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1. Einfiihrung

In der Statistik, sowie in der Finanz- und Wirtschaftsokonomie nimmt die Zeitreihenana-
lyse eine sehr wichtige Rolle ein. Sie dient vor allem dazu, den Verlauf einer Zeitreihe zu
modellieren und anhand dieser die zukiinftigen Werte zu prognostizieren. Um die Prognose
so einfach wie moglich zu gestalten, versucht man bereits in der Modellierung der Werte
moglichst viele Informationen aus den Daten herauszulesen.

Eine Vorgehensweise in der Modellierung besteht darin, die Zeitreihe in mehrere Kom-
ponenten (Trend (T), Saison (S) und Rest (R)) zu zerlegen, da in den meisten Féllen
Zeitreihen eine saisonale Struktur aufweisen und fiir den Analysten vor allem der Trend
fiir den zukiinftigen langfristigen Verlauf von grofser Bedeutung ist.

Grundsétzlich gibt es bei der Komponentenzerlegung zwei unterschiedliche Ansétze: Das
additive oder das multiplikative Verfahren.

Beim additiven Verfahren (Y = T+ S+ R) wird von einer konstanten Saison ausgegangen,
deren Effekt absolut von Saison zu Saison immer ungefahr gleich stark ausgepragt ist. Ein
Beispiel stellt die Arbeitslosigkeit in Deutschland (in %) dar.

Der multiplikative Ansatz hingegen (Y = T« S*R), ist bei einer sich abschwéchenden oder
verstiarkenden saisonalen Struktur deutlich besser geeignet, da diese nun multiplikativ von
der Trendkomponente abhéngig ist und sich somit dquivalent zum Trend entwickelt. Das
heifst, bei zunehmendem Trend wird die Saison stérker, bei abnehmendem Trend schwé-
cher. Ein Beispiel hierfiir stellt die Stromgewinnung durch Solarenergie in Deutschland
dar. So fiihrt eine Erhéhung der installierten Leistung zu einer stérkeren Erhéhung des
produzierten Stromes durch Sonnenenergie in den Sommermonaten, als in den Wintermo-
naten.

Bevor eine Zerlegungsmethode, die ich in R implementiert habe, vorgestellt wird, folgt
eine kurze Beschreibung der Eigenschaften der verschiedenen Komponenten.

Die Saisonkomponente hat eine, mit festem Abstand (z.B. téglich, monatlich, jahrlich, ...)
wiederkehrende Struktur in den Daten, die in sich moglichst konstant sein soll.

Die Trendkomponente hingegen, soll eine gegléttet Linie darstellen, die keinerlei saisonale
Struktur im Zeitraum der Saisonkomponente aufweist und aus der eine langfristige Ent-
wicklung ersichtlich sein soll. In dieser besteht trotzdem die Moglichkeit, dass mittel- bis
langfristigen Schwankungen auftreten. Vor allem bei makrotkonomischen Zeitreihen sind
die circa 3-5 Jahren langen Konjunkturzyklen in der Trendkomponente enthalten.

Die dritte Komponente, der Rest, weist die Werte aus, die nicht iiber die Saison und den
Trend erklart werden konnen. Es sollte keine regelméfige Struktur in diesen Daten vor-
handen sein. Das bedeutet, alle Werte sollten stochastisch zufiillig entstanden sein.

In der folgenden Arbeit soll nun ein Verfahren vorgestellt werden, mit dem die Zerlegung
einer Zeitreihe durchgefiihrt werden kann. Es ist das sogenannte Saison-Trend Zerlegungs-
verfahren anhand von Loess (Abkiirzung: STL), entwickelt vor allem von Cleveland. Es
beruht auf einem iterativen Algorithmus, dem additiven Ansatz der Komponentenzerle-
gung und verwendet vor allem das Loess- Verfahren zur Schétzung der einzelnen Werte
der Komponenten. Durch Manipulation der Input-Zeitreihe besteht die Moglichkeit das
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Verfahren auch multiplikativ zu berechnen (Cleveland et al., 1990).

Das STL-Verfahren wurde von Cleveland bereits in R mithilfe der Programmiersprache
Fortran77 implementiert. Ich habe nun den Fortran77-Code in R neu geschrieben und um
einige Einstellungsmoglichkeiten erweitert. Aufserdem habe ich einige Diagnoseplots zur
besseren Bestimmung der Parameter in R implementiert.

Produktion im Produzierenden Gewerbe Deutschland (Preisindex: 2010=100)
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Abbildung 1.1.: Zerlegung der Produktion im Produzierenden Gewerbe in Deutschland

In der Abbildung 1.1 sind die Ergebnisse der Zerlegung einer makrotkonomischen Zeitrei-
he dargestellt. Die Zerlegung wurde mit den STL-Verfahren durchgefiihrt. Die Ausgangs-
zeitreihe stellt die Produktion im Produzierenden Gewerbe in Deutschland von Januar
1991 bis September 2008 dar. Die Werte wurden kalenderbereinigt und liegen in konstan-
ten Preisen vor (inflationsbereinigt). Das Jahr 2010 stellt die Referenz dar und besitzt
somit den Wert 100 (Deutsche Bundesbank, 2013). Um die Finanzkrise im Jahre 2008
und 2009 zu umgehen, wurde die Zeitreihe zu einem fritheren Zeitpunkt abgeschnitten.
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Deswegen stellt das Jahr 2010 die Referenz dar, obwohl diese in der verwendeten In-
putzeitreihe noch keine Realisation besitzt. Mithilfe der Produktion im Produzierenden
Gewerbe (01.1991-09.2008) werden im spéteren Verlauf die verschiedenen Einstellungs-
moglichkeiten des STL-Verfahrens erldutert. Zuerst beachte man die Balken am rechten
Rand. Sie geben an, in welcher Achsen-skalierung sich die jeweiligen Grafiken befinden. So
entspricht die Hohe der jeweiligen Balken der gleichen y-Achsenabschnittsgrofse.

In der ersten Grafik ist die Ausgangszeitreihe dargestellt. Sie weist sehr viel Schwankung
auf, wobei eine gleichbleibende und wiederkehrende Struktur in der Zeitreihe erkennbar
ist. Dies spricht fiir einen saisonalen Verlauf. Uber den kompletten Zeitverlauf ist ein po-
sitiver Trend festzustellen. In den folgenden Grafiken sind die einzelnen Komponenten der
zerlegten Zeitreihe dargestellt.

In der zweiten Grafik erkennt man die konstante Struktur der Saisonkomponente (jahr-
lich), so ist der Verlauf innerhalb eines Jahres konstant iiber den Zeithorizont.

Die dritte Grafik weist den Verlauf der Trendkomponente auf, sie besitzt einen positiven
Trend. Die Konjunkturzyklen von 3-5 Jahren sind deutlich erkennbar.

Die Restkomponente ist in der vierten Grafik dargestellt. Sie weist scheinbar sehr wenig
Struktur auf. Verfahren um dies festzustellen werden spéter néher erldutert. Am Balken
am rechten Rand erkennt man, dass die Restkomponente die geringsten Werte aufweist,
so ist die Saison deutlich stiarker ausgeprégt, als der Rest.

Im néchsten Kapitel werden zunéchst die im STL vorkommenden statistischen Glattungs-
verfahren erldutert, der gleitenden Durchschnitt und das Loess-Verfahren.
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2.1. Gleitender Durchschnitt

Der gleitende Durchschnitt stellt ein einfaches statistisches Verfahren dar, um eine Zeitrei-
he zu gléatten. Bei diesem wird der Mittelwert einer bestimmten Anzahl umliegender Punk-
te (1), des zu schitzenden Zeitpunktes, berechnet. Betrachtet man eine Zeitreihe (y1, 2,
.y Yt), so wird der geschatzte Mittelwert y; zum Zeitpunkt i folgendermafen berechnet
(Treiber, 2010, vgl. 17(a)).

i+m

.. T—1 _ 1
Fiir 7 gerade: m = 5= Z Yj (2.1)
Jj=i—m
- 1 y Ty i+m—1
- ey — L~ 2 dimm jt+m .
Fiir 7 ungerade: m = 5 i Ui= 7_( 5 + . Z vj) (2.2)
Jj=t—m-+1

Dieses Verfahren stellt eine gute Grundlage dar, um Trendverldufe zu erlangen, da man
iiber einen bestimmten Zeitraum die Werte mittelt. Wiirde man z.B. den Wert von 7 in
Hohe der Anzahl der Zeitpunkte je Saison einstellen, so konnte man diese aus der Zeitreihe
wegmitteln (Treiber, 2010, vgl. 17(b)). Jedoch treten bei diesem Verfahren immer Proble-
me an den links- und rechtsseitigen Grenzen der Zeitreihe auf. Wie man anhand der Formel
erkennen kann, geht der untere Laufindex der Summe von ¢ = ¢ — m. Das bedeutet der
erste zu schétzende Zeitpunkt muss grofser als m sein. Somit kénnen die ersten m- und die
letzten m-Zeitpunkte der Zeitreihe nicht geschétzt werden. Dies ist nicht zufriedenstellend,
da vor allem die rechtsseitige Grenze von grofer Bedeutung fiir die Prognose ist.

Dass dieses Verfahren trotzdem Eingang in das STL gefunden hat, beruht darauf, dass
innerhalb des Algorithmuses mit dem Loess-Verfahren Werte prognostiziert werden und
aufgrund dessen die Abschneidung der m-letzten Werte keine Probleme darstellt (vgl.
Kap.3.1.1). Auerdem koénnen mithilfe des gleitenden Durchschnitts langfristige Schwan-
kungen, die bei der Berechnung der Saison auftreten und in die Trendkomponente einflie-
fen sollen, einfach und unkompliziert berechnet werden.

2.2. Loess

Das Loess-Verfahren kann dazu benutzt werden eine Zeitreihen zu glatten. So muss bei
diesem fiir die Berechnung immer eine zeitliche Komponente x; und die Werte zu diesen
Zeitpunkten y(z;) iibergeben werden (i = 1,...,n), um ein Ergebnis zu erhalten. Es be-
steht auch die Moglichkeit, dass die Ausgangszeitreihe an einzelnen Zeitpunkten fehlende
Werte enthalt.

Loess beruht auf dem Verfahren der Lokal gewichteten Regression. So wird fiir jeden Zeit-
punkt z; eine individuelle Regressionsschatzung durchgefiihrt, bei der nur der geschétz-
te Wert y(z;) von Bedeutung ist, nicht aber die einzelnen Regressionsparameter. Bevor
die Schatzung der Regression mithilfe der Kleinsten-Quadrate Schétzung vorgenommen
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werden kann, miissen zuerst die Gewichte berechnet werden, die bestimmen mit welchem
Anteil die umliegenden Werte in die Schétzung mit einfliefen. So soll erreicht werden, dass
Werte, die in der Ndhe des zu schitzenden Zeitpunktes liegen, hohere Gewichte erhalten,
als Werte, die weiter vom Zeitpunkt entfernt liegen. Im folgenden wird zur Vereinfachung
der Zeitpunkt, zu dem ein Wert geschétzt wird, mit xg benannt.

Die Gewichte sind fiir jede individuelle Regressionschétzung unterschiedlich und werden
fiir jeden Zeitpunkt anhand des zeitlichen Abstandes zum schéitzenden Punkt, individuell
bestimmt.

Zuerst iibergibt der Statistiker die Spannweite (q). Sie gibt die Anzahl der Punkte (umlie-
genden) an, die in die Schitzung mit einfliefen sollen. Der Wert von dieser muss ungerade
sein, da der Wert des zu schétzenden Zeitpunktes in der Spannweite mit eingerechnet
wird. So impliziert eine Spannweite von 13, dass die vorherigen und nachfolgenden sechs
Werte, sowie der Wert zum Zeitpunkt xg in die Schitzung aufgenommen werden. Sollten
nicht ausreichend vorherige oder nachfolgende Werte zur Verfiigung stehen (links- oder
rechtsseitige Grenze der Zeitreihe), wird ein zusétzlicher nachfolgender oder vorheriger
Wert mit einbezogen. Nur fiir diese Werte wird ein Gewicht wy,(x;) zur Schitzung des
Zeitpunktes xy ermittelt.

Fiir die Gleichung der Gewichtsberechnung miissen zwei unterschiedliche Fille unterschie-
den werden.
Fiir den ersten Fall nimmt man an, dass ¢ < n ist (n=Anzahl der Zeitpunkte). Danach wird
der Wert des maximalen zeitlichen Abstandes der einfliefenden Punkte zum schitzenden
Wert bestimmt (A(zg) = max|zg — x;|) und mithilfe einer Kerndichtefunktion die einzel-
nen Gewichte ermittelt. Beim Loess-Verfahren geschieht dies mithilfe einer trikubischen
Funktion (Cleveland et al., 1990, vgl. S. 5-6).

K(u) = {(1—u3)3 falls 0 <u < 1 (2.3)

0 sonst

Somit erhélt man folgende Gleichung fiir die Berechnung der einzelnen Gewichte:

|zj — 20

wxo(xj) = K( /\(x())

) (2.4)

Wie man an der Formel 2.4 erkennen kann, nehmen die Gewichte nur Werte zwischen
null und eins an, da die Kerndichtefunktion nur diesen Wertebereich annimmt. Auferdem
erkennt man, dass Werte, die nahe des zu schiatzenden Zeitpunktes liegen, hohere Gewichte
bekommen, als Werte, die weiter entfernt liegen (vgl. Abbildung 2.1). Der Punkt mit
maximalem Abstand flieft nicht mehr in die Schdtzung mit ein, da dessen Gewicht null
betrigt. Somit fliefen nur ¢ — 2 Werte in die Schétzung mit ein, wenn die Ausgangswerte
symmetrisch um den zu schitzenden Zeitpunkt liegen. Deswegen stellt eine Spannweite
die kleiner als drei ist, keinen sinnvollen Wert dar, da sonst der Schatzwert der Realisation
entspricht.

Fiir zweiten Fall nimmt man an, dass ¢ > n ist. Wenn dies eintritt, wird \(z() noch
mit dem Faktor ¢/n multipliziert und man erhélt fiir die Gewichteberechnung folgende
Gleichung.

|zj — 20

wfl?o(xj) = K( )\(:L,O)g

) (2.5)
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Der Bruch q/n ist grofer als eins (¢ > n). Dies fithrt dazu, dass der Nenner von u grofer
wird und daraus folgt, dass der Wert von u verringert wird. Da K(u) = (1 — u?)3) gilt
und u kleiner wird, nimmt der Wert der Kerndichtefunktion und damit der Wert fir das
jeweilige Gewicht zu. Somit fiihrt dies dazu, dass weiter entfernt liegende Werte, wie vom
Benutzer erwiinscht, ein hoheres Gewicht bekommen.
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Abbildung 2.1.: Darstellung der Gewichte bei einer Spannweite von 9

In Abbildung 2.1 sieht man beispielhaft, welche Werte die Gewichte mit zunehmendem
Abstand annehmen. Die Spannweite wurde mit dem Wert neun festgelegt (¢ = 9). In der
ersten Grafik sieht man die Gewichte fiir die Schiatzung des vierten Zeitpunktes, in der
zweiten Graphik fiir die Schétzung des zehnten Zeitpunktes und in der dritten Graphik
die Schétzung fiir den zwanzigsten Zeitpunkt. In der letzten Grafik erkennt man, dass
nur Zeitpunkte, die links vom zu schitzenden Punkt liegen, fiir die Berechnung benutzt
werden. Ebenso sieht man, dass immer neun Werte in die Berechnung mit einfliefsen. So
dienen die ersten neun Punkte fiir die Schitzung der ersten fiinf Zeitpunkte, jedoch jeweils
mit unterschiedlicher Gewichtung.

