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Zusammenfassung

Diese Arbeit beschéftigt sich mit der Problematik des multiplen Testens. Dabei wer-
den die beiden Fehlerraten familiy-wise error rate (FW ER) und false discovery rate
(FDR), sowie insgesamt sieben Adjustierungsverfahren zur Kontrolle dieser Fehler-
raten behandelt. Dabei handelt es sich um die F'W E R-kontrollierenden Verfahren von
Bonferroni, Holm, Hochberg und die beiden Resampling-Verfahren von Westfall& Young,
sowie die beiden F'D R-kontrollierenden Verfahren von Benjamini& Hochberg und Ben-
jamini& Yekutieli. Eine praktische Anwendung dieser Verfahren findet anhand eines
Datenbeispiels statt, das sich mit der Analyse volatiler organischer Komponenten
verschiedener Bakterien und Pilze zur Erregerdifferenzierung befasst. In dieser Ar-
beit werden lediglich die drei Gruppen gram negative, gram positive und Pilze be-
trachtet und anhand von Tests auf Lageparameter analysiert, bei welchen Molekiilen
signifikant unterschiedliche Messwerte zwischen den Gruppen beobachtet werden. An-
hand der unterschiedlichen Konservativitat der Verfahren kann eine feste Reihenfolge
angegeben werden, die auch bei diesem Anwendungsbeispiel zu beobachten ist. Ins-
gesamt sind die F'W E R-kontrollierenden Verfahren konservativer, was bedeutet, dass
sie weniger Hypothesen ablehnen. Durch schrittweises Vorgehen bei der Adjustierung
der p-Werte kann jedoch ihre Power verbessert werden. KEinige Messwerte der insge-
samt 200 erfassten Molekiile zeigen einen signifikanten Unterschied zwischen den drei
Erregergruppen. Jedoch bedarf es noch weiterfithrender Analysen um festzustellen zwi-
schen welchen Gruppen genau sich diese Unterschiede befinden und um auch einzelne

Erreger desselben Erregertyps voneinander unterscheiden zu kénnen.

1 Einleitung

Ganz allgemein tritt das Problem des multiplen Testens immer dann auf, wenn anhand
eines Datenmaterials nicht nur eine sondern mehrere Fragestellungen geklart werden
sollen, also mehrere Nullhypothesen aufgestellt werden. Bei der Suche nach Beispielen
fiir multiple Testprobleme landet man sehr oft im Bereich der Medizin oder Biologie.
Es handelt sich dabei haufig um Microarray Studien, also die Genanalyse oder um
die Analyse eines neuen Medikaments, dessen Wirksamkeit anhand verschiedener As-
pekte gemessen wird. Das sind alles Themen die auch zukiinftig von Interesse sein
werden, wenn sie nicht sogar noch an Bedeutsamkeit gewinnen werden. Und so wird
auch die Frage der Behandlung des multiplen Testproblems in der Wissenschaft immer
prasenter.

Es gibt mittlerweile viele verschiedene Verfahren um auch beim multiplen Testen eine
Aussage iiber die Irrtumswahrscheinlichkeit machen zu kénnen. In dieser Arbeit sollen
einige ausgewahlte F'W ER- und F'D R-kontrollierende Methoden vorgestellt und ver-

glichen werden. Als praktisches Anwendungsbeispiel dienen hier Daten volatiler or-



ganischer Komponenten verschiedener Bakterien und Pilze. Der genaue Aufbau dieses
Datensatzes, sowie die Fragestellung dahinter werden im ersten Abschnitt dargestellt.
Anschlielend folgt ein Kapitel zur statistischen Theorie, in dem zum einen das mul-
tiple Testproblem und die zwei Fehlerraten genau definiert werden und verschiedene
Adjustierungsverfahren vorgestellt werden, und zum anderen zwei mogliche Tests auf
Lageparameter beschrieben werden, die zur Beantwortung der Fragestellung benotigt
werden. Dann folgt der Vergleich der Adjustierungsverfahren. Dieser erfolgt zunéchst
rein theoretisch im Kapitel 4 und letztlich im Kapitel 5 auch praktisch anhand der
Ergebnisse der Analyse des Datenmaterials. Abschlieend erfolgt eine Zusammen-
fassung der Ergebnisse mit Fazit und ein Ausblick auf mogliche weitere interessante

Fragestellungen.

2 Daten und Fragestellung

Die Daten stammen aus einem Experiment, das im Klinikum Grofhadern durchgefiihrt
wurde. Inhaltlicher Hintergrund dieses Experiments stellt die Identifikation von Er-
regern dar. Dazu wurden Néahrlosungen (LB = lysogeny broth) angesetzt und mit
verschiedenen Erregern versetzt. Diese Erreger konnen drei Gruppen zugeordnet wer-
den, den gram negativen, den gram positiven und den Pilzen. Folgende Erreger wurden

betrachtet und mit diesen Abkiirzungen versehen:

gram negativ

PV: Proteus vulgaris

ECL: Enterobacter cloacae
KO: Klebsiella oxytoca

KP: Klebsiella pneumoniae
SM: Serratia marcescens

PA: Pseudomonas aeruginosa
EC: Escherichia coli

gram positiv

SA: Staphyloccus aureus

SE: Staphyloccus epidermidis
EFCL: Enterococcus faecalis

EFCM: Enterococcus faecium

Pilze
CA: Candida albicans
CK: Candida krusei.

Mit Hilfe eines Massenspektrometers wurden die volatilen (lateinisch volatilis = fliegend;
flichtig) organischen Komponenten verschiedener Bakterien oder Pilze gemessen. In

den mit Erregern angereicherten, sowie in einigen puren Néahrlosungen, wurde also

2



gemessen welche Molekiile enthalten sind und in welcher Menge. Insgesamt wurden
dabei 200 verschiedene Molekiile betrachtet. Diese Messungen wurden zu vier Messzeit-
punkten (TO, T1, T2, T3), nach 10, 120, 240 und 360 Minuten, durchgefithrt. Die
Stichprobengrofien der drei Gruppen sind nicht gleich, da zum einen unterschiedlich
viele Erreger je Gruppe betrachtet wurden und zum anderen, je nachdem wie viele
Versuche gegliickt sind, es einen bis neun Messwerte pro Erreger und Zeitpunkt gibt.
Zusatzlich wurden noch drei Variablen erstellt, die den Zeitpunkt und den Erregertyp
als character und als factor angeben.

Mit Hilfe dieser Daten soll folgende Fragestellung geklart werden: Koénnen die drei
Erregertypen hinsichtlich der Messwerte der verschiedenen Molekiile voneinander un-
terschieden werden? Also differenzieren sich die Messwerte der volatilen organischen
Komponenten beziiglich der Erregertypen signifikant voneinander?

In der weiteren Arbeit sollen folgende Indizes fiir alle Formeln gelten:

j=1,...,m ist der Index fiir die Variablen, also hier die 200 Molekiile und somit auch
fiir die dazugehorigen Hypothesen. ¢ = 1,...n steht fiir die Beobachtungen, in diesem
Fall somit die Erreger. n ist folglich die Stichprobengréfie und setzt sich aus ny, ns
und n3 zusammen, den Stichprobengréfien der drei Erregertypen gram negative, gram
positive und Pilze. [ = 1, ..., k ist der dazugehorige Index fiir diese Gruppen. Permu-

tationen erhalten den Index b =1, ..., B. s, t, v und z dienen als freie Laufindizes.

3 Theorie

3.1 Tests auf Lageparameter

Um die oben genannten Fragestellungen beantworten zu kénnen bedarf es eines Tests
auf Lageparameter. Die Nullhypothese geht dabei immer von Gleichheit aus, die Alter-
nativhypothese von Ungleichheit. Bei einem signifikanten Unterschied wird folglich die
Nullhypothese abgelehnt. Da bei diesem Datenbeispiel drei Gruppen miteinander ver-
glichen werden sollen, kommen die Varianzanalyse (ANOVA) als parametrischer Test
und der Kruskal-Wallis-Test, auch H-Test genannt, als nicht-parametrischer Test in
Frage.

