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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Problematik des multiplen Testens. Dabei wer-
den die beiden Fehlerraten familiy-wise error rate (FWER) und false discovery rate
(FDR), sowie insgesamt sieben Adjustierungsverfahren zur Kontrolle dieser Fehler-
raten behandelt. Dabei handelt es sich um die FWER-kontrollierenden Verfahren von
Bonferroni, Holm, Hochberg und die beiden Resampling-Verfahren von Westfall&Young,
sowie die beiden FDR-kontrollierenden Verfahren von Benjamini& Hochberg und Ben-
jamini&Yekutieli. Eine praktische Anwendung dieser Verfahren findet anhand eines
Datenbeispiels statt, das sich mit der Analyse volatiler organischer Komponenten
verschiedener Bakterien und Pilze zur Erregerdifferenzierung befasst. In dieser Ar-
beit werden lediglich die drei Gruppen gram negative, gram positive und Pilze be-
trachtet und anhand von Tests auf Lageparameter analysiert, bei welchen Molekülen
signifikant unterschiedliche Messwerte zwischen den Gruppen beobachtet werden. An-
hand der unterschiedlichen Konservativität der Verfahren kann eine feste Reihenfolge
angegeben werden, die auch bei diesem Anwendungsbeispiel zu beobachten ist. Ins-
gesamt sind die FWER-kontrollierenden Verfahren konservativer, was bedeutet, dass
sie weniger Hypothesen ablehnen. Durch schrittweises Vorgehen bei der Adjustierung
der p-Werte kann jedoch ihre Power verbessert werden. Einige Messwerte der insge-
samt 200 erfassten Moleküle zeigen einen signifikanten Unterschied zwischen den drei
Erregergruppen. Jedoch bedarf es noch weiterführender Analysen um festzustellen zwi-
schen welchen Gruppen genau sich diese Unterschiede befinden und um auch einzelne
Erreger desselben Erregertyps voneinander unterscheiden zu können.

1 Einleitung

Ganz allgemein tritt das Problem des multiplen Testens immer dann auf, wenn anhand
eines Datenmaterials nicht nur eine sondern mehrere Fragestellungen geklärt werden
sollen, also mehrere Nullhypothesen aufgestellt werden. Bei der Suche nach Beispielen
für multiple Testprobleme landet man sehr oft im Bereich der Medizin oder Biologie.
Es handelt sich dabei häufig um Microarray Studien, also die Genanalyse oder um
die Analyse eines neuen Medikaments, dessen Wirksamkeit anhand verschiedener As-
pekte gemessen wird. Das sind alles Themen die auch zukünftig von Interesse sein
werden, wenn sie nicht sogar noch an Bedeutsamkeit gewinnen werden. Und so wird
auch die Frage der Behandlung des multiplen Testproblems in der Wissenschaft immer
präsenter.
Es gibt mittlerweile viele verschiedene Verfahren um auch beim multiplen Testen eine
Aussage über die Irrtumswahrscheinlichkeit machen zu können. In dieser Arbeit sollen
einige ausgewählte FWER- und FDR-kontrollierende Methoden vorgestellt und ver-
glichen werden. Als praktisches Anwendungsbeispiel dienen hier Daten volatiler or-
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ganischer Komponenten verschiedener Bakterien und Pilze. Der genaue Aufbau dieses
Datensatzes, sowie die Fragestellung dahinter werden im ersten Abschnitt dargestellt.
Anschließend folgt ein Kapitel zur statistischen Theorie, in dem zum einen das mul-
tiple Testproblem und die zwei Fehlerraten genau definiert werden und verschiedene
Adjustierungsverfahren vorgestellt werden, und zum anderen zwei mögliche Tests auf
Lageparameter beschrieben werden, die zur Beantwortung der Fragestellung benötigt
werden. Dann folgt der Vergleich der Adjustierungsverfahren. Dieser erfolgt zunächst
rein theoretisch im Kapitel 4 und letztlich im Kapitel 5 auch praktisch anhand der
Ergebnisse der Analyse des Datenmaterials. Abschließend erfolgt eine Zusammen-
fassung der Ergebnisse mit Fazit und ein Ausblick auf mögliche weitere interessante
Fragestellungen.

2 Daten und Fragestellung

Die Daten stammen aus einem Experiment, das im Klinikum Großhadern durchgeführt
wurde. Inhaltlicher Hintergrund dieses Experiments stellt die Identifikation von Er-
regern dar. Dazu wurden Nährlösungen (LB = lysogeny broth) angesetzt und mit
verschiedenen Erregern versetzt. Diese Erreger können drei Gruppen zugeordnet wer-
den, den gram negativen, den gram positiven und den Pilzen. Folgende Erreger wurden
betrachtet und mit diesen Abkürzungen versehen:

gram negativ
PV: Proteus vulgaris
ECL: Enterobacter cloacae
KO: Klebsiella oxytoca
KP: Klebsiella pneumoniae
SM: Serratia marcescens
PA: Pseudomonas aeruginosa
EC: Escherichia coli

gram positiv
SA: Staphyloccus aureus
SE: Staphyloccus epidermidis
EFCL: Enterococcus faecalis
EFCM: Enterococcus faecium

Pilze
CA: Candida albicans
CK: Candida krusei.

Mit Hilfe eines Massenspektrometers wurden die volatilen (lateinisch volatilis = fliegend;
flüchtig) organischen Komponenten verschiedener Bakterien oder Pilze gemessen. In
den mit Erregern angereicherten, sowie in einigen puren Nährlösungen, wurde also
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gemessen welche Moleküle enthalten sind und in welcher Menge. Insgesamt wurden
dabei 200 verschiedene Moleküle betrachtet. Diese Messungen wurden zu vier Messzeit-
punkten (T0, T1, T2, T3), nach 10, 120, 240 und 360 Minuten, durchgeführt. Die
Stichprobengrößen der drei Gruppen sind nicht gleich, da zum einen unterschiedlich
viele Erreger je Gruppe betrachtet wurden und zum anderen, je nachdem wie viele
Versuche geglückt sind, es einen bis neun Messwerte pro Erreger und Zeitpunkt gibt.
Zusätzlich wurden noch drei Variablen erstellt, die den Zeitpunkt und den Erregertyp
als character und als factor angeben.
Mit Hilfe dieser Daten soll folgende Fragestellung geklärt werden: Können die drei
Erregertypen hinsichtlich der Messwerte der verschiedenen Moleküle voneinander un-
terschieden werden? Also differenzieren sich die Messwerte der volatilen organischen
Komponenten bezüglich der Erregertypen signifikant voneinander?
In der weiteren Arbeit sollen folgende Indizes für alle Formeln gelten:
j = 1, ...,m ist der Index für die Variablen, also hier die 200 Moleküle und somit auch
für die dazugehörigen Hypothesen. i = 1, ...n steht für die Beobachtungen, in diesem
Fall somit die Erreger. n ist folglich die Stichprobengröße und setzt sich aus n1, n2

und n3 zusammen, den Stichprobengrößen der drei Erregertypen gram negative, gram
positive und Pilze. l = 1, ..., k ist der dazugehörige Index für diese Gruppen. Permu-
tationen erhalten den Index b = 1, ..., B. s, t, u und z dienen als freie Laufindizes.

3 Theorie

3.1 Tests auf Lageparameter

Um die oben genannten Fragestellungen beantworten zu können bedarf es eines Tests
auf Lageparameter. Die Nullhypothese geht dabei immer von Gleichheit aus, die Alter-
nativhypothese von Ungleichheit. Bei einem signifikanten Unterschied wird folglich die
Nullhypothese abgelehnt. Da bei diesem Datenbeispiel drei Gruppen miteinander ver-
glichen werden sollen, kommen die Varianzanalyse (ANOVA) als parametrischer Test
und der Kruskal-Wallis-Test, auch H-Test genannt, als nicht-parametrischer Test in
Frage.
Allgemein liegt im Folgenden diese Datenstruktur vor: es sind k Stichprobengruppen
gegeben und insgesamt n Stichprobenelemente, wobei n = ∑k

l=1 nl und n1, n2, ..., nk die
Umfänge der k Stichproben sind. Dabei wird hier vorerst das Vorgehen nur für eine
Variable dargestellt. Auf das vorliegende Datenbeispiel bezogen bedeutet das, dass
nicht 200 Moleküle, sondern nur ein Molekül betrachtet wird. Das heißt es wird darauf
verzichtet, alles mit einem j zu versehen um anzuzeigen, dass das für das j-te Molekül
berechnet wird, was die vielen Indizes übersichtlicher machen soll.

3



3.1.1 Varianzanalyse

Die Varianzanalyse ist eine Verallgemeinerung des t-Tests und kann zum Vergleich be-
liebig vieler Erwartungswerte verwendet werden (k > 2). Da bei diesem Datenbeispiel
nur ein Faktor vorliegt, der Erregertyp, wird die einfaktorielle Varianzanalyse betrach-
tet. Bei dieser soll untersucht werden, ob die einzelnen Stufen des Faktors eine sig-
nifikant unterschiedliche Wirkung auf das interessierende Merkmal, hier der Messwert
eines Moleküls, haben. Die Nullhypothese und die zugehörige Alternativhypothese für
jedes einzelne Molekül j lauten somit: Hj

0 : µ1 = µ2 = ... = µk und Hj
1 : µs 6= µt

für mindestens zwei µl mit s, t = 1, ..., k und s 6= t. (vgl. Fahrmeir u.a. (2012): S.
516-519)
Die richtige Anwendung der Varianzanalyse erfordert drei Voraussetzungen, die die
Daten erfüllen sollten: die Varianzhomogenität, das heißt es wird angenommen, dass
die Varianzen in den jeweiligen Grundgesamtheiten gleich sind, die Normalverteilungs-
annahme und die Unabhängigkeit aller Beobachtungen. (vgl. Fahrmeir u.a. (2010): S.
527-528) Auf die Prüfung der ersten beiden Annahmen wird später in diesem Abschnitt
eingegangen.