Nachdem man nun die einzelnen Gewichte berechnet hat, wird nun die lokal gewichtete
Regression anhand der Kleinsten-Quadrate Schétzung vorgenommen.
Zuerst wird die Regressionsgleichung einer lokalen Regression ohne Gewichte gezeigt.

y(z;) = Bo + Bi(xo — z5) + Ba(zo — ) + ... + Byl — 25)P + e(x;) (2.6)
Man erkennt, dass fiir die Schitzung des Wertes y(xo) an der Stelle zy nur die Konstante
(Parameter [3p) von Bedeutung ist, da die Regression ausgehend vom Punkt (z() ermittelt
wird und der Faktor (z¢g — z;)P den Wert null annimmt.
Doch wie schitzt man den Parameter 8y7 Dies geschieht {iber die Minimierung der Fehler-
quadratsumme, wobei bei der gewichteten Regression die einzelnen Fehlerquadrate noch

mit dem ihnen zugewiesenen Gewicht multipliziert werden. Somit erh&lt man folgendes
Minimierungsproblem fiir die Bestimmung der Parameter (fy, ..., 8,) (Foster, b, vgl. S. 1).
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n

Q(Bo, ..., Bp) = mmz e(25)? % way (75) (2.7)
j=1

= min Z[?/(%’) — Bo — Bilzj — x0) — .. — By — )P % way(z5)  (2.8)
j=1

Zur Vereinfachung betrachtet man die Bestimmung des Wertes iiber die Matrizen- und
Vektordarstellung. Man benotigt folgende Matrizen und Vektoren (Foster, b, vgl. S. 1-3),

1 (x1—x0) ... (z1—z0)?
Xxo _ 1 (.%'2 - xo) (.%'2 - xo)p (29)
1 (zp—x0) ... (T —x0)?
Y = (y(@1), -, y(za))" (2.10)
B = (Bo, B, Bp)" (2.11)
Wy, (71) 0 0
Wy, = 0 Weo (x2) ... 0 (2.12)
0 0 e way ()

und damit muss nun folgende Fehlerquadratsumme minimiert werden.
min[(Y — Xz B)T Wy (Y — X4, B)] (2.13)

Nachdem man den vorherigen Term aus Formel 2.13 abgeleitet und null gesetzt hat, erhalt
man folgende Losung fiir die Gleichung.

B = (XL W, X0) "HXE W, Y) (2.14)

Da bei der lokalen Regression die Parameter in Abhéngigkeit des zu schétzenden Zeit-
punktes bestimmt werden, gibt, wie oben gezeigt, der Wert von [y den zu schétzenden
Wert an. Um den Wert somit zu erhalten, ist es ausreichend, die geschatzten Parameter
B mit einem Vektor zu multiplizieren, dessen Lénge p+1 ist und der eine fiihrende eins
und sonst nur Nullen besitzt, er wird mit e; definiert.

J(w0) = e (X WaoXuo) ™ (XL Wi Y) mit eq = (1,0,...,0) (2.15)

Mithilfe der Formel aus 2.15 erhélt man den geschitzten Wert zum Zeitpunkt xzo. Um die
komplette Loess-Schitzung zu erhalten, wird nun fiir jeden Punkt der Zeitreihe der Wert
mithilfe der lokalen gewichteten Regression ermittelt. Im spéter vorgestellten Verfahren
besteht die Moglichkeit einer konstanten, linearen oder quadratischen Regressionsschét-
zung (p =0,1,2).



3. Saison-Trend Zerlegung mithilfe von
Loess

3.1. Vorgehen

Das STL-Programm beruht auf einem Algorithmus und ist ein iteratives Saison-Trend
Zerlegungsverfahren, dessen Hauptbestandteile eine innere und &ufere Schleife sind. In
der inneren Schleife werden die einzelnen Komponenten (Saison und Trend) geschéitzt,
wobei die innere Schleife jeweils ni-mal durchlaufen wird. Die dufteren Schleife besteht aus
der inneren Schleife und einer Robustheitsschiatzung. Bei dieser bekommen Werte, die nur
schlecht iiber die beiden Komponenten Saison und Trend erklért werden kdnnen, geringere
Gewichte als Werte, die gut erklarbar sind. Bei einem erneuten Durchlauf der inneren
Schleife fliefsen diese Gewichte in die Komponentenschéitzung mit ein. Insgesamt wird die
aukere Schleife no-mal (ni und no sind Parameter des STL-Programms und miissen und
miissen vom Analysten angegeben werden. Sie geben die Anzahl der Schleifendurchlaufe
an) durchlaufen.

Als Output erhélt man:

e Saisonkomponente (S(z;))

e Trendkomponente (7'(x;))

e Restkomponente (R(z;))

e Robustheitsgewichte (wyo(x;))

3.1.1. Innere Schleife

Die Abfolge der Vorgénge in der inneren Schleife werden im folgenden dargestellt, wobei
noch nicht auf die genauen Parametereinstellungen eingegangen wird. Die Namen in Klam-
mern stellen die Variablennamen der Parameter in den von mir geschriebenen R-Code dar

(Cleveland et al., 1990, vgl. S.6-8).

1.Schritt: Zuerst wird der im vorherigen Umlauf geschétzte Trend, von der Original-
zeitreihe abgezogen. In der ersten Iteration ist noch keine Trendkomponente vorhan-
den und die Originalzeitreihe dient als Input fiir die ersten Berechnungen. (DT (z;) =
Y(zi) — T(x:))

2.Schritt: Die enttrendete Zeitreihe (DT (x;)) wird in ihre saisonalen Untergruppen auf-
geteilt. Dies geschieht anhand des Parameters np, der die Anzahl der Zeitpunkte je Saison
angibt. Fiir monatliche Daten z.B. ist np=12 und es wird fiir jeden Monat eine eigene
Zeitreihe erstellt. Auf diese Saisonuntergruppen wird nun das Loess-Verfahren angewen-
det, wobei auch ein Wert fiir den vorherigen und nachfolgenden Wert der Zeitreihe ge-
schéitzt wird. Die Spannweite (ns) und den Grad (isdeg) der Loess-Schitzung miissen vom
Benutzer angegeben werden. Danach werden die einzelnen Saisonuntergruppenschétzun-
gen wieder zu einer Zeitreihe zusammengefiigt (C(z;)). Diese Zeitreihe besteht nun aus
n-+2*np Beobachtungen.
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3.Schritt: Um die endgiiltige Saisonkomponente zu erhalten, werden noch einige weitere
Berechnungen vorgenommen. So wird versucht langfristige Schwankungen, die durch die
Schétzung in den Saisonuntergruppen entstanden sind, zu ermitteln und aus dieser zu ent-
fernen. Dies geschieht, indem man zweimal einen gleitenden Durchschnitt mit der Spann-
weite von np auf die zusammengefiigte Saisonuntergruppenschétzung anwendet. Danach
wird noch ein gleitender Durchschnitt mit Spannweite drei berechnet. Wie im Kapitel 2.1
bereits erwahnt, treten bei der gleitenden Durchschnittsberechnung Probleme an den Rén-
dern der Zeitreihe auf. Deswegen werden im vorangegangenen Schritt eine Loess-Schitzung
fiir den vorherigen und folgenden Zeitpunkt jeder Saisonuntergruppe vorgenommen, damit
die einzelnen Punkte problemlos abgeschnitten werden kénnen. Die nach den verschiede-
nen gleitenden Durchschnitten erhaltene Zeitreihe weist nun wieder n-Beobachtungen auf.
Im letzten Schritt wird nun noch einmal ein Loess-Verfahren auf die Zeitreihe angewen-
det. Man erhélt nun eine Zeitreihe, die eine Korrektur der Saisonkomponente darstellt
(SC(x;)). Die Spannweite (nl) und der Grad (ildeg) des Loess-Verfahrens kénnen wie vor-
her vom Analysten bestimmt werden, wobei in diesem Fall Defaultwerte vorliegen.

4.Schritt: Jetzt wird die endgiiltige Saisonkomponente berechnet. Dazu wird die in Schritt
3 berechnete Zeitreihe von der Saisonuntergruppenschétzung abgezogen (S(z;) = C(Zijnp)—

5.Schritt: Nachdem nun die Saison ausgewiesen worden ist, wird nun die Trendkom-
ponente berechnet. Den Input hierfiir liefert eine desaisonalisierte Zeitreihe. Es wird die
im vorherigen Schritt erhaltene Saison von der Originalzeitreihe abgezogen (DS(z;) =

6.Schritt: Auf die desaisonalisierte Zeitreihe (DS(x;)) wird ein Loess-Verfahren angewen-
det. Der Benutzer muss in diesem Fall die Spannweite (nt) und den Grad der Schétzung
(itdeg) vorgeben. Die erhaltene Zeitreihe stellt die neue Trendkomponente dar und dient
als Input fiir die erneute Berechnung der Saisonkomponente, falls ein erneuter Schleifen-
durchlauf stattfindet.

7.Schritt: Im letzten Schritt der inneren Schleife wird die Restkomponente berechnet. Es
werden einfach die beiden in den vorherigen Schritten berechneten Komponenten (Sai-
sonkomponente und Trendkomponente) von der Originalzeitreihe abgezogen (R(z;) =
Y (x;) — S(zi) — T'(x;)). Nachdem der letzte Schritt geschehen ist, werden die einzelnen
Teilschritte der inneren Schleife erneut durchgefiihrt.

3.1.2. AuRere Schleife

In der dufseren Schleife findet eine Robustheitsschatzung statt. Das heifst, man versucht
Werte, die nur schlecht iiber den Trend und die Saison erkldrt werden konnen, zu ge-
wichten, damit diese im erneuten Durchlauf der inneren Schleife weniger Einfluss auf die
Komponentenschatzung bekommen. Dies stellt sich als sehr sinnvoll dar, da sich vor allem
bei makrodkonomischen Zeitreihen oft unplausible Werte, aufgrund von externen Effekten
ergeben, z.B. extrem kalte Winter fithren zu geringer Produktion.

Die Gewichte der Robustheitsschiatzung werden iiber die Werte der Restkomponente be-
rechnet. So muss zuerst der Median der absoluten Werte der Restkomponente berechnet
werden. Anschlieftend werden die Gewichte dquivalent der Gewichtsberechnung des Loess-
Verfahrens mithilfe einer Kerndichtefunktion erstellt, wobei eine quadratische Funktion
benutzt wird und der Nenner des Bruchs defaultméfbig den sechsfachen Median der Rest-
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komponente aufweist (Cleveland et al., 1990, vgl. S. 8).

(3.1)

(ro) (1—(ro)?)? falls0 < ro<1
K(ro) =
0 sonst

Somit erhélt man folgende Berechnung fiir die einzelnen Robustheitsgewichte:

| R(z;)|
6 * med(|R(z)|)

) (3.2)

wyo(5) = K(

Die erhaltenen Gewichte werden im erneuten Durchlauf der inneren Schleife mit den Ab-
standsgewichten multipliziert (w(z;) = wao(z;)*wro(2;)) und mit diesen wird die Kleinste-
Quadrate Schitzung einer lokal gewichteten Regression berechnet.

Fiir den Benutzer besteht die Moglichkeit den Faktor vor dem Median zu bestimmen (Pa-
rameter: wf). So fithrt ein grokerer Wert von diesem allgemein dazu, dass die Ausreifer
nicht so stark aus der Schatzung herausgewichtet werden. Eine andere Moglichkeit be-
steht darin, dem Algorithmus von Anfang an eigene Robustheitsgewichte zu {ibergeben.
In diesem Fall wird nur die Komponentenschitzung (innere Schleife) mit den vorgegebenen
Gewichten durchgefiihrt.

3.2. Parametereinstellungen

In diesem Teilabschnitt wird die optimale Wahl und die Default-Einstellungen der Pa-
rameter erkldrt. Dies geschieht mithilfe der im ersten Kapitel (Abbildung 1.1) gezeigten
Zeitreihe (Produktion im Produzierenden Gewerbe in Deutschland).

Die wichtigsten Parameter sind:

e Frequenz der Saison (np)

e Spannweite bei der Loessschitzung der Saison (ns)
e Grad der Loessschitzung der Saison (isdeg)

e Spannweite bei der Loessschiatzung des Trendes (nt)

e Grad der Loessschitzung des Trendes (itdeg)

Anzahl Iterationen der dufseren Schleife (no)

Anzahl Iterationen der inneren Schleife (ni)

Auferdem wird sich noch mit einige andere Parametereinstellungen und Moglichkeiten kri-
tisch auseinandergesetzt, damit die bestmogliche Zerlegung der Zeitreihe gefunden werden
kann.

3.2.1. Frequenz der Saison (np)

Der Parameter np gibt die Anzahl der Zeitpunkte innerhalb einer Saison an. Sie wird in
R iiber den Input bestimmt. Die Input Zeitreihe muss vom Typ ts (time-series) sein und
weist somit bereits einen Wert fiir np auf. Sie ist in den meisten Féllen ziemlich einfach,
zum Beispiel fiir vierteljdhrliche Daten ist np=4, fiir monatliche Daten ist np=12 und fiir
tagliche Daten ist np=7.

10



3. Saison-Trend Zerlegung mithilfe von Loess

3.2.2. Saisonparameter

Fiir die Loess-Schiatzung der Saisonuntergruppen muss vom Benutzer die Spannweite (ns)
und der Grad der Schitzung (isdeg) libergeben werden (vgl. Kap. 2.1, Schritt 3).

Die Bestimmung der Spannweite ist in erster Linie von den Wiinschen und Zielen des
Analysten abhéngig. Jedoch ist das Ziel in den meisten Féllen, eine in sich homogenen
Saison mit moglichst wenig Variation innerhalb der einzelnen Saisonuntergruppen iiber
den Zeitverlauf zu erhalten. Als Saisonuntergruppe bezeichnet man eine Zeitreihen, die
nur aus Werte eines Saisonabschnitts bestehen (z.B. bei monatlichen Daten, Zeitreihe nur
mit Januar-Werten).

Der Wert von ns muss ungerade sein und sollte grofer oder gleich sieben sein. Dies liegt
daran, da sonst zu wenige Werte mit in die Schétzung einfliefen wiirden und somit meh-
rere zu schitzende Zeitpunkte nur von einem beliebigen Zeitpunkt abhéngig sein konnten
und den gleichen Schétzwert erhalten.

Im Ausnahmefall kann ns auch den Wert fiinf annehmen. Dies sollte aber nur geschehen,
wenn es eine konstante Regressionsschiatzung gibt und nur wenige Zeitpunkte je Saisonun-
tergruppe vorhanden sind. In diesem Fall ist besonders vom Analysten darauf zu achten,
dass aufgrund der Robustheitsschédtzung keine unplausiblen Ergebnisse innerhalb einzelner
Saisonuntergruppen entstehen, da zwei heraus gewichtete Saisonwerte bereits dazufithren
kénnen, dass mehrere Werte den gleichen Schatzwert erhalten. Wenn nur die innere Schlei-
fe durchlaufen wird, stellt eine Spannweite von fiinf kein Problem dar, da somit nicht die
Moglichkeit besteht, dass Werte herausgewichtet werden und somit jeder Wert aus mindes-
tens drei Zeitpunkten geschitzt wird, wenn die Ausgangs-Zeitreihe keine fehlenden Werte
besitzt.

Doch wie bestimmt der Benutzer den Parameter ns? Dies geschieht visuell mithilfe eines
Diagnoseplots der Saisonuntergruppengrafiken. Dort ist der Input (Punkte) und Output
(rote Linie) der Loess-Schéitzung jeder Saisonuntergruppe im Zeitverlauf dargestellt. Da
die Saison in sich moglichst konstant sein soll, soll moglichst wenig Schwankung in der
Linie der geschétzten Werte innerhalb einer Saisonuntergruppe sichtbar sein.

Beispielhaft betrachtet man die Saisonuntergruppengrafiken fiir die Produktion im Pro-
duzierenden Gewerbe in Deutschland, einmal mit einer geringen Spannweite (q=7) fiir die
Saison und einmal mit einer groken Spannweite (q=11). Dadurch kann man aufzeigen, wie
sich die Hohe der Spannweite auf den Verlauf der Saisonuntergruppen auswirkt und wie
man die optimale Wahl der Saisonspannweite mithilfe dieses Diagnoseplots finden kann.

In den Abbildungen 3.1 und 3.2 sind die Saisonuntergruppen fiir die Produktion im Pro-
duzierenden Gewerbe dargestellt. Jede Untergrafik stellt die Werte der Loess-Schatzung
fiir einen anderen Monat dar. Die Grafik beginnt mit dem Januar (Nr.1). Die gestrichelte
Linie stellt die Nulllinie dar, anhand der Verschiebung zu dieser kann man erkennen, ob
es sich um einen Monat mit hoher oder schwacher Produktion, im Vergleich zum von der
Trendkomponente hervorgesagten Verlauf, handelt.

Entscheidend fiir die Wahl des Parameters ns ist die rote Linie. Sie bildet die Ergebnisse
der Loess-Schétzung ab. In Abbildung 3.1 erkennt man, dass es noch mehr Schwankungen
innerhalb der einzelnen Monate (Saisonuntergruppengrafiken) gibt, als in Abbildung 3.2.
So weist der Februar und Mai (Nr. 2,5) noch sehr viel Variation auf. Im Vergleich da-
zu sind die Variationen innerhalb der Saisonuntergruppengrafiken in Abbildung 3.2 kaum
mehr ersichtlich. Jede Grafik weist in dieser eine konstante Linie aus. Allgemein kann man
sagen, dass es sich um eine sehr gleichbleibenden Saisonstruktur handelt und deswegen

11
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Abbildung 3.1.: Saisonuntergruppengrafiken mit Saisonspannweite (ns) von 7 fiir die Pro-
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duktion im Produzierenden Gewerbe in Deutschland

bereits niedrige Werte von ns zu guten Ergebnissen fiihren.

