
Ludwig-Maximilians-Universität München

Institut für Statistik

Automating Survey Coding for

Occupation

Master’s Thesis

Author:

Malte Schierholz

Advisor:

Prof. Dr. Frauke Kreuter

April 2014

Abstract

Currently, most surveys ask for occupation with open-ended questions. The verbatim

responses are coded afterwards into a classification with hundreds of categories and thou-

sands of jobs, which is an error-prone, time-consuming, and costly task. Research related

to the coding of occupations is summarized with an international literature review. Special

attention is paid to our main topic, the automation of coding.

A prominent approach for automated coding is to consult a dictionary on the correct

code. In contrast, we focus on data-based methods where codes for new answers are pre-

dicted from those answers that are already coded. Four different coding methods are tested

on two data sets: (1) Rule-based Coding that consults a dictionary, (2) data-based Naive

Bayes that allows coding for text answers with multiple words, (3) data-based Bayesian

Categorical is used to improve performance when relatively few answers were coded before,

and (4) Combined Methods (Boosting) combining predictions from the first three methods.

The proposed Bayesian Categorical model is able to code 38% of all answers at 3% error

rate without human interaction. In all remaining cases or for higher quality human intellect

is needed to decide on the correct code and computer software can only assist by suggesting

possible job codes. With the prototype software we developed for this task, we expect that

for 74% of all answers the correct category is provided within the top five code suggestions.

The training data used for prediction consists of only 32882 coded answers which is small

compared to other systems with similar purpose. The proportions given above are expected

to improve with additional training data.

Contents

1 Introduction 1

2 Background 3

2.1 Coding Examples . 3

2.2 Code Structures and Classifications . 4

2.2.1 German Classification of Occupations 2010 5

2.3 Coding Options: Manual or Automatic . 10

2.4 Techniques for Automated Coding . 11

2.4.1 Rule-Based Coding . 12

2.4.2 Data-Based Coding with Supervised Learning Techniques 13

2.5 Coding Evaluation . 14

2.5.1 Quality of Occupation Coding . 17

3 Data Analysis 20

3.1 Description of Survey Data . 20

3.1.1 Job Codes . 23

3.2 Methods for Automated Coding . 25

3.2.1 Rule-based Coding . 30

3.2.2 Naive Bayes . 31

3.2.3 Bayesian Categorical . 37

3.2.4 Combined Methods (Boosting) . 42

4 A Prototype for Computer-Assisted Coding 50

5 Conclusion and Perspectives 53

Bibliography 55

A Diagrams 63

B Exemplary Job Category Suggestions 65

iii

Chapter 1

Introduction

Surveys are a well-established instrument to collect information about society, living con-

ditions, people’s background, or their environment. Most survey questions are written in a

closed format and respondents mark the best-fitting category. An example for this is the

question about sex with two standard categories ”male” and ”female”, and a third category

”indeterminate”, which is most adequate for intersex people, often missing. The definition

of answer categories prior to field measurements may be problematic or the sheer number

of possible categories prohibits the use of a closed question. An alternative is then to ask

open-ended questions and record the exact verbatim answer given from the respondent. For

statistical analysis it is necessary to assign these answers to categories. While this is done by

the respondents themselves for closed questions, this task is laborious for open-ended ques-

tions. Traditionally, interviewers or clerks, sometimes called ”coders”, have been employed

to do this time-consuming coding job.

The application of open-ended questions is tempting for social scientists. There is no

need to define answer categories, and respondents are not influenced from predefined cat-

egories. Nevertheless, closed questions are often preferred to circumvent high coding costs

(cf. Reja et al. (2003)). Closely related to survey coding is content analysis which ”has

been defined as a systematic, replicable technique for compressing many words of text into

fewer content categories based on explicit rules of coding” (Stemler, 2001). Its aim is more

general than survey coding in the sense that whole documents instead of respondent’s an-

swers need to be classified into categories. The problem is still the same. For the large

number of documents to be categorized it would be helpful to cut costs with automated

coding methods. Scharkow (2012) applies machine learning methods for automated content

analysis.

Our goal is to facilitate survey coding using machine learning methods. The idea is to use

answers that were coded before to predict correct codes for new answers. These methods

are continuously and successful applied for survey coding in other countries whereas the

German coding praxis is lagging behind.

1

In our study we focus on the coding of employments. The same problem was addressed

internationally multiple times but as we are concerned with German employments, we need

to account for some special characteristics. The current official German employment classi-

fication consists of 1286 well-defined job categories, more than in most other countries. For

a detailed ascertainment and coding into the correct category, German surveys often ask

not one but two or three open-ended questions on the employment. The adaption of au-

tomatic prediction methods to the German environment is further complicated by the fact

that our training data consists of only 32882 job records, far less than what is available in

comparable systems. With the proposed methods for automated occupation coding we try

to address this problem of limited training data. Though, better performance will require

additional training data.

This thesis is organized as follows. In section 2 we provide a literature review and

theoretical considerations about automated coding. Special attention is paid to employment

coding and quality control. The main part of our work is in section 3. Four different

techniques for automated coding are described. The performance from these prediction

methods is tested on two data sets that have employments already coded. We believe most

helpful for German employment coding will be a computer system that suggests possible

job categories to human coders who decide which category is correct. A prototype for this

is described in section 4.

2

Chapter 2

Background

2.1 Coding Examples

A multiplicity of different response types requires coding. Hacking and Willenborg (2012),

for example, list multiple variables that are coded at Statistics Netherlands: Education, oc-

cupation, articles, shops, industrial sector, job vacancy, important political problems, and

causes of death. Groves et al. (2009) names some frequently used classification systems

where coding is necessary: The Standard Occupational Classification, the North American

Industry Classification System, the International Classification of Diseases, and the Diag-

nostic and Statistical Manual for Mental Disorders. For most of the examples above, coding

is necessary, because the high number of target categories makes it impractical to present

all of them to the respondent. For other variables, including the following, the researcher

wants to avoid that respondents are influenced from predefined answer categories.

DeBell (2013) describes open-ended question coding on the American National Election

Studies (ANES) asking ”’what job or political office’ is now held by various prominent

officials”. The answers have been coded into four categories to distinguish misinformed,

uninformed, partially informed, and fully informed respondents. The author laments on

problematic coding practices that ”support only the simplest and grossest inferences” (quote

from Gibson and Caldeira (2009)) and develops new coding rules to counter this ”data

analysis crisis”.

Esuli and Sebastiani (2010) apply coding to multiple market research problems. They

give an exemplary question ”What is your favourite soft drink?” that respondents answer

typically with a product or brand name.

Groves et al. (2009) point out that coding is not only done for textual responses. There

is more nonnumeric data collected in surveys that needs a numeric value assigned, e.g.,

visual images, sounds, soil or blood samples, or geographical data (respondent’s position)

to be coded into some geographic unit.

3

2.2 Code Structures and Classifications

Coding is the process of transforming nonnumeric material to a numeric code. Groves et al.

(2009) call it both ”an act of translation and an act of summarization”. When there exists

an one-to-one mapping between the original material and the target code, the mapping

can be carried out without problems. When, however, ”frameworks are mismatched, the

translation task can be complex and subject to error”. For the summarization part, someone

has to decide ”whether two verbal representations are equivalent” and what the ”level of

summarization” should be. Taken together, the code structure is central to the problem of

coding and shall be described in more detail here.

For the construction of new code structures, Groves et al. (2009) give some general rules

for codes to be useful:

1. ”A unique number, used later for statistical computing

2. A text label, designed to describe all the answers assigned to the category

3. Total exhaustive treatment of answers (all responses should be able to be assigned to

a category)

4. Mutual exclusivity (no single response should be assignable to more than one category)

5. A number of unique categories that fit the purposes of the analyst”. It is suggested

that ”each of the code categories should link to different parts of key hypothesis”. For

example, employment could be coded by ”supervisory status” to ”separate supervisors

from nonsupervisors”, or by educational background required for a job.

Regarding the points 3) and 4) it is almost always the case that some answers do not

fall into predefined codes. Groves et al. (2009) therefore suggest to test and refine the code

structure on the basis of previously collected responses. Further, ”coding structures must

be designed to handle all responses, even those judged as uninformative”. It is therefore

recommended to include further categories for respondents that did not give an answer or

for cases when it is not possible to ascertain the correct code.

As described, in a perfect research world one would setup and test a code structure

according to the research hypothesis. This is in contrast to coding when the code structure is

an official classification. Hacking and Willenborg (2012) point out that classifications often

have been constructed from a theoretical perspective and without actual usage in mind.

Typically, a classification cannot be changed easily as (possibly international) committees

are responsible for their maintenance. Furthermore, when changes are made, this is often

done ”with regards to the subject matter itself and not with observation/measurement in

mind”.

4

Because a given classification cannot be changed, the coding practice needs to cope with

arising problems. Hacking and Willenborg (2012) point out the following difficulties:

� ”The categories cannot clearly be distinguished;

� The categories are rare in the population;

� There is not very much empirical material available to describe the categories, or the

empirical information is not sufficiently diverse;

� There are categories that are close together, and therefore it is difficult to distinguish

between them;

� The categories are very clearly defined and also occur in practice, but they are not

actually used in practice because nobody uses the associated distinction.”

Hacking and Willenborg (2012) describe further principles common for classifications

that can be useful for coding: The structure of a classification is a tree. In this mathematical

concept, the leaves are the most specific categories having more general parent categories.

So-called ”classifying principles” are used to distinguish more specialized categories from

each other. We will exemplify the tree structure together with classifying principles in the

next section related to the German Classification of Occupations.

2.2.1 German Classification of Occupations 2010

To classify occupations, the International Standard Classification of Occupations 2008 (ISCO-

08) is widely used. Additionally, many countries have their own national classifications. As

this study is concerned with German occupations, we will follow the work from Hartmann

and Schütz (2002), TNS Infratest Sozialforschung (2012) and Paulus and Matthes (2013)

and use the German national classification for coding. This section describes this classifi-

cation and how it is connected to other classifications in more detail.

Until 2010, two German national classifications have been used, one published by the

Federal Employment Agency (”BA”) in 1988 (Klassifikation der Berufe 1988, KldB 1988)

and the other one published by the Federal Statistical Office in 1992 (Klassifikation der

Berufe 1992, KldB 1992). As both classifications have a common origin in theoretical

work from the 1960s, they were outdated and replaced by the German Klassifikation der

Berufe 2010 (KldB 2010). This classification was developed with two main goals: Special

characteristics of the German labor market were taken into account while at the same time

a high degree of compatibility with the international ISCO-08 was obtained (Bundesagentur

für Arbeit, 2011).

The KldB 2010 is a hierarchical classification (graph theory would call it a tree) with

five levels where the ten top-level categories (Berufsbereiche) are the most general and the

5

fifth level with 1286 categories (Berufsgattungen) is the most specific. Figure 2.1 is a small

extract from the classification to be read as follows. The Berufsgattung ”Berufe in der

Landwirtschaft (ohne Spezialisierung) - Helfer-/Anlerntätigkeiten” contains multiple jobs.

This Berufsgattung itself is included in the Berufsuntergruppe ”Berufe in der Landwirtschaft

(ohne Spezialisierung)” which itself is part of the Berufsgruppe ”Landwirtschaft” and its

parent categories. The code numbers reflect these relations in the sense that the first

digit specifies the most general Berufsbereich, the first two digits give the more specific

Berufshauptgruppe and so on. Figure 2.2 provides the number of categories at each level

in the classification.

The KldB 2010 is structured by two dimensions (”classifying principles”): professional

specialisation (”Berufsfachlichkeit”) and the skill level (”Anforderungsniveau”). The first

four digits are used to group occupations by professional specialisation. Based on the capa-

bilities, skills, and knowledge required for a job, a cluster analysis was performed to group

jobs with a higher degree of similarity into the same category. The clustered results were

reviewed multiple times by specialists and so the 2-, 3-, and 4-digit categories may be used

for comparisons. The last digit allows for different degrees of complexity within occupations,

i.e. the skill level. Each Berufsuntergruppe (4-digits) combines up to four Berufsgattungen

(5-digits): (1) Auxiliary and semiskilled occupations, (2) specialized occupations, (3) com-

plex occupations for specialists, and (4) highly complex occupations. These Berufsgattungen

are mainly defined by the duration of formal vocational education. Figure 2.3 illustrates

similar occupations with different skill levels (Paulus and Matthes, 2013).

There exist, however, some exceptions to these general classifying principles (Paulus and

Matthes (2013), Bundesagentur für Arbeit (2011)):

� The Berufsuntergruppe (4-digits) has an indicator function: If the fourth digit is ”0”,

the corresponding employments cover various duties without further specialization.

Typically, this applies to auxiliary occupations. An ”8” at the fourth digit is used for

employments with a specific focus that do not suit into the other defined Berufsun-

tergruppen.

� To identify all supervisors and managers uniquely within a specific Berufsgruppe (3-

digits), these are grouped together in a Berufsuntergruppe labeled with a ”9” at the

fourth digit. Managers are assumed to have highly complex occupations and are

hence given a ”4” in the fifth digit. Supervisors, in particular the German ”Meister”,

typically work in less complex occupations and therefore get a ”3” in the last digit.

� For occupations in the one-digit Berufsbereich for military, the KldB 2010 groups

occupations only into four Berufsgattungen: 01104 for officers, 01203 for high-ranked

sergeants, 01302 for low-ranked sergeants, and 01402 for privates.

6

Extract from the Classification of Occupations 2010 (KldB 2010)
1 Land-, Forst- und Tierwirtschaft und Gartenbau
11 Land- Tier- und Forstwirtschaftsberufe
111 Landwirtschaft
1110 Berufe in der Landwirtschaft (ohne Spezialisierung)
11101 Berufe in der Landwirtschaft (ohne Spezialisierung) - Helfer-/Anlerntätigkeiten
11102 Berufe in der Landwirtschaft (ohne Spezialisierung) - fachlich ausgerichtete
Tätigkeiten
11103 Berufe in der Landwirtschaft (ohne Spezialisierung) - komplexe Spezialistentätigkeiten
11104 Berufe in der Landwirtschaft (ohne Spezialisierung) - hoch komplexe Tätigkeiten
1111 Berufe in der Landtechnik (contains 2 Berufsgattungen)
1112 Landwirtschaftliche Sachverständige (contains 2 Berufsgattungen)
1113 Berufe im landwirtschaftlich-technischen Laboratorium (contains 2 Berufsgattungen)
1118 Berufe in der Landwirtschaft (sonstige spezifische Tätigkeitsangabe) (contains 3 Beruf-
sgattungen)
1119 Aufsichts- und Führungskräfte - Landwirtschaft (contains 2 Berufsgattungen)
112 Tierwirtschaft (contains 5 Berufsuntergruppen)
113 Pferdewirtschaft (contains 6 Berufsuntergruppen)
114 Fischwirtschaft (contains 4 Berufsuntergruppen)
115 Tierpflege (contains 5 Berufsuntergruppen)
116 Weinbau (contains 2 Berufsuntergruppen)
117 Forst- und Jagdwirtschaft, Landschaftspflege (contains 5 Berufsuntergruppen)
12 Gartenbauberufe und Floristik
121 Gartenbau (contains 6 Berufsuntergruppen)
122 Floristik (contains 2 Berufsuntergruppen)
2 Rohstoffgewinnung, Produktion und Fertigung (contains 8 Berufshauptgruppen)
...
0 Militär
01 Angehörige der regulären Streitkräfte
011 Offiziere
0110 Offiziere
01104 Offiziere - Hoch komplexe Tätigkeiten
012 Unteroffiziere mit Portepee
0120 Unteroffiziere mit Portepee
01203 Unteroffiziere mit Portepee - Komplexe Spezialistentätigkeiten
013 Unteroffiziere ohne Portepee
0130 Unteroffiziere ohne Portepee
01302 Unteroffiziere ohne Portepee - Fachlich ausgerichtete Tätigkeiten
014 Angehörige der regulären Streitkräfte in sonstigen Rängen
0140 Angehörige der regulären Streitkräfte in sonstigen Rängen
01402 Angehörige der regulären Streitkräfte in sonstigen Rängen - Fachlich ausgerichtete
Tätigkeiten

Figure 2.1: Extract from the Classification of Occupations 2010 (KldB 2010)

7

10 Berufsbereiche (one-digit)
37 Berufshauptgruppen (two-digits)
144 Berufsgruppen (three-digits)
700 Berufsuntergruppen (four-digits)
1286 Berufsgattungen (five-digits)

Figure 2.2: Number of Categories in the KldB 2010

Skill Level Assigned Occupations → 5-digits from KldB 2010
1: Helfer-/Anlerntätigkeiten Gesundheits- und Krankenpflegehelfer/in → 81301
2: fachlich ausgerichtete Tätigkeiten Gesundheits- und Krankenpfleger/in → 81302
3: komplexe Spezialistentätigkeiten Fachkrankenschwester-/pfleger → 81313
4: hoch komplexe Tätigkeiten Allgemeinarzt/-ärztin → 81404

Figure 2.3: Berufsgattungen (5-digits) in Health and Patient Care (taken from Paulus and
Matthes (2013))

For its job placement activities, the Federal Employment Agency uses the so-called

Dokumentationskennziffer (DKZ) which is derived from the KldB 2010. The DKZ-database

is continuously updated and contains all occupation and vocational training names used

currently in Germany together with further occupation-specific information. The DKZ is

an eight-digit number where the first five digits are identical to the KldB 2010. The last

three digits specify one particular occupation (as opposed to occupation categories in the

KldB). The sixth digit is used to distinguish between occupations (digit equals ”1” or ”2”)

and vocational trainings (digit equals ”8” or ”9”).

With ISCO-08, KldB 2010, and the DKZ, three different classifications are available for

the coding of occupation. The DKZ is the most detailed and the other classifications can

be derived from it. When the last three digits are truncated, one obtains the KldB 2010.

For international studies, the ISCO-08 classification is often used. As the KldB 2010 was

developed to be compatible with ISCO-08, the transition from KldB 2010 to ISCO-08 can

be done using a transition table. For 90% of the KldB-categories, there exists exactly one

corresponding category in ISCO-08, otherwise more than one. Other studies are concerned

with the social position, socio-economic status, or job prestige. Nearly all common measures

for it (e.g., class scheme of Erikson, Goldthorpe and Portocarero (EGP), European Socio-

economic Classification (ESeC), Magnitude Prestige Scale (MPS), Standard International

Occupational Prestige Scale (SIOPS), or International Socio-Economic Index (ISEI)) are

based on ISCO-coded occupations (Paulus and Matthes, 2013).

Not only is the DKZ the most detailed classification for German occupations but a large

part of the DKZ-database is also available online. Paulus and Matthes (2013) therefore rec-

ommend using the published resources from the DKZ for automatic and computer-assisted

coding. We will discuss and use the different resources in section 3.2. Despite all the advan-

tages from the DKZ, it is only a supplementary tool for coding into official classifications.

8

Who Advantages Disadvantages
Respondent

� direct feedback � no knowledge of the classi-
fication

Interviewer

� direct feedback � superficial knowledge of the
classification

Professional Coder

� expert in the classification

� can also use extra informa-
tion that was included

� in general, can interpret
answers better than a com-
puter program

� direct feedback not always
possible

� feedback is very time-
consuming

� coding may be inconsistent

Computer Program

� fast, consistent coding

� coding knowledge is spec-
ified in a system and is
therefore transferrable

� can operate day and night

� no direct feedback

� only the relatively simple
cases are coded (but that is
often the bulk)

Figure 2.4: Possible Places for coding (table taken from Hacking and Willenborg (2012))

For a number of reasons it is not a suitable target classification in itself. Because it is

updated daily, it may happen that the correct category for an answer changes over night.