Seien xli die Stichprobenwerte, also der i-te Wert in der l-ten Stichprobe (1 ≤ k; 1 ≤
i ≤ nl). Die Gruppenmittelwerte x̄l sind dann gegeben durch

x̄l = 1
nl

nl∑
i=1

xli (1)

und das Gesamtmittel x̄ durch

x̄ = 1
n

k∑
l=1

nl∑
i=1

xli = 1
n

k∑
l=1

nlx̄l . (2)

Zentral bei der Varianzanalyse ist die Streuungszerlegung, bei der sich die Summe der
Abweichungsquadrate (SAQ) der Stichprobenwerte um das Gesamtmittel (”Qgesamt”)
in zwei Teile zerlegen lässt:
1. SAQ der Einzelwerte um die Gruppenmittelwerte, also die Streuung innerhalb der
Gruppen (”Qinnerhalb”)
2. SAQ der Gruppenmittelwerte um das Gesamtmittel, also die Streuung zwischen den
Gruppen (”Qzwischen”)

Qgesamt = Qinnerhalb +Qzwischen (3)
k∑
l=1

nl∑
i=1

(xli − x̄)2 =
k∑
l=1

nl∑
i=1

(xli − x̄l)2 +
k∑
l=1

nl(x̄l − x̄)2 . (4)

Teilt man die SAQ durch die zugehörigen Freiheitsgrade erhält man die mittleren
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Quadrate (MQ). Wobei für die Freiheitsgrade gilt: (n − 1) = (n − k) + (k − 1). Die
mittleren Quadrate sind somit definiert durch:

MQzwischen = s2
zwischen = 1

k − 1

k∑
l=1

nl(x̄l − x̄)2 (5)

und
MQinnerhalb = s2

innerhalb = 1
n− k

k∑
l=1

nl∑
i=1

(xli − x̄l)2 . (6)

Kommen die Gruppen aus derselben Grundgesamtheit, sollten die Varianzen, also diese
mittleren Quadrate, etwa gleich groß sein. Die Prüfgröße um die Nullhypothese µ1 =
µ2 = ... = µk zu testen berechnet sich folgendermaßen

F̂ = MQzwischen

MQinnerhalb

=

1
k − 1

∑k
l=1 nl(x̄l − x̄)2

1
n− k

∑k
l=1

∑nl
i=1(xli − x̄l)2

=

1
k − 1

∑k
l=1 nl(x̄l − x̄)2

1
n− k

∑k
l=1 s

2
l (nl − 1)

(7)

und gilt F̂ > F(k−1;n−k;1−α), so wird diese Nullhypothese abgelehnt. Das bedeutet, dass
sich mindestens zwei µl voneinander unterscheiden. (vgl. Sachs/Hedderich (2009): S.
490-491)

Bevor die Varianzanalyse durchgeführt werden kann müssen die bereits erwähnten An-
nahmen geprüft werden.
Für die Überprüfung der Normalverteilungsannahme wird der Shapiro-Wilk-Test ver-
wendet. Dieser soll auf das Datenbeispiel bezogen, für jedes Molekül j feststellen,
ob diese Stichprobe einer normalverteilten Grundgesamtheit entstammt. Jedoch wird
auch hier der Einfachheit halber der Index für das Molekül weggelassen.
Die Nullhypothese dieses Tests geht davon aus, dass die Stichprobe x1, x2, ..., xn aus
einer normalverteilten Grundgesamtheit stammt. Ist der p-Wert also nicht signifikant
kann von einer Normalverteilung ausgegangen werden. Die Idee der zugehörigen Test-
statistik Ŵ ist es einen Quotienten aus zwei Schätzungen für die Varianz σ2 darzustellen.
Im Zähler ist die Schätzung der Regressionsgeraden im QQ-Plot und im Nenner die
Stichprobenvarianz s2 = 1

n−1
∑n
i=1(xi − x̄). Man erhält somit folgende Formel für Ŵ

Ŵ = b2

(n− 1)s2 = (∑n
i=1 aixri

)2∑n
i=1(xi − x̄)2 , (8)

wobei xri
die, der aufsteigenden Größe nach sortierten, Beobachtungen sind und b =

R2σ̂
C

mit R2 = mTV −1m, C = (mTV −1V −1m) 1
2 und σ̂ = mTV −1x

mTV −1m
. Wobei V die Ko-

varianzmatrix ist und mT = (m1, ...,mn) die erwarteten Ordnungsstatistiken aus einer
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Normalverteilung sind. Außerdem gilt aT = (a1, ..., an) = mTV −1

(mTV −1V −1m)
1
2

und ”(...)ai
sind konstante Werte, die aus den Maßzahlen der Ordnungsstatistik einer normalverteil-
ten Zufallsvariablen abhängig vom Stichprobenumfang n erzeugt oder entsprechenden
Tabellen entnommen werden können” (Sachs/Hedderich (2009): S. 398).
Ergibt der Quotient 1 liegen die beiden Schätzungen für die Varianz nahe zusammen
und es handelt sich um eine Normalverteilung. Kleine Werte von Ŵ sprechen für eine
Verletzung der Normalverteilungsannahme. (vgl. Sachs/Hedderich (2009): S. 397-398
und vgl. Shapiro/Wilk (1965): S. 592-593)

Ob Homoskedastizität vorliegt wird mittels des Levene-Tests überprüft. Hier wird
die Gleichheit der k Varianzen mittels einer einfachen Varianzanalyse getestet. Dabei
müssen die k Stichprobengruppen mindestens 10 Beobachtungen aufweisen. Die Null-
hypothese lautet dann H0 : σ2

1 = σ2
2 = ... = σ2

k, im Gegensatz zur Alternativhypothese
H1 : σ2

s 6= σ2
t für mindestens zwei σl mit s, t = 1, ..., k und s 6= t. H0 wird abgelehnt

und somit liegt keine Varianzhomogenität vor, wenn F̂ der Varianzanalyse größer ist
als Fk−1;n−k;1−α. F̂ wird nach einer Transformation yli = |xli− x̃l| der Beobachtungen,
wobei x̃l den Median der l-ten Gruppe darstellt, mit der bereits erwähnten Formel (7)
aus dem Abschnitt zur Varianzanalyse berechnet. (vgl. Sachs/Hedderich (2009): S.
489-490)

3.1.2 Kruskal-Wallis-Test oder H-Test

Analog zum Wilcoxon-Mann-Whitney-Test, auch bekannt als U -Test, prüft der Kruskal-
Wallis-Test, auchH-Test genannt, ob die k Stichproben aus derselben Grundgesamtheit
kommen, ob die k Verteilungsfunktionen also gleich sind. Die Nullhypothese und die
dazugehörige Alternativhypothese für das Molekül j lauten: Hj

0 : F1 = F2 = ... = Fk

und Hj
1 : Fs 6= Ft für mindestens zwei Fl mit s, t = 1, ..., k und s 6= t. Wie im vorherge-

henden Abschnitt wird die Vorgehensweise des Kruskal-Wallis-Tests für ein beliebiges
Molekül j beschrieben, ohne den Index j jedes Mal hinzuzunehmen. Die Messwerte
werden der Größe nach aufsteigend sortiert und ihnen Ränge von 1 bis n zugeordnet.
Die Prüfgröße des Kruskal-Wallis-Tests lautet:

Ĥ = [ 12
n(n+ 1)] · [

k∑
l=1

R2
l

nl
]− 3(n+ 1) , (9)

mit Rl als Summe der Ränge der l-ten Stichprobe. Durch die Beziehung ∑k
l=1 Rl =

n(n+1)
2 kann kontrolliert werden, ob die Ränge richtig verteilt wurden. H0 wird abgelehnt,

wenn der errechnete Wert Ĥ größer oder gleich dem H-Wert aus der Chi-Quadrat-
Tabelle ist mit P ≤ α.
Haben Werte die gleiche Rangzahl wird dies als Bindung bezeichnet. Sind mehr als
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25% aller Messwerte in Bindungen muss Ĥ mit folgender Formel korrigiert werden:

Ĥkorr = Ĥ

1−
∑z
u=1(t3u − tu)
(n3 − n)

, (10)

wobei tu die Anzahl der jeweils gleichen Rangplätze in der Bindung u aus allen z

Bindungen bezeichnet. Ist der Wert von Ĥ bereits signifikant ist es nicht notwendig
Ĥkorr zu berechnen, da der korrigierte Wert immer größer ist als der nicht korrigierte.
(vgl. Sachs/Hedderich (2009): S. 514-515 )

3.2 Multiples Testen

”Sollen aufgrund eines Datensatzes mehrere Testprobleme anhand von Signifikanztests
überprüft werden, spricht man von einem multiplen Testproblem” (Fahrmeir u.a. (2010):
S. 428). Da bei dem vorliegenden Datenbeispiel nicht nur für ein Molekül getestet
werden soll, ob sich hinsichtlich ihrer Messwerte die drei Erregertypen voneinander un-
terscheiden, bedarf es hier auch nicht nur eines Tests auf Lageparameter, sondern 200.
Und somit liegt ein multiples Testproblem vor. Mit dieser Problematik, sowie einiger
ausgewählter Methoden damit umzugehen, befasst sich dieses Kapitel.

3.2.1 Fehlerraten

Wird ein statistischer Test gemacht geht es darum die Entscheidung zu treffen, ob
eine vorher formulierte Nullhypothese abgelehnt oder beibehalten werden soll. Dabei
können zwei verschiedene Fehlentscheidungen getroffen werden. Die Nullhypothese
wird abgelehnt obwohl sie wahr ist. Dies wird Fehler 1. Art bzw. α-Fehler genannt
oder auch als falsch-positives Ergebnis bezeichnet. Die andere mögliche Fehlentschei-
dung liegt darin die Nullhypothese beizubehalten obwohl sie falsch ist. Dies wird
analog Fehler 2. Art bzw. β-Fehler oder auch falsch-negatives Ergebnis genannt. Bei
nur einem Test wird die Wahrscheinlichkeit den Fehler 1. Art zu begehen durch das
Signifikanzniveau α kontrolliert. Werden mehrere Tests simultan durchgeführt ist es
jedoch möglich mehrere α-Fehler zu machen, oder auch dass Fehler unterschiedlicher
Art gleichzeitig auftreten, was bei der Konzeption der Fehlerraten zur Kontrolle des
Fehlers 1. Art berücksichtigt werden muss. (vgl. Zierer (2013): S. 20-21)
Tabelle 1 zeigt die möglichen Ausgänge eines Signifikanztests.