Da es kein Kriterium fiir die Saisonspannweite (ns) gibt, muss diese also durch ausprobie-
ren und betrachten des Diagnoseplots vom Analysten bestimmt werden. In unserem Fall,
wiirde man sich fiir die grofe Spannweite entscheiden, da diese eine bessere Anpassung an
die gewiinschten Eigenschaften der Saisonkomponente liefert. Versuche mit einer Spann-
weite von neun haben zum Ergebnis gefiihrt, dass fiir die Produktion im Produzierenden
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Abbildung 3.2.: Saisonuntergruppengrafiken mit Saisonspannweite (ns) von 11 fiir die Pro-

Gewerbe in Deutschland eine Spannweite von neun am besten fiir die Saisonspannweite
geeignet ist. Fiir die weitere Findung der Parametereinstellungen wird nun immer diese
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Grofse verwendet (ns=9).

Ein weiterer Parameter, der fiir die Berechnung der Saisonkomponente eingestellt werden
kann, ist der Grad der Loess-Schiatzung (isdeg). Da die Struktur der Saisonkomponente
iiber den Zeitverlauf konstant sein soll, ist die Einstellung von diesem defaultméfig eine

13




3. Saison-Trend Zerlegung mithilfe von Loess

konstante Regressionschitzung (isdeg=0).

Ein positiver oder negativer Trend in allen Saisonuntergruppengrafiken, der eine lineare
Regressionsschitzung rechtfertigen wiirde, tritt duflerst selten auf. Trotzdem besteht die
Moglichkeit eine lineare Regressionsschitzung durchzufithren. Davon ist in den meisten
Féllen jedoch abzuraten, da es bei dieser ebenso oftmals zu einer Anpassung an die In-
putwerte der rechts- und linksseitigen Grenzen der Saisonuntergruppenzeitreihen kommt.
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Abbildung 3.3.: Saisonuntergruppengrafiken bei linearer Schitzung (isdeg=1, ns=11) fiir
die Produktion im Produzierenden Gewerbe in Deutschland
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In Abbildung 3.3 sind die Saisonuntergruppen einer linearen Regressionssaisonschét-
zung dargestellt. So sind insbesondere in den Untergrafiken 1 und 3 (Januar und Méirz)
die Unterschiede zu Abbildung 3.2 deutlich sichtbar. Im Falle vom Januar fiihrt die lineare
Schétzung zu einer Anpassung der rechtsseitigen Werte. Die Grafik weist zu Beginn einen
linear abfallenden Trend auf. Dies wird bei einer linearen Schitzung als plausibel einge-
stuft, wogegen bei der konstanten Schétzung eindeutig sichtbar ist, dass dies im Gegensatz
zu den nachfolgenden Werten unplausibel erscheint und auf z.B besondere Ereignisse zu-
riickzufiihren sein kénnte. In Untergrafik 3 (Mérz) tritt dieses Problem an der linksseitigen
Grenze auf. Bei konstanter Schitzung findet noch keine Anpassung an die Werte der letz-
ten beiden Jahre statt, bei linearer Schatzung hingegen schon und die drei vorigen Werte
werden als zu schwach eingeschétzt. Es findet also eine lineare positive Anpassung statt.

Wenn den Analysten bei konstanter Schatzung Strukturbriiche wie in Abbildung 3.2 Un-
tergrafik 3 auffallen, sollte gekldrt werden, welche moglichen Griinde es fiir diese gibt.
Falls der Bruch erkldrt werden kann, gibt es eine sinnvolle Vorgehensweise diesen in den
Daten anzupassen, ohne den Grad der Saisonschétzung auf linear zu setzen. Diese weitere
Einstellungsmoglichkeit wird in Kapitel 3.2.7 erlautert. Sollte es keinen triftigen Grund
geben, sollten die Werte der konstanten Regressionsschitzung verwendet werden.

3.2.3. Trendparameter

Fiir die Trendschétzung miissen, wie bei der Saison, die Spannweite nt und der Grad der
Loess-Schétzung itdeg angegeben werden (vgl. Kap 2.1, Schritt 6). Zuerst geht man er-
neut auf die vom Analysten gewiinschten Eigenschaften des Trendes ein. Er soll eine in
sich geglattete Linie sein, in der nur noch mittel- bis langfristige Schwankungen auftreten.
Da das bei alleiniger Betrachtung der Trendkomponente schwierig festzustellen ist, muss
oder kann die Parametereinstellung iiber zwei unterschiedliche Arten bestimmt werden,
namlich mithilfe des Saisonparameters ns und oder der Betrachtung der Restkomponente.

Die Spannweite fiir die Loessschéitzung des Trends (nt) muss auf jeden Fall ungerade sein.
Wird vom Analysten eine gerade Zahl iibergeben, so wird zu dieser der Wert eins addiert.
Eine andere Bedingung ist, dass nt grofser gleich sieben sein muss. Aufserdem sollte nt
auf jeden Fall grofer als die Frequenz der Saison np sein. Es hat sich gezeigt, dass die
Trendkomponente sonst noch zu viel saisonale Struktur aufweist.

Kommt man nun zuerst zur Bestimmung der Trendspannweite nt {iber den Saisonpara-
meter ns.

Eine Moglichkeit den Trendparameter zu bekommen liefert Cleveland in seinen Skript. Er
schlagt vor, dass folgende Formel eine gute Grundlage zur Bestimmung des Parameters nt
liefert (Cleveland et al., 1990, vgl. S. 20).

nt > 1.5xnp

~1—15%ns1 (3.3)

Da nt ungerade sein muss, nimmt sie in der Formel die néchst grofite ungerade Zahl an.
Anhand der Formel erkennt man, dass nt immer grofer als np sein muss, da der Nenner
immer Werte zwischen 0.7 und 1 annimmt (da ns € 5,7,...) und daraus folgt, dass der
Faktor mit dem np multipliziert wird immer gréfer als eins ist.

Fiir unser Beispiel, der Produktion im Produzierenden Gewerbe in Deutschland mit ns=9,
wirde man sich somit fiir nt > 21.6 ~ 23 entscheiden.

Betrachtet man fiir diesen Fall einen Diagnostikplot fiir die Trendschétzung, so ist dort
der Loess-Input (Kreise) und Output (rote Linie) fiir die Schatzung der Trendkomponente
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dargestellt. Eine weitere Einschatzung iiber die Bestimmung des Trendparameters kann
tiber die Betrachtung der Restkomponente (Remainder) geschehen.
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=100)
105
| |

Preisindex (2010
80 85 90 95

I I I
1995 2000 2005
Remainder

N 0
‘ ‘H ‘ ‘ H W‘ ‘ ‘ ‘ ‘ ‘ ‘

-2 -1 0
!

-3

1995 2000 2005

Abbildung 3.4.: Trenddiagnose und Restkomponente mit ns=9 und nt=23 fiir die Produk-
tion im Produzierenden Gewerbe in Deutschland

In Abbildung 3.4 ist ein Diagnoseplot fiir die Trendschétzung und der Verlauf der Rest-

komponente fiir eine Spannweite von ¢ = 23 dargestellt. Bei Betrachtung der Grafik ist
ersichtlich, dass vor allem zu Zeitpunkten, in denen der Trend ein lokales Maxima oder
lokales Minima aufweist, vermehrt Punkte auftreten, die iiber oder unterhalb der roten
Linie liegen. In der Restkomponente ist dies ebenso zu sehen, da zu diesen Zeitpunkten
vermehrt Zeitpunkte mit grofer positiver oder negativer Abweichung auftreten. Dies ist
oftmals ein Zeichen eines zu grofsen Trendparameters nt, da die konjunkturelle Schwankung
des Trendes nur unzureichend abgebildet wird und diese somit in die Restkomponente mit
einfliefst.
Darum wird oftmals versucht den Parameter nt iiber die Restkomponente zu bestimmen.
So wird dieser ausgehend von den von Cleveland vorgeschlagenen Parameterwert sukzes-
sive reduziert, bis keine Autokorrelationen mehr in der Restkomponente vorhanden ist. Es
ist jedoch darauf zu achten, dass dies nicht immer moglich ist. Deswegen ist vom Analys-
ten eine alleinige Bestimmung iiber die Betrachtung des Trenddiagnoseplot oftmals auch
sinnvoller.

Zur Bestimmung, ob Unkorreliertheit vorliegt, wird der Box-Pierce Test verwendet. Er tes-
tet die Zeitreihen auf vorhandene Autokorrelationen. Die Ablehnung der Nullhypothese
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besagt, dass die Daten der Zeitpunkte, bis zu einem bestimmten Zeitabstand, miteinander
korreliert sind. Die Nullhypothese lautet somit, dass keine Korrelation zwischen den Wer-
ten der Zeitreihe eines bestimmten Zeitintervalls bestehen. Bei einem p-wert von kleiner
0.1 wird die Nullhypothese abgelehnt und die Werte werden als voneinander abhéngig an-
genommen. Bei diesem Test muss auch immer eine Anzahl, fiir die Hohe des Zeitabstandes,
bis zu dem getestet werden soll, angegeben werden. Da die vermehrten positiven bezie-
hungsweise negativen Abweichungen in der Restkomponente hintereinander auftreten, hat
man sich dazu entschieden, dass es vollkommend ausreichend ist, auf einem Zeitabstand
(Lag) von eins zu testen.

Fiir die Produktion im Produzierenden Gewerbe in Deutschland erhélt man ausgehend
von nt=23 folgende Werte fiir die Teststatistik und p-Werte.

nt || Teststatistik p-Wert | Ablehnung der Nullhypothese
23 68.86 | 1.72% 1077 ja

21 20.96 | 4.68 x 1076 ja

19 11.72 | 6.20 % 1074 ja

17 6.53 0.01059 ja

15 2.91 0.08796 ja

13 1.01 0.3161 nein

Tabelle 3.1.: Box-Pierce Teststatistik verschiedener nt’s mit ns=9 und itdeg=1 fiir die
Produktion im Produzierenden Gewerbe in Deutschland

Aus der Tabelle 3.1 ist ersichtlich, dass man sich fiir einen Trendparameter von nt=13
entscheiden wiirde, dabei betrachtet man fiir diesen Fall auch den Trenddiagnoseplot, um
einen Vergleich mit der groferen Trendspannweite zu erhalten.

Trenddiagnoseplot
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Abbildung 3.5.: Trenddiagnosegrafik mit ns=9 und nt=13 fiir die Produktion im Produ-
zierenden Gewerbe in Deutschland

In Abbildung 3.5 ist dargestellt, wie im Falle der unkorrelierten Restkomponente der

Trendverlauf ist. So sind hier die Konjunkturzyklen stirker ausgepriagt. Das bedeutet,
die lokalen Maxima und Minima néahern sich stirker den Realisationen der Zeitreihe an.
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Auferdem wird der Umschwung, der an den Grenzen der Zeitreihe stattfindet, deutlich
besser abgebildet. Wihrend in Abbildung 3.4 die schwachen Werte an der rechtsseitigen
Grenze noch keinen Einfluss auf die Trendschétzung haben, findet in Abbildung 3.5 eine
Anpassung an diese statt.

Es sollte trotzdem darauf geachtet werden, den Trendparameter nicht zu gering zu halten,
auch wenn dadurch noch keine Unkorreliertheit in der Restkomponente vorliegt, damit
sich nicht zu viel Schwankung in der Trendkomponente wiederfindet.

Ein weiterer Parameter, der fiir den Trend eingestellt werden kann, ist der Grad der
Regressionsschiatzung im Loess-Verfahren der Trendkomponente. Defaultméfig ist dieser
linear (eins), er kann aber auch konstant oder quadratisch sein. Eine konstante Schitzung
kommt in den meisten Féllen nicht in Frage, da bei steigendem oder fallendem Trend
die Werte an den Grenzen damit nur unzureichend angepasst werden, da die Schatzung
von den vorherigen Werten abhéngig ist und somit der zu schétzende Zeitpunkt, bei stei-
gendem oder fallendem Trend immer einen geringeren oder hoheren Wert erhilt, als er
eigentlich bekommen miisste. Deshalb ist eine konstante Schitzung nur bei einem kon-
stanten Trendverlauf sinnvoll.

Doch wie schaut es mit einer quadratischen Regressionsschiatzung der Trendkomponente
aus? Dieser sollte vor allem bei Zeitreihen mit vielen langfristigen Schwankungen bessere
Ergebnisse liefern, da durch diesen logischerweise die Buckel (Umschwiinge) besser abge-
bildet werden kénnen. Jedoch muss an den Grenzen der Zeitreihe aufgepasst werden, dass
der quadratische Trend nicht zu stark abgebildet wird und somit die Trenderwartung zu
stark oder zu schwach ausféllt. Damit wiirden Probleme bei der Prognose entstehen, da
der Trend iiber- oder unterschétzt wird.
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Abbildung 3.6.: Trenddiagnosegrafik mit ns=9 nt=13 und itdeg=2 fiir die Produktion im
Produzierenden Gewerbe in Deutschland

Aus Abbildung 3.6 wiirde man schliefsen, dass die quadratische Schétzung eine deut-
lich bessere und plausiblere Anpassung an den links- und rechtsseitigen Grenzen liefern
wiirde, als in Abbildung 3.5 bei der linearen Regressionsschétzung gezeigt wurde. Jedoch
ist jetzt auch deutlich mehr Schwankung in der Trendkomponente vorhanden. Dies will
man eigentlich vermeiden, da diese keine kurzfristigen Schwankungen darstellen soll. Um
trotzdem die quadratische Schatzung weiter in Erwagung zu ziehen, sollte eine Erh6hung
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des Trendparameters nt vorgenommen werden, um eine glattere Linie zu bekommen.
Dafiir fiihrt man erneut eine Priifung der Hohe des Trendparameters nt durch. Man be-
trachtet, ausgehend von dem von Cleveland vorgeschlagenen Wert der Trendspannweite
(nt=23) die Ergebnisse des Box-Pierce Tests.

nt || Teststatistik | p-Wert | Ablehnung der Nullhypothese
23 3.207 | 0.07365 ja

21 2.461 | 0.1167 nein

19 1.075 | 0.2999 nein

Tabelle 3.2.: Box-Pierce Teststatistik verschiedener nt’s mit ns=9 und itdeg=2 fiir die
Produktion im Produzierenden Gewerbe in Deutschland

Nach der Betrachtung der Tabelle 3.2 wiirde man sich jetzt fiir nt=21 entscheiden. Da
der p-wert zu diesem Zeitpunkt aber noch sehr nahe dem Wert 0.1 liegt, habe ich mich
dazu entschlossen nt=19 zu nehmen. Dieser Wert fiir die Trendspannweite ist grofier, als
der Wert bei linearer Schiatzung, somit fliefsen bei quadratischer Regressionsschéitzung der
Trendkomponente deutlich mehr Punkte mit in die Schétzung ein.

Es bestehen somit zwei Moglichkeiten fiir die Trendparameter, entweder nt=13 und it-
deg=1 oder nt=19 und itdeg=2.

3.2.4. Low-pass Parameter

Bei der Low-Pass Loess-Schatzung muss die Spannweite und der Grad der Regressions-
schitzung angegeben werden (vgl. Kap. 3.1.1, Schritt 4). Fiir beide Parameter liegen
Defaultwerte vor und diese sollten nur von Analysten, die sich sehr gut mit den STL-
Verfahren auskennen, verdndert werden. Da saisonale Schwankungen durch die Low-Pass
Schétzung entfernt werden sollen, entspricht der Defaultwert fiir die Spannweite der Hohe
des Parameters np. Sollte dieser Wert gerade sein, erhélt nl die néchste grofsere ungerade
Zahl. Der Grad der Schétzung weist den Wert eins auf. Es handelt sich somit um eine
lineare Kleinste-Quadrate Schétzung.

3.2.5. Anzahl lterationen der auRere Schleife

Die Anzahl der Durchléufe der Robustheitsschiatzung no kann durch den Analysten mithil-
fe eines Diagnoseplots bestimmt werden. So wird in diesem die Entwicklung der Gewichte,
die bei jeder Robustheitsschiatzung am Ende des Durchlaufs der &dufseren Schleife entste-
hen, fiir jeden Zeitpunkt dargestellt.

