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Abstract

The exchange of information in today’s society requires for developing more pow-
erful wireless transmission systems like positioning by global navigation satellite
systems and mobile communications. However, the available frequency bands are
limited with regard to the high data rates and an increased need for spectral
efficiency will occur. Thus, a good understanding of the wireless channel is essen-
tial, where propagation paths’ parameters show a time-variant behavior in terms
of assuming a moving receiver. This thesis describes a novel algorithm which
is able to both detect individual propagation paths and track how these paths
evolve with time. A simulation based on a wireless transmission channel with
a moving receiver is given, shows that the algorithm outperforms the standard
snapshot-based algorithms in terms of identifying the number of individual paths
and estimation accuracy. During the further procedure we assure the algorithm to
be even superior to other tracking methods in cognition of individual propagation
paths.
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1 Introduction

Signal processing is everywhere. It is one of the most powerful technologies that
will shape science and engineering in the twenty-first century. The exchange of
information in today’s society requires to develop more powerful communication
systems. Hereby wireless data transmission is one of the most important fields.
Appropriate systems constitute a rapidly growing market, since they allow partic-
ipants for high mobility. The focus of interest is both applications like positioning
by global navigation satellite systems (GPS) and mobile communications. How-
ever, the available frequency bands are limited with regard to the high data rates
and an increased need for spectral efficiency occurs. Thus, a good understand-
ing of the wireless channel is essential for developing smart antennas, senders,
and receivers in order to satisfy the ever-growing demand for fast information
(Tschudin (1999)).
Recently, various high resolution methods have been proposed to estimate some
of the parameters of impinging plane waves, i.e., their complex amplitude, de-
lay, incidence azimuth, incidence elevation, Doppler frequency and the number
of multipath components. It often leads to analytically intractable and computa-
tionally very expensive optimization procedures. The problem is often relaxed by
assuming that the number of multipath components is fixed, which simplifies op-
timization in many cases. However, both underspecifying and overspecifying the
model order leads to significant performance degradation (Shutin et al. (1997)),
(Fleury et al. (1999)).
When we consider a mobile communication channel with a moving receiver it is
easily to understand that the parameters will change over time, but not randomly.
Taking this fact into account, this thesis deals with two challenges of multipath
channel estimation: first, an efficient estimation scheme is considered which works
on a snapshot basis able to estimate signal parameters and to perform model or-
der detection. Second, since the parameters of consecutive time steps are highly
correlated a method is desired that might include existing information to track
multipath components over time.

This work is structured as follows: Chapter 2 addresses the wireless channel and
the underlying signal model in the case of mobile channel impulse responses as an
extended introduction. The main parts deal with the aforementioned challenges
on the parameter estimation scheme. While chapter 3 will present a strategy for
detection of all relevant components as well as estimation of their corresponding
parameters for fixed snapshot times, chapter 4 is meant for tracking paths over
time by the use of the so called Kalman Filter and Kalman Smoother. Finally
I will close with a simulation study in order to validate the performance of the
proposed algorithm in comparison to already existing implementations.



2 1 Introduction

Throughout this thesis I will make use of the following notation:

• Vectors are represented as boldface lowercase letters e.g. x and are always
considered as columns by default.

• Matrices are recognized as boldface uppercase letters, e.g. X.

• For vectors and matrices (·)T and (·)H stands for the transpose and Hermi-
tian transpose, while (·)∗ represents the complex conjugate, respectively.

• An estimate of a random variable x is denoted as x̂.

• I use Ep(·) (f(x)) to express the expectation of a function f(x) with respect
to p(·).

• E (f(x)) stands for the unconditioned expectation of f(x).

• Finally, x ∼ N (µ, σ2) and x ∼ CN (µ, σ2) denotes a real and complex
Gaussian distributed random variable x with mean µ and variance σ2;
x ∼ Ga (a, b) denotes a Gamma probability density function with parame-
ters a and b.
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2 The Wireless Channel

2.1 Characteristics of Propagation Paths

Wireless data transmission preserves conditions which are unique. A signal, as
it travels through the wireless channel, undergoes many kinds of propagation
effects such as reflection, diffraction, scattering, and shadowing, due to the pres-
ence of buildings, mountains and other obstructions. A graphical representation
of possible phenomena can be seen in fig. 1. Good overview literature which I
will refer to in the following is Mitra (2009). Reflection occurs when the waves
impinge on objects which are much greater than the wavelength of the traveling
wave, e.g., huge buildings, mountains, or the surface of the earth. The signal is
reflected and is not as strong as the original, as objects may absorb some of the
signal’s power. However, reflection helps transmitting signals as soon as no Line-
of-Sight (LoS) exists. This is the standard case for wireless data transmission
in cities where transmitted signals may bounce off the walls of buildings several
times before finally reaching the receiver. Diffraction is a phenomena occurring
when the wave interacts with a surface having sharp irregularities and the reason
why waves can propagated beyond the horizon, around the curved earth’s surface
and obstructions, f.e. tall buildings. Thus, the waves will be deflected at an
edge and propagate in different directions. Scattering occurs when the medium
through the wave is traveling contains objects which are much smaller than the
wavelength of the considered wave, leading to a fragmentation of the signal into
several weaker outgoing signals. Finally, shadowing occurs when signals get lost
by being blocked by objects as mountains or walls.

Figure 1: Visualization of propagation effects (Lien (2011))
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2.2 The Signal Model

In this chapter we will lay down the basic theoretical background which is nec-
essary to model the underlying multipath channel. The multipath effect oc-
curs when a transmitted signal arrives at the receiver via multiple propagation
paths. Due to the phenomena described in section 2.1 of this work, at a spe-
cific time point t, each path has a complex amplitude wl(t), a delay τl(t) and
an azimuth angle of arrival φl(t), where we stack τl(t) and φl(t) into the vector
θl(t) = [τl(t), φl(t)]

T . Generally the considered channel consists of an infinite
number of components. Since we want to develop a strategy for detecting the
number of paths as well as the corresponding parameters, the task is unsolvable.
It was first Turin (1972), who extenuated the problem by assuming a fixed num-
ber L(t) of relevant components, what we will also adopt here.

Fig. 2 is a graphical representation of a multipath channel consisting of three
components. While the red line visualizes the LoS with its corresponding param-
eters θ1(t), w1(t), the other two multipaths occur by reflection in this case. It
is easily to understand that they differ in terms of delay and azimuth angle of
arrival, summarized in θ2(t), θ3(t).

s(θ1(t))w1(t)

s(θ2(t))w2(t)
s(θ3(t))w3(t)

Receiver

Transmitter

Figure 2: Graphical representation of a multipath channel consisting of three components

One simple and popular model to express the wireless channel is the time-variant
channel impulse response denoted by the function h(t, τ). For all known paths,
multipath can be considered as a series of delayed copies of the transmitted signal
weighted by amplitudes wl(t), for l = 1, ..., L(t). Thus, the received signal ỹ(t)
can be expressed in time domain by

ỹ(t) = b(t) ∗ h(t, τ) =
∞∫

−∞

h(t, τ)b(t− τ)dτ,
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where ∗ denoting the convolution. The impulse response function may be con-
sidered as being the system response at time t to a unit impulse δ(t) applied in
the past. If we assume that contributions with different delays are uncorrelated
plus that the statistical properties of the channel do not change over time, we
can write h(t, τ) as

h(t, τ) =

L(t)∑

l=1

wl(t)δ(τ − τl(t)),

or redefined by the use of the Fourier transform to switch from time to frequency
domain

H(t, fm) =

L(t)∑

l=1

wl(t) exp (−j2πfmτl(t)) ,

where fm represents the frequency of the m-th frequency bin, m = 0, ...,M − 1 .

In the following we will restrict the further process on Single-Input Multiple-
Output (SIMO) inspection, i.e. one transmitter and multiple receiver antennas.
Furthermore, we assume all elements to be placed on the x/y-plane, and we may
only estimate one angle, i.e the azimuth angle of arrival φl(t). For the later imple-
mentation, we consider only linear antenna arrays. Nevertheless, the algorithms
and models can be easily extended to consider also other structures that the ele-
vation and azimuth angle may be estimated separately.

For further calculation we stack the received signals of all antennas into one
vector, thus the number of total samples N is M × A, with M denoting the
frequency samples and A the number of antennas. The received signal y(t) can
then be written in frequency domain as

y(t) = [y(t, f0)
T , ...,y(t, fM−1)]

with

y(t, fm) =

L(t)∑

l=1

u(τl(t))c(φl(t))wl(t) + ξ(t). (2.1)

Thereby, ξ(t) denotes a zero mean circular complex normal vector for the mea-
surement noise, u(τl(t)) stands for the frequency response and c(φl(t)) represents
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the steering vector, where the latter two can be stated as

u(τl(t)) = exp(−j2πfmτl(t))
c(φl(t)) = exp (−j2πpncos (φl(t))) ,

where pn denoting the antenna positions.

Finally we define

u(τl(t))c(φl(t)) := s(θl(t)), (2.2)

where s(θl(t)) is a non-linear parametrized vector by delay τl(t) and azimuth
angle of arrival φl(t).

Plugging in eq. (2.2) into eq. (2.1) results in the final form of the signal model
in the SIMO case which we will deal with throughout the whole thesis.

y(t) =

L(t)∑

l=1

s(θl(t))wl(t) + ξ(t) = S(Θ(t))w(t) + ξ(t). (2.3)

In what follows in the consecutive work, we want to set up a strategy to detect
the number of relevant components as well as the parameter values for complex
amplitude wl(t), delay τl(t), and azimuth angle of arrival φl(t) for each multipath
l.



7

3 Detection and Estimation of Multipath

Components

3.1 Introduction to Multipath Channel Estimation

In this chapter, our goal is to estimate the parameters of the underlying signal
model (see eq. 2.3) in an adequate way. For the moment we restrict ourselves on
estimation processes at fixed snapshot time, so the time index index t is ignored
for the current consideration. We base our work on the so called Variational
Bayesian Space-Alternating Generalized Expectation-Maximization (VB-SAGE)
algorithm introduced in Shutin and Fleury (2011) and Shutin et al. (2013).
A received signal vector y which considers all antennas can be represented as a
superposition of the unknown number L of multipath components and its signal
parameters wl,θl. In the assumed model, wl denotes the complex amplitude as an
unknown weight or gain for the component l. Furthermore s(θl) is a vector which
is parametrized non-linear by the set θl of dispersion parameters, e.g. delay τl and
azimuth angle of arrival φl, thus θl = [τl, φl]

T . Finally, ξ represents a zero mean
circular complex normal vector for the noise with covariance Σ. All together:

y =
L∑

l=1

s(θl)wl + ξ = S(Θ)w + ξ. (3.1)

Clearly, the received signal y is observable, but neither the finite number L of
multipath components nor the signal parameters belonging to one specific path
l are known. The challenge of multipath channel estimation is to find adequate
estimates for the complex amplitudes wl, the parameters θl and last but not least
the model order L.
Experimental evidence shows that model order selection schemes not designed
carefully, may lead to a wrong detection of the number of relevant propagation
paths. In case of overestimating the number of paths, fictive components without
any physical meaning will be introduced and their parameters estimated. Vice
versa, if too less multipath components are detected, important information gets
lost.
For a fixed model order the classical maximum likelihood approach to the esti-
mation of parameters involves maximization of the multidimensional parameter
likelihood p(y|Θ,w) given the signal measurements y. As mentioned before,
S(Θ) is parametrized non-linear by delay and azimuth angle of arrival for each
path. For non-linear type of optimizations the estimation of these signal pa-
rameters has often been solved using Expectation-Maximization (EM) type of
algorithms, due to the non-linearity of the assumed model with respect to the
parameter set Θ = [θT

1 , · · · ,θT
L]

T . Unfortunately these methods are only appli-
cable when the order L is known and fixed, a requirement that is rarely satisfied
in practice.
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Within the VB-SAGE framework a so called precision or sparsity parameter α is
introduced in Shutin and Fleury (2011) and Shutin et al. (2013) as a constraint
on the model parameters, whose contribution is following: Including the preci-
sion parameter avoids a wrong detection of the number of relevant paths. The
gainsw are constrained using a Bayesian parametric prior p(w|α) ∼ CN (0,α−1),
which is a Gaussian probability density function with zero mean and precision
parameters α being inversely proportional to the width of the actual probability
density function. Such form of the prior allows controlling the contribution of the
weight wl for each component l: a large value of αl will drive the corresponding
weight wl towards zero (because of E(wl) = 0) what will result in identifying the
component as a fictive one, which has to be removed within the parameter estima-
tion process. Thus, the VB-SAGE includes a detection scheme which eliminates
the drawback of standard EM-based algorithms that requires for pre-knowledge
about the model order L for optimization, since we are now able to detect the
number of relevant components within the framework.

The current chapter is organized as follows: Introductory it is illustrated how
the classical Space-Alternating Generalized Expectation-Maximization algorithm
(SAGE) works for fixed model order L and afterwards we proceed with setting
up the VB-SAGE framework that builds on this EM-based estimation scheme.
In the main part it is explained how the detailed estimation of multipath param-
eters is carried out. This should also include the precision parameter approach to
identify the number of relevant components. Finally we close with a simulation
study in order to evaluate the performance of the proposed algorithm.

3.2 Classical SAGE Approach as a Variant of EM

The EM algorithm is a well-known numerical procedure which can facilitate max-
imizing the log-likelihood function in cases of incomplete data. An EM algorithm
iteratively alternates between an Expectation- and a Maximization-step. While
the former one calculates the conditional expectation of the complete-data log-
likelihood, the second one simultaneously maximizes that expectation with re-
spect to all of the unknown parameters. The algorithm iterates back and forth,
using the current parameter estimates to decompose the observed data better
and thus increase the likelihood of the next parameter estimates. Under regu-
larity conditions, the algorithm converges to a stationary point of the likelihood
function where each iteration cycle increases the likelihood of the estimated pa-
rameters (Feder and Weinstein (1988)).