Nullhypothese nicht abgelehnt abgelehnt
wahr U V m0
falsch T S m1

m−R R m

Tabelle 1: Mögliche Testausgänge
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m die Anzahl der getesteten Hypothesen ist bekannt, m0 und m1 die Anzahl der wahren
und falschen Hypothesen sind unbekannt. R stellt eine beobachtete Zufallsvariable dar
und S, T , U und V sind nicht beobachtbare Zufallsvariablen. Ziel beim Testen ist es
V , die Anzahl der Fehler 1. Art und T , die Anzahl der Fehler 2. Art, möglichst gering
zu halten. Bei einem Test mit einer geringen Anzahl von Fehlern 2. Art, spricht man
auch von einer hohen Power. (vgl. Dudoit u.a. (2003): S. 73)
Im Folgenden werden zwei Ansätze von Fehlerraten, die helfen sollen den Fehler 1. Art
auch bei multiplen Tests zu kontrollieren, vorgestellt.

FWER

Die ”family-wise error rate” (FWER) ist als die Wahrscheinlichkeit, dass mindestens
ein Fehler 1. Art gemacht wird, definiert

FWER = P(V ≥ 1) . (11)

FDR

Die ”false discovery rate” (FDR) stellt den erwarteten Anteil von Fehlern 1. Art unter
allen abgelehnten Hypothesen dar

FDR = E(Q) mit Q =

V/R wenn R > 0

0 wenn R = 0 .
(12)

Oder anders dargestellt: FDR = E(V/R|R > 0)P(R > 0). (vgl. Dudoit u.a. (2003):
S. 73)

Ein multipler Test gilt also als kontrolliert zum Niveau α hinsichtlich einer dieser Fehler-
raten, wenn gilt FWER ≤ α bzw. FDR ≤ α. Man unterscheidet hierbei zwischen
schwacher und starker Korntrolle. Letztere kontrolliert die Fehlerrate unabhängig der
Kombination aus wahren und falschen Nullhypothesen. Die schwache Kontrolle hinge-
gen kontrolliert unter der globalen Nullhypothese HC

0 = ⋂m
j=1 Hj mit m0 = m, das

heißt dass alle Nullhypothesen wahr sind. (vgl. Dudoit (2003): S. 73-74)
Die FWER hat ein sehr strenges Kriterium, die Wahrscheinlichkeit, dass mindestens
ein Fehler 1. Art auftritt. Somit stellt sie das konservativere Konzept dar. Dies bietet
jedoch im Vergleich zur FDR den Vorteil, dass nicht nur ein Erwartungswert kontrol-
liert wird. ”Allerdings wird hier die Anzahl der abgelehnten Hypothesen und damit
indirekt der Anteil wahrer Nullhypothesen mit einbezogen. Damit ist die FDR trotz
ihrer Schwächen eine weniger restriktive Alternative zur FWER (...)” (Zierer (2013):
S.35). Es gilt FWER ≤ FDR, wobei Gleichheit eintritt, wenn alle Nullhypothe-
sen wahr sind. Denn in diesem Fall entspricht die Anzahl der fälschlich abgelehn-
ten Hypothesen der Anzahl aller abgelehnten Hypothesen, also V = R. Folglich
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nimmt Q den Wert 1 für V > 0 und den Wert 0 für V = 0 an. Damit erhält man
FDR = E(Q) = 1 · P(V > 0) = FWER. Daraus ergibt sich, dass eine Kontrolle der
FDR auch eine schwache Kontrolle der FWER gewährleistet. (vgl. Zierer (2013): S.
32/S. 35 und vgl. Dudoit u.a. (2003): S. 74) FWER und FDR sind nahezu gleich,
wenn die Anzahl falscher Hypothesen klein ist, und FDR wird umso kleiner als FWER

ausfallen je größer die Anzahl falscher Hypothesen ist. (vgl. Sachs/Hedderich (2009):
S. 498)

3.2.2 Adjustierungsverfahren

Der Fehler 1. Art wird mit Hilfe von α reguliert. Ist der p-Wert kleiner als das
vorgegebene Signifikanzniveau α, bedeutet das bei nur einem Test, dass die Null-
hypothese mit einer Irrtumswahrscheinlichkeit von α abgelehnt werden kann. (vgl.
Sachs/Hadderich (2009): S. 361) Werden mehrere Tests gemacht steigt die Wahrschein-
lichkeit mindestens einen Fehler 1. Art zu machen. Bei m unabhängigen Tests zum
Niveau α gilt für die Wahrscheinlichkeit mindestens ein falsch positives Ergebnis zu
erhalten: α∗ = 1− (1−α)m. Zur Verdeutlichung dieser Problematik ein Beispiel. Sei α
= 0.05, so ergibt sich für α∗ bei m Hypothesen Folgendes in Tabelle 2. (vgl. Fahrmeir
u.a.(2010): S. 428)

m α∗

3 0.143
5 0.226

10 0.401
100 0.994(!)

Tabelle 2: α∗ im multiplen Fall im Verhältnis zur Anzahl m der Hypothesen und
dem Signifikanzniveau α = 0.05 der einzelnen Tests.

Um zu verhindern, dass die vorgegebene Fehlerwahrscheinlichkeit überschritten wird,
gibt es verschiedene Korrekturverfahren. Generell geht es darum die einzelnen Hy-
pothesen nur dann abzulehnen, falls der zugehörige adjustierte p-Wert kleiner gleich
dem vorgegebenen Signifikanzniveau ist. Dabei gibt es verschiedene Vorgehensweisen.
Man unterscheidet zwischen single-step Verfahren und schrittweisen Verfahren.
Bei den single-step Verfahren wird die entsprechende Adjustierung für alle Hypothesen
gleich und unabhängig der Testergebnisse der anderen Hypothesen durchgeführt.
Die schrittweisen Prozeduren betrachten und adjustieren die Hypothesen nacheinander,
sodass vorherige Tests die nachkommenden Ergebnisse beeinflussen. Hierfür werden die
noch nicht adjustierten p-Werte der Größe nach sortiert.
Step-down Verfahren beginnen mit dem Adjustieren bei den Hypothesen mit den klein-
sten p-Werten, also mit den signifikantesten Hypothesen. Sobald eine Nullhypothese
nicht abgelehnt werden kann wird keine weitere Hypothese mehr abgelehnt.
Step-up Prozeduren verfahren umgekehrt. Sie beginnen mit den am wenigsten sig-
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nifikanten Hypothesen und sobald eine abgelehnt wurde werden alle folgenden Hy-
pothesen auch abgelehnt. (vgl. Dudoit u.a. (2003): S.78)

Im Folgenden werden einige Adjustierungsverfahren vorgestellt. Zuerst die FWER-
und anschließend die FDR-kontrollierenden Prozeduren.

Bonferroni

Das Adjustierungsverfahren nach Bonferroni ist eine single-step Prozedur zur Kontrolle
der FWER zum Niveau α. Dabei werden alle Hypothesen Hj abgelehnt, deren nicht
adjustierter p-Wert kleiner oder gleich α

m
ist. Oder anders ausgedrückt, die adjustierten

p-Werte nach Bonferroni sind definiert als

p̃j = min(mpj, 1) . (13)

Erklärt wird diese Adjustierung durch folgende Ungleichung, bei der angenommen wird,
dass Hj die wahren Nullhypothesen sind mit j = 1, ...,m0:

FWER = P(V ≥ 1) = P(
m0⋃
j=1

(P̃j ≤ α)) ≤
m0∑
j=1
P(P̃j ≤ α) ≤

m0∑
j=1
P(Pj ≤

α

m
) ≤ m0α

m
,

wobei die letzte Ungleichung aus der Beziehung P(Pj ≤ x|Hj) ≤ x für alle x∈[0,1]
hergeleitet wird und P̃j und Pj die Zufallsvariable der adjustierten bzw. nicht-adjustierten
p-Werte bezeichnet. (vgl. Dudoit u.a. (2003): S. 78 und vgl. Sachs/Hedderich (2009):
S. 498-499)

Da es sich bei den folgenden vier Verfahren um Resampling-Verfahren handelt, soll all-
gemein das Prinzip dieser Vorgehensweise vorab kurz beschrieben werden. Mit Hilfe von
Resampling-Verfahren können p-Werte bestimmt werden, ohne dass unter der Nullhy-
pothese eine Verteilungsannahme gemacht werden muss. Da die empirische Verteilung
aus der Stichprobe als Schätzer für die wahre Verteilung dient, kann so die Verteilung
indirekt einbezogen werden. Basis von Resampling-Verfahren ist die wiederholte Ver-
wendung einer einmal erhobenen Stichprobe. Hier soll das mit Hilfe von Permutationen
geschehen, das heißt durch das mehrmalige Neusortieren der Originalstichprobe. Im
multiplen Fall möchte man die Abhängigkeitsstruktur der Teststatistiken erhalten und
lässt deshalb dabei jeweils gesamte Beobachtungsvektoren zusammen. Dadurch kann
die gemeinsame Verteilung berücksichtigt werden, ohne dass diese explizit bekannt
sein muss. Bei der Permutation werden jeweils nl Beobachtungen zufällig der l-ten
Gruppe zugeordnet und die gewünschte Prüfgröße bestimmt. Da die Anzahl möglicher
Permutationen oft sehr groß ist, wird meist nur eine Stichprobe aus allen möglichen
Permutationen verwendet. (vgl. Zierer (2013): S. 42-43)
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single-step minP Prozedur

Das erste Resampling-Verfahren ist die single-step Variante des minP-Verfahrens von
Westfall&Young (1993). Allgemein sind die adjustierten p-Werte wie folgt definiert:

p̃j = P( min
1≤s≤m

Ps ≤ pj|HC
0 ) , (14)

wobei Ps die Zufallsvariable des nicht-adjustierten p-Wertes der s-ten Hypothese be-
zeichnet und HC

0 die bereits definierte globale Nullhypothese. (vgl. Dudoit u.a. (2003):
S. 78)
Dieses Vorgehen lässt sich auch schrittweise darstellen. Für die b-te Resampling-
Stichprobe, b = 1, ..., B, wird dabei folgendermaßen vorgegangen: Im ersten Schritt
wird ein Vektor von nicht-adjustierten p-Werten p∗b = (p∗b1 , ..., p

∗b
m) für die Nullhypothe-

sen H i
0, i = 1, ...,m, erzeugt. Um (approximativ) die gleiche Verteilung wie die origi-

nalen p-Werte unter der globalen Nullhypothese HC
0 zu erhalten kann als Resampling-

Verfahren das eben vorgestellte Permutationsverfahren angewendet werden. Für diese
Permutation werden dann die nicht-adjustierten p-Werte genau wie bei der Original-
stichprobe berechnet. Im zweiten Schritt wird das Minimum der p-Werte der b-ten
Resampling-Stichprobe p∗bmin = min

j=1,...,m
p∗bj berechnet.