Allgemein liegt im Folgenden diese Datenstruktur vor: es sind k Stichprobengruppen
gegeben und insgesamt n Stichprobenelemente, wobei n = Zf:l n; und nq, ng, ..., n; die
Umféange der k Stichproben sind. Dabei wird hier vorerst das Vorgehen nur fiir eine
Variable dargestellt. Auf das vorliegende Datenbeispiel bezogen bedeutet das, dass
nicht 200 Molekiile, sondern nur ein Molekiil betrachtet wird. Das heifit es wird darauf
verzichtet, alles mit einem j zu versehen um anzuzeigen, dass das fiir das j-te Molekiil

berechnet wird, was die vielen Indizes iibersichtlicher machen soll.



3.1.1 Varianzanalyse

Die Varianzanalyse ist eine Verallgemeinerung des ¢-Tests und kann zum Vergleich be-
liebig vieler Erwartungswerte verwendet werden (k > 2). Da bei diesem Datenbeispiel
nur ein Faktor vorliegt, der Erregertyp, wird die einfaktorielle Varianzanalyse betrach-
tet. Bei dieser soll untersucht werden, ob die einzelnen Stufen des Faktors eine sig-
nifikant unterschiedliche Wirkung auf das interessierende Merkmal, hier der Messwert
eines Molekiils, haben. Die Nullhypothese und die zugehorige Alternativhypothese fiir
jedes einzelne Molekiil j lauten somit: Hj : py = pg = ... = ju, und H) - pg #
fir mindestens zwei p; mit s,¢t = 1,....,k und s # ¢t. (vgl. Fahrmeir u.a. (2012): S.
516-519)

Die richtige Anwendung der Varianzanalyse erfordert drei Voraussetzungen, die die
Daten erfiillen sollten: die Varianzhomogenitit, das heifit es wird angenommen, dass
die Varianzen in den jeweiligen Grundgesamtheiten gleich sind, die Normalverteilungs-
annahme und die Unabhéangigkeit aller Beobachtungen. (vgl. Fahrmeir u.a. (2010): S.
527-528) Auf die Priifung der ersten beiden Annahmen wird spéter in diesem Abschnitt

eingegangen.

Seien z;; die Stichprobenwerte, also der i-te Wert in der [-ten Stichprobe (1 < k;1 <

i < ny). Die Gruppenmittelwerte z; sind dann gegeben durch

_ 1 X
Ty = — Z Ty (1)
M=
und das Gesamtmittel  durch
Ly Sty
= — Ty = — nlfl . (2)
n=is na=

Zentral bei der Varianzanalyse ist die Streuungszerlegung, bei der sich die Summe der
Abweichungsquadrate (SAQ) der Stichprobenwerte um das Gesamtmittel (”"Qgesamt”)
in zwei Teile zerlegen lésst:

1. SAQ der Einzelwerte um die Gruppenmittelwerte, also die Streuung innerhalb der

Gruppen (”Qinnerhalb”)
2. SAQ der Gruppenmittelwerte um das Gesamtmittel, also die Streuung zwischen den

Gruppen (anwischen”)

Qgesamt = Qinnerhalb + szischen (3)
kK mny ng k
Z (21 — 3_7)2 = Z (w1 — 51)2 + an(fl - 2_0)2 . (4)
I=1i=1 I=1i=1 =1

Teilt man die SAQ durch die zugehorigen Freiheitsgrade erhdlt man die mittleren



Quadrate (MQ). Wobei fiir die Freiheitsgrade gilt: (n —1) = (n — k) + (k — 1). Die

mittleren Quadrate sind somit definiert durch:

1 &
Mszischen = S?wischen - 7. 1 an<xl - $)2 (5)
k-1
und
9 1 k ng .
MQinnerhalb = Sinnerhalb = m Z Z(xll - ZE[) . (6)

Kommen die Gruppen aus derselben Grundgesamtheit, sollten die Varianzen, also diese

mittleren Quadrate, etwa gleich grof3 sein. Die Priifgrofie um die Nullhypothese p; =

fto = ... = . zu testen berechnet sich folgendermafien
L S (T — 7)? L SE (T — 7)?
ﬁ . Mszischen o kE—1 =17 o kE—1 =1 (7)
~ MO, -1 n ., 1
annerhalb m Zle Ziél(xli _ $Z)2 m Zle 812(77,[ _ 1)

und gilt F>F (k—1;n—k;1—a), SO wird diese Nullhypothese abgelehnt. Das bedeutet, dass
sich mindestens zwei 1; voneinander unterscheiden. (vgl. Sachs/Hedderich (2009): S.

490-491)

Bevor die Varianzanalyse durchgefiihrt werden kann miissen die bereits erwahnten An-
nahmen geprift werden.

Fiir die Uberpriifung der Normalverteilungsannahme wird der Shapiro-Wilk-Test ver-
wendet. Dieser soll auf das Datenbeispiel bezogen, fiir jedes Molekiil j feststellen,
ob diese Stichprobe einer normalverteilten Grundgesamtheit entstammt. Jedoch wird
auch hier der Einfachheit halber der Index fiir das Molekiil weggelassen.

Die Nullhypothese dieses Tests geht davon aus, dass die Stichprobe x1, xs, ..., x, aus
einer normalverteilten Grundgesamtheit stammt. Ist der p-Wert also nicht signifikant
kann von einer Normalverteilung ausgegangen werden. Die Idee der zugehorigen Test-
statistik TV ist es einen Quotienten aus zwei Schitzungen fiir die Varianz o darzustellen.

Im Zahler ist die Schiatzung der Regressionsgeraden im QQ-Plot und im Nenner die

2 _ 1

—5 >i—1(x; — 7). Man erhélt somit folgende Formel fiir w

Stichprobenvarianz s

Ty b? o ( ?:1 aix?”i)2
W= De T —ap ®)

wobei z,, die, der aufsteigenden Grofle nach sortierten, Beobachtungen sind und b =

BS it R = m™V=lm, C = (m"V-'V"'m)? und & = V12 Wobei V die Ko-

varianzmatrix ist und m” = (my, ..., m,) die erwarteten Ordnungsstatistiken aus einer




Normalverteilung sind. Aufierdem gilt o’ = (ay,...,a,) = % und 7(...)a;
sind konstante Werte, die aus den Mafizahlen der Ordnungsstatistik einer normalverteil-
ten Zufallsvariablen abhangig vom Stichprobenumfang n erzeugt oder entsprechenden
Tabellen entnommen werden kénnen” (Sachs/Hedderich (2009): S. 398).

Ergibt der Quotient 1 liegen die beiden Schatzungen fiir die Varianz nahe zusammen
und es handelt sich um eine Normalverteilung. Kleine Werte von w sprechen fiir eine

Verletzung der Normalverteilungsannahme. (vgl. Sachs/Hedderich (2009): S. 397-398
und vgl. Shapiro/Wilk (1965): S. 592-593)

Ob Homoskedastizitat vorliegt wird mittels des Levene-Tests tiberpriift. Hier wird
die Gleichheit der k& Varianzen mittels einer einfachen Varianzanalyse getestet. Dabei
miissen die k£ Stichprobengruppen mindestens 10 Beobachtungen aufweisen. Die Null-
hypothese lautet dann Hy : 0? = 02 = ... = 07, im Gegensatz zur Alternativhypothese
H, : 0% # o2 fiir mindestens zwei 0; mit s,t = 1,...,k und s # t. H, wird abgelehnt
und somit liegt keine Varianzhomogenitat vor, wenn F' der Varianzanalyse grofler ist
als Fi_1.n—k:1—a- F wird nach einer Transformation Y1 = |y — %) der Beobachtungen,
wobei Z; den Median der [-ten Gruppe darstellt, mit der bereits erwahnten Formel (7)
aus dem Abschnitt zur Varianzanalyse berechnet. (vgl. Sachs/Hedderich (2009): S.

