.13588 0.19978 -0.680 0.496420 
z1 -0.77277 0.33855 -2.283 0.022452 
z2 -0.39344 0.31508 -1.249 0.211775 
z3 -0.03491 0.34263 -0.102 0.918839 
z4 0.47403 0.32139 1.475 0.140226 
z5 0.69350 0.21403 3.240 0.001195 
z6 1.54399 0.45947 3.360 0.000778 
z7 -0.54616 0.42708 -1.279 0.200959 
z8 0.23528 0.41388 0.568 0.569705 
z9 -0.13588 0.19194 -0.708 0.478984 
z10 0.15297 0.19031 0.804 0.421501 
score 0.74370 0.15871 4.686 2.79·10-6 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.11104 0.18606 -0.597 0.550643 
z1 -0.65040 0.31606 -2.058 0.039602 
z2 -0.27964 0.29820 -0.938 0.348379 
z3 -0.05842 0.31157 -0.187 0.851274 
z4 0.47570 0.29971 1.587 0.112466 
z5 0.56998 0.19573 2.912 0.003590 
z6 1.39222 0.41384 3.364 0.000768 
z7 -0.28828 0.37774 -0.763 0.445353 
z8 0.16212 0.37022 0.438 0.661464 
z9 -0.10284 0.17740 -0.580 0.562102 
z10 0.20940 0.17448 1.200 0.230095 
score 0.16428 0.06448 2.548 0.010838 
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SuperPC, without adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.03554 0.24030 0.148 0.882417 
z1 -1.24688 0.46261 -2.695 0.007032 
z2 -0.01197 0.40081 -0.030 0.976169 
z3 -0.33816 0.42417 -0.797 0.425324 
z4 0.70420 0.41855 1.682 0.092476 
z5 0.74521 0.27136 2.746 0.006030 
z6 2.19757 0.57851 3.799 0.000145 
z7 -0.71724 0.49175 -1.459 0.144689 
z8 -0.32259 0.49748 -0.648 0.516701 
z9 0.07278 0.23801 0.306 0.759773 
z10 0.16504 0.22513 0.733 0.463500 
score 1.05846 0.17342 6.103 1.04·10-9 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.01618 0.19201 0.084 0.932855 
z1 -0.85292 0.34225 -2.492 0.012698 
z2 -0.16331 0.31499 -0.518 0.604129 
z3 -0.03504 0.32719 -0.107 0.914709 
z4 0.43963 0.31530 1.394 0.163225 
z5 0.60993 0.20477 2.979 0.002895 
z6 1.70854 0.44488 3.840 0.000123 
z7 -0.47949 0.39309 -1.220 0.222537 
z8 0.01217 0.38248 0.032 0.974607 
z9 -0.04334 0.18412 -0.235 0.813904 
z10 0.22919 0.18075 1.268 0.204794 
score 0.47376 0.12523 3.783 0.000155 
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SuperPC, with adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.19460 0.28998 0.671 0.502174 
z1 -1.85091 0.56887 -3.254 0.001139 
z2 -0.09849 0.43609 -0.226 0.821313 
z3 -0.23410 0.47994 -0.488 0.625706 
z4 1.14692 0.50387 2.276 0.022833 
z5 1.25336 0.35229 3.558 0.000374 
z6 2.96283 0.73747 4.018 5.88·10-5 

z7 -0.92074 0.54675 -1.684 0.092178 
z8 -0.28659 0.59085 -0.485 0.627646 
z9 -0.06738 0.27059 -0.249 0.803353 
z10 0.32675 0.26606 1.228 0.219413 
score 1.59978 0.26785 5.973 2.33·10-9 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.025703 0.199300 0.129 0.897384 
z1 -0.924588 0.348223 -2.655 0.007927 
z2 -0.196820 0.315128 -0.625 0.532251 
z3 0.002161 0.334559 0.006 0.994846 
z4 0.454078 0.320861 1.415 0.157014 
z5 0.722984 0.214914 3.364 0.000768 
z6 1.812805 0.462253 3.922 8.79·10-5 

