
- Ludwig-Maximilians-Universität München -

Institut für Statistik

Saison-Trend-Zerlegung von Zeitreihen

Bachelorarbeit

Autor: Franz Xaver Stelz

Matrikelnummer:xxxxxxxx

Betreuer: Prof. Dr. Stefan Mittnik, Andreas Fuest

München, den 09.01.2014





Inhaltsverzeichnis

Abbildungsverzeichnis iii

Tabellenverzeichnis v

1. Einführung 1

2. Grundlagen 4
2.1. Gleitender Durchschnitt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Loess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Saison-Trend Zerlegung mithilfe von Loess 8
3.1. Vorgehen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1. Innere Schleife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2. Äußere Schleife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Parametereinstellungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1. Frequenz der Saison (np) . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2. Saisonparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3. Trendparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4. Low-pass Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5. Anzahl Iterationen der äußere Schleife . . . . . . . . . . . . . . . . 19
3.2.6. Anzahl Iterationen der innere Schleife . . . . . . . . . . . . . . . . 21
3.2.7. Robustheitsschätzung . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.8. Computationale Parameter . . . . . . . . . . . . . . . . . . . . . . 25
3.2.9. Multiplikative Umformung . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.10. Vergleich mit dem alten STL-Programm . . . . . . . . . . . . . . . 28

4. Prognose 29
4.1. Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1. Loess-Prognose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2. Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3. ARIMA-Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2. Prognosebeispiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1. Punktprognose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2. Prognoseintervall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3. Prognosegüte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1. Mittlerer quadratischer Fehler . . . . . . . . . . . . . . . . . . . . . 41
4.3.2. Vergleich verschiedener Prognosemethoden . . . . . . . . . . . . . . 41

i



Inhaltsverzeichnis

5. empirisches Beispiel 45

6. Schluss 49
6.1. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2. Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A. Beiligende CD-Rom 51

Literaturverzeichnis 52

ii



Abbildungsverzeichnis

1.1. Zerlegung der Produktion im Produzierenden Gewerbe in Deutschland . . 2

2.1. Darstellung der Gewichte bei einer Spannweite von 9 . . . . . . . . . . . . 6

3.1. Saisonuntergruppengrafiken mit Saisonspannweite (ns) von 7 für die Pro-
duktion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . . . 12

3.2. Saisonuntergruppengrafiken mit Saisonspannweite (ns) von 11 für die Pro-
duktion Produzierenden Gewerbe in Deutschland . . . . . . . . . . . . . . 13

3.3. Saisonuntergruppengrafiken bei linearer Schätzung (isdeg=1, ns=11) für die
Produktion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . 14

3.4. Trenddiagnose und Restkomponente mit ns=9 und nt=23 für die Produk-
tion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . . . . . 16

3.5. Trenddiagnosegrafik mit ns=9 und nt=13 für die Produktion im Produzie-
renden Gewerbe in Deutschland . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6. Trenddiagnosegrafik mit ns=9 nt=13 und itdeg=2 für die Produktion im
Produzierenden Gewerbe in Deutschland . . . . . . . . . . . . . . . . . . . 18

3.7. Gewichtegrafik mit ns=9 und nt=13 (itdeg=1) für die Produktion im Pro-
duzierenden Gewerbe in Deutschland . . . . . . . . . . . . . . . . . . . . . 20

3.8. Gewichtegrafik und Histogramm der Gewichte mit ns=9 und nt=19 (it-
deg=2) für die Produktion im Produzierenden Gewerbe in Deutschland . . 21

3.9. Saisonuntergruppengrafiken mit eigenen übergebenen Robustheitsgewich-
ten für die Produktion im Produzierenden Gewerbe in Deutschland . . . . 24

3.10. Gewichtegrafik mit Parameter wf=8 für die Produktion im Produzierenden
Gewerbe in Deutschland . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.11. Multiplikative Zerlegung der Produktion im Produzierenden Gewerbe in
Deutschland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1. Prognose und Vergleich der beiden Modelle für den Trend für die Produk-
tion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . . . . . 36

4.2. Prognoseintervall für die Prognose des Trendes mit Random-Walk mit Drift
für die Produktion im Produzierenden Gewerbe in Deutschland . . . . . . 39

4.3. Prognoseintervall für die Prognose des Trendes mit Arima-Modell für die
Produktion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . 40

4.4. Vergleich der verschiedenen Prognosemethoden für die Produktion im Pro-
duzierenden Gewerbe in Deutschland (langfristige Prognose; rekursives Pro-
gnosefenster) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5. Vergleich der verschiedenen Prognosemethoden für die Produktion im Pro-
duzierenden Gewerbe in Deutschland (langfristige Prognose; rollierendes
Prognosefenster) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iii



ABBILDUNGSVERZEICHNIS

5.1. Arbeitslosigkeit in Deutschland von 1991 bis Oktober 2013 . . . . . . . . . 45
5.2. Zerlegung der Arbeitslosigkeit in Deutschland mit ns=13 und nt=7 . . . . 46
5.3. Zerlegung der Arbeitslosigkeit in Deutschland mit nt=15 und ns=13 . . . 47
5.4. Prognosewerte und -intervalle der Arbeitslosigkeit in Deutschland . . . . . 48

iv



Tabellenverzeichnis

3.1. Box-Pierce Teststatistik verschiedener nt’s mit ns=9 und itdeg=1 für die
Produktion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . 17

3.2. Box-Pierce Teststatistik verschiedener nt’s mit ns=9 und itdeg=2 für die
Produktion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . 19

3.3. Abweichungen, die bei mehrmaliger Iteration der inneren Schleife entstehen 22
3.4. Bei Zerlegung der Produktion im Produzierenden Gewerbe in Deutschland

erhaltenen Robustheitsgewichte für den Monat März (ns=9, nt=13, no=10) 22
3.5. Vom Analysten übergebene Robustheitsgewichte für den Monat März . . . 23
3.6. Abweichung, die durch die computationalen Parameter bei der Zerlegung

der Produktion im Produzierenden Gewerbe in Deutschland entsteht . . . 26
3.7. Werte für das Jahr 2000 der multiplikativen Zerlegung für die Produktion

im Produzierenden Gewerbe in Deutschland . . . . . . . . . . . . . . . . . 28

4.1. Vergleich und Werte der verschiedenen Prognosemethode der Saisonkom-
ponente für die Produktion im Produzierenden Gewerbe in Deutschland . 34

4.2. Modellparameter eines Random-Walks mit Drift in der Trendkomponente
für die Produktion im Produzierenden Gewerbe in Deutschland . . . . . . 35

4.3. Modellparameter eines ARIMA-Modells in der Trendkomponente für die
Produktion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . 35

4.4. Vergleich und Werte der verschiedenen Prognosemethoden der Trendkom-
ponente für die Produktion im Produzierenden Gewerbe in Deutschland . 36

4.5. Prognoseintervalle der beiden Modelle der Trendkomponente für die Pro-
duktion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . . . 38

4.6. Kovarianzen und Korrelationen zwischen den einzelnen Residuen bei der
Produktion im Produzierenden Gewerbe in Deutschland . . . . . . . . . . 38

4.7. Vergleich der verschiedenen Prognosemethoden für die Produktion im Pro-
duzierenden Gewerbe in Deutschland (kurzfristige Prognose; rekursives Pro-
gnosefenster) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8. Vergleich der verschiedenen Prognosemethoden für die Produktion im Pro-
duzierenden Gewerbe in Deutschland(kurzfristige Prognose, rollierendes Pro-
gnosefenster) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43





1. Einführung

In der Statistik, sowie in der Finanz- und Wirtschaftsökonomie nimmt die Zeitreihenana-
lyse eine sehr wichtige Rolle ein. Sie dient vor allem dazu, den Verlauf einer Zeitreihe zu
modellieren und anhand dieser die zukünftigen Werte zu prognostizieren. Um die Prognose
so einfach wie möglich zu gestalten, versucht man bereits in der Modellierung der Werte
möglichst viele Informationen aus den Daten herauszulesen.

Eine Vorgehensweise in der Modellierung besteht darin, die Zeitreihe in mehrere Kom-
ponenten (Trend (T), Saison (S) und Rest (R)) zu zerlegen, da in den meisten Fällen
Zeitreihen eine saisonale Struktur aufweisen und für den Analysten vor allem der Trend
für den zukünftigen langfristigen Verlauf von großer Bedeutung ist.

Grundsätzlich gibt es bei der Komponentenzerlegung zwei unterschiedliche Ansätze: Das
additive oder das multiplikative Verfahren.
Beim additiven Verfahren (Y = T +S+R) wird von einer konstanten Saison ausgegangen,
deren Effekt absolut von Saison zu Saison immer ungefähr gleich stark ausgeprägt ist. Ein
Beispiel stellt die Arbeitslosigkeit in Deutschland (in %) dar.
Der multiplikative Ansatz hingegen (Y = T ∗S∗R), ist bei einer sich abschwächenden oder
verstärkenden saisonalen Struktur deutlich besser geeignet, da diese nun multiplikativ von
der Trendkomponente abhängig ist und sich somit äquivalent zum Trend entwickelt. Das
heißt, bei zunehmendem Trend wird die Saison stärker, bei abnehmendem Trend schwä-
cher. Ein Beispiel hierfür stellt die Stromgewinnung durch Solarenergie in Deutschland
dar. So führt eine Erhöhung der installierten Leistung zu einer stärkeren Erhöhung des
produzierten Stromes durch Sonnenenergie in den Sommermonaten, als in den Wintermo-
naten.

Bevor eine Zerlegungsmethode, die ich in R implementiert habe, vorgestellt wird, folgt
eine kurze Beschreibung der Eigenschaften der verschiedenen Komponenten.
Die Saisonkomponente hat eine, mit festem Abstand (z.B. täglich, monatlich, jährlich, ...)
wiederkehrende Struktur in den Daten, die in sich möglichst konstant sein soll.
Die Trendkomponente hingegen, soll eine geglättet Linie darstellen, die keinerlei saisonale
Struktur im Zeitraum der Saisonkomponente aufweist und aus der eine langfristige Ent-
wicklung ersichtlich sein soll. In dieser besteht trotzdem die Möglichkeit, dass mittel- bis
langfristigen Schwankungen auftreten. Vor allem bei makroökonomischen Zeitreihen sind
die circa 3-5 Jahren langen Konjunkturzyklen in der Trendkomponente enthalten.
Die dritte Komponente, der Rest, weist die Werte aus, die nicht über die Saison und den
Trend erklärt werden können. Es sollte keine regelmäßige Struktur in diesen Daten vor-
handen sein. Das bedeutet, alle Werte sollten stochastisch zufällig entstanden sein.

In der folgenden Arbeit soll nun ein Verfahren vorgestellt werden, mit dem die Zerlegung
einer Zeitreihe durchgeführt werden kann. Es ist das sogenannte Saison-Trend Zerlegungs-
verfahren anhand von Loess (Abkürzung: STL), entwickelt vor allem von Cleveland. Es
beruht auf einem iterativen Algorithmus, dem additiven Ansatz der Komponentenzerle-
gung und verwendet vor allem das Loess- Verfahren zur Schätzung der einzelnen Werte
der Komponenten. Durch Manipulation der Input-Zeitreihe besteht die Möglichkeit das
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1. Einführung

Verfahren auch multiplikativ zu berechnen (Cleveland et al., 1990).
Das STL-Verfahren wurde von Cleveland bereits in R mithilfe der Programmiersprache
Fortran77 implementiert. Ich habe nun den Fortran77-Code in R neu geschrieben und um
einige Einstellungsmöglichkeiten erweitert. Außerdem habe ich einige Diagnoseplots zur
besseren Bestimmung der Parameter in R implementiert.

Produktion im Produzierenden Gewerbe Deutschland (Preisindex: 2010=100)
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Abbildung 1.1.: Zerlegung der Produktion im Produzierenden Gewerbe in Deutschland

In der Abbildung 1.1 sind die Ergebnisse der Zerlegung einer makroökonomischen Zeitrei-
he dargestellt. Die Zerlegung wurde mit den STL-Verfahren durchgeführt. Die Ausgangs-
zeitreihe stellt die Produktion im Produzierenden Gewerbe in Deutschland von Januar
1991 bis September 2008 dar. Die Werte wurden kalenderbereinigt und liegen in konstan-
ten Preisen vor (inflationsbereinigt). Das Jahr 2010 stellt die Referenz dar und besitzt
somit den Wert 100 (Deutsche Bundesbank, 2013). Um die Finanzkrise im Jahre 2008
und 2009 zu umgehen, wurde die Zeitreihe zu einem früheren Zeitpunkt abgeschnitten.
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1. Einführung

Deswegen stellt das Jahr 2010 die Referenz dar, obwohl diese in der verwendeten In-
putzeitreihe noch keine Realisation besitzt. Mithilfe der Produktion im Produzierenden
Gewerbe (01.1991-09.2008) werden im späteren Verlauf die verschiedenen Einstellungs-
möglichkeiten des STL-Verfahrens erläutert. Zuerst beachte man die Balken am rechten
Rand. Sie geben an, in welcher Achsen-skalierung sich die jeweiligen Grafiken befinden. So
entspricht die Höhe der jeweiligen Balken der gleichen y-Achsenabschnittsgröße.
In der ersten Grafik ist die Ausgangszeitreihe dargestellt. Sie weist sehr viel Schwankung
auf, wobei eine gleichbleibende und wiederkehrende Struktur in der Zeitreihe erkennbar
ist. Dies spricht für einen saisonalen Verlauf. Über den kompletten Zeitverlauf ist ein po-
sitiver Trend festzustellen. In den folgenden Grafiken sind die einzelnen Komponenten der
zerlegten Zeitreihe dargestellt.
In der zweiten Grafik erkennt man die konstante Struktur der Saisonkomponente (jähr-
lich), so ist der Verlauf innerhalb eines Jahres konstant über den Zeithorizont.
Die dritte Grafik weist den Verlauf der Trendkomponente auf, sie besitzt einen positiven
Trend. Die Konjunkturzyklen von 3-5 Jahren sind deutlich erkennbar.
Die Restkomponente ist in der vierten Grafik dargestellt. Sie weist scheinbar sehr wenig
Struktur auf. Verfahren um dies festzustellen werden später näher erläutert. Am Balken
am rechten Rand erkennt man, dass die Restkomponente die geringsten Werte aufweist,
so ist die Saison deutlich stärker ausgeprägt, als der Rest.

Im nächsten Kapitel werden zunächst die im STL vorkommenden statistischen Glättungs-
verfahren erläutert, der gleitenden Durchschnitt und das Loess-Verfahren.
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2. Grundlagen

2.1. Gleitender Durchschnitt

Der gleitende Durchschnitt stellt ein einfaches statistisches Verfahren dar, um eine Zeitrei-
he zu glätten. Bei diesem wird der Mittelwert einer bestimmten Anzahl umliegender Punk-
te (τ), des zu schätzenden Zeitpunktes, berechnet. Betrachtet man eine Zeitreihe (y1, y2,
..., yt), so wird der geschätzte Mittelwert ŷi zum Zeitpunkt i folgendermaßen berechnet
(Treiber, 2010, vgl. 17(a)).

Für τ gerade: m =
τ − 1

2
; ŷi =

1

τ

i+m∑
j=i−m

yj (2.1)

Für τ ungerade: m =
τ

2
; ŷi =

1

τ
(
yj−m + yj+m

2
+

i+m−1∑
j=i−m+1

yj) (2.2)

Dieses Verfahren stellt eine gute Grundlage dar, um Trendverläufe zu erlangen, da man
über einen bestimmten Zeitraum die Werte mittelt. Würde man z.B. den Wert von τ in
Höhe der Anzahl der Zeitpunkte je Saison einstellen, so könnte man diese aus der Zeitreihe
wegmitteln (Treiber, 2010, vgl. 17(b)). Jedoch treten bei diesem Verfahren immer Proble-
me an den links- und rechtsseitigen Grenzen der Zeitreihe auf. Wie man anhand der Formel
erkennen kann, geht der untere Laufindex der Summe von i = i −m. Das bedeutet der
erste zu schätzende Zeitpunkt muss größer als m sein. Somit können die ersten m- und die
letzten m-Zeitpunkte der Zeitreihe nicht geschätzt werden. Dies ist nicht zufriedenstellend,
da vor allem die rechtsseitige Grenze von großer Bedeutung für die Prognose ist.
Dass dieses Verfahren trotzdem Eingang in das STL gefunden hat, beruht darauf, dass
innerhalb des Algorithmuses mit dem Loess-Verfahren Werte prognostiziert werden und
aufgrund dessen die Abschneidung der m-letzten Werte keine Probleme darstellt (vgl.
Kap.3.1.1). Außerdem können mithilfe des gleitenden Durchschnitts langfristige Schwan-
kungen, die bei der Berechnung der Saison auftreten und in die Trendkomponente einflie-
ßen sollen, einfach und unkompliziert berechnet werden.

2.2. Loess

Das Loess-Verfahren kann dazu benutzt werden eine Zeitreihen zu glätten. So muss bei
diesem für die Berechnung immer eine zeitliche Komponente xi und die Werte zu diesen
Zeitpunkten y(xi) übergeben werden (i = 1, ..., n), um ein Ergebnis zu erhalten. Es be-
steht auch die Möglichkeit, dass die Ausgangszeitreihe an einzelnen Zeitpunkten fehlende
Werte enthält.