489-490)

3.1.2 Kruskal-Wallis-Test oder H-Test

Analog zum Wilcoxon-Mann-Whitney-Test, auch bekannt als U-Test, priift der Kruskal-
Wallis-Test, auch H-Test genannt, ob die k£ Stichproben aus derselben Grundgesamtheit
kommen, ob die k£ Verteilungsfunktionen also gleich sind. Die Nullhypothese und die
dazugehorige Alternativhypothese fir das Molekil j lauten: Hj : Fy = Fy = ... = F},
und Hf . Fy, # F, fiir mindestens zwei F; mit s,t = 1,...,k und s # t. Wie im vorherge-
henden Abschnitt wird die Vorgehensweise des Kruskal-Wallis-Tests fiir ein beliebiges
Molekiil j beschrieben, ohne den Index j jedes Mal hinzuzunehmen. Die Messwerte
werden der Grofle nach aufsteigend sortiert und ihnen Rénge von 1 bis n zugeordnet.
Die Priifgrofie des Kruskal-Wallis-Tests lautet:
— 12 b R?

o =3+ 1), (9)

[n(n +1) =

mit R; als Summe der Range der [-ten Stichprobe. Durch die Beziehung Zle R, =
@ kann kontrolliert werden, ob die Range richtig verteilt wurden. H, wird abgelehnt,
wenn der errechnete Wert H grofler oder gleich dem H-Wert aus der Chi-Quadrat-
Tabelle ist mit P < a.

Haben Werte die gleiche Rangzahl wird dies als Bindung bezeichnet. Sind mehr als



25% aller Messwerte in Bindungen muss H mit folgender Formel korrigiert werden:

—

H
nt(fy = tu)
(n® —n)

j{\korr = (10)

1—

wobei t, die Anzahl der jeweils gleichen Rangplitze in der Bindung u aus allen z
Bindungen bezeichnet. Ist der Wert von H bereits signifikant ist es nicht notwendig

H, rorr 20 berechnen, da der korrigierte Wert immer grofler ist als der nicht korrigierte.

(vgl. Sachs/Hedderich (2009): S. 514-515 )

3.2 Multiples Testen

"Sollen aufgrund eines Datensatzes mehrere Testprobleme anhand von Signifikanztests
tiberpriift werden, spricht man von einem multiplen Testproblem” (Fahrmeir u.a. (2010):
S. 428). Da bei dem vorliegenden Datenbeispiel nicht nur fiir ein Molekiil getestet
werden soll, ob sich hinsichtlich ihrer Messwerte die drei Erregertypen voneinander un-
terscheiden, bedarf es hier auch nicht nur eines Tests auf Lageparameter, sondern 200.
Und somit liegt ein multiples Testproblem vor. Mit dieser Problematik, sowie einiger

ausgewahlter Methoden damit umzugehen, befasst sich dieses Kapitel.

3.2.1 Fehlerraten

Wird ein statistischer Test gemacht geht es darum die Entscheidung zu treffen, ob
eine vorher formulierte Nullhypothese abgelehnt oder beibehalten werden soll. Dabei
konnen zwei verschiedene Fehlentscheidungen getroffen werden. Die Nullhypothese
wird abgelehnt obwohl sie wahr ist. Dies wird Fehler 1. Art bzw. a-Fehler genannt
oder auch als falsch-positives Ergebnis bezeichnet. Die andere mogliche Fehlentschei-
dung liegt darin die Nullhypothese beizubehalten obwohl sie falsch ist. Dies wird
analog Fehler 2. Art bzw. [§-Fehler oder auch falsch-negatives Ergebnis genannt. Bei
nur einem Test wird die Wahrscheinlichkeit den Fehler 1. Art zu begehen durch das
Signifikanzniveau « kontrolliert. Werden mehrere Tests simultan durchgefiihrt ist es
jedoch moglich mehrere a-Fehler zu machen, oder auch dass Fehler unterschiedlicher
Art gleichzeitig auftreten, was bei der Konzeption der Fehlerraten zur Kontrolle des
Fehlers 1. Art berticksichtigt werden muss. (vgl. Zierer (2013): S. 20-21)

Tabelle 1 zeigt die moglichen Ausgénge eines Signifikanztests.

Nullhypothese | nicht abgelehnt abgelehnt

wahr U V mo

falsch T S m
m—R R m

Tabelle 1: Mogliche Testausgange



m die Anzahl der getesteten Hypothesen ist bekannt, my und m; die Anzahl der wahren
und falschen Hypothesen sind unbekannt. R stellt eine beobachtete Zufallsvariable dar
und S, T, U und V sind nicht beobachtbare Zufallsvariablen. Ziel beim Testen ist es
V', die Anzahl der Fehler 1. Art und 7', die Anzahl der Fehler 2. Art, moglichst gering
zu halten. Bei einem Test mit einer geringen Anzahl von Fehlern 2. Art, spricht man
auch von einer hohen Power. (vgl. Dudoit u.a. (2003): S. 73)

Im Folgenden werden zwei Ansétze von Fehlerraten, die helfen sollen den Fehler 1. Art

auch bei multiplen Tests zu kontrollieren, vorgestellt.

FWER

Die "family-wise error rate” (FW ER) ist als die Wahrscheinlichkeit, dass mindestens
ein Fehler 1. Art gemacht wird, definiert

FWER=P({V >1). (11)

FDR

Die "false discovery rate” (F'DR) stellt den erwarteten Anteil von Fehlern 1. Art unter
allen abgelehnten Hypothesen dar

. V/R wenn R > 0
FDR=E(Q) mitQ = (12)
0 wenn R =0 .

Oder anders dargestellt: FDR = E(V/R|R > 0)P(R > 0). (vgl. Dudoit u.a. (2003):
S. 73)

Ein multipler Test gilt also als kontrolliert zum Niveau « hinsichtlich einer dieser Fehler-
raten, wenn gilt FWFER < a bzw. FDR < «. Man unterscheidet hierbei zwischen
schwacher und starker Korntrolle. Letztere kontrolliert die Fehlerrate unabhangig der

Kombination aus wahren und falschen Nullhypothesen. Die schwache Kontrolle hinge-
=
heiBt dass alle Nullhypothesen wahr sind. (vgl. Dudoit (2003): S. 73-74)

Die FW ER hat ein sehr strenges Kriterium, die Wahrscheinlichkeit, dass mindestens

ein Fehler 1. Art auftritt. Somit stellt sie das konservativere Konzept dar. Dies bietet

gen kontrolliert unter der globalen Nullhypothese HE 1 H; mit mg = m, das

jedoch im Vergleich zur F'DR den Vorteil, dass nicht nur ein Erwartungswert kontrol-
liert wird. ”Allerdings wird hier die Anzahl der abgelehnten Hypothesen und damit
indirekt der Anteil wahrer Nullhypothesen mit einbezogen. Damit ist die F DR trotz
ihrer Schwichen eine weniger restriktive Alternative zur FWER (...)” (Zierer (2013):
S.35). Es gilt FWER < FDR, wobei Gleichheit eintritt, wenn alle Nullhypothe-
sen wahr sind. Denn in diesem Fall entspricht die Anzahl der falschlich abgelehn-

ten Hypothesen der Anzahl aller abgelehnten Hypothesen, also V' = R. Folglich
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nimmt ¢) den Wert 1 fiir V' > 0 und den Wert 0 fiir V' = 0 an. Damit erhélt man
FDR=E(Q) =1-P(V > 0) = FWER. Daraus ergibt sich, dass eine Kontrolle der
FDR auch eine schwache Kontrolle der FW ER gewéhrleistet. (vgl. Zierer (2013): S.
32/S. 35 und vgl. Dudoit u.a. (2003): S. 74) FWER und FDR sind nahezu gleich,
wenn die Anzahl falscher Hypothesen klein ist, und F'D R wird umso kleiner als FW ER
ausfallen je grofier die Anzahl falscher Hypothesen ist. (vgl. Sachs/Hedderich (2009):
S. 498)

3.2.2 Adjustierungsverfahren

Der Fehler 1. Art wird mit Hilfe von « reguliert. Ist der p-Wert kleiner als das
vorgegebene Signifikanzniveau «, bedeutet das bei nur einem Test, dass die Null-
hypothese mit einer Irrtumswahrscheinlichkeit von « abgelehnt werden kann. (vgl.
Sachs/Hadderich (2009): S. 361) Werden mehrere Tests gemacht steigt die Wahrschein-
lichkeit mindestens einen Fehler 1. Art zu machen. Bei m unabhangigen Tests zum
Niveau « gilt fiir die Wahrscheinlichkeit mindestens ein falsch positives Ergebnis zu
erhalten: a* = 1—(1—a«)™. Zur Verdeutlichung dieser Problematik ein Beispiel. Sei «
= 0.05, so ergibt sich fiir o* bei m Hypothesen Folgendes in Tabelle 2. (vgl. Fahrmeir
u.a.(2010): S. 428)

m | o

31 0.143

51 0.226

10 | 0.401
100 | 0.994()

Tabelle 2: «* im multiplen Fall im Verhéaltnis zur Anzahl m der Hypothesen und
dem Signifikanzniveau o = 0.05 der einzelnen Tests.