z7 -0.398837 0.389789 -1.023 0.306208 
z8 -0.100955 0.402137 -0.251 0.801778 
z9 -0.096367 0.188545 -0.511 0.609275 
z10 0.271766 0.185307 1.467 0.142492 
score 0.718874 0.160584 4.477 7.58·10-6 
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Clinical model 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.06399 0.18125 -0.353 0.724051 
z1 -0.68046 0.31419 -2.166 0.030331 
z2 -0.21243 0.29808 -0.713 0.476056 
z3 -0.01756 0.30340 -0.058 0.953853 
z4 0.46131 0.29191 1.580 0.114035 
z5 0.56590 0.19354 2.924 0.003456 
z6 1.44754 0.40188 3.602 0.000316 
z7 -0.12585 0.35802 -0.352 0.725192 
z8 0.06621 0.35539 0.186 0.852205 
z9 -0.09352 0.17658 -0.530 0.596383 
zlO 0.23791 0.16859 1.411 0.158197 

75 



Setting 4 

Lasso 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.33611 0.29583 -1.136 0.255889 
z1 -0.67402 0.53090 -1.270 0.204230 
z2 0.45765 0.50014 0.915 0.360164 
z3 -0.49747 0.52386 -0.950 0.342301 
z4 1.77878 0.60817 2.925 0.003447 
z5 1.26020 0.34174 3.688 0.000226 
z6 1.50799 0.62410 2.416 0.015680 
z7 0.85214 0.73392 1.161 0.245604 
z8 0.77826 0.57826 1.346 0.178344 
z9 0.08865 0.28753 0.308 0.757857 
zlO 0.17741 0.24807 0.715 0.474512 
score 1.68618 0.43937 3.838 0.000124 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.25806 0.27150 -0.950 0.341865 
z1 -0.39063 0.47074 -0.830 0.406639 
z2 0.24087 0.45166 0.533 0.593825 
z3 -0.28590 0.47805 -0.598 0.549801 
z4 1.62200 0.53478 3.033 0.002421 
z5 1.10447 0.30359 3.638 0.000275 
z6 1.58672 0.58993 2.690 0.007152 
z7 1.04448 0.68368 1.528 0.126581 
z8 0.90086 0.54325 1.658 0.097261 
z9 -0.02299 0.25749 -0.089 0.928846 
zlO 0.17849 0.23051 0.774 0.438728 
score 1.19081 0.42424 2.807 0.005002 
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SuperPC, without adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.1116 0.3325 0.336 0.7372 
z1 -0.3029 0.5264 -0.575 0.5651 
z2 0.2014 0.5197 0.388 0.6984 
z3 -0.8674 0.6377 -1.360 0.1738 
z4 1.6194 0.7047 2.298 0.0216 
z5 1.1797 0.4153 2.841 0.0045 
z6 1.3580 0.7957 1.707 0.0879 
z7 0.3818 0.8895 0.429 0.6678 
z8 0.6690 0.6603 1.013 0.3110 
z9 0.2710 0.3269 0.829 0.4071 
z10 0.2806 0.2911 0.964 0.3351 
score 0.7899 0.1799 4.390 1.13-10-5 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.03177 0.26787 0.119 0.905581 
z1 -0.24722 0.46007 -0.537 0.591016 
z2 0.07646 0.44549 0.172 0.863733 
z3 -0.38928 0.46378 -0.839 0.401269 
z4 1.49214 0.51959 2.872 0.004082 
z5 1.15204 0.30470 3.781 0.000156 
z6 1.51533 0.60367 2.510 0.012067 
z7 1.07469 0.67680 1.588 0.112309 
z8 0.85358 0.55099 1.549 0.121336 
z9 0.09666 0.26220 0.369 0.712394 
z10 0.23620 0.23653 0.999 0.317988 
score 0.36192 0.12939 2.797 0.005157 
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SuperPC, with adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.09813 0.34769 -0.282 0.777754 
z1 -0.65784 0.61551 -1.069 0.285172 
z2 0.43134 0.57686 0.748 0.454620 
z3 0.13352 0.58448 0.228 0.819308 
z4 2.73819 0.76479 3.580 0.000343 
z5 1.50923 0.44381 3.401 0.000672 
z6 1.57377 0.76757 2.050 0.040332 
z7 1.61507 0.80045 2.018 0.043622 
z8 1.26184 0.67808 1.861 0.062756 
z9 0.37316 0.36851 1.013 0.311245 
zlO 0.29423 0.29243 1.006 0.314333 
score 1.23909 0.27305 4.538 5.68·10-6 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.24154 0.26132 -0.924 0.355324 
z1 -0.22441 0.44785 -0.501 0.616304 
z2 0.05785 0.43672 0.132 0.894619 
z3 0.12019 0.41812 0.287 0.773765 
z4 1.66862 0.47929 3.481 0.000499 
z5 0.97146 0.29197 3.327 0.000877 
z6 1.90066 0.58296 3.260 0.001113 
z7 1.29111 0.62651 2.061 0.039322 
z8 0.96741 0.52995 1.825 0.067933 
z9 0.11918 0.26180 0.455 0.648955 
zlO 0.20686 0.21952 0.942 0.346025 
score 0.36265 0.19074 1.901 0.057260 
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Clinical model 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.15320 0.25095 -0.610 0.541539 
z1 -0.10367 0.42931 -0.241 0.809190 
z2 0.01355 0.41297 0.033 0.973830 
z3 0.05617 0.40965 0.137 0.890932 
z4 1.70649 0.46924 3.637 0.000276 
z5 1.03004 0.28642 3.596 0.000323 
z6 1.98483 0.57523 3.450 0.000560 
z7 1.66752 0.61207 2.724 0.006442 
z8 1.32588 0.50831 2.608 0.009097 
z9 -0.03197 0.24894 -0.128 0.897822 
z10 0.18210 0.21336 0.853 0.393387 
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Setting 5 