Loess beruht auf dem Verfahren der Lokal gewichteten Regression. So wird für jeden Zeit-
punkt xi eine individuelle Regressionsschätzung durchgeführt, bei der nur der geschätz-
te Wert ŷ(xi) von Bedeutung ist, nicht aber die einzelnen Regressionsparameter. Bevor
die Schätzung der Regression mithilfe der Kleinsten-Quadrate Schätzung vorgenommen
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2. Grundlagen

werden kann, müssen zuerst die Gewichte berechnet werden, die bestimmen mit welchem
Anteil die umliegenden Werte in die Schätzung mit einfließen. So soll erreicht werden, dass
Werte, die in der Nähe des zu schätzenden Zeitpunktes liegen, höhere Gewichte erhalten,
als Werte, die weiter vom Zeitpunkt entfernt liegen. Im folgenden wird zur Vereinfachung
der Zeitpunkt, zu dem ein Wert geschätzt wird, mit x0 benannt.
Die Gewichte sind für jede individuelle Regressionschätzung unterschiedlich und werden
für jeden Zeitpunkt anhand des zeitlichen Abstandes zum schätzenden Punkt, individuell
bestimmt.

Zuerst übergibt der Statistiker die Spannweite (q). Sie gibt die Anzahl der Punkte (umlie-
genden) an, die in die Schätzung mit einfließen sollen. Der Wert von dieser muss ungerade
sein, da der Wert des zu schätzenden Zeitpunktes in der Spannweite mit eingerechnet
wird. So impliziert eine Spannweite von 13, dass die vorherigen und nachfolgenden sechs
Werte, sowie der Wert zum Zeitpunkt x0 in die Schätzung aufgenommen werden. Sollten
nicht ausreichend vorherige oder nachfolgende Werte zur Verfügung stehen (links- oder
rechtsseitige Grenze der Zeitreihe), wird ein zusätzlicher nachfolgender oder vorheriger
Wert mit einbezogen. Nur für diese Werte wird ein Gewicht wx0(xj) zur Schätzung des
Zeitpunktes x0 ermittelt.

Für die Gleichung der Gewichtsberechnung müssen zwei unterschiedliche Fälle unterschie-
den werden.
Für den ersten Fall nimmt man an, dass q ≤ n ist (n=Anzahl der Zeitpunkte). Danach wird
der Wert des maximalen zeitlichen Abstandes der einfließenden Punkte zum schätzenden
Wert bestimmt (λ(x0) = max|x0 − xj |) und mithilfe einer Kerndichtefunktion die einzel-
nen Gewichte ermittelt. Beim Loess-Verfahren geschieht dies mithilfe einer trikubischen
Funktion (Cleveland et al., 1990, vgl. S. 5-6).

K(u) =

{
(1− u3)3 falls 0 < u < 1

0 sonst
(2.3)

Somit erhält man folgende Gleichung für die Berechnung der einzelnen Gewichte:

wx0(xj) = K(
|xj − x0|
λ(x0)

) (2.4)

Wie man an der Formel 2.4 erkennen kann, nehmen die Gewichte nur Werte zwischen
null und eins an, da die Kerndichtefunktion nur diesen Wertebereich annimmt. Außerdem
erkennt man, dass Werte, die nahe des zu schätzenden Zeitpunktes liegen, höhere Gewichte
bekommen, als Werte, die weiter entfernt liegen (vgl. Abbildung 2.1). Der Punkt mit
maximalem Abstand fließt nicht mehr in die Schätzung mit ein, da dessen Gewicht null
beträgt. Somit fließen nur q − 2 Werte in die Schätzung mit ein, wenn die Ausgangswerte
symmetrisch um den zu schätzenden Zeitpunkt liegen. Deswegen stellt eine Spannweite
die kleiner als drei ist, keinen sinnvollen Wert dar, da sonst der Schätzwert der Realisation
entspricht.
Für zweiten Fall nimmt man an, dass q > n ist. Wenn dies eintritt, wird λ(x0) noch
mit dem Faktor q/n multipliziert und man erhält für die Gewichteberechnung folgende
Gleichung.

wx0(xj) = K(
|xj − x0|
λ(x0)

q
n

) (2.5)
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2. Grundlagen

Der Bruch q/n ist größer als eins (q > n). Dies führt dazu, dass der Nenner von u größer
wird und daraus folgt, dass der Wert von u verringert wird. Da K(u) = (1 − u3)3) gilt
und u kleiner wird, nimmt der Wert der Kerndichtefunktion und damit der Wert für das
jeweilige Gewicht zu. Somit führt dies dazu, dass weiter entfernt liegende Werte, wie vom
Benutzer erwünscht, ein höheres Gewicht bekommen.
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Abbildung 2.1.: Darstellung der Gewichte bei einer Spannweite von 9

In Abbildung 2.1 sieht man beispielhaft, welche Werte die Gewichte mit zunehmendem
Abstand annehmen. Die Spannweite wurde mit dem Wert neun festgelegt (q = 9). In der
ersten Grafik sieht man die Gewichte für die Schätzung des vierten Zeitpunktes, in der
zweiten Graphik für die Schätzung des zehnten Zeitpunktes und in der dritten Graphik
die Schätzung für den zwanzigsten Zeitpunkt. In der letzten Grafik erkennt man, dass
nur Zeitpunkte, die links vom zu schätzenden Punkt liegen, für die Berechnung benutzt
werden. Ebenso sieht man, dass immer neun Werte in die Berechnung mit einfließen. So
dienen die ersten neun Punkte für die Schätzung der ersten fünf Zeitpunkte, jedoch jeweils
mit unterschiedlicher Gewichtung.

Nachdem man nun die einzelnen Gewichte berechnet hat, wird nun die lokal gewichtete
Regression anhand der Kleinsten-Quadrate Schätzung vorgenommen.
Zuerst wird die Regressionsgleichung einer lokalen Regression ohne Gewichte gezeigt.

y(xj) = β0 + β1(x0 − xj) + β2(x0 − xj)2 + ...+ βp(x0 − xj)p + ε(xj) (2.6)

Man erkennt, dass für die Schätzung des Wertes ŷ(x0) an der Stelle x0 nur die Konstante
(Parameter β0) von Bedeutung ist, da die Regression ausgehend vom Punkt (x0) ermittelt
wird und der Faktor (x0 − xj)p den Wert null annimmt.
Doch wie schätzt man den Parameter β0? Dies geschieht über die Minimierung der Fehler-
quadratsumme, wobei bei der gewichteten Regression die einzelnen Fehlerquadrate noch
mit dem ihnen zugewiesenen Gewicht multipliziert werden. Somit erhält man folgendes
Minimierungsproblem für die Bestimmung der Parameter (β0, ..., βp) (Foster, b, vgl. S. 1).
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2. Grundlagen

Q(β0, ..., βp) = min
n∑

j=1

ε(xj)
2 ∗ wx0(xj) (2.7)

= min

n∑
j=1

[y(xj)− β0 − β1(xj − x0)− ...− βp(xj − x0)p]2 ∗ wx0(xj) (2.8)

Zur Vereinfachung betrachtet man die Bestimmung des Wertes über die Matrizen- und
Vektordarstellung. Man benötigt folgende Matrizen und Vektoren (Foster, b, vgl. S. 1-3),

Xx0 =


1 (x1 − x0) ... (x1 − x0)p
1 (x2 − x0) ... (x2 − x0)p
... ... ... ...
1 (xn − x0) ... (xn − x0)p

 (2.9)

Y = (y(x1), ..., y(xn))T (2.10)

B = (β0, β1, ..., βp)
T (2.11)

Wx0 =


wx0(x1) 0 ... 0

0 wx0(x2) ... 0
... ... ... ...
0 0 ... wx0(xn)

 (2.12)

und damit muss nun folgende Fehlerquadratsumme minimiert werden.

min[(Y −Xx0B)TWx0(Y −Xx0B)] (2.13)

Nachdem man den vorherigen Term aus Formel 2.13 abgeleitet und null gesetzt hat, erhält
man folgende Lösung für die Gleichung.

B̂ = (XT
x0
Wx0Xx0)−1(XT

x0
Wx0Y ) (2.14)

Da bei der lokalen Regression die Parameter in Abhängigkeit des zu schätzenden Zeit-
punktes bestimmt werden, gibt, wie oben gezeigt, der Wert von β0 den zu schätzenden
Wert an. Um den Wert somit zu erhalten, ist es ausreichend, die geschätzten Parameter
B̂ mit einem Vektor zu multiplizieren, dessen Länge p+1 ist und der eine führende eins
und sonst nur Nullen besitzt, er wird mit e1 definiert.

ŷ(x0) = e1(X
T
x0
Wx0Xx0)−1(XT

x0
Wx0Y ) mit e1 = (1, 0, ..., 0) (2.15)

Mithilfe der Formel aus 2.15 erhält man den geschätzten Wert zum Zeitpunkt x0. Um die
komplette Loess-Schätzung zu erhalten, wird nun für jeden Punkt der Zeitreihe der Wert
mithilfe der lokalen gewichteten Regression ermittelt. Im später vorgestellten Verfahren
besteht die Möglichkeit einer konstanten, linearen oder quadratischen Regressionsschät-
zung (p = 0, 1, 2).
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3. Saison-Trend Zerlegung mithilfe von
Loess

3.1. Vorgehen

Das STL-Programm beruht auf einem Algorithmus und ist ein iteratives Saison-Trend
Zerlegungsverfahren, dessen Hauptbestandteile eine innere und äußere Schleife sind. In
der inneren Schleife werden die einzelnen Komponenten (Saison und Trend) geschätzt,
wobei die innere Schleife jeweils ni-mal durchlaufen wird. Die äußeren Schleife besteht aus
der inneren Schleife und einer Robustheitsschätzung. Bei dieser bekommen Werte, die nur
schlecht über die beiden Komponenten Saison und Trend erklärt werden können, geringere
Gewichte als Werte, die gut erklärbar sind. Bei einem erneuten Durchlauf der inneren
Schleife fließen diese Gewichte in die Komponentenschätzung mit ein. Insgesamt wird die
äußere Schleife no-mal (ni und no sind Parameter des STL-Programms und müssen und
müssen vom Analysten angegeben werden. Sie geben die Anzahl der Schleifendurchläufe
an) durchlaufen.

Als Output erhält man:

• Saisonkomponente (S(xi))
• Trendkomponente (T (xi))
• Restkomponente (R(xi))
• Robustheitsgewichte (wro(xi))

3.1.1. Innere Schleife

Die Abfolge der Vorgänge in der inneren Schleife werden im folgenden dargestellt, wobei
noch nicht auf die genauen Parametereinstellungen eingegangen wird. Die Namen in Klam-
mern stellen die Variablennamen der Parameter in den von mir geschriebenen R-Code dar
(Cleveland et al., 1990, vgl. S.6-8).

1.Schritt: Zuerst wird der im vorherigen Umlauf geschätzte Trend, von der Original-
zeitreihe abgezogen. In der ersten Iteration ist noch keine Trendkomponente vorhan-
den und die Originalzeitreihe dient als Input für die ersten Berechnungen. (DT (xi) =
Y (xi)− T (xi))

2.Schritt: Die enttrendete Zeitreihe (DT (xi)) wird in ihre saisonalen Untergruppen auf-
geteilt. Dies geschieht anhand des Parameters np, der die Anzahl der Zeitpunkte je Saison
angibt. Für monatliche Daten z.B. ist np=12 und es wird für jeden Monat eine eigene
Zeitreihe erstellt. Auf diese Saisonuntergruppen wird nun das Loess-Verfahren angewen-
det, wobei auch ein Wert für den vorherigen und nachfolgenden Wert der Zeitreihe ge-
schätzt wird. Die Spannweite (ns) und den Grad (isdeg) der Loess-Schätzung müssen vom
Benutzer angegeben werden. Danach werden die einzelnen Saisonuntergruppenschätzun-
gen wieder zu einer Zeitreihe zusammengefügt (C(xi)). Diese Zeitreihe besteht nun aus
n+2*np Beobachtungen.
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3. Saison-Trend Zerlegung mithilfe von Loess

3.Schritt: Um die endgültige Saisonkomponente zu erhalten, werden noch einige weitere
Berechnungen vorgenommen. So wird versucht langfristige Schwankungen, die durch die
Schätzung in den Saisonuntergruppen entstanden sind, zu ermitteln und aus dieser zu ent-
fernen. Dies geschieht, indem man zweimal einen gleitenden Durchschnitt mit der Spann-
weite von np auf die zusammengefügte Saisonuntergruppenschätzung anwendet. Danach
wird noch ein gleitender Durchschnitt mit Spannweite drei berechnet. Wie im Kapitel 2.1
bereits erwähnt, treten bei der gleitenden Durchschnittsberechnung Probleme an den Rän-
dern der Zeitreihe auf. Deswegen werden im vorangegangenen Schritt eine Loess-Schätzung
für den vorherigen und folgenden Zeitpunkt jeder Saisonuntergruppe vorgenommen, damit
die einzelnen Punkte problemlos abgeschnitten werden können. Die nach den verschiede-
nen gleitenden Durchschnitten erhaltene Zeitreihe weist nun wieder n-Beobachtungen auf.
Im letzten Schritt wird nun noch einmal ein Loess-Verfahren auf die Zeitreihe angewen-
det. Man erhält nun eine Zeitreihe, die eine Korrektur der Saisonkomponente darstellt
(SC(xi)). Die Spannweite (nl) und der Grad (ildeg) des Loess-Verfahrens können wie vor-
her vom Analysten bestimmt werden, wobei in diesem Fall Defaultwerte vorliegen.

4.Schritt: Jetzt wird die endgültige Saisonkomponente berechnet. Dazu wird die in Schritt
3 berechnete Zeitreihe von der Saisonuntergruppenschätzung abgezogen (S(xi) = C(xi+np)−
SC(xi)).

5.Schritt: Nachdem nun die Saison ausgewiesen worden ist, wird nun die Trendkom-
ponente berechnet. Den Input hierfür liefert eine desaisonalisierte Zeitreihe. Es wird die
im vorherigen Schritt erhaltene Saison von der Originalzeitreihe abgezogen (DS(xi) =
Y (xi)− S(xi)).

6.Schritt: Auf die desaisonalisierte Zeitreihe (DS(xi)) wird ein Loess-Verfahren angewen-
det. Der Benutzer muss in diesem Fall die Spannweite (nt) und den Grad der Schätzung
(itdeg) vorgeben. Die erhaltene Zeitreihe stellt die neue Trendkomponente dar und dient
als Input für die erneute Berechnung der Saisonkomponente, falls ein erneuter Schleifen-
durchlauf stattfindet.

7.Schritt: Im letzten Schritt der inneren Schleife wird die Restkomponente berechnet. Es
werden einfach die beiden in den vorherigen Schritten berechneten Komponenten (Sai-
sonkomponente und Trendkomponente) von der Originalzeitreihe abgezogen (R(xi) =
Y (xi) − S(xi) − T (xi)). Nachdem der letzte Schritt geschehen ist, werden die einzelnen
Teilschritte der inneren Schleife erneut durchgeführt.

3.1.2. Äußere Schleife

In der äußeren Schleife findet eine Robustheitsschätzung statt. Das heißt, man versucht
Werte, die nur schlecht über den Trend und die Saison erklärt werden können, zu ge-
wichten, damit diese im erneuten Durchlauf der inneren Schleife weniger Einfluss auf die
Komponentenschätzung bekommen. Dies stellt sich als sehr sinnvoll dar, da sich vor allem
bei makroökonomischen Zeitreihen oft unplausible Werte, aufgrund von externen Effekten
ergeben, z.B. extrem kalte Winter führen zu geringer Produktion.

Die Gewichte der Robustheitsschätzung werden über die Werte der Restkomponente be-
rechnet. So muss zuerst der Median der absoluten Werte der Restkomponente berechnet
werden. Anschließend werden die Gewichte äquivalent der Gewichtsberechnung des Loess-
Verfahrens mithilfe einer Kerndichtefunktion erstellt, wobei eine quadratische Funktion
benutzt wird und der Nenner des Bruchs defaultmäßig den sechsfachen Median der Rest-

9



3. Saison-Trend Zerlegung mithilfe von Loess

komponente aufweist (Cleveland et al., 1990, vgl. S. 8).

K(ro) =

{
(1− (ro)2)2 falls 0 < ro < 1

0 sonst
(3.1)

Somit erhält man folgende Berechnung für die einzelnen Robustheitsgewichte:

wro(xj) = K(
|R(xj)|

6 ∗med(|R(x)|)
) (3.2)

Die erhaltenen Gewichte werden im erneuten Durchlauf der inneren Schleife mit den Ab-
standsgewichten multipliziert (w(xj) = wx0(xj)∗wro(xj)) und mit diesen wird die Kleinste-
Quadrate Schätzung einer lokal gewichteten Regression berechnet.

Für den Benutzer besteht die Möglichkeit den Faktor vor dem Median zu bestimmen (Pa-
rameter: wf). So führt ein größerer Wert von diesem allgemein dazu, dass die Ausreißer
nicht so stark aus der Schätzung herausgewichtet werden. Eine andere Möglichkeit be-
steht darin, dem Algorithmus von Anfang an eigene Robustheitsgewichte zu übergeben.
In diesem Fall wird nur die Komponentenschätzung (innere Schleife) mit den vorgegebenen
Gewichten durchgeführt.