Um zu verhindern, dass die vorgegebene Fehlerwahrscheinlichkeit iiberschritten wird,
gibt es verschiedene Korrekturverfahren. Generell geht es darum die einzelnen Hy-
pothesen nur dann abzulehnen, falls der zugehorige adjustierte p-Wert kleiner gleich
dem vorgegebenen Signifikanzniveau ist. Dabei gibt es verschiedene Vorgehensweisen.
Man unterscheidet zwischen single-step Verfahren und schrittweisen Verfahren.

Bei den single-step Verfahren wird die entsprechende Adjustierung fiir alle Hypothesen
gleich und unabhéngig der Testergebnisse der anderen Hypothesen durchgefiihrt.

Die schrittweisen Prozeduren betrachten und adjustieren die Hypothesen nacheinander,
sodass vorherige Tests die nachkommenden Ergebnisse beeinflussen. Hierfiir werden die
noch nicht adjustierten p-Werte der Grofie nach sortiert.

Step-down Verfahren beginnen mit dem Adjustieren bei den Hypothesen mit den klein-
sten p-Werten, also mit den signifikantesten Hypothesen. Sobald eine Nullhypothese
nicht abgelehnt werden kann wird keine weitere Hypothese mehr abgelehnt.

Step-up Prozeduren verfahren umgekehrt. Sie beginnen mit den am wenigsten sig-
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nifikanten Hypothesen und sobald eine abgelehnt wurde werden alle folgenden Hy-
pothesen auch abgelehnt. (vgl. Dudoit u.a. (2003): S.78)

Im Folgenden werden einige Adjustierungsverfahren vorgestellt. Zuerst die F'W E R-

und anschliefend die F'D R-kontrollierenden Prozeduren.

Bonferroni

Das Adjustierungsverfahren nach Bonferroni ist eine single-step Prozedur zur Kontrolle
der FWER zum Niveau a. Dabei werden alle Hypothesen H; abgelehnt, deren nicht
adjustierter p-Wert kleiner oder gleich - ist. Oder anders ausgedriickt, die adjustierten

p-Werte nach Bonferroni sind definiert als

p; = min(mp;, 1) . (13)

Erklart wird diese Adjustierung durch folgende Ungleichung, bei der angenommen wird,
dass H; die wahren Nullhypothesen sind mit j = 1, ..., mq:

mo mo mo

FWER=PV >1)=P(|J(P<a) <Y P(P<a)< Y PP<

R

Mmoot
) < :

m

3le

Jj=1 Jj=1 J=1

wobei die letzte Ungleichung aus der Beziehung P(FP; < z|H;) < z fiir alle x€[0,1]
hergeleitet wird und }3j und P; die Zufallsvariable der adjustierten bzw. nicht-adjustierten
p-Werte bezeichnet. (vgl. Dudoit u.a. (2003): S. 78 und vgl. Sachs/Hedderich (2009):
S. 498-499)

Da es sich bei den folgenden vier Verfahren um Resampling-Verfahren handelt, soll all-
gemein das Prinzip dieser Vorgehensweise vorab kurz beschrieben werden. Mit Hilfe von
Resampling-Verfahren kénnen p-Werte bestimmt werden, ohne dass unter der Nullhy-
pothese eine Verteilungsannahme gemacht werden muss. Da die empirische Verteilung
aus der Stichprobe als Schatzer fiir die wahre Verteilung dient, kann so die Verteilung
indirekt einbezogen werden. Basis von Resampling-Verfahren ist die wiederholte Ver-
wendung einer einmal erhobenen Stichprobe. Hier soll das mit Hilfe von Permutationen
geschehen, das heiffit durch das mehrmalige Neusortieren der Originalstichprobe. Im
multiplen Fall méchte man die Abhéangigkeitsstruktur der Teststatistiken erhalten und
lasst deshalb dabei jeweils gesamte Beobachtungsvektoren zusammen. Dadurch kann
die gemeinsame Verteilung beriicksichtigt werden, ohne dass diese explizit bekannt
sein muss. Bei der Permutation werden jeweils n; Beobachtungen zufallig der [-ten
Gruppe zugeordnet und die gewiinschte Priifgrofie bestimmt. Da die Anzahl moglicher
Permutationen oft sehr grof ist, wird meist nur eine Stichprobe aus allen moglichen
Permutationen verwendet. (vgl. Zierer (2013): S. 42-43)
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single-step minP Prozedur

Das erste Resampling-Verfahren ist die single-step Variante des minP-Verfahrens von
Westfall&Young (1993). Allgemein sind die adjustierten p-Werte wie folgt definiert:

pj = P(min P, < p|HF) . (14)

wobei P, die Zufallsvariable des nicht-adjustierten p-Wertes der s-ten Hypothese be-
zeichnet und H§ die bereits definierte globale Nullhypothese. (vgl. Dudoit u.a. (2003):
S. 78)

Dieses Vorgehen lasst sich auch schrittweise darstellen. Fiir die b-te Resampling-
Stichprobe, b = 1, ..., B, wird dabei folgendermaflen vorgegangen: Im ersten Schritt
wird ein Vektor von nicht-adjustierten p-Werten p*® = (p3?, ..., p?) fiir die Nullhypothe-
sen Hi i =1,..,m, erzeugt. Um (approximativ) die gleiche Verteilung wie die origi-
nalen p-Werte unter der globalen Nullhypothese H§ zu erhalten kann als Resampling-
Verfahren das eben vorgestellte Permutationsverfahren angewendet werden. Fiir diese
Permutation werden dann die nicht-adjustierten p-Werte genau wie bei der Original-

stichprobe berechnet. Im zweiten Schritt wird das Minimum der p-Werte der b-ten
*b

Resampling-Stichprobe p>. n p;-‘b berechnet.

.,m

= mi
j:17' )
Schliefflich sind die adjustierten p-Werte folgendermaflen definiert:

~ Zl?:l 1( #L)m Sp])

(15)

mit j = 1,...,m und 1 als Indikatorfunktion. (vgl. Zierer (2013): S. 46-47)

single-step maxT Prozedur

Alternativ konnen statt der nicht-adjustierten p-Werte auch die Teststatistiken verwen-
det werden, wie bei der maxT Prozedur, die zunéchst ebenfalls als single-step Variante
dargestellt ist (vgl. Dudoit u.a. (2003): S. 78):

5y = P(maz [T.] = L1 HE) (16)

Das schrittweise Vorgehen ist ebenfalls analog zur minP Prozedur: Im ersten Schritt
werden die Teststatistiken ¢1°,... ¢*% der b-ten Permutation fiir jede Hypothese Hg

berechnet. Im zweiten Schritt wird fiir eine zweiseitige Alternative an Stelle des Mini-

*b _

mums der p-Werte das Maximum der Betrége der Teststatistiken genommen trmaz)| =

max ]t;b | mit b = 1,..., B. Und die adjustierten p-Werte somit folgendermaflen berech-
7j=1,....m
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net: B )
~ szl I]'(t;knaa:|'| Z |t]|)
p] - B .