Lasso 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.05924 0.22285 0.266 0.790354 
z1 -1.49025 0.27410 -5.437 5.42·10-8 

z2 -1.22899 0.28090 -4.375 1.21·10-5 

z3 -0.52856 0.22980 -2.300 0.021442 
z4 0.95391 0.26613 3.584 0.000338 
z5 1.27598 0.27750 4.598 4.26·10-6 

z6 1.48059 0.29795 4.969 6.72-10-7 

z7 -0.05725 0.27037 -0.212 0.832307 
z8 -0.15816 0.24801 -0.638 0.523645 
z9 -0.25045 0.20871 -1.200 0.230155 
z10 -0.05686 0.20934 -0.272 0.785910 
score 0.05065 0.04899 1.034 0.301241 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.05497 0.22335 0.246 0.805605 
z1 -1.49560 0.27429 -5.453 4.96·10-8 

z2 -1.21392 0.28114 -4.318 1.58·10-5 

z3 -0.53854 0.22886 -2.353 0.018614 
z4 0.96526 0.26581 3.631 0.000282 
z5 1.27315 0.27646 4.605 4.12·10-6 

z6 1.54387 0.30779 5.016 5.28·10-7 

z7 -0.03223 0.27046 -0.119 0.905137 
z8 -0.12601 0.25073 -0.503 0.615262 
z9 -0.29603 0.21144 -1.400 0.161502 
z10 -0.04170 0.21188 -0.197 0.843991 
score 0.06716 0.04790 1.402 0.160883 
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SuperPC, without adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.14503 0.25358 0.572 0.567367 
z1 -1.10605 0.29945 -3.694 0.000221 
z2 -1.02042 0.30027 -3.398 0.000678 
z3 -0.38661 0.26206 -1.475 0.140131 
z4 0.79932 0.29560 2.704 0.006851 
z5 0.88844 0.28424 3.126 0.001774 
z6 1.21647 0.32006 3.801 0.000144 
z7 -0.19607 0.31006 -0.632 0.527142 
z8 -0.06327 0.28230 -0.224 0.822654 
z9 -0.15877 0.23828 -0.666 0.505214 
z10 -0.06638 0.22812 -0.291 0.771050 
score 0.70669 0.16151 4.375 1.21·10-5 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.019219 0.226287 0.085 0.932315 
z1 -1.537303 0.281614 -5.459 4.79·10-8 

z2 -1.325769 0.290774 -4.559 5.13-10-6 

z3 -0.540766 0.232793 -2.323 0.020182 
z4 0.987115 0.272667 3.620 0.000294 
z5 1.368888 0.283169 4.834 1.34·10-6 

z6 1.549643 0.309140 5.013 5.37·10-7 

z7 -0.005321 0.262913 -0.020 0.983854 
z8 -0.194767 0.249967 -0.779 0.435879 
z9 -0.282099 0.210255 -1.342 0.179692 
z10 -0.074753 0.211040 -0.354 0.723181 
score -0.252203 0.146992 -1.716 0.086206 