One of its variants, the SAGE algorithm (Fessler and Hero (1994)) updates the
parameters sequentially in small groups - however it preserves the stability of EM.
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Instead of estimating all parameters at once, each iteration of SAGE consists of
C sets of parameters. The parameter subset c is then updated by maximizing the
conditional expectation of the log-likelihood of the augmented data, corresponded
to this subset (Chung and Boehme (2001)). In the simplest form SAGE allows
even for one-dimensional optimization, what makes the algorithm easy to use.
This advantage is the particular reason why SAGE is one of the widely-used pa-
rameter estimation frameworks in signal processing although it is not the answer
to everything. SAGE as well as the classical EM is only applicable if the number
of signal components L is known or pre-defined. For this reason the VB-SAGE
algorithm is proposed which allows for including a model selection criteria to the
classical SAGE approach.

3.3 Variational Bayesian Parameter Inference

Let’s begin with the assumed signal model introduced in eq. (3.1). Including the
precision parameter α to the model it can be represented by the following graph.

α1 θ1

α2 θ2

... w y
...

αl θl

... Σ
...

αL θL

Figure 3: Graphical model representing the underlying signal model (3.1) with L components

According to this, the estimation problem can be described by

p(Θ,w,α,Σ|y)︸ ︷︷ ︸
Posterior

∝ p(y|Θ,w,α,Σ)︸ ︷︷ ︸
Likelihood

× p(w|α)× p(α)× p(Θ)× p(Σ)︸ ︷︷ ︸
Prior

, (3.2)
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with

p(y|Θ,w,α,Σ) ∼ CN (S(Θ)w,Σ) (3.3)

p(w|α) ∼ CN
(
0, diag(α)−1

)
(3.4)

p(α) ∼
L∏

l=1

Ga (al, bl) , (3.5)

where diag(α) represents a diagonal matrix whose diagonal is the vector α. The
choice of the prior p(Θ) is set to a dirac distribution in the context of this work.
Our task is to evaluate the posterior of interest in an adequate way. At this point
we will make use of Variational Bayesian methods, introduced in Beal (2003).
This is a family of techniques that allow analytical approximations of the pos-
terior p(Θ,w,α,Σ|y) just using a simpler approximating probability density
function q(Θ,w,α,Σ|y). In the following, we will do a step by step derivation of
the most important key facts on Variational Bayesian Inference using the SAGE
algorithm to get a deeper understanding of the basic ideas.

Let us rewrite log p(y) as:

log p(y) = log

{
p(Θ,w,α,Σ,y)

p(Θ,w,α,Σ|y)

}
(3.6)

Now, we add q(Θ,w,α,Σ|y) to the former equation. Note, that we do not have
to make any assumptions on the choice of q(Θ,w,α,Σ|y) for the moment. The
basic idea of Variational Bayesian methods is to decompose log p(y):

log p(y) = log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y) ×
q(Θ,w,α,Σ|y)
p(Θ,w,α,Σ|y)

}

log p(y) = log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}
+ log

{
q(Θ,w,α,Σ|y)
p(Θ,w,α,Σ|y)

}

Building the expectation over q(Θ,w,α,Σ|y) on both sides will not effect the
left part because of log p(y) being independent of the parameters Θ,w,α and Σ.

log p(y) = E
q(Θ,w,α,Σ|y)

log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}
+ E

q(Θ,w,α,Σ|y)
log

{
q(Θ,w,α,Σ|y)
p(Θ,w,α,Σ|y)

}

log p(y) = E
q(Θ,w,α,Σ|y)

log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}

︸ ︷︷ ︸
Variational Lower Bound

+ DKL(q(·)‖p(·))︸ ︷︷ ︸
Kullback-Leibler divergence ≥0

.

(3.7)
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In this connection, the second part of eq. (3.7) denotes the Kullback-Leibler
divergence as a non-symmetric measure of the difference between the the prob-
ability density function p(Θ,w,α,Σ|y) and its approximation q(Θ,w,α,Σ|y).
The Kullback-Leibler divergence is always non-negative and zero if and only if
p(Θ,w,α,Σ|y) = q(Θ,w,α,Σ|y) almost everywhere. Hence, if q(Θ,w,α,Σ|y)
is a ’good’ approximation for p(Θ,w,α,Σ|y) ensures a small value of the KL di-
vergence, otherwise the value will accordingly increase. Thus, it is sufficient to
evaluate only the Variational Lower Bound (see eq. 3.8) for the maximization
process:

log p(y) ≥ E
q(Θ,w,α,Σ|y)

log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}

︸ ︷︷ ︸
Variational Lower Bound

(3.8)

Finally Variational inference for finding the optimal q(Θ,w,α,Σ|y) is carried
out by maximizing the Variational Lower Bound stated above. This will simulta-
neously force the aforementioned Kullback-Leibler divergence to be minimal due
to the direct connection of both parts in eq. (3.7) and therefore, q(Θ,w,α,Σ|y)
represents the estimation for the posterior distribution p(Θ,w,α,Σ|y). The sig-
nificance of transforming eq. (3.6) to eq. (3.8) is that, for a suitable choice for
q(Θ,w,α,Σ|y), the Variational Lower Bound in eq. (3.8) may be tractable to
compute, even though the original model evidence function p(Θ,w,α,Σ|y) is
not (Bishop and Tipping (2000)). Note that eq. 3.8 is used a bit ’sloppy’ in this
context. We will give a more precise formulation in the next section.

3.4 The Variational Bayesian SAGE Algorithm

Essentially, the VB-SAGE algorithm uses Variational Bayesian inference tech-
niques, explained in detail in Beal (2003) and Tipping (2001), by approximating
the posterior probability density function p(Θ,w,α,Σ|y) of interest with an ap-
proximating probability density function q(Θ,w,α,Σ|y), which we will assume
to factor according to the graphical model given in fig. 3:

q(Θ,w,α,Σ|y) = q(w|α,y)q(Σ|y)
L∏

l=1

q(αl|y)q(θl|y) (3.9)

The optimal q(Θ,w,α,Σ|y) is then found by maximizing eq. (3.8), what is
shown in Appendix A.1 to be equivalent to maximizing
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E
q(Θ,α,Σ|y)

log

{
c0 × exp

{
Eq(w|α,y) log {p(y|Θ,w,α,Σ)× p(Θ,α,Σ)}

}

q(Θ,α,Σ|y) − c1

}
,

where c0, c1 are constants. To simplify the notation we rewrite the Variational
Lower Bound as

E
q(ϑ|y)

log

{
p̃(ϑ)

q(ϑ|y)

}
, (3.10)

without respecting the constant term c1 and consider two cases for the maximiza-
tion process:

Case 1

q(ϑ|y) is modelled as a dirac, thus δ(ϑ− ϑ̂), then the Variational Lower Bound
in (3.10) is maximized when

ϑ̃ = argmax
ϑ

{p̃(ϑ)} . (3.11)

Case 2

q(ϑ|y) is modelled as ϑ ∼ N (µϑ,Σϑ) and p̃(ϑ) ∝ N (µ̃ϑ, Σ̃ϑ), then the Vari-
ational Lower Bound in eq. (3.10) is maximized when

q(ϑ|y) = N (µ̃ϑ, Σ̃ϑ). (3.12)

A detailed proof for the maximization equations of both cases can be found in
Appendix A.2 of this work.

Just like SAGE, the VB-SAGE algorithm uses its advantages compared to stan-
dard EM approach by not maximizing all parameters at once but maximizing in
a sequential manner.
For the model with L signal components we start with l = 1 and update the
variational parameters related to the l-th component, i.e, we update the corre-
sponding parameters, assuming that the parameters for the other components are
known and fixed. The parameters for the component l = 2 are updated in the
same fashion, and so on, until every component is considered. This procedure
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of updating all parameters for all L multipath components constitutes one single
update cycle of the algorithm, which are repeated anew until convergence. One
of the key features of variational methods is that the factors in eq. (3.9) can be
updated in any order.

In what follows, we consider the expressions for the variational parameters of
the l-th component only in order to simplify the notation. This estimation prin-
ciple is performed for all other multipath components k 6= l in an analogue way.

3.4.1 Estimation of Signal Parameters Θ

Let us first have a look on variational inference of Θ = [τ T ,φT ]T denoting the
parameters for delay and azimuth angle of arrival. Since q(Θ|y) is modelled as

a dirac, thus δ(Θ− Θ̂), we have to apply case one in eq. (3.11) to maximize the
Variational Lower Bound given in eq. (3.10):

{p̃(ϑ)} := E
q(w|α,y)

log {p(y|Θ,w,α,Σ)× p(Θ,α,Σ)}

Θ̂ = argmax
Θ

{
E

q(w|α,y)
log {p(y|Θ,w,α,Σ)}+ log {p(Θ,α,Σ)}

}

= argmax
Θ





∫

w

[log {p(y|Θ,w,α,Σ)}+ log {p(Θ,α,Σ)}]× p(w|α,y)∂w





In what follows, we use p(y|Θ,w,α,Σ) ∼ CN (S(Θ)w,Σ) stated in eq. (3.3)

and define p(w|α,y) ∼ CN (ŵ, Φ̂). The detailed derivation for estimating the

complex amplitudes parameters ŵ, Φ̂ can be found in section 3.4.3 of this work.

Θ̂ = argmax
Θ

{∫

w

log
{
c× exp

[
− (y − S(Θ)w)H Σ−1 (y − S(Θ)w)

]}
×

p(w|α,y)∂w + log {p(Θ,α,Σ)}
}

(where c is a constant)

= argmax
Θ

{∫

w

[
log c− yHΣ−1y +wHS(Θ)HΣ−1y + yHΣ−1S(Θ)w −

wHS(Θ)HΣ−1S(Θ)w
]
× p(w|α,y)∂w + log {p(Θ,α,Σ)}

}
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= argmax
Θ

{
log c+ log {p(Θ,α,Σ)} − yHΣ−1y + ŵ

H
S(Θ)HΣ−1y +

yHΣ−1S(Θ)ŵ −
∫

w

wHS(Θ)HΣ−1S(Θ)w × p(w|α,y)∂w
}

Using below-mentioned transformation for multivariate Gaussians with random
variable x ∼ CN (x̂,Σx) and symmetric matrix A in Petersen and Pedersen
(2012)

E(xHAx) = tr(AΣx) + x̂
H
Ax̂,

which can be adopted to the case at hand as

∫

w

wHS(Θ)HΣ−1S(Θ)w × p(w|α,y)∂w =

tr(S(Θ)HΣ−1S(Θ)Φ̂) + ŵ
H
S(Θ)HΣ−1S(Θ)ŵ.

Therefore, we proceed with

Θ̂ = argmax
Θ

{
log c+ log {p(Θ,α,Σ)} − yHΣ−1y + ŵ

H
S(Θ)HΣ−1y +

yHΣ−1S(Θ)ŵ − tr(S(Θ)HΣ−1S(Θ)Φ̂) + ŵ
H
S(Θ)HΣ−1S(Θ)ŵ

}

∝ argmax
Θ

{
log {p(Θ,α,Σ)} − (y − S(Θ)ŵ)HΣ−1(y − S(Θ)ŵ) −

tr(S(Θ)HΣ−1S(Θ)Φ̂)
}
. (3.13)

With restricting to an estimator for the l-th component only, y−S(Θ)ŵ changes
to x̂l − s(θl)ŵl, where we define

x̂l := y −
L∑

k=1,k 6=l

s(θ̂k)ŵk. (3.14)

In Shutin et al. (2013) it is described that this formulation takes the correlations
between individual multipath components into account, effectively penalizing the
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estimator Θ̂. We now seek to reformulate eq. 3.13 in terms of considering an
expression for one single component in its final form

θ̂l = argmax
θl

{
log p(θl)− (x̂l − s(θl)ŵl)

H Σ−1 (x̂l − s(θl)ŵl)

−
L∑

k=1,k 6=l

2ℜ
{
Φ̂kls(θk)

HΣ−1s(θk)
}
− Φ̂lls(θl)

HΣ−1s(θl)
}
,

(3.15)

where ℜ{·} denotes the real part operator. Additionally, Φ̂kl, Φ̂ll stand for the

corresponding entries of the complex amplitude covariance matrix Φ̂, when re-
stricting to the k-th and l-th column and row.

Due to the non-linear dependence of s(θl) on θl, eq. (3.15) has to be optimized

numerically, e.g. using successive line searches, where each element of θ̂l is deter-
mined separately or using a joint search as an alternative in which all elements
of θ̂l are computed jointly. Notice that the same assumption of numerical opti-
mization underpins the classical SAGE-based estimation of θl (Shutin and Fleury
(2011)).

3.4.2 Estimation of the Noise Covariance Matrix Σ

Within the Variational Bayesian SAGE algorithm we need to develop an esti-
mation expression for the covariance matrix Σ. Therefore, we maximize the
Variational Lower Bound given in eq. (3.10) in an analogue way as described in
the former section:

{p̃(ϑ)} := E
q(w|α,y)

log {p(y|Θ,w,α,Σ)× p(Θ,α,Σ)}

Σ̂ = argmax
Σ

{
E

q(w|α,y)
log {p(y|Θ,w,α,Σ)}+ log {p(Θ,α,Σ)}

}

= argmax
Σ





∫

w

[log {p(y|Θ,w,α,Σ)}+ log {p(Θ,α,Σ)}]× p(w|α,y)∂w





In this connection we assume the distribution for p(y|Θ,w,α,Σ) factors as in sec-
tion 3.4.1 and make use of the transformation for multivariate Gaussians stated in
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Petersen and Pedersen (2012) again. Then, further calculation is straightforward:

Σ̂ = argmax
Σ

{∫

w

log
{
π−N(det(Σ))−1 ×

exp
[
− (y − S(Θ)w)H Σ−1 (y − S(Θ)w)

]}
×

p(w|α,y)∂w + log {p(Θ,α,Σ)}
}

= argmax
Σ

{
−N log π − log {det(Σ)}+ log {p(Θ,α,Σ)} −

yHΣ−1y + ŵ
H
S(Θ)HΣ−1y + yHΣ−1S(Θ)ŵ −

∫

w

wHS(Θ)HΣ−1S(Θ)w × p(w|α,y)∂w
}

= argmax
Σ

{
−N log π − log {det(Σ)}+ log {p(Θ,α,Σ)} −

yHΣ−1y + ŵ
H
S(Θ)HΣ−1y + yHΣ−1S(Θ)ŵ −

tr(S(Θ)HΣ−1S(Θ)Φ) + ŵ
H
S(Θ)HΣ−1S(Θ)ŵ

}

∝ argmax
Σ

{
− log {det(Σ)}+ log {p(Θ,α,Σ)} −

(y − S(Θ)ŵ)HΣ−1(y − S(Θ)ŵ)− tr(S(Θ)HΣ−1S(Θ)Φ)
}
.