3.2. Parametereinstellungen

In diesem Teilabschnitt wird die optimale Wahl und die Default-Einstellungen der Pa-
rameter erklärt. Dies geschieht mithilfe der im ersten Kapitel (Abbildung 1.1) gezeigten
Zeitreihe (Produktion im Produzierenden Gewerbe in Deutschland).
Die wichtigsten Parameter sind:

• Frequenz der Saison (np)
• Spannweite bei der Loessschätzung der Saison (ns)
• Grad der Loessschätzung der Saison (isdeg)
• Spannweite bei der Loessschätzung des Trendes (nt)
• Grad der Loessschätzung des Trendes (itdeg)
• Anzahl Iterationen der äußeren Schleife (no)
• Anzahl Iterationen der inneren Schleife (ni)

Außerdem wird sich noch mit einige andere Parametereinstellungen und Möglichkeiten kri-
tisch auseinandergesetzt, damit die bestmögliche Zerlegung der Zeitreihe gefunden werden
kann.

3.2.1. Frequenz der Saison (np)

Der Parameter np gibt die Anzahl der Zeitpunkte innerhalb einer Saison an. Sie wird in
R über den Input bestimmt. Die Input Zeitreihe muss vom Typ ts (time-series) sein und
weist somit bereits einen Wert für np auf. Sie ist in den meisten Fällen ziemlich einfach,
zum Beispiel für vierteljährliche Daten ist np=4, für monatliche Daten ist np=12 und für
tägliche Daten ist np=7.
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3. Saison-Trend Zerlegung mithilfe von Loess

3.2.2. Saisonparameter

Für die Loess-Schätzung der Saisonuntergruppen muss vom Benutzer die Spannweite (ns)
und der Grad der Schätzung (isdeg) übergeben werden (vgl. Kap. 2.1, Schritt 3).

Die Bestimmung der Spannweite ist in erster Linie von den Wünschen und Zielen des
Analysten abhängig. Jedoch ist das Ziel in den meisten Fällen, eine in sich homogenen
Saison mit möglichst wenig Variation innerhalb der einzelnen Saisonuntergruppen über
den Zeitverlauf zu erhalten. Als Saisonuntergruppe bezeichnet man eine Zeitreihen, die
nur aus Werte eines Saisonabschnitts bestehen (z.B. bei monatlichen Daten, Zeitreihe nur
mit Januar-Werten).

Der Wert von ns muss ungerade sein und sollte größer oder gleich sieben sein. Dies liegt
daran, da sonst zu wenige Werte mit in die Schätzung einfließen würden und somit meh-
rere zu schätzende Zeitpunkte nur von einem beliebigen Zeitpunkt abhängig sein könnten
und den gleichen Schätzwert erhalten.
Im Ausnahmefall kann ns auch den Wert fünf annehmen. Dies sollte aber nur geschehen,
wenn es eine konstante Regressionsschätzung gibt und nur wenige Zeitpunkte je Saisonun-
tergruppe vorhanden sind. In diesem Fall ist besonders vom Analysten darauf zu achten,
dass aufgrund der Robustheitsschätzung keine unplausiblen Ergebnisse innerhalb einzelner
Saisonuntergruppen entstehen, da zwei heraus gewichtete Saisonwerte bereits dazuführen
können, dass mehrere Werte den gleichen Schätzwert erhalten. Wenn nur die innere Schlei-
fe durchlaufen wird, stellt eine Spannweite von fünf kein Problem dar, da somit nicht die
Möglichkeit besteht, dass Werte herausgewichtet werden und somit jeder Wert aus mindes-
tens drei Zeitpunkten geschätzt wird, wenn die Ausgangs-Zeitreihe keine fehlenden Werte
besitzt.
Doch wie bestimmt der Benutzer den Parameter ns? Dies geschieht visuell mithilfe eines
Diagnoseplots der Saisonuntergruppengrafiken. Dort ist der Input (Punkte) und Output
(rote Linie) der Loess-Schätzung jeder Saisonuntergruppe im Zeitverlauf dargestellt. Da
die Saison in sich möglichst konstant sein soll, soll möglichst wenig Schwankung in der
Linie der geschätzten Werte innerhalb einer Saisonuntergruppe sichtbar sein.

Beispielhaft betrachtet man die Saisonuntergruppengrafiken für die Produktion im Pro-
duzierenden Gewerbe in Deutschland, einmal mit einer geringen Spannweite (q=7) für die
Saison und einmal mit einer großen Spannweite (q=11). Dadurch kann man aufzeigen, wie
sich die Höhe der Spannweite auf den Verlauf der Saisonuntergruppen auswirkt und wie
man die optimale Wahl der Saisonspannweite mithilfe dieses Diagnoseplots finden kann.

In den Abbildungen 3.1 und 3.2 sind die Saisonuntergruppen für die Produktion im Pro-
duzierenden Gewerbe dargestellt. Jede Untergrafik stellt die Werte der Loess-Schätzung
für einen anderen Monat dar. Die Grafik beginnt mit dem Januar (Nr.1). Die gestrichelte
Linie stellt die Nulllinie dar, anhand der Verschiebung zu dieser kann man erkennen, ob
es sich um einen Monat mit hoher oder schwacher Produktion, im Vergleich zum von der
Trendkomponente hervorgesagten Verlauf, handelt.
Entscheidend für die Wahl des Parameters ns ist die rote Linie. Sie bildet die Ergebnisse
der Loess-Schätzung ab. In Abbildung 3.1 erkennt man, dass es noch mehr Schwankungen
innerhalb der einzelnen Monate (Saisonuntergruppengrafiken) gibt, als in Abbildung 3.2.
So weist der Februar und Mai (Nr. 2,5) noch sehr viel Variation auf. Im Vergleich da-
zu sind die Variationen innerhalb der Saisonuntergruppengrafiken in Abbildung 3.2 kaum
mehr ersichtlich. Jede Grafik weist in dieser eine konstante Linie aus. Allgemein kann man
sagen, dass es sich um eine sehr gleichbleibenden Saisonstruktur handelt und deswegen
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Abbildung 3.1.: Saisonuntergruppengrafiken mit Saisonspannweite (ns) von 7 für die Pro-
duktion im Produzierenden Gewerbe in Deutschland

bereits niedrige Werte von ns zu guten Ergebnissen führen.
Da es kein Kriterium für die Saisonspannweite (ns) gibt, muss diese also durch ausprobie-
ren und betrachten des Diagnoseplots vom Analysten bestimmt werden. In unserem Fall,
würde man sich für die große Spannweite entscheiden, da diese eine bessere Anpassung an
die gewünschten Eigenschaften der Saisonkomponente liefert. Versuche mit einer Spann-
weite von neun haben zum Ergebnis geführt, dass für die Produktion im Produzierenden
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Abbildung 3.2.: Saisonuntergruppengrafiken mit Saisonspannweite (ns) von 11 für die Pro-
duktion Produzierenden Gewerbe in Deutschland

Gewerbe in Deutschland eine Spannweite von neun am besten für die Saisonspannweite
geeignet ist. Für die weitere Findung der Parametereinstellungen wird nun immer diese
Größe verwendet (ns=9).

Ein weiterer Parameter, der für die Berechnung der Saisonkomponente eingestellt werden
kann, ist der Grad der Loess-Schätzung (isdeg). Da die Struktur der Saisonkomponente
über den Zeitverlauf konstant sein soll, ist die Einstellung von diesem defaultmäßig eine
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konstante Regressionschätzung (isdeg=0).
Ein positiver oder negativer Trend in allen Saisonuntergruppengrafiken, der eine lineare
Regressionsschätzung rechtfertigen würde, tritt äußerst selten auf. Trotzdem besteht die
Möglichkeit eine lineare Regressionsschätzung durchzuführen. Davon ist in den meisten
Fällen jedoch abzuraten, da es bei dieser ebenso oftmals zu einer Anpassung an die In-
putwerte der rechts- und linksseitigen Grenzen der Saisonuntergruppenzeitreihen kommt.

1995 2000 2005

−
10

−
5

0
5

1

1995 2000 2005

−
10

−
5

0
5

2

1995 2000 2005

−
10

−
5

0
5

3

1995 2000 2005

−
10

−
5

0
5

4

1995 2000 2005

−
10

−
5

0
5

5

1995 2000 2005

−
10

−
5

0
5

6

1995 2000 2005

−
10

−
5

0
5

7

1995 2000 2005

−
10

−
5

0
5

8

1995 2000 2005

−
10

−
5

0
5

9

1995 2000 2005

−
10

−
5

0
5

10

1995 2000 2005

−
10

−
5

0
5

11

1995 2000 2005

−
10

−
5

0
5

12

Abbildung 3.3.: Saisonuntergruppengrafiken bei linearer Schätzung (isdeg=1, ns=11) für
die Produktion im Produzierenden Gewerbe in Deutschland
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In Abbildung 3.3 sind die Saisonuntergruppen einer linearen Regressionssaisonschät-
zung dargestellt. So sind insbesondere in den Untergrafiken 1 und 3 (Januar und März)
die Unterschiede zu Abbildung 3.2 deutlich sichtbar. Im Falle vom Januar führt die lineare
Schätzung zu einer Anpassung der rechtsseitigen Werte. Die Grafik weist zu Beginn einen
linear abfallenden Trend auf. Dies wird bei einer linearen Schätzung als plausibel einge-
stuft, wogegen bei der konstanten Schätzung eindeutig sichtbar ist, dass dies im Gegensatz
zu den nachfolgenden Werten unplausibel erscheint und auf z.B besondere Ereignisse zu-
rückzuführen sein könnte. In Untergrafik 3 (März) tritt dieses Problem an der linksseitigen
Grenze auf. Bei konstanter Schätzung findet noch keine Anpassung an die Werte der letz-
ten beiden Jahre statt, bei linearer Schätzung hingegen schon und die drei vorigen Werte
werden als zu schwach eingeschätzt. Es findet also eine lineare positive Anpassung statt.

Wenn den Analysten bei konstanter Schätzung Strukturbrüche wie in Abbildung 3.2 Un-
tergrafik 3 auffallen, sollte geklärt werden, welche möglichen Gründe es für diese gibt.
Falls der Bruch erklärt werden kann, gibt es eine sinnvolle Vorgehensweise diesen in den
Daten anzupassen, ohne den Grad der Saisonschätzung auf linear zu setzen. Diese weitere
Einstellungsmöglichkeit wird in Kapitel 3.2.7 erläutert. Sollte es keinen triftigen Grund
geben, sollten die Werte der konstanten Regressionsschätzung verwendet werden.

3.2.3. Trendparameter

Für die Trendschätzung müssen, wie bei der Saison, die Spannweite nt und der Grad der
Loess-Schätzung itdeg angegeben werden (vgl. Kap 2.1, Schritt 6). Zuerst geht man er-
neut auf die vom Analysten gewünschten Eigenschaften des Trendes ein. Er soll eine in
sich geglättete Linie sein, in der nur noch mittel- bis langfristige Schwankungen auftreten.
Da das bei alleiniger Betrachtung der Trendkomponente schwierig festzustellen ist, muss
oder kann die Parametereinstellung über zwei unterschiedliche Arten bestimmt werden,
nämlich mithilfe des Saisonparameters ns und oder der Betrachtung der Restkomponente.

Die Spannweite für die Loessschätzung des Trends (nt) muss auf jeden Fall ungerade sein.
Wird vom Analysten eine gerade Zahl übergeben, so wird zu dieser der Wert eins addiert.
Eine andere Bedingung ist, dass nt größer gleich sieben sein muss. Außerdem sollte nt
auf jeden Fall größer als die Frequenz der Saison np sein. Es hat sich gezeigt, dass die
Trendkomponente sonst noch zu viel saisonale Struktur aufweist.
Kommt man nun zuerst zur Bestimmung der Trendspannweite nt über den Saisonpara-
meter ns.
Eine Möglichkeit den Trendparameter zu bekommen liefert Cleveland in seinen Skript. Er
schlägt vor, dass folgende Formel eine gute Grundlage zur Bestimmung des Parameters nt
liefert (Cleveland et al., 1990, vgl. S. 20).

nt ≥ 1.5 ∗ np
1− 1.5 ∗ ns−1

(3.3)

Da nt ungerade sein muss, nimmt sie in der Formel die nächst größte ungerade Zahl an.
Anhand der Formel erkennt man, dass nt immer größer als np sein muss, da der Nenner
immer Werte zwischen 0.7 und 1 annimmt (da ns ∈ 5,7,...) und daraus folgt, dass der
Faktor mit dem np multipliziert wird immer größer als eins ist.
Für unser Beispiel, der Produktion im Produzierenden Gewerbe in Deutschland mit ns=9,
würde man sich somit für nt ≥ 21.6 ∼ 23 entscheiden.

Betrachtet man für diesen Fall einen Diagnostikplot für die Trendschätzung, so ist dort
der Loess-Input (Kreise) und Output (rote Linie) für die Schätzung der Trendkomponente
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dargestellt. Eine weitere Einschätzung über die Bestimmung des Trendparameters kann
über die Betrachtung der Restkomponente (Remainder) geschehen.
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Abbildung 3.4.: Trenddiagnose und Restkomponente mit ns=9 und nt=23 für die Produk-
tion im Produzierenden Gewerbe in Deutschland

In Abbildung 3.4 ist ein Diagnoseplot für die Trendschätzung und der Verlauf der Rest-
komponente für eine Spannweite von q = 23 dargestellt. Bei Betrachtung der Grafik ist
ersichtlich, dass vor allem zu Zeitpunkten, in denen der Trend ein lokales Maxima oder
lokales Minima aufweist, vermehrt Punkte auftreten, die über oder unterhalb der roten
Linie liegen. In der Restkomponente ist dies ebenso zu sehen, da zu diesen Zeitpunkten
vermehrt Zeitpunkte mit großer positiver oder negativer Abweichung auftreten. Dies ist
oftmals ein Zeichen eines zu großen Trendparameters nt, da die konjunkturelle Schwankung
des Trendes nur unzureichend abgebildet wird und diese somit in die Restkomponente mit
einfließt.
Darum wird oftmals versucht den Parameter nt über die Restkomponente zu bestimmen.
So wird dieser ausgehend von den von Cleveland vorgeschlagenen Parameterwert sukzes-
sive reduziert, bis keine Autokorrelationen mehr in der Restkomponente vorhanden ist. Es
ist jedoch darauf zu achten, dass dies nicht immer möglich ist. Deswegen ist vom Analys-
ten eine alleinige Bestimmung über die Betrachtung des Trenddiagnoseplot oftmals auch
sinnvoller.

Zur Bestimmung, ob Unkorreliertheit vorliegt, wird der Box-Pierce Test verwendet. Er tes-
tet die Zeitreihen auf vorhandene Autokorrelationen. Die Ablehnung der Nullhypothese
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besagt, dass die Daten der Zeitpunkte, bis zu einem bestimmten Zeitabstand, miteinander
korreliert sind. Die Nullhypothese lautet somit, dass keine Korrelation zwischen den Wer-
ten der Zeitreihe eines bestimmten Zeitintervalls bestehen. Bei einem p-wert von kleiner
0.1 wird die Nullhypothese abgelehnt und die Werte werden als voneinander abhängig an-
genommen. Bei diesem Test muss auch immer eine Anzahl, für die Höhe des Zeitabstandes,
bis zu dem getestet werden soll, angegeben werden. Da die vermehrten positiven bezie-
hungsweise negativen Abweichungen in der Restkomponente hintereinander auftreten, hat
man sich dazu entschieden, dass es vollkommend ausreichend ist, auf einem Zeitabstand
(Lag) von eins zu testen.

Für die Produktion im Produzierenden Gewerbe in Deutschland erhält man ausgehend
von nt=23 folgende Werte für die Teststatistik und p-Werte.

nt Teststatistik p-Wert Ablehnung der Nullhypothese
23 68.86 1.72 ∗ 10−7 ja
21 20.96 4.68 ∗ 10−6 ja
19 11.72 6.20 ∗ 10−4 ja
17 6.53 0.01059 ja
15 2.91 0.08796 ja
13 1.01 0.3161 nein

Tabelle 3.1.: Box-Pierce Teststatistik verschiedener nt’s mit ns=9 und itdeg=1 für die
Produktion im Produzierenden Gewerbe in Deutschland

Aus der Tabelle 3.1 ist ersichtlich, dass man sich für einen Trendparameter von nt=13
entscheiden würde, dabei betrachtet man für diesen Fall auch den Trenddiagnoseplot, um
einen Vergleich mit der größeren Trendspannweite zu erhalten.
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Abbildung 3.5.: Trenddiagnosegrafik mit ns=9 und nt=13 für die Produktion im Produ-
zierenden Gewerbe in Deutschland

In Abbildung 3.5 ist dargestellt, wie im Falle der unkorrelierten Restkomponente der
Trendverlauf ist. So sind hier die Konjunkturzyklen stärker ausgeprägt. Das bedeutet,
die lokalen Maxima und Minima nähern sich stärker den Realisationen der Zeitreihe an.

17



3. Saison-Trend Zerlegung mithilfe von Loess

Außerdem wird der Umschwung, der an den Grenzen der Zeitreihe stattfindet, deutlich
besser abgebildet. Während in Abbildung 3.4 die schwachen Werte an der rechtsseitigen
Grenze noch keinen Einfluss auf die Trendschätzung haben, findet in Abbildung 3.5 eine
Anpassung an diese statt.
Es sollte trotzdem darauf geachtet werden, den Trendparameter nicht zu gering zu halten,
auch wenn dadurch noch keine Unkorreliertheit in der Restkomponente vorliegt, damit
sich nicht zu viel Schwankung in der Trendkomponente wiederfindet.