Also, the DKZ is not just the 6-th level in the KldB but a full hierarchy with multiple levels

and thus it can happen that a specific and a more general DKZ code both are correct. A

file with 3920 DKZ codes is available for download and another, overlapping set with 3098

DKZ codes is used for the BERUFENET1 online. Taken together this means that the DKZ

is not a stable classification where all categories are well defined. We will therefore use the

5-digit KldB 2010-Berufsgattungen for the coding of occupations in this work.

9

2.3 Coding Options: Manual or Automatic

In principle, different kinds of coding systems exist: manual coding, computer-assisted cod-

ing, and automatic coding. It depends on the complexity of the coding task which option

is best and combinations of these systems are typically used in practice. This section and

figure 2.4 explore the different options in more detail.

For most survey questions, coding is done implicitly by the respondent. That is, after a

closed question was asked, the respondent indicates the most adequate category. Sometimes,

- and this is the case for occupations - the coding scheme contains too many categories or

is too complex for the respondent. In these cases, an open-ended question is asked and the

textual answer is categorized by a professional coder. With this method, relevant details

may be missing when the coder does his work. As a resort, it has been suggested to give

the coding task to the interviewer who can inquire all necessary information during the

interview (cf. Conrad (1997), Hacking and Willenborg (2012)).

Computer-assisted coding is used to facilitate the coding task with specially designed

computer programs. While the decision which category is correct remains with the human

coder, the coding program offers help and often suggests a small number of adequate cate-

gories. For occupations, Bushnell (1998) has shown that a computer program may accelerate

the coding process and increase coding quality at the same time. A specialized software

for this task is the Cascot-program2 for occupation coding in the United Kingdom. More

generally, the integration of open-ended questions into surveys is a longstanding method-

ological concern and both Fielding et al. (2013) and Esuli and Sebastiani (2010) describe

various software solutions available for the analysis and coding of verbatim answers.

In contrast to computer-assisted coding, in automatic coding the computer automatically

assigns one target category. According to Lyberg and Kasprzyk (1997), proportions as high

as 70%-80% may be coded this way while maintaining low error rates. When automatically

assigned codes are expected to be incorrect, these residual cases are conferred to an expert

for the final classification. Around the world, statistical agencies have developed programs

for automatic coding and reported satisfying results as well as cost-savings (cf. United

Nations Statistical Commission and Economic Commission for Europe (1997)).

When it is not relevant to distinguish between computer-assisted coding and automatic

coding, we will use the term automated coding that can mean both. The next section will

give an overview over the techniques used for automated coding.

10

Technique Description or Example (Original String →
Parsed String)

Replacement of Symbols ’+’ → ’plus’
Non-standard Character Replace-
ment

’#’ → ’ ’ (space)

Replacement of Abbreviations ’Prof.’ → ’professor’
Substitution of Letters ’à’ → ’a’
Removing Stop Words ’the’ → ’ ’ (space)
Splitting Composite Words ’machinefabrieksopzichter’ → ’machine fabriek s

opzichter’
Spell Checking Spell checkers or fuzzy matching methods (e.g., tri-

grams, Levenshtein distance, Soundex)
Phrasing Split text into different phrases that will be coded

separately
Tokenizing Split phrases into single words or n-grams (e.g.

’machine’→ {’ ’ma, mac, ach, chi, hin, ine, ne’ ’})
Lemmatization / Stemming ’mine’ → ’his’ / ’fished’ → ’fish’
Replace Synonyms, Loan Words
and Hypernyms

’account manager’ → Dutch equivalent,
’tomato’ → ’greenhouse vegetables’

Word-Sense disambiguation ’bank’ → ’banking institution’ (based on context)

Figure 2.5: Preprocessing for Texts (summary from Hacking and Willenborg (2012))

2.4 Techniques for Automated Coding

In order to automatically code a textual answer, most methods rely on a dictionary con-

taining this answer or other answers with similar meaning together with the corresponding

code. In section 2.4.1, we will give an overview over systems with rule-based coding. All de-

scribed systems have in common that expert knowledge is required to set up these systems.

In contrast, the data-based coding techniques summarized in section 2.4.2 use material that

was coded previously by human coders. If a sufficient number of equal or similar answers

(this is quite similar to a dictionary) is already coded into only one category, chances are

good that the current answer may also fall into the same category.

Human language exhibits a high degree of variety, e.g., spelling errors, grammatical

forms, slang language, and synonyms. Both the expert and the data-based methods perform

better when textual answers and entries from the dictionary can be matched to each other.

Therefore, a number of functions may be used to bring these texts into a standardized form

that simplifies textual comparison. Figure 2.5 contains a number of textual preprocessing

techniques that have been suggested for this task in the context of automated coding.

1http://berufenet.arbeitsagentur.de/berufe/
2Online available at http://www2.warwick.ac.uk/fac/soc/ier/software/cascot/

11

http://berufenet.arbeitsagentur.de/berufe/
http://www2.warwick.ac.uk/fac/soc/ier/software/cascot/

2.4.1 Rule-Based Coding

The simplest approach to automated coding uses logical rules: Under exactly specified

conditions a code is assigned. For example, when a (preprocessed) answer is identical to

a given string, the corresponding code is assigned. For occupation, various authors have

described this technique (e.g., Geis (2011), Drasch et al. (2012), Jung et al. (2008), Conrad

(1997)) and use it as a first step. Although a few 1000 rules exist in these systems, it is

rare to code more than 50% of the occupation codes accurately. Hartmann and Schütz

(2002) have generated additional rules for higher production rates and describe the arising

problems.

Closely related is an approach based on dictionaries that associate each entry with

exactly one code. Some expressions in the dictionary may appear multiple times with

different codes. Now, the coding task is to match a given answer in standardized form (i.e.

preprocessed with methods described in figure 2.5) to one or more entries in the dictionary.

Exact matches are not needed but the match must be close enough to exclude any ambiguity.

When only one match is found, the associated code is assigned. Multiple matches may be

resolved manually or automatically with the help of weighting algorithms that make use

of how specific associations between expressions and particular codes are. Conrad (1997)

gives the main concepts in greater detail and describes the historical development at the

US Census Bureau. Different statistical agencies around the world have used this approach

(see United Nations Statistical Commission and Economic Commission for Europe (1997)).

One of these systems is G-Code (old name ACTR) which has been under development

by Statistics Canada for more than 20 years. It is a generalized coding software in the

sense that it can be used for different languages and coding tasks. Its particular strength

are sophisticated text processing functions that transform natural language answers with

equivalent meaning into a standardized form that can be looked up in a dictionary. Good

performance results have been reported for Canada (Tourigny and Moloney, 1997) and Italy

(Ferrillo et al., 2008). Research related to this software has been published by Gillman and

Appel (1994) and Macchia et al. (2010).

Another idea is to exploit the linguistic relation between textual answers and the target

category description. Textual answers and target categories may be represented in the same

vector space. Then, one assigns the category which is most similar (cosine similarity) to the

textual response. This technique from Information Retrieval is described in Manning et al.

(2008). Jung et al. (2008) and Viechnicki (1998) find that this similarity-based approach is

outperformed by dictionary-based and multinomial regression methods.

A recent approach to utilize the linguistic relation between textual response and cate-

gory description has been described by Sangameshwar and Palshikar (2013). A promising

feature in their prototype is that it searches for synonyms and related words from a pub-

lic database. The use of such semantic relationships has shown to be useful for coding

12

(e.g., Jung et al. (2008), Hacking and Willenborg (2012)). Willenborg (2012) describes the

underlying concepts in detail.

Most methods described so far suffer from one drawback: Substantial background knowl-

edge or human supervision is needed to set up the software. Lyberg and Kasprzyk (1997)

observe that coding rules are suboptimal when they are only based on expert descriptions.

The software is much more efficient when the ”empirical pattern generated by respondents

themselves” is used to create the dictionary. A similar view is expressed by Giorgetti and

Sebastiani (2003) who come to the conclusion that supervised learning methods may out-

perform traditional methods. The next section will give an overview over these approaches.

2.4.2 Data-Based Coding with Supervised Learning Techniques

The automated classification of texts into predefined categories is well-studied in the field of

machine learning (e.g., Aggarwal and Zhai (2012), Sebastiani (2002)). The task is to learn

from training data, i.e. existing text documents are already grouped into categories, and

use this data to predict the correct category for additional texts. Some algorithms allow

classification into hierarchically structured target categories (e.g., Esuli et al. (2008)), which

appears useful for automated coding. Typically, text classification techniques are designed

to classify whole documents with multiple words into a small number of categories.

The survey coding task is more challenging. Although it is theoretically equivalent

to the classification of text, practical aspects differ. In surveys, the respondents typically

answer with only a few words and the number of possible categories may be very large. Text

classification has nonetheless been applied to the field of survey coding. Esuli and Sebastiani

(2010) describe automatic coding software designed to classify short survey answers into

classifications with only two categories.

In the following, we will give some examples from working systems that code occupa-

tions automatically. Compared to other text classification algorithms, ideas are simple and

training data should be large:

� The US Census Bureau has been experimented with ”nearest neighbor and fuzzy

search techniques” (Gillman and Appel, 1994) and neural networks (Conrad, 1997)

for the coding of occupations. Current practice is still dictionary-based (see above).

Multiple dictionaries are created automatically from training data, one dictionary

for single word entries, another dictionary for two-word long entries, and a third

dictionary for whole answer texts. To include an entry in the dictionary, it needs to

appear multiple times in the training data and a strong association to a specific code

is required (Thompson et al., 2012).

� Hacking and Willenborg (2012) use how close words W correspond with particular

categories Ci. If a particular word falls mostly in one or a few categories (”lawyer” in

13

contrast to ”employee”), a higher specificity score

F (W) =

√∑n
i=1 P (Ci|W)2

n

is calculated, where n is the number of categories which had the word W assigned.

If more than one word from the current verbatim match with some answer from the

training set, specificity scores for these words are added up. If the similarity is higher

than a certain threshold, the corresponding code is assigned.

� Jung et al. (2008) use training data to learn a maximum entropy model that estimates

the conditional probability p(Codei|Textualanswer). To this end, it was necessary to

build a large domain specific thesaurus that reduces the number of possible textual

answers.

2.5 Coding Evaluation

Finding a single correct category for a given answer is not always possible. Textual answers

may be very general (e.g., ”Angestellter” / ”clerk”) and allow coding into multiple similar

categories. For example, ”call-center telephonist” may be coded into both categories ”call-

center agent” and ”telephonist” (examples come from Hartmann and Schütz (2002) resp.

Drasch et al. (2012)). Campanelli et al. (1997) state that coding quality ”can be seen to

depend on a number of factors, such as the type of question, the nature of the answers, the

length and adequacy of the coding frame, and the training and supervision of coders.” The

same authors summarize the following definitions to measure coding quality:

� Reliability is the proportion of agreement between two different coders. It ranges from

the worst case 0, if coders always assign different codes to the same answer, to 1, if

coders completely agree for all answers. For supervision of individual coders, it may

be useful to calculate the reliability for each coder separately. It is also possible to

study the reliability of individual codes to find inherent weaknesses in a given code

frame.

� Two coders might assign the same code not by a shared understanding but by chance.

An estimator, Cohen’s Kappa is proposed for adjustment. For the large KldB-coding

frame at hand, however, it is highly improbable to assign a correct code by chance

and therefore we will not use Kappa.

� When coding reliability is low, derived estimators, such as the population share with

a specific characteristic, have increased variance. Given a measurement model, the

14

variance is increased by the variance inflation factor

Eff = (1 + ρc(M − 1)(1− κi))

where ρc measures systematic biases in the coding process, M gives the average coding

workload, and κi is the reliability of the individual code. Based on this formula it is

argued that more coders with less workload for each might reduce the variance of

estimators.

� It is desired to see if coders assign the ”right” code to textual answers, i.e. the code

that corresponds best to the described occupation. This concept of validity is, however,

hard to operationalize. A possibly ideal criterion would be to send an expert team to

observe and consult the respondent and have the occupation coded afterwards. As this

is not achievable, some classification experts might be asked for a ”correct” coding

given the textual answers. The coder’s work can then be compared to this expert

work.

To measure the performance in automatic coding, further measures for quality and

efficiency are common in the literature:

� The agreement rate (or its inverse, the error rate) is the proportion of automati-

cally generated codes that agree with a manual-assigned code. Hereby it is assumed

that the manual-assigned code is the correct code. Some systems also account for

erroneous codes from manual coding (e.g., Tourigny and Moloney (1997), Thompson

et al. (2012), Svensson (2012)). Often it is required that the automatic coding system

performs as good as professional coders.

� The coding or production rate is the proportion of codes that can be generated auto-

matically. With a higher production rate, fewer text answers are presented to profes-

sionals for manual coding making the coding process less expensive.

� Speed considerations are sometimes made. As some automatic coding techniques are

computationally intensive, one might observe the time needed for model training or

for prediction.

It is relevant to note that there is a trade-off between agreement rate and production

rate: There are always some answers that are hard to code automatically and should be

left to specialist coders. This will decrease the production rate but increase the agreement

rate. Predicting which codes will be correct is therefore an important task that was studied

by Chen et al. (1993) and Kaptein (2005). The following is an example from Thompson

et al. (2012) that describes actual usage at the U.S. Census Bureau. A logit model with

79 independent variables is used to calculate the probability PHAT for an automatically

15

assigned code to be correct. Only when PHAT exceeds a fixed score cutoff, the answer is

coded automatically. The score cutoffs were set such that automatic coding with PHAT =

score cutoff is expected to perform as accurate as 100% manual coding. With this score

cutoff, a 43% production rate together with an agreement rate around 94,14% was calculated

on verification data.

Other topics on coding quality have gained less attention in the literature and we will

only touch those as well: DeBell (2013) comments on optimal practices for manual coding

into small-size coding schemes that are rarely ever fulfilled. Hacking and Willenborg (2012)

emphasize that not a single code but multiple ones may be considered correct. Esuli and

Sebastiani (2010) describe an accuracy measure useful when it is not of relevance to assign

each answer to the correct code but only the population estimate is of interest.

Figure 2.6: Coding Ambiguity

In order to comply with the international standard

ISO 20252 for market, opinion and social research,

Statistics Sweden has implemented several measures

for quality control in the coding process. Erroneous

codes can be corrected and the coding process can be

improved by identification of problematic categories.

For human coders with noticeable high error rates ad-

equate training is given. An IT-tool was developed for

computer-assisted coding that supports independent

verification coding (Svensson, 2012).

We shall conclude this section with a thought experiment demonstrating that reliability

is not to be optimized at all costs and the ideal automatic coding software may need to

make random decisions: Imagine a verbatim answer that cannot clearly be assigned into

one category A, but fits into two categories A and B equally well (see Figure 2.6: contrary

to the assumption described here, both categories are not exactly equal). Furthermore,

we assume that no other verbatim can be coded into these categories. At this point, a

general rule can be included in the coding manual that assigns the verbatim to category

A. When coders know this rule, inter-coder reliability increases, but this comes at the cost

of interpretability of category A and B. Contrary to the category definitions, category B

is empty and category A has doubled its size! Therefore, both proportions may only be

interpreted with the knowledge of coding rules, or, in other words, coding rules have been

added to the original category definitions. This needs to be made transparent to all data

users.

While it may be acceptable to have such coding rules in a coding manual published

(e.g., TNS Infratest Sozialforschung (2012), conventions from Geis (2011)) but generally

not known to the end user, matters become even worse with deterministic automatic coding

software that documents such rules only implicitly in the database. From a theoretic point

16

of view, we therefore suggest the following solution: Do not create a rule but let coders

decide which category comes closer to the verbatim’s meaning. When many coders do

this task, the law of large numbers ensures that both categories are assigned with the

same probability which is in accordance with our original assumption. The ideal computer

program should also allow for variations in coder decisions which can be done using the

Bernoulli distribution. Because it is clearly not desirable to have two categories with equal

meaning in the coding scheme, one may want to merge both categories afterwards. Note

that this argument is related to the survey literature, where it is generally feared that

specific coders are biased in their decisions by a preference for particular categories and

therefore variance is inflated (e.g. Groves et al. (2009)). In other words, the argument is

that unknown coding rules related to specific categories will create a systematic coding bias

as well.

2.5.1 Quality of Occupation Coding

In this section we will give an international overview on the quality of occupation coding.

Empirical results for Germany will be discussed below. As a reference it shall suffice here

to say that the inter-coder reliability for coding into the old 7-digit DKZ is below 70%.

In the United States, the US Census Bureau used 1.5 million responses from the Amer-

ican Community Survey (ACS) to learn a model for industry and occupation coding (4-

digit). Coding of industry and occupation is carried out in parallel to use the code from

one variable for prediction of the other. Clerical coders as well as the coding software ”are

required to maintain an error rate of 5% or lower as determined by a quality assurance

process run”. Although the training data set is huge, a production rate of only 43% is

achieved (Thompson et al., 2012). This number may be compared to the production rate

in computer-assisted clerical coding where only ”[a]pproximately 18 percent of all industry

and occupation responses are sent to coding referralists” (U.S. Census Bureau, 2009).

The Automated Industry and Occupation Coding System for the Koreans uses train-

ing data from the 2005 Census with about two million records. Company name, business

Category, department, position, and job description is used to predict 1 of 450 categories

from the South Korean standard code book. If the agreement rate is fixed at 98% a 73%

production rate is reached (Jung et al., 2008).

The French automated coding system SICORE is reported to have a 66% production

rate and a 96% agreement rate for occupations (Riviere, 1997). Although this result seems

excellent, it should be taken with caution because the quality controls are not well described

in the report.

In the Labour Force Survey conducted by Statistics Sweden, more than 80% of occupa-

tions were coded during the interview, a small percentage by automatic coding methods,

and the remaining, most difficult cases (15-20%) by computer-assisted manual coding. Error

17

rates are only reported on the highly aggregated one-digit level and are at 9% for manual

coding in ISCO. Even smaller error rates are achieved for cases from interviewer or auto-

mated coding (Svensson, 2012).

In the United Kingdom, multiple studies have examined coding into the Standard Oc-

cupational Classification (SOC) with 371 categories. Campanelli et al. (1997) find an inter-

coder reliability of 78% for intermediate level coders. Other cited studies vary between 70%

when office coders are compared to interviewer field coding and 84% for expert coders.

For Germany, three different classifications are available for occupation. A manual for

coding into the international ISCO-08 is given by Geis (2011), coding into the national KldB

has been described by Hartmann and Schütz (2002) and TNS Infratest Sozialforschung

(2012), and Paulus and Matthes (2013) give a manual for coding into the DKZ which is

derived from the KldB. To obtain good coding results, it is generally recommended to ask

2-3 questions about the employment and a further question about the professional status

(”Berufliche Stellung”).3 If available, further variables like industry, size of enterprise,

school and vocational education, or employment history have been useful as well. Geis and

Hoffmeyer-Zlotnik (2000) provide additional background information.

Though some attempts have been made to improve automated coding for ISCO (see

Hoffmeyer-Zlotnik et al. (2004), Hoffmeyer-Zlotnik and Warner (2012)), the rule-based

method currently employed by Geis (2011) has a production rate lower than 50% and

manual checking is intended. The quality for coding according to the ISCO-88 classification

(390 categories) has been investigated by Maaz et al. (2009). In their study, two professional

institutes and two research assistants without prior coding experiences have coded occupa-

tions from the parents of 300 high school graduates. For the 12 resulting combinations from

four individual coders, inter-coder reliability varies between 41.6% and 53%. After aggre-

gating coding decisions into the ten one-digit major groups, reliability increases to 67.5%

to 74.7%. When coded occupations are transformed into the International Socio-Economic

Index of Occupational Status (ISEI), measures of validity are more promising. The authors

conclude that, while the ISCO scale only has low reliability, other derived scales may still

be valid.