(3.16)

In what follows we assume the noise covariance matrix represented by

Σ = Iσ2, (3.17)

meaning Σ is expected as a diagonal matrix of size (N × N) with identical ele-
ments σ2. Thus the noise variance is assumed to be equal for all input samples N .
Using this eq. (3.17), our maximization problem in eq. (3.16) can be reformulated
and extended to:

σ̂2 = argmax
σ2

{
− log

{
(σ2)N

}
+ log

{
p(Θ,α, σ2)

}
−

(y − S(Θ)ŵ)H(σ2)−1(y − S(Θ)ŵ)− tr(S(Θ)H(σ2)−1S(Θ)Φ)
}
⇔
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∂

∂σ2

{
− log

{
(σ2)N

}
+ log

{
p(Θ,α, σ2)

}
−

(y − S(Θ)ŵ)H(σ2)−1(y − S(Θ)ŵ)− tr(S(Θ)H(σ2)−1S(Θ)Φ)
}

!
= 0 ⇔

−N(σ2)−1 = (y − S(Θ)ŵ)H(σ2)−2(y − S(Θ)ŵ) + tr(S(Θ)H(σ2)−2S(Θ)Φ)

Note that since log {p(Θ,α, σ2)} is assumed to be uninformative, we can omit
this part in the last line. We proceed with using σ2 being a scalar to set up the
final equation to calculate the estimator for σ2:

σ̂2 =
(y − S(Θ)ŵ)H(y − S(Θ)ŵ) + tr(S(Θ)HS(Θ)Φ)

N
. (3.18)

3.4.3 Estimation of Complex Amplitudes Parameters w,Φ

In this section we are going to find the estimation expressions for the complex
amplitude vector w and its respective covariance matrix Φ within a single cy-
cle of the algorithm. Note that separated estimates for magnitude and phase
can be easily derived by transforming the resulting expressions for the complex
amplitude. Before starting with the actual proof, the final equations within the
VB-SAGE algorithm are given by:

ŵ =
(
S(Θ)HΣ−1S(Θ) + diag(α)

)−1
S(Θ)HΣ−1y (3.19)

Φ̂ =
(
S(Θ)HΣ−1S(Θ) + diag(α)

)−1
. (3.20)

To derive these expressions we maximize the Variational Lower Bound (see eq.
(3.10)) by applying the second case stated in eq. (3.12):

q(w|α,y) = p(w|Θ,α,Σ,y) =
p(y|Θ,w,α,Σ)× p(w|α)∫

w

p(y|Θ,w,α,Σ)× p(w|α)∂w
, (3.21)

with using of eqs. (3.3) and (3.4) results

p(y|Θ,w,α,Σ) ∼ CN (S(Θ)w,Σ)
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p(w|α) ∼ CN
(
0, diag(α)−1

)
.

According to Tipping (2001), the denominator in eq. (3.21) can be reformulated
as

∫

w

p(y|Θ,w,α,Σ)× p(w|α)∂w =

p(y|Θ,α,Σ) =

(2π)
N
2 (Σ+ S(Θ) diag(α)−1S(Θ)H)

1

2 ×

exp
{
−yH(Σ+ S(Θ) diag(α)−1S(Θ)H)y

}

what is used to set up the desired probability density function

q(w|α,y) = p(w|Θ,α,Σ,y) =

(2π)−
N+1

2 |Φ̂| 12 exp
{
−(w − ŵ)HΦ̂

−1
(w − ŵ)

}
,

with ŵ and Φ̂ as given in eqs. (3.19) and (3.20).

3.4.4 Estimation of the Precision Parameter α

In this section we want to come up with an expression for estimating the vector of
precision parameters within the VB-SAGE framework. Therefore, we maximize
the Variational Lower Bound (see eq. (3.10)) by applying the second case given
in eq. (3.12):

q(α|y) = p(α|Θ,w,Σ,y) =
p(y|Θ,w,α,Σ)× p(w|α)× p(α)∫

α

p(y|Θ,w,α,Σ)× p(w|α)× p(α)∂α
. (3.22)

In contrast to the derivation of complex amplitudes parameters in section 3.4.3,
we only seek to find an adequate estimator for the vector of precision parameters
α, i.e. an expression for the respective covariance matrix is not needed within
the framework. Therefore, we can simplify eq. (3.22) to

q(α|y) ∝ p(y|Θ,w,α,Σ)× p(w|α)× p(α).
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In this connection we assume p(y|Θ,w,α,Σ) modelled as in eq. (3.3) and p(w|α)
as stated in eq. (3.4) respectively. Furthermore we consider below-mentioned dis-
tribution (see also eq. (3.5)) for the precision parameter:

p(α) ∼
L∏

l=1

Ga (al, bl) ,

where al and bl are both set to 10−7 for all components to make the hyper-prior
being non-informative.

By substituting p(y|Θ,w,α,Σ), p(w|α) and p(α) with their distributions plus
expanding the resulting posterior density function in the same way as in chapter
3.4.3 will yield a ”‘pseudo”’-likelihood function ℓ(α|y), which to be used for de-
veloping an estimation expression of the precision parameter:

log
{
q(α|y)

}

∝ log
{
p(y|Θ,w,α,Σ)× p(w|α)× p(α)

}

∝ log
{
exp

[
−(y − S(Θ)w)HΣ−1(y − S(Θ)w)

]
×

exp
[
−wH diag(α)w

]
×

diag(α)
}

= − yHΣ−1y +wHS(Θ)HΣ−1y −wHS(Θ)HΣ−1S(Θ)w +

yHΣ−1S(Θ)w −wH diag(α)w + log(diag(α))

:= ℓ(α|y)

In what follows is known as maximum a posteriori estimation (MAP), what can
be seen as a regularization of ML estimation in the Bayesian approach. Anyway
MAP estimation is not very representative for Bayesian methods in general. This
is because MAP estimates are as well as ML estimates point estimates, whereas
Bayesian techniques are characterized by the use of distributions to summarize
information and draw inferences. The method of maximum a posterior estima-
tion estimates α as the mode of the posterior distribution by first maximization
and last solving for α̂.

α̂ = argmax
α

ℓ(α|y) ⇔
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∂ℓ(α|y)
∂α

= −wHIw + diag(α)−1 !
= 0 ⇔

diag(α̂) = (wHw)−1 =
(
|w|2

)−1
(3.23)

Due to w is constraint by α the expectation of |w|2 has to be computed by ap-
plying the expanded expression for the covariance

Eα

(
|w|2

)
= Covα (w) + (Eα (w))2 = Φ̂+ |ŵ|2. (3.24)

Plugging in eq. (3.24) into eq. (3.23) finally leads to the following update ex-
pression:

diag(α̂) = (Φ̂+ |ŵ|2)−1. (3.25)

Eq. (3.25) can be reformulated to get the parameter estimate αl for one specific
component l

α̂l =
1

Φ̂ll + |ŵl|2
, (3.26)

where Φ̂ll is the l-th element on the main diagonal of the complex amplitude co-
variance matrix Φ̂, and ŵl is the l-th element of the vector ŵ. Note that α̂l uses
the parameter estimates Φ̂ll, ŵl of the same iteration. Therefore, the estimates
of a fixed component l are performed successively ad infinitum while keeping the
other estimates fixed. Note that eq. (3.26) will play a decisive role in deciding
if a multipath component should be kept within the Variational Bayesian SAGE
framework or not, what is part of a separate paragraph of this work (see section
3.4.5).

3.4.5 Model Order Detection

Within the VB-SAGE framework we introduced the precision parameter α in
order to avoid an wrong estimation of the number of relevant propagation paths.
Therefore, we will give a short overview how α can be used as a model selection
criteria, i.e to decide if an estimated path is merely fictive and so to remove from
the model or does actually exist and should be included in the estimation scheme.

The resulting test (see Shutin et al. (2013)) to keep a component can be stated as

ω2
l > ςl, (3.27)



3.4 The Variational Bayesian SAGE Algorithm 21

with

ςl =
(
s(θ̂l)

HΣ−1s(θ̂l)− s(θ̂l)
HΣ−1S(Θ̂−l)Φ̂−lS(Θ̂−l)

HΣ−1s(θ̂l)
)−1

(3.28)

ω2
l =

(
ςls(θ̂l)

HΣ−1y − ςls(θ̂l)
HΣ−1S(Θ̂−l)Φ̂−lS(Θ̂−l)

HΣ−1y
)2

, (3.29)

where Φ̂−l and S(Θ̂−l) are respective values without considering the l-th compo-
nent.

For simplicity we will assume that only one multipath component exists in the
model in order to derive the selection criteria. The basic intuition remains un-
changed for more than one single path and can be found in Shutin et al. (2011a)
and Shutin et al. (2011b). Consequently eqs. (3.28) and (3.29) reduce to

ςl =
(
s(θ̂l)

HΣ−1s(θ̂l)
)−1

ω2
l =

(
ςls(θ̂l)

HΣ−1y
)2

since no other but the l-th component is available and therefore S(Θ̂−l) = 0.
Applying eq. (3.14), y can be set to x̂l respectively. Let us now reformulate
eq. (3.27) in order to uncover the connection to the precision parameter α.

ω2
l > ςl ⇔

(
ςls(θ̂l)

HΣ−1x̂l

)2
> ςl ⇔

ς2l

(
s(θ̂l)

HΣ−1x̂l

)2
> ςl ⇔

(
s(θ̂l)

HΣ−1x̂l

)2
> ς−1

l ⇔
(
s(θ̂l)

HΣ−1x̂l

)2
> s(θ̂l)

HΣ−1s(θ̂l) (3.30)

In fact the precision parameter α is deeply connected with the extended test in
eq. (3.30). To point this out, one has to take the estimator for αl (see chapter
3.4.4)

α̂l =
1

Φ̂ll + |ŵl|2
(3.31)
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and plugging in the expressions of Φ̂ll, ŵl given in section 3.4.3 with respect to
the assumption of one component only

Φ̂ll =
(
s(θl)

HΣ−1s(θl) + α̂l

)−1
(3.32)

ŵl = Φ̂lls(θl)
HΣ−1x̂l

=
s(θl)

HΣ−1x̂l

s(θl)HΣ
−1s(θl) + α̂l

. (3.33)

Note that the updating steps given in eqs. (3.31), (3.32) and (3.33) are repeated,

while keeping x̂l and θ̂l fixed to generate a sequence {α̂l
[m]}m>0. Plugging in

eqs. (3.32), (3.33) into eq. (3.31) and solving for α̂l
[∞] as the stationary point

of {α̂l
[m]}m>0 leads to the estimation expression for αl, when considering the

existence of one single multipath.

1

α̂l
[∞]

=

(
s(θ̂l)

HΣ−1x̂l

s(θ̂l)HΣ
−1s(θ̂l) + α̂l

[∞]

)2

+
1

s(θ̂l)HΣ
−1s(θ̂l) + α̂l

[∞]

=

(
s(θ̂l)

HΣ−1x̂l

)2

(
s(θ̂l)HΣ

−1s(θ̂l) + α̂l
[∞]
)2 +

s(θ̂l)
HΣ−1s(θ̂l) + α̂l

[∞]

(
s(θ̂l)HΣ

−1s(θ̂l) + α̂l
[∞]
)2

α̂l
[∞] =

(
s(θ̂l)

HΣ−1s(θ̂l) + α̂l
[∞]
)2

(
s(θ̂l)HΣ

−1x̂l

)2
+ s(θ̂l)HΣ

−1s(θ̂l) + α̂l
[∞]

=

(
s(θ̂l)

HΣ−1s(θ̂l)
)2

+
(
2α̂l

[∞]s(θ̂l)
HΣ−1s(θ̂l)

)
+
(
α̂l

[∞]
)2

(
s(θ̂l)HΣ

−1x̂l

)2
+ s(θ̂l)HΣ

−1s(θ̂l) + α̂l
[∞]

⇔

α̂l
[∞]
(
s(θ̂l)

HΣ−1x̂l

)2
+ α̂l

[∞]
(
s(θ̂l)

HΣ−1s(θ̂l)
)
+ α̂l

[∞]α̂l
[∞] =

(
s(θ̂l)

HΣ−1s(θ̂l)
)2

+
(
2α̂l

[∞]s(θ̂l)
HΣ−1s(θ̂l)

)
+ α̂l

[∞]α̂l
[∞] ⇔

α̂l
[∞]
(
s(θ̂l)

HΣ−1x̂l

)2
=
(
s(θ̂l)

HΣ−1s(θ̂l)
)2

+
(
α̂l

[∞]s(θ̂l)
HΣ−1s(θ̂l)

)
⇔
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α̂l
[∞]

[(
s(θ̂l)

HΣ−1x̂l

)2
− s(θ̂l)

HΣ−1s(θ̂l)

]
=
(
s(θ̂l)

HΣ−1s(θ̂l)
)2

⇔

α̂l
[∞] =

(
s(θ̂l)

HΣ−1s(θ̂l)
)2

(
s(θ̂l)Σ

−1x̂l

)2
− s(θ̂l)HΣ

−1s(θ̂l)

By definition α̂l
[∞] > 0 which is satisfied if, and only, if for the denominator holds

(
s(θ̂l)Σ

−1x̂l

)2
> s(θ̂l)

HΣ−1s(θ̂l) (3.34)

what equals eq. (3.30) as an reformulation of eq. (3.27) and thus the test ω2 > ς
itself. As a preliminary result let us point out that the whole precision parameter
scheme is ’encoded’ in the test ω2 > ς that determines the convergence of αl

update: if α̂l diverges, thus ω
2 < ς and the corresponding component is removed

from the model.