Schließlich sind die adjustierten p-Werte folgendermaßen definiert:

p̃j =
∑B
b=1 1(p∗bmin ≤ pj)

B
(15)

mit j = 1, ...,m und 1 als Indikatorfunktion. (vgl. Zierer (2013): S. 46-47)

single-step maxT Prozedur

Alternativ können statt der nicht-adjustierten p-Werte auch die Teststatistiken verwen-
det werden, wie bei der maxT Prozedur, die zunächst ebenfalls als single-step Variante
dargestellt ist (vgl. Dudoit u.a. (2003): S. 78):

p̃j = P( max
1≤s≤m

|Ts| ≥ |tj||HC
0 ) . (16)

Das schrittweise Vorgehen ist ebenfalls analog zur minP Prozedur: Im ersten Schritt
werden die Teststatistiken t∗b1 , ..., t

∗b
m der b-ten Permutation für jede Hypothese Hj

0

berechnet. Im zweiten Schritt wird für eine zweiseitige Alternative an Stelle des Mini-
mums der p-Werte das Maximum der Beträge der Teststatistiken genommen t∗bmax|.| =
max
j=1,...,m

|t∗bj |mit b = 1, ..., B. Und die adjustierten p-Werte somit folgendermaßen berech-
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net:

p̃j =
∑B
b=1 1(t∗bmax|.| ≥ |tj|)

B
. (17)

(vgl. Zierer (2013): S. 47)

Die single-step Prozeduren sind eher konservativ und haben somit eine geringere Power,
was durch ein schrittweises Verfahren deutlich verbessert werden kann (vgl. Dudoit u.a.
(2003): S.79). Seien im Folgenden pr1 ≤ pr2 ≤ ... ≤ prm die beobachteten geordneten
nicht-adjustierten p-Werte und Hr1 , Hr2 , ..., Hrm die zugehörigen Nullhypothesen.

step-down minP Prozedur

Analog zur single-step minP-Prozedur haben Westfall&Young (1993) auch eine step-
down minP-Prozedur mit den adjustierten p-Werten

p̃rj
= max

t=1,...,j
{P ( min

s∈[rt,...,rm]
Ps ≤ prt |HC

0 )} (18)

entwickelt (vgl. Dudoit u.a. (2003): S. 79-80). Diese verfährt mit der b-ten Resampling-
Stichprobe, b = 1, ..., B, wie folgt: Auch hier geht es im ersten Schritt um die Berech-
nung der nicht-adjustierten p-Werte der b-ten Permutation p∗b1 , ..., p

∗b
m für jede Hy-

pothese Hj
0 mit j = 1, ...,m. Im zweiten Schritt werden zunächst die sukzessiven Min-

ima der nicht-adjustierten p-Werte berechnet, q∗bm = p∗brm
und q∗bj = min(q∗bj+1, p

∗b
rj

), j =
1, ...,m− 1, wobei der Rang rj nach den beobachteten p-Werten vergeben wird, sodass
sich die oben genannte Monotonie der prj

ergibt. Dabei ist es nicht zwingend, dass die
p-Werte p∗brj

der Resampling-Stichprobe dieselbe Monotonie aufweisen wie die p-Werte,
die auf der ursprünglichen Stichprobe basieren. Die adjustierten p-Werte werden dann
mittels

q̃rj
=

∑B
b=1 1(q∗bj ≤ prj

)
B

(19)

berechnet, mit 1 als Indikatorfunktion.
Anhand der sukzessiven Maxima

p̃r1 = q̃r1 , p̃rj
= max(q̃rj

, p̃rj−1) (20)

für j = 2, ...,m wird die Monotoniebedingung erzwungen. Wie bei einer step-down
Prozedur üblich, werden die Hypothesen Hr1

0 , ..., H
rj

0 solange abgelehnt bis das er-
ste Mal p̃rj+1 > α eintritt. Die entsprechende sowie alle nachfolgenden Hypothesen
H
rj+1
0 , ...Hrm

0 können nicht mehr abgelehnt werden. (vgl. Zierer (2013): S.50-51)
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step-down maxT Prozedur

Wie bei der single-step Variante gibt es auch hier das Analogon der maxT Prozedur
(vgl. Dudoit u.a. (2003): S. 80):

p̃rj
= max

t=1,...j
{P( min

s∈{rt,...,rm}
Ps ≤ prt |HC

0 )} . (21)

Die schrittweise Darstellung sieht hier für die b-te Resampling-Stichprobe, b = 1, ..., B,
wie folgt aus: Im ersten Schritt werden die Teststatistiken t∗b1 , ..., t

∗b
m der b-ten Permu-

tation für jede Hypothese Hj
0 berechnet. Im zweiten Schritt werden dann die sukzes-

siven Maxima der Teststatistiken berechnet, u∗bm = |t∗brm
| und u∗bj = max(u∗bj+1, |t∗brj

|) mit
j = 1, ...,m − 1, wobei rj den Rang der beobachteten Teststatistiken bezeichnet, so
dass |tr1| ≥ |tr2| ≥ ... ≥ |trm| gilt. Die Monotonie der Resampling-Stichprobe ist dabei
nicht zwingendermaßen dieselbe wie die der Originalstichprobe. Schließlich werden die
adjustierten p-Werte durch

q̃rj
=

∑B
b=1P(u∗bj ≥ |trj

|)
B

(22)

geschätzt. Mit Hilfe der sukzessiven Maxima

p̃r1 = q̃r1 , p̃rj
= max(q̃rj

, p̃rj−1) (23)

für j = 2, ...,m wird die Monotoniebedingung erzwungen. Bis zum ersten Mal p̃rj+1 >

α eintritt, werden alle Nullhypothesen Hr1
0 , ..., H

rj

0 abgelehnt. Die zugehörige, sowie
alle darauffolgenden Hypothesen H

rj+1
0 , ..., Hrm

0 können nicht abgelehnt werden. (vgl.
Zierer (2013): S. 51-52)

Beide minP Verfahren, sowie beide maxT Verfahren basieren auf der Annahme der
globalen Nullhypothese HC

0 und stellen somit eine schwache Kontrolle der FWER

dar. Trifft jedoch die Subset Pivotality zu, so handelt es sich bei allen Prozeduren um
starke Kontrollen der Fehlerrate. (vgl. Zierer (2013): S. 47-48 und S. 51) Diese Subset
Pivotality ist folgendermaßen definiert: ”Die Verteilung P hat die Subset Pivotality
Eigenschaft, wenn, für alle Teilmengen K ⊆ {i; i ∈ J(θ)} von wahren Nullhypothesen,
die gemeinsame Verteilung des Subvektors {Pi; i ∈ K} unter ⋂

i∈K H
i
0 und HC

0 identisch
ist. Dabei bezeichnet P = (P1, ..., Pm) den Zufallsvektor der p-Werte” (Zierer (2013):
S. 37).

Holm

Ein weiteres step-down Verfahren zur Kontrolle der FWER ist von Holm (1979) und
geht folgendermaßen vor: Finde ein j∗ = min{j : prj

> α
m−j+1} und lehne alle Hy-

pothesen Hrj
für j = 1, ..., j∗ − 1 ab. Existiert so ein j∗ nicht, lehne alle Hypothesen
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ab. Die adjustierten p-Werte nach Holm sind definiert durch

p̃rj
= max

t=1,...,j
{min((m− t+ 1)prt , 1)} . (24)

Die Holm-Prozedur erzwingt durch das sukzessive Vorgehen eine Monotonie der ad-
justierten p-Werte p̃r1 ≤ p̃r2 ≤ ... ≤ p̃rm . Somit kann eine einzelne Hypothese nur
abgelehnt werden, wenn alle vorhergehenden Hypothesen, also alle mit kleineren nicht-
adjustierten p-Werten, bereits abgelehnt wurden. (vgl. Dudoit u.a. (2003): S.79)

Hochberg

Das step-up Verfahren von Hochberg (1988) zur Kontrolle der FWER ist das Pendant
zum Verfahren von Holm. Es hat dieselben kritischen Werte, beginnt aber mit den
größten p-Werten. Sei j∗ = max{j : prj

≤ α
m−j+1}, lehne alle Hypothesen Hrj

ab für
j = 1, ..., j∗. Falls so ein j∗ nicht existiert, lehne keine Hypothese ab. Die adjustierten
p-Werte nach Hochberg sind somit definiert als

p̃rj
= min

t=j,...,m
{min((m− t+ 1)prt , 1)} . (25)

Da diese Prozedur ebenfalls sukzessiv vorgeht, erhält man auch hier eine Monotonie
der adjustierten p-Werte. Vorteil des Verfahrens von Hochberg könnte sein, dass es
mehr Power hat, da step-up Prozeduren oft mehr Power als ihren step-down Pendants
zugeschrieben wird. Dazu aber später in Kapitel 4 mehr. (vgl. Dudoit u.a. (2003): S.
80)

Nachdem alle Adjustierungsverfahren zur Kontrolle der FWER vorgestellt wurden,
folgt nun die Beschreibung der Adjustierungsverfahren zur Kontrolle der FDR.

Benjamini&Hochberg

Das erste FDR-kontrollierende Verfahren unterliegt der Annahme, dass die Teststatis-
tiken unabhängig sind. Diese step-up Prozedur von Bejamnini&Hochberg (1995) geht
dabei folgendermaßen vor: Bestimme ein j∗ = max{j : prj

≤ j
m
α} und lehne alle Hy-

pothesen Hrj
mit j = 1, ..., j∗ ab. Falls so ein j∗ nicht existiert wird keine Hypothese

abgelehnt. Die entsprechenden adjustierten p-Werte nach Benjamini&Hochberg sind,
wie folgt, definiert:

p̃rj
= min

t=j,...,m
{min(m

t
prt , 1)} . (26)

(vgl. Dudoit u.a. (2003): S. 80)
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Benjamini&Yekutieli

Ein konservativeres Verfahren, das die FDR für willkürliche Abhängigkeitsstrukturen
kontrolliert, kommt von Benjamini&Yekutieli (2001). Es handelt sich hierbei ebenfalls
um eine step-up Prozedur, die mit folgender Definition für die adjustierten p-Werte

p̃rj
= min

t=j,...,m
{min(

m
∑m
j=1

1
j

t
prt , 1)} (27)

einen größeren Strafterm m
∑m

j=1
1
j

t
für große m hat als Benjamini&Hochberg mit m

t
.