Als Defaultwert ist no=15 vorgegeben. Ein groferer Wert sollte nicht gewdhlt werden, da
sich gezeigt hat, dass dies die Laufzeit zu stark erhohen wiirde. Bei 15 Uml&ufen sind in
den allermeisten Féllen schon die optimalen Ergebnisse erreicht worden und eine Verbes-
serung der Ergebnisse ist nicht mehr mdoglich.

Doch warum sollte die Anzahl der Schleifendurchlaufe der duferen Schleife iiberhaupt an-
gepasst werden? Dies dient in erster Linie zur Erkennung von Problemen, die entstehen
kénnen, wenn zu viele Werte als Ausreifier eingeschétzt werden. Aufierdem kann auch die
Laufzeit verkiirzt werden, wenn bereits zu einem fritheren Zeitpunkt eine Konvergenz in
den Gewichten erreicht worden ist. Bei erneuter Zerlegung einer bereits vom Analysten
analysierten Zeitreihe kann die Laufzeit somit verbessert werden, wenn man die Umlaufe

19



3. Saison-Trend Zerlegung mithilfe von Loess

der dufseren Schleife verringert.

Als Beispiel betrachtet man hierfiir den Diagnoseplot der Robustheitsgewichte (Abbildung
3.7) fiir die Produktion im Produzierenden Gewerbe in Deutschland mit ns=9 und nt=13
(itdeg=1).
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Abbildung 3.7.: Gewichtegrafik mit ns=9 und nt=13 (itdeg=1) fiir die Produktion im
Produzierenden Gewerbe in Deutschland

Man erkennt in Abbildung 3.7, dass sich bereits nach circa sieben Durchldufen der dufse-
ren Schleife eine Konvergenz in den Gewichten einstellt. So fithrt eine erneuter Durchlauf
der dufleren Schleife zu keinen eklatanten anderen Gewichten fiir die verschiedenen Zeit-
punkte. Wenn man nun einen Wert fiir die Produktion im Produzierenden Gewerbe in
Deutschland fiir Oktober 2008 erhélt und die Zeitreihe erneut, mit den gleichen Parame-
tereinstellungen, in ihre Komponenten zerlegen will, ist es von Vorteil, die dufere Schleife
nur noch zehn-mal durchlaufen zu lassen, um die Laufzeit zu verringern, da sich bei ho-
heren Iterationen keine neuen Gewichte ergeben und somit die Komponentenschitzung
keine signifikanten besseren Ergebnisse liefert.

Ein anderes Problem, das auftreten kann, ist, dass zu viele Werte aus der Schéitzung
herausgenommen werden. In diesem Fall miissen entweder die kompletten Parameterein-
stellungen iiberdacht werden, oder man bricht zu einem fritheren Zeitpunkt ab, zu dem
noch geniigend Werte in die Rechnung mit einfliefsen. Eine andere Moglichkeit, dieses Pro-
blem zu handhaben, findet man in Kapitel 3.2.7.

In Abbildung 3.8 ist der Diagnoseplot und ein Histogramm fiir die Werte der Gewichte,
mit den in Kapitel 3.2.4 vorgeschlagenen Parameterwerte (ns=9, nt—19, itdeg—2), darge-
stellt. Anhand der Grafik, die die Entwicklung der Gewichte zeigt, ist erkennbar, dass mit
zunehmender Schleifendurchlaufzahl immer mehr Werte, fiir die Schitzung der Komponen-
ten, herausgewichtet werden. Dies kann vor allem zu Problemen bei der Saisonberechnung
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Abbildung 3.8.: Gewichtegrafik und Histogramm der Gewichte mit ns=9 und nt=19 (it-
deg=2) fiir die Produktion im Produzierenden Gewerbe in Deutschland

fithren, da die Moglichkeit besteht, dass zu viele Robustheitsgewichte einer Saisonunter-
gruppe den Wert null annehmen und somit die Schétzung einzelner Zeitpunkte nur noch
von einem Zeitpunkt abhéngig ist.

In der rechten Grafik sieht man die Anzahl der herausgewichteten Werte. Zum Schluss
weisen bereits iiber 30 Werte Gewichte von null oder nahe null auf. Dies sind circa 20%
der kompletten Ausgangswerte. Das ist oftmals nicht hinnehmbar, da die Komponenten
nicht nur anhand einzelner Werte, sondern mithilfe moglichst vieler Zeitpunkte bestimmt
werden sollen. Nun kann der Analyst entscheiden, ob er die Berechnung entweder zu einen
fritheren Zeitpunkt beendet (z.B nach sechs Umlédufen) oder sich fiir komplett andere Pa-
rametereinstellungen entscheidet.

Fiir den Fall, der Produktion im Produzierenden Gewerbe in Deutschland, hat man nun
fiir die wichtigsten Parametereinstellungen Werte gefunden. Man wiirde sich fiir folgende
Parameter entscheiden: ns=9, isdeg=0, nt=13, itdeg=1 und no=10.

3.2.6. Anzahl lterationen der innere Schleife

Der Parameter ni bestimmt die Anzahl, wie oft die innere Schleife durchlaufen wird. Fiir
den Defaultwert von dieser, unterscheidet man zwei unterschiedliche Fille.

Im ersten Fall ist der Wert des Parameters no>0, dabei hat sich gezeigt, dass der einmalige
Durchlauf der inneren Schleife vollkommend ausreichend ist, um fiir die Komponenten-
schitzung bereits konvergente Ergebnisse zu erzielen.

Falls der Parameter no=0, muss die innere Schleife 6fter durchlaufen werden. Der Default-
wert ist nun zwei. Dies reicht laut Cleveland bereits aus, um konvergente Ergebnisse zu
erhalten. Versuche von diesem, mithilfe von Abbruchkriterien, haben keine Erkenntnisse
geliefert, die fiir eine hohere Einstellung von ni sprechen wiirden (Cleveland et al., 1990,
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vgl. S. 14) .

Man betrachtet fiir die Produktion im Produzierenden Gewerbe die durchschnittlichen und
maximalen absoluten Abweichungen, die zwischen einem zweimaligen und einem fiinfma-
ligen Durchlaufen der inneren Schleife entstehen (ni=2 zu ni=5). In beiden Fallen wird
die dufsere Schleife nicht durchlaufen.

Art Saison Trend
Maximale absolute Abweichung 0.1980536 | 0.2424799
Durchschnittliche absolute Abweichung || 0.0412737 | 0.0202778

Tabelle 3.3.: Abweichungen, die bei mehrmaliger Iteration der inneren Schleife entstehen

Man erkennt, dass die maximale Abweichung des Trendes zwischen den beiden Schét-
zungen nur 0.24 (circa 0.3%) betragt. Fiir die Saison ergibt sich 0.19. Die durchschnittliche
Abweichung in beiden Komponenten ist deutlich geringer, sie entspricht nur ungefahr 10%
der maximalen Abweichung. Die Abweichung der Saison ist prozentual nicht darstellbar
und bewegt sich auch noch im Rahmen. Somit ist ein zweimaliges Durchlaufen der inneren
Schleife durchaus ausreichend, um aussagekréftige Ergebnisse zu bekommen.

3.2.7. Robustheitsschiatzung

Fiir die Robustheitsschéitzung konnen zwei Parameter verdndert werden, wobei bei einem
(bei rw) die Vorgehensweise der Schitzung an sich nicht verdndert wird, sondern vom
Benutzer direkt die Robustheitsgewichte {ibergeben werden.

Betrachtet man zuerst diese Moglichkeit, den Parameter rw. Fiir diesen muss man fiir
jeden Zeitpunkt ein individuelles Gewicht angeben. Er sollte verwendet werden, wenn der
Analyst aufgrund von Vorinformationen eigene Gewichte iibergeben will oder ein Bruch
in den Daten zu erkennen ist, der aufgrund der bisher wenig vorhandenen Werte an der
rechtsseitigen Grenze heraus gewichtet wird. Die Plausibilitdt des Bruches muss natiir-
lich immer vom Analysten iiberpriift werden. Es ist darauf zu achten, dass bei Ubergabe
von Gewichten keine erneute Robustheitsschatzung stattfindet und nur die innere Schleife
durchlaufen wird.

Die Funktionsweise des Parameters rw soll mithilfe der Produktion im Produzierenden
Gewerbe in Deutschland gezeigt werden. Ruft man sich Abbildung 3.2 zuriick ins Ge-
déchtnis, so sieht man in der Saisonuntergruppengrafik fiir den Monat Mérz (Nr. 3), dass
die letzten beiden Werte oberhalb der roten Linie liegen und somit stark heraus gewichtet
werden. Man nimmt nun an, dass die nachfolgenden Méarzwerte ebenfalls das Niveau der
letzten beiden Werte besitzen und diese somit plausible Werte darstellen, an die die Kurve
der Loess-Schatzung angepasst werden soll.

Dazu schaut man sich zuerst die Robustheitsgewichte der letzten Marzwerte an.

Zeitpunkt 03.2003 | 03.2004 | 03.2005 | 03.2006 | 03.2007 | 03.2008
Robustheitsgewicht || 0.85628 | 0.91842 | 0.95909 | 0.26694 | 0.54139 | 0.12156

Tabelle 3.4.: Bei Zerlegung der Produktion im Produzierenden Gewerbe in Deutschland
erhaltenen Robustheitsgewichte fiir den Monat Mérz (ns=9, nt=13, no=10)
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Man erkennt aus der Tabelle, dass die letzten beiden Werte eher geringe Gewichte, im
Gegensatz zu den vorherigen Gewichten besitzen. Der Wert fiir 2006 ist deswegen so ge-
ring, da dessen Niveau sehr stark unterhalb des erwarteten Saisonwertes liegt. Nun wird
versucht eine Anpassung an die letzten beiden Werte zu erzielen, indem dem Programm
fiir die Marzwerte andere Robustheitsgewichte {ibergeben werden.

Fiir die Anzahl der Gewichte, die verdndert werden sollen, nimmt man folgende Faustfor-
mel:

Ab dem Zeitpunkt, zu dem der Strukturbruch sichtbar ist, sollen die X vor den Struktur-
bruch liegende Robustheitsgewichte verdndert werden. Der Wert fiir X sollte die Halfte
der Saisonspannweite bzw. Trendspannweite sein, je nachdem in welcher Komponente der
Strukturbruch festgestellt worden ist. Es sollten auch alle Gewichte der darauffolgenden
Zeitpunkte verdndert werden.

In der Tabelle 3.5 sieht man die Gewichte, die fiir die vorhin durchgefiihrten STL-Zerlegung
bei erneuter Komponentenschiatzung benutzt werden.

Zeitpunkt 03.2003 | 03.2004 | 03.2005 | 03.2006 | 03.2007 | 03.2008
Robustheitsgewicht 0.70 0.50 0.30 0.00 0.95 0.95

Tabelle 3.5.: Vom Analysten iibergebene Robustheitsgewichte fiir den Monat Mérz

Die Robustheitsgewichte nehmen nur Werte zwischen null und eins an. Die Werte nach
dem Strukturbruch erhalten hohe Gewichte, die Werte davor, niedrige Gewichte, wobei ei-
ne linksseitige bzw. rechtsseitige Abstufung stattfindet. Fiir die iibrigen Monate werden die
Gewichte der Ausgangszerlegung verwendet. Diese sind im Output des STL-Programms
in R vorhanden.

In Abbildung 3.9 erkennt man nun fiir den Monat Mérz (Nr. 3), dass es zu einer Anpas-
sung an die Werte der letzten beiden Monate gekommen ist, wie man es sich vorgestellt
hat. Mit dem Parameter rw kann somit eine Anpassung an die Werte der rechtsseitigen
Grenze der Saisonuntergruppen vorgenommen werden. Es kann ebenso eine Anpassung
der Trendkomponente erwirkt werden.

Ein andere Einstellungsmoglichkeit, die bei der Robustheitsschiatzung vorgenommen wer-
den kann, ist der Parameter wf (weightsfactor). Er gibt an, wie stark Ausreifser bei der
Gewichtung heraus gewichtet werden.

Dazu schaut man sich noch einmal die Formel Nr. 2.1 und 3.2 an.

K(w) = { (()15;::::)3 falls 0 < u < 1 5.4)
e IRG)
o) = R med(R@))) (39)

In der Formel 3.2 steht im Nenner der Wert sechs. Dieser wird, wie in Formel Nr. 3.4
gezeigt, durch den Parameter wf ersetzt. Er gibt somit den Faktor, der vor dem Median
eingesetzt wird an und ist, wie in Formel 3.2, defaultméfig sechs. Wenn man einen grofsen
Faktor angibt, sinkt der Wert innerhalb der Kerndichtefunktion und die Robustheitsge-
wichte nehmen grofsere Werte an, wenn man einen kleineren Faktor angibt, steigt der Wert
innerhalb der Kerndichtefunktion und mehr Werte werden bei der Schiatzung der Kompo-
nenten herausgewichtet.
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Abbildung 3.9.: Saisonuntergruppengrafiken mit eigenen iibergebenen Robustheitsgewich-
ten fiir die Produktion im Produzierenden Gewerbe in Deutschland

Versuche mit unterschiedlichen Zeitreihen haben gezeigt, dass es nur sinnvoll ist, grofere
Werte als sechs fiir den Faktor anzugeben, da bei wf=6 oftmals schon zu viele Werte ge-
ringe Robustheitsgewichte erhalten.

Betrachtet man fiir einen grofsen Faktor (wf=8) den Diagnoseplot fiir die Robustheitsge-
wichte. Dazu verwendet man, fiir die Zerlegung der Produktion im Produzierenden Ge-
werbe in Deutschland die gleichen Parametereinstellungen, wie in Abbildung 3.8 (ns=9,
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nt=19 und itdeg=2), in der man festgestellt hat, dass zu viele Zeitpunkte, herausgewichtet
werden.
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Abbildung 3.10.: Gewichtegrafik mit Parameter wf=8 fiir die Produktion im Produzieren-
den Gewerbe in Deutschland

In Abbildung 3.10 erkennt man, dass bei diesem Wert von wf (wf=8) nun keine Werte
mehr als komplette Ausreifser eingestuft werden und eine Konvergenz in der Gewichte-
schidtzung, im Gegensatz zu Abbildung 3.8 sichtbar ist. Somit kann mit Verdnderung des
Parameters wf erreicht werden, dass die Robustheitsgewichte nicht zu geringe Werte an-
nehmen. Aufserdem kénnte man in diesem Fall, bei erneutem Durchlauf der Zerlegung,
wieder nach circa 6-8 Schleifendurchlédufen abbrechen (no=7).

Der Parameter wf ist somit stark von den Wiinschen des Analysten abhéngig. Mdochte
er die Komponenten moglichst mit allen Werten der Ausgangszeitreihe bestimmen oder
diirfen auch viele Ausreiffer vorhanden sein? Ist die Annahme von externen Effekten sinn-
voll fiir die Ausgangszeitreihe, oder nicht? Normalerweise wird der Parameter aber nicht
verandert.

3.2.8. Computationale Parameter

Da beim Loess-Verfahren fiir jeden Punkt die jeweiligen Gewichte berechnet werden miis-
sen und eine Regressionschétzung durchgefiihrt wird, ist die STL-Methode ein sehr zeit-
aufwendiges Verfahren. Versuche die Laufzeit zu verkiirzen, haben gezeigt, dass nicht un-
bedingt an jedem Zeitpunkt eine Loess-Schétzung notig ist. In den meisten Fillen geniigt
es, einzelne Werte zu schétzen und die anderen durch lineare Interpolation zu berechnen.
Dies hat kaum negative Auswirkungen auf die Ergebnisse und fiihrt zu einer Verbesserung
der Laufzeit. Die Verkiirzung der Laufzeit war vor allem bei der Vorstellung des STL-
Programms im Jahre 1990, aufgrund der damaligen geringen Rechnerleistungen, von sehr
grofser Bedeutung.
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3. Saison-Trend Zerlegung mithilfe von Loess

Der Abstand der Punkte, die mithilfe von Loess geschéitzt werden sollen, konnen iiber
die Parameter nsjump (Saison), ntjump (Trend) und nljump (low-pass) bestimmt werden.
Defaultméfig wird die jeweilige Spannweite durch zehn geteilt (z.B ns/10) und dann auf-
gerundet. Ist die Spannweite des Trends mit dem Wert 23 angegeben, so ergibt sich fiir
ntjump der Wert drei. Somit wird eine Loess-Schatzung fiir den ersten, 1+x*ntjump und
den N-ten Wert durchgefiihrt. Die iibrigen Werte erhéilt man durch lineare Interpolation
(Cleveland et al., 1990, vgl. S. 20-22).

yla1) —ylz—1)
r1 — T

Y(zo) = y(z—1) + (3.6)
x_1 ist der Zeitpunkt der letzten Loess-Schiatzung vor dem Zeitpunkt xg.
x1 ist der Zeitpunkt der ersten Loess-Schitzung nach dem Zeitpunkt xzg.