To close this chapter we will give a more intuitive interpretation of the derived
results. Since we assume the one component case, the covariance noise matrix Σ
simplifies to σ2 and allows for extending eq. (3.30) with x̂l = wlS(Θ̂)

(
s(θ̂l)

HΣ−1x̂l

)2
> s(θ̂l)

HΣ−1s(θ̂l) ⇔

σ−4
(
s(θ̂l)

Hx̂l

)2
> σ−2s(θ̂l)

Hs(θ̂l) ⇔

σ−4(N)2w2
l > σ−2N ⇔

w2
l <

σ2

N
. (3.35)

We obtain as a final result that the component will be kept if the squared complex
amplitude is above the average noise level, otherwise it is removed.

3.4.6 Summary of the VB-SAGE Algorithm

Finally the VB-SAGE algorithm can be set up by putting together all the puzzle
pieces of estimation equations. The proposed algorithm updates the factors in eq.
(3.9) in groups, where the l-th group contains factors {q(θl), q(w), q(αl)}: start-
ing with q(θl), we then update q(w) and q(αl). If the estimate of α̂l diverges, the



24 3 Detection and Estimation of Multipath Components

corresponding multipath component is removed from the model; otherwise, its
parameters are updated, and the next component l + 1 is considered. The real-
ization of the algorithm includes two steps, which are carried out in a sequential
manner: the initialization algorithm 1 and update algorithm 2, respectively. In
the following we want to consider the characteristics of both types of algorithms,
before showing up some differences plus important key facts on both implemen-
tations.

The initialization of VB-SAGE uses a simple bottom-up strategy by starting
with an empty model, i.e assuming all variational parameters to be zero. The
first component is initialized by setting x̂1 = y and applying the initialization
loop shown in Algorithm 1. The obtained estimate θ̂l is plugged in eqs. (3.28),
(3.29) to determine whether the actual component should be kept in the model.
When the test ω2

l > ςl fails, the initialization stops. In this implementation we
will make use of this condition plus limiting the number of initialization iterations
to Lmax. Thus, the algorithm will stop if the pruning condition ω2

l > ςl fails or if
the number of maximal components Lmax is reached at some iteration.
Algorithm 2 shows one update cycle for a single multipath component l. In oppo-
sition to the initialization strategy another stopping criterion has to be defined,
since the pruning condition ω2

l > ςl only allows for removing components from
the model but not for quitting the algorithm. In this implementation we use
the following simple criterion: The update iterations are terminated when first
the number of estimated signal components stabilizes and second the maximum
change of the components in {Θ,w,α} between two consecutive update cycles
is less than 10−4.

In the end we want to summarize what VB-SAGE can do for us. In contrast
to the classical SAGE algorithm, VB-SAGE does not only allow for estimation
of all parameters considering the underlying signal model given in eq. (3.1), but
also for model order selection by deciding if a signal component should be kept.

Up to now we are only considering the case at fixed snapshot time t. In a world
with a moving receiver which we will assume in chapter 4, the estimation process
has to be carried out for consecutive snapshots to track how paths evolve with
time. Therefore, the Kalman Filter will be used. Prior to this we would like to
evaluate the performance of the VB-SAGE scheme in the next section.
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Algorithm 1: Initialization of VB-SAGE

Set l ← 0, S(Θ̂)← [ ], α̂← [ ], ŵ ← [ ], Φ̂← [ ], Continue← true

while Continue = true do

l = l + 1

Compute x̂l from (3.14): x̂l = y −
L∑

k=1,k 6=l

ŵks(θ̂k)

Compute s(θ̂l) from (3.15):

θ̂l = argmaxθl

{
log p(θl)− (x̂l − s(θl)ŵl)

H Σ−1 (x̂l − s(θl)ŵl)

−
L∑

k=1,k 6=l

2ℜ
{
Φkls(θk)

HΣ−1s(θk)
}
− Φlls(θl)

HΣ−1s(θl)
}

Compute ςl from (3.28):

ςl =
(
s(θ̂l)

HΣ−1s(θ̂l)− s(θ̂l)
HΣ−1S(Θ̂)Φ̂S(Θ̂)HΣ−1s(θ̂l)

)−1

Compute ω2
l from (3.29):

ω2
l =

(
ςls(θ̂l)

HΣ−1y − ςls(θ̂l)
HΣ−1S(Θ̂)Φ̂S(Θ̂)HΣ−1y

)2

if ω2
l > ςl then

Add a new component l and update ...
α̂l by: α̂l = (ω2 − ςl)

−1

S(Θ̂) = [S(Θ̂), s(θ̂l)]

Φ̂ from (3.20): Φ̂ =
(
S(Θ)HΣ−1S(Θ) + diag(α)

)−1

ŵ from (3.19):
(
S(Θ)HΣ−1S(Θ) + diag(α)

)−1
S(Θ)HΣ−1y

Σ̂ from (3.18):

Σ = diag(y − S(Θ)ŵ)H(y − S(Θ)ŵ) + tr(S(Θ)HS(Θ)Φ)N−1)

else

Reject component l and stop initialization

Set number of components as: L = l − 1

Continue = false
end

end
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Algorithm 2: Update of VB-SAGE

Set l ← 0, Continue← true

while Continue = true do

l = l + 1

Compute x̂l from (3.14): x̂l = y −
L∑

k=1,k 6=l

ŵks(θ̂k)

Set S(Θ̂−l) = S(Θ̂)\s(θ̂l)

Set Φ̂−l =
[
Φ̂− Φ̂ele

H
l
Φ̂

eH
l
Φ̂el

]
ll

(See details in a)

Compute ςl from (3.28):

ςl =
(
s(θ̂l)

HΣ−1s(θ̂l)− s(θ̂l)
HΣ−1S(Θ̂−l)Φ̂−lS(Θ̂−l)

HΣ−1s(θ̂l)
)−1

Compute ω2
l from (3.29):

ω2
l =

(
ςls(θ̂l)

HΣ−1y − ςls(θ̂l)
HΣ−1S(Θ̂−l)Φ̂−lS(Θ̂−l)

HΣ−1y
)2

if ω2 > ςl then

Keep component l and update ...
α̂l by: α̂l = (ω2 − ςl)

−1

S(Θ̂) = [S(Θ̂−l), s(θ̂l)]

Φ̂ from (3.20): Φ̂ =
(
S(Θ)HΣ−1S(Θ) + diag(α)

)−1

ŵ from (3.19):
(
S(Θ)HΣ−1S(Θ) + diag(α)

)−1
S(Θ)HΣ−1y

Σ̂ from (3.18):

Σ = diag(y − S(Θ)ŵ)H(y − S(Θ)ŵ) + tr(S(Θ)HS(Θ)Φ)N−1)

else

Remove component l and set ...

S(Θ̂) = S(Θ̂−l)

α = α\α̂l

Φ̂ = Φ̂−l

ŵ =
(
S(Θ)HΣ−1S(Θ) +α

)−1
S(Θ)HΣ−1y

Σ = diag(y − S(Θ)ŵ)H(y − S(Θ)ŵ) + tr(S(Θ)HS(Θ)Φ)N−1)

end

end

aHere we use el as a canonical vector with length L, i.e. el = [0, . . . , 0, 1, 0, . . . , 0]T . Fur-
thermore [A]

ll
denotes a matrix obtained by deleting the l-th row and l-th column from the

matrix A.
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3.5 Performance of the VB-SAGE Algorithm

To conclude this chapter a discussion about the algorithms performance should
be carried out. Therefore, a simulation study is appropriate. In the following
we use two different definitions of the mean squared error (MSE). Generally the
MSE of any parameter vector ϑ is given by

MSE(ϑ̂) = Cov(ϑ̂) +
(
Bias(ϑ̂)

)2
(3.36)

= E

(
|ϑ̂− ϑ|2

)
(3.37)

If an estimator ϑ̂ is unbiased Cov(ϑ̂) can be compared with the Cramer-Rao
Lower Bound (CRLB) which is determined by the inverse of the Fisher-Information
matrix [I(ϑ)]ij, otherwise one has to respect the Bias for derivation of a lower

bound for Cov(ϑ̂) as well. In what follows we compute an adequate, theoretical
lower bound for each delay, azimuth angle of arrival, and complex amplitude.
Subsequently these bounds are compared with the second definition of the MSE
stated in eq. (3.37) which makes use of the true and in fact unknown parameter
values to evaluate the algorithms performance.

3.5.1 Lower Bound for Delay τ and Azimuth Angle of Arrival φ

We start with computing an adequate, theoretical lower bound for delay τ and
azimuth angle of arrival φ by evaluation of following posterior of interest which
is given in eq. (3.2):

p(Θ,w,α,Σ|y)︸ ︷︷ ︸
Posterior

∝ p(y|Θ,w,α,Σ)︸ ︷︷ ︸
Likelihood

× p(w|α)× p(α)× p(Θ)× p(Σ)︸ ︷︷ ︸
Prior

. (3.38)

In order to derive separated results for delay and azimuth angle of arrival, which
are summarized in Θ = [τ T ,φT ]T , we set S(Θ) := u(τ )c(φ). Since we are only
interested in evaluating the posterior in terms of Θ, eq. (3.38) reduces to

p(Θ,w,α,Σ|y) ∝ p(y|Θ,w,α,Σ)× p(Θ), (3.39)

where we assume p(Θ) as a dirac distribution. Thus evaluation of the posterior
is straightforward by using the classical maximum likelihood approach, due to
eq. (3.39) depending on the likelihood only, when we restrict p(Θ) being a dirac
distribution.
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log
{
p(Θ,w,α,Σ|y)

}
∝ log

{
p(y|Θ,w,α,Σ)

}

∝ log
{
exp

[
− (y − u(τ )c(φ)w)H Σ−1 (y − u(τ )c(φ)w)

]}

= − (y − u(τ )c(φ)w)H Σ−1 (y − u(τ )c(φ)w)

= − yHΣ−1y + (u(τ )c(φ)w)HΣ−1y − (u(τ )c(φ)w)HΣ−1u(τ )c(φ)w +

yHΣ−1u(τ )c(φ)w := ℓ(τ ,φ|y) (3.40)

Computing the Fisher-Information matrix for the delay [I(τ )]ij and azimuth
angle of arrival [I(φ)]ij is straightforward by

[I(τ )]ij = −E
{
∂ℓ(τ ,φ|y)
∂τi∂τj

}
and [I(φ)]ij = −E

{
∂ℓ(τ ,φ|y)
∂φi∂φj

}
.

Since we do only consider the likelihood to derive the CRLB’s, the results are stan-
dard in signal processing which can be found f.e. in Kay (1993),Tschudin et al.
(1998) and Antreich et al. (2008):

[I(τ )]ij = wHc(φ)Hu(τ )H(−jωn)
HΣ−1(−jωn)u(τ )c(φ)w

[I(φ)]ij = wH(2jπ sin (φ)c(φ)⊙ pn)
Hu(τ )HΣ−1u(τ )(2jπ sin (φ)c(φ)⊙ pn)w

(3.41)

where pn denoting the antenna positions and ωn as representative for the fre-
quency axis.

3.5.2 Lower Bound for Complex Amplitude w

The derivation of a lower bound for the complex amplitude w can be done in an
analogue way as for delay τ and azimuth angle of arrival φ. Consider the poste-
rior given in eq. (3.2) and with its supposed likelihood (3.3) and priors (3.4). In
contrast to section 3.5.1, we do make prior assumptions i.e, we assume

p(w|α) ∼ CN
(
0, diag(α)−1

)
.
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Therefore, the posterior of interest (in terms of w) factors as follows

p(Θ,w,α,Σ|y) ∝ p(y|Θ,w,α,Σ)× p(w|α),

and the inference on this probability density function is carried out by using a
Bayesian approach: In the case at hand the posterior density function, which
includes the Bayesian prior p(w|α), is the one to evaluate. Therefore, the desired
Bayesian Cramer-Rao Lower Bound (BCRLB) [I(w)]−1

ij must not be conflicted
with the CRLB in the frequentistic approach when using the likelihood func-
tion only. The respective BCRLB can be derived in two ways: First, just using
the posterior density function and second, computing the frequentistic Fisher-
Information matrix for likelihood and prior separately plus adding both results
(van Trees and Bell (2007), Tichavský et al. (1998)). In the following we will
keep to the first proposal.

log
{
p(Θ,w,α,Σ|y)

}
∝ log

{
p(y|Θ,w,α,Σ)× p(w|α)

}

∝ log
{
exp

[
− (y − S(Θ)w)H Σ−1 (y − S(Θ)w)

]
×

exp
[
−
(
wH(diag(α)−1)−1w

)]}

= − (y − S(Θ)w)H Σ−1 (y − S(Θ)w)−wH diag(α)w

= − yHΣ−1y +wHS(Θ)HΣ−1y −wHS(Θ)HΣ−1S(Θ)w +

yHΣ−1S(Θ)w −wH diag(α)w := ℓ(w|y), (3.42)

and computation of [I(w)]−1
ij is straightforward:

[I(w)]−1
ij =

(
− E

{
∂ℓ(w|y)
∂w∗

i ∂wj

})−1

=
(
− E

{
∂

∂wj

[
S(Θ)HΣ−1y − S(Θ)HΣ−1S(Θ)w − diag(α)w

]})−1

=
(
− E

{
− S(Θ)HΣ−1S(Θ)− diag(α)

})−1

=

=
(
S(Θ)HΣ−1S(Θ) + diag(α)

)−1

. (3.43)
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3.5.3 Simulations

For verification of VB-SAGE, we study the performance of the proposed esti-
mation scheme using synthetic data generated accordingly to model (3.1). We
assume a static scenario at a fixed snapshot time t and non-moving senders and
receiver. The receiver is equipped by a 3-element linear antenna array along the
x-direction, where an inter-element spacing of 0.45λ is applied with λ is denot-
ing the wavelength. The carrier frequency has been fixed to 500 MHz and the
bandwidth of the transmitted signal to 100 MHz. We use 5000 simulations witch
each 101 samples per antenna. The number of existing multipath components
is set to 3, with time delays τ = [50.83, 37.23, 37.71] in samples and azimuth
angle of arrival φ = [0.17, 0.21, 0.22] in radians. Finally all propagation paths are
assumed to have equal power.
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Figure 4: Comparison of theoretical lower bounds and VB-SAGE mean squared error for
complex amplitude, delay and azimuth angle of arrival
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Fig. 4 visualizes the resulting performance of VB-SAGE by a graphical com-
parison of the two MSE definitions in the last section. Note that we are only
considering the VB-SAGE update algorithm for performance check by initializ-
ing with the true parameter setting. While the dashed lines are representatives for
the theoretical (Bayesian) Cramer-Rao Lower Bounds (BCRLB) derived in eqs.
(3.41) - (3.43), when taking the true parameter values as a basis, the continuous

lines stand for the mean squared error MSE(ϑ̂) = E(|ϑ̂−ϑ|2) with ϑ ∈ {w, τ ,φ}
defined as squared difference of estimated and true parameter values.