Ein weiterer Parameter, der für den Trend eingestellt werden kann, ist der Grad der
Regressionsschätzung im Loess-Verfahren der Trendkomponente. Defaultmäßig ist dieser
linear (eins), er kann aber auch konstant oder quadratisch sein. Eine konstante Schätzung
kommt in den meisten Fällen nicht in Frage, da bei steigendem oder fallendem Trend
die Werte an den Grenzen damit nur unzureichend angepasst werden, da die Schätzung
von den vorherigen Werten abhängig ist und somit der zu schätzende Zeitpunkt, bei stei-
gendem oder fallendem Trend immer einen geringeren oder höheren Wert erhält, als er
eigentlich bekommen müsste. Deshalb ist eine konstante Schätzung nur bei einem kon-
stanten Trendverlauf sinnvoll.
Doch wie schaut es mit einer quadratischen Regressionsschätzung der Trendkomponente
aus? Dieser sollte vor allem bei Zeitreihen mit vielen langfristigen Schwankungen bessere
Ergebnisse liefern, da durch diesen logischerweise die Buckel (Umschwünge) besser abge-
bildet werden können. Jedoch muss an den Grenzen der Zeitreihe aufgepasst werden, dass
der quadratische Trend nicht zu stark abgebildet wird und somit die Trenderwartung zu
stark oder zu schwach ausfällt. Damit würden Probleme bei der Prognose entstehen, da
der Trend über- oder unterschätzt wird.

Trenddiagnoseplot

P
re

is
in

de
x 

(2
01

0=
10

0)

1995 2000 2005

80
85

90
95

10
0

11
0

Abbildung 3.6.: Trenddiagnosegrafik mit ns=9 nt=13 und itdeg=2 für die Produktion im
Produzierenden Gewerbe in Deutschland

Aus Abbildung 3.6 würde man schließen, dass die quadratische Schätzung eine deut-
lich bessere und plausiblere Anpassung an den links- und rechtsseitigen Grenzen liefern
würde, als in Abbildung 3.5 bei der linearen Regressionsschätzung gezeigt wurde. Jedoch
ist jetzt auch deutlich mehr Schwankung in der Trendkomponente vorhanden. Dies will
man eigentlich vermeiden, da diese keine kurzfristigen Schwankungen darstellen soll. Um
trotzdem die quadratische Schätzung weiter in Erwägung zu ziehen, sollte eine Erhöhung
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des Trendparameters nt vorgenommen werden, um eine glattere Linie zu bekommen.
Dafür führt man erneut eine Prüfung der Höhe des Trendparameters nt durch. Man be-
trachtet, ausgehend von dem von Cleveland vorgeschlagenen Wert der Trendspannweite
(nt=23) die Ergebnisse des Box-Pierce Tests.

nt Teststatistik p-Wert Ablehnung der Nullhypothese
23 3.207 0.07365 ja
21 2.461 0.1167 nein
19 1.075 0.2999 nein

Tabelle 3.2.: Box-Pierce Teststatistik verschiedener nt’s mit ns=9 und itdeg=2 für die
Produktion im Produzierenden Gewerbe in Deutschland

Nach der Betrachtung der Tabelle 3.2 würde man sich jetzt für nt=21 entscheiden. Da
der p-wert zu diesem Zeitpunkt aber noch sehr nahe dem Wert 0.1 liegt, habe ich mich
dazu entschlossen nt=19 zu nehmen. Dieser Wert für die Trendspannweite ist größer, als
der Wert bei linearer Schätzung, somit fließen bei quadratischer Regressionsschätzung der
Trendkomponente deutlich mehr Punkte mit in die Schätzung ein.

Es bestehen somit zwei Möglichkeiten für die Trendparameter, entweder nt=13 und it-
deg=1 oder nt=19 und itdeg=2.

3.2.4. Low-pass Parameter

Bei der Low-Pass Loess-Schätzung muss die Spannweite und der Grad der Regressions-
schätzung angegeben werden (vgl. Kap. 3.1.1, Schritt 4). Für beide Parameter liegen
Defaultwerte vor und diese sollten nur von Analysten, die sich sehr gut mit den STL-
Verfahren auskennen, verändert werden. Da saisonale Schwankungen durch die Low-Pass
Schätzung entfernt werden sollen, entspricht der Defaultwert für die Spannweite der Höhe
des Parameters np. Sollte dieser Wert gerade sein, erhält nl die nächste größere ungerade
Zahl. Der Grad der Schätzung weist den Wert eins auf. Es handelt sich somit um eine
lineare Kleinste-Quadrate Schätzung.

3.2.5. Anzahl Iterationen der äußere Schleife

Die Anzahl der Durchläufe der Robustheitsschätzung no kann durch den Analysten mithil-
fe eines Diagnoseplots bestimmt werden. So wird in diesem die Entwicklung der Gewichte,
die bei jeder Robustheitsschätzung am Ende des Durchlaufs der äußeren Schleife entste-
hen, für jeden Zeitpunkt dargestellt.
Als Defaultwert ist no=15 vorgegeben. Ein größerer Wert sollte nicht gewählt werden, da
sich gezeigt hat, dass dies die Laufzeit zu stark erhöhen würde. Bei 15 Umläufen sind in
den allermeisten Fällen schon die optimalen Ergebnisse erreicht worden und eine Verbes-
serung der Ergebnisse ist nicht mehr möglich.

Doch warum sollte die Anzahl der Schleifendurchläufe der äußeren Schleife überhaupt an-
gepasst werden? Dies dient in erster Linie zur Erkennung von Problemen, die entstehen
können, wenn zu viele Werte als Ausreißer eingeschätzt werden. Außerdem kann auch die
Laufzeit verkürzt werden, wenn bereits zu einem früheren Zeitpunkt eine Konvergenz in
den Gewichten erreicht worden ist. Bei erneuter Zerlegung einer bereits vom Analysten
analysierten Zeitreihe kann die Laufzeit somit verbessert werden, wenn man die Umläufe
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der äußeren Schleife verringert.

Als Beispiel betrachtet man hierfür den Diagnoseplot der Robustheitsgewichte (Abbildung
3.7) für die Produktion im Produzierenden Gewerbe in Deutschland mit ns=9 und nt=13
(itdeg=1).
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Abbildung 3.7.: Gewichtegrafik mit ns=9 und nt=13 (itdeg=1) für die Produktion im
Produzierenden Gewerbe in Deutschland

Man erkennt in Abbildung 3.7, dass sich bereits nach circa sieben Durchläufen der äuße-
ren Schleife eine Konvergenz in den Gewichten einstellt. So führt eine erneuter Durchlauf
der äußeren Schleife zu keinen eklatanten anderen Gewichten für die verschiedenen Zeit-
punkte. Wenn man nun einen Wert für die Produktion im Produzierenden Gewerbe in
Deutschland für Oktober 2008 erhält und die Zeitreihe erneut, mit den gleichen Parame-
tereinstellungen, in ihre Komponenten zerlegen will, ist es von Vorteil, die äußere Schleife
nur noch zehn-mal durchlaufen zu lassen, um die Laufzeit zu verringern, da sich bei hö-
heren Iterationen keine neuen Gewichte ergeben und somit die Komponentenschätzung
keine signifikanten besseren Ergebnisse liefert.

Ein anderes Problem, das auftreten kann, ist, dass zu viele Werte aus der Schätzung
herausgenommen werden. In diesem Fall müssen entweder die kompletten Parameterein-
stellungen überdacht werden, oder man bricht zu einem früheren Zeitpunkt ab, zu dem
noch genügend Werte in die Rechnung mit einfließen. Eine andere Möglichkeit, dieses Pro-
blem zu handhaben, findet man in Kapitel 3.2.7.

In Abbildung 3.8 ist der Diagnoseplot und ein Histogramm für die Werte der Gewichte,
mit den in Kapitel 3.2.4 vorgeschlagenen Parameterwerte (ns=9, nt=19, itdeg=2), darge-
stellt. Anhand der Grafik, die die Entwicklung der Gewichte zeigt, ist erkennbar, dass mit
zunehmender Schleifendurchlaufzahl immer mehr Werte, für die Schätzung der Komponen-
ten, herausgewichtet werden. Dies kann vor allem zu Problemen bei der Saisonberechnung
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Abbildung 3.8.: Gewichtegrafik und Histogramm der Gewichte mit ns=9 und nt=19 (it-
deg=2) für die Produktion im Produzierenden Gewerbe in Deutschland

führen, da die Möglichkeit besteht, dass zu viele Robustheitsgewichte einer Saisonunter-
gruppe den Wert null annehmen und somit die Schätzung einzelner Zeitpunkte nur noch
von einem Zeitpunkt abhängig ist.
In der rechten Grafik sieht man die Anzahl der herausgewichteten Werte. Zum Schluss
weisen bereits über 30 Werte Gewichte von null oder nahe null auf. Dies sind circa 20%
der kompletten Ausgangswerte. Das ist oftmals nicht hinnehmbar, da die Komponenten
nicht nur anhand einzelner Werte, sondern mithilfe möglichst vieler Zeitpunkte bestimmt
werden sollen. Nun kann der Analyst entscheiden, ob er die Berechnung entweder zu einen
früheren Zeitpunkt beendet (z.B nach sechs Umläufen) oder sich für komplett andere Pa-
rametereinstellungen entscheidet.

Für den Fall, der Produktion im Produzierenden Gewerbe in Deutschland, hat man nun
für die wichtigsten Parametereinstellungen Werte gefunden. Man würde sich für folgende
Parameter entscheiden: ns=9, isdeg=0, nt=13, itdeg=1 und no=10.

3.2.6. Anzahl Iterationen der innere Schleife

Der Parameter ni bestimmt die Anzahl, wie oft die innere Schleife durchlaufen wird. Für
den Defaultwert von dieser, unterscheidet man zwei unterschiedliche Fälle.
Im ersten Fall ist der Wert des Parameters no>0, dabei hat sich gezeigt, dass der einmalige
Durchlauf der inneren Schleife vollkommend ausreichend ist, um für die Komponenten-
schätzung bereits konvergente Ergebnisse zu erzielen.
Falls der Parameter no=0, muss die innere Schleife öfter durchlaufen werden. Der Default-
wert ist nun zwei. Dies reicht laut Cleveland bereits aus, um konvergente Ergebnisse zu
erhalten. Versuche von diesem, mithilfe von Abbruchkriterien, haben keine Erkenntnisse
geliefert, die für eine höhere Einstellung von ni sprechen würden (Cleveland et al., 1990,
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vgl. S. 14) .

Man betrachtet für die Produktion im Produzierenden Gewerbe die durchschnittlichen und
maximalen absoluten Abweichungen, die zwischen einem zweimaligen und einem fünfma-
ligen Durchlaufen der inneren Schleife entstehen (ni=2 zu ni=5). In beiden Fällen wird
die äußere Schleife nicht durchlaufen.

Art Saison Trend
Maximale absolute Abweichung 0.1980536 0.2424799

Durchschnittliche absolute Abweichung 0.0412737 0.0202778

Tabelle 3.3.: Abweichungen, die bei mehrmaliger Iteration der inneren Schleife entstehen

Man erkennt, dass die maximale Abweichung des Trendes zwischen den beiden Schät-
zungen nur 0.24 (circa 0.3%) beträgt. Für die Saison ergibt sich 0.19. Die durchschnittliche
Abweichung in beiden Komponenten ist deutlich geringer, sie entspricht nur ungefähr 10%
der maximalen Abweichung. Die Abweichung der Saison ist prozentual nicht darstellbar
und bewegt sich auch noch im Rahmen. Somit ist ein zweimaliges Durchlaufen der inneren
Schleife durchaus ausreichend, um aussagekräftige Ergebnisse zu bekommen.

3.2.7. Robustheitsschätzung

Für die Robustheitsschätzung können zwei Parameter verändert werden, wobei bei einem
(bei rw) die Vorgehensweise der Schätzung an sich nicht verändert wird, sondern vom
Benutzer direkt die Robustheitsgewichte übergeben werden.

Betrachtet man zuerst diese Möglichkeit, den Parameter rw. Für diesen muss man für
jeden Zeitpunkt ein individuelles Gewicht angeben. Er sollte verwendet werden, wenn der
Analyst aufgrund von Vorinformationen eigene Gewichte übergeben will oder ein Bruch
in den Daten zu erkennen ist, der aufgrund der bisher wenig vorhandenen Werte an der
rechtsseitigen Grenze heraus gewichtet wird. Die Plausibilität des Bruches muss natür-
lich immer vom Analysten überprüft werden. Es ist darauf zu achten, dass bei Übergabe
von Gewichten keine erneute Robustheitsschätzung stattfindet und nur die innere Schleife
durchlaufen wird.

Die Funktionsweise des Parameters rw soll mithilfe der Produktion im Produzierenden
Gewerbe in Deutschland gezeigt werden. Ruft man sich Abbildung 3.2 zurück ins Ge-
dächtnis, so sieht man in der Saisonuntergruppengrafik für den Monat März (Nr. 3), dass
die letzten beiden Werte oberhalb der roten Linie liegen und somit stark heraus gewichtet
werden. Man nimmt nun an, dass die nachfolgenden Märzwerte ebenfalls das Niveau der
letzten beiden Werte besitzen und diese somit plausible Werte darstellen, an die die Kurve
der Loess-Schätzung angepasst werden soll.
Dazu schaut man sich zuerst die Robustheitsgewichte der letzten Märzwerte an.

Zeitpunkt 03.2003 03.2004 03.2005 03.2006 03.2007 03.2008
Robustheitsgewicht 0.85628 0.91842 0.95909 0.26694 0.54139 0.12156

Tabelle 3.4.: Bei Zerlegung der Produktion im Produzierenden Gewerbe in Deutschland
erhaltenen Robustheitsgewichte für den Monat März (ns=9, nt=13, no=10)
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Man erkennt aus der Tabelle, dass die letzten beiden Werte eher geringe Gewichte, im
Gegensatz zu den vorherigen Gewichten besitzen. Der Wert für 2006 ist deswegen so ge-
ring, da dessen Niveau sehr stark unterhalb des erwarteten Saisonwertes liegt. Nun wird
versucht eine Anpassung an die letzten beiden Werte zu erzielen, indem dem Programm
für die Märzwerte andere Robustheitsgewichte übergeben werden.
Für die Anzahl der Gewichte, die verändert werden sollen, nimmt man folgende Faustfor-
mel:
Ab dem Zeitpunkt, zu dem der Strukturbruch sichtbar ist, sollen die X vor den Struktur-
bruch liegende Robustheitsgewichte verändert werden. Der Wert für X sollte die Hälfte
der Saisonspannweite bzw. Trendspannweite sein, je nachdem in welcher Komponente der
Strukturbruch festgestellt worden ist. Es sollten auch alle Gewichte der darauffolgenden
Zeitpunkte verändert werden.

In der Tabelle 3.5 sieht man die Gewichte, die für die vorhin durchgeführten STL-Zerlegung
bei erneuter Komponentenschätzung benutzt werden.

Zeitpunkt 03.2003 03.2004 03.2005 03.2006 03.2007 03.2008
Robustheitsgewicht 0.70 0.50 0.30 0.00 0.95 0.95

Tabelle 3.5.: Vom Analysten übergebene Robustheitsgewichte für den Monat März

Die Robustheitsgewichte nehmen nur Werte zwischen null und eins an. Die Werte nach
dem Strukturbruch erhalten hohe Gewichte, die Werte davor, niedrige Gewichte, wobei ei-
ne linksseitige bzw. rechtsseitige Abstufung stattfindet. Für die übrigen Monate werden die
Gewichte der Ausgangszerlegung verwendet. Diese sind im Output des STL-Programms
in R vorhanden.

In Abbildung 3.9 erkennt man nun für den Monat März (Nr. 3), dass es zu einer Anpas-
sung an die Werte der letzten beiden Monate gekommen ist, wie man es sich vorgestellt
hat. Mit dem Parameter rw kann somit eine Anpassung an die Werte der rechtsseitigen
Grenze der Saisonuntergruppen vorgenommen werden. Es kann ebenso eine Anpassung
der Trendkomponente erwirkt werden.

Ein andere Einstellungsmöglichkeit, die bei der Robustheitsschätzung vorgenommen wer-
den kann, ist der Parameter wf (weightsfactor). Er gibt an, wie stark Ausreißer bei der
Gewichtung heraus gewichtet werden.
Dazu schaut man sich noch einmal die Formel Nr. 2.1 und 3.2 an.