(vgl. Dudoit u.a. (2003): S. 80-81)

4 Vergleich der Adjustierungsverfahren

In diesem Abschnitt sollen die soeben vorgestellten Methoden miteinander verglichen
werden um dann im nächsten Kapitel, anhand des bereits vorgestellten Datenbeispiels,
zu überprüfen, ob diese theoretischen Erkenntnisse auch zutreffen. Die einzigen zwei
Ausnahmen bilden die single-step Varianten der minP und der maxT Prozeduren, die
mangels bereits vorhandener Implementierung in R und ausreichender Zeit selbst eine
zu machen, hier nicht zur Anwendung kommen werden.
Wie bereits erwähnt ist das Kriterium der FWER strenger als das der FDR, somit
werden Verfahren, die die FWER kontrollieren, weniger Hypothesen ablehnen als Ver-
fahren, die die FDR kontrollieren.
Vergleicht man nur FWER-kontrollierende Methoden wird Bonferroni als einzige single-
step Prozedur das konservativste Verfahren sein. Denn hier gilt für alle p-Werte das
gleiche strenge Kriterium pj <

α
m

. Im Vergleich dazu sind die Kriterien bei der step-
down Prozedur nach Holm mit prj < α

m−j+1 für kleine nicht-adjustierte p-Werte strenger
als für große nicht-adjustierte p-Werte. Für m = 5 erhält man folgende Kriterien nach
Bonferroni und Holm, die in Tabelle 3 aufgelistet sind.

j Bonferroni Holm
1 α

5
α
5

2 α
5

α
4

3 α
5

α
3

4 α
5

α
2

5 α
5

α
1

Tabelle 3: Gleichbleibendes Kriterium beim konservativeren Verfahren von Bonfer-
roni im Vergleich zum schwächer werdenden Kriterium bei Holm

Folglich wird das Verfahren von Holm mehr Hypothesen ablehnen als das von Bon-
ferroni. Hochberg hat dieselben kritischen Werte wie Holm, beginnt aber als step-up
Prozedur mit den großen nicht-adjustierten p-Werten. Wie das folgende Beispiel in
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Tabelle 4 zeigt kann es vorkommen, dass Hochberg eine Hypothese noch ablehnt, die
Holm nicht mehr ablehnt:

pr1/p̃r1 pr2/p̃r2 pr3/p̃r3 pr4/p̃r4 pr5/p̃r5

nicht-adjustiert 0.008 0.013 0.015 0.050 0.300
Holm 0.040 0.052 0.052 0.100 0.300
Hochberg 0.040 0.045 0.045 0.100 0.300

Tabelle 4: Die Hypothesen 2 und 3 werden bei Hochberg noch abgelehnt bei Holm
nicht mehr.

Das ist auf die Monotonieeigenschaften der beiden Verfahren zurückzuführen. Denn
bei Holm gilt p̃r2 = max(pr1 · m, pr2 · (m − 1)) = max(0.040, 0.052) = 0.052 und
p̃r3 = max(pr1 ·m, pr2 · (m− 1), pr3 · (m− 2)) = max(0.040, 0.052, 0.045) = 0.052.
Und bei Hochberg gilt p̃r3 = min(pr3 · (m− 2), pr4 · (m− 3), pr5 · (m− 4)) =
min(0.045, 0.100, 0.300) = 0.045 und p̃r2 = min(pr2 · (m − 1), pr3 · (m − 2), pr4 · (m −
3), pr5 · (m − 4)) = min(0.052, 0.045, 0.100, 0.300) = 0.045. Ist die Anzahl an Null-
hypothesen jedoch größer, ist der Unterschied nicht mehr so drastisch. (vgl. Zierer
(2013): S. 54-55)
Schließlich bringt nach Dudoit das Zutreffen der Ungleichheit bei der step-down minP-
Prozedur p̃rj = max

t=1,...,j
{P ( min

s∈[rt,...,rm]
Ps ≤ prt|HC

0 )} die p-Werte von Holm hervor und
somit sind diese weniger konservativ als die Prozedur von Holm (vgl. Dudoit u.a.
(2003): S. 80).
Der Unterschied zwischen den beiden FDR-kontrollierenden Verfahren basiert, wie
bereits erwähnt, auf den unterschiedlichen Straftermen. Benjamini&Yekutieli haben
mit m

∑m

j=1
1
j

t
den größeren Strafterm als Benjamini&Hochberg mit m

t
und sind somit

konservativer.
Zusammengefasst wird erwartet, dass Bonferroni die wenigsten Hypothesen ablehnen
wird, gefolgt von den schrittweisen Verfahren, die die FWER kontrollieren. Dabei wer-
den Holm und Hochberg auf sehr ähnliche Ergebnisse kommen, wobei bei Uneinigkeit
Hochberg mehr signifikante Resultate ermitteln wird als Holm. Die beiden step-down
Varianten von minP und maxT sind dabei weniger konservativ als Holm und Hochberg.
Die meisten signifikanten adjustierten p-Werte sollten von den FDR-kontrollierenden
Verfahren kommen. Allerdings wird die Prozedur von Benjamini&Yekutieli nicht ganz
so viele Hypothesen ablehnen wie die von Benjamini&Hochberg.

5 Anwendung

In diesem Abschnitt werden nun die Methoden, die vorab behandelt wurden, angewen-
det und deren Ergebnisse miteinander verglichen. Als konkretes Datenbeispiel dienen
die oben beschriebenen Daten. Da die Voraussetzungen für die Varianzanalyse schein-
bar verletzt sind, werden die Ergebnisse des Kruskal-Wallis-Tests vorgezogen und näher
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betrachtet. Die Ergebnisse des Shapiro-Wilk-Tests, sowie des Levene-Tests werden
dann im Folgenden behandelt. Außerdem werden trotz der Annahmeverletzungen die
Ergebnisse der Varianzanalyse kurz dargestellt und mit denen des Kruskal-Wallis-Tests
verglichen.
Die Verfahren von Benjamini&Hochberg und Benjamini&Yekutieli werden in den fol-
genden Tabellen und Grafiken aus Platzgründen mit BH und BY abgekürzt.

5.1 Kruskal-Wallis-Test oder H-Test

Für den groben Überblick zeigt als erstes Tabelle 5 die Anzahlen der abgelehnten Hy-
pothesen von insgesamt 200 Hypothesen jeder Adjustierungsmethode, sowie des nicht-
parametrischen Kruskal-Wallis-Tests, auch H-Test genannt, zu allen vier Messzeitpunk-
ten. Wobei Hypothesen hier dann abgelehnt werden, wenn ihre p-Werte signifikant
sind, was in diesen Fällen einen p-Werte kleiner gleich 0.05 bedeutet.

Zeitpunkt Bonferroni Holm Hochberg minP maxT BY BH H-Test
0 148 160 160 163 163 172 184 184
1 141 159 159 163 163 167 179 180
2 141 150 150 154 155 165 179 179
3 136 146 146 153 153 164 178 178

Tabelle 5: Die Anzahl signifikanter p-Werte von insgesamt 200 Hypothesen des
Kruskal-Wallis-Tests bzw. H-Tests und der verschiedenen Adjustierungsmethoden
zu den Zeitpunkten 0, 1, 2 und 3

Wie im Vergleichsteil vorausgesagt, werden dem Verfahren von Bonferroni zu Folge die
wenigsten Hypothesen abgelehnt, gefolgt von den schrittweisen Verfahren von Holm
und Hochberg, die sich hier durchweg einig sind. Auch die beiden Resampling-Verfahren
minP und maxT erzielen sehr ähnliche Ergebnisse. Insgesamt sind die Prozeduren
zur Kontrolle der FDR weniger konservativ als die FWER- kontrollierenden Ver-
fahren. Dabei lehnt die Methode von Benjamini&Yekutieli immer weniger Hypothesen
ab als jene von Benjamini&Hochberg. Das Verfahren von Benjamini&Hochberg ermit-
telt sogar fast genauso viele bis exakt genauso viele signifikante Hypothesen wie der
Kruskal-Wallis-Test ohne Adjustierungen. Über die Zeit hinweg betrachtet kommen
die Verfahren auf sehr ähnliche Resultate. Wobei alle tendenziell weniger signifikante
Ergebnisse ermitteln, je später die Messung durchgeführt wurde.

Um den Verlauf der ansteigenden p-Werte erkennen zu können, folgen ein paar Streu-
diagramme in den Abbildungen 1-4. Diese stellen die nicht-adjustierten p-Werte des
Kruskal-Wallis-Tests auf der x-Achse und die adjustierten p-Werte auf der y-Achse
dar. So kann verfolgt werden wie sich die adjustierten p-Werte mit den ansteigenden
nicht-adjustierten p-Werten verhalten. Bei 0.05 sind jeweils rot gestrichelte Linien ein-
gezeichnet, um anzuzeigen wann eine Hypothese noch als signifikant angesehen wird
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und ab wann nicht mehr. Zur besseren Darstellung der durch die Adjustierung nicht
mehr signifikanten p-Werte, die ohne Adjustierung noch signifikant wären, sind in weit-
eren Streudiagrammen auf der x-Achse nur noch die p-Werte des Kruskal-Wallis-Tests
bis 0.05 angezeigt.