Um zu zeigen, dass es bei der Berechnung nicht jedes einzelnen Zeitpunktes, zu keiner
Beeintriachtigung in den Ergebnissen kommt, betrachtet man die durchschnittlichen ab-
soluten Abweichungen in den einzelnen Komponenten, fiir unser Beispiel, der Produktion
im Produzierenden Gewerbe in Deutschland.

Art Saison Trend | Laufzeit (in s)
Maximale absolute Abweichung 0.1215677 | 0.4032692 -
Durchschnittliche absolute Abweichung || 0.0169900 | 0.0309778 0.634

Tabelle 3.6.: Abweichung, die durch die computationalen Parameter bei der Zerlegung der
Produktion im Produzierenden Gewerbe in Deutschland entsteht

In der Tabelle 3.6 zeigt sich, dass die Unterschiede ziemlich gering sind. So liegen die

durchschnittlichen Abweichungen der Trend- und Saisonkomponente unterhalb von einem
Prozent. Auch in der Laufzeit stellt sich eine Verbesserung dar, die jedoch aufgrund der
allgemein geringen Laufzeit nicht ausschlaggebend ist.
Fiir die Berechnung der Laufzeit wurde die durchschnittliche Abweichung von zehn Aus-
fithrungen genommen. Der geringe Unterschied liegt vor allem an der geringen Anzahl von
Zeitpunkten. Wiirde man sich téglich Daten iiber mehrere Jahre anschauen, so wiirden
die computationalen Parameter bereits einen deutlich hoheren Einfluss auf die Laufzeit
haben und die Unterschiede in der Laufzeit wiirden grofer werden.

3.2.9. Multiplikative Umformung

Der additive Ansatz hat oftmals Probleme bei einer sich abschwéichenden oder verstér-
kenden Saison, da bei diesem die Anpassung zu schwach oder stark ausfillt und somit
die Werte besonders starker oder schwacher Monate als Ausreifter eingestuft werden. Des-
wegen besteht die Moglichkeit, die Komponentenschéatzung multiplikativ durchzufiihren.
Dazu muss die Input Zeitreihe logarithmiert werden und nach Durchfiihrung der Zerlegung
die Ergebnisse in die gewiinschte Form gebracht werden. Ertrtert man die mathematischen
Vorgénge, die bei dieser Umformung passieren.

log(y(zo)) = T(x0) + S(z0) + R(zo) (3.7)
= y(xg) = exp(T(z0) + S(z0) + R(x0)) (3.8)
= y(z0) = exp(T'(20)) * exp(S(z0)) * exp(R(zo)) (3.9)
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3. Saison-Trend Zerlegung mithilfe von Loess

Die erhaltenen Ergebnisse miissen also exponiert werden, um ein multiplikatives Ergebnis
zu erhalten.

Im multiplikativen Fall stellt eine Komponente eine Referenz dar, von der die anderen
Multiplikative abhéngig sind. Dies sollte die Trendkomponente sein. Mithilfe dieses Wis-
sens kann man die Ergebnisse interpretieren. Zum Beispiel bei einer monatlichen Zeitreihe
impliziert ein Wert von 0.9 der Saisonkomponente, dass der Monat 0.9 mal der Wert
Trendkomponente ist. Ein Wert kleiner eins spricht fiir einem schwachen Monat und ein
Wert grofier eins fiir einem starken Monat. Betrachtet man die Zerlegung der Produktion
im Produzierenden Gewerbe in Deutschland und die exponierten Werte fiir das Jahr 2000.

Produktion im Produzierenden Gewerbe in Deutschland (logarithmiert)
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Abbildung 3.11.: Multiplikative Zerlegung der Produktion im Produzierenden Gewerbe in
Deutschland
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3. Saison-Trend Zerlegung mithilfe von Loess

Monat Trend | Saison Rest
Januar 89.496 | 0.9157 | 0.9871
Februar 89.867 | 0.9348 | 1.0023
Mérz 90.240 | 1.0563 | 0.9977
April 90.638 | 0.9970 | 1.0037

Mai 91.037 | 0.9869 | 1.0173
Juni 91.410 | 1.0325 | 0.9875
Juli 91.784 | 1.0109 | 1.0045

August 92.103 | 0.9362 | 0.9997
September || 92.423 | 1.0615 | 1.0020
Oktober | 92.628 | 1.0616 | 0.9986
November || 92.834 | 1.0707 | 1.0030
Dezember || 92.780 | 0.9517 | 1.0114

Tabelle 3.7.: Werte fiir das Jahr 2000 der multiplikativen Zerlegung fiir die Produktion im
Produzierenden Gewerbe in Deutschland

Man erkennt in Tabelle 3.7, dass es sich bei Mérz, September, Oktober und November
um starke Monate und bei Januar, Februar und August um schwache Monate handelt.
Die Restkomponente weist in unserem Fall fiir das Jahr 2000 nur geringe Abweichungen
auf, da die Werte knapp um eins schwanken. Multipliziert man die Saisonkomponente
mit der Trendkomponente, erhélt man die Werte, die durch dass Modell erklart werden.
Die Zeitreihe weist einen positiven Trend auf, da die Realisationen der Trendkomponen-
te mit jedem Monat steigt. Man erkennt aus Abbildung 3.11 und der Tabelle, dass die
multiplikative Berechnung ebenso gute Ergebnisse, wie die additive die Zerlegung liefert
(vgl. Abbildung 1.1). Jedoch ist zu beachten, dass in der Grafik die Werte noch nicht
exponiert worden sind und es sich somit in dieser noch um eine additive Zerlegung han-
delt. Somit ist das additive Verfahren dem multiplikativen Verfahren vorzuziehen, wenn
sich keine verstérkende Saison zeigt und da das multiplikative Verfahren immer mit mehr
Rechenaufwand verbunden ist.

3.2.10. Vergleich mit dem alten STL-Programm

Wie am Anfang bereits erwdhnt, geht das Verfahren auf Cleveland zuriick, der bereits
ein STL-Programm in R implementiert hat, das auf den selben Algorithmus wie meine
Erweiterung des STL-Programms, zuriickgreift. Es weist jedoch weniger Einstellungsmog-
lichkeiten auf und mehrere Diagnosegrafiken sind noch nicht vorhanden.

Neue Moglichkeiten und Parametereinstellungen, die vorgenommen werden kénnen, sind:

Ubergabe von Robustheitsgewichten (rw)

Einstellung des Gewichtefaktors der Robustheitsschitzung (wf)
Moglichkeit einer quadratischen Loess-Schitzung

Bestimmung der Trendspannweite mithilfe des Box-Pierce-Tests
Diagnoseplot der Saisonkomponente (Saisonuntergruppengrafiken)
Diagnoseplot der Trendkomponente

Diagnoseplot fiir die Entwicklung der Robustheitsgewichte
Diagnoseplot fiir die Verteilung der Robustheitsgewichte (Histogramm)

Die neuen Moglichkeiten erleichtern es die optimalen Einstellungen zu finden.
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4. Prognose

Bevor néher auf die Prognose eingegangen wird, betrachtet man zuerst, was man unter
einem deterministischen und einem stochastischen Prozess versteht.

Ein deterministischer Prozess ist ein Prozess, bei dem jeder Vorgang von vorherigen Vor-
gidngen abhingig ist und insbesondere zukiinftige Ereignisse ebenso durch die vorherigen
Vorgéinge eindeutig bestimmt werden kénnen.

Ein stochastischer Prozess ist ein Prozess, dessen Vorgénge zuféilligerweise entstehen. Des-
wegen konnen die zukiinftigen Ereignisse nur aufgrund von Wahrscheinlichkeitsannahmen,
die mithilfe der vorherigen Vorginge bestimmt worden sind ermittelt werden.

Allgemein wird eine Zeitreihe meistens in einen deterministischen und stochastischen Teil
aufgeteilt, um zukiinftige Werte prognostizieren zu kénnen.

ye=f{t) +e (4.1)

Die Funktion f(.) stellt den deterministischen Teil dar, der Fehlerterm e den stochasti-
schen, die Unsicherheit.

Bei der Prognose fiir die Saison-Trend Zerlegung miissen fiir die zukiinftigen Werte die ein-
zelnen Komponenten der Zeitreihe geschéitzt werden. Den erwarteten Wert zum Zeitpunkt
E[g;4p] erhdlt man somit mithilfe folgender Formel.

E[Ge+n] = E[Sesn) + E[Tipn] + E[Ry i) (4.2)

Doch welche Komponenten stellen den deterministischen und stochastischen Teil dar und
wie bekommt man die prognostizierten Werte fiir die jeweiligen Komponenten?

Die Saison (§t+h) ist in sich moglichst konstant und weist {iber den Zeitverlauf eine gleich-
bleibende Struktur auf. Somit ist diese eindeutig iiber ihre vorherigen Werte definiert und
es muss kein Modell geschétzt werden. Deswegen geniigt es den letzten Wert der ent-
sprechenden Saisonuntergruppe konstant fortzuschreiben. Wer trotzdem noch die letzten
Werte der jeweiligen Saisonuntergruppe mit einfliefsen lassen will, fiir den besteht die
Moglichkeit eine Loess-Schatzung durchzufiihren. So wird an dem zu prognostizierenden
Zeitpunkt eine Loess-Schitzung vorgenommen. Bei dieser findet damit noch eine leichte
Anpassung an die letzten Werte der Saisonuntergruppe statt. Das genaue Vorgehen wird
in Kapitel 4.1.1 erldutert. Jedoch ist auch in diesem Fall der Schétzwert eindeutig iiber
die vorherigen Saisonwerte definiert.

Bei der Saisonkomponente handelt es sich somit um eine deterministische Komponente.
Die Prognose nimmt feste Werte an und weist keine Unsicherheiten auf. Daraus folgt, dass
sie nur Einfluss auf die Punktschétzung, aber nicht auf die Prognoseintervalle hat.

Die Trendkomponente (ft+h) weist hingegen nicht immer die gleiche Struktur (den glei-
chen Verlauf) auf. Deswegen ist es fiir die Prognose hilfreich, zuerst ein Modell zu schéitzen
und damit die zukiinftigen Werte der Trendkomponente zu prognostizieren.

Im spéteren Verlauf werden zwei Modelle betrachtet: das ARIMA-Modell, vergleiche Ka-
pitel 4.1.3 und Random-Walk mit Drift, vergleiche Kapitel 4.1.2. Diese Modelle bestehen
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wiederum aus einem deterministischen und stochastischen Teil. Im ARIMA-Modell ist
der deterministische Teil abhéngig von den vorherigen Werten, beim Random-Walk mit
Drift vom Zeitverlauf. Fiir die Prognose der Trendkomponente erhélt man somit folgende
Formel, wobei f(.) der deterministische Teil des jeweiligen Modells ist und e der stochasti-
sche Teil, der sogenannte Fehlerterm (die Abweichungen die nicht iiber das Modell erklért
werden konnen).

E[Tin) = f(t+h) + EfEign) (4.3)

Die Annahmen, die fiir die einzelnen Teile des Modells angenommen werden miissen, wer-
den in den nachfolgenden Kapiteln erlédutert.

Die Restkomponente ist der stochastische Teil der Zerlegung. Fiir sie muss eine Verteilungs-
annahme getroffen werden. Im einfachen Fall nimmt man ein gaufssches weifses Rauschen
mit Erwartungswert null und Varianz o2 an (R; ~ N(0,0?) mit ¢t € 1,...,n)). Beim weifien
Rauschen sind die einzelnen Realisationen unabhéngig voneinander.

Doch wie sinnvoll ist diese Annahme? Wenn bei der Bestimmung des Trendparameters
darauf geachtet worden ist, das die Restkomponente unkorreliert ist, ist die Annahme ei-
nes Erwartungswertes von null sehr sinnvoll, da die Restkomponente um den Nullpunkt
schwankt. Im anderen Fall sollte darauf geachtet werden, dass eventuell, wie bei der Trend-
komponente, ein Modell fiir die Restkomponente geschitzt wird, da die Moglichkeit be-
steht, dass in dieser noch Struktur ist und damit vergangene Werte die zukiinftigen Rea-
lisationen der Restkomponente beeinflussen.

Die Annahme der konstanten Varianz von o2 stellt sich als weniger sinnvoll heraus, da
wie spéter im Ausblick erldutert wird, es Zeitrdume gibt, zu denen es vermehrt stéarkere
Abweichungen gibt, als in anderen Zeitrdumen. Deswegen kann eine Vorhersage des Pa-
rameters o2 sehr viel genauere Ergebnisse iiber die Unsicherheit, die besteht, liefern. Im
weiteren Verlauf wird jedoch auf die einfache Annahme des gaufsschen weiffen Rauschen
zuriickgegriffen.

Da der Erwartungswert beim gaufischen weiften Rauschen null ist, flieft die Restkomponen-
te nur in die Schitzung der Prognoseintervalle mit ein. Sie verdndert nur die Unsicherheit
zukiinftiger Werte.

Falls die Annahme einer unkorrelierten Restkomponente nicht eintritt, kann auf diese auch
ein Modell geschétzt werden. Die Schitzung lauft analog der Schatzung der Trendkompo-
nente ab. Im folgenden Teilkapitel wird auf unser Beispiel der Produktion im Produzieren-
den Gewerbe zuriickgegriffen, wobei die Annahme einer unkorrelierten Restkomponente
besteht. Beim empirischen Beispiel trifft die Annahme einer unkorrelierten Restkompo-
nente dagegen nicht ein.

Bei einem schon in R implementierten Verfahren fiir die Prognose einer Saison-Trend zer-
legten Zeitreihe, wird fiir die Vorhersage die Trend- mit der Restkomponente zusammenge-
legt. Auf die zusammengelegte Zeitreihe wird ein Modell geschitzt und die Prognosewerte
berechnet (Hyndman and Athanasopoulos, 2012, vgl. Kap. 6.6). Im Kapitel 4.3.2 wird ein
Vergleich gezogen, welche der beiden Methode bessere Ergebnisse liefert.

4.1. Methoden

4.1.1. Loess-Prognose

Die Prognose mithilfe von Loess findet bei der Saisonkomponente Anwendung. Sie lauft
aquivalent der in Kapitel 2.2 erlauterten Vorgénge einer lokal gewichteten Regression ab.
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Der Unterschied besteht darin, dass nur linksseitige Werte fiir die Schatzung vorhanden
sind und zum schétzenden Zeitpunkt keine Realisation vorliegt. So wird der Schétzwert
nur iber die vorherigen Werte bestimmt. Der Wert von £y gibt dann erneut, den zu pro-
gnostizierenden Wert an.

Der Vorteil der Loess-Prognose, gegeniiber der Verfahrensweise einfach den letzten Saison-
untergruppenwert zu nehmen, besteht darin, dass leichte Schwankungen, die an der rechten
Grenze der Saisonuntergruppe entstehen, auch in die Prognose des saisonalen Wertes mit
einfliefen und somit mit abgebildet werden.

4.1.2. Random Walk

Bei einem Random-Walk wird angenommen, dass die Realisation y; nur von ihrem vorheri-
gen Wert und einer Unsicherheit (Fehlerterm) abhéngig ist. Der Fehlerterm weist zuféllige
Werte auf, die mithilfe einer Wahrscheinlichkeitsannahme bestimmt werden. Hier betrach-
tet man die Modellgleichung eines Random-Walk (Foster, a, vgl. S. 5-10).

Yt = Yt—1 € (4.4)
Ayt = e (4.5)

Fiir den Fehlerterm wird weies Rauschen mit Erwartungswert Null und Varianz o2 ange-
nommen. Betrachtet man die Zuwachsrate, so erkennt man, dass diese nur von ¢; abhéngig
ist und somit zufillige Werte annimmt.

Der Erwartungswert dieses Modells ist konstant tiber den Zeitverlauf (E(y;) = E(yi—1) =
yo) und die Varianz ist abhingig von der Zeit (Var(y;) = to?). Das heikt, die Varianz ist
nicht endlich und mit zunehmenden in der Ferne liegenden Prognosezeitpunkten wird das
Prognoseintervall linear grofer.