Quality checks for coding into the KldB 2010 have been presented by Prigge et al. (2013):

The reliability for 5-digit KldB is above 80%, for 2-digit KldB above 90%, Cohens Kappa

has been calculated for supervisors and managers (4th digit = 9) to 82.6%, and for the skill

level (only 5th digit) to 88.0%.

3Statistisches Bundesamt (2010) give the following standard formulations:

� Welche berufliche Tätigkeit üben Sie derzeit hauptsächlich aus?

� Bitte beschreiben Sie mir diese berufliche Tätigkeit genau.

� Hat dieser Beruf noch einen besonderen Namen?

� Nun sagen Sie mir bitte nach dieser Liste hier, zu welcher Gruppe dieser Beruf gehört.

18

Main results for semi-automated coding into the DKZ are summarized as follows: 61% of

the textual answers needed manual coding and 9% of these had to be revised by a supervisor.

The remaining 39% were coded automatically (the larger part) or semi-automatically with a

human decision. Inter-Coder Reliability was only calculated for answers that were manually

coded with the following results: 50% for the 7-digit DKZ, 65% for the 4-digit KldB 1988,

79% for the 2-digit KldB and 70% for the 4-digit ISCO-88. Under the strong assumption

that automatic coding was correct in all cases, there is 70% overall reliability for the DKZ

as mentioned above. Drasch et al. (2012) argue that automatically coded answers will have

lower error rates than manual coding, and for some answers multiple categories may be

considered correct. They further hope that coding into the newly developed KldB 2010

will increase inter-coder reliabilities. The study from Prigge et al. (2013) described above

supports this hypothesis.

Summarizing, this short international survey reveals some interesting points. First of

all, quality measures are not consistent and often describe only one aspect from the whole

coding process. In some studies cited above, reliability is calculated, others report the

production rate and the proportion of ”correct” codes. Though these concepts are not

directly comparable, the wide variety of reported quality is eye-catching. This can be best

illustrated with the following numbers. With the DKZ approach, reliability for the 4-digit

ISCO is above 70%. When ISCO was coded directly, it was below 53% (4-digit) and below

75% for 1-digit codes. The Swedish system reaches error rates below 9% for 1-digit ISCO.

This high variability is no surprise, but arises from the fact that ambiguity in verbatim

answers, coding procedure and coder’s expertise determine the quality of coding.

Despite all the differences, the difficulty to code occupations is obvious in all studies.

This underlines the need for quality control and systematic improvement. We shall further

note that quality measures are often - if at all - documented in some technical manual

and not used for further analysis. It may be more relevant to look at the quality of derived

indexes like the approach from Maaz et al. (2009) described above. An even more ambitious

task is to find ways to incorporate into statistical analysis the uncertainty from measurement

inherent to the occupation variable and see how results change.

Regarding automatic coding, we shall point out that, even though training data used by

Thompson et al. (2012) and Jung et al. (2008) is huge, production rates are between 43%

and 73% and thus not neccessarily higher than systems with carefully designed rules. With

the exception of Jung et al. (2008), all automatic systems envisage manual or computer-

assisted coding for doubtful cases. We believe such a tool can prove useful for Germany as

well.

19

Chapter 3

Data Analysis

To use computers for automated coding, one needs to supply the machine with relevant

background information. As described in section 2.4, hand-crafted rules and dictionaries

are often used but laborious to construct. The other option is to use training data, where

verbatim answers are already coded. Our work focuses on the latter, and different methods

to predict new codes using training data will be discussed in section 3.2. Data from the

ALWA survey is used to train and test the algorithms. To see if automated coding procedures

can be generalized to new data sets, we use another test set from the lidA survey. Both

data sources will be described in detail in the next section.

3.1 Description of Survey Data

The ALWA survey (short for ’Arbeiten und Lernen im Wandel’, translated ’Working and

Learning in a Changing World’) described by Antoni et al. (2010) has been conducted to

study how informal competencies and knowledge, aside from formal educational attain-

ments, support professional careers. To this end, a clustered sample from all persons born

between 1956 and 1988 and living in Germany was drawn and questioned about their edu-

cational and professional development. 10404 telephone interviews (CATI) were conducted.

In this sample the following groups are underrepresented: the young, the low-educated and

persons with a migration background are less frequent compared to the total population.

We are only interested into the employment biography, i.e. all the jobs that each person

was holding during her lifetime. In the dataset we used, 32882 job records from 9227

different persons are present. When people find a new job, they often keep working in the

same occupational area and thus the job reports from a single person are not statistically

independent and often even identical. Many dependent answers lead to a dataset with less

diversity compared to independent answers and thus the effective sample size is smaller than

32882 job records. We are interested how well our prediction methods generalize for new,

independent job descriptions. Special provisions are taken and will be described below to

20

provide performance measures that hold also for independent answers.

To allow for comparisons over different data sets, codings from another study are used

as well: The lidA survey (short for ’leben in der Arbeit. Kohortenstudie zu Gesundheit

und Älterwerden in der Arbeit’) is a cohort study to examine the relationship between work

and health among aging employees. The total population consists of all employees with

social insurance and born either in 1959 or 1965 excluding public officials (”Beamte”) and

self-employed workers. A sample of 6585 persons was interviewed face-to-face (CAPI). This

sample is nearly representative of the population with only small deviations similar to those

described for the ALWA study above (Schröder et al., 2013). Each person gives information

on her current job, or, for the unemployed, the last job before unemployment.

0
1000
2000
3000
4000

0

200

400

600

800

0

1000

2000

3000

0

100

200

300

0

1000

2000

3000

4000

first question
first question

second question
second question

third question
A

LW
A

lida
A

LW
A

lida
lida

0 50 100 150 200
number of characters

fr
eq

ue
nc

y

Figure 3.1: Number of Characters to Verbatim Answers

For occupation coding, pro-

fessional coders use a number

of different variables from the

dataset. 2-3 questions on em-

ployment activities and a further

question on professional status

are most helpful for coding and

asked in most German surveys to

classify the occupation. We will

use the same variables for auto-

mated coding as well. Before we

can consider generalizations over

different datasets, we must look

if these input variables have a

similar format. As we will de-

scribe in the following, some of

these variables differ in relevant

aspects.

Prior to all analysis, we

make the following standardiza-

tions with all verbatim answers:

All letters are capitalized, spe-

cial German characters replaced

(e.g., ’Ä’ to ’AE’, ’ß’ to ’SS’,

etc.), punctuation and short ab-

breviations (i.e., at most 3 char-

acters followed by a ’.’) removed,

and white spaces at the start and

21

ALWA lidA
Second answer refused 0.3% 0.1%
Second answer is not informative 32.1% 8.0%
Second answer equals first answer 9.1% 6.2%
Second answer contains additional information 58.4% 85.6%

Table 3.1: Information Content from Second Answer

end of each string are trimmed.

Figure 3.1 shows different answer lengths to the open-ended questions ”Welche beru-

fliche Tätigkeit üben Sie derzeit hauptsächlich aus?” (first question), ”Bitte beschreiben

Sie mir diese berufliche Tätigkeit genau.” (second question), and ”Hat dieser Beruf noch

einen besonderen Namen?” (third question). When ALWA answers exceeded a limit of 50

characters, the last characters were clipped and the full answer is not saved. While answer

length to the first question does not differ much, answers for the second question in lidA

are in general longer than for ALWA. The third question was not asked in ALWA. In lidA

57% of the respondents answered this question for another job name with a simple 4-digit

”nein” (no).

Two possible explanations for the longer answers in lidA are that, firstly, respondents are

less willing to give detailed answers after they have answered the same question for multiple

prior jobs before and, secondly, respondents may want to give more details on themselves

in personal interviews (lidA) compared to telephone interviews (ALWA). A closer view into

the second answer provides additional evidence that respondents in the lidA study were

more motivated to give informative answers. Table 3.1 summarizes common answers to

the second question. For a small proportion of respondents, interviewers recorded refused

answers (’-7’ or ’verweigert’) that we replaced with the word ’VERWEIGERT’ for further

processing. A proportion of 32.1% from the ALWA respondents did not specify their job

with the second answer. Frequent records for this are ’keine näheren Angabe’, ’nein’, ’dto.’,

’dito’, ’-8’, ’weiß nicht’, and the empty string. We replace such statements with the answer

given to the first question in order to treat them the same way as those answers where

identical words are given for the first and second question. Only 58.4% from the ALWA

study and 85.6% from the lidA study give additional details about their job in the second

question that can be used for coding.

Careful inspection of the verbatim answers reveales additional patterns that a perfect au-

tomated coding algorithm should recognize automatically: This includes misspelled words,

answers with a hyphen (i.e. for the answer ’Küchen- und Möbelmonteur’ the two words

’Küchenmonteur’ and ’Möbelmonteur’ would be better suited as algorithm input), and the

detection of multiple jobs (i.e. ’Schlosser und Kraftfahrer’ cannot be coded into one cate-

gory). We will not provide solutions for these problems but use only the simple algorithms

described above for string preprocessing.

22

Aside from verbatim answers about employment activities, the professional status is

used for coding. ALWA and lidA both asked for it with a closed question but different

answer categories were used. We therefore aggregated categories from both studies into a

less detailed variable such that an exact mapping from both studies into the new variable

exists. Figure A.2 shows the resulting category scheme and relative frequencies how often

each category is found in each study. Large differences between ALWA and lidA are probably

caused by different total populations in both studies.

3.1.1 Job Codes

The coding procedure and quality checks for ALWA have been documented by Drasch et al.

(2012). Automatic coding was complemented by manual coding with special provisions for

dificult cases. Because the original answers were coded into the out-dated 7-digit DKZ, a

transition table was used to convert the codes into the current 8-digit DKZ where the first

five digits represent the KldB 2010. For lidA, answers were coded directly into the current

DKZ/KldB2010.

For the coding in both studies, additonal categories were necessary. When it was not

possible to find the correct code for a verbatim answer, it was coded as an imprecise answer.

In ALWA, a proportion of 0.46% of all answers was coded as imprecise compared to a

proportion of 1.05% in lidA. Because answers from lidA are in general longer and therefore

should be more precise, this significant difference comes as a surprise and we recommend

further investigation. For the coding in ALWA, further categories were introduced for

student research assistants, helpers not included in other codes, and persons with multiple

jobs. Together with 1286 categories defined in the KldB 2010, this gives us in total 1290

categories for coding.

Although different populations were interviewed for ALWA and lidA, one might hypoth-

ize that each job category has the same probability of occurence in both studies. This

assumption may be tested with the χ2-Test for homogenity. The test statistic is

χ2 =
k∑
i=1

m∑
j=1

(fij − f̂ij)2

f̂ij

with k = 2 studies, m is the number of categories, fij the frequency of category j in study i

and f̂ij is the expected frequency under the null hypothesis. Applied to the two-digit Beruf-

shauptgruppen, the null is significantly recected with χ2 = 615.4. Particular high deviations

between both studies can be found for the Berufshauptgruppen ’Medizinische Gesundheits-

berufe’ (more frequent in lidA than expected,
(fij−f̂ij)2

f̂ij
= 85) and ’Mechatronik-, Energie-

und Elektroberufe’ (less frequent in lidA than expected,
(fij−f̂ij)2

f̂ij
= 58). Further research

would be required to find out if the differences are caused by distinct total populations or by

23

disparate coding practices in both studies. For the different proportions of answers coded

as imprecise (see above,
(fij−f̂ij)2

f̂ij
= 82) the latter explanation is more plausible to us.

While the test for equal distributions of Berufshauptgruppen reveals relevant differences

in both studies, the same test is also helpful to check if frequent answers in both studies

have been coded into the same categories. For each first answer, e.g. ’Sachbearbeiterin’

(’clerk’), that was coded multiple times in ALWA as well as in lidA one may expect that

both studies code the same word typically into the same category. To test this, we calculate

the χ2-statistic for each first word. Due to the small number of observations for each word,

assumptions for formal tests are in general not fulfilled. High χ2-statistics are, however,

still a good indicator to find first answers that were coded systematically different in both

studies. We therefore recommend this statistic to find erroneous code assignments for

manual inspection.

Two examples may illustrate the use: After calculating the χ2-statistic for all first an-

swers, we find that the Sachbearbeiterin (”clerk”) has the highest score χ2 = 315 of all

first answers. Closer inspections shows that different standard categories were used in lidA

(97% coded into category 71302) and ALWA (66% coded into category 71402). Another

example is the Informatiker (’computer scientist’, χ2 = 14). In lidA, four persons gave this

first answer and all were coded into the general computer science category 43104. ALWA,

in contrast, coded ten persons with the very same first answer in three different, more spe-

cific categories (mostly in categories 43414/43423 for software development). With a closer

inspection of the second answer, more precise code assignment would have been possible for

lidA, too.

A further indicator that lidA codings may often be correct but overly general is the

following. The KldB 2010 includes an alphabetic dictionary with 24000 occupation titles

that assigns a 5-digit code to each occupation. 45% (lidA) respectively 49% (ALWA) of all

first answers have an exact match to one of those dictionary entries. For lidA, 95.6% of all

dictionary codes with exact matches agree with the assigned code whereas the same number

is only 76.4% for ALWA. This difference can possibly be explained with the Informatiker-

example described above. The lidA codes are in accordance with the dictionary entry while

the ALWA codes are not. Because lidA did not use additional information from the second

answer to find the most specific job, the codes are in better alignment with dictionary codes

from the KldB 2010. We are skeptical that this implies better job codes as well. In section

3.2.1 the dictionary coding method is described in detail.

To summarize, we have shown that lidA and ALWA data differ in many aspects. Two

different populations were surveyed and relevant variables do not follow the same distribu-

tion. In lidA, the average answer length for the second answer is longer but it has possibly

been used less for coding. There is evidence that people with similar jobs in both studies

have been coded systematically into different categories. Moreover, many categories were

24

not used once for coding. Out of 1290 existing categories, 437 categories (ALWA) respec-

tively 646 categories (lidA) have not been used a single time. No prediction algorithm that

is based on this training data will therefore predict these categories. This is a first sign -

and others will follow - that additional training data will improve all the methods proposed

in the next section for automated coding.

3.2 Methods for Automated Coding

Our aim is to develop new automated techniques to reduce the amount of work required for

coding. At the same time, the quality is of high relevance and needs to be closely monitored.

All automated coding systems we have described in section 2.5.1 require therefore human

efforts to code difficult cases. But even if the human makes the final decision, computer-

assisted coding has proven useful. Hereby, the computer program provides a list with

possible categories to reduce the time needed to search for the correct code. When the

number of suggested categories is large, the coding clerk may find ordered results helpful

with best fitting categories first. All probabilistic methods described below provide a score

that can be used for ordering.

Computer-assisted coding is one automated coding method, automatic coding the other.

When human supervision is not required for quality control, the top-ranked category is a

natural candidate for automatic coding. Then, it becomes essential to estimate the prob-

ability that this top-ranked category is also the correct one. Typically, only those answers

with highest correctness probabilities are coded automatically, the rest is referred to a hu-

man coder. Thompson et al. (2012) and Jung et al. (2008) both fix this probability at a

point such that more than 94% of automatically generated codes agree with human coding

decisions.

To test our methods we use the ALWA and lidA data described above. Only the ALWA

data is large enough to be used for training. We therefore split the ALWA data into training

data with 7436 persons having 26297 jobs recorded and test data with 1791 persons having

6585 jobs recorded. The split is done at random, but under the condition that no person

has her different jobs she was holding during her lifetime scattered over both the training

and the test data. This condition avoids unrealistic good results that may happen when a

person gives multiple times the same answer to describe the same job. If these answers were

scattered over training and test data the algorithm would find useful training data more

often than what would be the case for a different data set. To see how good our automated

coding methods using the same ALWA training data generalize to new coding situations,

test data from the lidA survey is used. With 6585 respondents in lidA, both test data sets

are of equal size. As we have seen above, ALWA and lidA codes differ systematically and

thus one must expect test performance to be worse in lidA when the same ALWA training

25

data is used for prediction in both test data sets.

We believe that employment coding should not be done in the back office from computers

and coding clerks but at the time of the interview when the interviewer can ask for further

details from the respondent. For this, the interviewer shall be provided with the ordered

list of suggested job categories, alike to computer-assisted coding. A difference between the

coding methods arises in the fact, that back office coding should use as much information

as available to find the correct code. This is not the case for our desired general tool

for interviewer coding, where it is prohibitive to assume that questions found useful for

back office coding about industry, vocational education, or employer’s size are always asked

beforehand and can be used for interviewer coding. Also, a second and third question about

the respondent’s employment is relevant for back office coding, but the tool for interviewer

coding should work without because the interviewer is expected to ask more precise answers.

Unless otherwise noted, we have therefore tested our prediction methods using only the

respondent’s first answer and the shortened differentiated professional status as depicted in

Figure A.2. In any case, the Naive Bayes method and the Combined Method are designed

to allow usage of additional covariates. Improvements over the following reported results

should therefore easily be possible for back office coding.

The following sections describe different methods we have tested for automated coding.

Each algorithm except the rule-based coding makes predictions using training data from

n = 26297 answers that are already coded. To measure performance, we have test data

from m = 6585 respondents available. The common output from all algorithms is a score

θlj for each respondent in the test data, l = 1, ...,m, and all possible categories j = 1, ..., J

where J = 1290 is the number of job categories. The construction of these scores differs for

each method but with one property holding for all: The score θlj is expected to correlate

with the true probability P (cj|l) that job category cj is correct for respondent l. In fact, with

the exception of the rule-based coding method, the idea for all the following methods is to

estimate this probability, setting θlj = P̂ (cj|l). We therefore call θlj the estimated correctness

probability. To obtain these probabilities, statistical models are built from training data with

respondents i = 1, ..., n. Estimations obtained from the training data are then extrapolated

to the test data.