81 



SuperPC, with adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.37881 0.38824 0.976 0.329208 
z1 -2.88013 0.57617 -4.999 5.77-10-7 

z2 -2.40592 0.58271 -4.129 3.65·10-5 

z3 -1.07622 0.40744 -2.641 0.008255 
z4 1.72074 0.49496 3.477 0.000508 
z5 2.32981 0.49434 4.713 2.44-lo-6 

z6 3.10514 0.65258 4.758 1.95·10-6 

z7 0.06504 0.43714 0.149 0.881719 
z8 -0.21016 0.42072 -0.500 0.617420 
z9 -0.58047 0.29694 -1.955 0.050599 
z10 -0.73167 0.34758 -2.105 0.035288 
score 3.48984 0.71632 4.872 1.11-10-6 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.04486 0.22539 0.199 0.84222 
z1 -1.47341 0.27123 -5.432 5.56·10-8 

z2 -1.25514 0.28133 -4.461 8.14·10-6 

z3 -0.53187 0.22940 -2.318 0.02042 
z4 0.97766 0.26545 3.683 0.00023 
z5 1.32117 0.27868 4.741 2.13·10-6 

z6 1.48693 0.29991 4.958 7.12·10-7 

z7 -0.02617 0.26910 -0.097 0.92252 
z8 -0.16136 0.25081 -0.643 0.51999 
z9 -0.26193 0.21288 -1.230 0.21854 
z10 -0.05936 0.20644 -0.288 0.77369 
score -0.06299 0.32010 -0.197 0.84399 
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Clinical model 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.05541 0.22197 0.250 0.802888 
z1 -1.48823 0.27291 -5.453 4.95·10-8 

z2 -1.26881 0.28200 -4.499 6.82·10-6 

z3 -0.53980 0.22905 -2.357 0.018437 
z4 0.98132 0.26598 3.689 0.000225 
z5 1.32595 0.27845 4.762 1.92·10-6 

z6 1.50443 0.30142 4.991 6.00·10-7 

z7 -0.01854 0.26786 -0.069 0.944810 
z8 -0.17564 0.24872 -0.706 0.480076 
z9 -0.27356 0.20680 -1.323 0.185885 
z10 -0.06174 0.20726 -0.298 0.765786 
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Setting 6 

Lasso 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.15388 0.25185 0.611 0.54120 
z1 -1.38330 0.49330 -2.804 0.00504 
z2 -1.53228 0.47832 -3.203 0.00136 
z3 -1.26615 0.46675 -2.713 0.00667 
z4 1.32798 0.48062 2.763 0.00573 
z5 1.68280 0.34145 4.928 8.29·10-7 

z6 1.65327 0.57347 2.883 0.00394 
z7 0.10970 0.52496 0.209 0.83447 
z8 0.26634 0.51368 0.518 0.60412 
z9 -0.01623 0.23194 -0.070 0.94421 
z10 0.08002 0.23167 0.345 0.72979 
score -0.09667 0.05519 -1.752 0.07981 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.053355 0.260590 0.205 0.837771 
z1 -1.155869 0.509650 -2.268 0.023331 
z2 -1.948020 0.556712 -3.499 0.000467 
z3 -1.467208 0.489608 -2.997 0.002729 
z4 1.665782 0.522880 3.186 0.001444 
z5 1.791102 0.359534 4.982 6.3·10-7 