Jedoch ist in den meisten Féllen ein Random-Walk nicht sehr sinnvoll, da der Erwar-
tungswert konstant ist und somit bei der Punktprognose die letzte Realisation konstant
weiter geschrieben wird. Deswegen kann der Random-Walk um einen deterministischen
Teil erweitert werden, einen Drift.

Die Modellgleichung eines Random-Walk mit Drift sieht folgendermafen aus (Foster, a,
vgl. S. 12-13).

Yt =Y—1 + o+ & (4.6)
Ay =g+ & (4.7)

Man erkennt, dass nun die Zeitreihe zu jedem Zeitpunkt noch um den Wert von «g steigt.
Wenn «g kleiner als null ist, handelt es sich um einen fallenden Trend, wenn «aq grofer
null ist, um einen steigenden. Der Erwartungswert ist nun nicht mehr konstant iiber den
Zeitverlauf. Er ist vom Parameter ap und der Zeit abhéngig (E(y:) = tag + yo). Somit ist
der Erwartungswert beim Random-Walk mit Drift nicht endlich.

Aus der Modellgleichung kann man die Prognose eines Random-Walk mit Drift, in Ab-
héngigkeit zu den vergangenen Werten, berechnen. Man erhélt folgende Gleichungen:

t+h
eehl¥e, - v0 = ye + aoh + Y € (4.8)

i=t+1
E[Yesnlyes - y0] = ye + aoh (4.9)
Var(@\t-l-h‘yta ceey yO) = ho-2 (410)
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Die Zuwachsrate o fliefst nun auch in das Modell mit ein. Der Term ¢; hat keinen Einfluss
auf die Punktschéitzung, da der Erwartungswert von diesem Null ist. Er beeinflusst nur

p—

die Prognoseintervalle, die mithilfe der geschatzten Varianz (at2+h), flir jeden Prognose-
zeitpunkt, bestimmt werden. Die geschétzte Varianz nimmt fiir jeden neu prognostizierten
Zeitpl/lilkt, um den selben Wert zu. Dieser Wert stellt die geschéatzte Varianz des Modells
dar (02) und setzt sich aus der Varianz des Fehlerterms (Var[e]) und der Varianz des
Parameters (Var[ap]) zusammen.

Beim Random-Walk mit Drift wird somit ein steigender oder fallender Trend prognosti-
ziert und die Breite des Prognoseintervalls nimmt linear zu.

4.1.3. ARIMA-Modell

Das ARIMA-Modell setzt sich aus einem autoregressiven Prozess (AR) und einen Moving-
Average Prozess (MA)zusammen.

Das I steht fiir “Integrated” und bedeutet, dass die Zeitreihe zuerst durch Differenzieren in
einen schwach stationdren Prozess iiberfiithrt werden muss, da dies eine Voraussetzung fiir
ein ARMA-Modell ist. Dazu betrachtet man die Definition von schwacher Stationaritat
(Hyndman and Athanasopoulos, 2012, vgl. 8.1).

Unter schwacher Stationaritit versteht man, dass der Erwartungswert iiber den Zeitverlauf
konstant ist (a), die Varianz endlich ist (b) und die Kovarianz nur von ihrem Zeitabstand
h abhéngig ist (c).

a) Ely:] = Elyi11] = ... = Elygqp] fir h € { 0,1, ...} (4.11)
b) Varlysin] < oo fir h € { 0,1,...} (4.12)
¢) cov[yo, Yo+n] = covlyr, yi4a] = ... = covlys, Yrin] (4.13)

Aus (a) erkennt man, dass die Zeitreihe keinen Trend aufweisen darf, da sonst der Erwar-
tungswert liber dem Zeitverlauf nicht konstant ware.

Schwache Stationaritét erreicht man durch Differenzieren der Zeitreihe. Fiir Zeitreihen mit
linearem Trend, muss man die Werte einmal differenzieren (Ay;), fiir die mit quadrati-
schem Trend, zweimal (A%y,).

Aye =yt — Y1 (4.14)
APy = Ay — Ay (4.15)
= (¥t — yt—1) — (Yt—1 — Yt—2) (4.16)

Ob die, nach Differenzieren erhaltene Zeitreihe wirklich stationér ist, kann mit einem
adjusted Dickey-Fuller Test oder einem KPSS Test {iberpriift werden. Sollte immer noch
keine Stationaritdt vorliegen, muss eine erneute Differenziation vorgenommen werden.

Nachdem man die Zeitreihe in einen schwach stationdren Prozess iiberfiihrt hat, kann man
nun die Modellgleichungen eines AR(p)- und eines MA(q)-Prozesses betrachten (Hyndman
and Athanasopoulos, 2012, vgl. 8.3-8.5).

AR(P): ¥t = onyi—1 + coyi—2 + ... + 0pYi—p + € (4.17)
MA(q): yt = € + Pre—1 + Paer—2 + ... + By€i—q (4.18)

Aus der Formel erkennt man, dass im autoregressiven Modell die Realisation y;, von ih-
ren vorherigen Werten jeweils mit einem bestimmten Anteil («) abhéngig ist. Fiir den
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Fehlerterm ¢; wird gauftsches weiftes Rauschen angenommen. So weist dieser einen Erwar-
tungswert von Null auf und besitzt die Varianz von 2. Die einzelnen ¢; sind iiber den
Zeitverlauf unabhéngig voneinander und identisch verteilt.

Im Moving-Average Modell ist die Realisation von den vergangenen Fehlertermen ab-
héngig. So kann diese als gewichteter gleitender Durchschnitt der letzten g-Fehlerterme
angesehen werden. Fiir die Fehlerterme gilt, wie oben erwéhnt, gaufisches weifses Rauschen
und sie sind unabhéngig identisch voneinander.

Fasst man nun die beiden Gleichungen zu einem ARMA-Modell zusammen, so erhélt man.
Y = A1Yi—1 + ...+ QpYt—p + /Blet—l + ...+ ﬁqet—q + € (419)

Die Realisation zum Zeitpunkt t () ist nun von ihren vergangen Realisationen und Feh-
lertermen abhéngig.

Kurz schreibt man ARIMA(p,d,q), wobei p die Anzahl der autoregressiven Lags darstellt,
d die Ordnung der Differenzierung und q die Anzahl der Lags beim MA-Prozess.

Die Werte fiir p, d und q kénnen in R iiber die Funktion auto.arima erhalten werden
(Hyndman and Athanasopoulos, 2012, vgl. 8.7). Sie ist im package ”forecast” enthalten.
Die Parameter werden mithilfe des AIC (Akaike Information Criterion) ausgewéhlt. So
bestimmt die Funktion in R zuerst den Parameter d, anhand des adjusted Dickey-Fuller
oder KPSS Tests (d ist maximal 2) und anschlieRend die Parameter p und q. Dazu wird
fiir mehrere verschiedene Parametereinstellungen fiir p und ¢, die anhand eines Algo-
rithmuses vorgenommen werden, eine Maximum-Likelihood Schétzung (ML-Schéitzung)
durchgefiihrt und die Parameterwerte mit den geringsten AIC verwendet. Durch die ML-
Schétzung erhélt man auch die Werte fiir die Parameter «;, und ;.

Nachdem man die Parameterwerte erhalten hat, kann man nun eine Prognose fiir das
ARIMA-Modell erstellen. Fiir die Punktschéatzung sind die zukiinftigen €; nicht von Be-
deutung, da deren Erwartungswert null ist. Die vergangenen Fehlerterme fliefsen in die Pro-
gnose mit ein. Damit erhélt man folgende Modellgleichung fiir die Prognose des néchsten
und iibernéichsten Wertes eines ARIMA(2,0,2)-Modells:(Hyndman and Athanasopoulos,
2012, vgl. 8.8)

Elyelye, -, Yol = a1y + coye—1 + Bi€: + Pacr—1 (4.20)
Elgira|ye, - yo] = a1 E[ges1|ye, - Yo] + x2yr + o€ (4.21)
mit Bfeip1] = Efeiy] = 0 (4.22)

Man erkennt, dass fiir die Punktschitzung des iibernidchsten Wertes der vorherige ge-
schitzte Wert vonnoten ist. Aufserdem fliefsen, ab einem bestimmten in der Ferne liegen-
den Zeitpunkt, die geschétzten €, des Modells nicht mehr direkt in die Prognose mit ein,
da deren Erwartungswerte der Schatzungen Null sind.

Fiir die Schatzung eines Prognoseintervalls spielen die Schiatzungen des Parameters ¢; je-
doch eine wichtige Rolle. So muss ein Wert fiir die geschétzte Varianz ermittelt werden

(07,,,)- Fiir das erste Prognoseintervall (erster Zeitpunkt nach letzter Realisation) ist diese
einfach die geschatzte Varianz des Fehlerterms (;5) Fiir von der letzten Realisation weiter
entfernt liegende Prognosen, ist die Berechnung der Varianz deutlich komplizierter, da in
diesem Fall die Varianzen mehrerer Fehlerterme mit einflieen und die Parameter auch
noch eine Rolle spielen. Deswegen wird auf deren Berechnung nicht genauer eingegangen.
Allgemein gilt fiir ein ARIMA-Modell, dass die Varianz, fiir entfernte Zeitpunkte, gegen
einen Wert konvergiert. Voraussetzung hierfiir ist, dass die Ausgangszeitreihe Stationari-
tat aufweist, was bei einem ARIMA-Modell gegeben sein sollte.
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Eine Erweiterung des ARIMA-Modells stellt das saisonale ARIMA-Modell dar (Hyndman
and Athanasopoulos, 2012, vgl. 8.9). Bei diesem kann eine Differenzierung der Saison vor-
genommen werden. Aufserdem kann auch bestimmt werden, dass die Werte vom letzten
Saisonwert oder vom Fehlerterm abhéngig sind. Das bedeutet bei monatlichen Daten, dass
der zwolfte vorherige Wert oder Fehlerterm in das Modell mit aufgenommen wird (z.B.

a12Yi-12; P12€i-12).

4.2. Prognosebeispiel

In diesem Abschnitt wird beispielhaft eine Prognose fiir die Produktion im Produzierenden
Gewerbe in Deutschland fiir die néchsten zwolf Monate erstellt. Die Zeitreihe beginnt
mit dem Januar 1991 und endet im September 2008. Fiir die Zerlegung der Zeitreihe
wurden folgende Parameter benutzt: ns=9; nt=13; isdeg=0; itdeg=1; no=10; ni=1. Zuerst
betrachtet man die Punktprognose, danach die Prognoseintervalle.

4.2.1. Punktprognose

In die Punktschétzung flieffen nur die prognostizierten Werte der Saison- und Trendkom-
ponente mit ein, da fiir die Restkomponente ein Erwartungswert von Null angenommen
wird.

Zuerst behandelt man die Saisonkomponente. Fiir ihre Prognose stehen zwei Moglichkeiten
zur Verfligung, entweder eine Loess-Schétzung oder das Fortschreiben des letzten Wertes
der entsprechenden Saisonuntergruppe.

Die Werte fiir die Loess-Schitzung erhélt man bereits iiber den Output der Zerlegung.
So wird im zweiten Schritt der inneren Schleife bereits ein Wert jeder Saisonuntergruppe
prognostiziert. Diese werden fiir die Saisonprognose genommen und mit dem in Schritt
drei erhaltenen Wert der Saisonkorrektur subtrahiert. In der folgenden Tabelle (4.1) ist
dargestellt, welche Werte man fiir die Prognose der Saisonkomponente erhalten wiirde.

Zeitpunkt || Loess-Schitzung | letzter Saisonwert
10.2008 5.8062 5.7807
11.2008 6.8023 6.7900
12.2008 -5.4578 -5.4328
01.2009 -7.5510 -7.5486
02.2009 -5.5623 -5.5759
03.2009 5.0806 5.0567
04.2009 -0.2428 -0.2450
05.2009 -1.6393 -1.6397
06.2009 2.5126 2.5120
07.2009 1.6678 1.6913
08.2009 -6.7817 -6.7730
09.2009 5.3692 5.3631

Tabelle 4.1.: Vergleich und Werte der verschiedenen Prognosemethode der Saisonkompo-
nente fiir die Produktion im Produzierenden Gewerbe in Deutschland
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Aus der Tabelle 4.1 ist ersichtlich, dass sich die Werte nicht besonders stark unterschie-
den. Der maximale Abstand betrdgt circa 0.03 und tritt fiir den Monat Méarz auf. So
hat die Loess-Schitzung dort ein hoheres Niveau als die konstante Schétzung. Wenn man
sich noch einmal die Saisonuntergruppengrafik aus Abbildung 3.2 fiir den Monat Mé&rz ins
Gedéchtnis ruft (Grafik 3), so erkennt man, dass die letzten beiden Werte oberhalb der
roten Linie liegen. Deswegen scheint der prognostizierte Wert anhand der Loess-Schitzung
ndher an der Realitdt zu liegen, als das konstante Fortschreiben des letzten Saisonwertes.
Bei der Loess-Schétzung findet somit eine leichte Anpassung an die letzten Werte statt.

Nun wird auf die Prognose der Trendkomponente eingegangen. Bei dieser muss zuerst ein
Modell geschétzt werden. Es stehen zwei Moglichkeiten zur Verfiigung: ein ARIMA-Modell
oder ein Random-Walk mit Drift.

Zuerst wird ein Random-Walk mit Drift auf die Trendkomponente geschétzt, mit der da-
nach eine Prognose erstellt wird. Man erhélt fiir den Random-Walk mit Drift folgende
Modellparameter.

Random-Walk Drift (c) | Fehlerterm (e)
Wert 0.09887 -
Standardabweichung || 0.01892 0.27550

Tabelle 4.2.: Modellparameter eines Random-Walks mit Drift in der Trendkomponente fiir
die Produktion im Produzierenden Gewerbe in Deutschland

Beim Random-Walk nimmt der Trend mit jeder Zeiteinheit um den Wert 0.09887 zu.
Das heifst pro Monat steigt die Produktion im Produzierenden Gewerbe in Deutschland

um den Preisindex von circa 0.1 an. Die Standardabweichung fiir den Fehlerterm betragt
0.27550.

Nun betrachtet man das ARIMA-Modell. Da man bei Betrachtung der Trendkomponen-
ten iiber den Zeithorizont einen linear steigenden Trend feststellt, wiirde man sich dafiir
entscheiden, die Zeitreihe einmal zu differenzieren (d=1).

Die Funktion auto.arima in R schldgt dann, fiir die einmal-differenzierte Zeitreihe, als op-
timale Wahl fiir die Anzahl der autoregressiven Lags eins (p=1) und fiir die Anzahl der
Moving-Average Lags zwei (q=2) vor. Man schétzt somit ein ARIMA(1,1,2)-Modell. Die-
ses besitzt den geringsten AIC und man wiirde folgende Parameterwerte fiir das Modell
erhalten.

ARIMA || AR1 (a1) | MAL (51) | MA2 () | Ft (e)
Wert 0.9478 0.0149 0.6054 -
Standardabw. 0.0213 |  0.0657 |  0.0460 | 0.0580

Tabelle 4.3.: Modellparameter eines ARIMA-Modells in der Trendkomponente fiir die Pro-
duktion im Produzierenden Gewerbe in Deutschland

Man erkennt, dass die letzte Realisation der einmal-differenzierten Zeitreihe einen hohen
Einfluss auf die Realisationen und zukiinftigen Werte besitzt, da der Parameter o einen
Wert sehr nahe eins annimmt. Der letzte Fehlerterm hat einen deutlich geringeren Einfluss,
als der vorletzte Fehlerterm. Der Einfluss des letzten Fehlerterms ist nicht signifikant. Um
keinen Trend in der Trendkomponente zu haben, wurde die Zeitreihe einmal differenziert.
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Es handelt sich somit um einen linearen Trend. Die Standardabweichung des Fehlerterms
betragt 0.0580 und ist geringer als beim Random-Walk mit Drift.

Nachdem man die beiden Modelle aufgestellt hat, kann man eine Prognose fiir die Trend-
komponente schétzen. Im folgenden werden die berechneten Prognosewerte fiir die Punk-
teschétzung des Trendes fiir die beiden Modelle betrachtet.