The different prediction methods may be considered as black-box algorithms where one

is not interested into the internal mode of operation. From this point of view our main

results are presented next. The best method we developed is a combination of the other

algorithms as described in section 3.2.4. Figure 3.2 shows the usefulness of this method

for computer-assisted coding. For the diagram, the estimated correctness probability θlj

have been sorted for each respondent l with highest scores first. The associated codes can

then be presented to the coding clerk who should hopefully find the correct job category

within the first few suggestions that have highest scores. The graphic shows that top-ranked

26

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●
●●
●●
●
●●●
●●●●●
●●●●
●●

●
●
●
●●
●

●

●

●
●
●●●
●●
●
●●●●
●
●

●
●
●●●
●
●●●
●
●
●
●●●●
●●
●●●
●●
●
●
●●●
●
●

●

●
●●
●●●
●●●●●●●
●●
●
●●
●●●●●●●

●

●●
●

●
●
●
●●●●●
●
●

●●
●
●●●
●●
●
●●
●

●
●●●●
●
●●

●
●●
●
●●●●
●
●

●

●●
●●●●
●●●●
●●●

●
●
●
●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●
●●
●

●

●

●

●

●
●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●●

●●

●

●
●

●
●

●

●
●●

●

●●
●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●
●
●
●
●
●

●
●
●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●
●●
●

●

●
●

●

●

●
●

●

●●
●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●●
●

●

●

●

●

●●●

●●

●

●●●
●

●

●
●●

●

●
●
●

●

●●●

●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●●
●

●

●
●

●●

●

●●●●
●
●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●
●●
●

●
●●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●
●
●
●●
●
●

●

●
●
●

●

●

●
●

●

●●

●

●●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●●●

●
●

●●

●●●

●●

●

●
●●

●●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●

●●
●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●●●

●

●

●●●

●

●●●

●

●

●●

●
●

●

●

●

●

●●●

●●

●
●

●

●

●

●

●

●

●

●
●●
●●
●●
●
●
●●●
●

●●
●●●
●●●●
●
●●●●
●
●
●●
●●
●●●●●
●●●
●
●●
●●●●
●
●
●
●●●
●
●●●●
●●
●●●●
●●●
●●
●
●●●●
●
●●
●●●●
●
●●
●

●●
●
●●●
●●●
●
●●●
●●
●●●●
●
●
●
●●●●
●●●
●
●●●
●
●

●●
●
●
●●●
● ●●

●
●●●●●
●●●
●
●
●
●●●●●●●●●●●
●●
●●
●●●
●
●●●●●
●
●
●
●●●
●●
●
●●●
●
●
●
●●●●●●●
●
●●
●●●●●●●●
●●
●
●
●●●●
●
●●●●
●●●●
●●
●●●●●●
●●
●●●●
●●●●●
●●●●●●●
●
●
●●
●
●●●●●
●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●
●●●●●●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●●

●●

●●

●

●●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●●●●
●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●●●●

●●

●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●●●
●
●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●●
●
●
●●●

●

●

●

●

●

●

●
●●

●●

●●

●
●●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●●

●●●

●

●

●

●●●●●
●

●●●●●

●●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●
●

●

●●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●●●●

●

●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●●●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●●●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●

●●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●●●

●

●●●●●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●
●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●
●
●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●●

●

●

●

●●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●●●

●

●●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●●

●
●

●●●●●

●●●
●

●

●

●●●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●

●
●

●

●●●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●

●

●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●●●

●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●●●●●

●

●

●

●

●●

●

●●

●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●●●●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●●●●●●●●●●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●●●

●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●●
●●
●
●●

●

●

●

●

●●

●

●

●

●

●

●●●
●
●
●●
●

●

●●●

●
●●●●

●
●●●

●●

●

●

●
●
●●
●●
●●

●●

●
●

●●

●

●

●

●
●

●●

●

●

●●

●
●

●●

●
●

●●
●●
●
●●●

●●

●

●
●
●
●●

●

●

●●
●●●●●
●
●●●

●
●●
●●●

●
●

●
●

●

●
●●

●

●●●●

●
●●●
●
●
●●

●●
●

●●

●●
●●

●●
●●●

●
●

●

●●●●

●

●

●●●●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●●

●

●
●●
●
●

●●●

●●

●

●

●

●

●
●
●●●
●

●
●●

●

●●●●●●

●

●

●
●
●

●●

●

●

●●

●●●●●

●●
●●●
●

●

●●●
●

●

●
●

●
●

●●●

●

●

●
●

●

●●

●

●

●●
●
●●

●●

●

●●●

●

●

●
●
●
●

●

●

●●

●●

●
●

●

●●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●

●●

●●
●
●
●
●

●
●

●●

●

●

●

●●

●●

●●

●●
●●●●●

●●
●

●
●

●●

●

●●

●

●

●●●●

●
●

●
●

●

●

●●

●●
●

●

●●
●

●●

●●

●
●

●

●
●

●

●

●●●
●

●

●
●

●

●
●
●
●

●

●●
●

●

●
●

●

●

●●●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●●●
●

●

●

●

●
●●
●●●

●●
●

●●

●●

●

●

●

●●●
●
●
●

●

●●●
●

●●●●

●
●
●●

●

●

●

●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●
●●

●●
●●●
●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●●●

●

●
●
●
●

●●●

●

●

●

●●

●●

●
●●

●

●

●●

●●

●
●

●

●
●

●●

●

●

●

●●

●
●

●

●

●●●●
●

●●
●

●

●●
●
●●

●

●●●
●

●●

●
●
●

●

●
●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●
●●

●

●

●
●

●

●
●●●

●
●

●

●●●
●

●

●

●
●
●

●
●●●●

●●
●
●

●
●●

●

●

●

●
●●●

●

●●

●

●
●

●

●

●
●
●
●
●
●●

●
●
●

●●●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●
●●
●●

●

●
●

●

●
●

●

●
●
●

●●●

●●●
●
●●

●
●
●

●
●
●●

●
●●●
●●

●●
●

●●

●

●
●

●

●●●
●

●●●
●

●

●

●
●●
●

●●●

●

●

●

●

●
●

●

●
●

●

●

●
●●●
●●
●●
●●●
●
●●
●
●
●●●●●
●●
●●●●
●
●
●
●
●●●
●●
●
●
●

●
●●
●●●

●●●
●
●●●●●
●●●●●
●●●●●

●●●●
●●●●
●

●●●
●
●●●●●●
●●●
●●
●
●●
●●
●
●
●
●
●
●●
●●
●●
●
●

●●●
●
●
●●●●●
●●●●●●●

●●

●
●
●●●
●
●●
●
●●
●●●
●●●●
●●●●●● ●●

●
●●●●
●●●●●●●●●
●
●●●●●●●
●
●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●●●●
●
●
●●●
●
●
●●●●●●●
●●●
●●●●●
●
●
●●●●
●●
●●●●●●●●●●●●●●
●
●
●
●●
●
●●●●●●●
●●
●●●●●
●●●
●●
●●●●●
●
●●●●
●
●
●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 >5 * **
n−th Item in Suggested Job Categories

(ALWA Test Data on the Left, lidA Test Data on the Right)

A
gr

ee
m

en
t R

at
e

0.25

0.50

0.75

Estimated
Correctness
Probability

Figure 3.2: Agreement rates for comuter-assisted coding. Shown are relative frequencies
how often the n-th ranked category is correct. Error rates are given for grey bars.
’*’ = Suggestions do not include the correct category
’**’ = No suggestions available

job categories (1st item) are in agreement with the assigned code 63.64% of the time for

ALWA (left) and 54.88% for lidA (right). The worse performance in the lidA test data is as

expected because of the described systematic differences in ALWA and lidA codes. One can

further see that suggested categories ranked second to fifth contain a substantial proportion

of correct codes. Thus, it would be possible for a human coder to find for 74.08% of all

answers (ALWA, lidA: 69.35%) the correct code within the top five suggestions. For the

residual cases the the system is less useful due to different reasons: A proportion of 7.15% for

ALWA (lidA: 13.41%) has the correct job category only suggested after the five top-ranked

categories. For these cases the available training data and dictionaries still find the correct

job category which can be suggested to a professional coder. This is not the case for other

answers, marked grey in the diagram. For 8.23% (ALWA, lidA: 5.76%) we find only wrong

code suggestions in training data and dictionaries and for further 10.54% (ALWA, lidA:

11.48%) these sources do not provide any hint about a possible job category at all. Taken

27

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Production Rate

C
um

ul
at

iv
e

A
gr

ee
m

en
t R

at
e

Prediction Method

Official Dictionary

Naive Bayes

Combined Methods (Boosting)

Bayesian Multinomial

Figure 3.3: Agreement and Production Rates for ALWA-test data

together, this sums up to nearly 20% of all answers where neither dictionary nor data-based

statistical learning methods are able to give any suggestion about the correct job category.

Only additional training data, more dictionary rules, or better string preprocessing may be

useful to process these answers with automated coding methods. Colors are used to depict

the algorithm’s certainty that the correct category has been found. Answers with high

estimated correctness probability θlj are marked blue. These are candidates for automatic

coding without human interaction.

If one desires automatic coding, the algorithm’s performance is better described with fig-

ure 3.3. Applying ideas from Chen et al. (1993), the chart compares quality from automatic

coding for ALWA test data using different prediction methods. As described before, the

top-ranked category suggestion is the only candidate for automatic coding. This category

suggestion is, however, not always correct and it is therefore relevant to decide automatically

28

if the suggested code shall be assigned by the computer or if the answer is referred to manual

coding. The estimated correctness probability for the top-ranked category, θl(1) = maxj θlj,

can be used for this decision. Answers are only coded without human supervision when this

probability is above a certain threshold and otherwise not. When this threshold is higher,

fewer codes are assigned automatically and thus the production rate is smaller. At the

same time, the cumulative agreement rate, i.e., the proportion of automatic code assign-

ments that agree with the human-coded ’true’ job categories rises. The diagram shows that,

if one were to fix the desired agreement rate at 95%, it would be possible to code 43.25% of

all answers with the ’Combined Methods (Boosting)’- algorithm, 7.96% with Naive Bayes,

and 45.36% with the Bayesian Multinomial model. Although these numbers show that the

last model performs best when high agreement rates are necessary, this is not the case if one

were to code at 100% production rate all top-ranking answers. In this case, only 59.06%

would agree with human code decisions for the Bayesian Multinomial method, 63.23% for

the Naive Bayes method, and, as we have seen in figure 3.2, 63.64% for the ’Combined

Methods (Boosting)’. The ’Official Dictionary’-method cannot be compared directly to the

other methods, because it does not provide estimated correctness probabilities necessary for

ordering. There is still one possible point of comparison, namely that 48.77% of all answer

are found in a dictionary (production rate) and 76.44% of these dictionary entries provide

the correct code (agreement rate). Variation at smaller production rates is due to random

ordering of dictionary matches. For a production rate above 48.77%, the agreement rate

decreases towards an overall accuracy of 0.4877∗0.7644+(1−0.4877)∗0 = 37.28% at 100%

production rate, because all answers not found in the dictionary cannot be coded accurately.

Production and agreement rates for the lidA test data are provided in the appendix (A.1)

and are in accordance but without new insights for our discussion here.

While the black-box approach above is good for an overview over methods used and

results obtained, it is necessary to go into detail to understand why the different predic-

tion methods perform as they do. Within the next few sections we provide the required

background and further evaluation. In section 3.2.1 we describe how we use an existing job

catalogue for automatic coding. Our study focuses, however, on the other possible source

for background information: we use previous code assignments from the ALWA study to

predict new codes. Two different methods, Naive Bayes and Bayesian Multinomial, applied

for this task are described in sections 3.2.2 and 3.2.3. As we will see, a particular strength

from the Naive Bayes model is that it uses the full answer string. This is in general not

possible with the Bayesian Multinomial model, which comes with another advantage. Be-

cause prior information is used, one can account for small training frequencies when certain

answers are not used often. To combine the strengths from all three methods, section 3.2.4

provides the details on the last method which is based on boosting.

29

3.2.1 Rule-based Coding

The definition of rules to assign verbatim answers into predefined categories is often done

for survey coding. The idea is to match answers with entries from a dictionary and assign

the corresponding code. The coding manual given by Geis (2011) is based on a dictionary

and Drasch et al. (2012) have used dictionaries from the DKZ with 42000 job names and

additional 101000 search words for semi-automatic coding of ALWA data. This method is

also internationally the prevalent procedure and different coding programs developed for

dictionary-based coding are described in sections 2.3 and 2.4.1.

For German occupations a number of different dictionaries exist. The official KldB 2010

documentation (Bundesagentur für Arbeit, 2011) includes an alphabetic list with 24000 job

and occupation names together with corresponding 5-digit codes1. Other dictionaries are

available as part of the 8-digit DKZ. The Federal Employment Agency uses the DKZ for

various services and updates the database on a regular basis2. The file B SY.txt contains

3920 8-digit DKZ codes, each with short and long job names in male, female, and neutral

format (6 names in total). Additionally, the file B SW.txt provides more than 150000 search

words that link to one or more DKZ job codes and in the BERUFENET we find similar

jobs (”Beschäftigungs-/Besetzungsalternativen”) that may be helpful for computer-assisted

coding.

Here, we use only the static and well documented alphabetic dictionary from the KldB

2010 and come back to the DKZ dictionaries only in section 3.2.4. The reason is that we

want the dictionary to be a stable point of reference. If the rules from a dictionary are fol-

lowed, identical verbatim answers are always coded into the same category, which explains

the popularity of this method. At the same time predefined rules may be problematic. If

a verbatim answer fits into multiple categories, a coding rule defines which single category

is to be used and thus the underlying ambiguity is concealed. When the dictionary assigns

answers to incorrect codes, systematic errors happen. No analysis of errors in coding dictio-

naries is known to us and thus it is unknown how frequent these dictionary misassignments

are. Interpretation of job codes is therefore only possible in the light of those dictionary

rules that were used for coding. With the regular updates in DKZ dictionaries this would

be impossible. Also, all research should be reproducible but for coding this is not possible

when updated dictionary versions are used.

The alphabetic list of occupations comes with some challenges for dictionary-based cod-

ing. The problems involved are best described with the following example: Two entries

from this dictionary are ”Betriebsschlosser/in” (Code 25102) and ”Betriebsschlosser/in

1Online at http://statistik.arbeitsagentur.de/Navigation/Statistik/

Grundlagen/Klassifikation-der-Berufe/KldB2010/Systematik-Verzeichnisse/

Systematik-Verzeichnisse-Nav.html
2Relevant online services can be found at http://berufenet.arbeitsagentur.de/berufe/ and http:

//download-portal.arbeitsagentur.de/ (most relevant are the files B SY.txt and B SW.txt)

30

http://statistik.arbeitsagentur.de/Navigation/Statistik/Grundlagen/Klassifikation-der-Berufe/KldB2010/Systematik-Verzeichnisse/Systematik-Verzeichnisse-Nav.html
http://statistik.arbeitsagentur.de/Navigation/Statistik/Grundlagen/Klassifikation-der-Berufe/KldB2010/Systematik-Verzeichnisse/Systematik-Verzeichnisse-Nav.html
http://statistik.arbeitsagentur.de/Navigation/Statistik/Grundlagen/Klassifikation-der-Berufe/KldB2010/Systematik-Verzeichnisse/Systematik-Verzeichnisse-Nav.html
http://berufenet.arbeitsagentur.de/berufe/
http://download-portal.arbeitsagentur.de/
http://download-portal.arbeitsagentur.de/

(Landtechnik)” (Code 25222). The first problem consists of different male and female

names for many occupations. We therefore searched for frequent word endings to ex-

tract the corresponding male and female names (here ”Betriebsschlosser” and ”Betrieb-

sschlosserin”). This procedure is obvious for the ending ”/in”, more difficult for endings

like in ”Leitende/r kaufmännische/r Angestellte/r”, and automatic recognition for names

like ”Absteckdirektrice/-modelleur” was not possible for us. For 2091 out of 24000 job

names from the dictionary we do not find male and female forms automatically and these

entries are therefore discarded. The second problem arises from the fact that people do

not use parentheses in verbatim answers. For simplicity we delete parentheses and the text

within.

Results from dictionary based coding have been reported earlier in this thesis. 45%

(lidA) respectively 49% (ALWA) of all first answers have an exact match to one of these

(preprocessed) dictionary entries, either in male or female form. Only if there is exactly

one match it is counted as a match. This means in particular for the ”Betriebsschlosser”

where two possible codes (25102 and 25222) are found that this word is not coded automat-

ically using this preprocessed dictionary. For lidA, 95.6% of all dictionary codes with exact

matches agree with the assigned code whereas the same number is only 76.4% for ALWA.

Another problem is that many jobs have general names (e.g., ”Agrarwirt/in” or ”Tis-

chler/in”) that code in one category and more specific names (e.g., ”Agrarwirt/in Baumpflege

und Baumsanierung”, ”Agrarwirt/in Besamungswesen”, ... or ”Bautischler/in”, ”Billardtis-

chler/in”, ...) that code into different categories. We assume that people often only answer

with the general name ”Agrarwirt” or ”Tischler” and the text is therefore miscoded when in

fact the more specific name would be correct. This means, when rule-based coding is based

only on the first answer, automatic code assignments are often incorrect. Computer-assisted

coding and coding during the interview may lead to better results and a prototype for it

is presented in chapter 4. With this method, job codes are suggested to the human coder

not only when the dictionary match is exact but also if the given answer is part but not

identical to the dictionary entry (partial match).

3.2.2 Naive Bayes

The Naive Bayes algorithm is well-known and often used as a benchmark for new algorithms

(e.g Lewis (1998)). We apply it, because it provides a simple technique to handle answers

with multiple words and any number of covariates can be included in the model.

Theory

Let cj, j = 1, ..., J specify the J job categories, qi is a verbatim answer and xi are further

covariates for respondent i, i = 1, ..., N .

31

Using Bayes rule, one may calculate the probability that respondent i works in job

category cj,

P (cj|qi, xi) =
P (qi, xi|cj)× P (cj)

P (qi, xi)
(3.1)

It is natural to predict that category cj with the highest probability given the covariates.

Tutz (2000) (p. 344) shows that this prediction rule minimizes the probability for false

classification. This minimal error probability can in theory be calculated as

εopt =
∑
qi,xi

min
j=1,...,J

(1− P (cj|qi, xi))× P (qi, xi) (3.2)

Problems arise because the right hand side in formula 3.1 is in general not known. While

the denominator P (qi, xi) is constant for all cj and can be neglected, the numerator needs

to be estimated. This is difficult in particular for P (qi, xi|cj) because the number of possible

combinations between arbitrary verbatim answers qi and all possible values for covariates xi

and job categories cj is far larger than the size of our training data. Instead of estimating all

the probabilities in this three way contingency table, we reduce dimensions with the Naive

Bayes assumption of condtional independence between answers and other covariates given

the job category. With this assumption we may write

P (cj|qi, xi) ∝ P (qi, xi|cj)× P (cj) (3.3)

∝ P (qi|cj)× P (xi|cj)× P (cj) (3.4)

The Naive Bayes assumption gives us therefore a way to handle a high number of covari-

ates by multiplying conditional probabilities together. For P (xi|cj) and P (cj), the relative

frequencies are obvious estimators.

More difficult is the handling of language. How should we estimate P (qi|cj), the proba-

bility that the respondent gives the observed answer qi given that she works in job category

cj? This problem has been studied extensively in the field of Information Retrieval (e.g.

Manning et al. (2008)) and text categorization (e.g., Aggarwal and Zhai (2012) and Mc-

Callum and Nigam (1998)). We follow a common approach that is also based on the Naive

Bayes assumption. The basic trick is to neglect, again, dependencies between how often

single words wi1, ..., wiV appear in qi (the so-called bag of words assumption) and model

this with a multinomial distribution:

P (qi|cj) = P (W1 = wi1, ...,WV = wiV |cj) (3.5)

= Kqi

V∏
v=1

P (Tv|cj)wiv (3.6)

32

Hereby, v = 1, ..., V is an index for the V possible words that may be used by respondents,

W1, ...,WV |cj is the distribution of word frequencies given cj which is assumed to follow

the multinomial distribution with parameters P (T1|cj), ..., P (TV |cj), interpretable as prob-

abilities that a word Tv is used by a respondent given she is in category cj. The constant

Kqi =
(
∑V

v=1 wiv)!∏V
v=1(wiv !)

can be ignored because it does not depend on the job category cj. We

simplify this model further by setting the word frequency for a particular word wiv to one

when it appears at least once in answer qi.

Estimation of usage probabilities for particular words P (Tv|cj) by a respondent is now the

key to achieve good model performance. Relative frequencies are not satisfactory because

many words are not used often and the contingency table for words and job categories is

very sparse. When a respondent uses a new word Tv not answered before, P̂ML(Tv|cj) = 0,

and inserting this estimators into the formulas above yields P (cj|qi, xi) = 0 for all job

categories, which is obviously not desirable. Even worse is the case when the respondent’s

answer contains a word that was only used a single time before. P̂ML(Tv|cj) will be zero for

all but one category cj and as a result this cj is strongly suggested by the algorithm to be

the correct category although only one little used word has indicated it.

Smoothing is therefore necessary and we use Jelinek-Mercer smoothing, which is a

weighted average from a category specific frequency estimate and a global estimate,

P̂ (Tv|cj) = λP̂ML(Tv|cj) + (1− λ)P̂ML(Tv) (3.7)

Although Manning et al. (2008) stress the importance to choose λ well, we tested it with

λ = 0.7 and λ = 0.95 and did not find large performance differences. Because predictions

were slightly better with λ = 0.95, we set λ accordingly in the following analysis.