z6 1.736589 0.589805 2.944 0.003236 
z7 0.305695 0.546495 0.559 0.575907 
z8 0.085362 0.535544 0.159 0.873359 
z9 -0.078525 0.247634 -0.317 0.751168 
z10 0.006057 0.241498 0.025 0.979991 
score -0.210018 0.076425 -2.748 0.005996 
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SuperPC, without adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) -0.01193 0.33727 -0.035 0.971794 
z1 -1.36701 0.66764 -2.048 0.040608 
z2 -1.47153 0.62841 -2.342 0.019198 
z3 -1.07439 0.59695 -1.800 0.071892 
z4 0.96639 0.57826 1.671 0.094680 
z5 1.49787 0.41639 3.597 0.000322 
z6 1.28508 0.73188 1.756 0.079113 
z7 0.20126 0.65219 0.309 0.757633 
z8 0.89622 0.69102 1.297 0.194652 
z9 -0.16829 0.29317 -0.574 0.565933 
z10 -0.08910 0.28960 -0.308 0.758342 
score 1.02174 0.23513 4.345 1.39·10-5 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.136608 0.249357 0.548 0.58380 
z1 -1.398810 0.485898 -2.879 0.00399 
z2 -1.477466 0.476619 -3.100 0.00194 
z3 -1.150635 0.449992 -2.557 0.01056 
z4 1.196240 0.458929 2.607 0.00914 
z5 1.686582 0.349057 4.832 1.35·10-6 

z6 1.644784 0.577631 2.847 0.00441 
z7 0.008917 0.511990 0.017 0.98610 
z8 0.382793 0.507295 0.755 0.45050 
z9 -0.004641 0.228406 -0.020 0.98379 
z10 0.107201 0.228027 0.470 0.63827 
score 0.067696 0.131772 0.514 0.60744 
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SuperPC, with adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.03139 0.37473 0.084 0.933244 
z1 -2.35045 0.84844 -2.770 0.005600 
z2 -3.01706 0.85955 -3.510 0.000448 
z3 -1.95224 0.76330 -2.558 0.010538 
z4 1.72421 0.75132 2.295 0.021738 
z5 2.40155 0.53641 4.477 7.57·10-6 

z6 3.32800 1.00855 3.300 0.000968 
z7 0.48242 0.71389 0.676 0.499190 
z8 0.62727 0.80800 0.776 0.437557 
z9 -0.05259 0.29316 -0.179 0.857623 
z10 0.45406 0.37884 1.199 0.230701 
score 3.12020 0.70800 4.407 1.05·10-5 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>JzJ) 
(Intercept) 0.12454 0.25045 0.497 0.61901 
z1 -1.38228 0.48400 -2.856 0.00429 
z2 -1.53080 0.48345 -3.166 0.00154 
z3 -1.14472 0.45049 -2.541 0.01105 
z4 1.21206 0.46372 2.614 0.00895 
z5 1.71218 0.35001 4.892 9.99·10-7 

z6 1.67072 0.57887 2.886 0.00390 
z7 -0.03710 0.51100 -0.073 0.94212 
z8 0.42911 0.51047 0.841 0.40057 
z9 -0.01430 0.22642 -0.063 0.94962 
z10 0.08855 0.22757 0.389 0.69721 
score 0.26675 0.37853 0.705 0.48099 
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Clinical model 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) 0.134412 0.250183 0.537 0.59109 
z1 -1.416797 0.484356 -2.925 0.00344 
z2 -1.490707 0.476718 -3.127 0.00177 
z3 -1.140743 0.449685 -2.537 0.01119 
z4 1.182022 0.458241 2.579 0.00989 
z5 1.702642 0.349198 4.876 1.08·10-6 

z6 1.638541 0.575852 2.845 0.00444 
z7 0.009583 0.511925 0.019 0.98507 
z8 0.382295 0.507403 0.753 0.45119 
z9 -0.015820 0.230082 -0.069 0.94518 
z10 0.105006 0.229398 0.458 0.64714 
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The following table shows the percentage of true informative molecular variables 
selected for building the omics score. In brakes stands the absolute number of 
selected genes in the Lasso approach. For the supervised principal component 
analysis the number of genes used to build the principal components is fixed to 25. 

wjo PV I fold 1 I fold 2 I fold 3 I fold 4 I fold 5 

Setting 1 

Lasso 0.30 (47) 0.25 (36) 0.21 (43) 0.22 (54) 0.25 (48) 0.24 (41) 

superPC. 0.48 

superPC adj. 0.36 

Setting 2 

Lasso 

superPC. 

superPC adj. 

Setting 3 

Lasso 

superPC. 

superPC adj. 

Setting 4 

Lasso 

superPC. 

superPC adj. 