(17)
(vgl. Zierer (2013): S. 47)

Die single-step Prozeduren sind eher konservativ und haben somit eine geringere Power,
was durch ein schrittweises Verfahren deutlich verbessert werden kann (vgl. Dudoit u.a.
(2003): S.79). Seien im Folgenden p,, < p,, < ... < p,, die beobachteten geordneten
nicht-adjustierten p-Werte und H,,, H,,, ..., H,, die zugehorigen Nullhypothesen.

step-down minP Prozedur

Analog zur single-step minP-Prozedur haben Westfall&Young (1993) auch eine step-

down minP-Prozedur mit den adjustierten p-Werten

Pr; = tn”{aazj{P( [mz'n ]PS < p, |H)} (18)
) SE|Tty...y Tm

entwickelt (vgl. Dudoit u.a. (2003): S. 79-80). Diese verfdhrt mit der b-ten Resampling-

Stichprobe, b = 1, ..., B, wie folgt: Auch hier geht es im ersten Schritt um die Berech-

nung der nicht-adjustierten p-Werte der b-ten Permutation pi°,...,p: fiir jede Hy-

pothese Hg mit j = 1,...,m. Im zweiten Schritt werden zunéachst die sukzessiven Min-

*b __ b *b . *b *b s
m prm U.Ild q] - mln(qj+1,ij),j -

1,...,m—1, wobei der Rang r; nach den beobachteten p-Werten vergeben wird, sodass

ima der nicht-adjustierten p-Werte berechnet, ¢

sich die oben genannte Monotonie der p,; ergibt. Dabei ist es nicht zwingend, dass die
p-Werte p:fj’ der Resampling-Stichprobe dieselbe Monotonie aufweisen wie die p-Werte,

die auf der urspriinglichen Stichprobe basieren. Die adjustierten p-Werte werden dann

mittels 5 ( , )
~ Zb:l 1 q* S Dr;
QTj = B] ’ (19)
berechnet, mit 1 als Indikatorfunktion.
Anhand der sukzessiven Maxima
ﬁn = q~r17 ﬁrj = ma$<q~rjaprj,1> (20)

fir j = 2,...,m wird die Monotoniebedingung erzwungen. Wie bei einer step-down
Prozedur iiblich, werden die Hypothesen Hj',..., Hy’ solange abgelehnt bis das er-
ste Mal p,,,, > « eintritt. Die entsprechende sowie alle nachfolgenden Hypothesen
Hy'™' .. Hj™ kénnen nicht mehr abgelehnt werden. (vgl. Zierer (2013): S.50-51)
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step-down maxT Prozedur

Wie bei der single-step Variante gibt es auch hier das Analogon der maxT Prozedur

(vgl. Dudoit u.a. (2003): S. 80):

ﬁr‘j = tmlaaf{]P( min }Ps < prt’HOC)} : <21)
=1,...j

SG{Tt ~~~~~ Tm

Die schrittweise Darstellung sieht hier fiir die b-te Resampling-Stichprobe, b =1, ..., B,
wie folgt aus: Im ersten Schritt werden die Teststatistiken ¢i°, ..., % der b-ten Permu-
tation fiir jede Hypothese Hg berechnet. Im zweiten Schritt werden dann die sukzes-
siven Maxima der Teststatistiken berechnet, u;? = [£;* | und uw}® = max(u}t,, \t;ﬁf]) mit
j = 1,...,m —1, wobei r; den Rang der beobachteten Teststatistiken bezeichnet, so
dass |t,,| > |t,,| > ... > |t | gilt. Die Monotonie der Resampling-Stichprobe ist dabei
nicht zwingendermaflen dieselbe wie die der Originalstichprobe. Schliefllich werden die

adjustierten p-Werte durch

o TR PO 2 1)
Ty B

(22)
geschatzt. Mit Hilfe der sukzessiven Maxima

ﬁrl = qh’ ﬁrj - mal‘((jrﬁﬁrj_l) (23)

fir j = 2,...,m wird die Monotoniebedingung erzwungen. Bis zum ersten Mal p, , >
« eintritt, werden alle Nullhypothesen H{', ..., Hy’ abgelehnt. Die zugehorige, sowie
alle darauffolgenden Hypothesen H,’", ..., Hy™ kénnen nicht abgelehnt werden. (vgl.
Zierer (2013): S. 51-52)

Beide minP Verfahren, sowie beide maxT Verfahren basieren auf der Annahme der
globalen Nullhypothese H§ und stellen somit eine schwache Kontrolle der FWER
dar. Trifft jedoch die Subset Pivotality zu, so handelt es sich bei allen Prozeduren um
starke Kontrollen der Fehlerrate. (vgl. Zierer (2013): S. 47-48 und S. 51) Diese Subset
Pivotality ist folgendermaflen definiert: "Die Verteilung P hat die Subset Pivotality
Eigenschaft, wenn, fiir alle Teilmengen K C {i;i € J(#)} von wahren Nullhypothesen,
die gemeinsame Verteilung des Subvektors { P;;i € K} unter N;cx HE und HS identisch
ist. Dabei bezeichnet P = (P, ..., P,,) den Zufallsvektor der p-Werte” (Zierer (2013):
S. 37).

Holm

Ein weiteres step-down Verfahren zur Kontrolle der FW ER ist von Holm (1979) und
geht folgendermaflen vor: Finde ein j* = min{j : p,, > m%ﬁ_l} und lehne alle Hy-

pothesen H, fir j =1,...,7 —1 ab. Existiert so ein j* nicht, lehne alle Hypothesen
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ab. Die adjustierten p-Werte nach Holm sind definiert durch

Pr, = mazx {min((m —t+ 1)p,,, 1)} . (24)

7777 ]

Die Holm-Prozedur erzwingt durch das sukzessive Vorgehen eine Monotonie der ad-
justierten p-Werte p,, < pp, < ... < pp,,. Somit kann eine einzelne Hypothese nur
abgelehnt werden, wenn alle vorhergehenden Hypothesen, also alle mit kleineren nicht-
adjustierten p-Werten, bereits abgelehnt wurden. (vgl. Dudoit u.a. (2003): S.79)

Hochberg

Das step-up Verfahren von Hochberg (1988) zur Kontrolle der FW E'R ist das Pendant
zum Verfahren von Holm. Es hat dieselben kritischen Werte, beginnt aber mit den
groBten p-Werten. Sei j* = maz{j : p,, < m%m}, lehne alle Hypothesen H, ab fiir
j=1,...,5%. Falls so ein j* nicht existiert, lehne keine Hypothese ab. Die adjustierten
p-Werte nach Hochberg sind somit definiert als

bry = min {min((m —t+ )p,,, 1)} . (25)

t=joerr

Da diese Prozedur ebenfalls sukzessiv vorgeht, erhalt man auch hier eine Monotonie
der adjustierten p-Werte. Vorteil des Verfahrens von Hochberg konnte sein, dass es
mehr Power hat, da step-up Prozeduren oft mehr Power als ihren step-down Pendants
zugeschrieben wird. Dazu aber spéter in Kapitel 4 mehr. (vgl. Dudoit u.a. (2003): S.
80)

Nachdem alle Adjustierungsverfahren zur Kontrolle der FW ER vorgestellt wurden,
folgt nun die Beschreibung der Adjustierungsverfahren zur Kontrolle der FDR.

Benjamini&Hochberg

Das erste F'D R-kontrollierende Verfahren unterliegt der Annahme, dass die Teststatis-
tiken unabhéngig sind. Diese step-up Prozedur von Bejamnini&Hochberg (1995) geht
dabei folgendermafien vor: Bestimme ein j* = max{j : p,, < %a} und lehne alle Hy-
pothesen H, mit j =1,...,7" ab. Falls so ein j* nicht existiert wird keine Hypothese
abgelehnt. Die entsprechenden adjustierten p-Werte nach Benjamini&Hochberg sind,
wie folgt, definiert:

Pr, = t_mm {mz’n(%pm 1} (26)

(vgl. Dudoit u.a. (2003): S. 80)
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Benjamini& Yekutieli

Ein konservativeres Verfahren, das die FDR fiir willkiirliche Abhéngigkeitsstrukturen
kontrolliert, kommt von Benjamini& Yekutieli (2001). Es handelt sich hierbei ebenfalls

um eine step-up Prozedur, die mit folgender Definition fiir die adjustierten p-Werte

_ . o my g
Py = pin, fmin(—==p., 1) o

einen groferen Strafterm fir groe m hat als Benjamini&Hochberg mit =

t

(vgl. Dudoit u.a. (2003): S. 80-81)

4 Vergleich der Adjustierungsverfahren

In diesem Abschnitt sollen die soeben vorgestellten Methoden miteinander verglichen
werden um dann im nachsten Kapitel, anhand des bereits vorgestellten Datenbeispiels,
zu uberpriifen, ob diese theoretischen Erkenntnisse auch zutreffen. Die einzigen zwei
Ausnahmen bilden die single-step Varianten der minP und der maxT Prozeduren, die
mangels bereits vorhandener Implementierung in R und ausreichender Zeit selbst eine
zu machen, hier nicht zur Anwendung kommen werden.