The results show that at least for the complex amplitude and delay the VB-
SAGE update algorithm hits the respective lower bounds. When considering the
case for azimuth angle of arrival (in lower SNR levels), the graphic show diver-
gence for component 2 (green) and component 3 (red). At first glance this result
seems to argue against good estimation performance of the VB-SAGE algorithm.
However, Tschudin (1999) shows that this outcome is not an exceptional cir-
cumstance, if two multipath components cannot clearly be distinguished in their
azimuth angle of arrival value (in fact components 2 and 3 are similar with values
of 0.21 and 0.22). In particular since at least for the first component the VB-
SAGE estimation even hits the CRLB, we do not apply hypercritical standards
for this case.
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4 Tracking of Multipath Components

4.1 Motivation

The VB-SAGE framework (see chapter 3) is a suggested solution for estimation
of the model order L and its corresponding signal parameters when restricting to
fixed snapshot situations. In a world with a moving receiver which we will assume
in the following, the scenario changes to a dynamic one with multiple snapshots,
where the estimation of signal parameters is known as tracking.
A straightforward approach for estimation of the unknown parameters is just to
apply the VB-SAGE algorithm for all consecutive time steps. But there is a snag
in performing the estimation process this way. The VB-SAGE framework itself is
not able to use information of past estimation results, because the initialization
step starts without any input except the current measurements. It is easily to
understand that all prior information, which is available, should be included in
any case in order to increase the accurateness of the estimates.
The receiver moves with a certain and especially known speed towards a given
direction. This means that both the number of components L and the signal
parameters do not change randomly in the space of two subsequent time steps
but are highly correlated. By way of example suppose a delay τl(t) for one signal
component at snapshot time t. While the receiver is slowly changing its position,
τl(t) does only marginally change. Thus, the difference of the subject delay τl(t)
and τl(t+ 1) is limited in value as well, if we fix the position of the sender. As a
result we have to implement a principle which allows using the prior information
within the tracking process to reduce the imprecision of the estimates.
Therefore, we will go on with introducing the discrete Kalman Filter, which was
first published by Rudolf E. Kalman in 1960 to provide a widely-used method
that covers the requirements for including prior information to the estimation
scheme and adopt it to the multipath channel estimation problem. Subsequent
an extension of the Kalman Filter is illustrated as a smoothing algorithm, which
additional allows to use measurements derived later than the current time point
to obtain information about the signal parameters. This is to smooth the esti-
mates in order to reduce the noise part in order to achieve better performance.
Finally the chapter closes with a summary of the tracking algorithm for multipath
components.

4.2 The Discrete Kalman Filter

The Kalman filter performs by using a form of feedback control: it estimates the
signal parameters at some arbitrary time and then obtains feedback in the form of
noisy measurements. As such, the Kalman filter equations can be separated into
two groups: time update equations and measurement update equations. The for-
mer can also be thought of as predictor equations, while the latter can be thought
of as update equations. On the one hand time update equations are responsible
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for projecting forward (in time) the current signal parameters and its error co-
variance estimates at snapshot t−1 to get the a priori estimates for the next time
step t. On the other hand the measurement update equations are responsible for
the feedback mechanism. In particular new noisy measurements are included into
the a priori estimate to receive an improved a posteriori estimate. We will con-
sider the case of filtering the multipath components problem shortly, but we must
first set up the basic Kalman filter recursive equations, whose derivation can be
found for example in Brown and Hwang (1985) as well as Anderson and Moore
(2005).

At this point we assume that we have an initial estimate of the process at some
point in time t−1, which is based on all our knowledge about the process prior to
t− 1. This a priori estimation is denoted as x̂(t− 1) for the process state vector

and P̂ (t−1) for its covariance structure respectively. The time update equations
or prediction equations for the time step t are given by

State vector prediction: x̂−(t) = Ax̂(t− 1)

Covariance structure prediction: P̂−(t) = AP̂ (t− 1)AT +Q, (4.1)

where the ’super minus’ is a reminder that this is our best estimate prior to assim-
ilating the measurements at t. Furthermore A stands for the transition matrix
which can be interpreted in what physical way the state vector and the respective
covariance structure do change from the initial time step to the next one. Finally
Q denotes the system noise matrix which gives information about the underlying
noise variance of the system model. These equations give the best prediction of
the state vector and its relating covariance matrix without including any new
information.

With the assumption of x̂−(t), we now seek to use the new measurement y(t) to
improve the state vector prediction.

State vector update: x̂(t) = x̂−(t) + K̂(t)
(
y(t)−Hx̂−(t)

)

Covariance structure update: P̂ (t) =
(
I − K̂(t)H

)
P̂−(t), (4.2)

with the so called Kalman gain

K̂(t) = P̂ (t)HT
(
HP̂ (t)HT + R̂(t)

)−1

, (4.3)

and a measurement matrix H as well as a the measurement noise covariance
structure R̂(t). Fig. 5 provides the underlying Bayesian Network (or Hidden
Markov Model).
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Measure:

Q(t− 1) Q(t) Q(t− 1)

· · · x(t− 1) A x(t) A x(t+ 1) · · ·

R(t− 1) H R(t) H R(t+ 1) H

y(t− 1) y(t) y(t+ 1)

Figure 5: Underlying Bayesian Network

At each time step the state vector x(t − 1) is propagated to the new state es-
timation x̂−(t) by multiplication with the constant state transition matrix A.
Additionally, the states x(t) are influenced by the system noise matrix Q. The
system state cannot be measured directly. The measurements y(t) consists of the
information contained within the state vector x(t) multiplied by the measurement
matrix H, and the additional measurement noise variance R(t).

The following two sections are meant to remove possible ambiguity or confusion
with respect to the Kalman system model. Therefore, the Kalman equations in
the case of signal modeling are set up and involved variables are explained in
more detail.

4.2.1 Kalman Prediction Equations

Compared to the one-snapshot based view of the VB-SAGE framework, the con-
sidered Kalman Filter should not only provide results for complex amplitude but
also separated for magnitude and phase. Additionally a tracking of the noise
variance σ2 over time is included, in order to increase the accurateness of the
estimates. Therefore, some changes in implementation will occur which we are
going to be explained in detail at appropriate location. For simplicity the states
{a(t),ϕ(t), τ (t),φ(t), σ2(t)} of magnitude, phase, delay, azimuth angle of ar-
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rival and noise variance and the differences between two consecutive time steps
{∆a(t),∆ϕ(t),∆τ (t),∆φ(t)} are represented in the condensed state vector form
ζ(t). Note that since L multipath components are assumed, the dimension of ζ
is (8L+1× 1). Furthermore the differences are all set to zero for the initial time
step t = 1.

The Kalman predictions in eq. (4.1) can then be reformulated as

State vector prediction: ζ̂−(t) = Aζ̂(t− 1)

Covariance structure prediction: P̂−(t) = AP̂ (t− 1)AT +Q. (4.4)

In what follows we have to make assumptions about the shape of the transition
matrixA and the system noise varianceQ. Therefore, we will use expressions that
turned out to work quite well, as applied in Jost, Wang, Fiebig and Pérez-Fontán
(2012). For a start regard the state vector prediction with the initial states ζ̂(t−1)
which are transformed by the transition matrix A to the next time step predic-
tion ζ̂−(t), what can be stated in extensive form. For simplicity we assume the
one component case, thus l = 1:




a(t)
ϕ(t)
τ(t)
φ(t)
σ2(t)
∆a(t)
∆ϕ(t)
∆τ(t)
∆φ(t)




=




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 T 0 0 0 0
0 0 1 0 0 0 T 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0




×




a(t− 1)
ϕ(t− 1)
τ(t− 1)
φ(t− 1)
σ2(t− 1)
∆a(t− 1)
∆ϕ(t− 1)
∆τ(t− 1)
∆φ(t− 1)




=




a(t− 1)
ϕ(t− 1) + T∆ϕ(t− 1)
τ(t− 1) + T∆τ(t− 1)

φ(t− 1)
σ2(t− 1)
∆a(t− 1)
∆ϕ(t− 1)
∆τ(t− 1)
∆φ(t− 1)




. (4.5)
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As result, the state predictions for magnitude, azimuth angle of arrival and noise
variance do only depend on their respective state values of the initial time step
t− 1, for phase and delay a change by T∆ϕ(t− 1) and T∆τ (t− 1) for physical
reasons is additional included.

In the same manner we are able to set up the prediction equation for the co-
variance state structure by adding the system noise variance matrix Q, which is
assumed to be fixed at every snapshot time. For clarity issues we do resign for
pure broad mathematical presentation, the interpretation can be adopted from
the state vector prediction in analogue way.

4.2.2 Kalman Update Equations

Now let’s inspect the Kalman Filters update equations in the case of signal model-
ing. With using the Kalman predictions given in eq. (4.4) we now seek to include

the new measurement ζ̂VB(t), representing the VB-SAGE estimations referred
to chapter 3.4 made out of the received signal vector y(t). Thereby we use the

predictions ζ̂−(t) and P̂−(t) as input for updating the the VB-SAGE estimates

ζ̂VB(t). That guarantees for finding the next local maximas what ensures an au-

tomatic association of multipath components, i.e. of the prediction ζ̂−(t) and the

new measurements ζ̂VB(t). Since we split up the random variable for complex
amplitude w(t) into magnitude a(t) and phase ϕ(t) within the Kalman Filter
framework, the respective VB-SAGE state estimation ŵ(t) has to be adjusted,
what can be easily achieved by transformation. Remember the Kalman update
equations for state vector and covariance structure:

State vector update: ζ̂(t) = ζ̂−(t) + K̂(t)
(
ζ̂VB(t)−Hζ̂−(t)

)

Covariance structure update: P̂ (t) =
(
I − K̂(t)H

)
P̂−(t)

with the Kalman gain: K̂(t) = P̂ (t)HT
(
HP̂ (t)HT + R̂(t)

)−1

. (4.6)

Since we already explained the intuition of the VB-SAGE estimations ζ̂VB(t),

the Kalman predictions ζ̂−(t), P̂−(t), we need to survey the measurement ma-

trix H , the Kalman gain K̂(t) which includes for the additional measurement

noise variance R̂(t) corresponding to ζ̂VB(t). The measurement matrix is as-
sumed to be identical for every time instant t, thus H is fixed. Referring
to Jost, Wang, Fiebig and Pérez-Fontán (2012) H factors, by assuming the one
component case again, as follows, since only the states but not their differences
are estimated by the VB-SAGE algorithm:
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H =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0




Next, we will have a look on the Kalman gain K̂(t). We will pass on the deriva-
tion (therefore, see f.e. Brown and Hwang (1985) as well as Anderson and Moore
(2005)), but at least a brief interpretation should be given. Before we move on,
let’s look at this equations in detail. First note that the gain changes at every
iteration. For this reason it should be written with a subscript (i.e., t). Next, and
more significantly, we can examine what happens as each of the two non-fixed
terms P̂ (t) and R̂(t) in eq. (4.6) are varied.
If the a priori estimation error expressed by the state covariance matrix prediction
P̂ (t) is very small compared to R̂(t), K̂(t) is correspondingly very small. Thus
we will ignore the current VB-SAGE estimates and simply use past estimates to
form the update. In other words, we keep more trust in the past estimates than
in the new VB-SAGE measurements. Vice versa, if P̂ (t) is very large (so that

the measurement noise term R̂(t) is unimportant) then K̂(t) ≈ H−1 . This, in
effect, tells us to throw away the a priori estimates and use the current (mea-
sured) VB-SAGE values to estimate the states. In other words again, we have
more trust in the new VB-SAGE measurements than in the past measurements.