Setting 5 

Lasso 

superPC. 

superPC adj. 

Setting 6 

Lasso 

superPC. 

superPC adj. 

0.39 (23) 

0.64 

0.0 

0.13 (98) 

0.44 

0.44 

0.43 (21) 

0.6 

0.32 

0.0 (154) 

0.0 

0.0 

0.0 (146) 

0.0 

0.0 

0.48 

0.32 

0.47 (19) 

0.6 

0.0 

0.09 (107) 

0.48 

0.44 

0.47 (19) 

0.6 

0.24 

0.0 (128) 

0.0 

0.0 

0.0 (118) 

0.0 

0.0 

0.52 

0.28 

0.38 (21) 

0.6 

0.0 

0.09 (106) 

0.4 

0.48 

0.41 (17) 

0.6 

0.16 

0.0 (133) 

0.0 

0.0 

0.0 (125) 

0.0 

0.0 
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0.44 

0.32 

0.44 (18) 

0.6 

0.04 

0.12 (109) 

0.44 

0.28 

0.53 (17) 

0.6 

0.24 

0.0 (129) 

0.0 

0.0 

0.0 (110) 

0.0 

0.0 

0.4 

0.24 

0.39 (23) 

0.6 

0.04 

0.12 (106) 

0.4 

0.32 

0.47 (15) 

0.6 

0.12 

0.0 (121) 

0.0 

0.0 

0.0 (124) 

0.0 

0.0 

0.44 

0.36 

0.45 (20) 

0.6 

0.0 

0.12 (103) 

0.36 

0.44 

0.30 (20) 

0.6 

0.24 

0.0 (127) 

0.0 

0.0 

0.0 (106) 

0.0 

0.0 



E Results of the analysis of Hatzis' breast cancer 

data 

Lasso 

Without pre-validation 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -15.47602 8.53086 -1.814 0.0697 
age 0.02062 0.01426 1.447 0.1480 
progesteraue receptor status (negative) 0.42210 0.40629 1.039 0.2988 
estrogen receptor status (positive) 0.82660 0.42138 1.962 0.0498 
tumor stage (T2) 0.61783 0.57313 1.078 0.2810 
tumor stage (T3) 0.77328 0.62181 1.244 0.2136 
tumor stage (T4) 1.53867 0.68509 2.246 0.0247 
nodal status (N1) 0.88404 0.35539 2.488 0.0129 
nodal status (N2) 1.05891 0.51287 2.065 0.0390 
nodal status (N3) 0.72300 0.55005 1.314 0.1887 
tumorgrade (2) -0.13939 0.75723 -0.184 0.8540 
tumorgrade (3) -1.11832 0.77580 -1.442 0.1494 
score 0.35718 0.21635 1.651 0.0988 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -3.02340 1.97001 -1.535 0.12485 
age 0.02173 0.01421 1.529 0.12624 
progesteraue receptor status (negative) 0.45545 0.40410 1.127 0.25970 
estrogen receptor status (positive) 0.76428 0.41722 1.832 0.06697 
tumor stage (T2) 0.76328 0.55538 1.374 0.16934 
tumor stage (T3) 0.89985 0.60566 1.486 0.13735 
tumor stage (T4) 1.55776 0.67308 2.314 0.02065 
nodal status (N1) 0.93492 0.35525 2.632 0.00849 
nodal status (N2) 1.04473 0.51624 2.024 0.04300 
nodal status (N3) 0.65676 0.54747 1.200 0.23029 
tumorgrade (2) -0.11584 0.75753 -0.153 0.87847 
tumorgrade (3) -1.05566 0.77119 -1.369 0.17104 
score 0.04025 0.04290 0.938 0.34821 
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SuperPC, without adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1.88089 1.31250 -1.433 0.1518 
age 0.01178 0.01531 0.769 0.4416 
progesterone receptor status (negative) 0.35258 0.43260 0.815 0.4151 
estrogen receptor status (positive) -0.68927 0.52568 -1.311 0.1898 
tumor stage (T2) 0.64012 0.62327 1.027 0.3044 
tumor stage (T3) 0.72313 0.67398 1.073 0.2833 
tumor stage (T4) 1.46904 0.75243 1.952 0.0509 
nodal status (N1) 1.03988 0.38067 2.732 0.0063 
nodal status (N2) 1.05348 0.55570 1.896 0.0580 
nodal status (N3) 0.87044 0.57684 1.509 0.1313 
tumorgrade (2) 0.19863 0.80705 0.246 0.8056 
tumorgrade (3) -0.22185 0.83007 -0.267 0.7893 
score 1.12291 0.21750 5.163 2.43·10-7 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1.78392 1.24261 -1.436 0.15111 
age 0.01810 0.01446 1.252 0.21059 
progesterone receptor status (negative) 0.39614 0.40499 0.978 0.32799 
estrogen receptor status (positive) 0.07913 0.50172 0.158 0.87468 
tumor stage (T2) 0.81538 0.57442 1.419 0.15576 
tumor stage (T3) 0.97208 0.62445 1.557 0.11954 
tumor stage (T4) 1.67004 0.69735 2.395 0.01663 
nodal status (N1) 0.92912 0.35780 2.597 0.00941 
nodal status (N2) 0.90229 0.51527 1.751 0.07993 
nodal status (N3) 0.61652 0.54947 1.122 0.26185 
tumorgrade (2) 0.05564 0.76551 0.073 0.94206 
tumorgrade (3) -0.69890 0.78681 -0.888 0.37439 
score 0.44676 0.17773 2.514 0.01195 
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SuperPC, with adjustment 