To summarize the formulas above, we attain an estimation for P (cj|qi, xi) by plugging

in the different relative frequencies (ML-estimators) as

P̂ (cj|qi, xi) ∝ P̂ (cj)× P̂ (xi|cj)× P̂ (qi|cj) (3.8)

∝ P̂ML(cj)× P̂ML(xi|cj)×
V∏
v=1

P (Tv|cj)wiv (3.9)

∝ P̂ML(cj)× P̂ML(xi|cj)×
V∏
v=1

(λP̂ML(Tv|cj) + (1− λ)P̂ML(Tv))
wiv (3.10)

∝ #{cj}
N

× #{xi|cj}
#{cj}

×
V∏
v=1

(λ
#{Tv|cj}

#{cj}
+ (1− λ)

#{Tv}∑V
u=1 #{Tu}

)wiv (3.11)

with wiv = 1 if word Tv was used by respondent i and wiv = 0 otherwise. # is the

counting operator and thus
#{xi|cj}
#{cj} is the proportion of respondents with covariate xi from all

respondents in job category cj. While this proportion is counted on the basis of respondents,

33

Name Used Variables λ AUC

NB 1-answer lambda = 0.7 First Answer 0.7 0.877

NB 1-answer First Answer 0.95 0.884

NB 1-answer W Prof. Status First Answer & Professional Status 0.95 0.886

NB 1-answer W Full Training First Answer (& Second Answer pasted) 0.95 0.864

NB 2-answers First & Second Answer pasted 0.95 0.832

Figure 3.4: Properties from various Naive Bayes Models

#{Tv |cj}
#{cj} is the proportion of the number of word Tv over all words used to describe category

cj.

Though this is the basic formula used, our calculations deviate in some technical aspects.

First, in the next section we do not estimate P̂ML(cj) with relative answer frequencies
#{cj}
N

but with relative freqencies how often single words are coded into category cj. Second, the

ML-estimator P̂ML(xi|cj) =
#{xi|cj}
#{cj} is not defined if #{cj} = 0 and not desireable for small

#{cj}, because one would estimate P̂ (cj|qi, xi) = 0 if #{xi|cj} = 0. As a workaround we

set P̂ (xi|cj) = mink
#{xi|ck}
#{ck}

if it would be zero otherwise for the Naive Bayes model and for

the Combined Methods algorithm we fix all P̂ML(xi|cj) smaller than 0.05 at 0.03. Third, we

find in section 3.2.4 numerical instabilities when we multiply P̂ (cj)× P̂ (xi|cj)× P̂ (qi|cj) and

solve these using logarithms exp(log P̂ (cj) + log P̂ (xi|cj) + log P̂ (qi|cj)). While we do not

expect these technicalities to change our interpretations, they do explain different numerical

result shown in Figures 3.3 and 3.5.

The final estimated correctness probability θlj is then calculated as

θlj = P̂ (cj|ql, xl) =
P̂ (cj)× P̂ (xl|cj)× P̂ (ql|cj)∑J
k=1 P̂ (ck)× P̂ (xl|ck)× P̂ (ql|ck)

(3.12)

Evaluation

Naive Bayes predictions can be obtained from a number of different settings. Figure 3.4

provides an overview over the five different methods we tested for prediction. ’NB 1-answer

lambda = 0.7’ and ’NB 1-answer’ are used to compare different choices for λ. Both methods

use only the first verbatim answer and no further variables. Because performance is slightly

better for λ = 0.95, this value is used for the other methods with additional covariates. ’NB

1-answer W Prof. Status’ includes information on the professional status and the last two

methods make use of the first and second verbatim answers by connecting both answers to

a single text in the training data. The difference between ’NB 1-answer W Full Training’

and ’NB 2-answers’ consists in the fact that the former uses only the first answer to predict

job codes and the latter connects first and second answers in the test data like it is done in

the training data.

Although we do not recommend evaluating performance from different prediction meth-

34

0.6

0.8

1.0

0.6

0.8

1.0

A
LW

A
lidA

0.00 0.25 0.50 0.75 1.00
Production Rate

C
um

ul
at

iv
e

A
gr

ee
m

en
t R

at
e

Prediction Method

NB 2−answers

NB 1−answer W Prof. Status

NB 1−answer W Full Training

NB 1−answer lambda = 0.7

NB 1−answer

Figure 3.5: Agreement and Production Rates for Different Naive Bayes Procedures

ods using a single number, the AUC is such a number and we provide it for reference. It

ranges from its (practical) minimum 0.5 if assignments were made at random to the perfect

maximum score 1 signifying that the prediction method can perfectly discriminate between

correct and wrong top-ranked category suggestions. Loosely speaking, it measures how good

the choices are to find a cutoff point on the scale of estimated correctness probabilities to

distinguish between top code suggestions in agreement with human coders and those sug-

gestions that disagree. A detailed discussion about this prediction performance measure is

given by Fawcett (2003).

Performance comparison from the different prediction methods is better done with dia-

grams as depicted in figure 3.5. With the exception of the ’NB 2-answers’ method, all curves

follow a similar pattern. For very low production rates agreement rates are around 0.9, then

they decrease at high gradients before the curves slowly increase back to a 0.9 agreement

35

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Estimated Correctness Probability Quantile

M
ea

n
A

cc
ur

ac
y

ov
er

 1
00

 P
re

di
ct

io
ns

0.25

0.50

0.75

Estimated
Correctness
Probability

Figure 3.6: Calibration for Naive Bayes First Answer with Professional Status

rate at production rates around 0.5. Close inspection of responses shows that this dent

at 0.1 production rate is due to long verbatim answers with multiple words. The algo-

rithm often calculates high estimated correctness probabilities for these answers although

the agreement of suggested categories with human-coded categories is often not given. The

’NB 1-answer W Prof. Status’ and ’NB 2-answers’ methods show that this effect can be

avoided when additional covariates are used for prediction. We further observe that agree-

ment rates for most methods are around 0.9 for a 0.5 production rate but rarely above. If

one is not willing to accept 10% erroneous codes, no Naive Bayes method is therefore useful

for automatic coding. Still, these numbers show that any Naive Bayes method may prove

useful for computer-assisted coding.

Lower agreement rates for lidA compared to ALWA suggestions are, again, due to sys-

tematic differences in both codes. The comparison shows other peculiarities that we are

not able to explain. In particular, the lines for the ’NB 1-answer lambda = 0.7’ and ’NB

1-answer W Prof. Status’ methods appear to have different characteristics in both data

sets. It is also relevant that agreement rates at 100% production rate are nearly identical

with one exception: The ’NB 2-answers’ method performs worse for lidA predictions. This

means that, although with the second verbatim answer more information is entered, the

proportion of codes correctly predicted decreases.

Additional insights about strengths and weaknesses of Naive Bayes predictions are pro-

vided in figure 3.6. The diagram shows how well estimated correctness probabilities from

the ’NB 1-answer W Prof. Status’ model align with underlying true probabilities for a code

to be correct. Around 10% of the test data has very low estimated correctness probabil-

ities (red) and the suggested codes are - as expected - typically incorrect. Further 40%

36

have medium estimated correctness probabilities (violet) and as these probabilities rise the

suggested codes are also more often the correct ones. For the other half of the data, the

prediction method provides estimated correctness probabilities that are all above 0.85, for

1/3 of the data even above 0.95. Still, accuracy for this top-valued third is only 91% and

the algorithm systematically overestimates its confidence. Even worse, for this top-half the

estimated correctness probabilities do not seem to correlate with true probabilities. Naive

Bayes methods are therefore inapplicable for automatic coding in high quality. The Bayesian

Categorical method described next will overcome these restrictions.

3.2.3 Bayesian Categorical

Many first answers are short with only one or two words. In the small training data we have

available, some of these answers do not appear at all or only a few times. This rareness is

problematic, because if answer Al was coded into the job category cj only once, then the

estimator for θlj = P̂ (cj|Al) will be very imprecise. With the Bayesian Categorical model

we tackle this problem. The theory is based on well-known conjugate Bayesian analysis

(e.g., Wagner (2010/2011)) with a simple extension described below.

Theory

The approach taken above is frequentist in nature, that is, we try to estimate some under-

lying ”true” value θ̂j = P̂ (cj|qi, xi) that we wish to be identical with the relative frequency

that category cj occurs. In this section we follow a different path, Bayesian in nature.

Probabilities are used to quantify the degree of belief about the parameter θ. The basic

Bayesian idea is given with the formula

p(θ|y1, ..., yn) =
p(y1, ..., yn|θ)p(θ)
p(y1, ..., yn)

The posteriori distribution p(θ|y1, ..., yn) is obtained when the likelihood for the observed

data p(y1, ..., yn|θ) is multiplied with the prior distribution p(θ). Using this formula, one

updates his current belief about the parameter θ. When no prior information is available, a

uniform, ”non-informative” distribution is often used for θ. This degree of belief is improved

with the new posteriori distribution that reflects new knowledge from the data.

For the coding of occupation, the values y1, ..., yn denote the assigned codes for n respon-

dents. All codes are realizations from a categorical distribution Y = (Y (1), ..., Y (j), ..., Y (J))

with Y (j) = 1 if code cj was assigned and 0 otherwise. A categorical distribution has density

p(y(1), ..., y(J)) =
J∏
j=1

θy
(j)

j (3.13)

37

When the likelihood is categorical, a widely used prior is the Dirichlet distribution

(θ1, ..., θJ) ∼ Dir(α1, ..., αJ). Its density is

p(θ1, ..., θJ) =
1

B(α)

J∏
j=1

θ
αj

j (3.14)

where the normalization constant B(α) is the multinomial Beta function. The expected

value from the Dirichlet distribution is E(θj) = αi∑J
k=1 αk

. This choice of a prior allows

for a conjugate Bayesian analysis where the posteriori distribution is again a Dirichlet

distribution. This is shown by multiplying formulas 3.13 and 3.14,

p(θ1, ..., θJ |y1, ..., yn) ∝ p(y1, ..., yn|θ1, ..., θJ)p(θ1, ..., θJ) (3.15)

∝ (
n∏
i=1

p(yi|θ1, ..., θJ))p(θ1, ..., θJ) (3.16)

∝ (
n∏
i=1

J∏
j=1

θ
y
(j)
i
j)

J∏
j=1

θ
αj

j (3.17)

∝
J∏
j=1

θ
∑n

i=1 y
(j)
i +αj

j (3.18)

which is the kernel from the Dirichlet distribution, (θ1, ..., θJ)|y1, ..., yn ∼ Dir(
∑n

i=1 y
(1)
i +

α1, ...,
∑n

i=1 y
(J)
i + αJ) = Dir(#{c1} + α1, ...,#{cJ} + αJ). As above, #{cj} denotes here

the number of anwers coded into category cj. When not the full posteriori distribution

is required but only an estimator for cj, a good choice is often the posteriori expectation

θ̂j = P̂ (cj) = E(θj|x1, ..., xn) =
#{cj}+αj∑J

k=1 #{ck}+αk
.

Our choice to use the Dirichlet prior is favorable for a number of reasons: To calculate the

posteriori we only need to count and add values, which makes computation simple. When no

prior information is available, one may set α1 = ... = αJ and thus no category is expected

to be more probable beforehand. The parameters αj also have a simple interpretation:

Because they are added to the number of observed categories #{cj}, αj may be regarded

as the number of categories that we have observed in prior (imaginary) studies. This

interpretation is also supported by the equation

E(θj|x1, ..., xn) =
#{cj}+ αj∑J
k=1 #{ck}+ αk

(3.19)

= ω
αj∑J
k=1 αk

+ (1− ω)
#{cj}
n

(3.20)

with ω =
∑J

k=1 αj

n+
∑J

k=1 αj
. It shows that the posteriori expectation is a weighted mean from

the prior expectation and the relative frequencies in the observed data. The prior has

38

therefore a shrinkage effect, i.e. relative frequencies in the data are drawn towards the prior

expectation. Also note that, when larger numbers are chosen for the parameters αi, the

prior information has stronger effect on the posteriori expectation and, in contrast, larger

sample sizes n strengthen the importance of observed data.

The discussion above shows that a Bayesian categorical model is adequate to estimate

category probabilities θ̂j = P̂ (cj). Verbatim answers, however, have not been used so far

for prediction. Next, we will extend the method to use covariate information and calculate

estimated correctness probabilities θ̂j = P̂ (cj|qi). The idea is to train the model using only

a subset from all the coded persons, namely we choose those codes yi where the verbatim

answer given is exactly identical to the answer we try to predict, named qi above. In

other words, instead of using code frequencies from all observations, #{cj}, the likelihood

is formed from code frequencies #{cj|qi} where the given answers are identical.

Another question is how to choose the prior parameters α1, ..., αJ . While identical α are

reasonable to express no prior knowledge, we prefer to use relative frequencies for the differ-

ent categories, #{c1}/n, ...,#{cJ}/n. Due to the high number of categories, we expect that

relative frequencies are all very low and thus nearly identical. Because relative frequencies

sum up to 1, prior knowledge has an impact on the final result as if exactly one additional

person was asked about their job code. For answers that were coded many times, this is

negligible, but when an answer was only coded a single time into category cj, it is relevant.

In this case, the posteriori expectation evaluates to, with slight abuse of notation,

E(θj|#{cj|qi} = 1,#{cj} = 1) =
#{cj|qi}+ #{cj}/n∑J

k=1(#{ck|qi}+ #{ck}/n)
(3.21)

=
1 + 1/n

1 + 1
(3.22)

≈ 0.5 (3.23)

and setting
∑J

k=1 #{ck}/n = 1 has clearly a huge impact on the final result. To allow for

more flexibility in prior assumptions, we multiply the prior relative frequencies suggested

above with a constant α. This number describes, on how many imaginary persons we build

our prior beliefs. The best choice for α will be discussed in the following section.

To summarize, the Bayesian categorical approach provides us with a Dirichlet distribu-

tion over the probabilities θ1, ..., θJ that associated categories c1, ..., cJ are correct, given an

answer qi from the respondent. The distribution parameters are given in the equation

(θ1, ..., θJ)|(y1, q1 = qi), ..., (yn, qn = qi) ∼ (3.24)

Dir(#{c1|qi}+ α#{c1}/n, ...,#{cJ |qi}+ α#{cJ}/n) (3.25)

Hereby, the terms (y1, q1 = qi), ..., (yn, qn = qi) denote that only respondents that gave

39

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
LW

A
A

LW
A

lidA
lidA

alpha =
 0.5

alpha =
 2

alpha =
 0.5

alpha =
 2

0.00 0.25 0.50 0.75 1.00
Estimated Correctness Probability Quantile

M
ea

n
A

cc
ur

ac
y

ov
er

 1
00

 P
re

di
ct

io
ns

0.25

0.50

0.75

Estimated
Correctness
Probability

Figure 3.7: Calibration for Bayesian Categorical models

the desired answer qi are used for estimation in the likelihood. Relevant estimators like the

posteriori expectation can easily be calculated from this distribution. Noteworthy is also

the aggregation property from the Dirichlet distribution. When only the distribution over a

single parameter θj is of interest, this parameter follows a Beta distribution with parameters

θj|(y1, q1 = qi), ..., (yn, qn = qi) ∼ Beta(#{cj|qi}+ α#{cj}/n, (3.26)

(
J∑
k=1

#{ck|qi}+ α#{ck}/n)− (#{cj|qi}+ α#{cj}/n)) (3.27)

Evaluation

The good performance of the Bayesian Categorical model has been shown in figure 3.3 and

it is a method well suited to find answers that shall be coded automatically without human

supervision at high agreement rates. Our suggestion is to set the prior parameter α = 0.5.

With this choice the AUC equals 0.963 for the ALWA test data which is considerably higher

than the AUC from any Naive Bayes model. This section will provide some insights how

this good performance is reached and why we choose to set α = 0.5.

40

Relevant properties how good the Bayesian Categorical model with α = 0.5 can predict

job categories from the ALWA test data can be seen in the top panel from figure 3.7. For

35% of all answers (the quantile on the x-axis) an identical answer is not available in the

training data. Without any information, the most frequent job category 71402 is predicted

with an estimated correctness probability at 0.054. In general, these predictions are false

and accuracies are zero. A substantial amount of answers is human-coded into this category

by chance, which explains the peek at 0.23. Further 27% of the test answers have already

been coded in the training data but into numerous different categories. The estimated

correctness probabilities for these answers are between 0.07 and 0.85 which depends on

relative frequencies how often specific answers were coded into a single job category. Answers

like ”Wissenschaftlicher Mitarbeiter” or ”Technischer Angestellter”, for example, have been

coded into numerous different job categories and thus the algorithm expresses its uncertainty

about the correct code with low estimated correctness probabilities. When the algorithm

estimates correctness probabilities above 0.85, few suggested categories are wrong and one

could assign the predicted code automatically. With this cutoff point, automatic coding

would be possible at a production rate of 38% and an agreement rate (y-axis) around 97%.

This result is promising at first sight but there are two drawbacks. First, the comparison

with the lidA test data shows that human coders find other job codes for lidA even if code

assignments for a unique first answer in ALWA are nearly definite. Second, these numbers

are not better than the dictionary-based automatic coding that was done for original ALWA

coding and it is well possible that our method simply reconstructs the results from ALWA

automatic coding.

It must be noted that a few very frequent answers determine what the graph looks like.

This is best seen in the diagram for lidA test data with α = 2 where five green lines are

best visible. Each line shows how the graph would look different if certain responses were

not given. The high amplitude at the 0.5 quantile is due to 82 answers ”Verkäuferin” (es-

timated correctness probability = 0.30) where the suggested category is in fact accurate

at 85%. Other large deviations in the graph result from the answers ”Sachbearbeiterin”

(estimated correctness probability = 0.67, 33 answers with 0% accuracy), ”Kaufmännis-

che Angestellte” (estimated correctness probability = 0.79, 52 answers with 2% accuracy),

”Lagerist” (estimated correctness probability = 0.87, 27 answers with 0% accuracy), and

”Verwaltungsangestellte” (estimated correctness probability = 0.91, 62 answers with 71%

accuracy).

A prediction method is better if the algorithm clearly distinguishes between answers

that can be coded automatically and those that can not. High and many amplitudes in

the diagram represent unpredictibility as opposed to those parts in the diagram that are

stable and correctness is therefore simple to predict. The diagram shows therefore that

the algorithm’s performance with prior parameter α = 0.5 is clearly better compared with

41

α = 2. Our choice for α = 0.5 has the following motivation. For answers that appear

only a single time in the training data and are given again in the test data, the relative

frequencies that assigned codes agree in training and test data are 78% (ALWA) resp. 63%

(lidA). When such answers are predicted with the Bayesian Categorical model one would

want estimated correctness probabilities to have similar values. These estimated correctness

probabilities are posteriori expectations that evaluate to

E(θj|#{cj|qi} = 1,#{cj} = 1) =
#{cj|qi}+ α#{cj}/n∑J

k=1(#{ck|qi}+ α#{ck}/n)
≈ 1

1 + α
(3.28)

when #{cj|qi} = 1 and #{cj} = 1 are given. Setting E(θj|#{cj|qi} = 1,#{cj} = 1) = 0.78

and solving for α yields α = 1−0.78
0.78

= 0.28 as the optimal value to predict new codes in

the ALWA test data. For lidA one calculates α = 1−0.63
0.63

= 0.59. Our choice α = 0.5 is a

conservative center point from both calculations that can be interpreted as a prior belief

that 2
3

of all answers that were coded once in the training data will get the same code in

the test data.