Abb. 1: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Oben sind alle p-Werte des Kruskal-Wallis-Tests abgebildet
und unten nur die p-Werte des Kruskal-Wallis-Tests bis 0.05.
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Abb. 2: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Oben sind alle p-Werte des Kruskal-Wallis-Tests abgebildet
und unten nur die p-Werte des Kruskal-Wallis-Tests bis 0.05.
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Abb. 3: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Oben sind alle p-Werte des Kruskal-Wallis-Tests abgebildet
und unten nur die p-Werte des Kruskal-Wallis-Tests bis 0.05.
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Abb. 4: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Oben sind alle p-Werte des Kruskal-Wallis-Tests abgebildet
und unten nur die p-Werte des Kruskal-Wallis-Tests bis 0.05.
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Die Kurven von Bonferroni, Holm und Hochberg haben alle einen ähnlichen Verlauf
mit einem deutlichen Knick. Bonferroni läuft dabei am steilsten auf die 1.0 zu. Holm
und Hochberg liegen lange auf derselben Kurve, wobei Hochberg früher abknickt und
nicht bis zur 1.0 ansteigt und Holm letztlich auch bei der 1.0 landet. Da die beiden
sich erst bei p-Werten des Kruskal-Wallis-Tests um die 0.05 herum trennen, wo beide
sich schon längst außerhalb der signifikanten Werte befinden, macht sich dieser Unter-
schied in der Anzahl der abgelehnten Hypothesen nicht bemerkbar. Die Resampling-
Methoden haben ebenfalls einen gemeinsamen Verlauf und trennen sich nie deutlich
voneinander. Ihre Kurve beginnt flacher als die vorhergehenden und hat keinen so
extremen Knick. Die erste FDR-kontrollierende Prozedur von Benjamini&Yekutieli
hat einen ähnlichen Verlauf wie Bonferroni und Holm, beginnt nur wesentlich flacher,
bleibt somit länger unter 0.05 und landet deutlich später bei der 1.0. Die adjustierten
p-Werte von Benjamini&Hochberg folgen eher einer gleichmäßig ansteigenden Geraden,
die am flachsten von allen beginnt. Folglich ergeben sich hier die meisten adjustierten
p-Werte, die kleiner gleich 0.05 sind.

Um auch der inhaltlichen Frage nachzukommen anhand welcher Moleküle sich die drei
Erregertypen voneinander unterscheiden lassen, seien folgende Tabellen dargestellt.
Für jedes Molekül und jedes Verfahren wird angezeigt, ob ein signifikantes Ergebnis
beobachtet wurde oder nicht. 0 steht hier für p-Werte kleiner gleich 0.05, also sig-
nifikante Resultate und 1 für p-Werte größer 0.05, also nicht signifikant. In jeder
Spalte befinden sich vier Zahlen, die erste steht für den Messzeitpunkt 0, die zweite für
den Messzeitpunkt 1 und so weiter.
In Tabelle 6 sind nur die Moleküle enthalten, die bei allen Verfahren zu jedem Zeit-
punkt einen signifikanten p-Wert haben. Dies trifft auf insgesamt 125, also mehr als die
Hälfte, der Moleküle zu. In diesen Fällen würde es sich wohl lohnen der Frage, welche
Erregergruppen sich genau voneinander unterscheiden, weiter nachzugehen. Nachdem
diese Tabelle nur Nuller enthalten würde und mit 125 Zeilen sehr lang wäre, sind nur
die Namen der Moleküle in Tabelle 6 aufgelistet.

Namen der Moleküle mit ”0 0 0 0” bei allen Verfahren
CH4. X17. X20. X21. Acetylene. Methanol. O2.33..
X35. X38. X39. ACN. X42. X43. X45.
Formic.Acid. X50. X51. X52. X53. X54. X55.
X56. X57. X58. X61. X62. X63. SO2.
X65. X66. X67. X72. X73. X76. X77.
Benzene.Xe. X80. X81. X86. X87. X88. X89.
X90. X91. X92. X93. X94. X100. X101.
X102. X103. X104. X107. X108. X109. X110.
X112. X113. X114. X115. X116. X117. X118.
X119. X120. X121. X122. EI.H2 NH3 M19
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Namen der Moleküle mit ”0 0 0 0” bei allen Verfahren
Ethylene M29 NO CH3NH2 M33 H2S M36
M37 M38 M40 M41 M43 Acetaldehyde Ethanol
M48 M50 M51 Butadiene M55 M56 M57
M61 M62 M63 M64 M67 Isoprene M69
M73 M74 M75 M76 M80 M81 M87
M90 M91 Toluene M93 M94 M98 M101
M103 M108 M109 M115 M116 M117 M118
M119 M120 M121 M122 M123 M135

Tabelle 6: Auflistung aller Moleküle, die über alle Zeitpunkte, beim Kruskal-Wallis-
Test, sowie allen Adjustierungsmethoden immer signifikant sind.

Umgekehrt sind in Tabelle 7 nur Moleküle dargestellt, bei denen sich nie ein sig-
nifikantes Resultat ergibt. Insgesamt handelt es sich dabei um neun Moleküle, für
die sich eine weiterführende Analyse wohl kaum lohnen wird, da man doch recht sicher
davon ausgehen kann, dass die Messwerte dieser Moleküle sich nicht signifikant zwi-
schen den Gruppen der gram negativen, der gram positiven und der Pilze unterscheiden.

Molekül Bonferroni Holm Hochberg minP maxT BY BH H-Test
X59. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Propanol 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tabelle 7: Zusammenfassung aller Ergebnisse des Kruskal-Wallis-Tests bzw. H-Tests,
die über alle Zeitpunkte und bei allen Ajustierungsmethoden nicht signifikant sind;
0 steht für signifikant und 1 steht für nicht signifikant.

Und bei den letzten 66 Fällen, die in Tabelle 8 dargestellt sind, finden sich je nach
Messzeitpunkt und angewandtem Verfahren mal signifikante, mal nicht signifikante
Ergebnisse. Hier sind die Resultate also nicht so eindeutig, dass sich alle Verfahren
einig sind. Außerdem wird hier deutlich, weshalb die Rede von volatilen, also flüchtigen,
Komponenten ist. Da sich die Messwerte von manchen Molekülen nur zu bestimmten
Zeitpunkten wesentlich voneinander unterscheiden, scheinen diese organischen Kompo-
nenten nicht in stabiler Form vorhanden zu sein, sondern teilweise erst zu entstehen
oder sich wieder abzubauen.
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Molekül Bonferroni Holm Hochberg minP maxT BY BH H-Test
M27. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
M29.. 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
Formaldehyde. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
X40. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N2O. 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HNO2. 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
X48. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X49. 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Acetic.Acid. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
X68. 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1
X69. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
X70. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
X71. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0
X74. 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X75. 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X79. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
X82. 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
X83. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
X84. 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X85. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
X95. 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
X96. 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
X97. 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
X98. 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X99. 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X105. 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
X106. 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
X111. 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
EI.H2....M1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EI.H2O.18 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EI.N2.28 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
EI.O2.32 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EI.CO2.44 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1
M39 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
Propene 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
M46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
M47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
M52 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M53 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Acetone 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
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Molekül Bonferroni Holm Hochberg minP maxT BY BH H-Test
M65 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
M66 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
M70 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
M71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
M72 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
M77 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Benzene 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0
M79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1
M83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
M84 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 0
M86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
M89 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1
M95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0
M97 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
M99 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
M100 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M102 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M104 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
M105 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
M106 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
M107 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0
M110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
M112 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
M113 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0
M114 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Tabelle 8: Zusammenfassung aller Ergebnisse des Kruskal-Wallis-Tests bzw. H-
Tests, die je nach Messzeitpunkte und Adjustierungsmethode signifikant oder nicht
signifikant sind; 0 steht für signifikant und 1 steht für nicht signifikant.

5.2 Varianzanalyse

Obwohl beim Shapiro-Wilk-Test und beim Levene-Test herauskam, dass beim Großteil
der Moleküle die Normalverteilungsannahme bzw. die Annahme gleicher Varianzen
zwischen den Erregergruppen offenbar verletzt ist, sollen hier die Ergebnisse der Va-
rianzanalyse kurz zusammengefasst werden und anschließend mit den Ergebnissen des
Kruskal-Wallis-Tests verglichen werden.
Zunächst werden die Ergebnisse zur Überprüfung der Testannahmen betrachtet. Zur
Veranschaulichung sind die p-Werte der beiden Tests zum Messzeitpunkt 0 in Ab-
bildung 5 grafisch dargestellt. Beim Shapiro-Wilk-Test sind insgesamt 14 p-Werte
größer 0.05, das heißt nur die Messwerte von 14 Molekülen sind zum Zeitpunkt 0 nor-
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malverteilt. Zu den anderen Zeitpunkten ergibt sich ein ähnliches Bild. Zum Zeitpunkt
1 sind es 30 nicht signifikante Ergebnisse beim Shapiro-Wilk-Test. Und zu den Zeit-
punkten 2 und 3 liegen 24 und 23 normalverteilte Moleküle vor. Von insgesamt 200
Molekülen ist also nur ein geringer Anteil normalverteilt.

Abb. 5: Histogramme der p-Werte des Shapiro-Wilk-Tests (oben) und des Levene-
Tests (unten), jeweils der erste Balken stellt die Moleküle dar, die die jeweilige
Annahme verletzen.

Auch die Homoskedastizität ist überwiegend verletzt. Zum Messzeitpunkt 0 liegen
lediglich 45 p-Werte des Levene-Tests über 0.05. Es finden sich 63 homoskedastische
Moleküle zum Zeitpunkt 1. Und schließlich liegen zu den Zeitpunkten 2 und 3 37 und
51 Moleküle mit Varianzhomogenität zwischen den Erregertypen vor.

Zusammenfassend ist sowohl die Annahme der Normalverteilung als auch die der Ho-
moskedastizität verletzt, so dass die Ergebnisse der Varianzanalyse mit Vorsicht zu
genießen sind. Trotzdem ist diese hier gerechnet worden und ihre Ergebnisse wer-
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den anschließend gezeigt. Zuvor wird aber noch dargestellt, wie die Verteilungen der
Moleküle stattdessen aussehen. Da hier nicht 200 Histogramme, Boxplots, QQ-Plots
oder andere Grafiken gezeigt werden können um die Verteilungen zu beschreiben, wird
versucht mit Hilfe von verschiedenen Maßzahlen ein paar Eigenschaften der Verteilun-
gen der Moleküle zusammenzufassen. Die Darstellung der Maßzahlen bezieht sich
immer auf ein beliebiges Molekül j, wobei darauf verzichtet wird überall den Index j

hinzuschreiben.
Ein Merkmal von Verteilungen ist die Symmetrie bzw. Schiefe. Man unterscheidet zwi-
schen symmetrischen, linkssteilen und rechtssteilen Verteilungen. Bei symmetrischen
Verteilungen sind die linke und die rechte Hälfte der Verteilung annähernd spiegel-
bildlich. Linkssteile Verteilungen haben den überwiegenden Teil ihrer Daten linksseitig
und bei rechssteilen Verteilungen ist der Großteil der Daten entsprechend rechtsseitig.
Eine Möglichkeit die Schiefe zu beurteilen bietet der Quantilskoeffizient der Schiefe,
der im Gegensatz zum Momentkoeffizient resistent gegen Ausreißer ist und deshalb
hier verwendet wird. Der Quantilskoeffizient hat folgende Formel:

gp = (x1−p − x̃)− (x̃− xp)
x1−p − xp

, (28)

die im Zähler den Unterschied zwischen der Entfernung des p-Quantils und der des
(1 − p)-Quantils jeweils zum Median x̃ misst. Da bei linkssteilen Verteilungen das
untere Quantil näher am Median ist und bei rechtssteilen weiter entfernt liegt vom
Median, gilt:
gp = 0 für symmetrische Verteilungen,
gp > 0 für linkssteile Verteilungen und
gp < 0 für rechtssteile Verteilungen.
Ist p = 0.25 erhält man den Quartilskoeffizienten. (vgl. Farhmeir u.a. (2010): S. 48
und S.74-75)
Wie die Histogramme der Quartilskoeffizienten der vier Messzeitpunkte in Abbildung 6
(oben) zeigen, sind symmetrische, linkssteile und rechtssteile Verteilungen alle vertreten.
Es sind jedoch mehr linkssteile Verteilungen als rechtssteile und unter den linkssteilen
sind auch extremer ausgeprägte Verteilungen.