Zeitpunkt | Random-Walk mit Drift | ARIMA(1,1,2)
10.2008 107.6652 107.2974
11.2008 107.7641 107.0379
12.2008 107.8630 106.7919
01.2009 107.9618 106.5588
02.2009 108.0607 106.3378
03.2009 108.1596 106.1284
04.2009 108.2585 105.9299
05.2009 108.3573 105.7418
06.2009 108.4562 105.5634
07.2009 108.5551 105.3944
08.2009 108.6540 105.2343
09.2009 108.7528 105.0824

Tabelle 4.4.: Vergleich und Werte der verschiedenen Prognosemethoden der Trendkompo-
nente filir die Produktion im Produzierenden Gewerbe in Deutschland

Beim Random-Walk mit Drift ergibt sich ein positiver Trend, der pro Monat linear
um den selben Wert steigt, beim ARIMA(1,1,2)-Modell hingegen ist ein negativer Trend
feststellbar (vgl. Tab. 4.4). Nach zwolf Monaten ergibt sich ein Unterschied zwischen den
beiden Prognosemethoden von circa 3.7 Preisindexpunkten.

Prognose fir die Produktion im Produzierenden Gewerbe
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Abbildung 4.1.: Prognose und Vergleich der beiden Modelle fiir den Trend fiir die Produk-
tion im Produzierenden Gewerbe in Deutschland
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Um die endgiiltige Punktschatzung fiir die Zeitreihe zu erhalten, miissen die Prognose
der Saison- und der Trendkomponente addiert werden. In der Abbildung 4.1 wurde fiir
die Schétzung der Saisonkomponenten das Loess-Verfahren benutzt. Man erkennt den
unterschiedlichen Verlauf der beiden Prognosen. So weisen die Werte beim Random-Walk
mit Drift einen stérkeren Trend auf. Das ARIMA-Modell nimmt die leicht abfallende Kurve
im Jahr 2008 zum Anlass einen schwécheren Trend zu schétzen, aufserdem ist die saisonale
Struktur in der Prognose sichtbar.

4.2.2. Prognoseintervall

Um ein Prognoseintervall erstellen zu kdnnen, muss zuerst eine Verteilungsannahme fiir
die zu prognostizierenden Werte angegeben werden. In unserem Fall nimmt man an, dass
die zukiinftigen Realisationen bedingt auf ihre vergangenen Werte normal-verteilt sind.

?//\t+h|yta Yo ~ N(M702> (423)

Mithilfe dieser Annahme kann man ein Prognoseintervall folgendermafen berechnen.

PI: [E[Gesnlys, - Yol £ z1-21/ o7 (4.24)

—

Zi-g stellt das Quantil der Standardnormalverteilung dar. 0§+h die geschatzte Varianz
zum Zeitpunkt ¢ + h.

In den meisten Fallen wird ein 95%-Prognoseintervall oder ein 90%-Prognoseintervall be-
trachtet, somit muss man das entsprechende Quantil der Standardnormalverteilung be-
rechnen (Z0.975 = 196, 20.95 = 164)

Doch wie erhalte ich die geschétzten Varianzen? Da die Saisonkomponente einem deter-
ministischen Trend folgt und somit dessen Prognose keine Unsicherheit aufweist, hat sie
keinen Einfluss auf die Varianz. Man muss also fiir die Berechnung der Varianz die Trend-
und Restkomponente hinzuziehen.

Beim Random-Walk mit Drift, fiir die Trendkomponente,/lgt man in Kapitel 4.1.3 gezeigt,

dass die Varianz fiir die Prognose Var(Giin|yt, ...y0) = o2 h = ho? ist. Wobei sich o2 aus
der Varianz des Fehlerterms plus der Varianz des Parameters fiir den Drift zusammensetzt.
Beim ARIMA-Modell entspricht die Varianz fiir das erste Prognoseintervall der Varianz
des Fehlerterms (e;). Bei Prognosen, die weiter in die Zukunft reichen, stellt sich die Be-
rechnung der Varianz als komplizierter heraus, deshalb wird auf die genaue Vorgehensweise
nicht ndher eingegangen. Liegt ein stationdres ARIMA-Modell vor, so konvergiert die Va-

rianz gegen einen bestimmten Wert.

In Tabelle 4.5 vergleicht man die 95%-Prognoseintervalle und die geschétzten Varianzen
fiir die Trendkomponente der beiden verschiedenen Modelle. Man erkennt, dass bis zum
Monat Mirz, das geschiitzte 52 beim Random-Walk mit Drift groRer, als beim ARIMA-
Modell ist. Mit mittlerer Anzahl von prognostizierten Perioden ist die Unsicherheit beim
Random-Walk geringer, als beim ARIMA-Modell. Beim Random-Walk mit Drift steigt
die Varianz linear an. Wegen der Stationaritét sollte im ARIMA-Modell die Varianz gegen
einen bestimmten Wert konvergieren. Fiir eine kurzfristige Prognose (1-3 Monate) liefert
in unseren Beispiel das ARIMA-Modell kleinere Prognoseintervalle, fiir mittelfristige bis
langfristige Prognosen (4-12 Monate), der Random-Walk mit Drift.
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4. Prognose

Modell Random-Walk mit Drift ARIMA-Modell
Zeitpunkt o2 Prognoseintervall o2 Prognoseintervall
10.2008 || 0.0763 | [107.1240;108.2065] || 0.0034 | [107.1836;107.4111]
11.2008 || 0.1532 | [106.9969;108.5313] || 0.0163 | [106.7873;107.2885]
12.2008 || 0.2309 | [106.9211;108.8048] || 0.0572 | [106.3233;107.2605]
01.2009 || 0.3093 | [106.8718;109.0519] || 0.1387 | [105.8289;107.2887]
02.2009 | 0.3884 | [106.8392;109.2823| || 0.2717 | [105.3162;107.3594]
03.2009 | 0.4683 | [106.8184;109.5008] || 0.4650 | [104.7919;107.4649]
04.2009 || 0.5488 | [106.8064;109.7105] || 0.7259 | [104.2600;107.5998]
05.2009 | 0.6301 | [106.8015;109.9132] || 1.0601 | [103.7237;107.7598]
06.2009 || 0.7121 | [106.8023;110.1102] || 1.4723 | [103.1852;107.9417]
07.2009 | 0.7948 | [106.8077;110.3024] || 1.9659 | [102.6463;108.1426]
08.2009 || 0.8782 | [106.8172;110.4907] || 2.5434 | [102.1084;108.3601]
09.2009 | 0.9623 | [106.8301;110.6756] || 3.2065 | [101.5727;109.5922]

Tabelle 4.5.: Prognoseintervalle der beiden Modelle der Trendkomponente fiir die Produk-
tion im Produzierenden Gewerbe in Deutschland

Fiir die Restkomponente wird ein weifses gauksche Rauschen angenommen, mit Er-
wartungswert Null und Varianz o2. Somit ergibt sich, dass die Varianz zum Zeitpunkt
3? = o2 ist. Sie ist somit fiir jeden Prognosezeitpunkt konstant. In unserem Fall, fiir die

Produktion im Produzierenden Gewerbe in Deutschland, ergibt sich: o2 = 0.6255.

Die endgiiltigen Prognoseintervalle ergeben sich, indem man die Varianzen aus der Trend-
und Restkomponente verbindet. Jedoch reicht es nicht, die beiden zu addieren. Man muss
auch die Kovarianz zwischen den beiden Parametern betrachten. Diese bekommt man mit-
hilfe der Residuen. Beim Random-Walk mit Drift und beim ARIMA-Modell entsprechen
diese dem Fehlerterm. Bei der Restkomponente stellt diese selbst die Residuen dar, da
sie ja den Teil, der nicht iiber die beiden anderen Komponenten abgedeckt werden kann,
erklért.

Modell Random-Walk mit Drift/Rest | ARIMA-Modell /Rest
Kovarianz 0.00374 -0.00679
Korrelation 0.01740 -0.14738

Tabelle 4.6.: Kovarianzen und Korrelationen zwischen den einzelnen Residuen bei der Pro-
duktion im Produzierenden Gewerbe in Deutschland

In der Tabelle 4.6 sieht man, welche Kovarianz sich zwischen der Restkomponente und
den Residuen des Trendmodells ergibt, zur besseren Interpretation wird auch die Korrelati-
on betrachtet. Die Residuen des ARIMA-Modells weisen eine geringe negative Korrelation
mit der Restkomponente auf, beim Random-Walk ist der Zusammenhang kaum messbar.
Fiir die Schatzung der Kovarianz geht man davon aus, dass die Korrelation konstant bleibt,
da diese eine normierte Grofe ist. Mithilfe dieses Wissens, kann man die zukiinftigen Ko-
varianzen schétzen. Sie ergeben sich anhand der Korrelation, multipliziert mit den beiden
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Standardabweichungen.

T,R
allgemein: cor(T, R) = CZLE) (4.25)
o; (To; (R)
mit: cor¢(T, R) = coryn (T, R) (4.26)
> covpn (T, R) = cor(T, R) \/Ut2+h(T)Ut2+h(R) (4.27)

o~

Nachdem man nun die Kovarianzen berechnet hat, kann man nun das 0t2 berechnen.

—_— —

ot = 0pn(T) + 07 (R) + 2cov (T, R) (4.28)
— 7o (T) + 02 1 (B) + 2c0(T, R 021 (T2 (B (4.20)

Mithilfe der geschéatzten Werte der Varianz, kann man nun die Prognoseintervalle erstellen.
Sie ergeben sich, wie oben beschrieben, {iber die Quantile der Standardnormalverteilung
und der geschéitzten Varianz.

Prognoseintervall Trendprognose Random-Walk mit Drift
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Abbildung 4.2.: Prognoseintervall fiir die Prognose des Trendes mit Random-Walk mit
Drift fiir die Produktion im Produzierenden Gewerbe in Deutschland

In Abbildung 15 und 16 sind fiir die beiden Modelle die endgiiltigen Prognoseinter-

valle aufgezeigt. Die schwarze Linie im geschétzten Bereich stellt die Punktprognose des
jeweiligen Modells dar.
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Prognoseintervall Trendprognose Arima—Modell
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Abbildung 4.3.: Prognoseintervall fiir die Prognose des Trendes mit Arima-Modell fiir die
Produktion im Produzierenden Gewerbe in Deutschland

4.3. Prognosegiite

Nachdem man die Prognosemdglichkeiten fiir eine in Saisonkomponente und Trendkom-
ponente zerlegte Zeitreihe aufgezeigt hat, will man feststellen, wie gut diese Methode
gegeniiber anderen Modellen und Prognosemoglichkeiten ist. Dazu wird die Zeitreihe zu
einem fritheren Zeitpunkt abgeschnitten, darauf eine Prognose erstellt und mit den danach
eingetroffenen Werten verglichen. Der Vergleich, der verschiedenen Prognosemethoden ge-
schieht mithilfe des mittleren quadratischen Fehlers.

Fiir die Anzahl der Werte, die prognostiziert werden, werden zwei verschiedene Varianten
betrachtet, einmal fiir eine kurzfristige Prognose drei Monate und fiir eine langfristige
Prognose zwolf Monate.

Da der Vergleich, wenn nur zu einem Zeitpunkt abgeschnitten worden ist, keine sinnvolle
Losung darstellt, bestehen zwei Moglichkeiten, entweder ein rekursives Prognosefenster
oder eine rollierendes.

Betrachtet man die beiden Méglichkeiten fiir die Produktion im Produzierenden Gewerbe
in Deutschland, so wird beim rekursiven Prognosefenster die Zeitreihe Ende 2000 abge-
schnitten und darauf die néchsten zwolf bzw. drei Monate prognostiziert und der mittlere
quadratische Fehler berechnet. Darauthin wird der Wert des Januar 2001 in die Zeitreihe
mit aufgenommen und erneut die néchsten zwolf bzw. drei Monate prognostiziert usw..
Beim rollierenden Prognosefenster besteht fiir den Input immer das gleiche Zeitintervall.
So wird bei diesem auch im ersten Schritt Ende 2000 abgeschnitten und daraufthin eine
Prognose erstellt und der mittlere quadratische Fehler berechnet. Daraufhin wird erneut
der Januar mit in die Ausgangszeitreihe aufgenommen, wobei in diesem Fall auch der erste
Wert der Ausgangszeitreihe wegfillt. Diese beginnt nun im Februar 1991. Damit hat man
immer die gleiche Anzahl an Werten fiir die Input-Zeitreihe.

Nachdem im folgenden Teilkapitel die Berechnung des mittleren quadratischen Fehlers
aufgezeigt wird, werden im darauffolgenden Teilkapitel folgende Modelle verglichen:
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- Saisonaler ARIMA, Random-Walk mit Drift

- neue Methode: STL+Random-Walk mit Drift und STL+ARIMA

- alte Methode: STL+Random-Walk mit Drift und STL+ARIMA.

Unter der alten Methode ist zu verstehen, dass fiir die Saison die letzten Saisonwerte
konstant weitergeschrieben werden und die Trend- und Restkomponente zusammengefiigt
werden und darauf ein Modell und eine Prognose geschéatzt wird.

4.3.1. Mittlerer quadratischer Fehler

Der mittlere quadratische Fehler stellt ein Mafs dar, um die Prognosegiite eines Modells zu
beurteilen. Bei diesem werden die Abweichungen des Schitzwertes vom wahren Parameter
aufsummiert und durch die Anzahl der vorhergesagten Perioden geteilt.

t+h
1

MQF =+ > (Elgi] - y:)? (4.30)

i=t+1

Um den MQF bestimmen zu kénnen miissen die wahren Werte der Realisationen y;yp,
bekannt sein. Somit kann der MQF immer erst im Nachhinein berechnet werden. Aus der
Formel erkennt man, dass mit zunehmenden Abweichungen der Wert des MQF immer
groker wird. Daraus folgt, je kleiner der MQF, desto besser ist die Prognosegiite des
Modells.

4.3.2. Vergleich verschiedener Prognosemethoden

Im folgenden Kapitel werden die verschiedenen Prognosemodelle anhand des MQF (mitt-
leren quadratischen Fehler) verglichen. Als Vergleichszeitreihe dient die Produktion im
Produzierenden Gewerbe in Deutschland.

Im ersten Fall betrachtet man eine kurzfristige Prognose fiir das rekursive Prognosefens-
ter. Im ersten Schritt geht die Ausgangszeitreihe bis Januar 2001, im letzten Schritt bis
Mai 2008. Somit werden fiir jedes Modell insgesamt 91 mittlere quadratische Fehler be-
rechnet. Aus diesen 91 mittleren quadratischen Fehlern wird noch einmal der Mittelwert,
der Median und das 75%-Quantil gebildet um die Prognosegiite der Modelle vergleichen
zu konnen. Es konnen ebenso die Boxplots betrachtet werden, um die verschiedenen Pro-
gnosemethoden zu vergleichen.

Aus der Tabelle 4.7 erkennt man, dass bei einer kurzfristigen Prognose (drei Monate) die
alten STL-Prognosemethode die besten Ergebnisse liefert, wenn man den Mittelwert be-
trachtet. Die einzige Methode, die die saisonale Struktur nicht beachtet, der Random-Walk
mit Drift, liefert mit Abstand die schlechtesten Ergebnisse. Beim 75%-Quartil hingegen
schneiden die neuen STL-Prognosemethoden besser als die alten ab. Bei der Prognose der
Komponenten zerlegten Zeitreihe, ist die ARIMA Prognose der Random-Walk mit Drift
Prognose vorzuziehen. Das saisonale ARIMA-Modell ergibt bei er Uberpriifung nie die
niedrigsten Werte fiir den MQF.

Ein Analyst, bei dem die mittlere Abweichung moglichst gering sein sollte, entscheidet
sich iiber den Mittelwert und wéhlt die alte STL-Prognosemethode mit ARIMA-Modell.
Einer, bei dem die Mehrheit der vergangenen MQF moglichst gering sein soll geht nach
dem Median oder 75%-Quartil und entscheidet sich somit wahrscheinlich fiir die neue
STL-Prognosemethode mit Random-Walk mit Drift.

Als néchsten betrachtet man eine langfristige Prognose (12 Monate). In diesen Fall sollte
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Modell saisonaler | Random- neue Methode neue Methode
ARIMA | Walk m. D. | STL+ARIMA | STL+R-W m. D.