3.2.4 Combined Methods (Boosting)

Over the last sections we explored a number of different methods that can be used to find

adequate job categories. Different dictionaries exist and can be consulted to find the cor-

rect code for a given answer. With the Naive Bayes and Bayesian Categorical models, we

suggested two probabilistic algorithms that use ALWA training data for automatic cod-

ing. Figure 3.3 and the discussion above have shown that these algorithms have different

strengths. The Bayesian Categorical model is useful for short answers where identical an-

swers were already coded in the training data. The Naive Bayes method reaches only lower

agreement rates but gives reasonable category suggestions for a larger proportion of an-

swers. Not identical answers but identical words in non-identical answers are the engine for

this. We have further seen that there is a relevant proportion in the test data where no

adequate code suggestions are found due to the limited size of the training data. Especially

for these cases, we expect that rule-based coding from a dictionary will provide additional

category suggestions for automated coding. In this section we suggest a method to combine

the different algorithms described before. This allows better performance when the different

strengths from all procedures are combined. It is easily possible to construct other meth-

ods that may be useful for coding. The question is then, if this new method complements

existing methods in a helpful way or if it is useless. Within this section we will describe a

possible way to evaluate predictive performance from different coding methods.

Central for this section is the following idea. All different coding methods m calculate

scores (we called them estimated correctness probabilities before) θ
(m)
lj for each response l

and all possible job categories j. As already noted in section 3.2, these scores are expected

42

cj cj correct Score
(1)
lj Score

(2)
lj · · ·

c1 = 01104 FALSE θ
(1)
l,1 θ

(2)
l,1 · · ·

c2 = 01203 TRUE θ
(1)
l,2 θ

(2)
l,2 · · ·

...
...

...
...

...

c1290 = 99999 FALSE θ
(1)
l,1290 θ

(2)
l,1290 · · ·

Figure 3.8: Exemplarious data frame for person l with correct job category cj = 01203

to correlate with the true probability P (cj|l) that category cj is correct for respondent l.

We now build for each respondent a data frame with J = 1290 rows for the different job

categories. With each row j it is suggested that job category cj is correct. When for a

person l the correct category is known this is inserted into the data frame. This variable,

”cj correct”, is the target variable for the following models. All scores form different models,

θ
(m)
lj , are also included into the data frame and will serve as covariates. In this section we

will then try to predict the binary variable ”cj correct” given all the scores from all different

methods, θ
(m)
lj . Powerful algorithms for binary classification are available. An exemplary

representation of this data frame for one person is given in figure 3.8.

To train the model it is not sufficient to use only one person with exactly one correct

category, but the same training data as before is used. For each person we calculate a data

frame as described above and bind all the different data frames together. The training data

used before consists of n = 26297 answers and thus the new training data has 26297∗1290 =

33923130 rows with
∑
cjcorrect = 26297. A problem arises in the fact that one might use

training data twice: a first time to find scores θ
(m)
lj and a second time to fit a model that

predicts ”cj correct”. Associations between scores θ
(m)
lj and the target variable ”cj correct”

would therefore be different for the training and the test data which is clearly not desired.

Instead, we predict all scores θ
(m)
lj without usage of verbatim answers from person l. This

means that, when we used before the frequency for job category cj given a verbatim answer

qi, #{cj|qi}, we now subtract 1 from these frequencies, #{cj|qi} − 1, to calculate scores for

the training set.

In prior sections we had to calculate a single score θ
(1)
lj that we hoped to be correlated as

close as possible with the true probability P (cj|l). With the new method described in this

section, a multitude of different scores θ
(1)
lj , ..., θ

(M)
lj may be used for prediction and many

scores that reflect different structures in the data should improve the final prediction. We

construct a number of additional scores. An overview over all scores is given in figure 3.9.

Most scores require that the exact first answer matches perfectly with previous answers

from the training data or with dictionary entries. The exact word sequence is therefore

the input for these score construction methods. When first answers are more complex and

consist of multiple words, identical word sequences are often not found in the dictionary.

In this case, it may be helpful to find a useful substring to feed into the algorithm. When

43

Name Description

numVerzeichnisBerufsben Number of dictionary entries from the alphabetic dic-
tionary that suggest category cj (exact and partial
matches)

phraseNumVerzeichnisBerufsben (phrase) Number of dictionary entries from the alpha-
betic dictionary that suggest category cj (exact and par-
tial matches)

numExactSuchwort Number of dictionary entries from the search word dic-
tionary that suggest category cj (only exact matches)

phraseNumExactSuchwort (phrase) Number of dictionary entries from the search
word dictionary that suggest category cj (only exact
matches)

numPartialSuchwort Number of dictionary entries from the search word
dictionary that suggest category cj (exact and partial
matches)

phraseNumPartialSuchwort (phrase) Number of dictionary entries from the search
word dictionary that suggest category cj (exact and par-
tial matches)

ALWAfrequencies Number of identical answers in ALWA training data that
were coded into category cj (only exact matches)

phraseALWAfrequencies (phrase) Number of identical answers in ALWA train-
ing data that were coded into category cj (only exact
matches)

posterioriExpectation Posteriori expectation (= estimated correctness proba-
bility) from Bayesian Categorical model for category cj

phrasePosterioriExpectation (phrase) Posteriori expectation (= estimated correctness
probability) from Bayesian Categorical model for cate-
gory cj

postProb0point5 Posteriori probability P (θj > 0.05) from Bayesian Cat-
egorical model for category cj

phrasePostProb0point5 (phrase) Posteriori probability P (θj > 0.05) from
Bayesian Categorical model for category cj

NBprob Probability for category cj (= estimated correctness
probability) from Naive Bayes model using the first an-
swer and the professional status

beruflicheStellung Professional status xl from person l

freqBeruflicheStellung Number of identical professional status in ALWA train-
ing data that were coded into category cj

numSuggestedCategories Number of suggested categories for person l

Figure 3.9: Variables Used for the Combined Methods model

44

Possible Phrases Frequency in
ALWA

Relative Fre-
quency in best
Category

Frequency in
best Category
(product)

GARTEN UND LAND-
SCHAFTSBAU BETRIEB-
SLEITER

5 1 5

GARTEN UND LAND-
SCHAFTSBAU

8 0.875 7

GARTEN UND 0 NA 0
GARTEN 0 NA 0
UND LANDSCHAFTSBAU
BETRIEBSLEITER

0 NA 0

UND LANDSCHAFTSBAU 0 NA 0
UND 0 NA 0
LANDSCHAFTSBAU BE-
TRIEBSLEITER

0 NA 0

LANDSCHAFTSBAU 2 1 2
BETRIEBSLEITER 0 NA 0

Figure 3.10: Exemplarious Phrase Identification for Verbatim Answer ”Garten- und Land-
schaftsbau Betriebsleiter”. ”GARTEN UND LANDSCHAFTSBAU” becomes Input Phrase

methods use only the substring instead of the full answer it is indicated with the keyword

”phrase” in figure 3.9. To find a useful phrase, we calculate for all single words in the

answer and all combinations of successive words how frequent these possible phrases are in

the ALWA data and how good they align to a specific code. Input for the algorithm is then

the phrase where the product of frequency and code alignment is maximal. Figure 3.10

provides an example how the input phrase is calculated.

When we build for each person in the training data a new data frame with J = 1290 rows

and bind all these data frames together, the resulting data frame is with 33923130 rows quite

large. In fact, computer performance restrictions make it necessary to reduce its size. At

the same time, many of the J category suggestions are not helpful at all because not a single

score θ
(m)
lj indicates that category cj could be correct for person l. For example, if the answer

from person l is ”nurse”, many health job categories are meaningful code suggestions but

job categories from gardening and floristry are not helpful. We then keep only those rows

in the data frame, where at least one entry from one dictionary or the ALWA training data

suggests that this categtory could be correct (i.e., for at least one m = 1, ..., 8 is θ
(m)
lj > 0

for the top eight variables in figure 3.9) and drop all other rows. Category suggestions are

also kept if P̂ (ql|cj) > medianj(P̂ (ql|cj)) in the notation from equation 3.5. After dropping

all irrelevant category suggestions, the remaining category suggestions are counted and the

number is saved in the variable numSuggestedCategories. This number may be helpful to

predict the correct category because the probability for an entry from a dictionary to be

45

correct increases when only few or no other categories are suggested.

The task is now to estimate category correctness, named ”cj correct” in figure 3.8 which

is a binary response. We described numerous covariates that are correlated by construc-

tion. Many different algorithms have been implemented into standard software and may

be used for this task. First, we tried the Breiman’s random forest algorithm which was

implemented by Liaw and Wiener (2002) into an R-package with the same name. Vari-

able importance was calculated and suggested that the covariates beruflicheStellung,

freqBeruflicheStellung, posterioriExpectation, postProb0point5, phrasePoster-

ioriExpectation, phrasePostProb0point5, NBprob, and numSuggestedCategories have

higher relevance for prediction than the other variables. In the end, we were not satisfied

with random forests for the following reasons: The random forest-package only returns

frequencies how many trees vote for or against a specific outcome but results for probabilis-

tic interpretation are not provided. Another R-package is randomForestSRC from Ishwaran

and Kogalur (2013) which gives the required output but long calculations on large training

data to make very few new predictions prohibit its usage for interactive occupation coding.

Because we did not find a random forest implementation that fits our purpose we resort to

boosting which will be described in the rest of the section.

Theory

Our choice is to use gradient boosted trees as implemented in the R-package mboost because

trees allow for high degrees of interaction between different covariates and because it is

possible to estimate probabilities that category cj is correct. Here we give only a very brief

review on the most relevant properties and suggest for a more thorough introduction the

chapters nine and ten from Hastie et al. (2009). Our presentation follows the style of Hofner

et al. (2012) who give a tutorial for the mboost-package.

Let y be the response variable (”cj correct” here) and x a vector of covariates. Boosting

aims to estimate the optimal prediction function

f ∗ := arg min
f

Ey,x(ρ(y, f(xT))) (3.29)

that minimizes the expected loss ρ between the true values y and predicted values f(xT). Be-

cause our response variable is binary, we choose the negative binomial log-likelihood as a loss

function which is also used for logistic regression models. In practice it is necessary to ap-

proximate the expectation above with the observed mean f ∗ :≈ arg minf
∑n

i=1 ρ(yi, f(xTi)).

The final boosting estimation is calculated as f̂ = f [0] +
∑mstop

m=1 νû
[m]. Starting with

some initial value for f̂ , f [0], the algorithm iteratively estimates base learners û[m] that

reduce the loss between true values y and current predictions f [0] +
∑m−1

k=1 νû
[k]. These base

learners can be any type of model and we use conditional inference trees (see Hothorn et al.

46

(2006)) for this. The hyperparameter ν ∈ (0, 1) controls the step size what impact single

base learners have and thus the speed how fast the predictions improve. While it has been

shown that the exact value for ν is of minor relevance, it is generally recommended to use

small values for ν such that the algorithm does not overshoot the optimal solution. With

smaller values for ν the number of iterations mstop grows until the algorithm reaches a good

solution. mstop is a major tuning parameter that needs careful evaluation. If it is chosen

too small, the model is not yet well fitted to the data. On the other hand, with large mstop

overfitting is likely to occur.

We use trees as base learners to allow for complex interactions within the covariates.

When fitting trees, the desired tree size needs to be set in advance which is another hyper-

parameter. Hastie et al. (2009) argue in the context of boosting that trees chosen too large

will yield less accurate predictions. They further state that the maximal number of inter-

acting covariates is directly given by (tree size - 1). Because we suspect many interactions

between different covariates in our data the tree size must not be too small. We applied

bootstrapping with 3 folds to find optimal hyperparameters mstop, ν, and tree size.

Evaluation

The large size of the training data with 820340 rows gives rise to practical problems when

gradient boosted trees are fitted. Due to limited memory space it proved impossible to

run as many iterations until the perfect stopping point mstop is found. Therefore, we used

only a random sample of 600000 observations for training and stopped after mstop = 31

iterations. Beforehand we tested different hyperparameters to find an optimal combination

using a small random sample of only 30000 observations. Our final parameters are tree size

= 7 and ν = 0.6 where the large number for ν reflects that large step sizes are necessary

to reach a good fit after only 31 iterations. The resulting model is then used to calculate

correctness probabilities for all suggested categories. This allows ordering of job categories

with most probable categories first, which is useful for computer-assisted coding.

For automatic coding and for a better presentation of result we select only the top-

suggested category for each answer. These are merged with those answers that were not

included in the training data because the verbatim answers provided no code suggestions.

Now, we work again with the original training data consisting of n = 26297 answers. For

each answer the top-ranked category suggestion is included as well as the corresponding

covariates from figure 3.9. We further add one covariate that gives the estimated correctness

probability from boosted trees and a further binary covariate to indicate if an answer was

found in the large training data described above (equivalent to numSuggestedCategories

> 0). If the answer was not included before and only merged into the small training data,

it will be impossible to find the correct job category for it.

Again we use gradient boosted trees to decide if the suggested category is correct (meta-

47

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
LW

A
lidA

0.00 0.25 0.50 0.75 1.00
Estimated Correctness Probability Quantile

M
ea

n
A

cc
ur

ac
y

ov
er

 1
00

 P
re

di
ct

io
ns

0.25

0.50

0.75

Estimated
Correctness
Probability

Figure 3.11: Calibration for Boosting Method

classification). With the smaller training size we use the full training data and experiment

with different parameter values until we find optimal hyperparameters mstop = 241, ν =

0.07 and maxdepth = 11 which yields the minimum Cross-validated Negative Binomial

Likelihood equal to 0.2542. Our final estimated correctness probabilities are predictions

from this model. The good performance from the boosting method already have been

described in the context of figure 3.3 and further details are provided next.

Figure 3.11 is best compared to figures 3.6 and 3.7 to see similarities and differences

for all proposed methods. On the left side of the graph we find those answers with lowest

estimated correctness probabilities where no categories were suggested and automatic coding

is not useful. This is the case for 8.23% of all answers (ALWA, lidA: 5.76%), a proportion

a few percent points lower than what we observed for the Naive Bayes method. In the

middle part there is a large proportion of answers that may be correct or may not and

must be referred to a human coder. As has been described in section 3.2.3, only a few very

frequent answers are probably responsible for what this center part of the graph looks like.

Answers where the correct code can be determined mostly automatic are on the right side.

For ALWA, a third of all answers with highest estimated correctness probability (all above

48

0.9465) reaches 98.04% accuracy which is competitive with the Bayesian Categorical model

for automatic coding (lidA: top 26% are above this threshold and have overall accuracy of

90.11%). Systematic coding differences in ALWA and lidA are once again to be blamed

for worse predictions on the lidA test data. The AUC equals 0.888 for the ALWA test

data, which is slightly better than the AUCs from Naive Bayes models. The AUC from the

Bayesian categorical model at 0.963 is superior because that model finds a clear decision

boundary between those answers practical for automatic coding and those that are not.

In fact, the AUC performance measure punishes the boosting method because it suggests

more, but probably incorrect answers. The AUC metric is therefore not helpful here.

The starting point for this section was the idea to combine strengths from different

methods into a single better model. How did we succeed? Figure 3.3 shows that the

Combined Method has not highest agreement rates for all production rates but is always

close to it. The combination of methods is therefore a success. Still, we cannot recommend

it for all purposes and the computational requirements are such that the simpler techniques

may be preferred. For automatic coding with the desired high agreement rates there is no

clear evidence, if the Bayesian categorical model or the boosting model is preferable. This

is similar for computer-assisted coding. When all answers are considered, agreement rates

from the boosting model and Naive Bayes are nearly identical and thus it is unknown which

model is more useful for this task. Only the use of multiple dictionaries leads to fewer

answers that have no job category suggested. This makes us recommend the Combined

Model for computer-assisted coding.

49

Chapter 4

A Prototype for Computer-Assisted

Coding

A few decades ago, before every office was equipped with a computer, coding clerks had

to thumb through printed classifications and alphabetic dictionaries to find the desired job

code. Today, computers are omnipresent and in sections 2.3 and 2.4.1 we mention various

programs available for computer-assisted coding. Statistical agencies have developed own

software to meet their special requirements for large-scale classifications like employment

(e.g., Tourigny and Moloney (1997), U.S. Census Bureau (2009), Svensson (2012)). In Ger-

many, the Federal Employment Agency provides two online tools with similar functionality

but not tailored to code thousands of answers. Both tools list all possible jobs from the

DKZ after a search string is entered.1

The result list from both tools is often quite large and not perspiciuous at first glance.

The algorithms we developed produce relief. We can order the results with the most relevant

job codes first. Figure 4.1 gives the output from our system for the exemplarious verbatim

answer ”Fleischer” (”butcher”) and further examples are provided in the appendix. This

list can then be used for computer-assisted coding. For full comprehension of this figure it

is necessary to point out a number of details:

� On the top is the verbatim answer for the first employment question. Right next

to it we see the ”phrase” which is the most meaningful substring from the original

answer and was calculated automatically. Both the answer and the phrase are used

independently to find possible job categories. The last entry from the first line is

the job code that professional coders have assigned to the answer. Of course, for

computer-assisted coding this code will not be available.

� The categories shown are selected with the Combined Method. This means that ALWA

training data and multiple dictionaries are searched for full and partial matches with

1Online at http://bns-ts.arbeitsagentur.de/ and http://berufenet.arbeitsagentur.de/dkz/

50

http://bns-ts.arbeitsagentur.de/
http://berufenet.arbeitsagentur.de/dkz/

Eingegebener Beruf: FLEISCHER | Phrase: FLEISCHER | Coded: 29232

__

Lebensmittel- & Genussmittelherstellung : (35 Antworten in ALWA;

Corr. Prob. = 1.002298)

__

~~~~~~~~~

Berufe Lebensmittelherstellung (o.Spez.)

29201 ..... z.B.: Helfer/in - Lebensmittelherstellung

~~~~~~~~~

Berufe Fleischverarbeitung

29232 z.B.: Fleischer/in || Fleischer/in

29233 z.B.: Techniker/in - Lebensmitteltechnik (Fleischereitechnik)

~~~~~~~~~

Aufsichts- & Führungskr.-Lebensmittel- & Genussmittelherst.

29293 ..... z.B.: Fleischermeister/in

____________________________________________________________________________________

Verkauf von Lebensmitteln : ( 0 Antworten in ALWA; Corr. Prob. = 0.009152703 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Verkauf von Fleischwaren

62322 z.B.: Gewerbegehilfe/-gehilfin - Fleischerhandwerk ||

Fachverkäufer/in - Nahrungsmittelhandw.(Fleischerei)

__

Verkauf (ohne Produktspezialisierung) : (0 Antworten in ALWA;

Corr. Prob. = 0.007885854)

__

~~~~~~~~~

Aufsichts- & Führungskr.-Verkauf

62194 ..... z.B.: Verkaufsleiter/in im Nahrungsmittelhandwerk

____________________________________________________________________________________

Unternehmensorganisation & -strategie : ( 0 Antworten in ALWA;

Corr. Prob. = 0.006899456 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Unternehmensorg.&-strat.(s.spez.Tät.)

71383 z.B.: Betriebswirt/in (Fachschule) - Vieh und Fleisch

Figure 4.1: Algorithm output for answer ’Fleischer’

51

the given answer. If the algorithm finds any indication that a category might be

correct it is presented to the human coder.

� For a fast overview over the possible codes, we have sorted the output with most prob-

able job codes first. Estimated correctness probabilities from the Combined Method

are used for sorting. For each job code, this is a number between 0 and 1 but it is

not enforced that they sum up to 1 for all job codes. We also report how often an

identical answer was coded into each category in the ALWA training data.