K(u) =

{
(1− u3)3 falls 0 < u < 1

0 sonst
(3.4)

wro(xj) = K(
|R(xj)|

wf ∗med(|R(x)|)
) (3.5)

In der Formel 3.2 steht im Nenner der Wert sechs. Dieser wird, wie in Formel Nr. 3.4
gezeigt, durch den Parameter wf ersetzt. Er gibt somit den Faktor, der vor dem Median
eingesetzt wird an und ist, wie in Formel 3.2, defaultmäßig sechs. Wenn man einen großen
Faktor angibt, sinkt der Wert innerhalb der Kerndichtefunktion und die Robustheitsge-
wichte nehmen größere Werte an, wenn man einen kleineren Faktor angibt, steigt der Wert
innerhalb der Kerndichtefunktion und mehr Werte werden bei der Schätzung der Kompo-
nenten herausgewichtet.
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Abbildung 3.9.: Saisonuntergruppengrafiken mit eigenen übergebenen Robustheitsgewich-
ten für die Produktion im Produzierenden Gewerbe in Deutschland

Versuche mit unterschiedlichen Zeitreihen haben gezeigt, dass es nur sinnvoll ist, größere
Werte als sechs für den Faktor anzugeben, da bei wf=6 oftmals schon zu viele Werte ge-
ringe Robustheitsgewichte erhalten.

Betrachtet man für einen großen Faktor (wf=8) den Diagnoseplot für die Robustheitsge-
wichte. Dazu verwendet man, für die Zerlegung der Produktion im Produzierenden Ge-
werbe in Deutschland die gleichen Parametereinstellungen, wie in Abbildung 3.8 (ns=9,
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3. Saison-Trend Zerlegung mithilfe von Loess

nt=19 und itdeg=2), in der man festgestellt hat, dass zu viele Zeitpunkte, herausgewichtet
werden.
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Abbildung 3.10.: Gewichtegrafik mit Parameter wf=8 für die Produktion im Produzieren-
den Gewerbe in Deutschland

In Abbildung 3.10 erkennt man, dass bei diesem Wert von wf (wf=8) nun keine Werte
mehr als komplette Ausreißer eingestuft werden und eine Konvergenz in der Gewichte-
schätzung, im Gegensatz zu Abbildung 3.8 sichtbar ist. Somit kann mit Veränderung des
Parameters wf erreicht werden, dass die Robustheitsgewichte nicht zu geringe Werte an-
nehmen. Außerdem könnte man in diesem Fall, bei erneutem Durchlauf der Zerlegung,
wieder nach circa 6-8 Schleifendurchläufen abbrechen (no=7).

Der Parameter wf ist somit stark von den Wünschen des Analysten abhängig. Möchte
er die Komponenten möglichst mit allen Werten der Ausgangszeitreihe bestimmen oder
dürfen auch viele Ausreißer vorhanden sein? Ist die Annahme von externen Effekten sinn-
voll für die Ausgangszeitreihe, oder nicht? Normalerweise wird der Parameter aber nicht
verändert.

3.2.8. Computationale Parameter

Da beim Loess-Verfahren für jeden Punkt die jeweiligen Gewichte berechnet werden müs-
sen und eine Regressionschätzung durchgeführt wird, ist die STL-Methode ein sehr zeit-
aufwendiges Verfahren. Versuche die Laufzeit zu verkürzen, haben gezeigt, dass nicht un-
bedingt an jedem Zeitpunkt eine Loess-Schätzung nötig ist. In den meisten Fällen genügt
es, einzelne Werte zu schätzen und die anderen durch lineare Interpolation zu berechnen.
Dies hat kaum negative Auswirkungen auf die Ergebnisse und führt zu einer Verbesserung
der Laufzeit. Die Verkürzung der Laufzeit war vor allem bei der Vorstellung des STL-
Programms im Jahre 1990, aufgrund der damaligen geringen Rechnerleistungen, von sehr
großer Bedeutung.
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3. Saison-Trend Zerlegung mithilfe von Loess

Der Abstand der Punkte, die mithilfe von Loess geschätzt werden sollen, können über
die Parameter nsjump (Saison), ntjump (Trend) und nljump (low-pass) bestimmt werden.
Defaultmäßig wird die jeweilige Spannweite durch zehn geteilt (z.B ns/10) und dann auf-
gerundet. Ist die Spannweite des Trends mit dem Wert 23 angegeben, so ergibt sich für
ntjump der Wert drei. Somit wird eine Loess-Schätzung für den ersten, 1+x*ntjump und
den N-ten Wert durchgeführt. Die übrigen Werte erhält man durch lineare Interpolation
(Cleveland et al., 1990, vgl. S. 20-22).

ŷ(x0) = ŷ(x−1) +
ŷ(x1)− ŷ(x−1)

x1 − x−1
(3.6)

x−1 ist der Zeitpunkt der letzten Loess-Schätzung vor dem Zeitpunkt x0.
x1 ist der Zeitpunkt der ersten Loess-Schätzung nach dem Zeitpunkt x0.

Um zu zeigen, dass es bei der Berechnung nicht jedes einzelnen Zeitpunktes, zu keiner
Beeinträchtigung in den Ergebnissen kommt, betrachtet man die durchschnittlichen ab-
soluten Abweichungen in den einzelnen Komponenten, für unser Beispiel, der Produktion
im Produzierenden Gewerbe in Deutschland.

Art Saison Trend Laufzeit (in s)
Maximale absolute Abweichung 0.1215677 0.4032692 -

Durchschnittliche absolute Abweichung 0.0169900 0.0309778 0.634

Tabelle 3.6.: Abweichung, die durch die computationalen Parameter bei der Zerlegung der
Produktion im Produzierenden Gewerbe in Deutschland entsteht

In der Tabelle 3.6 zeigt sich, dass die Unterschiede ziemlich gering sind. So liegen die
durchschnittlichen Abweichungen der Trend- und Saisonkomponente unterhalb von einem
Prozent. Auch in der Laufzeit stellt sich eine Verbesserung dar, die jedoch aufgrund der
allgemein geringen Laufzeit nicht ausschlaggebend ist.
Für die Berechnung der Laufzeit wurde die durchschnittliche Abweichung von zehn Aus-
führungen genommen. Der geringe Unterschied liegt vor allem an der geringen Anzahl von
Zeitpunkten. Würde man sich täglich Daten über mehrere Jahre anschauen, so würden
die computationalen Parameter bereits einen deutlich höheren Einfluss auf die Laufzeit
haben und die Unterschiede in der Laufzeit würden größer werden.

3.2.9. Multiplikative Umformung

Der additive Ansatz hat oftmals Probleme bei einer sich abschwächenden oder verstär-
kenden Saison, da bei diesem die Anpassung zu schwach oder stark ausfällt und somit
die Werte besonders starker oder schwacher Monate als Ausreißer eingestuft werden. Des-
wegen besteht die Möglichkeit, die Komponentenschätzung multiplikativ durchzuführen.
Dazu muss die Input Zeitreihe logarithmiert werden und nach Durchführung der Zerlegung
die Ergebnisse in die gewünschte Form gebracht werden. Erörtert man die mathematischen
Vorgänge, die bei dieser Umformung passieren.

log(y(x0)) = T (x0) + S(x0) +R(x0) (3.7)
⇒ y(x0) = exp(T (x0) + S(x0) +R(x0)) (3.8)
⇒ y(x0) = exp(T (x0)) ∗ exp(S(x0)) ∗ exp(R(x0)) (3.9)
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3. Saison-Trend Zerlegung mithilfe von Loess

Die erhaltenen Ergebnisse müssen also exponiert werden, um ein multiplikatives Ergebnis
zu erhalten.

Im multiplikativen Fall stellt eine Komponente eine Referenz dar, von der die anderen
Multiplikative abhängig sind. Dies sollte die Trendkomponente sein. Mithilfe dieses Wis-
sens kann man die Ergebnisse interpretieren. Zum Beispiel bei einer monatlichen Zeitreihe
impliziert ein Wert von 0.9 der Saisonkomponente, dass der Monat 0.9 mal der Wert
Trendkomponente ist. Ein Wert kleiner eins spricht für einem schwachen Monat und ein
Wert größer eins für einem starken Monat. Betrachtet man die Zerlegung der Produktion
im Produzierenden Gewerbe in Deutschland und die exponierten Werte für das Jahr 2000.

Produktion im Produzierenden Gewerbe in Deutschland (logarithmiert)

4.
3

4.
4

4.
5

4.
6

4.
7

da
ta

−
0.

10
−

0.
05

0.
00

0.
05

se
as

on
al

4.
40

4.
50

4.
60

4.
70

tr
en

d

−
0.

03
−

0.
01

0.
01

0.
03

1995 2000 2005

re
m

ai
nd

er

time

Abbildung 3.11.: Multiplikative Zerlegung der Produktion im Produzierenden Gewerbe in
Deutschland
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3. Saison-Trend Zerlegung mithilfe von Loess

Monat Trend Saison Rest
Januar 89.496 0.9157 0.9871
Februar 89.867 0.9348 1.0023
März 90.240 1.0563 0.9977
April 90.638 0.9970 1.0037
Mai 91.037 0.9869 1.0173
Juni 91.410 1.0325 0.9875
Juli 91.784 1.0109 1.0045

August 92.103 0.9362 0.9997
September 92.423 1.0615 1.0020
Oktober 92.628 1.0616 0.9986
November 92.834 1.0707 1.0030
Dezember 92.780 0.9517 1.0114

Tabelle 3.7.: Werte für das Jahr 2000 der multiplikativen Zerlegung für die Produktion im
Produzierenden Gewerbe in Deutschland

Man erkennt in Tabelle 3.7, dass es sich bei März, September, Oktober und November
um starke Monate und bei Januar, Februar und August um schwache Monate handelt.
Die Restkomponente weist in unserem Fall für das Jahr 2000 nur geringe Abweichungen
auf, da die Werte knapp um eins schwanken. Multipliziert man die Saisonkomponente
mit der Trendkomponente, erhält man die Werte, die durch dass Modell erklärt werden.
Die Zeitreihe weist einen positiven Trend auf, da die Realisationen der Trendkomponen-
te mit jedem Monat steigt. Man erkennt aus Abbildung 3.11 und der Tabelle, dass die
multiplikative Berechnung ebenso gute Ergebnisse, wie die additive die Zerlegung liefert
(vgl. Abbildung 1.1). Jedoch ist zu beachten, dass in der Grafik die Werte noch nicht
exponiert worden sind und es sich somit in dieser noch um eine additive Zerlegung han-
delt. Somit ist das additive Verfahren dem multiplikativen Verfahren vorzuziehen, wenn
sich keine verstärkende Saison zeigt und da das multiplikative Verfahren immer mit mehr
Rechenaufwand verbunden ist.

3.2.10. Vergleich mit dem alten STL-Programm

Wie am Anfang bereits erwähnt, geht das Verfahren auf Cleveland zurück, der bereits
ein STL-Programm in R implementiert hat, das auf den selben Algorithmus wie meine
Erweiterung des STL-Programms, zurückgreift. Es weist jedoch weniger Einstellungsmög-
lichkeiten auf und mehrere Diagnosegrafiken sind noch nicht vorhanden.

Neue Möglichkeiten und Parametereinstellungen, die vorgenommen werden können, sind:

• Übergabe von Robustheitsgewichten (rw)
• Einstellung des Gewichtefaktors der Robustheitsschätzung (wf)
• Möglichkeit einer quadratischen Loess-Schätzung
• Bestimmung der Trendspannweite mithilfe des Box-Pierce-Tests
• Diagnoseplot der Saisonkomponente (Saisonuntergruppengrafiken)
• Diagnoseplot der Trendkomponente
• Diagnoseplot für die Entwicklung der Robustheitsgewichte
• Diagnoseplot für die Verteilung der Robustheitsgewichte (Histogramm)

Die neuen Möglichkeiten erleichtern es die optimalen Einstellungen zu finden.
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4. Prognose

Bevor näher auf die Prognose eingegangen wird, betrachtet man zuerst, was man unter
einem deterministischen und einem stochastischen Prozess versteht.

Ein deterministischer Prozess ist ein Prozess, bei dem jeder Vorgang von vorherigen Vor-
gängen abhängig ist und insbesondere zukünftige Ereignisse ebenso durch die vorherigen
Vorgänge eindeutig bestimmt werden können.
Ein stochastischer Prozess ist ein Prozess, dessen Vorgänge zufälligerweise entstehen. Des-
wegen können die zukünftigen Ereignisse nur aufgrund von Wahrscheinlichkeitsannahmen,
die mithilfe der vorherigen Vorgänge bestimmt worden sind ermittelt werden.

Allgemein wird eine Zeitreihe meistens in einen deterministischen und stochastischen Teil
aufgeteilt, um zukünftige Werte prognostizieren zu können.

yt = f(t) + εt (4.1)

Die Funktion f(.) stellt den deterministischen Teil dar, der Fehlerterm ε den stochasti-
schen, die Unsicherheit.

Bei der Prognose für die Saison-Trend Zerlegung müssen für die zukünftigen Werte die ein-
zelnen Komponenten der Zeitreihe geschätzt werden. Den erwarteten Wert zum Zeitpunkt
E[ŷt+h] erhält man somit mithilfe folgender Formel.

E[ŷt+h] = E[Ŝt+h] + E[T̂t+h] + E[R̂t+h] (4.2)

Doch welche Komponenten stellen den deterministischen und stochastischen Teil dar und
wie bekommt man die prognostizierten Werte für die jeweiligen Komponenten?

Die Saison (Ŝt+h) ist in sich möglichst konstant und weist über den Zeitverlauf eine gleich-
bleibende Struktur auf. Somit ist diese eindeutig über ihre vorherigen Werte definiert und
es muss kein Modell geschätzt werden. Deswegen genügt es den letzten Wert der ent-
sprechenden Saisonuntergruppe konstant fortzuschreiben. Wer trotzdem noch die letzten
Werte der jeweiligen Saisonuntergruppe mit einfließen lassen will, für den besteht die
Möglichkeit eine Loess-Schätzung durchzuführen. So wird an dem zu prognostizierenden
Zeitpunkt eine Loess-Schätzung vorgenommen. Bei dieser findet damit noch eine leichte
Anpassung an die letzten Werte der Saisonuntergruppe statt. Das genaue Vorgehen wird
in Kapitel 4.1.1 erläutert. Jedoch ist auch in diesem Fall der Schätzwert eindeutig über
die vorherigen Saisonwerte definiert.
Bei der Saisonkomponente handelt es sich somit um eine deterministische Komponente.
Die Prognose nimmt feste Werte an und weist keine Unsicherheiten auf. Daraus folgt, dass
sie nur Einfluss auf die Punktschätzung, aber nicht auf die Prognoseintervalle hat.

Die Trendkomponente (T̂t+h) weist hingegen nicht immer die gleiche Struktur (den glei-
chen Verlauf) auf. Deswegen ist es für die Prognose hilfreich, zuerst ein Modell zu schätzen
und damit die zukünftigen Werte der Trendkomponente zu prognostizieren.
Im späteren Verlauf werden zwei Modelle betrachtet: das ARIMA-Modell, vergleiche Ka-
pitel 4.1.3 und Random-Walk mit Drift, vergleiche Kapitel 4.1.2. Diese Modelle bestehen
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wiederum aus einem deterministischen und stochastischen Teil. Im ARIMA-Modell ist
der deterministische Teil abhängig von den vorherigen Werten, beim Random-Walk mit
Drift vom Zeitverlauf. Für die Prognose der Trendkomponente erhält man somit folgende
Formel, wobei f(.) der deterministische Teil des jeweiligen Modells ist und ε der stochasti-
sche Teil, der sogenannte Fehlerterm (die Abweichungen die nicht über das Modell erklärt
werden können).

E[T̂t+h] = f(t+ h) + E[ε̂t+h] (4.3)

Die Annahmen, die für die einzelnen Teile des Modells angenommen werden müssen, wer-
den in den nachfolgenden Kapiteln erläutert.

Die Restkomponente ist der stochastische Teil der Zerlegung. Für sie muss eine Verteilungs-
annahme getroffen werden. Im einfachen Fall nimmt man ein gaußsches weißes Rauschen
mit Erwartungswert null und Varianz σ2 an (Rt ∼ N(0, σ2) mit t ∈ 1, ..., n)). Beim weißen
Rauschen sind die einzelnen Realisationen unabhängig voneinander.
Doch wie sinnvoll ist diese Annahme? Wenn bei der Bestimmung des Trendparameters
darauf geachtet worden ist, das die Restkomponente unkorreliert ist, ist die Annahme ei-
nes Erwartungswertes von null sehr sinnvoll, da die Restkomponente um den Nullpunkt
schwankt. Im anderen Fall sollte darauf geachtet werden, dass eventuell, wie bei der Trend-
komponente, ein Modell für die Restkomponente geschätzt wird, da die Möglichkeit be-
steht, dass in dieser noch Struktur ist und damit vergangene Werte die zukünftigen Rea-
lisationen der Restkomponente beeinflussen.
Die Annahme der konstanten Varianz von σ2 stellt sich als weniger sinnvoll heraus, da
wie später im Ausblick erläutert wird, es Zeiträume gibt, zu denen es vermehrt stärkere
Abweichungen gibt, als in anderen Zeiträumen. Deswegen kann eine Vorhersage des Pa-
rameters σ2 sehr viel genauere Ergebnisse über die Unsicherheit, die besteht, liefern. Im
weiteren Verlauf wird jedoch auf die einfache Annahme des gaußschen weißen Rauschen
zurückgegriffen.
Da der Erwartungswert beim gaußschen weißen Rauschen null ist, fließt die Restkomponen-
te nur in die Schätzung der Prognoseintervalle mit ein. Sie verändert nur die Unsicherheit
zukünftiger Werte.
Falls die Annahme einer unkorrelierten Restkomponente nicht eintritt, kann auf diese auch
ein Modell geschätzt werden. Die Schätzung läuft analog der Schätzung der Trendkompo-
nente ab. Im folgenden Teilkapitel wird auf unser Beispiel der Produktion im Produzieren-
den Gewerbe zurückgegriffen, wobei die Annahme einer unkorrelierten Restkomponente
besteht. Beim empirischen Beispiel trifft die Annahme einer unkorrelierten Restkompo-
nente dagegen nicht ein.