Wie bereits erwahnt ist das Kriterium der FW ER strenger als das der F'DR, somit
werden Verfahren, die die FW E'R kontrollieren, weniger Hypothesen ablehnen als Ver-
fahren, die die F'DR kontrollieren.

Vergleicht man nur F'W E R-kontrollierende Methoden wird Bonferroni als einzige single-
step Prozedur das konservativste Verfahren sein. Denn hier gilt fiir alle p-Werte das
gleiche strenge Kriterium p; < 2. Im Vergleich dazu sind die Kriterien bei der step-

down Prozedur nach Holm mit p,; < fiir kleine nicht-adjustierte p-Werte strenger

mf‘]{'+1
als fiir grofle nicht-adjustierte p-Werte. Fiir m = 5 erhélt man folgende Kriterien nach

Bonferroni und Holm, die in Tabelle 3 aufgelistet sind.

aw
=3
=

Bonferroni

QU W N .

siReiiegeiiiefeiiefeie}
—IRNQw|R k||

Tabelle 3: Gleichbleibendes Kriterium beim konservativeren Verfahren von Bonfer-
roni im Vergleich zum schwécher werdenden Kriterium bei Holm

Folglich wird das Verfahren von Holm mehr Hypothesen ablehnen als das von Bon-
ferroni. Hochberg hat dieselben kritischen Werte wie Holm, beginnt aber als step-up

Prozedur mit den groflen nicht-adjustierten p-Werten. Wie das folgende Beispiel in
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Tabelle 4 zeigt kann es vorkommen, dass Hochberg eine Hypothese noch ablehnt, die
Holm nicht mehr ablehnt:

| P /Brr Pro/Brs Pra/Prs Dra/Bry Pro/Prs
nicht-adjustiert | 0.008  0.013  0.015  0.050  0.300
Holm 0.040  0.052  0.052  0.100  0.300
Hochberg 0.040  0.045 0.045 0.100  0.300

Tabelle 4: Die Hypothesen 2 und 3 werden bei Hochberg noch abgelehnt bei Holm
nicht mehr.

Das ist auf die Monotonieeigenschaften der beiden Verfahren zuriickzufiihren. Denn
bei Holm gilt p,, = max(p,, - m,p,, - (m — 1)) = max(0.040,0.052) = 0.052 und
Pry = Max(py, - My Py (M — 1), ppy - (M — 2)) = max(0.040,0.052,0.045) = 0.052.
Und bei Hochberg gilt p,., = min(p., - (m —2),pp, - (m —3),pps - (M —4)) =
min(0.045,0.100,0.300) = 0.045 und p,, = min(p., - (m — 1), ppy - (Mm — 2),pp, - (M —
3),prs - (m — 4)) = min(0.052,0.045,0.100,0.300) = 0.045. Ist die Anzahl an Null-
hypothesen jedoch grofer, ist der Unterschied nicht mehr so drastisch. (vgl. Zierer
(2013): S. 54-55)

Schliefllich bringt nach Dudoit das Zutreffen der Ungleichheit bei der step-down minP-

Prozedur p,; = tgzlq'y.cj{P(SE[Z”Lmr m]Ps < p|HS)} die p-Werte von Holm hervor und

somit sind diese weniger konservativ als die Prozedur von Holm (vgl. Dudoit u.a.
(2003): S. 80).

Der Unterschied zwischen den beiden F'D R-kontrollierenden Verfahren basiert, wie
bereits erlyrlwéithnt, auf den unterschiedlichen Straftermen. Benjamini& Yekutieli haben
mit % den grofleren Strafterm als Benjamini&Hochberg mit % und sind somit
konservativer.

Zusammengefasst wird erwartet, dass Bonferroni die wenigsten Hypothesen ablehnen
wird, gefolgt von den schrittweisen Verfahren, die die F'W E R kontrollieren. Dabei wer-
den Holm und Hochberg auf sehr dhnliche Ergebnisse kommen, wobei bei Uneinigkeit
Hochberg mehr signifikante Resultate ermitteln wird als Holm. Die beiden step-down
Varianten von minP und maxT sind dabei weniger konservativ als Holm und Hochberg.
Die meisten signifikanten adjustierten p-Werte sollten von den F'D R-kontrollierenden
Verfahren kommen. Allerdings wird die Prozedur von Benjamini& Yekutieli nicht ganz

so viele Hypothesen ablehnen wie die von Benjamini&Hochberg.

5 Anwendung

In diesem Abschnitt werden nun die Methoden, die vorab behandelt wurden, angewen-
det und deren Ergebnisse miteinander verglichen. Als konkretes Datenbeispiel dienen
die oben beschriebenen Daten. Da die Voraussetzungen fiir die Varianzanalyse schein-

bar verletzt sind, werden die Ergebnisse des Kruskal-Wallis-Tests vorgezogen und néher
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betrachtet. Die Ergebnisse des Shapiro-Wilk-Tests, sowie des Levene-Tests werden
dann im Folgenden behandelt. Aulerdem werden trotz der Annahmeverletzungen die
Ergebnisse der Varianzanalyse kurz dargestellt und mit denen des Kruskal-Wallis-Tests
verglichen.

Die Verfahren von Benjamini&Hochberg und Benjamini& Yekutieli werden in den fol-
genden Tabellen und Grafiken aus Platzgriinden mit BH und BY abgekiirzt.

5.1 Kruskal-Wallis-Test oder H-Test

Fiir den groben Uberblick zeigt als erstes Tabelle 5 die Anzahlen der abgelehnten Hy-
pothesen von insgesamt 200 Hypothesen jeder Adjustierungsmethode, sowie des nicht-
parametrischen Kruskal-Wallis-Tests, auch H-Test genannt, zu allen vier Messzeitpunk-
ten. Wobei Hypothesen hier dann abgelehnt werden, wenn ihre p-Werte signifikant

sind, was in diesen Féllen einen p-Werte kleiner gleich 0.05 bedeutet.

Zeitpunkt | Bonferroni | Holm | Hochberg | minP | maxT | BY | BH | H-Test
0 148 160 160 163 163 | 172 | 184 184
1 141 159 159 163 163 | 167 | 179 180
2 141 150 150 154 155 | 165 | 179 179
3 136 146 146 153 153 | 164 | 178 178

Tabelle 5: Die Anzahl signifikanter p-Werte von insgesamt 200 Hypothesen des
Kruskal-Wallis-Tests bzw. H-Tests und der verschiedenen Adjustierungsmethoden
zu den Zeitpunkten 0, 1, 2 und 3

Wie im Vergleichsteil vorausgesagt, werden dem Verfahren von Bonferroni zu Folge die
wenigsten Hypothesen abgelehnt, gefolgt von den schrittweisen Verfahren von Holm
und Hochberg, die sich hier durchweg einig sind. Auch die beiden Resampling-Verfahren
minP und maxT erzielen sehr dhnliche Ergebnisse. Insgesamt sind die Prozeduren
zur Kontrolle der FFDR weniger konservativ als die F'W FER- kontrollierenden Ver-
fahren. Dabei lehnt die Methode von Benjamini& Yekutieli immer weniger Hypothesen
ab als jene von Benjamini&Hochberg. Das Verfahren von Benjamini&Hochberg ermit-
telt sogar fast genauso viele bis exakt genauso viele signifikante Hypothesen wie der
Kruskal-Wallis-Test ohne Adjustierungen. Uber die Zeit hinweg betrachtet kommen
die Verfahren auf sehr dhnliche Resultate. Wobei alle tendenziell weniger signifikante

Ergebnisse ermitteln, je spater die Messung durchgefiithrt wurde.