� A complete job code according to the German employment classification is always a

five-digit number. In the example, the ”Helfer/in - Lebensmittelherstellung” is one job

within the job category ”29201”. Each job category pools multiple jobs. For intuitive

understanding which jobs belong into a category, we generate automatically for each

category 1-3 exemplarious job names from DKZ dictionaries (see code 62322). The

official category name is not written down explicitly but can be derived implicitly with

background knowledge.

� All job categories have similarities to each other and our result presentation arranges

them accordingly. The first three digits from a code specify the so-called ”Berufs-

gruppe”. For the ”Helfer/in - Lebensmittelherstellung” this is the code ”292” named

”Lebensmittel-& Genussmittelherstellung” (digits are not explicitly written down).

Similarly, the first four digits define the ”Berufsuntergruppe”, which is ”Berufe Lebens-

mittelherstellung (ohne Spezialisierung)” in our example. Another job, the ”Fleis-

cher/in” has been classified into the same Berufsgruppe but a different Berufsunter-

gruppe named ”Berufe Fleischverarbeitung”. Within this Berufsuntergruppe, we see

the meaning of the fifth digit that reflects the skill level for a job. Auxiliary and

semiskilled occupations have been assigned to categories where the last digit is a ”1”,

specialized occupations have a ”2” in their last digit, complex occupations for special-

ists a ”3”, and highly complex occupations a ”4”. The official name for a five-digit

”Berufsgattung” can then be derived from the name of the Berufsuntergruppe and

the last digit. For example, the ”Helfer/in - Lebensmittelherstellung” is one job in

the category named ”Berufe Lebensmittelherstellung (ohne Spezialisierung) - Helfer-

/Anlerntätigkeiten” and the ”Fleischer/in” is in the Berufsgattung ”Berufe in der

Fleischverarbeitung - fachlich ausgerichtete Tätigkeiten”.

52

Chapter 5

Conclusion and Perspectives

Although most surveys avoid asking open-ended questions when possible, closed questions

are not always feasible. Occupation is one example that is typically asked with open-

ended questions and statistical agencies around the world struggle to code the verbatim

answers into large coding schemes with 100s of categories at low costs and high quality. In

this thesis, we have summarized the international literature on coding with a focus on the

coding of German occupations. The use of technology is widespread for computer-assisted

and automatic coding but the algorithms behind differ in many aspects. Some agencies

continuously monitor the coding quality from professional coders and computer systems.

Though, reported quality measures from the coding of occupation vary strongly within

Germany and worldwide and research into the causes and possible ways for improvement is

only at the beginning.

A central objective for this thesis was to develop supervised learning algorithms that

use coded answers from prior studies to predict new codes. Data from two surveys were

used to test the different methods. We have shown that systematic differences in ALWA

and lidA codes explain why our algorithms perform worse if lidA codes are predicted from

ALWA training data. Moreover, the limited size of the ALWA data forms an obstacle that

we can elude only partly. When answers have not been coded before it is impossible to find

the correct code from training data. With large training data, supervised learning methods

have been applied before for automated coding. We suggest the Bayesian Categorical model

to account for higher uncertainty about the correct code when answers were only given a

few times before. Promising coding results are obtained from our small training data and

even better performance is reached when different dictionary and two data-based coding

approaches are combined. If more training data were available, we expect additional im-

provements. Before our methods facilitate coding in practice, we recommend finding larger

training data where good coding quality is known.

Training data from one survey can be useful for another survey in a number of ways.

When both data sets have answers already coded, the χ2-statistic may be used to find

53

systematic differences in both data sets. The cheapest way to code new answers is with au-

tomatic coding. The proposed Bayesian Categorical model is able to code 38% of all answers

at 3% error rate without human interaction. This is competitive with the dictionary-based

method from Drasch et al. (2012) who report a production rate around 39%. Even more

useful might be our prototype for computer-assisted coding where the computer suggests

the codes most probable and a human coder decides which one is correct. When information

from dictionaries and training data is combined, for 74% of all answers the correct category

is provided within the top five code suggestions. This allows the coding clerk to decide

within seconds on the correct code and only the residual 26% are more laborious. These

performance measures are calculated for the situation when only the first verbatim answer

and the professional status are used to predict new codes. Typically, additional helpful co-

variates are available like a second verbatim answer or the employer’s industry. The Naive

Bayes method and the Combined Method we proposed provide intuitive ways to include

such information and thus better performance can be expected.

A good system for computer-assisted coding is not only helpful for the omnipresent

back office coding but offers also new opportunities. A sample of the coded answers could

be forwarded automatically to a second human coder for control. This would allow one

to monitor coding quality automatically and to take action for continuous improvement

(c.f. Svensson (2012)). Another strand for future research is the development of better

classification algorithms. Literature on text classification is abundant and we expect special

problems within this area to be relevant for automated coding. Related keywords are deep

learning (e.g. Bengio et al. (2012)), the classification of short (e.g. Romero et al. (2013))

and noisy (e.g. Agarwal et al. (2007)) text, language models (e.g. Liu and Croft (2004)),

and hierarchical classification (e.g. Silla and Freitas (2011)). One may also try to soften

the Naive Bayes (e.g. Peng et al. (2004)) assumption or to combine ideas from the Naive

Bayes and the Bayesian Categorical model to obtain a single model. The next step in our

research is less ambitious. We plan to use computer-assisted coding techniques during the

interview and evaluate its quality.

54

Bibliography

Agarwal, S., Godbole, S., Punjani, D. and Roy, S. (2007). How Much Noise Is Too Much: A

Study in Automatic Text Classification, 2007 Seventh IEEE International Conference

on Data Mining, 2007 Seventh IEEE International Conference on Data Mining, icdm,

pp. 3–12.

URL: http: // doi. ieeecomputersociety. org/ 10. 1109/ ICDM. 2007. 21

Aggarwal, C. and Zhai, C. (2012). A survey of text classification algorithms, in C. C.

Aggarwal and C. Zhai (eds), Mining Text Data, Springer US, pp. 163–222.

URL: http: // dx. doi. org/ 10. 1007/ 978-1-4614-3223-4_ 6

Antoni, M., Drasch, K., Kleinert, C., Matthes, B., Ruland, M. and Trahms, A. (2010). Ar-

beiten und Lernen im Wandel * Teil 1: Überblick über die Studie, FDZ-Methodenreport

05/2010, Forschungsdatenzentrum der Bundesagentur für Arbeit im Institut für

Arbeitsmarkt- und Berufsforschung, Nuremberg.

URL: http: // fdz. iab. de/ de/ FDZ_ Individual_ Data/ ALWA. aspx

Bengio, Y., Courville, A. C. and Vincent, P. (2012). Unsupervised Feature Learning and

Deep Learning: A Review and New Perspectives, CoRR abs/1206.5538.

URL: http: // arxiv. org/ abs/ 1206. 5538

Bundesagentur für Arbeit (2011). Klassifikation der Berufe 2010. Band 1: Systematischer

und alphabetischer Teil mit Erläuterungen, Bundesagentur für Arbeit, Nuremberg.

Bushnell, D. (1998). An Evaluation of Computer-assisted Occupation Coding, in A. West-

lake, J. Martin, M. Rigg and C. Skinner (eds), New Methods for Survey Research,

Proceedings of the International Conference, Association for Survey Computing,

Chilworth Manor, Southampton, pp. 23–36.

URL: http: // www. asc. org. uk/ publications/ proceedings/

ASC1998Proceedings. pdf

Campanelli, P., Thomson, K., Moon, N. and Staples, T. (1997). The Quality of Occupational

Coding in the United Kingdom, in L. Lyberg, P. Biemer, M. Collins, E. DeLeeuw,

C. Dippo, N. Schwarz and D. Trewin (eds), Survey Measurement and Process Quality,

55

http://doi.ieeecomputersociety.org/10.1109/ICDM.2007.21
http://dx.doi.org/10.1007/978-1-4614-3223-4_6
http://fdz.iab.de/de/FDZ_Individual_Data/ALWA.aspx
http://arxiv.org/abs/1206.5538
http://www.asc.org.uk/publications/proceedings/ASC1998Proceedings.pdf
http://www.asc.org.uk/publications/proceedings/ASC1998Proceedings.pdf

John Wiley & Sons, Inc., New York, pp. 437–453.

URL: http: // dx. doi. org/ 10. 1002/ 9781118490013. ch19

Chen, B.-C., Creecy, R. H. and Appel, M. V. (1993). Error Control of Automated Industry

and Occupation Coding, Journal of Official Statistics 9(4): 729–745.

Conrad, F. G. (1997). Using Expert Systems To Model And Improve Survey Classification

Processes, in L. Lyberg, P. Biemer, M. Collins, E. DeLeeuw, C. Dippo, N. Schwarz

and D. Trewin (eds), Survey Measurement and Process Quality, John Wiley & Sons,

New York, pp. 393–414.

DeBell, M. (2013). Harder Than It Looks: Coding Political Knowledge on the ANES,

Political Analysis 21(4): 393–406.

URL: http: // pan. oxfordjournals. org/ content/ 21/ 4/ 393. abstract

Dowle, M., Short, T. and Lianoglou, S. (2012). data.table: Extension of data.frame for

fast indexing, fast ordered joins, fast assignment, fast grouping and list columns. R

package version 1.8.6.

URL: http: // CRAN. R-project. org/ package= data. table

Drasch, K., Matthes, B., Munz, M., Paulus, W. and Valentin, M.-A. (2012). Arbeiten

und Lernen im Wandel * Teil V: Die Codierung der offenen Angaben zur beruflichen

Tätigkeit, Ausbildung und Branche, FDZ-Methodenreport 04/2012, Forschungsdaten-

zentrum der Bundesagentur für Arbeit im Institut für Arbeitsmarkt- und Berufs-

forschung, Nuremberg.

URL: http: // fdz. iab. de/ 187/ section. aspx/ Publikation/ k120504304

Esuli, A., Fagni, T. and Sebastiani, F. (2008). Boosting multi-label hierarchical text cate-

gorization, Information Retrieval 11(4): 287–313.

URL: http: // dx. doi. org/ 10. 1007/ s10791-008-9047-y

Esuli, A. and Sebastiani, F. (2010). Machines that learn how to code open-ended survey

data, International Journal of Market Research 52.

URL: https: // www. mrs. org. uk/ ijmr_ article/ article/ 92864

Fawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Data Mining

Researchers, Technical report, HP Laboratories, Palo Alto.

Feinerer, I. and Hornik, K. (2012). tm: Text Mining Package. R package version 0.5-8.1.

URL: http: // CRAN. R-project. org/ package= tm

Ferrillo, A., Macchia, S. and Vicari, P. (2008). Different quality tests on the automatic

coding procedure for the Economic Activities descriptions, Proceedings of the European

56

http://dx.doi.org/10.1002/9781118490013.ch19
http://pan.oxfordjournals.org/content/21/4/393.abstract
http://CRAN.R-project.org/package=data.table
http://fdz.iab.de/187/section.aspx/Publikation/k120504304
http://dx.doi.org/10.1007/s10791-008-9047-y
https://www.mrs.org.uk/ijmr_article/article/92864
http://CRAN.R-project.org/package=tm

Conference on Quality in Official Statistics - Q2008.

URL: http: // q2008. istat. it/ sessions/ paper/ 15Ferrillo. pdf

Fielding, J., Fielding, N. and Hughes, G. (2013). Opening up open-ended survey data using

qualitative software, Quality & Quantity 47(6): 3261–3276.

URL: http: // dx. doi. org/ 10. 1007/ s11135-012-9716-1

Geis, A. (2011). Handbuch der Berufsvercodung, GESIS. Survey Design and Methodology,

Mannheim.

URL: http: // www. gesis. org/ unser-angebot/ daten-erheben/

berufscodierung/

Geis, A. J. and Hoffmeyer-Zlotnik, J. H. (2000). Stand der Berufsvercodung, ZUMA-

Nachrichten 24(47): 103–128.

URL: http: // www. gesis. org/ fileadmin/ upload/ forschung/

publikationen/ zeitschriften/ zuma_ nachrichten/ zn_ 47. pdf

Gibson, J. L. and Caldeira, G. A. (2009). Knowing the Supreme Court? A Reconsideration

of Public Ignorance of the High Court, The Journal of Politics 71: 429–441.

URL: http: // journals. cambridge. org/ article_ S0022381609090379

Gillman, D. W. and Appel, M. V. (1994). Automated Coding Research at the Census

Bureau, Statistical research report series, U.S. Census Bureau, Washington, DC.

URL: https: // www. census. gov/ srd/ papers/ pdf/ rr94-4. pdf

Giorgetti, D. and Sebastiani, F. (2003). Automating survey coding by multiclass text

categorization techniques, Journal of the American Society for Information Science

and Technology 54(14): 1269–1277.

URL: http: // dx. doi. org/ 10. 1002/ asi. 10335

Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E. and Tourangeau,

R. (2009). Survey Methodology (Wiley Series in Survey Methodology), Wiley.

Hacking, W. and Willenborg, L. (2012). Theme: Coding; interpreting short descriptions

using a classification, Statistics methods, Statistics Netherlands, The Hague/Heerlen.

URL: http: // www. cbs. nl/ en-GB/ menu/ methoden/ gevalideerde-methoden/

bewerken/ default. htm

Hartmann, J. and Schütz, G. (2002). Die Klassifizierung der Berufe und der Wirtschaft-

szweige im Sozio-oekonomischen Panel * Neuvercodung der Daten 1984 - 2001,

Technical report, Infratest Sozialforschung, Munich.

URL: http: // www. diw. de/ documents/ dokumentenarchiv/ 17/ diw_ 01. c.

40132. de/ vercodung. pdf

57

http://q2008.istat.it/sessions/paper/15Ferrillo.pdf
http://dx.doi.org/10.1007/s11135-012-9716-1
http://www.gesis.org/unser-angebot/daten-erheben/berufscodierung/
http://www.gesis.org/unser-angebot/daten-erheben/berufscodierung/
http://www.gesis.org/fileadmin/upload/forschung/publikationen/zeitschriften/zuma_nachrichten/zn_47.pdf
http://www.gesis.org/fileadmin/upload/forschung/publikationen/zeitschriften/zuma_nachrichten/zn_47.pdf
http://journals.cambridge.org/article_S0022381609090379
https://www.census.gov/srd/papers/pdf/rr94-4.pdf
http://dx.doi.org/10.1002/asi.10335
http://www.cbs.nl/en-GB/menu/methoden/gevalideerde-methoden/bewerken/default.htm
http://www.cbs.nl/en-GB/menu/methoden/gevalideerde-methoden/bewerken/default.htm
http://www.diw.de/documents/dokumentenarchiv/17/diw_01.c.40132.de/vercodung.pdf
http://www.diw.de/documents/dokumentenarchiv/17/diw_01.c.40132.de/vercodung.pdf

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction, Springer Series in Statistics, 2 edn, Springer.

URL: http: // statweb. stanford. edu/ ~ tibs/ ElemStatLearn/ index. html

Hoffmeyer-Zlotnik, J. H., Hess, D. and Geis, A. J. (2004). Computerunterstützte Verco-

dung der International Standard Classification of Occupations (ISCO-88), ZUMA-

Nachrichten 28(55): 29–52.

Hoffmeyer-Zlotnik, J. H. and Warner, U. (2012). Harmonisierung demographischer und

sozio-ökonomischer Variablen: Instrumente für die international vergleichende Sur-

veyforschung, VS Verlag für Sozialwissenschaften, Wiesbaden.

Hofner, B., Mayr, A., Robinzonov, N. and Schmid, M. (2012). Model-based Boosting in R

* A Hands-on Tutorial Using the R Package mboost, R Package Vignette .

URL: http: // cran. r-project. org/ web/ packages/ mboost/ vignettes/

mboost_ tutorial. pdf

Hothorn, T., Hornik, K. and Zeileis, A. (2006). Unbiased Recursive Partitioning: A

Conditional Inference Framework, Journal of Computational and Graphical Statistics

15(3): 651–674.

Ishwaran, H. and Kogalur, U. B. (2013). Random Forests for Survival, Regression and

Classification (RF-SRC). R package version 1.4.

URL: http: // cran. r-project. org/ web/ packages/ randomForestSRC/

Jung, Y., Yoo, J., Myaeng, S.-H. and Han, D.-C. (2008). A Web-Based Automated System

for Industry and Occupation Coding, in J. Bailey, D. Maier, K.-D. Schewe, B. Thal-

heim and X. Wang (eds), Web Information Systems Engineering - WISE 2008, Vol.

5175 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 443–457.

URL: http: // dx. doi. org/ 10. 1007/ 978-3-540-85481-4_ 33

Kaptein, R. (2005). Meta-Classifier Approaches to Reliable Text Classification, Master’s

thesis, Universiteit Maastricht, Maastricht.

Lewis, D. (1998). Naive (Bayes) at forty: The independence assumption in information

retrieval, in C. Nédellec and C. Rouveirol (eds), Machine Learning: ECML-98, Vol.

1398 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 4–15.

URL: http: // dx. doi. org/ 10. 1007/ BFb0026666

Liaw, A. and Wiener, M. (2002). Classification and Regression by randomForest, R News

2(3): 18–22.

URL: http: // CRAN. R-project. org/ doc/ Rnews/

58

http://statweb.stanford.edu/~tibs/ElemStatLearn/index.html
http://cran.r-project.org/web/packages/mboost/vignettes/mboost_tutorial.pdf
http://cran.r-project.org/web/packages/mboost/vignettes/mboost_tutorial.pdf
http://cran.r-project.org/web/packages/randomForestSRC/
http://dx.doi.org/10.1007/978-3-540-85481-4_33
http://dx.doi.org/10.1007/BFb0026666
http://CRAN.R-project.org/doc/Rnews/

Liu, X. and Croft, W. B. (2004). Cluster-based Retrieval Using Language Models, Proceed-

ings of the 27th Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, SIGIR ’04, ACM, New York, NY, USA, pp. 186–193.

URL: http: // doi. acm. org/ 10. 1145/ 1008992. 1009026

Lyberg, L. and Kasprzyk, D. (1997). Some Aspects of Post-Survey Processing, in L. Lyberg,

P. Biemer, M. Collins, E. DeLeeuw, C. Dippo, N. Schwarz and D. Trewin (eds), Survey

Measurement and Process Quality, John Wiley & Sons, New York, pp. 393–414.

Maaz, K., Trautwein, U., Gresch, C., Lüdtke, O. and Watermann, R. (2009).

Intercoder-Reliabilität bei der Berufscodierung nach der ISCO-88 und Validität des

sozioökonomischen Status, Zeitschrift für Erziehungswissenschaft 12(2): 281–301.

URL: http: // dx. doi. org/ 10. 1007/ s11618-009-0068-0

Macchia, S., Murgia, M. and Vicari, P. (2010). Integration between automatic coding and

statistical analysis of textual data systems, in S. Bolasco, I. Chiari and L. Giuliano

(eds), Proceedings of the 10th International Conference on Statistical Analysis of Tex-

tual Data * Jadt 2010, Sapienza University of Rome and Istat - Instituto Nazionale

di Statistica and Enel - Ente Nazionale di Energia Elettrica and Percodsi srl and SAS

Institute.

Manning, C. D., Raghavan, P. and Schütze, H. (2008). Introduction to Information Re-

trieval, Cambridge University Press, Cambridge.

URL: http: // nlp. stanford. edu/ IR-book/

McCallum, A. and Nigam, K. (1998). A comparison of event models for naive bayes text

classification, AAAI-98 workshop on learning for text categorization, Vol. 752, pp. 41–

48.

Paulus, W. and Matthes, B. (2013). Klassifikation der Berufe * Struktur, Codierung und

Umsteigeschlüssel, FDZ-Methodenreport 08/2013, Forschungsdatenzentrum der Bun-

desagentur für Arbeit im Institut für Arbeitsmarkt- und Berufsforschung, Nuremberg.