Bei einem schon in R implementierten Verfahren für die Prognose einer Saison-Trend zer-
legten Zeitreihe, wird für die Vorhersage die Trend- mit der Restkomponente zusammenge-
legt. Auf die zusammengelegte Zeitreihe wird ein Modell geschätzt und die Prognosewerte
berechnet (Hyndman and Athanasopoulos, 2012, vgl. Kap. 6.6). Im Kapitel 4.3.2 wird ein
Vergleich gezogen, welche der beiden Methode bessere Ergebnisse liefert.

4.1. Methoden

4.1.1. Loess-Prognose

Die Prognose mithilfe von Loess findet bei der Saisonkomponente Anwendung. Sie läuft
äquivalent der in Kapitel 2.2 erläuterten Vorgänge einer lokal gewichteten Regression ab.
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Der Unterschied besteht darin, dass nur linksseitige Werte für die Schätzung vorhanden
sind und zum schätzenden Zeitpunkt keine Realisation vorliegt. So wird der Schätzwert
nur über die vorherigen Werte bestimmt. Der Wert von β0 gibt dann erneut, den zu pro-
gnostizierenden Wert an.
Der Vorteil der Loess-Prognose, gegenüber der Verfahrensweise einfach den letzten Saison-
untergruppenwert zu nehmen, besteht darin, dass leichte Schwankungen, die an der rechten
Grenze der Saisonuntergruppe entstehen, auch in die Prognose des saisonalen Wertes mit
einfließen und somit mit abgebildet werden.

4.1.2. Random Walk

Bei einem Random-Walk wird angenommen, dass die Realisation yt nur von ihrem vorheri-
gen Wert und einer Unsicherheit (Fehlerterm) abhängig ist. Der Fehlerterm weist zufällige
Werte auf, die mithilfe einer Wahrscheinlichkeitsannahme bestimmt werden. Hier betrach-
tet man die Modellgleichung eines Random-Walk (Foster, a, vgl. S. 5-10).

yt = yt−1 + εt (4.4)
∆yt = εt (4.5)

Für den Fehlerterm wird weißes Rauschen mit Erwartungswert Null und Varianz σ2 ange-
nommen. Betrachtet man die Zuwachsrate, so erkennt man, dass diese nur von εt abhängig
ist und somit zufällige Werte annimmt.
Der Erwartungswert dieses Modells ist konstant über den Zeitverlauf (E(yt) = E(yt−1) =
y0) und die Varianz ist abhängig von der Zeit (V ar(yt) = tσ2). Das heißt, die Varianz ist
nicht endlich und mit zunehmenden in der Ferne liegenden Prognosezeitpunkten wird das
Prognoseintervall linear größer.
Jedoch ist in den meisten Fällen ein Random-Walk nicht sehr sinnvoll, da der Erwar-
tungswert konstant ist und somit bei der Punktprognose die letzte Realisation konstant
weiter geschrieben wird. Deswegen kann der Random-Walk um einen deterministischen
Teil erweitert werden, einen Drift.

Die Modellgleichung eines Random-Walk mit Drift sieht folgendermaßen aus (Foster, a,
vgl. S. 12-13).

yt = yt−1 + α0 + εt (4.6)
∆yt = α0 + εt (4.7)

Man erkennt, dass nun die Zeitreihe zu jedem Zeitpunkt noch um den Wert von α0 steigt.
Wenn α0 kleiner als null ist, handelt es sich um einen fallenden Trend, wenn α0 größer
null ist, um einen steigenden. Der Erwartungswert ist nun nicht mehr konstant über den
Zeitverlauf. Er ist vom Parameter α0 und der Zeit abhängig (E(yt) = tα0 + y0). Somit ist
der Erwartungswert beim Random-Walk mit Drift nicht endlich.
Aus der Modellgleichung kann man die Prognose eines Random-Walk mit Drift, in Ab-
hängigkeit zu den vergangenen Werten, berechnen. Man erhält folgende Gleichungen:

ŷt+h|yt, ..., y0 = yt + α0h+
t+h∑

i=t+1

εi (4.8)

E[ŷt+h|yt, ..., y0] = yt + α0h (4.9)

V ar(ŷt+h|yt, ..., y0) = hσ̂2 (4.10)
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Die Zuwachsrate α0 fließt nun auch in das Modell mit ein. Der Term εt hat keinen Einfluss
auf die Punktschätzung, da der Erwartungswert von diesem Null ist. Er beeinflusst nur
die Prognoseintervalle, die mithilfe der geschätzten Varianz (σ̂2t+h), für jeden Prognose-
zeitpunkt, bestimmt werden. Die geschätzte Varianz nimmt für jeden neu prognostizierten
Zeitpunkt, um den selben Wert zu. Dieser Wert stellt die geschätzte Varianz des Modells
dar (σ̂2) und setzt sich aus der Varianz des Fehlerterms (V ar[εt]) und der Varianz des
Parameters (V ar[α0]) zusammen.
Beim Random-Walk mit Drift wird somit ein steigender oder fallender Trend prognosti-
ziert und die Breite des Prognoseintervalls nimmt linear zu.

4.1.3. ARIMA-Modell

Das ARIMA-Modell setzt sich aus einem autoregressiven Prozess (AR) und einen Moving-
Average Prozess (MA)zusammen.
Das I steht für “Integrated” und bedeutet, dass die Zeitreihe zuerst durch Differenzieren in
einen schwach stationären Prozess überführt werden muss, da dies eine Voraussetzung für
ein ARMA-Modell ist. Dazu betrachtet man die Definition von schwacher Stationarität
(Hyndman and Athanasopoulos, 2012, vgl. 8.1).

Unter schwacher Stationarität versteht man, dass der Erwartungswert über den Zeitverlauf
konstant ist (a), die Varianz endlich ist (b) und die Kovarianz nur von ihrem Zeitabstand
h abhängig ist (c).

a) E[yt] = E[yt+1] = ... = E[yt+h] für h ∈ { 0, 1, ...} (4.11)
b) V ar[yt+h] <∞ für h ∈ { 0, 1, ...} (4.12)
c) cov[y0, y0+h] = cov[y1, y1+h] = ... = cov[yt, yt+h] (4.13)

Aus (a) erkennt man, dass die Zeitreihe keinen Trend aufweisen darf, da sonst der Erwar-
tungswert über dem Zeitverlauf nicht konstant wäre.
Schwache Stationarität erreicht man durch Differenzieren der Zeitreihe. Für Zeitreihen mit
linearem Trend, muss man die Werte einmal differenzieren (∆yt), für die mit quadrati-
schem Trend, zweimal (∆2yt).

∆yt = yt − yt−1 (4.14)

∆2yt = ∆yt −∆yt−1 (4.15)
= (yt − yt−1)− (yt−1 − yt−2) (4.16)

Ob die, nach Differenzieren erhaltene Zeitreihe wirklich stationär ist, kann mit einem
adjusted Dickey-Fuller Test oder einem KPSS Test überprüft werden. Sollte immer noch
keine Stationarität vorliegen, muss eine erneute Differenziation vorgenommen werden.

Nachdem man die Zeitreihe in einen schwach stationären Prozess überführt hat, kann man
nun die Modellgleichungen eines AR(p)- und eines MA(q)-Prozesses betrachten (Hyndman
and Athanasopoulos, 2012, vgl. 8.3-8.5).

AR(p): yt = α1yt−1 + α2yt−2 + ...+ αpyt−p + εt (4.17)
MA(q): yt = εt + β1εt−1 + β2εt−2 + ...+ βqεt−q (4.18)

Aus der Formel erkennt man, dass im autoregressiven Modell die Realisation yt, von ih-
ren vorherigen Werten jeweils mit einem bestimmten Anteil (α) abhängig ist. Für den
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Fehlerterm εt wird gaußsches weißes Rauschen angenommen. So weist dieser einen Erwar-
tungswert von Null auf und besitzt die Varianz von σ2. Die einzelnen εt sind über den
Zeitverlauf unabhängig voneinander und identisch verteilt.
Im Moving-Average Modell ist die Realisation von den vergangenen Fehlertermen ab-
hängig. So kann diese als gewichteter gleitender Durchschnitt der letzten q-Fehlerterme
angesehen werden. Für die Fehlerterme gilt, wie oben erwähnt, gaußsches weißes Rauschen
und sie sind unabhängig identisch voneinander.

Fasst man nun die beiden Gleichungen zu einem ARMA-Modell zusammen, so erhält man.

yt = α1yt−1 + ...+ αpyt−p + β1εt−1 + ...+ βqεt−q + εt (4.19)

Die Realisation zum Zeitpunkt t (yt) ist nun von ihren vergangen Realisationen und Feh-
lertermen abhängig.
Kurz schreibt man ARIMA(p,d,q), wobei p die Anzahl der autoregressiven Lags darstellt,
d die Ordnung der Differenzierung und q die Anzahl der Lags beim MA-Prozess.
Die Werte für p, d und q können in R über die Funktion auto.arima erhalten werden
(Hyndman and Athanasopoulos, 2012, vgl. 8.7). Sie ist im package ”forecast” enthalten.
Die Parameter werden mithilfe des AIC (Akaike Information Criterion) ausgewählt. So
bestimmt die Funktion in R zuerst den Parameter d, anhand des adjusted Dickey-Fuller
oder KPSS Tests (d ist maximal 2) und anschließend die Parameter p und q. Dazu wird
für mehrere verschiedene Parametereinstellungen für p und q, die anhand eines Algo-
rithmuses vorgenommen werden, eine Maximum-Likelihood Schätzung (ML-Schätzung)
durchgeführt und die Parameterwerte mit den geringsten AIC verwendet. Durch die ML-
Schätzung erhält man auch die Werte für die Parameter αp und βq.
Nachdem man die Parameterwerte erhalten hat, kann man nun eine Prognose für das
ARIMA-Modell erstellen. Für die Punktschätzung sind die zukünftigen εt nicht von Be-
deutung, da deren Erwartungswert null ist. Die vergangenen Fehlerterme fließen in die Pro-
gnose mit ein. Damit erhält man folgende Modellgleichung für die Prognose des nächsten
und übernächsten Wertes eines ARIMA(2,0,2)-Modells:(Hyndman and Athanasopoulos,
2012, vgl. 8.8)

E[ŷt+1|yt, ..., y0] = α1yt + α2yt−1 + β1ε̂t + β2ε̂t−1 (4.20)
E[ŷt+2|yt, ..., y0] = α1E[ŷt+1|yt, ..., y0] + α2yt + β2ε̂t (4.21)

mit E[ε̂t+1] = E[ε̂t+2] = 0 (4.22)

Man erkennt, dass für die Punktschätzung des übernächsten Wertes der vorherige ge-
schätzte Wert vonnöten ist. Außerdem fließen, ab einem bestimmten in der Ferne liegen-
den Zeitpunkt, die geschätzten εt des Modells nicht mehr direkt in die Prognose mit ein,
da deren Erwartungswerte der Schätzungen Null sind.
Für die Schätzung eines Prognoseintervalls spielen die Schätzungen des Parameters εt je-
doch eine wichtige Rolle. So muss ein Wert für die geschätzte Varianz ermittelt werden
(σ̂2t+h). Für das erste Prognoseintervall (erster Zeitpunkt nach letzter Realisation) ist diese
einfach die geschätzte Varianz des Fehlerterms (σ̂2). Für von der letzten Realisation weiter
entfernt liegende Prognosen, ist die Berechnung der Varianz deutlich komplizierter, da in
diesem Fall die Varianzen mehrerer Fehlerterme mit einfließen und die Parameter auch
noch eine Rolle spielen. Deswegen wird auf deren Berechnung nicht genauer eingegangen.
Allgemein gilt für ein ARIMA-Modell, dass die Varianz, für entfernte Zeitpunkte, gegen
einen Wert konvergiert. Voraussetzung hierfür ist, dass die Ausgangszeitreihe Stationari-
tät aufweist, was bei einem ARIMA-Modell gegeben sein sollte.
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Eine Erweiterung des ARIMA-Modells stellt das saisonale ARIMA-Modell dar (Hyndman
and Athanasopoulos, 2012, vgl. 8.9). Bei diesem kann eine Differenzierung der Saison vor-
genommen werden. Außerdem kann auch bestimmt werden, dass die Werte vom letzten
Saisonwert oder vom Fehlerterm abhängig sind. Das bedeutet bei monatlichen Daten, dass
der zwölfte vorherige Wert oder Fehlerterm in das Modell mit aufgenommen wird (z.B.
α12yt−12;β12εt−12).

4.2. Prognosebeispiel

In diesem Abschnitt wird beispielhaft eine Prognose für die Produktion im Produzierenden
Gewerbe in Deutschland für die nächsten zwölf Monate erstellt. Die Zeitreihe beginnt
mit dem Januar 1991 und endet im September 2008. Für die Zerlegung der Zeitreihe
wurden folgende Parameter benutzt: ns=9; nt=13; isdeg=0; itdeg=1; no=10; ni=1. Zuerst
betrachtet man die Punktprognose, danach die Prognoseintervalle.

4.2.1. Punktprognose

In die Punktschätzung fließen nur die prognostizierten Werte der Saison- und Trendkom-
ponente mit ein, da für die Restkomponente ein Erwartungswert von Null angenommen
wird.

Zuerst behandelt man die Saisonkomponente. Für ihre Prognose stehen zwei Möglichkeiten
zur Verfügung, entweder eine Loess-Schätzung oder das Fortschreiben des letzten Wertes
der entsprechenden Saisonuntergruppe.
Die Werte für die Loess-Schätzung erhält man bereits über den Output der Zerlegung.
So wird im zweiten Schritt der inneren Schleife bereits ein Wert jeder Saisonuntergruppe
prognostiziert. Diese werden für die Saisonprognose genommen und mit dem in Schritt
drei erhaltenen Wert der Saisonkorrektur subtrahiert. In der folgenden Tabelle (4.1) ist
dargestellt, welche Werte man für die Prognose der Saisonkomponente erhalten würde.

Zeitpunkt Loess-Schätzung letzter Saisonwert
10.2008 5.8062 5.7807
11.2008 6.8023 6.7900
12.2008 -5.4578 -5.4328
01.2009 -7.5510 -7.5486
02.2009 -5.5623 -5.5759
03.2009 5.0806 5.0567
04.2009 -0.2428 -0.2450
05.2009 -1.6393 -1.6397
06.2009 2.5126 2.5120
07.2009 1.6678 1.6913
08.2009 -6.7817 -6.7730
09.2009 5.3692 5.3631

Tabelle 4.1.: Vergleich und Werte der verschiedenen Prognosemethode der Saisonkompo-
nente für die Produktion im Produzierenden Gewerbe in Deutschland
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Aus der Tabelle 4.1 ist ersichtlich, dass sich die Werte nicht besonders stark unterschie-
den. Der maximale Abstand beträgt circa 0.03 und tritt für den Monat März auf. So
hat die Loess-Schätzung dort ein höheres Niveau als die konstante Schätzung. Wenn man
sich noch einmal die Saisonuntergruppengrafik aus Abbildung 3.2 für den Monat März ins
Gedächtnis ruft (Grafik 3), so erkennt man, dass die letzten beiden Werte oberhalb der
roten Linie liegen. Deswegen scheint der prognostizierte Wert anhand der Loess-Schätzung
näher an der Realität zu liegen, als das konstante Fortschreiben des letzten Saisonwertes.
Bei der Loess-Schätzung findet somit eine leichte Anpassung an die letzten Werte statt.

Nun wird auf die Prognose der Trendkomponente eingegangen. Bei dieser muss zuerst ein
Modell geschätzt werden. Es stehen zwei Möglichkeiten zur Verfügung: ein ARIMA-Modell
oder ein Random-Walk mit Drift.
Zuerst wird ein Random-Walk mit Drift auf die Trendkomponente geschätzt, mit der da-
nach eine Prognose erstellt wird. Man erhält für den Random-Walk mit Drift folgende
Modellparameter.

Random-Walk Drift (c) Fehlerterm (ε)
Wert 0.09887 -

Standardabweichung 0.01892 0.27550

Tabelle 4.2.: Modellparameter eines Random-Walks mit Drift in der Trendkomponente für
die Produktion im Produzierenden Gewerbe in Deutschland

Beim Random-Walk nimmt der Trend mit jeder Zeiteinheit um den Wert 0.09887 zu.
Das heißt pro Monat steigt die Produktion im Produzierenden Gewerbe in Deutschland
um den Preisindex von circa 0.1 an. Die Standardabweichung für den Fehlerterm beträgt
0.27550.

Nun betrachtet man das ARIMA-Modell. Da man bei Betrachtung der Trendkomponen-
ten über den Zeithorizont einen linear steigenden Trend feststellt, würde man sich dafür
entscheiden, die Zeitreihe einmal zu differenzieren (d=1).
Die Funktion auto.arima in R schlägt dann, für die einmal-differenzierte Zeitreihe, als op-
timale Wahl für die Anzahl der autoregressiven Lags eins (p=1) und für die Anzahl der
Moving-Average Lags zwei (q=2) vor. Man schätzt somit ein ARIMA(1,1,2)-Modell. Die-
ses besitzt den geringsten AIC und man würde folgende Parameterwerte für das Modell
erhalten.