Ein weiteres Merkmal von Verteilungen ist die Wölbung, auch Kurtosis genannt. Diese
gibt an wie stark der zentrale Bereich bzw. die Enden der Daten besetzt sind. Ist eine
Verteilung in der Mitte eher spitz, sind die Enden stärker besetzt als bei Verteilungen,
die in der Mitte flacher sind. Als Vergleich dafür, was breit oder spitz bedeutet, dient
die Normalverteilung. Das Wölbungsmaß von Fisher, das als Maßzahl für die Kurtosis
dient, ist so definiert, dass es bei Normalverteilungen gleich Null ist:

γ = m4

s4 − 3 =
1
n

∑n
i=1(xi − x̄)4

s4 − 3 . (29)
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Abb. 6: Oben sind die Werte des Quartilskoeffizienten der Schiefe dargestellt und
unten die Werte des Wölbungsmaßes von Fisher.

Dabei ist s4 die quadrierte Stichprobenvarianz und es gilt:
γ = 0 bei Normalverteilung,
γ > 0 bei spitzeren Verteilungen und
γ < 0 bei flacheren Verteilungen. (vgl. Fahrmeir u.a. (2010): S. 76)
Bei Betrachtung der Histogramme des Wölbungsmaßes in Abbildung 6 (unten) wird
deutlich, dass der Großteil der Moleküle flachere Verteilungen hat als die Normalverteilung.
Wobei beachtet werden muss, dass die vier Grafiken zu den vier Messzeitpunkten ver-
schieden skalierte x-Achsen haben, also optisch nicht direkt vergleichbar sind. Es ist
trotzdem eindeutig erkennbar, dass alle Histogramme eine linkssteile Verteilung zeigen,
also mehr kleine Werte von γ zu beobachten sind.

Und schließlich können mögliche Ausreißer eine Verteilung charakterisieren. Um poten-
zielle Ausreißer, also Datenpunkte, die weit entfernt von den anderen Daten liegen, zu
ermitteln verwendet man häufig den Interquartilsabstand dQ = x0.75−x0.25. Wobei x0.75

das 75%-Quantil und x0.25 das 25%-Quantil bezeichnet. Dieser Interquartilsabstand
dient als Maßzahl für die Streuung von Daten. Liegen Datenpunkte außerhalb eines
sogenannten Zauns, der anhand des Interquartilsabstands berechnet wird, gelten sie,
einer Faustregel nach, als potenzielle Ausreißer. Dazu gehören also Punkte, die kleiner
als die Untergrenze zu = x0.25−1.5dQ oder größer als die Obergrenze zo = x0.75 +1.5dQ
sind. (vgl. Fahrmeir u.a. (2010): S. 66-67)
Tabelle 9 zeigt wie viele potenzielle Ausreißer oder zumindest Extrempunkte nach
dieser Faustregel zu den vier Messzeitpunkten bei den 200 Molekülen gefunden wur-
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den. Dabei gibt es insgesamt 67 Beobachtungen je Molekül zum Messzeitpunkt 0 und
68 zu den anderen drei Messzeitpunkten.

Zeitpunkt\Ausreißer 0 1 2 3 4 5 6 7 8 9 10 11 12
0 144 11 4 1 24 3 7 1 0 0 2 0 3
1 163 11 7 4 6 0 5 4 0 0 0 0 0
2 167 11 6 2 4 2 3 0 3 0 1 1 0
3 142 11 11 7 12 7 3 1 3 1 0 1 1

Tabelle 9: Anzahl potenzieller Ausreißer je Messzeitpunkt von 67 Beobachtungen je
Molekül zum Messzeitpunkt 0 und 68 Beobachtungen je Molekül zu den restlichen
Messzeitpunkten, bei insgesamt 200 Molekülen

Es sind auffälligere Messwerte bei einigen Molekülen zu beobachten, der Großteil hat
jedoch keine oder nur wenige potenzielle Ausreißer.

Nun kommen die Ergebnisse der Varianzanalyse und der anschließenden Adjustierun-
gen, die in Tabelle 10 zusammengefasst sind. Von insgesamt 200 Molekülen haben die
Verfahren folgende Anzahlen an abgelehnten Hypothesen ergeben.

Zeitpunkt Bonferroni Holm Hochberg minP maxT BY BH Anova
0 151 156 156 161 161 165 178 178
1 153 165 165 166 166 168 178 180
2 149 156 156 161 162 168 174 175
3 141 146 146 153 153 162 177 178

Tabelle 10: Anzahl signifikanter p-Werte der 200 Hypothesen bei der Varianzanalyse
bzw. Anova und der verschiedenen Adjustierungsmethoden zu den Zeitpunkten 0,
1, 2 und 3

Die Ergebnisse sind sehr ähnlich zu denen des Kruskal-Wallis-Tests. Die Varianzanalyse
lehnt etwas weniger Hypothesen ab, genauso das Verfahren von Benjamini&Hochberg.
Einzig das Verfahren von Bonferroni lehnt hier durchweg mehr Hypothesen ab als beim
Kruskal-Wallis-Test. Die restlichen Verfahren haben keine so eindeutige Tendenz. Der
zeitliche Aspekt, dass je später die Messung durchgeführt wird, desto weniger sig-
nifikante Hypothesen beobachtet werden, ist hier nicht ganz so klar zu erkennen.
Auch hier werden die adjustierten p-Werte der verschiedenen Methoden in Abhängigkeit
der p-Werte der Varianzanalyse in den Abbildungen 7-10 grafisch dargestellt. Wie nach
Betrachtung der Anzahlen der abgelehnten Hypothesen zu erwarten, ergibt sich ein ver-
gleichbares Bild wie bei den p-Werten des Kruskal-Wallis-Tests und deren adjustierten
p-Werte.
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Abb. 7: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um
signifikante Werte erkenntlich zu machen. Oben sind alle p-Werte der Varianzana-
lyse abgebildet und unten nur die p-Werte der Varianzanalyse bis 0.05.
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Abb. 8: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um
signifikante Werte erkenntlich zu machen. Oben sind alle p-Werte der Varianzana-
lyse abgebildet und unten nur die p-Werte der Varianzanalyse bis 0.05.

31



Abb. 9: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um
signifikante Werte erkenntlich zu machen. Oben sind alle p-Werte der Varianzana-
lyse abgebildet und unten nur die p-Werte der Varianzanalyse bis 0.05.
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Abb. 10: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um
signifikante Werte erkenntlich zu machen. Oben sind alle p-Werte der Varianzana-
lyse abgebildet und unten nur die p-Werte der Varianzanalyse bis 0.05.
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Vergleicht man die inhaltlichen Ergebnisse, also welche Moleküle signifikante Hypothe-
sen haben und welche nicht, kommt man auch hier zu vergleichbaren Ergebnissen. In
Tabelle 11 sind die Moleküle aufgelistet, die bei allen Verfahren und zu allen Messzeit-
punkten einen signifikanten p-Wert haben. Das trifft bei der Analyse mit der Varian-
zanalyse auf 130 Moleküle zu. Um den Vergleich mit den Ergebnissen des Kruskal-
Wallis-Tests zu erleichtern, sind in dieser Tabelle die Moleküle, die dazukommen (13)
also, die die nur bei der Varianzanalyse durchweg signifikante Resultate haben, mit **
markiert und die, die nur beim Kruskal-Wallis-Test ausnahmslos signifikante Ergeb-
nisse haben, bei der Varianzanalyse aber nicht (8), mit *.

Namen der Moleküle mit ”0 0 0 0” bei allen Verfahren
CH4. X17.* X20. X21. Acetylene. Methanol. O2.33..
X35. X38. X39. ACN. X42. X43. X45.
Formic.Acid. X48.** X49.** X50. X51. X52. X53.
X54. X55. X56. X57. X58. X61. X62.
X63. SO2. X65. X66. X67. X72. X73.
X75.** X76. X77. Benzene.Xe. X80. X81. X84.**
X86. X87. X88. X89.* X90. X91. X92.
X93. X94. X96.** X98.** X99.** X100. X101.
X102. X103. X104. X107. X108. X109. X110.
X111.** X112. X113. X114. X115. X116. X117.
X118. X119. X120. X121. X122. EI.H2....M1** EI.H2
EI.H2O.18** EI.N2.28** EI.O2.32** NH3 M19 Ethylene M29
NO CH3NH2 M33 H2S M36 M37 M38
M40 M41 M43 Acetaldehyde Ethanol M48* M50*
M51 M52** Butadiene M55 M56 M57 M61
M62* M63 M64 M67 Isoprene* M69* M73
M74 M75 M76 M80 M81 M87* M90
M91 Toluene M93 M94 M98 M101 M103
M108 M109 M115 M116 M117 M118 M119
M120 M121 M122 M123 M135

Tabelle 11: Auflistung aller Moleküle, die über alle Zeitpunkte und bei allen Me-
thoden immer signifikant sind; * bedeutet nur beim Kruskal-Wallis-Test immer
abgelehnt, ** bedeutet nur bei der Varianzanalyse immer abgelehnt.