URL: http: // fdz. iab. de/ 187/ section. aspx/ Publikation/ k131014a03

Peng, F., Schuurmans, D. and Wang, S. (2004). Augmenting Naive Bayes Classifiers with

Statistical Language Models, Information Retrieval 7(3-4): 317–345.

Prigge, M., Liebers, F. and Latza, U. (2013). Kodierung von Berufsangaben nach

KldB2010 im Rahmen der Gutenberg-Gesundheitsstudie (GHS) - Methodisches Vorge-

hen, Qualität und Auswertemöglichkeiten. Präsentation auf der 8. Jahrestagung der

DGEpi und 1. Internationales LIFE-Symposium.

59

http://doi.acm.org/10.1145/1008992.1009026
http://dx.doi.org/10.1007/s11618-009-0068-0
http://nlp.stanford.edu/IR-book/
http://fdz.iab.de/187/section.aspx/Publikation/k131014a03

R Core Team (2012a). foreign: Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat,

dBase, ... R package version 0.8-51.

URL: http: // CRAN. R-project. org/ package= foreign

R Core Team (2012b). R: A Language and Environment for Statistical Computing, R

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

URL: http: // www. R-project. org/

Reja, U., Manfreda, K. L., Hlebec, V. and Vehovar, V. (2003). Open-ended vs. close-ended

questions in web questionnaires, Developments in Applied Statistics (Metodološki

zvezki) 19: 159–77.

Riviere, P. (1997). SICORE - General Automatic Coding System, in United Nations Statis-

tical Commission and Economic Commission for Europe (ed.), Statistical Data Editing

Volume No. 2, United Nations, New York.

URL: http: // www. unece. org/ stats/ publications/ editing/ SDE2. html

Romero, F. P., Julián-Iranzo, P., Soto, A., Ferreira-Satler, M. and Gallardo-Casero, J.

(2013). Classifying unlabeled short texts using a fuzzy declarative approach, Language

Resources and Evaluation 47(1): 151–178.

URL: http: // dx. doi. org/ 10. 1007/ s10579-012-9203-2

Sangameshwar, P. and Palshikar, G. (2013). SurveyCoder: A System for Classification of

Survey Responses, in E. Métais, F. Meziane, M. Saraee, V. Sugumaran and S. Vadera

(eds), Natural Language Processing and Information Systems, 18th International Con-

ference on Applications of Natural Language to Information Systems, Vol. 7934 of Lec-

ture Notes in Computer Science, Springer Berlin Heidelberg, pp. 417–420.

URL: http: // dx. doi. org/ 10. 1007/ 978-3-642-38824-8_ 52

Scharkow, M. (2012). Automatische Inhaltsanalyse und maschinelles Lernen, PhD thesis,

Universität der Künste Berlin, Berlin.

URL: http: // opus. kobv. de/ udk/ volltexte/ 2012/ 40/ pdf/ dissertation_

scharkow_ final_ udk. pdf

Schröder, H., Kersting, A., Gilberg, R. and Steinwede, J. (2013). Methodenbericht zur

Haupterhebung lidA - leben in der Arbeit, FDZ-Methodenreport 01/2013, Forschungs-

datenzentrum der Bundesagentur für Arbeit im Institut für Arbeitsmarkt- und Berufs-

forschung, Nuremberg.

URL: http: // fdz. iab. de/ 187/ section. aspx/ Publikation/ k130307302

Sebastiani, F. (2002). Machine Learning in Automated Text Categorization, ACM Comput.

Surv. 34(1): 1–47.

URL: http: // doi. acm. org/ 10. 1145/ 505282. 505283

60

http://CRAN.R-project.org/package=foreign
http://www.R-project.org/
http://www.unece.org/stats/publications/editing/SDE2.html
http://dx.doi.org/10.1007/s10579-012-9203-2
http://dx.doi.org/10.1007/978-3-642-38824-8_52
http://opus.kobv.de/udk/volltexte/2012/40/pdf/dissertation_scharkow_final_udk.pdf
http://opus.kobv.de/udk/volltexte/2012/40/pdf/dissertation_scharkow_final_udk.pdf
http://fdz.iab.de/187/section.aspx/Publikation/k130307302
http://doi.acm.org/10.1145/505282.505283

Silla, C. N. J. and Freitas, A. x. (2011). A survey of hierarchical classification across different

application domains, Data Mining and Knowledge Discovery 22(1-2): 31–72.

URL: http: // dx. doi. org/ 10. 1007/ s10618-010-0175-9

Sing, T., Sander, O., Beerenwinkel, N. and Lengauer, T. (2012). ROCR: Visualizing the

performance of scoring classifiers. R package version 1.0-4.

URL: http: // CRAN. R-project. org/ package= ROCR

Statistisches Bundesamt (2010). Demographische Standards, Statistisches Bundesamt, Wies-

baden.

Stemler, S. (2001). An overview of content analysis, Practical Assessment, Research &

Evaluation 7.

URL: http: // pareonline. net/ getvn. asp? v= 7&n= 17

Svensson, J. (2012). Quality control of coding of survey responses at Statistics Sweden,

Proceedings of the European Conference on Quality in Official Statistics - Q2012.

URL: http: // www. q2012. gr/ default. asp? p= 14

Thompson, M., Kornbau, M. E. and Vesely, J. (2012). Creating an Automated Industry

and Occupation Coding Process for the American Community Survey, unpublished.

TNS Infratest Sozialforschung (2012). Die Vercodung der offenen Angaben zur beruflichen

Tätigkeit nach der Klassifikation der Berufe 2010 (KldB2010) und nach der Inter-

national Standard Classification of Occupations (ISCO08) * Entscheidungsregeln bei

nicht eindeutigen Angaben, TNS Infratest Sozialforschung, Munich.

URL: http: // www. bibb. de/ dokumente/ pdf/ a22_ etb_ Berufsvercodung_

KldB2010_ ISCO08. pdf

Tourigny, J. Y. and Moloney, J. (1997). The 1991 Canadian Census of Population Experience

with Automated Coding, in United Nations Statistical Commission and Economic

Commission for Europe (ed.), Statistical Data Editing Volume No. 2, United Nations,

New York.

URL: http: // www. unece. org/ stats/ publications/ editing/ SDE2. html

Tutz, G. (2000). Die Analyse kategorialer Daten, Oldenbourg.

United Nations Statistical Commission and Economic Commission for Europe (ed.) (1997).

Statistical Data Editing Volume No. 2, United Nations, New York, chapter 6.

URL: http: // www. unece. org/ stats/ publications/ editing/ SDE2. html

U.S. Census Bureau (2009). Design and Methodology: American Community Survey, U.S.

Census Bureau, Washington, DC.

URL: http: // www. census. gov/ acs/ www/ methodology/ methodology_ main/

61

http://dx.doi.org/10.1007/s10618-010-0175-9
http://CRAN.R-project.org/package=ROCR
http://pareonline.net/getvn.asp?v=7&n=17
http://www.q2012.gr/default.asp?p=14
http://www.bibb.de/dokumente/pdf/a22_etb_Berufsvercodung_KldB2010_ISCO08.pdf
http://www.bibb.de/dokumente/pdf/a22_etb_Berufsvercodung_KldB2010_ISCO08.pdf
http://www.unece.org/stats/publications/editing/SDE2.html
http://www.unece.org/stats/publications/editing/SDE2.html
http://www.census.gov/acs/www/methodology/methodology_main/

Viechnicki, P. (1998). A performance evaluation of automatic survey classifiers, in

V. Honavar and G. Slutzki (eds), Grammatical Inference, Vol. 1433 of Lecture Notes

in Computer Science, Springer Berlin Heidelberg, pp. 244–256.

URL: http: // dx. doi. org/ 10. 1007/ BFb0054080

Wagner, H. (2010/2011). Einführung in die Bayes-Statistik WiSe 2010/11, Lecture at LMU

Munich.

URL: http: // thomas. userweb. mwn. de/ Lehre/ wise1011/ Bayes_ 1011/

Wickham, H. (2009). ggplot2: elegant graphics for data analysis, Springer New York.

URL: http: // had. co. nz/ ggplot2/ book

Wickham, H. (2012). stringr: Make it easier to work with strings. R package version 0.6.2.

URL: http: // CRAN. R-project. org/ package= stringr

Willenborg, L. (2012). Semantic Networks for Automatic Coding, Discussion paper,

Statistics Netherlands, The Hague/Heerlen.

URL: http: // www. cbs. nl/ en-GB/ menu/ methoden/

onderzoek-methoden/ discussionpapers/ archief/ 2012/

semantic-networks-for-automatic-coding. htm

62

http://dx.doi.org/10.1007/BFb0054080
http://thomas.userweb.mwn.de/Lehre/wise1011/Bayes_1011/
http://had.co.nz/ggplot2/book
http://CRAN.R-project.org/package=stringr
http://www.cbs.nl/en-GB/menu/methoden/onderzoek-methoden/discussionpapers/archief/2012/semantic-networks-for-automatic-coding.htm
http://www.cbs.nl/en-GB/menu/methoden/onderzoek-methoden/discussionpapers/archief/2012/semantic-networks-for-automatic-coding.htm
http://www.cbs.nl/en-GB/menu/methoden/onderzoek-methoden/discussionpapers/archief/2012/semantic-networks-for-automatic-coding.htm

Appendix A

Diagrams

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Production Rate

C
um

ul
at

iv
e

A
gr

ee
m

en
t R

at
e

Prediction Method

Official Dictionary

Naive Bayes

Combined Methods (Boosting)

Bayesian Multinomial

Figure A.1: Agreement and Production Rates for lidA-test data

63

0.0

0.1

0.2

0.3

Militä
r

BeamteR im
 einfachen Dienst

BeamteR im
 mittle

ren Dienst

BeamteR im
 höheren Dienst

BeamteR im
 gehobenen Dienst

Arbeiter, F
acharbeiter, G

eselle, G
ehilfe

Vorarbeiter, K
olonnenführer, M

eister

Angestellte
R mit e

infacher Tätigkeit

Angestellte
R mit q

ualifiz
ierte

r Tätigkeit

Angestellte
R mit h

ochqualifiz
ierte

r Tätigkeit

SelbständigeR LandwirtIn

Selbstständig/FreieR MitarbeiterIn
/Mithelfender F

amilie
nangehöriger

Sonstiges (z.B. N
A, ve

rweigert,
Anerke

nnungsjahr, P
raktikum, R

eferendariat, T
rainee, Volontariat)

professional status

re
la

tiv
e

fr
eq

ue
nc

y
in

 e
ac

h
st

ud
y

study

ALWA

lidA

Figure A.2: Professional Status in both datasets

64

Appendix B

Exemplary Job Category Suggestions

Eingegebener Beruf: BAUMASCHINIST | Phrase: BAUMASCHINIST | Coded: 52522

__

Bau- & Transportgeräteführung : (5 Antworten in ALWA; Corr. Prob. = 0.9529602)

__

~~~~~~~~~

Führer/innen Erdbewegungs- & verw. Maschinen

52522 ..... z.B.: Baugeräteführer/in || Baumaschinist/in

____________________________________________________________________________________

Berg-, Tagebau & Sprengtechnik : ( 0 Antworten in ALWA; Corr. Prob. = 0.008892748 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Berg- & Tagebau

21112 z.B.: Bergbaumaschinist/in || Bergmechaniker/in

__

Tiefbau : (0 Antworten in ALWA; Corr. Prob. = 0.007855415)

__

~~~~~~~~~

Berufe Gleisbau

32232 ..... z.B.: Gleisbaumaschinist/in || Gleisbauer/in

Figure B.1: Algorithm output for answer ’Baumaschinist’

65



Eingegebener Beruf: KUECHENHELFERIN | Phrase: KUECHENHELFERIN | Coded: 29301

____________________________________________________________________________________

Speisenzubereitung : ( 1 Antworten in ALWA; Corr. Prob. = 0.9399518 )

____________________________________________________________________________________

~~~~~~~~~

Köche/Köchinnen (o.Spez.)

29301 z.B.: Küchenhelfer/in || Küchenhelfer/in

Figure B.2: Algorithm output for answer ’Küchenhelferin’

Eingegebener Beruf: ALTENPFLEGEHELFERIN IM SENIORENHEIM |

Phrase: ALTENPFLEGEHELFERIN | Coded: 82101

__

Altenpflege : (0 Antworten in ALWA; Corr. Prob. = 0.9301586)

__

~~~~~~~~~

Berufe Altenpflege (o.Spez.)

82101 ..... z.B.: Altenpflegehelfer/in || Hilfskraft - Altenpflege

____________________________________________________________________________________

Gesundheits- & Krankenpflege, Rettungsdienst & Geburtshilfe :

( 0 Antworten in ALWA; Corr. Prob. = 0.01307547 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Gesundh.- & Krankenpflege (o.Spez.)

81301 z.B.: Kranken- und Altenpflegehelfer/in ||

Gesundheits- und Krankenpflegehelfer/in

Figure B.3: Algorithm output for answer ’Altenpflegehelferin im Seniorenheim’

66

Eingegebener Beruf: BUCHHALTERIN | Phrase: BUCHHALTERIN | Coded: 72213

__

Rechnungswesen, Controlling & Revision : (36 Antworten in ALWA;

Corr. Prob. = 0.202529)

__

~~~~~~~~~

Berufe Buchhaltung

72212 ..... z.B.: Kfm. Ass./Wirtschaftsassistent/in - DV/Rechnungswesen

72213 ..... z.B.: Finanzbuchhalter/in || Kontokorrentbuchhalter/in ||

Lohn- und Gehaltsbuchhalter/in

~~~~~~~~~

Berufe Kostenrechnung & Kalkulation

72223 z.B.: Kostenrechner/in

__

Informatik : (52 Antworten in ALWA; Corr. Prob. = 0.1426831)

__

~~~~~~~~~

Berufe Wirtschaftsinformatik

43112 ..... z.B.: Wirtschaftsassistent/in - DV/Rechnungswesen

____________________________________________________________________________________

Versicherungs- & Finanzdienstleistungen : ( 0 Antworten in ALWA;

Corr. Prob. = 0.01019844 )

____________________________________________________________________________________

~~~~~~~~~

Anlageberater/innen & sonst.Finanzdienstl.

72123 z.B.: Wertpapiersachbearbeiter/in

__

Hotellerie : (0 Antworten in ALWA; Corr. Prob. = 0.007068873)

__

~~~~~~~~~

Hotelkaufleute

63212 ..... z.B.: Hotelkaufmann/-frau

____________________________________________________________________________________

Tourismus & Sport : ( 0 Antworten in ALWA; Corr. Prob. = 0.006908971 )

____________________________________________________________________________________

~~~~~~~~~

Tourismuskaufleute

63113 z.B.: Betriebswirt/in (Fachschule) - Touristik/Reiseverkehr

Figure B.4: Algorithm output for answer ’Buchhalterin’

67

Eingegebener Beruf: ENTWICKLUNGSINGENIEUR FUER MASCHINENBAU |

Phrase: ENTWICKLUNGSINGENIEUR | Coded: 27104

__

Technische Forschung & Entwicklung : (0 Antworten in ALWA;

Corr. Prob. = 0.4761688)

__

~~~~~~~~~

Berufe techn. Forsch. & Entwickl. (o.Spez.)

27104 ..... z.B.: Forschungs- und Entwicklungsingenieur/in || Entwicklungsingenieur/in

____________________________________________________________________________________

Maschinenbau- & Betriebstechnik : ( 0 Antworten in ALWA;

Corr. Prob. = 0.3666988 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Maschinenbau-&Betriebstech.(o.Spez.)

25104 z.B.: Ingenieur/in - Maschinenbau (allgemeiner Maschinenbau)

__

Elektrotechnik : (0 Antworten in ALWA; Corr. Prob. = 0.01888952)

__

~~~~~~~~~

Berufe Elektrotechnik (o.Spez.)

26304 ..... z.B.: Ingenieur/in - Elektrotechnik (allgemeine Elektrotechnik)

____________________________________________________________________________________

Softwareentwicklung & Programmierung : ( 0 Antworten in ALWA;

Corr. Prob. = 0.01817224 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Softwareentwicklung

43414 z.B.: Softwareentwickler/in || Softwareentwickler/in

__

Informatik : (0 Antworten in ALWA; Corr. Prob. = 0.01432823)

__

~~~~~~~~~

Berufe Informatik (o.Spez.)

43104 ..... z.B.: Dipl.-Informatiker/in (FH)

____________________________________________________________________________________

IT-Netzwerktechnik, IT-Koord., IT-Admin. & IT-Organisation :

( 0 Antworten in ALWA; Corr. Prob. = 0.009487363 )

____________________________________________________________________________________

~~~~~~~~~

Berufe IT-Koordination

43323 z.B.: IT-Entwickler/in

Figure B.5: Algorithm output for answer ’Entwicklungsingeneur für Maschinenbau’

68

Eingegebener Beruf: SYSTEMANALYTIKERIN | Phrase: SYSTEMANALYTIKERIN | Coded: 43214

__

Softwareentwicklung & Programmierung : (1 Antworten in ALWA;

Corr. Prob. = 0.4589744)

__

~~~~~~~~~

Berufe Softwareentwicklung

43414 ..... z.B.: Softwareentwickler/in

____________________________________________________________________________________

Vermessung & Kartografie : ( 1 Antworten in ALWA; Corr. Prob. = 0.4086493 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Vermessungstechnik

31214 z.B.: Ingenieur/in - Vermessungswesen

__

IT-Systemanalyse, IT-Anwendungsberatung & IT-Vertrieb : (0 Antworten in ALWA;

Corr. Prob. = 0.09561851)

__

~~~~~~~~~

Berufe IT-Systemanalyse

43214 ..... z.B.: Systemanalytiker/in || IT-Systemanalytiker/in

____________________________________________________________________________________

Informatik : ( 0 Antworten in ALWA; Corr. Prob. = 0.0385127 )

____________________________________________________________________________________

~~~~~~~~~

Berufe Wirtschaftsinformatik

43112 z.B.: Assistent/in - Informatik (Wirtschaftsinformatik)

43114 z.B.: Verwaltungsinformatiker/in (Hochschule)

__

Redaktion & Journalismus : (0 Antworten in ALWA; Corr. Prob. = 0.01367254)

__

~~~~~~~~~

Redakteure/-innen & Journalisten/-innen

92413 ..... z.B.: Lernsystemanalytiker/in

____________________________________________________________________________________

IT-Netzwerktechnik, IT-Koord., IT-Admin. & IT-Organisation :

( 0 Antworten in ALWA; Corr. Prob. = 0.00698711 )

____________________________________________________________________________________

~~~~~~~~~

Berufe IT-Netzw.-Adm&-Orga.(sonst.spez.Tät.)

43384 z.B.: Fraud-Analyst/in

Figure B.6: Algorithm output for answer ’Systemanalytikerin’

69

Erklärung zur Urheberschaft

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und ohne Be-

nutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

München, den 25. April 2014

(Malte Schierholz)

70

	Introduction
	Background
	Coding Examples
	Code Structures and Classifications
	German Classification of Occupations 2010

	Coding Options: Manual or Automatic
	Techniques for Automated Coding
	Rule-Based Coding
	Data-Based Coding with Supervised Learning Techniques

	Coding Evaluation
	Quality of Occupation Coding

	Data Analysis
	Description of Survey Data
	Job Codes

	Methods for Automated Coding
	Rule-based Coding
	Naive Bayes
	Bayesian Categorical
	Combined Methods (Boosting)

	A Prototype for Computer-Assisted Coding
	Conclusion and Perspectives
	Bibliography
	Diagrams
	Exemplary Job Category Suggestions