ARIMA AR1 (α1) MA1 (β1) MA2 (β2) Ft (ε)
Wert 0.9478 0.0149 0.6054 -

Standardabw. 0.0213 0.0657 0.0460 0.0580

Tabelle 4.3.: Modellparameter eines ARIMA-Modells in der Trendkomponente für die Pro-
duktion im Produzierenden Gewerbe in Deutschland

Man erkennt, dass die letzte Realisation der einmal-differenzierten Zeitreihe einen hohen
Einfluss auf die Realisationen und zukünftigen Werte besitzt, da der Parameter α0 einen
Wert sehr nahe eins annimmt. Der letzte Fehlerterm hat einen deutlich geringeren Einfluss,
als der vorletzte Fehlerterm. Der Einfluss des letzten Fehlerterms ist nicht signifikant. Um
keinen Trend in der Trendkomponente zu haben, wurde die Zeitreihe einmal differenziert.
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Es handelt sich somit um einen linearen Trend. Die Standardabweichung des Fehlerterms
beträgt 0.0580 und ist geringer als beim Random-Walk mit Drift.

Nachdem man die beiden Modelle aufgestellt hat, kann man eine Prognose für die Trend-
komponente schätzen. Im folgenden werden die berechneten Prognosewerte für die Punk-
teschätzung des Trendes für die beiden Modelle betrachtet.

Zeitpunkt Random-Walk mit Drift ARIMA(1,1,2)
10.2008 107.6652 107.2974
11.2008 107.7641 107.0379
12.2008 107.8630 106.7919
01.2009 107.9618 106.5588
02.2009 108.0607 106.3378
03.2009 108.1596 106.1284
04.2009 108.2585 105.9299
05.2009 108.3573 105.7418
06.2009 108.4562 105.5634
07.2009 108.5551 105.3944
08.2009 108.6540 105.2343
09.2009 108.7528 105.0824

Tabelle 4.4.: Vergleich und Werte der verschiedenen Prognosemethoden der Trendkompo-
nente für die Produktion im Produzierenden Gewerbe in Deutschland

Beim Random-Walk mit Drift ergibt sich ein positiver Trend, der pro Monat linear
um den selben Wert steigt, beim ARIMA(1,1,2)-Modell hingegen ist ein negativer Trend
feststellbar (vgl. Tab. 4.4). Nach zwölf Monaten ergibt sich ein Unterschied zwischen den
beiden Prognosemethoden von circa 3.7 Preisindexpunkten.

Prognose für die Produktion im Produzierenden Gewerbe
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Abbildung 4.1.: Prognose und Vergleich der beiden Modelle für den Trend für die Produk-
tion im Produzierenden Gewerbe in Deutschland
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Um die endgültige Punktschätzung für die Zeitreihe zu erhalten, müssen die Prognose
der Saison- und der Trendkomponente addiert werden. In der Abbildung 4.1 wurde für
die Schätzung der Saisonkomponenten das Loess-Verfahren benutzt. Man erkennt den
unterschiedlichen Verlauf der beiden Prognosen. So weisen die Werte beim Random-Walk
mit Drift einen stärkeren Trend auf. Das ARIMA-Modell nimmt die leicht abfallende Kurve
im Jahr 2008 zum Anlass einen schwächeren Trend zu schätzen, außerdem ist die saisonale
Struktur in der Prognose sichtbar.

4.2.2. Prognoseintervall

Um ein Prognoseintervall erstellen zu können, muss zuerst eine Verteilungsannahme für
die zu prognostizierenden Werte angegeben werden. In unserem Fall nimmt man an, dass
die zukünftigen Realisationen bedingt auf ihre vergangenen Werte normal-verteilt sind.

ŷt+h|yt, ..., y0 ∼ N(µ, σ2) (4.23)

Mithilfe dieser Annahme kann man ein Prognoseintervall folgendermaßen berechnen.

PI : [E[ŷt+h|yt, ..., y0]± z1−α
2

√
σ̂2t+h] (4.24)

z1−α
2
stellt das Quantil der Standardnormalverteilung dar. σ̂2t+h die geschätzte Varianz

zum Zeitpunkt t+ h.
In den meisten Fällen wird ein 95%-Prognoseintervall oder ein 90%-Prognoseintervall be-
trachtet, somit muss man das entsprechende Quantil der Standardnormalverteilung be-
rechnen (z0.975 = 1.96; z0.95 = 1.64).

Doch wie erhalte ich die geschätzten Varianzen? Da die Saisonkomponente einem deter-
ministischen Trend folgt und somit dessen Prognose keine Unsicherheit aufweist, hat sie
keinen Einfluss auf die Varianz. Man muss also für die Berechnung der Varianz die Trend-
und Restkomponente hinzuziehen.
Beim Random-Walk mit Drift, für die Trendkomponente, hat man in Kapitel 4.1.3 gezeigt,
dass die Varianz für die Prognose V ar(ŷt+h|yt, ...y0) = σ̂2t+h = hσ̂2 ist. Wobei sich σ̂2 aus
der Varianz des Fehlerterms plus der Varianz des Parameters für den Drift zusammensetzt.
Beim ARIMA-Modell entspricht die Varianz für das erste Prognoseintervall der Varianz
des Fehlerterms (εt). Bei Prognosen, die weiter in die Zukunft reichen, stellt sich die Be-
rechnung der Varianz als komplizierter heraus, deshalb wird auf die genaue Vorgehensweise
nicht näher eingegangen. Liegt ein stationäres ARIMA-Modell vor, so konvergiert die Va-
rianz gegen einen bestimmten Wert.

In Tabelle 4.5 vergleicht man die 95%-Prognoseintervalle und die geschätzten Varianzen
für die Trendkomponente der beiden verschiedenen Modelle. Man erkennt, dass bis zum
Monat März, das geschätzte σ̂2 beim Random-Walk mit Drift größer, als beim ARIMA-
Modell ist. Mit mittlerer Anzahl von prognostizierten Perioden ist die Unsicherheit beim
Random-Walk geringer, als beim ARIMA-Modell. Beim Random-Walk mit Drift steigt
die Varianz linear an. Wegen der Stationarität sollte im ARIMA-Modell die Varianz gegen
einen bestimmten Wert konvergieren. Für eine kurzfristige Prognose (1-3 Monate) liefert
in unseren Beispiel das ARIMA-Modell kleinere Prognoseintervalle, für mittelfristige bis
langfristige Prognosen (4-12 Monate), der Random-Walk mit Drift.
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Modell Random-Walk mit Drift ARIMA-Modell
Zeitpunkt σ̂2 Prognoseintervall σ̂2 Prognoseintervall
10.2008 0.0763 [107.1240;108.2065] 0.0034 [107.1836;107.4111]
11.2008 0.1532 [106.9969;108.5313] 0.0163 [106.7873;107.2885]
12.2008 0.2309 [106.9211;108.8048] 0.0572 [106.3233;107.2605]
01.2009 0.3093 [106.8718;109.0519] 0.1387 [105.8289;107.2887]
02.2009 0.3884 [106.8392;109.2823] 0.2717 [105.3162;107.3594]
03.2009 0.4683 [106.8184;109.5008] 0.4650 [104.7919;107.4649]
04.2009 0.5488 [106.8064;109.7105] 0.7259 [104.2600;107.5998]
05.2009 0.6301 [106.8015;109.9132] 1.0601 [103.7237;107.7598]
06.2009 0.7121 [106.8023;110.1102] 1.4723 [103.1852;107.9417]
07.2009 0.7948 [106.8077;110.3024] 1.9659 [102.6463;108.1426]
08.2009 0.8782 [106.8172;110.4907] 2.5434 [102.1084;108.3601]
09.2009 0.9623 [106.8301;110.6756] 3.2065 [101.5727;109.5922]

Tabelle 4.5.: Prognoseintervalle der beiden Modelle der Trendkomponente für die Produk-
tion im Produzierenden Gewerbe in Deutschland

Für die Restkomponente wird ein weißes gaußsche Rauschen angenommen, mit Er-
wartungswert Null und Varianz σ2. Somit ergibt sich, dass die Varianz zum Zeitpunkt
σ̂2t+h = σ̂2 ist. Sie ist somit für jeden Prognosezeitpunkt konstant. In unserem Fall, für die
Produktion im Produzierenden Gewerbe in Deutschland, ergibt sich: σ̂2 = 0.6255.

Die endgültigen Prognoseintervalle ergeben sich, indem man die Varianzen aus der Trend-
und Restkomponente verbindet. Jedoch reicht es nicht, die beiden zu addieren. Man muss
auch die Kovarianz zwischen den beiden Parametern betrachten. Diese bekommt man mit-
hilfe der Residuen. Beim Random-Walk mit Drift und beim ARIMA-Modell entsprechen
diese dem Fehlerterm. Bei der Restkomponente stellt diese selbst die Residuen dar, da
sie ja den Teil, der nicht über die beiden anderen Komponenten abgedeckt werden kann,
erklärt.

Modell Random-Walk mit Drift/Rest ARIMA-Modell/Rest
Kovarianz 0.00374 -0.00679
Korrelation 0.01740 -0.14738

Tabelle 4.6.: Kovarianzen und Korrelationen zwischen den einzelnen Residuen bei der Pro-
duktion im Produzierenden Gewerbe in Deutschland

In der Tabelle 4.6 sieht man, welche Kovarianz sich zwischen der Restkomponente und
den Residuen des Trendmodells ergibt, zur besseren Interpretation wird auch die Korrelati-
on betrachtet. Die Residuen des ARIMA-Modells weisen eine geringe negative Korrelation
mit der Restkomponente auf, beim Random-Walk ist der Zusammenhang kaum messbar.
Für die Schätzung der Kovarianz geht man davon aus, dass die Korrelation konstant bleibt,
da diese eine normierte Größe ist. Mithilfe dieses Wissens, kann man die zukünftigen Ko-
varianzen schätzen. Sie ergeben sich anhand der Korrelation, multipliziert mit den beiden
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Standardabweichungen.

allgemein: cort(T,R) =
covt(T,R)√
σ2t (T )σ2t (R)

(4.25)

mit: cort(T,R) = cort+h(T,R) (4.26)

–> ̂covt+h(T,R) = cort(T,R)

√
̂σ2t+h(T ) ̂σ2t+h(R) (4.27)

Nachdem man nun die Kovarianzen berechnet hat, kann man nun das σ̂2t berechnen.

σ̂2t+h = ̂σ2t+h(T ) + ̂σ2t+h(R) + 2 ̂covt+h(T,R) (4.28)

= ̂σ2t+h(T ) + ̂σ2t+h(R) + 2cort(T,R)

√
̂σ2t+h(T ) ̂σ2t+h(R) (4.29)

Mithilfe der geschätzten Werte der Varianz, kann man nun die Prognoseintervalle erstellen.
Sie ergeben sich, wie oben beschrieben, über die Quantile der Standardnormalverteilung
und der geschätzten Varianz.
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Abbildung 4.2.: Prognoseintervall für die Prognose des Trendes mit Random-Walk mit
Drift für die Produktion im Produzierenden Gewerbe in Deutschland

In Abbildung 15 und 16 sind für die beiden Modelle die endgültigen Prognoseinter-
valle aufgezeigt. Die schwarze Linie im geschätzten Bereich stellt die Punktprognose des
jeweiligen Modells dar.

39



4. Prognose
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Abbildung 4.3.: Prognoseintervall für die Prognose des Trendes mit Arima-Modell für die
Produktion im Produzierenden Gewerbe in Deutschland

4.3. Prognosegüte

Nachdem man die Prognosemöglichkeiten für eine in Saisonkomponente und Trendkom-
ponente zerlegte Zeitreihe aufgezeigt hat, will man feststellen, wie gut diese Methode
gegenüber anderen Modellen und Prognosemöglichkeiten ist. Dazu wird die Zeitreihe zu
einem früheren Zeitpunkt abgeschnitten, darauf eine Prognose erstellt und mit den danach
eingetroffenen Werten verglichen. Der Vergleich, der verschiedenen Prognosemethoden ge-
schieht mithilfe des mittleren quadratischen Fehlers.

Für die Anzahl der Werte, die prognostiziert werden, werden zwei verschiedene Varianten
betrachtet, einmal für eine kurzfristige Prognose drei Monate und für eine langfristige
Prognose zwölf Monate.
Da der Vergleich, wenn nur zu einem Zeitpunkt abgeschnitten worden ist, keine sinnvolle
Lösung darstellt, bestehen zwei Möglichkeiten, entweder ein rekursives Prognosefenster
oder eine rollierendes.

Betrachtet man die beiden Möglichkeiten für die Produktion im Produzierenden Gewerbe
in Deutschland, so wird beim rekursiven Prognosefenster die Zeitreihe Ende 2000 abge-
schnitten und darauf die nächsten zwölf bzw. drei Monate prognostiziert und der mittlere
quadratische Fehler berechnet. Daraufhin wird der Wert des Januar 2001 in die Zeitreihe
mit aufgenommen und erneut die nächsten zwölf bzw. drei Monate prognostiziert usw..
Beim rollierenden Prognosefenster besteht für den Input immer das gleiche Zeitintervall.
So wird bei diesem auch im ersten Schritt Ende 2000 abgeschnitten und daraufhin eine
Prognose erstellt und der mittlere quadratische Fehler berechnet. Daraufhin wird erneut
der Januar mit in die Ausgangszeitreihe aufgenommen, wobei in diesem Fall auch der erste
Wert der Ausgangszeitreihe wegfällt. Diese beginnt nun im Februar 1991. Damit hat man
immer die gleiche Anzahl an Werten für die Input-Zeitreihe.

Nachdem im folgenden Teilkapitel die Berechnung des mittleren quadratischen Fehlers
aufgezeigt wird, werden im darauffolgenden Teilkapitel folgende Modelle verglichen:
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- Saisonaler ARIMA, Random-Walk mit Drift
- neue Methode: STL+Random-Walk mit Drift und STL+ARIMA
- alte Methode: STL+Random-Walk mit Drift und STL+ARIMA.
Unter der alten Methode ist zu verstehen, dass für die Saison die letzten Saisonwerte
konstant weitergeschrieben werden und die Trend- und Restkomponente zusammengefügt
werden und darauf ein Modell und eine Prognose geschätzt wird.

4.3.1. Mittlerer quadratischer Fehler

Der mittlere quadratische Fehler stellt ein Maß dar, um die Prognosegüte eines Modells zu
beurteilen. Bei diesem werden die Abweichungen des Schätzwertes vom wahren Parameter
aufsummiert und durch die Anzahl der vorhergesagten Perioden geteilt.

MQF =
1

h

t+h∑
i=t+1

(E[ŷi]− yi)2 (4.30)

Um den MQF bestimmen zu können müssen die wahren Werte der Realisationen yt+h

bekannt sein. Somit kann der MQF immer erst im Nachhinein berechnet werden. Aus der
Formel erkennt man, dass mit zunehmenden Abweichungen der Wert des MQF immer
größer wird. Daraus folgt, je kleiner der MQF, desto besser ist die Prognosegüte des
Modells.

4.3.2. Vergleich verschiedener Prognosemethoden

Im folgenden Kapitel werden die verschiedenen Prognosemodelle anhand des MQF (mitt-
leren quadratischen Fehler) verglichen. Als Vergleichszeitreihe dient die Produktion im
Produzierenden Gewerbe in Deutschland.

Im ersten Fall betrachtet man eine kurzfristige Prognose für das rekursive Prognosefens-
ter. Im ersten Schritt geht die Ausgangszeitreihe bis Januar 2001, im letzten Schritt bis
Mai 2008. Somit werden für jedes Modell insgesamt 91 mittlere quadratische Fehler be-
rechnet. Aus diesen 91 mittleren quadratischen Fehlern wird noch einmal der Mittelwert,
der Median und das 75%-Quantil gebildet um die Prognosegüte der Modelle vergleichen
zu können. Es können ebenso die Boxplots betrachtet werden, um die verschiedenen Pro-
gnosemethoden zu vergleichen.

Aus der Tabelle 4.7 erkennt man, dass bei einer kurzfristigen Prognose (drei Monate) die
alten STL-Prognosemethode die besten Ergebnisse liefert, wenn man den Mittelwert be-
trachtet. Die einzige Methode, die die saisonale Struktur nicht beachtet, der Random-Walk
mit Drift, liefert mit Abstand die schlechtesten Ergebnisse. Beim 75%-Quartil hingegen
schneiden die neuen STL-Prognosemethoden besser als die alten ab. Bei der Prognose der
Komponenten zerlegten Zeitreihe, ist die ARIMA Prognose der Random-Walk mit Drift
Prognose vorzuziehen. Das saisonale ARIMA-Modell ergibt bei er Überprüfung nie die
niedrigsten Werte für den MQF.
Ein Analyst, bei dem die mittlere Abweichung möglichst gering sein sollte, entscheidet
sich über den Mittelwert und wählt die alte STL-Prognosemethode mit ARIMA-Modell.
Einer, bei dem die Mehrheit der vergangenen MQF möglichst gering sein soll geht nach
dem Median oder 75%-Quartil und entscheidet sich somit wahrscheinlich für die neue
STL-Prognosemethode mit Random-Walk mit Drift.