Um den Verlauf der ansteigenden p-Werte erkennen zu konnen, folgen ein paar Streu-
diagramme in den Abbildungen 1-4. Diese stellen die nicht-adjustierten p-Werte des
Kruskal-Wallis-Tests auf der x-Achse und die adjustierten p-Werte auf der y-Achse
dar. So kann verfolgt werden wie sich die adjustierten p-Werte mit den ansteigenden
nicht-adjustierten p-Werten verhalten. Bei 0.05 sind jeweils rot gestrichelte Linien ein-

gezeichnet, um anzuzeigen wann eine Hypothese noch als signifikant angesehen wird
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und ab wann nicht mehr. Zur besseren Darstellung der durch die Adjustierung nicht
mehr signifikanten p-Werte, die ohne Adjustierung noch signifikant wéren, sind in weit-
eren Streudiagrammen auf der x-Achse nur noch die p-Werte des Kruskal-Wallis-Tests

bis 0.05 angezeigt.

Adjustierte p-Werte des Kruskal-Wallis-Tests

(Zeitpunkt 0)
(= — pr— = = &
— mf b fid 0E I ; ; ; ¥ ¥ ¥
o g j ] o] o] %ﬁ e} L] L] el el o
5 °7 o
= | £ )
o g . g: * % Bonferroni
2 A 4 Holm
T A o Hochberg
B o T o * minP
% A ol *  maxT
© g - | BY
: i BH
e R 1=
= — I I I I I
0.0 0.2 0.4 06 0.8 1.0
p-Wert
2 4 TR 7 T W v = 7
(i8]
5 © v 8
2 . v 4 o
= JUTINN
g 3 [etuTin]
BEE v
B O A s #*
=
T o ¥ * ¥
o #*
B . e e e T
e I I I I
0.02 0.03 0.04 0.05
p-Wert

Abb. 1: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Oben sind alle p-Werte des Kruskal-Wallis-Tests abgebildet
und unten nur die p-Werte des Kruskal-Wallis-Tests bis 0.05.
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Adjustierte p-Werte des Kruskal-Wallis-Tests
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Abb. 2: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Oben sind alle p-Werte des Kruskal-Wallis-Tests abgebildet
und unten nur die p-Werte des Kruskal-Wallis-Tests bis 0.05.
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Adjustierte p-Werte des Kruskal-Wallis-Tests
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Abb. 3: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Oben sind alle p-Werte des Kruskal-Wallis-Tests abgebildet
und unten nur die p-Werte des Kruskal-Wallis-Tests bis 0.05.
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Adjustierte p-Werte des Kruskal-Wallis-Tests

(Zeitpunkt 3)
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Abb. 4: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Oben sind alle p-Werte des Kruskal-Wallis-Tests abgebildet
und unten nur die p-Werte des Kruskal-Wallis-Tests bis 0.05.
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Die Kurven von Bonferroni, Holm und Hochberg haben alle einen dhnlichen Verlauf
mit einem deutlichen Knick. Bonferroni lauft dabei am steilsten auf die 1.0 zu. Holm
und Hochberg liegen lange auf derselben Kurve, wobei Hochberg frither abknickt und
nicht bis zur 1.0 ansteigt und Holm letztlich auch bei der 1.0 landet. Da die beiden
sich erst bei p-Werten des Kruskal-Wallis-Tests um die 0.05 herum trennen, wo beide
sich schon langst auflerhalb der signifikanten Werte befinden, macht sich dieser Unter-
schied in der Anzahl der abgelehnten Hypothesen nicht bemerkbar. Die Resampling-
Methoden haben ebenfalls einen gemeinsamen Verlauf und trennen sich nie deutlich
voneinander. Thre Kurve beginnt flacher als die vorhergehenden und hat keinen so
extremen Knick. Die erste F'DR-kontrollierende Prozedur von Benjamini& Yekutieli
hat einen dhnlichen Verlauf wie Bonferroni und Holm, beginnt nur wesentlich flacher,
bleibt somit langer unter 0.05 und landet deutlich spéter bei der 1.0. Die adjustierten
p-Werte von Benjamini&Hochberg folgen eher einer gleichméflig ansteigenden Geraden,
die am flachsten von allen beginnt. Folglich ergeben sich hier die meisten adjustierten
p-Werte, die kleiner gleich 0.05 sind.

Um auch der inhaltlichen Frage nachzukommen anhand welcher Molekiile sich die drei
Erregertypen voneinander unterscheiden lassen, seien folgende Tabellen dargestellt.
Fiir jedes Molekiil und jedes Verfahren wird angezeigt, ob ein signifikantes Ergebnis
beobachtet wurde oder nicht. 0 steht hier fiir p-Werte kleiner gleich 0.05, also sig-
nifikante Resultate und 1 fiir p-Werte grofler 0.05, also nicht signifikant. In jeder
Spalte befinden sich vier Zahlen, die erste steht fiir den Messzeitpunkt 0, die zweite fiir
den Messzeitpunkt 1 und so weiter.

In Tabelle 6 sind nur die Molekiile enthalten, die bei allen Verfahren zu jedem Zeit-
punkt einen signifikanten p-Wert haben. Dies trifft auf insgesamt 125, also mehr als die
Hélfte, der Molekiile zu. In diesen Féllen wiirde es sich wohl lohnen der Frage, welche
Erregergruppen sich genau voneinander unterscheiden, weiter nachzugehen. Nachdem
diese Tabelle nur Nuller enthalten wiirde und mit 125 Zeilen sehr lang wéare, sind nur
die Namen der Molekiile in Tabelle 6 aufgelistet.

Namen der Molekiile mit ”0 0 0 0” bei allen Verfahren

CHA4. X117, X20. X21. Acetylene. Methanol. 02.33..
X35. X38.  X39. ACN. X42. X43. X45.
Formic.Acid. X50.  X51. X52. X53. X5H4. X55.
X56. X57. Xb58. X61. X62. X63. SO2.
X65. X66.  X67. XT72. X73. X76. XT77.
Benzene.Xe. X80. X81. X86. X87. X88. X8&9.
X90. X91.  X92. X93. X94. X100. X101.
X102. X103. X104. X107. X108. X109. X110.
X112. X113. X114. X115. X116. X117. X118.
X119. X120. X121. X122. EIL.LH2 NH3 M19
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Namen der Molekiile mit ”0 0 0 0” bei allen Verfahren

Ethylene M29 NO CH3NH2 M33 H2S M36
Ma37 M38 M40 M41 M43 Acetaldehyde Ethanol
M48 M50 M51 Butadiene M55 Mb6 Mb7
M61 M62  M63 Mo64 M67 Isoprene M69
M73 M74  MT75 M76 M80 M81 M87
M90 M91 Toluene M93 M94 M98 M101
M103 M108 M109 M115 M116 M117 M118
M119 M120 Mi121 M122 M123 M135

Tabelle 6: Auflistung aller Molekiile, die tiber alle Zeitpunkte, beim Kruskal-Wallis-
Test, sowie allen Adjustierungsmethoden immer signifikant sind.

Umgekehrt sind in Tabelle 7 nur Molekiile dargestellt, bei denen sich nie ein sig-

nifikantes Resultat ergibt.

Insgesamt handelt es sich dabei um neun Molekiile, fiir

die sich eine weiterfiihrende Analyse wohl kaum lohnen wird, da man doch recht sicher

davon ausgehen kann, dass die Messwerte dieser Molekiile sich nicht signifikant zwi-

schen den Gruppen der gram negativen, der gram positiven und der Pilze unterscheiden.