Mittelwert MQF 2.2424 61.2827 2.3307 2.1504

Median MQF 1.5154 40.1041 1.4636 1.3670

75%-Quartil 2.5606 81.4530 2.7477 2.5260

Modell alte Methode alte Methode
STL+ARIMA | STL+R-W mit Drift

Mittelwert MQF 2.0182 2.1926
Median MQF 1.2458 1.3053
75%-Quartil 2.5598 2.8394

Tabelle 4.7.: Vergleich der verschiedenen Prognosemethoden fiir die Produktion im Pro-
duzierenden Gewerbe in Deutschland (kurzfristige Prognose; rekursives Pro-
gnosefenster)

der Wert des mittleren quadratischen Fehlers grofser sein, da mit zunehmendem Vorhersage
Fenster die Unsicherheit steigt, wie man an den im vorherigen Kapitel gezeigten Progno-
seintervallen erkennen kann. In diesem Fall hat man 82 mittlere quadratische Fehler und
man vergleicht die Boxplots der verschiedenen Prognosemethoden. Der Random-Walk mit
Drift und die alte STL-Methode mit Random-Walk mit Drift werden nicht betrachtet, da
diese die schlechtesten Ergebnisse besitzen.
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Abbildung 4.4.:

Vergleich der verschiedenen Prognosemethoden fiir die Produktion im
Produzierenden Gewerbe in Deutschland (langfristige Prognose; rekur-
sives Prognosefenster)

Bei Betrachtung der Abbildung 4.4 fiir die langfristigen Prognose, liefert der saisonale
ARIMA die besten Ergebnisse. Wenn man nur den Mittelwert betrachtet, ist die alte STL
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Methode besser, als die neue. Bei Median und Quartil hingegen, liefert die neue bessere
Ergebnisse ab. Somit weist diese wenige starke Ausreifser beim MQF auf. Bei der zerlegten
Zeitreihe liefert das ARIMA-Modell bessere Ergebnisse, als der Random-Walk mit Drift.
Die neue STL-Prognosemethode mit Random-Walk mit Drift weist als einzige keine hohen
Ausreifer aus. Es kommt somit seltener vor, dass die Prognose vollkomend daneben liegt.

Fiir das durch rekursives Prognosefenster festgestellte beste Modell, muss zuerst entschie-
den werden, ob man eine kurzfristige oder langfristige Prognose benotigt. Bei der kurzfristi-
gen Prognose wiirde man sich fiir die alte STL-Prognosemethode mit dem ARIMA-Modell
entscheiden, bei der langfristigen fiir einen saisonalen ARIMA.

Nachdem man die Prognose ausgehend vom rekursiven Fenster, betrachtet hat, geht man
nun auf ein rollierendes Fenster ein. Zuerst werden erneut die mittleren quadratischen
Fehler einer kurzfristigen Prognose betrachtet.

Modell saisonaler | Random- neue Methode neue Methode
ARIMA | Walk m. D. | STL+ARIMA | STL+R-W m. D.

Mittelwert MQF 2.2535 61.3659 2.4331 2.2711

Median MQF 1.6030 40.3966 1.2684 1.2844

75%-Quartil 2.8436 80.3580 2.4506 2.6643

Modell alte Methode alte Methode
STL+ARIMA | STL+R-W mit Drift

Mittelwert MQF 1.9342 2.0737
Median MQF 1.4706 1.3852
75%-Quartil 2.4500 2.6393

Tabelle 4.8.: Vergleich der verschiedenen Prognosemethoden fiir die Produktion im Pro-
duzierenden Gewerbe in Deutschland (kurzfristige Prognose, rollierendes Pro-
gnosefenster)

Die kurzfristige Prognose eines rollierenden Prognosefenster liefert ungefahr genau so
gute Ergebnisse, wie bei einem rekursiven Prognosefenster (vgl. Tab. 4.8). Betrachtet man
den Mittelwert, so liefert die alte STL-Prognosemethode die besten Ergebnisse. Beim Me-
dian hingegen hat die neue Prognosemethode bessere Ergebnisse. Der saisonale ARIMA
ist, aufer beim Mittelwert, am schlechtesten. Die STL-Methode mit ARIMA liefert bessere
Werte, als die mit Random-Walk mit Drift, aufser beim Mittelwert fiir die neue Methode.
Beim 75%-Quartil sind beide Methoden fast identisch.

Nun schaut man sich die Ergebnisse des mittleren quadratischen Fehlers fiir eine langfris-
tige Prognose (12 Monate) und ein rollierendes Prognosefenster an. Man betrachtet erneut
die Boxplots, diesmal ausschlieflich fiir die neue und alte STL-Prognosemethode.

Bei der langfristigen Prognose liefert das rollierende Prognosefenster deutlich bessere Er-
gebnisse ab, als beim rekursiven (vgl. Abb. 4.4/4.5). Eine Ausnahme bildet das saisonale
ARIMA-Modell, es schneidet am schlechtesten ab und wird deswegen nicht in den Boxplots
betrachtet. Wenn man den Mittelwert vergleicht, liefert die alte STL-Prognosemethode die
besten Ergebnisse, beim Median die neue Prognosemethode. Die STL-Methode mit den
Random-Walk mit Drift hat einen geringeren Wert des MQF, als die ARIMA-Methoden.

Nachdem man die vier unterschiedlichen Prognosevorgehensweisen erlautert hat und ihre
mittleren quadratischen Fehler berechnet hat, wiirde man sich fiir die kurzfristige Pro-
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Abbildung 4.5.: Vergleich der verschiedenen Prognosemethoden fiir die Produktion im
Produzierenden Gewerbe in Deutschland (langfristige Prognose; rollieren-
des Prognosefenster)

gnose fir die alte STL-Prognosemethode mit dem ARIMA-Modell entscheiden. Fiir das
Prognosefenster wiirde man sich, je nach Wunsch des Analysten sich fiir ein rekursives
oder rollierendes entscheiden. Der Unterschied zwischen beiden ist eher gering und beim

rekursiven ist der Mittelwert geringer, beim rollierenden der Median.

Bei der langfristigen Prognose wiirde man auf jeden Fall ein rollierendes Prognosefens-
ter vorziehen und die alte STL-Prognosemethode mit einem Random-Walk mit Drift als

Modell fiir die Trendkomponente.
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5. empirisches Beispiel

Arbeitslosigkeit in Deutschland

Nachdem man die Zerlegungs- und Prognosemethoden néher erlautert hat, will man
anhand eines empirischen Beispiels, die einzelnen Schritte, um eine passende Saison-
Trendzerlegung und damit eine gute Prognose zu bekommen, erneut zeigen.

Dazu betrachtet man die Entwicklung der Arbeitslosigkeit in Deutschland von Januar
1991 bis Oktober 2013 (Statistik der Bundesagentur fiir Arbeit, 2013). Zuerst wird auf die
Zerlegung der Zeitreihe eingegangen.

Bevor die Daten fiir die Zerlegung verwendet werden kénnen, muss erst eine Bereini-
gung dieser vorgenommen werden, da sich aufgrund neuer Berechnungsgrundlagen der
Arbeitslosenstatistik, zu bestimmten Zeitpunkten, Spriinge in der Zeitreihe ergeben ha-
ben (Statistik der Bundesagentur fiir Arbeit, 2009, vgl. Kap. 6). So gelten seit Januar 2004
Personen, die an einer Weiterbildung der Bundesagentur fiir Arbeit teilnehmen, nicht mehr
als arbeitslos. Dies fiihrte zu einer Verringerung der Arbeitslosenzahlen um circa 100.000
Personen. Eine weitere Anderung tritt seit Januar 2005 auf. Zu diesem Zeitpunkt wurde
die Arbeitslosenhilfe mit der Sozialhilfe zusammengelegt. Dies hatte einen Zuwachs von
380.000 Personen in der Arbeitslosenstatistik zur Folge. Diese Anderungen wurden ab-
solut auf die alten Monatswerte hinzugerechnet, um Spriinge in der Input-Zeitreihe zu
verhindern.

Arbeitslosigkeit in Deutschland

Arbeitslose
3000000 4000000 5000000
|

I I I I
1995 2000 2005 2010

Abbildung 5.1.: Arbeitslosigkeit in Deutschland von 1991 bis Oktober 2013

In Abbildung 5.1 erkennt man, dass die Arbeitslosigkeit bis 1998 angestiegen ist. Nach-
dem sie danach leicht gesunken ist, kam es wieder zu einem Anstieg, der im Jahre 2005
seinen Hohepunkt erreicht hat. Danach kam es zu einem rasanten Verfall, der im Jahre
2008 geendet hat. Seitdem liegt die Arbeitslosigkeit in Deutschland konstant bei circa drei
Millionen Personen.

Fiir die Zerlegung muss man erneut die Parameter bestimmen (ns, nt). Da bei Betrach-
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tung der Arbeitslosigkeit normalerweise keine aufsergewohnlichen Ausreifser auftreten, da
es bei dieser dufierst selten externe Effekte gibt, die zu aufsergewohnlich hohen oder ne-
gativen Zuwéchsen fithren, hat man sich dazu entschieden keine Robustheitsschidtzung
vorzunehmen. Auferdem hat sich gezeigt, dass ein Saisonparameter von 13 (ns=13), die
plausibelsten Ergebnisse liefert. Mithilfe dieser Parameter wiirde mir die Saison-Trend
Zerlegungsmethode, anhand des Box-Pierce Tests, zu einem Trendparameter von sieben
raten (nt=7), da erst ab diesem Unkorreliertheit in der Restkomponente vorliegt. Eine
erste Zerlegung wurde somit mit den Parameter ns=13 und nt=7 durchgefiihrt.
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Abbildung 5.2.: Zerlegung der Arbeitslosigkeit in Deutschland mit ns=13 und nt=7
In Abbildung 5.2 erkennt man im Verlauf der Trendkomponente, dass diese noch sehr viel
Schwankungen aufweist. So ist mit einem Trendparameter von sieben die Unkorreliertheit

der Restkomponente gewéhrleistet, jedoch weist die Trendkomponente keine glatte Linie
auf. Wie in Kapitel 3.2.3 gesagt, sollte die Trendspannweite auf jeden Fall grofer als der

46



5. empirisches Beispiel

Saisonparameter np sein. Somit ist in diesem Fall davon abzuraten einen Trendparameter
von sieben zu nehmen. Es ist hingegen von Vorteil, diesen grofer zu machen, um fiir den
Analysten ein interessantes und gewiinschtes Resultat der Trendkomponente zu bekom-
men.

Ausgehend von der Trendspannweite von sieben wurde diese sukzessive erhoht, daraufhin
die Trenddiagnosegrafik betrachtet und auf ein zufriedenstellendes Ergebnis tiberpriift.
Letztendlich wiirde man sich dafiir entscheiden eine Spannweite von 15 fiir die Trend-
komponente zu benutzen (nt=15). Da in diesem Fall keine Autokorrelation der Restkom-
ponente mehr vorhanden ist, sollte fiir die Prognose auf die alte STL-Prognose-methode
zuriickgegriffen werden, da in dieser keine Unkorrliertheit der Restkomponente vonno-
ten ist. Bevor man auf die Prognose eingeht betrachtet man das Ergebnis der zerlegten
Zeitreihe mit einer Trendspannweite von 15 und Saisonspannweite von 13.
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Abbildung 5.3.: Zerlegung der Arbeitslosigkeit in Deutschland mit nt=15 und ns=13
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In Abbildung 5.3 erkennt man nun, dass der Verlauf der Trendkomponente deutlich

weniger schwankend ist, er weist eine glattere Linie auf. Es ist jedoch offensichtlich, dass
nun in der Restkomponente Struktur vorhanden ist. So treten in dieser vermehrt Zeit-
punkte mit positiver oder negativer Abweichung auf, die zeitlich hintereinander liegen. Es
scheint, als ob die Restkomponente einen sinus-formigen Verlauf aufweist. Trotzdem wird
die folgende Prognose mithilfe der letzten Saison-Trend Zerlegung vorgenommen.
Bei der zerlegten Zeitreihe weist die Saisonkomponente eine konstante Struktur auf. Der
starkste Monat liegt um circa 300.000 Personen iiber dem zu diesem Zeitpunkt angenom-
menen Trend, der schwachste Monat liegt um circa 200.000 Personen darunter. Der Trend
weist den unter Abbildung 5.1 beschriebenen Verlauf auf. Die Restkomponente besitzt
eine maximale absolute Abweichung von circa 100.000 Personen, was einer prozentualen
Abweichung von circa 3% entspricht.

Zur Prognose der Entwicklung der Arbeitslosigkeit in Deutschland nimmt man die Vor-
hersage der nichsten zwolf Monate vor. Man erhélt damit Prognosewerte von November
2013 bis Oktober 2014.

Wie vorher bereits erwéahnt, wird die Prognose mithilfe der mit Trendspannweite 15 zer-
legten Zeitreihe erstellt. Bei dieser weist die Restkomponente keine Unkorrliertheit auf,
deswegen wird auf die alte STL-Prognosemethode zuriickgegriffen. Aufserdem schétzt man
auf den Zusammenschluss der Trend- und Restkomponente ein ARIMA-Modell.

Prognose Arbeitslosigkeit in Deutschland
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Abbildung 5.4.: Prognosewerte und -intervalle der Arbeitslosigkeit in Deutschland

Die Prognose gibt einen leicht positiven Trend wieder. So steigt die Arbeitslosigkeit in
den ersten acht Monaten in 2014 iiber 3 Millionen. Aufgrund des Saisoneffekts liegt sie im
September und Oktober unter 3 Millionen, aber absolut circa 100.000 Personen iiber den
Vorjahreswerten.
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6.1. Zusammenfassung

Beim STL-Zerlegungsverfahren mithilfe von Loess handelt es sich um ein additives Zerle-
gungsverfahren und es beruht auf einen iterativen Algorithmus. Durch die Loessschatzung
erhalten Werte, die nahe des zu schitzenden Zeitpunktes liegen, hoheren Einfluss auf die
Schétzung, als weiter entfernt liegende Punkte. Mithilfe der Robustheitsschitzung werden
die Werte, die nur schlecht iiber die beiden Komponenten erklart werden kénnen, bei der
erneuten Komponentenschétzung nicht mehr beriicksichtigt. Beim STL-Verfahren besteht
nicht die Moglichkeit eine Konjunkturkomponente zu erhalten.

Die erzielten Prognoseergebnisse, die auf den durch das STL-Verfahren gewonnenen Kom-
ponenten aufbauen, liefern bessere Ergebnisse ab, als wenn eine Prognose direkt auf die
Ausgangszeitreihe geschitzt wird. Somit kann mithilfe des STL-Zerlegungsverfahrens eine
bessere Prognose der zukiinftigen Werte erreicht werden.

6.2. Ausblick

Im Ausblick sollen mégliche Erweiterungen des STL-Zerlegungsverfahren vorgestellt wer-
den.

Die Saison- Trend Zerlegung hat oftmals Schwierigkeiten, wenn ein Strukturbruch in den
Daten vorliegt. Mithilfe der Restkomponente kénnte versucht werden, ein Kriterium zu er-
mitteln, um solche Strukturbriiche zu erkennen. So treten vor den Strukturbruch mehrere
starke positive bzw. negative Abweichungen auf und nach diesem mehrere starke nega-
tive bzw. positive Abweichungen auf. Mithilfe eines Mafes kdnnte nun versucht werden
die Strukturbriiche zu erkennen, zu bereinigen und erneute eine Komponentenzerlegung
durchzufiihren.

Eine weitere Verbesserung konnte man bei der Robustheitsschitzung vornehmen. So kénn-
te man diese dadurch bestimmen, wie stark die einzelnen Werte die jeweiligen Regressi-
onsschitzungen beeinflussen. Ein Kriterium, was dies messen wiirde, stellt die Cook’s
Distance dar. Sie gibt an, wie stark die Regressionsschatzung von einzelnen Werten be-
einflusst wird. Der Vorteil von dieser Robustheitsschitzung konnte darin liegen, dass vor
allem lokale Maximas und Minimas besser abgebildet werden, wobei dies von mir noch
nicht abschlieffend gepriift worden ist, ob dies so sei.

Auch bei der Prognose kénnten noch Verbesserungen vorgenommen werden. So kénnte
bereits bei der Zerlegung den Analysten die beste Prognosemethode anhand des mittleren
quadratischen Fehlers und vorangegangenen Prognosen vorgeschlagen werden.

Wie bereits in einen vorherigen Kapitel erwéhnt, treten in der Restkomponente oftmals
Zeitrdume ein mit vermehrt starken Abweichungen und Zeitrdume mit vermehrt schwa-
chen Abweichungen. Dies ist ein Hinweis darauf, dass in der Restkomponente kein weifses
Rauschen vorliegt und die Varianz nicht konstant iiber den Zeitverlauf ist. Eine Vorhersa-
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ge der Varianz wiirde somit genauerer Prognoseintervalle liefern. Modelle, die die Varianz
vorhersagen nennt man GARCH-Modelle.
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Die beiliegende CD-ROM enthélt die benutzten Datentabellen und den gesamten verwen-
deten R-Code fiir die vorliegende Arbeit (Stand: 16. Dezember 2013).

e Produktion im Produzierenden Gewerbe in Deutschland von 1991-2013, kalenderbe-
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Arbeitslosigkeit in Deutschland von 1991-2013, absolute Werte
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