Als nächsten betrachtet man eine langfristige Prognose (12 Monate). In diesen Fall sollte
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Modell saisonaler Random- neue Methode neue Methode
ARIMA Walk m. D. STL+ARIMA STL+R-W m. D.

Mittelwert MQF 2.2424 61.2827 2.3307 2.1504
Median MQF 1.5154 40.1041 1.4636 1.3670
75%-Quartil 2.5606 81.4530 2.7477 2.5260

Modell alte Methode alte Methode
STL+ARIMA STL+R-W mit Drift

Mittelwert MQF 2.0182 2.1926
Median MQF 1.2458 1.3053
75%-Quartil 2.5598 2.8394

Tabelle 4.7.: Vergleich der verschiedenen Prognosemethoden für die Produktion im Pro-
duzierenden Gewerbe in Deutschland (kurzfristige Prognose; rekursives Pro-
gnosefenster)

der Wert des mittleren quadratischen Fehlers größer sein, da mit zunehmendem Vorhersage
Fenster die Unsicherheit steigt, wie man an den im vorherigen Kapitel gezeigten Progno-
seintervallen erkennen kann. In diesem Fall hat man 82 mittlere quadratische Fehler und
man vergleicht die Boxplots der verschiedenen Prognosemethoden. Der Random-Walk mit
Drift und die alte STL-Methode mit Random-Walk mit Drift werden nicht betrachtet, da
diese die schlechtesten Ergebnisse besitzen.
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Abbildung 4.4.: Vergleich der verschiedenen Prognosemethoden für die Produktion im
Produzierenden Gewerbe in Deutschland (langfristige Prognose; rekur-
sives Prognosefenster)

Bei Betrachtung der Abbildung 4.4 für die langfristigen Prognose, liefert der saisonale
ARIMA die besten Ergebnisse. Wenn man nur den Mittelwert betrachtet, ist die alte STL

42
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Methode besser, als die neue. Bei Median und Quartil hingegen, liefert die neue bessere
Ergebnisse ab. Somit weist diese wenige starke Ausreißer beim MQF auf. Bei der zerlegten
Zeitreihe liefert das ARIMA-Modell bessere Ergebnisse, als der Random-Walk mit Drift.
Die neue STL-Prognosemethode mit Random-Walk mit Drift weist als einzige keine hohen
Ausreißer aus. Es kommt somit seltener vor, dass die Prognose vollkomend daneben liegt.

Für das durch rekursives Prognosefenster festgestellte beste Modell, muss zuerst entschie-
den werden, ob man eine kurzfristige oder langfristige Prognose benötigt. Bei der kurzfristi-
gen Prognose würde man sich für die alte STL-Prognosemethode mit dem ARIMA-Modell
entscheiden, bei der langfristigen für einen saisonalen ARIMA.

Nachdem man die Prognose ausgehend vom rekursiven Fenster, betrachtet hat, geht man
nun auf ein rollierendes Fenster ein. Zuerst werden erneut die mittleren quadratischen
Fehler einer kurzfristigen Prognose betrachtet.

Modell saisonaler Random- neue Methode neue Methode
ARIMA Walk m. D. STL+ARIMA STL+R-W m. D.

Mittelwert MQF 2.2535 61.3659 2.4331 2.2711
Median MQF 1.6030 40.3966 1.2684 1.2844
75%-Quartil 2.8436 80.3580 2.4506 2.6643

Modell alte Methode alte Methode
STL+ARIMA STL+R-W mit Drift

Mittelwert MQF 1.9342 2.0737
Median MQF 1.4706 1.3852
75%-Quartil 2.4500 2.6393

Tabelle 4.8.: Vergleich der verschiedenen Prognosemethoden für die Produktion im Pro-
duzierenden Gewerbe in Deutschland(kurzfristige Prognose, rollierendes Pro-
gnosefenster)

Die kurzfristige Prognose eines rollierenden Prognosefenster liefert ungefähr genau so
gute Ergebnisse, wie bei einem rekursiven Prognosefenster (vgl. Tab. 4.8). Betrachtet man
den Mittelwert, so liefert die alte STL-Prognosemethode die besten Ergebnisse. Beim Me-
dian hingegen hat die neue Prognosemethode bessere Ergebnisse. Der saisonale ARIMA
ist, außer beim Mittelwert, am schlechtesten. Die STL-Methode mit ARIMA liefert bessere
Werte, als die mit Random-Walk mit Drift, außer beim Mittelwert für die neue Methode.
Beim 75%-Quartil sind beide Methoden fast identisch.

Nun schaut man sich die Ergebnisse des mittleren quadratischen Fehlers für eine langfris-
tige Prognose (12 Monate) und ein rollierendes Prognosefenster an. Man betrachtet erneut
die Boxplots, diesmal ausschließlich für die neue und alte STL-Prognosemethode.

Bei der langfristigen Prognose liefert das rollierende Prognosefenster deutlich bessere Er-
gebnisse ab, als beim rekursiven (vgl. Abb. 4.4/4.5). Eine Ausnahme bildet das saisonale
ARIMA-Modell, es schneidet am schlechtesten ab und wird deswegen nicht in den Boxplots
betrachtet. Wenn man den Mittelwert vergleicht, liefert die alte STL-Prognosemethode die
besten Ergebnisse, beim Median die neue Prognosemethode. Die STL-Methode mit den
Random-Walk mit Drift hat einen geringeren Wert des MQF, als die ARIMA-Methoden.

Nachdem man die vier unterschiedlichen Prognosevorgehensweisen erläutert hat und ihre
mittleren quadratischen Fehler berechnet hat, würde man sich für die kurzfristige Pro-
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Abbildung 4.5.: Vergleich der verschiedenen Prognosemethoden für die Produktion im
Produzierenden Gewerbe in Deutschland (langfristige Prognose; rollieren-
des Prognosefenster)

gnose für die alte STL-Prognosemethode mit dem ARIMA-Modell entscheiden. Für das
Prognosefenster würde man sich, je nach Wunsch des Analysten sich für ein rekursives
oder rollierendes entscheiden. Der Unterschied zwischen beiden ist eher gering und beim
rekursiven ist der Mittelwert geringer, beim rollierenden der Median.
Bei der langfristigen Prognose würde man auf jeden Fall ein rollierendes Prognosefens-
ter vorziehen und die alte STL-Prognosemethode mit einem Random-Walk mit Drift als
Modell für die Trendkomponente.
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5. empirisches Beispiel

Arbeitslosigkeit in Deutschland

Nachdem man die Zerlegungs- und Prognosemethoden näher erläutert hat, will man
anhand eines empirischen Beispiels, die einzelnen Schritte, um eine passende Saison-
Trendzerlegung und damit eine gute Prognose zu bekommen, erneut zeigen.
Dazu betrachtet man die Entwicklung der Arbeitslosigkeit in Deutschland von Januar
1991 bis Oktober 2013 (Statistik der Bundesagentur für Arbeit, 2013). Zuerst wird auf die
Zerlegung der Zeitreihe eingegangen.

Bevor die Daten für die Zerlegung verwendet werden können, muss erst eine Bereini-
gung dieser vorgenommen werden, da sich aufgrund neuer Berechnungsgrundlagen der
Arbeitslosenstatistik, zu bestimmten Zeitpunkten, Sprünge in der Zeitreihe ergeben ha-
ben (Statistik der Bundesagentur für Arbeit, 2009, vgl. Kap. 6). So gelten seit Januar 2004
Personen, die an einer Weiterbildung der Bundesagentur für Arbeit teilnehmen, nicht mehr
als arbeitslos. Dies führte zu einer Verringerung der Arbeitslosenzahlen um circa 100.000
Personen. Eine weitere Änderung tritt seit Januar 2005 auf. Zu diesem Zeitpunkt wurde
die Arbeitslosenhilfe mit der Sozialhilfe zusammengelegt. Dies hatte einen Zuwachs von
380.000 Personen in der Arbeitslosenstatistik zur Folge. Diese Änderungen wurden ab-
solut auf die alten Monatswerte hinzugerechnet, um Sprünge in der Input-Zeitreihe zu
verhindern.
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Abbildung 5.1.: Arbeitslosigkeit in Deutschland von 1991 bis Oktober 2013

In Abbildung 5.1 erkennt man, dass die Arbeitslosigkeit bis 1998 angestiegen ist. Nach-
dem sie danach leicht gesunken ist, kam es wieder zu einem Anstieg, der im Jahre 2005
seinen Höhepunkt erreicht hat. Danach kam es zu einem rasanten Verfall, der im Jahre
2008 geendet hat. Seitdem liegt die Arbeitslosigkeit in Deutschland konstant bei circa drei
Millionen Personen.
Für die Zerlegung muss man erneut die Parameter bestimmen (ns, nt). Da bei Betrach-
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tung der Arbeitslosigkeit normalerweise keine außergewöhnlichen Ausreißer auftreten, da
es bei dieser äußerst selten externe Effekte gibt, die zu außergewöhnlich hohen oder ne-
gativen Zuwächsen führen, hat man sich dazu entschieden keine Robustheitsschätzung
vorzunehmen. Außerdem hat sich gezeigt, dass ein Saisonparameter von 13 (ns=13), die
plausibelsten Ergebnisse liefert. Mithilfe dieser Parameter würde mir die Saison-Trend
Zerlegungsmethode, anhand des Box-Pierce Tests, zu einem Trendparameter von sieben
raten (nt=7), da erst ab diesem Unkorreliertheit in der Restkomponente vorliegt. Eine
erste Zerlegung wurde somit mit den Parameter ns=13 und nt=7 durchgeführt.
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Abbildung 5.2.: Zerlegung der Arbeitslosigkeit in Deutschland mit ns=13 und nt=7

In Abbildung 5.2 erkennt man im Verlauf der Trendkomponente, dass diese noch sehr viel
Schwankungen aufweist. So ist mit einem Trendparameter von sieben die Unkorreliertheit
der Restkomponente gewährleistet, jedoch weist die Trendkomponente keine glatte Linie
auf. Wie in Kapitel 3.2.3 gesagt, sollte die Trendspannweite auf jeden Fall größer als der
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Saisonparameter np sein. Somit ist in diesem Fall davon abzuraten einen Trendparameter
von sieben zu nehmen. Es ist hingegen von Vorteil, diesen größer zu machen, um für den
Analysten ein interessantes und gewünschtes Resultat der Trendkomponente zu bekom-
men.
Ausgehend von der Trendspannweite von sieben wurde diese sukzessive erhöht, daraufhin
die Trenddiagnosegrafik betrachtet und auf ein zufriedenstellendes Ergebnis überprüft.
Letztendlich würde man sich dafür entscheiden eine Spannweite von 15 für die Trend-
komponente zu benutzen (nt=15). Da in diesem Fall keine Autokorrelation der Restkom-
ponente mehr vorhanden ist, sollte für die Prognose auf die alte STL-Prognose-methode
zurückgegriffen werden, da in dieser keine Unkorrliertheit der Restkomponente vonnö-
ten ist. Bevor man auf die Prognose eingeht betrachtet man das Ergebnis der zerlegten
Zeitreihe mit einer Trendspannweite von 15 und Saisonspannweite von 13.
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Abbildung 5.3.: Zerlegung der Arbeitslosigkeit in Deutschland mit nt=15 und ns=13
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In Abbildung 5.3 erkennt man nun, dass der Verlauf der Trendkomponente deutlich
weniger schwankend ist, er weist eine glattere Linie auf. Es ist jedoch offensichtlich, dass
nun in der Restkomponente Struktur vorhanden ist. So treten in dieser vermehrt Zeit-
punkte mit positiver oder negativer Abweichung auf, die zeitlich hintereinander liegen. Es
scheint, als ob die Restkomponente einen sinus-förmigen Verlauf aufweist. Trotzdem wird
die folgende Prognose mithilfe der letzten Saison-Trend Zerlegung vorgenommen.
Bei der zerlegten Zeitreihe weist die Saisonkomponente eine konstante Struktur auf. Der
stärkste Monat liegt um circa 300.000 Personen über dem zu diesem Zeitpunkt angenom-
menen Trend, der schwächste Monat liegt um circa 200.000 Personen darunter. Der Trend
weist den unter Abbildung 5.1 beschriebenen Verlauf auf. Die Restkomponente besitzt
eine maximale absolute Abweichung von circa 100.000 Personen, was einer prozentualen
Abweichung von circa 3% entspricht.

Zur Prognose der Entwicklung der Arbeitslosigkeit in Deutschland nimmt man die Vor-
hersage der nächsten zwölf Monate vor. Man erhält damit Prognosewerte von November
2013 bis Oktober 2014.
Wie vorher bereits erwähnt, wird die Prognose mithilfe der mit Trendspannweite 15 zer-
legten Zeitreihe erstellt. Bei dieser weist die Restkomponente keine Unkorrliertheit auf,
deswegen wird auf die alte STL-Prognosemethode zurückgegriffen. Außerdem schätzt man
auf den Zusammenschluss der Trend- und Restkomponente ein ARIMA-Modell.
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Abbildung 5.4.: Prognosewerte und -intervalle der Arbeitslosigkeit in Deutschland

Die Prognose gibt einen leicht positiven Trend wieder. So steigt die Arbeitslosigkeit in
den ersten acht Monaten in 2014 über 3 Millionen. Aufgrund des Saisoneffekts liegt sie im
September und Oktober unter 3 Millionen, aber absolut circa 100.000 Personen über den
Vorjahreswerten.
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6. Schluss

6.1. Zusammenfassung

Beim STL-Zerlegungsverfahren mithilfe von Loess handelt es sich um ein additives Zerle-
gungsverfahren und es beruht auf einen iterativen Algorithmus. Durch die Loessschätzung
erhalten Werte, die nahe des zu schätzenden Zeitpunktes liegen, höheren Einfluss auf die
Schätzung, als weiter entfernt liegende Punkte. Mithilfe der Robustheitsschätzung werden
die Werte, die nur schlecht über die beiden Komponenten erklärt werden können, bei der
erneuten Komponentenschätzung nicht mehr berücksichtigt. Beim STL-Verfahren besteht
nicht die Möglichkeit eine Konjunkturkomponente zu erhalten.
Die erzielten Prognoseergebnisse, die auf den durch das STL-Verfahren gewonnenen Kom-
ponenten aufbauen, liefern bessere Ergebnisse ab, als wenn eine Prognose direkt auf die
Ausgangszeitreihe geschätzt wird. Somit kann mithilfe des STL-Zerlegungsverfahrens eine
bessere Prognose der zukünftigen Werte erreicht werden.

6.2. Ausblick

Im Ausblick sollen mögliche Erweiterungen des STL-Zerlegungsverfahren vorgestellt wer-
den.

Die Saison- Trend Zerlegung hat oftmals Schwierigkeiten, wenn ein Strukturbruch in den
Daten vorliegt. Mithilfe der Restkomponente könnte versucht werden, ein Kriterium zu er-
mitteln, um solche Strukturbrüche zu erkennen. So treten vor den Strukturbruch mehrere
starke positive bzw. negative Abweichungen auf und nach diesem mehrere starke nega-
tive bzw. positive Abweichungen auf. Mithilfe eines Maßes könnte nun versucht werden
die Strukturbrüche zu erkennen, zu bereinigen und erneute eine Komponentenzerlegung
durchzuführen.

Eine weitere Verbesserung könnte man bei der Robustheitsschätzung vornehmen. So könn-
te man diese dadurch bestimmen, wie stark die einzelnen Werte die jeweiligen Regressi-
onsschätzungen beeinflussen. Ein Kriterium, was dies messen würde, stellt die Cook’s
Distance dar. Sie gibt an, wie stark die Regressionsschätzung von einzelnen Werten be-
einflusst wird. Der Vorteil von dieser Robustheitsschätzung könnte darin liegen, dass vor
allem lokale Maximas und Minimas besser abgebildet werden, wobei dies von mir noch
nicht abschließend geprüft worden ist, ob dies so sei.

Auch bei der Prognose könnten noch Verbesserungen vorgenommen werden. So könnte
bereits bei der Zerlegung den Analysten die beste Prognosemethode anhand des mittleren
quadratischen Fehlers und vorangegangenen Prognosen vorgeschlagen werden.

Wie bereits in einen vorherigen Kapitel erwähnt, treten in der Restkomponente oftmals
Zeiträume ein mit vermehrt starken Abweichungen und Zeiträume mit vermehrt schwa-
chen Abweichungen. Dies ist ein Hinweis darauf, dass in der Restkomponente kein weißes
Rauschen vorliegt und die Varianz nicht konstant über den Zeitverlauf ist. Eine Vorhersa-
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ge der Varianz würde somit genauerer Prognoseintervalle liefern. Modelle, die die Varianz
vorhersagen nennt man GARCH-Modelle.
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A. Beiligende CD-Rom

Die beiliegende CD-ROM enthält die benutzten Datentabellen und den gesamten verwen-
deten R-Code für die vorliegende Arbeit (Stand: 16. Dezember 2013).

• Produktion im Produzierenden Gewerbe in Deutschland von 1991-2013, kalenderbe-
reinigt und in konstanten Preisen

• Arbeitslosigkeit in Deutschland von 1991-2013, absolute Werte
• R-Code für das STL-Programm
• R-Code für die Diagnoseplots
• R-Code für die neue Prognosemethode
• R-Code für die Abbildungen in der Arbeit
• R-Code für die Simulation der Prognosegüte
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