However, there is still a problem because an adequate estimation for the a priori
measurement noise covariance matrix R̂(t) is needed within the Kalman gain ex-
pression. Therefore, our next task will be to come up with an estimation for that.
In that case we can make use of former results given in section 3.5. Simulations
showed consistency of the variances of the VB-SAGE estimations for complex
amplitude, delay, and azimuth angle of arrival with the (Bayesian) CRLB deter-
mined by the respective information matrix.
This conception needs only to be extended to the covariance case (with replac-
ing the complex amplitude variance with their magnitude and phase values) plus
including the noise variance σ2. Therefore, we evaluate the logarithmic posterior
given in eq. (3.2) with respect to ζ̃(t) := {a(t),ϕ(t), τ (t),φ(t), σ2(t)}. Note that
compared to ζ(t), we do not consider the state differences in ζ̃(t). Since we do
not assume a special structure on the prior noise variance distribution p(σ2), this

part can be ignored. The derivation of the covariance matrix R̂(t) is straight-
forward by computing the respective information matrix [I(ζ)]ij. Note that we
do not calculate the expectation here, since only one measurement is available at
each time instant t.
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[
I(ζ̃)

]
ij
= −

{
∂ℓ(ζ̃|y)
∂ζ̃

∗

i ∂ζ̃j

}

= −
(
∂ℓ(ζ̃|y)
∂a∗i∂aj

∂ℓ(ζ̃|y)
∂ϕ∗

i∂ϕj

∂ℓ(ζ̃|y)
∂τi∂τj

∂ℓ(ζ̃|y)
∂φi∂φj

∂ℓ(ζ̃|y)
∂(σ2)∗i∂(σ

2)j

)T

,

with

∂ℓ(ζ̃|y)
∂τi∂τj

,
∂ℓ(ζ̃|y)
∂φi∂φj

from (3.41),

and

∂ℓ(ζ̃|y)
∂a∗i ∂aj

=
∂

∂aj

[
(exp(jϕ))HS(Θ)H(σ2)

−1
y −

(exp(jϕ))HS(Θ)H(σ2)
−1
S(Θ)(al exp(jϕl)) −

(exp(jϕ))Hα (al exp(jϕl))
]

= −(exp(jϕ))HS(Θ)H(σ2)
−1
S(Θ)(exp(jϕ))− (exp(jϕ))Hα(exp(jϕ)),

(4.7)

∂ℓ(ζ̃|y)
∂ϕ∗

i ∂ϕj

=
∂

∂ϕj

[
(jal exp(jϕl))

HS(Θ)H(σ2)
−1
y −

(jal exp(jϕl))
HS(Θ)H(σ2)

−1
S(Θ)(al exp(jϕl)) −

(jal exp(jϕl))
Hα(al exp(jϕl))

]

= −(jal exp(jϕl))
HS(Θ)H(σ2)

−1
S(Θ)(jal exp(jϕl)) −

(jal exp(jϕl))
Hα(jal exp(jϕl)), (4.8)

where we take the logarithmic posterior (3.42) and define w = al exp(jϕl) as a
component-wise multiplication for calculation of eqs. (4.7), (4.8).
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Obviously in eqs. (4.7) and (4.8) one has to respect the prior p(w|α) since
magnitude and phase are transformations of w. Therefore, the resulting cells of
the inverse information matrix [I(ζ̃)]−1

ij must be interpreted as Bayesian Cramer-
Rao Bounds.

Finally we need to derive the expression for the noise variance, where we first
set up the respective log-likelihood

ℓ(ζ̃|y) =
{
− log

{
(σ2)N

}
− (y − S(Θ)w)H(σ2)−1(y − S(Θ)w)

}
,

and continue with calculation the final expression

∂ℓ(ζ̃|y)
∂(σ2)∗i ∂(σ

2)j
=

∂

∂(σ2)j

[
−N(σ2)−1 + (y − S(Θ)w)H(σ2)−2(y − S(Θ)w)

]

= N(σ2)−2 − (y − S(Θ)w)H(σ2)−3(y − S(Θ)w).

Note that the resulting information matrix [I(ζ̃)]ij has dimension [(4L + 1) ×
4L + 1)] due to magnitude, phase, delay and azimuth angle of arrival values are
calculated for each multipath component l = 1, ..., L, the noise variance value
only once. The target measurement noise covariance matrix R̂(t) is derived in a

well known manner as [I(ζ̃)]−1
ij .

4.2.2.1 Adjustments for Model Order Change

At this point one may think we are able to put together all the puzzle pieces
of Kalman prediction and update equations and perform the Kalman Filter for
consecutive snapshots. However, it will become apparent that the present version
of Kalman does not allow to change the model order L within two time instants.
Both Kalman prediction and Kalman update equations are only applicable for a
fixed model order. Before moving on with criteria to decide whether new paths
are added or removed, one has to set up the adjusted Kalman equations.

Assume the case when one multipath component is removed from the model
within two consecutive time steps, thus L(t) = L(t − 1) − 1. Since the deci-
sion about eliminating the respective propagation path at t can only be made
out of the new measurements ζ̂VB(t), the Kalman prediction in eq. (4.4) does
not change in the beginning. After the decision process has been performed one
simply corrects ζ̂−(t) and P̂−(t) for the corresponding entries of the ’killed’ com-

ponent by ζ̂(t− 1) = (ζ̂(t− 1))l, and P̂ (t− 1) = (P̂ (t− 1))ll, where (ζ̂(t− 1))l,
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(P̂ (t − 1))ll denoting the state vector and covariance structure update at t − 1
without respecting the removed component l.
In the same way one adjusts the Kalman update. Note that the VB-SAGE up-
date measurements ζ̂VB(t) and the respective noise variance R̂(t) already show
correct dimensions since the removing criterion is performed prior to the VB-
SAGE update step.

Let’s now consider the case when a now component is initialized at t, thus
L(t) = L(t − 1) + 1. The Kalman prediction equations do change (after eval-
uation the new measurements) in the identical manner as demonstrated in the

case when one multipath component was removed, i.e. we correct ζ̂−(t) and

P̂−(t) for the new component by including the VB-SAGE measurements of the
new multipath for both state vector and covariance structure respectively.
Finally, the adjusted Kalman update equations can be derived analogue to the
former case by eliminating one component.

After these mathematical adaptions are described, we can now think about an
implementation strategy for removing and adding multipath components to the
Kalman Filter in the next sections.

4.2.2.2 Test to Remove Paths

The VB-SAGE algorithm provides a model selection criteria (see section 3.4.5)
inside its implementation, i.e. it is possible to decide if an estimated propagation
path is merely fictive and so to remove from the model or does actually exist and
should be included in the estimation process. This idea could be adopted in the
Kalman Filter as well.

However, a different approach is presented for following reasons: The VB-SAGE
model selection criteria does only depend on one single snapshot without any
input of former time point results. Since the Kalman Filter gives a prediction for
both complex amplitude and its corresponding noise variance we should use this
information. The aim is to guarantee better performance of the model selection
criteria, which is based on statistical hypothesis testing, i.e. decision theory, used
in the field of signal processing f.e. in Salmi et al. (2009).

The basic idea is quite simple and can be formulated as a binary choice problem,
explained in detail f.e in Hänsler (2001)

H0 : ŵl ∼ CN (0, (σ−)2) vs. H1 : ŵl ∼ CN (ŵ−
l , (σ

−
wl
)2) (4.9)
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where (σ−)2 stands for the Kalman prediction of the noise variance and ŵ−
l , (σ

−
wl
)2

for the Kalman prediction of mean and variance of the complex amplitude for the
considered component l.

In statistical detection, one works with a favored assumption. This favored as-
sumption is called the null hypothesis, which is denoted by H0. The ’alternative’
to the null hypothesis is, naturally, called the alternative hypothesis H1. In this
context we state H0 in that way meaning the VB-SAGE update of the complex
amplitude does not account for improving our model, i.e. ŵl does not represent
an existing multipath component, the estimated performance is actually pure
measurement noise.
In opposition H1 expresses for the VB-SAGE update ŵl having an in fact physi-
cal distribution with mean ŵ−

l and variance (σ−
wl
)2 given by Kalman prediction,

meaning the component l does de facto exist within the model and should be
kept. Therefore, we have to develop a criterion which allows for testing if H0 or
H1 is accepted.
It should be mentioned that one does not ’prove’ anything. Rather, we are only
looking at consistency or inconsistency between the VB-SAGE measurement for
complex amplitude and the proposed hypotheses. If ŵl is consistent withH0, then
instead of proving the hypothesis true, the proper interpretation is that there is
no reason to doubt that ŵl occurs due to the measurement noise.

Therefore, we define following equation as our testing criterion which is based
on the likelihood-ratio:

H0 holds if:

p (ŵl|H0)

p (ŵl|H1)
=

p (ŵl|0, (σ−)2)

p
(
ŵl|ŵ−

l , (σ
−
wl
)2
) > 1 (4.10)

After setting up the actual test criterion we need to compute the distributions
p (ŵl|H0) and p (ŵl|H1). If we assume the current VB-SAGE estimation ŵl be-
longing to the noise distribution under H0, the result for the respective distribu-
tion is straightforward:

p
(
ŵl|0, (σ−)2

)
=

1

π(σ−)2
exp

(
−ŵH

l (σ
−)−2ŵl

)
.

It turns out that the derivation of p (ŵl|H1) is more difficult to treat, since the
Kalman Filter does not provide predictions for ŵ−

l and (σ−
wl
)2 directly. Available

are predictions for magnitude and phase. Therefore, we have to transform the



42 4 Tracking of Multipath Components

random variables to derive the desired distribution. Hereby we will make use of
Weickert (2010) within eqs. (4.11) - (4.12).

Therefore, we take wl = ℜ(wl) + jℑ(wl), where ℜ, ℑ denoting the real and
imaginary part, and define

ℜ(ŵ) := wR = TR(a,ϕ) = a cos(ϕ)

ℑ(ŵ) := wI = TI(a,ϕ) = a sin(ϕ). (4.11)

Since the existence of the inversion is proofed in Weickert (2010) we can formulate

a = T−1
R (wR,wI) = (w2

R +w2
I)

1

2

ϕ = T−1
I (wR,wI) = arctan

(
wI

wR

)
.

Computation of the respective Jacobian matrix

J =




∂T−1
R (wR,wI)

∂wR

∂T−1
R (wR,wI)

∂wI

∂T−1
I (wR,wI)

∂wR

∂T−1
I (wR,wI)

∂wI




=




wR

(w2
R +w2

I)
1

2

wI

(w2
R +w2

I)
1

2

− wI

w2
R +w2

I

wR

w2
R +w2

I




=




cos(ϕ) sin(ϕ)

−sin(ϕ)

a

cos(ϕ)

a


 (4.12)

with the determinant of the Jacobian matrix

|J | = cos(ϕ)
cos(ϕ)

a
+ sin(ϕ)

sin(ϕ)

a
=

(cos(ϕ))2 + (sin(ϕ))2

a

=
1

a
.

Finally one receives the desired probability density function for the complex am-
plitude by applying the general case set up in Peebles (2001) to the problem at
hand.
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fwR,wI
(wR,wI) = fa,ϕ (a,ϕ) |J |

=
fa,ϕ

(
(w2

R +w2
I)

1

2 , arctan
(

wI

wR

))

a

=
fa,ϕ

(
(a cos(ϕ)2 + a sin(ϕ)2)

1

2 , arctan
(

sin(ϕ)
cos(ϕ)

))

a

=
fa,ϕ

(
(a)

1

2 ,ϕ
)

a

The basic intuition of the test (4.10) is demonstrated by a fictitious graphical
representation given in fig. 6. While the blue line is a representative for the
physical existing complex amplitude likelihood under H1, the red line stand for
the noise distribution under H0. If the VB-SAGE update for ŵl is given in
[0.7, 1.3] (on the x-axis) it is more likely to state H1 to be true and we will keep
the component l, otherwise H0 is assumed to be true and we will remove the
component from the model.
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Figure 6: Graphical representation of testing criterion to kill paths within the Kalman Filter
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Assume our decision has been performed by applying eq. (4.10) and propagation
paths have been killed. We are compelled to correct the dimensions of the Kalman
prediction and Kalman update as described in section 4.2.2.1. Since paths have
been removed from the model but the estimates of remaining signal components
have not been updated, we need to perform the VB-SAGE update algorithm (see
page 26) again before going on with the Kalman Filter processing of the following
snapshot.

4.2.2.3 Test to Include Paths

For the sake of completeness we seek for a criterion which allows to detect
new multipath components, if they appear at a time point t. Unfortunately the
presented strategy in section 4.2.2.2 can not be adopted to this case. The Kalman
Filter does not provide a prediction for non existing paths, since the prior state
vector ζ̂(t − 1) for the new component is not available. However we are able
to define a modified testing strategy by taking the Kalman prediction for the
noise variance (σ−)2 into account. Prior to this we have to estimate the com-
plex amplitude of the new component, which has to be tested. Therefore, we
extend the VB-SAGE initialization algorithm which now does not operate with
a ’bottom-up’ strategy as its background algorithm. Thus no empty model is as-
sumed for a start but all existing multipath components with their corresponding
signal parameters are taken as input. Thus we fix the number of existing prop-
agation paths to L and set l = L. The initialization cycles for new components
l+1, l+2, ... are performed in the well-known manner and the complex amplitude
for the new component is estimated. We now have to validate if the respective
component should be kept by applying following Neyman-Person Test:

H0 : ŵl ∼ CN (0, (σ−)2) vs. H1 : ŵl ≁ CN (0, (σ−)2).

If H0 holds, the component will not be added, since the VB-SAGE estimate ŵl is
inside the quantile-given-interval of the assumed noise distribution Fwl

(0, (σ−)2)
on a significance level (or false alarm rate) of 5 percent.

q(0.025)Fwl
(0, (σ−)2) < ŵl < q(0.975)Fwl

(0, (σ−)2).

After completing the test one needs to correct the dimensions for Kalman pre-
diction and Kalman update as described in section 4.2.2.1 again, followed by
performing the VB-SAGE update algorithm for analogue justification as in the
case when propagation paths were removed from the model (see section 4.2.2.2).
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4.3 Kalman Smoothing

4.3.1 Filtering vs. Smoothing

Smoothing differs from filtering in that the information for estimating the signal
parameters at time point t need not become available at t. Thus measurements
derived later than t can be used in obtaining information about the parame-
ters at current time point t. This means data can not be processed online, as
compared to the filtering case, but the disadvantage has to be weighted against
the ability to use more measurements than in the filtering case. For this reason,
smoothing may produce more accurate estimates than the simple filtering process
(Anderson and Moore (2005)).