Without pre-validation 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -4.31393 1.50687 -2.863 0.00420 
Age 0.02196 0.01625 1.352 0.17650 
Progesterone receptor status (negative) 0.09498 0.48316 0.197 0.84416 
Estrogen receptor status (positive) 0.48004 0.49922 0.962 0.33626 
tumor stage (T2) 1.15670 0.69187 1.672 0.09455 
tumor stage (T3) 1.23403 0.75091 1.643 0.10031 
tumor stage (T4) 2.15727 0.85019 2.537 0.01117 
nodal status (N1) 1.29342 0.41750 3.098 0.00195 
nodal status (N2) 1.37676 0.59661 2.308 0.02102 
nodal status (N3) 1.06972 0.63738 1.678 0.09329 
tumorgrade (2) 1.02808 0.88670 1.159 0.24627 
tumorgrade (3) 0.74855 0.91689 0.816 0.41427 
score 1.02228 0.15534 6.581 4.68·10-11 

With 5-fold pre-validation 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1.79182 1.25193 -1.431 0.15236 
Age 0.02055 0.01419 1.449 0.14740 
Progesterone receptor status (negative) 0.44378 0.40150 1.105 0.26904 
Estrogen receptor status (positive) 0.69463 0.42217 1.645 0.09990 
tumor stage (T2) 0.79790 0.56402 1.415 0.15716 
tumor stage (T3) 0.88973 0.61195 1.454 0.14596 
tumor stage (T4) 1.62638 0.68476 2.375 0.01754 
nodal status (N1) 0.91158 0.35360 2.578 0.00994 
nodal status (N2) 0.96988 0.50968 1.903 0.05705 
nodal status (N3) 0.71034 0.54407 1.306 0.19169 
tumorgrade (2) 0.01445 0.76428 0.019 0.98491 
tumorgrade (3) -0.85893 0.79378 -1.082 0.27922 
score 0.09555 0.10196 0.937 0.34871 

91 



Clinical model 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1.59035 1.22952 -1.293 0.1958 
Age 0.02110 0.01415 1.491 0.1359 
Progesterone receptor status (negative) 0.46566 0.40164 1.159 0.2463 
Estrogen receptor status (positive) 0.77623 0.41506 1.870 0.0615 
tumor stage (T2) 0.77686 0.55889 1.390 0.1645 
tumor stage (T3) 0.89264 0.60841 1.467 0.1423 
tumor stage (T4) 1.58264 0.67711 2.337 0.0194 
nodal status (N1) 0.90394 0.35277 2.562 0.0104 
nodal status (N2) 0.98365 0.50836 1.935 0.0530 
nodal status (N3) 0.70581 0.54508 1.295 0.1954 
tumorgrade (2) -0.08394 0.75555 -0.111 0.9115 
tumorgrade (3) -1.04042 0.77004 -1.351 0.1767 
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