Beim Kruskal-Wallis-Test sind neun Moleküle zu beobachten, deren Nullhypothesen nie
abgelehnt werden. Hier kommt zu diesen neun Molekülen eines dazu M83, wobei auch
die Analyse mit dem Kruskal-Wallis-Test bei diesem Molekül fast nur nicht-signifikante
Ergebnisse liefert, bis auf die Werte von Benjamini&Hochberg und des H-Tests zum
Messzeitpunkt 0. Insgesamt sind es somit bei der Varianzanalyse 10 Moleküle, die kein
signifikantes Resultat ergeben.
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Hier bleiben folglich 60 Moleküle übrig, die je nach Messzeitpunkt und Methode mal
ein signifikantes, mal ein nicht-signifikantes Resultat haben. Diese Ergebnisse ähneln,
denen des Kruskal-Wallis-Tests, sind aber nicht ganz gleich. Die Tabelle 12 stellt die
Ergebnisse dar, wobei die acht Moleküle, die beim Kruskal-Wallis-Test nur signifikante
p-Werte hatten, hier wieder mit * markiert sind. Man erkennt, dass diese auch bei der
Varianzanalyse nur wenige nicht-signifikante Ergebnisse haben.

Molekül Bonferroni Holm Hochberg minP maxT BY BH H-Test
X17.* 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M27. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1
M29.. 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Formaldehyde. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0
X40. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
N2O. 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
HNO2. 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
Acetic.Acid. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
X68. 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
X69. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
X70. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1
X71. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
X74. 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X79. 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
X82. 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X83. 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
X85. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0
X89.* 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X95. 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
X97. 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X105. 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
X106. 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
EI.CO2.44 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1
M39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0
Propene 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0
M46 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0
M48* 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
M50* 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
M53 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Acetone 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
M62* 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
M65 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
M66 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Molekül Bonferroni Holm Hochberg minP maxT BY BH H-Test
Isoprene* 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
M69* 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
M70 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
M71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0
M72 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
M77 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Benzene 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0
M79 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1
M84 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0
M86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0
M87* 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M89 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1
M95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
M97 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
M99 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M100 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M102 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M104 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M105 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
M106 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
M107 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0
M110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
M112 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
M113 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0
M114 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Tabelle 12: Zusammenfassung aller Ergebnisse der Varianzanalyse bzw. Anova, die
je nach Zeitpunkte und Methode signifikant oder nicht signifikant sind; 0 steht für
signifikant und 1 steht für nicht signifikant. Mit * markierte Moleküle haben beim
Kruskal-Wallis-Test nur signifikante p-Werte.

Im Großen und Ganzen gehen die Ergebnisse der beiden Tests auf Lageparameter
in die gleichen Richtung und ähneln sich sehr, obwohl die Voraussetzungen für die
Varianzanalyse bei diesem Datenbeispiel nicht optimal sind.

5.3 R-Befehle

Die eben beschriebene Analyse wurde mit R und folgenden Befehlen durchgeführt:
Die Methode MTP aus dem Packet multtest berechnet die adjustierten p-Werte nach
den step-down Verfahren minP und maxT. Nachdem es sich bei diesen beiden Verfahren
um Resampling-Verfahren handelt, muss diese Methode sowohl die Permutationen
machen und für diese die p-Werte berechnen, als auch die nicht-adjustierten p-Werte
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der Originalstichprobe. Die anderen Adjustierungsverfahren können mit der Methode
p.adjust aus dem Packet stats angewendet werden. Dieser Methode werden die bereits
berechneten nicht-adjustierten p-Werte übergeben und sie adjustiert diese dann mit
dem gewünschten Verfahren. Damit alle Verfahren auf der gleichen Basis arbeiten
können, wurden die von der Methode MTP berechneten nicht-adjustierten p-Werte
auch an die Methode p.adjust zur Adjustierung der p-Werte mit den restlichen Ver-
fahren weitergegeben. Der Befehl der Methode MTP sieht so aus MTP (X, Y, robust,
test = ”f”, B = 100000,method = ””, nulldist = ”perm”, seed = 30). X ist die Matrix
mit den Daten, wobei für jede Zeile eine Hypothese getestet wird und Y ist der Vektor
mit den Gruppenbezeichnungen. Mit method = ”sd.minP” oder ”sd.maxT” wählt man
die step-down Varianten der minP und der maxT Prozeduren. test=”f” steht für die
Wahl eines F-Tests, wobei mit robust=TRUE die nicht-parametrische Variante, also der
Kruskal-Wallis-Test, gewählt wird und mit robust=FALSE der parametrische Test, also
die Varianzanalyse. nulldist=”perm” gibt an, dass eine Permutation als Resampling-
Variante verwendet werden soll. B gibt an wie viele Permutationen gemacht werden
sollen und mit seed wird der Startpunkt festgelegt, so dass immer dieselben Permuta-
tionen gezogen werden.
Die Adjustierungen nach Bonferroni, Holm, Hochberg, Benjamini&Yekutieli und Ben-
jamini&Hochberg können alle mit dem Befehl p.adjust(Z,method = ””) ausgeführt
werden, wobei method=”bonferroni”, ”holm”, ”hochberg”, ”by” oder ”bh” je nach ge-
wünschter Methode ist und Z ist der Vektor der nicht-adjustierten p-Werte.
Für die Analyse der Verteilungen wurden folgende Befehle verwendet:
Der Shapiro-Wilk-Test wird mit shapiro.test(V ariable) berechnet. Der Levene-Test
hat den Befehl levene.test(V ariable,Gruppenvariable) aus dem Packet lawstat. Für
den Quartilskoeffizienten der Schiefe wurden erst die 25%-, 50%- und 75%-Quantile
berechnet mit q <- quantile(V ariable, c(0.25, 0.50, 0.75), type = 1) und dann der Quar-
tilskoeffizient mit ((q[3] − q[2]) − (q[2] − q[1]))/(q[3] − q[1]). Das Wölbungsmaß von
Fisher kann mit Hilfe des Befehls kurtosis(V ariable) aus dem Packet e1071 berech-
net werden. Und um die Ausreißer zu ermitteln wurden erst die obere und die untere
Grenze des Zauns berechnet mit q[1]− 1.5 ∗ (q[3]− q[1]) und q[3] + 1.5 ∗ (q[3]− q[1]).
Und dann für jedes Molekül ermittelt wie viele Werte außerhalb dieser Grenzen liegen.

6 Fazit

Ganz allgemein ist es wohl vorteilhaft, wenn man um multiples Testen nicht herum
kommt, sich im Vorfeld zu überlegen bei welchen Hypothesen es wirklich sinnvoll ist
sie zu testen. Sprich nicht unbedingt notwendige Nullhypothesen erst gar nicht in
die Analyse aufzunehmen, um für eine kleinere Anzahl an Hypothesen adjustieren zu
müssen. So sollte man bei weiterführenden Analysen, die zum Beispiel untersuchen
könnten welche Gruppen sich anhand der Messwerte der Moleküle genau voneinander
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unterscheiden lassen, jene Moleküle weglassen, die bei keiner Methode und zu keinem
Zeitpunkt einen signifikanten Unterschied zwischen den Erregertypen angezeigt haben.
Möchte man auf jeden Fall falsch positive Ergebnisse vermeiden, sollte man eher eine
FWER-kontrollierende Prozedur wählen, da diese konservativer sind. Am extrem-
sten ist das Verfahren von Bonferroni, wobei dieses oft als zu konservativ gehalten
wird, weshalb die schrittweisen Verfahren von Holm und Hochberg, die mehr Power
haben, bevorzugt werden. Sollen mögliche Abhängigkeitsstrukturen der Variablen
berücksichtigt werden, empfehlen sich die Resampling-Verfahren minP und maxT von
Westfall&Young. So bieten sich diese Prozeduren bei diesem Datenbeispiel an, da es
durchaus möglich ist, dass das Vorhandensein von gewissen Molekülen das anderer
Moleküle positiv oder negativ beeinflusst. Sind ein paar Fehler 1. Art jedoch to-
lerierbar, so kann auch ein FDR-kontrollierendes Verfahren angewendet werden. Je
nachdem ob die Teststatistiken unabhängig sind oder nicht, ist das Verfahren von
Bejamini&Hochberg oder das von Benjamini&Yekutiele ratsam.
Bei diesem Beispiel möchte man, wie bereits erwähnt, vermutlich noch wissen zwi-
schen welchen Gruppen sich denn hier die signifikanten Unterschiede befinden bzw.
welche sich nicht unterscheiden. Denn bisher können nur Aussagen darüber getrof-
fen werden, ob generell ein signifikanter Unterschied besteht, jedoch nicht ob dieser
nur zwei Gruppen betrifft und welche das sind oder ob sich gar alle Gruppen dif-
ferenzieren lassen. Um nicht wieder mit einer so großen Anzahl an Hypothesen kon-
frontiert zu sein, sollten bei dieser Analyse die Moleküle ausgeschlossen werden, bei
denen keine Methode ein signifikantes Ergebnis gefunden hat. Da immerhin noch 125
Moleküle durchweg signifikante p-Werte haben, könnte man sich mit diesen Molekülen
begnügen, wenn ein Verlust von ein paar weiteren relevanten Molekülen verkraftbar
ist. Sonst muss man sich überlegen welche Adjustierungsmethode als Maß dienen soll.
Die von Benjamini&Hochberg zum Beispiel lehnt kaum weniger Hypothesen ab, als
der Kruskal-Wallis-Test ganz ohne Adjustierungen, ist also möglicherweise nicht strikt
genug und verbirgt einige falsch Positive. Außerdem dürfte interessant sein, ob auch
die einzelnen Erreger innerhalb einer Gruppe mit Hilfe dieser Messungen voneinander
unterschieden werden können.
Und schließlich genügt es nicht sich nur Gedanken über die Art der Adjustierung zu
machen, sondern das grundlegende Analyseverfahren muss ebenfalls richtig gewählt
sein. Denn wenn schon die nicht-adjustierten p-Werte falsch berechnet wurden, bringt
die Adjustierung auch nicht mehr viel. Bei diesem Beispiel scheint die Verletzung
der Normalverteilungsannahme und der Homoskedastizität keine große Auswirkung zu
haben. Trotzdem sollte man sich immer bewusst sein, ob denn die Voraussetzungen
erfüllt werden oder nicht und im Zweifelsfall auch eine nicht-parametrische Alternative
anwenden und dann die Ergebnisse vergleichen.
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