In the last sections, we addressed the filtering problem. To proceed, suppose
that we are given a set of data over the time interval 0 < t ≤ T . Smoothing is a
non-real-time operation in that it involves estimation of the state vector ζ(t) for
0 < t ≤ T , using all the available data, past as well as future. In what follows,
we assume that the final time T is fixed. To determine the state estimates ζ̂(t)
for 0 < t ≤ T , we need to account for past data y(p) defined by 0 < p ≤ t, and
future data y(k) defined by t < k ≤ T . The estimation pertaining to the past
data, which we refer to as forward filtering, was presented in section 4.2. To deal
with the issue of state estimation pertaining to the future data, we use backward
filtering, which starts at the final time T and runs backwards (Haykin (2001)).

Let ζ̂
f
(t) and ζ̂

b
(t) denote the state estimates obtained from the forward and

backward recursions, respectively. Given these two estimates, the next issue to
be considered is how to combine them into an overall smoothed estimate ζ̂(t),

which accounts for data over the entire time interval. Note that the symbol ζ̂(t)
used for the smoothed estimate in this section is not to be confused with the
filtered (i.e., a posteriori) forward estimate used in former sections.

4.3.2 Forward-backward Kalman Smoothing

A Kalman Smoother uses the regular Kalman filter equations which are employed
together with a separate set of equations used for a backward calculation. This
backward calculation uses the future measurement data to derive correcting terms
for the regular forward Kalman filter estimates. The forward filter is operated
in the usual way, giving a posterior state and covariance estimate of the interior

point of interest, ζ̂
f
(t) and P̂

f
(t). The backward running Kalman filter starts

with the last measurement, ends on the first measurement, and is initialized with
a prior estimate of infinite covariance (which assures that the initial state estimate
has no influence). It differs from the forward Kalman filter by performing the
prediction stage using the following equations set up in Storve (2012). Note that
in this connection, the time index t is used in the other way round as t = T, ..., 1.
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State vector prediction: ζ̂
−b
(t) = A−1ζ̂

b
(t− 1)

Covariance structure prediction: P̂
−b
(t) = A−1

(
P̂

b
(t− 1) +Q

) (
A−1

)T
,

(4.13)

where A, Q are defined for the application to signal processing in the same man-
ner as stated in section 4.2.1. Note that A−1 is the inverse of the state-transition
matrix used in the forward running Kalman filter in this connection. The up-
date step is performed in the usual way. The backward-running Kalman filter
stops at the time step before (in backward direction) the point of interest, af-

terwards a prediction step is performed. These two estimates ζ̂
f
(t) and ζ̂

b
(t)

are then fused by the following covariance intersection algorithm: Given the two

estimates (ζ̂
f
(t), P̂

f
(t)) and (ζ̂

b
(t), P̂

b
(t)), the fused estimate is computed as in

Storve (2012):

P̂ (t) =
(
(P̂

f
(t))−1 + (P̂

b
(t))−1

)−1

ζ̂(t) = P̂
(
(P̂

f
(t))−1ζ̂

f
(t) + (P̂

b
(t))−1ζ̂

b
(t)
)
.

This is done for all time-steps and yields the smoothed estimates ζ̂(t).

4.3.3 Implementation Strategy

For implementation, we will keep to the simplest form of a forward-backward
Kalman Smoother, which assumes a fixed and finite set of measurements and is,
therefore, restricted to post-processing only. The forward filter is operated in
the usual way as stated in section 4.2. The backward filter can be classified as
a fixed-interval smoother, where we restrict the backward prediction and update
stage on only one snapshot past (in time) the interior point of interest. The aim
is solely to evaluate if an additional annexation of a smoothing algorithm can
improve the signal parameters estimates. More (computational) complex forms
of smoothing strategies are outside the scope of this work, however this can be
easily extended if additional benefit is shown.

4.4 Summary of the Algorithm

Finally we can put together all results. In this work a two-stage estimation
algorithm is proposed. It is composed of an outer stage keeping track of time-
variations in terms of number of paths and paths’ parameters, and an inner stage
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applying a snapshot-based Bayesian estimator. While the inner stage is performed
by using the Variational Bayesian Space-Alternating Generalized Expectation-
Maximization (VB-SAGE) algorithm (see section 3), the outer stage makes use
of Kalman Filtering plus Kalman Smoothing of the parameters. This approach
we denote as Bayesian Estimation and Kalman Tracking/Smoothing (BEKS)
algorithm, which is summarized in fig. 7.
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t = 1 VB-SAGE Initialization Get initial estimates: ζ̂(1)|y(1) and P̂ (1)|y(1)

Kalman Filtering

Kalman Prediction Predict: ζ̂−(t)|y(t) = f(ζ̂(t − 1)) and P̂−(t)|yk = f(P̂ (t − 1))

VB-SAGE Update Update: ζ̂−(t)|y(t) and P̂−(t)|y(t)

Order decreased? Kill respective ’fictive’ paths

VB-SAGE update with corrected order L: ζ̂−(t)|y(t) and P̂−(t)|y(t)

Order increased? Add respective ’physical’ paths

VB-SAGE update with corrected order L: ζ̂−(t)|y(t) and P̂−(t)|y(t)

t = t + 1 Kalman Update Update: ζ̂(t)|y(t) = f(ζ̂−(t)) and P̂ (t)|y(t) = f(P̂−(t))

Kalman Smoothing Update: ζ̂(t) and P̂ (t)

yes

no

yes

no

Figure 7: Graphical representation of Bayesian Estimation and Kalman Tracking/Smoothing
algorithm
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5 Simulation Results

A verification of BEKS should be performed by a comparison of results relat-
ing the snapshot based implementations of SAGE and VB-SAGE as well as the
Kalman Enhanced Super Resolution Tracking algorithm KEST introduced by
Jost, Wang, Fiebig and Pérez-Fontán (2012). KEST works in a similar way com-
pared to BEKS as a two-stage estimator. While the inner stage makes use of the
SAGE algorithm for snapshot-based estimation, the outer stage applies several
Kalman Filters for tracking which are running in parallel each with a different
model order. After all Kalman Filters have calculated their current estimates, a
decision among all results is performed. Note that any model order change with
respect to the last time step is penalized within this implementation.

To check the performance of BEKS, simulations in a geometry-based artificial
scenario have been exercised; consisting of 7 static reflectors and a moving re-
ceiver. The direct Line-of-Sight (LoS) has been omitted and the single antenna
transmitter is assumed to be stationary in a far field condition. The receiver is
equipped by a 5-element linear antenna array and is moving along a trajectory
in x-direction. A measurement has been simulated every 0.1 m on the receiver
trajectory. All elements within the scenario are placed on the x/y-plane. An
inter-element spacing of 0.45λ is applied to the antennas, with λ is denoting the
wavelength. A snapshot at every 0.1 m on the trajectory has been generated with
101 samples per antenna, so the number of overall samples is 505. The bandwidth
of the transmitted signal has been fixed to 100 MHz and the carrier frequency
to 500 MHz. For simulation all paths have equal power and the Signal-to-Noise
Ratio (SNR) is calculated as Et||y(t)||2/(505 ·σ2), where σ2 is the variance of the
white receiver noise. An overview of the scenario is shown in fig. 8. Furthermore
fig. 9 visualizes the delay and azimuth angle of arrival change for each of the
reflected paths in the simulated time frame of 500 snapshots.
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Figure 9: Visualization of delay and azimuth angle of arrival to the LoS path delay over time
t for each path

5.1 Estimation Performance

To verify the estimation performance 100 Monte Carlo runs were performed.
Thereby we use the MSE

10 log10 Es,t




L(t)∑

l=1

|ϑ̂l,s(t)− ϑl(t)|2

 [dB] ϑ ∈ {w, τ, φ}

of estimated ϑ̂ and true parameters ϑ over all time points t as well as all Monte
Carlo runs s as performance criterion. To guarantee uniqueness of the MSE, all
considerations are based on true, fixed model order L. Fig. 10 shows the perfor-
mance in terms of complex amplitude w, delay τ , and azimuth angle of arrival
φ estimation error. Note that in the delay case, the lines for BEKS and KEST
are overlapping.

For a start a general evaluation of the tracking algorithms BEKS/KEST and
the snapshot-based methods SAGE/VB-SAGE should be carried out. Obviously
the tracking algorithms outperform the snapshot-based schemes in all verifica-
tions. Clearly, BEKS and KEST can track the propagation paths more accurately
than the snapshot-based algorithms, since they make use of past snapshot results
within the Kalman filtering process. In what follows we will have a closer look
on estimation performance for all types of algorithms.
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Figure 10: Visualization of the performance in terms of delay, azimuth angle of arrival, and
complex amplitude estimation error between the tracking algorithms BEKS/KEST
and the snapshot-based methods SAGE/VB-SAGE

Considering the snapshot-based approaches SAGE and VB-SAGE first. The cor-
responding results show differences between both methods, since the latter one
is more accurate in higher SNR regions. Fig. 11 visualizes as an example the
estimated angle of arrivals for each multipath component at SNR of 10 dB of one
Monte Carlo run. It can be seen that the estimation results for SAGE (a) are
more imprecise (compared to VB-SAGE (b)) at time points 120 to 170, where
the chosen scenario comprises an intersection of multipath components 1 and 2
in delay at t = 140. Thereby SAGE is unreliable to estimate the parameters of
two propagation paths as long as they are overlapping in their delay parameter.
Obviously SAGE is in contrast to VB-SAGE more prone to handle the parame-
ter estimation right what affects as the angle of arrival estimation accurateness
leading to a higher MSE.
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(b) Path estimation accurateness of VB-SAGE
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(c) Path estimation accurateness of KEST
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(d) Path estimation accurateness of BEKS

Figure 11: Visualization of the path estimation accurateness for azimuth angle of arrival at
fixed model order at SNR of 10 dB

Next, we characterize the tracking algorithms BEKS and KEST. Both track-
ing algorithms show nearly equal performance in matters of estimation accuracy.
First, applying the proposed BEKS algorithm with an included smoothing pro-
cedure shows a marginally increase of estimation accurateness compared to using
the Kalman Filtering version only. Thus, the smoothing version performs better.
Secondly, the BEKS algorithm provides similar results compared to KEST. The
resulting estimation error of the complex amplitude seems to be lower by using
BEKS than KEST; vice versa in the case of azimuth angle of arrival estimation
error. Finally both methods can not be distinguished from one another for delay
consideration.
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5.2 Detection of Relevant Paths

For a comparison of BEKS with some selected algorithms in terms of propagation
path detection quality 100 Monte Carlo runs s were performed for each snapshot
t. Since the classical SAGE approach does not come with an integrated model
order selection criteria, it is ignored in further considerations.
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Figure 12: Visualization of path detection error of the snapshot-based VB-SAGE and the
tracking algorithms BEKS/KEST

The mean absolute difference of number of true L(t) and estimated L̂(t) multipath
components

Es

[
|L̂s(t)− L(t)|

]

for SNR’s -10, -5, and 0 (in dB) is visualized in fig. 12 (a) - (c) for the snapshot-
based VB-SAGE algorithm as well as the tracking algorithms BEKS and KEST,
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while fig. 12 (d) shows the overall error in detected number of paths

Es,t

[
|L̂s(t)− L(t)|

]

for all SNR’s.

The corresponding results show that the tracking methods BEKS and KEST
clearly outperform the snapshot-based VB-SAGE algorithm, with BEKS exhibit-
ing the best performance in lower SNR’s, while the algorithms performance can
not be distinguished with increasing SNR (see fig. 12 (d)).
Let’s now have a closer look on path detection errors, starting with the case an
SNR of -10 dB (fig. 12 (a)): It can bee seen that VB-SAGE is unreliable to esti-
mate the number of relevant components within the whole scenario, while BEKS
and KEST are only error-prone at snapshots t = 250 and t = 325 when the model
order changes or when paths are close together in their azimuth angle of arrival
value at t ≥ 420. Thereby BEKS shows even better performance than KEST.
A picture similar to that is observed at an SNR of -5 dB (fig. 12 (b)). Generally,
the error decreases for all types of algorithms, however both tracking algorithms
only fail at corresponding model order change time points. Note that in the case
of t = 325, KEST solely exhibits its ’natural error’ since the algorithm is only
capable of removing or(!) including components. This seems to be particularly
problematic in situations when paths are removed and added simultaneously,
since KEST will not capture the model order change in a correct way.
Finally, BEKS is without any fault at an SNR of 0 dB (fig. 12 (c)), KEST only
shows the aforementioned error at t = 325, while the snapshot based VB-SAGE
algorithm is inaccurate in the delay intersection of multipath components 1 and
2 around t = 140.



55

6 Conclusion and Outlook

In this work the two-stage Bayesian Estimation and Kalman Tracking/Smoothing
(BEKS) algorithm is proposed which is able to both detect individual propagation
paths and track how these paths evolve with time. It is composed of an outer stage
keeping track of time-variations in terms of number of paths and paths’ param-
eters, and an inner stage applying a snapshot-based Bayesian estimator. While
the inner stage is performed by using a Variational Bayesian Space-Alternating
Generalized Expectation-Maximization (VB-SAGE) algorithm, the outer stage
makes use of Kalman Filtering plus Kalman Smoothing of the parameters.
Simulation based on a geometrical scenario with a moving receiver is given, show-
ing that the algorithm outperforms the standard snapshot-based algorithms in
terms of identifying the number of individual paths and estimation accuracy, since
any snapshot-based method does not include prior information. Furthermore, the
proposed BEKS algorithm is shown to be even superior to Kalman Enhanced Su-
per Resolution Tracking algorithm (KEST) in cognition of individual propagation
paths. In addition there are two advantages of using the novel algorithm instead
of KEST: First, while KEST runs several Kalman Filters with a different model
order in parallel, BEKS does only require for one, what should be computational
less complex. Second, the proposed algorithm allows for adding and removing
multipath components at the same snapshot, while KEST is only capable of re-
moving or(!) including components. This seems to be particularly problematic
in situations when paths are removed and added simultaneously, since the latter
approach will not capture the model order change in a correct way.

Despite everything the existing status quo of BEKS is not the end of the road.
The algorithm applies model order decisions by testing if one specific path am-
plitude is above the noise floor. This approach could be extended by using a
combined version of paths’ amplitudes, respecting the correlation between all ex-
isting multipath components. Furthermore one could also think about including
a penalization strategy for model order changes in order to avoid paths being
switched off and on again what guarantees for an improved tracking of multi-
paths over time.
A further aspect is to include a dense multipath component (DMC), i.e. a col-
ored noise term which may be modelled by a multichannel auto-regressive pro-
cess (Jost, Wang, Shutin and Antreich (2012)), a multichannel moving average
process, or using a Kronecker Structure (Salmi et al. (2009)). The current im-
plementation assumes a white noise process, which is insufficient compared to
measurement data. The DMC count for spatial as well as temporal properties
of a random scattering process in wireless channels (Salmi (2012)). Last but not
least it is indispensable to check, if the algorithm is able to capture the dynamic
behavior of the propagation channel by using real measurement data.
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A Proofs

A.1 Transformation of the Variational Lower Bound

In this section we want to proof the equivalency of two expressions for the Vari-
ational Lower Bound, introduced in chapters 3.3 and 3.4, i.e.

E
q(Θ,w,α,Σ|y)

log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}
!
=

E
q(Θ,α,Σ|y)

log

{
c0 × exp

{
Eq(w|α,y) log {p(y|Θ,w,α,Σ)× p(Θ,α,Σ)}

}

q(Θ,α,Σ|y) − c1

}
,

(A.1)

where c0, c1 are constants.

Now, let’s going on with inspecting the left hand expression of the Variational
Lower Bound in eq. (A.1). With using eq. (3.9), the denominator of the Varia-
tional Lower Bound can then be written as

E
q(Θ,w,α,Σ|y)

log {q(Θ,w,α,Σ|y)} =

E
q(α|y)

{
E

q(Θ|y)

{
E

q(Σ|y)

{
E

q(w|α,y)
log {q(Θ,w,α,Σ|y)}

}}}
.

In the same manner we express (with ϑ = {Θ,w,α,Σ})

E
q(Θ,w,α,Σ|y)

log {p(Θ,w,α,Σ,y)} =
∫

Θ

∫

w

∫

α

∫

Σ

[
log {p(y|Θ,w,α,Σ,y)× p(w|α)× p(α)× p(Θ)× p(Σ)}×

q(Θ,w,α,Σ|y) =

q(w|α,y)q(Σ|y)
L∏

l=1

q(αl|y)q(θl|y)
]
∂ϑ =

E
q(α|y)

{
E

q(Θ|y)

{
E

q(Σ|y)

{
E

q(w|α,y)
log {p(Θ,w,α,Σ,y)}

}}}
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for the numerator of the left hand term of the Variational Lower Bound and com-
bine both results in its temporary form:

E
q(Θ,w,α,Σ|y)

log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}
=

E
q(α|y)

{
E

q(Θ|y)

{
E

q(Σ|y)

{
E

q(w|α,y)
log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}}}}
. (A.2)

In what follows we do some mathematical transformations to rewrite the Varia-
tional Lower Bound. Therefore, we consider only the last part of eq. (A.2) for a
start:

E
q(w|α,y)

log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}
=

log

{
exp

{
E

q(w|α,y)
log {p(Θ,w,α,Σ,y)}

}}
− E

q(w|αy)
log {q(Θ,w,α,Σ|y)} =

log

{
exp

{
E

q(w|α,y)
log {p(Θ,w,α,Σ,y)}

}}
− log {q(Θ,α,Σ|y)} − k0 =

log

{
exp

{
Eq(w|α,y) log {p(Θ,w,α,Σ,y)}

}

q(Θ,α,Σ|y)

}
− k0 (A.3)

In the second and third line of eq. (A.3) we use eq. (3.9), i.e.

E
q(w|αy)

log {q(Θ,w,α,Σ|y)} =

E
q(w|α,y)

log {q(w|α,y)}
︸ ︷︷ ︸

:=k0, constant

+ log {q(Θ|y)}+ log {q(α|y)}+ log {q(Σ|y)} =

log {q(Θ,α,Σ|y)}+ k0.

Now we do again restrict ourselves on a sub view of the derived eq. (A.3) by
considering the numerator only:

exp

{
E

q(w|α,y)
log {p(Θ,w,α,Σ,y)}

}
=
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exp

{
E

q(w|α,y)
log {p(Θ,α,Σ|w,y)× p(w|α)× p(y)}

}
=

exp

{
E

q(w|α,y)
log {p(Θ,α,Σ|w,y)}+ E

q(w|α,y)
log {p(w|α)}+ log {p(y)}

}

Since Eq(w|α,y) log {p(w|α)} and log {p(y)} are constant (k1) in terms of Θ,α,
and Σ (see therefore eq. (A.2)), we proceed with using

p(Θ,α,Σ|w,y) =
p(y|Θ,w,α,Σ)× p(Θ,α,Σ)

p(y)

to

exp

{
E

q(w|α,y)
log {p(Θ,w,α,Σ,y)}

}
=

exp {k1} × exp

{
E

q(w|α,y)
log {p(y|Θ,w,α,Σ)}+ log {p(Θ,α,Σ)} − log {p(y)}

}

Again, log {p(y)} is constant in terms of Θ,α, and Σ and is combined with
k1 to k2.

exp

{
E

q(w|α,y)
log {p(Θ,w,α,Σ,y)}

}
=

exp {k2} × exp

{
E

q(w|α,y)
log {p(y|Θ,w,α,Σ)× p(Θ,α,Σ)}

}
(A.4)

Finally we plug eq. (A.4) into eq. (A.3)

E
q(w|α,y)

log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}
=

log

{
exp {k2} × exp

{
Eq(w|α,y) log {p(y|Θ,w,α,Σ)× p(Θ,α,Σ)}

}

q(Θ,α,Σ|y)

}
− k0,

(A.5)

and the resulting eq. (A.5) into eq. (A.2) in the final form of the transformed
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Variational Lower Bound

E
q(Θ,w,α,Σ|y)

log

{
p(Θ,w,α,Σ,y)

q(Θ,w,α,Σ|y)

}
=

E
q(Θ,α,Σ|y)

log

{
c0 × exp

{
Eq(w|α,y) log {p(y|Θ,w,α,Σ)× p(Θ,α,Σ)}

}

q(Θ,α,Σ|y)

}
− c1,

(A.6)

with c1 = k0 and c0 = exp {k2}.

A.2 Maximization of the Variational Lower Bound

Assume the transformed Variational Lower Bound

E
q(Θ,α,Σ|y)

log

{
c0 × exp

{
Eq(w|α,y) log {p(y|Θ,w,α,Σ)× p(Θ,α,Σ)}

}

q(Θ,α,Σ|y)

}
− c1.

which needs to be maximized. For notational convenience we rewrite this ex-
pression as

E
q(ϑ|y)

log

{
p̃(ϑ)

q(ϑ|y)

}
, (A.7)

without respecting the constant term c1

Case 1: Proof of eq. (3.11)

Assume q(ϑ|y) is modelled as a dirac, thus δ(ϑ − ϑ̂) or in other representa-
tion:

q(ϑ|y) = lim
σ2→0

Nσ2(ϑ− ϑ̂). (A.8)

Plugging in eq. (A.8) into eq. (A.7)

E
q(ϑ|y)

log

{
p̃(ϑ)

q(ϑ|y)

}
=
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lim
σ2→0

∫
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∫
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log
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Since

∫
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log
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}
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denoting the negative differential Entropy which can be stated in the Gaussian
case as

∫

ϑ

log
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Nσ2(ϑ− ϑ̂)

}
×Nσ2(ϑ− ϑ̂)∂ϑ = −1

2
log |2π exp(1)σ2|,

we proceed with

E
q(ϑ|y)

log

{
p̃(ϑ)

q(ϑ|y)

}
=

∫

ϑ

log p̃(ϑ)× lim
σ2→0

Nσ2(ϑ− ϑ̂)∂ϑ+ lim
σ2→0

1

2
log |2π exp(1)σ2| = log p̃(ϑ̂)−∞ =

log p̃(ϑ̂)− c2 (A.9)

Finally, the result in eq. (A.9) implies that maximizing the Variational Lower

Bound is equal to maximizing log p̃(ϑ̂), so

argmax
ϑ

E
q(ϑ|y)

log

{
p̃(ϑ)

q(ϑ|y)

}
= argmax

ϑ

{
p̃(ϑ̂)

}

Case 2: Proof of eq. (3.12)

Let’s first reformulate the Variational Lower Bound in eq. (A.7) as a Kullback
Leibler divergence, thus

E
q(ϑ|y)

log

{
p̃(ϑ)

q(ϑ|y)

}
= − E

q(ϑ|y)
log

{
q(ϑ|y)
p̃(ϑ)

}
= −DKL(q(ϑ|y)‖p̃(ϑ)),
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and maximizing the Variational Lower Bound is equal to minimizing the Kullback
Leibler divergence DKL(q(ϑ|y)‖p̃(ϑ)). The Kullback-Leibler divergence is always
non-negative and zero if q(ϑ|y) = p̃(ϑ).

Now assume q(ϑ|y) and p̃(ϑ) to be modelled as q(ϑ|y) ∼ N (µq,Σq) and p̃(ϑ) ∼
N (µp̃,Σp̃), respectively.

Therefore, DKL(q(ϑ|y)‖p̃(ϑ)) is minimal (i.e. 0) when q(ϑ|y) = p̃(ϑ), which
is if µq = µp̃ and Σq = Σp̃:

−DKL(q(ϑ|y)‖p̃(ϑ)) = 0 ⇔ argmax
µq ,Σq

E
q(ϑ|y)

log

{
p̃(ϑ)

q(ϑ|y)

}

⇔ µq = µp̃ and Σq = Σp̃
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B Notations and Abbreviations

Notation Description

a Mean vector of magnitude
al Mean of magnitude of the l-th component
a−l Mean vector of magnitude of all but the l-th component
α Vector of sparsity/precision parameters
αl Precision parameter of the l-th component
α−l Vector of precision parameters of all but the l-th component
A Number of antennas
A Kalman transition matrix

c(φ) Steering vector for azimuth angle of arrival φ
H Kalman measurement matrix
I Identity matrix
j Complexe number j =

√
−1

K̂(t) Kalman Gain at time point t

l Index number of the l-th component
L Number of assumed components
λ Wavelength

M Frequency samples
N Number of total samples
ωn Frequency axis

pn Antenna positions on the plane

P̂−(t) Covariance Kalman prediction at time point t

P̂ (t) Covariance Kalman update at time point t
Φ Covariance matrix of complex amplitude
φ Mean vector of azimuth angle of arrival
φl Mean of azimuth angle of arrival of the l-th component
φ−l Mean vector of azimuth angle of arrival of all but the l-th

component

Q Kalman system noise matrix

R̂(t) Kalman measurement noise matrix at time point t

s Index number for Monte Carlo run
s(θl) Nonlinear parametrisized vector by θl

S(Θ) Nonlinear parametrisized matrix by Θ
S(Θ−l) Nonlinear parametrisized matrix by Θ−l

σ2 Noise variance
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Σ Noise covariance matrix
Σl Noise covariance matrix of the l-the component
Σ−l Noise covariance matrix of all but the l-the component

t Snapshot time
T Final snapshot time
τ Mean vector of time delay
τl Mean of time delay of the l-th component
τ−l Mean vector of time delay of all but the l-th component
θ Vector of signal parameters {τ ,φ}
θl Vector of signal parameters {τ ,φ} of the l-the component
Θ−l Matrix of signal parameters {τ ,φ} of all but the l-the

component

u(τ ) Frequency response with time delay τ

ϕ Mean vector of phase
ϕl Mean of phase of the l-th component
ϕ−l Mean vector of phase of all but the l-th component

w Mean vector of complex amplitude
wl Mean of amplitude of the l-th component
w−l Mean vector of complex amplitude of all but the l-th

component

xl Measurement vector of the l-th component
x̂−(t) State vector Kalman prediction at time point t
x̂(t) State vector Kalman update at time point t
ξ Noise zero mean circular complex normal vector

y Measurement vector of size N × 1

ζ Stacked state vector for magnitude, phase, delay,
azimuth angle of arrival, and noise variance with respective
differences

ζ̃ Stacked state vector for magnitude, phase, delay,
azimuth angle of arrival, and noise variance

ζ̂−(t) State vector ζ Kalman prediction at time point t

ζ̂(t) State vector ζ Kalman update at time point t

ζ̂VB(t) New measurements estimated by VB-SAGE at time point t
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Abbreviation Description

BEKS Bayesian Estimation and Kalman Tracking/Smoothing
BCRLB Bayesian Cramer-Rao Lower Bound
CRLB Cramer-Rao Lower Bound
DMC Dense multipath component
EM Expectation-Maximization
GPS Global Positioning System
KEST Kalman Enhanced Super Resolution Tracking
KL Kullback-Leibler (divergence)
KP Kalman Prediction
KU Kalman Update
LoS Line-of-Sight
MAP Maximum a posteriori (estimation)
ML Maximum likelihood (estimation)
MSE Mean Squared Error
SAGE Space-Alternating Generalized Expectation-Maximization
SIMO Single-Input Multiple-Output
SNR Signal to noise ratio
SRA Super resolution algorithm
VB-SAGE Variational Bayesian SAGE
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fahren zur Funkkanalparameterschätzung, PhD thesis, Eidgenössische Technis-
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