Molekiil | Bonferroni | Holm | Hochberg | minP | maxT BY BH | H-Test
X59. 11111111 111 fjrrtrrf{rrr1rj1r111f1111| 1111
M49 11111111 1111 fjrrrrf{rrr1rj1r111f1111| 1111
Propanol 111111111 1111 fjrrrrf{rr1r1rj1r1r11f1111| 1111
M60 11111111 1111 fjrrtrrf{rrr1rj1r111f1111| 1111
MS82 11111111 111111111111 j1r111 1111 1111
M85 11111111 111111111111 j1r111f1111| 1111
MS88 11111111 111111111111 j1r111f1111| 1111
M96 11111111 111111111111 j1111f1111| 1111
M111 111111111 111111111111 j1111f1111| 1111

Tabelle 7: Zusammenfassung aller Ergebnisse des Kruskal-Wallis-Tests bzw. H-Tests,
die tiber alle Zeitpunkte und bei allen Ajustierungsmethoden nicht signifikant sind;
0 steht fiir signifikant und 1 steht fiir nicht signifikant.

Und bei den letzten 66 Fallen, die in Tabelle 8 dargestellt sind, finden sich je nach

Messzeitpunkt und angewandtem Verfahren mal signifikante, mal nicht signifikante

Ergebnisse. Hier sind die Resultate also nicht so eindeutig, dass sich alle Verfahren

einig sind. AuBerdem wird hier deutlich, weshalb die Rede von volatilen, also fliichtigen,

Komponenten ist. Da sich die Messwerte von manchen Molekiilen nur zu bestimmten

Zeitpunkten wesentlich voneinander unterscheiden, scheinen diese organischen Kompo-

nenten nicht in stabiler Form vorhanden zu sein, sondern teilweise erst zu entstehen

oder sich wieder abzubauen.
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Molekiil Bonferroni | Holm | Hochberg | minP | maxT BY BH H-Test
M27. 11111111 11111111 y1111{1111}j0111| 0111
M29.. 011110111 0111/0010|0010{0010]0000| 0000O
Formaldehyde. 11111111 111171111 1111{0111}0000| 0000
X40. 1000|0000 0oooj0000|{0000|0O00O0O0O0|000O00O0]| OO0OO0O
N20. 011010000 0000(0000|0O0O0O0|000O00O0]0000| OOOO
HNO2. 01010001 0001/0001|0001{0001]0000| 000O
X48. 1000|0000 0ooo0oj0000{0000|0O00O0O0|0000O0]| O00O0O
X49. 00110000 0000[0000|0000|000O00O0]0000| OOOO
Acetic.Acid. 11111111 1111111141111 {1111}1110| 1110
X68. 011110111 0111011170111 10111|0001} 0001
X69. 11111111 1111111141111 {1111}0111| 0111
X70. 11111111 11111111 y1111{0111}j0111| 0111
XT71. 11111111 111171111 41111{1110}0110| 0010
XT74. 11101000 1000{0000}0000,0000|0000] 0000O
XT75. 0111|0011 0011/0000|0000|0000]0000| OOOO
X79. 11111111 111171111 41111{0111}0000| 0000
X82. 111170111 0111(0111|0111{0000}]0000| 000O
X83. 11111111 1111}711111111{0110}0000| 0000
X84. 00110000 0000[0000|0O0O0OO0|0O0O0OO0]0000| OOOO
X85. 11111111 111171111 1111{0111}0000| 0000
X95. 0111|0110 0110({0110|0110{0110]0000| 0000O
X96. 01110010 0010(0010|0010[{0000]0000| 0O0O0O
X97. 011110111 0111(0110|0110{0000]0000| 0000O
X98. 0010|0010 0010[{0000|0000|0000]0000| OOOO
X99. 00110000 0000[0000|0000|000O00O0]0000| 0OOOO
X105. 000110001 0001(0001|0001{0001]0000| 0O0OO0OO
X106. 0111|0110 0110({0110|0110{0000}]0000| 00O0O
X111. 011110011 0011/0010|0010{0000]0000| 0O0O0O
EL.H2... M1 111170010 0010(0000|0000|0000]0000| OOOO
EI.LH20.18 1011{0000 0000(0000|0O0O0OO0|0O0O0O00O0]0000| OOOO
EI.N2.28 110170001 0001({0001|0001{0000]0000| OOOO
E1.O2.32 1101]0001 0001(0000|0000|0000]0000| OOOO
EI1.CO2.44 10011001 1001{0000}0000,0000|0000] 0000O
M35 11111111 111111111111 {0111}(0011| 0011
M39 11101110 1110{1010}1010,1000|1000} 1000
Propene 11111111 1111711111111 {1110(0000| 0000
M46 11111111 1111(1111}1111,1000|0000| 0000
M4t 11111111 11111111 111111111101 1101
M52 000110000 0000[0000|00O00|0000O0]0000| OOOO
M53 011010010 0010({0010|0010[{0000]0000| 0O0O0O
Acetone 11001000 1000{1000}1000,1000|0000| 0000O0
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Molekiil Bonferroni | Holm | Hochberg | minP | maxT BY BH H-Test
M65 100170001 0001{0001}0001]0001]0000| 0000
M66 0101|0001 0001{0001}0001]0000]0000| 0000
M70 0001|0001 0001{0001}0001]0000]0000| 0000
MT1 111111111 1111711111111 }1101(0000| 0000
M72 111111111 11111111 {1111 (1111|1110} 1110
M77 110070000 0000|0000} 0000|]0000]0000| OO0O0O
Benzene 110171001 100171001|1001}1001(1000| 1000
MT79 111111111 1111(1111{1101({0101,0001] 0001
MS83 111111111 111111111111 {1111/0111} 0111
M84 11111111 1171171111 1111{0111}0010| 0010
M86 11111111 1111711111111 {1101}0000| 0000
M89 11111111 111110111011 {1011}1001| 1001
M95 11111111 111171111 41111}1111}1100| 1100
M97 0010|0010 0010/0010/0010(0010]0000| 0000
M99 111170010 0010|0010}0010]0010]0000| 0000
M100 0111|0001 0001{0000}0000]0000]0000| 0000
M102 111070010 0010|0000]0000]0000]0000| 0000
M104 0011|0001 0001{0001}0001]0000]0000| 0000
M105 0001|0001 0001|{0001}0001|0001{0001| 0001
M106 110170001 0001|{0001}0001|0001{0001| 0001
M107 111111111 1111y1111{1111(0110|0110} 0110
M110 111111111 111111111111 {11110111} 0111
M112 111111111 111111111111 {1111/0111} 0111
M113 111111111 1111}1011(1011}1011(0000| 0000
M114 101171001 100170001|{0001}]0000|0000| 0000

Tabelle 8: Zusammenfassung aller Ergebnisse des Kruskal-Wallis-Tests bzw. H-

Tests, die je nach Messzeitpunkte und Adjustierungsmethode signifikant oder nicht

signifikant sind; 0 steht fiir signifikant und 1 steht fiir nicht signifikant.

5.2 Varianzanalyse

Obwohl beim Shapiro-Wilk-Test und beim Levene-Test herauskam, dass beim Grofiteil
der Molekiile die Normalverteilungsannahme bzw. die Annahme gleicher Varianzen
zwischen den Erregergruppen offenbar verletzt ist, sollen hier die Ergebnisse der Va-
rianzanalyse kurz zusammengefasst werden und anschliefend mit den Ergebnissen des
Kruskal-Wallis-Tests verglichen werden.

Zunéichst werden die Ergebnisse zur Uberpriifung der Testannahmen betrachtet. Zur
Veranschaulichung sind die p-Werte der beiden Tests zum Messzeitpunkt 0 in Ab-
bildung 5 grafisch dargestellt. Beim Shapiro-Wilk-Test sind insgesamt 14 p-Werte

grofer 0.05, das heifit nur die Messwerte von 14 Molekiilen sind zum Zeitpunkt 0 nor-
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malverteilt. Zu den anderen Zeitpunkten ergibt sich ein d&hnliches Bild. Zum Zeitpunkt
1 sind es 30 nicht signifikante Ergebnisse beim Shapiro-Wilk-Test. Und zu den Zeit-
punkten 2 und 3 liegen 24 und 23 normalverteilte Molekiile vor. Von insgesamt 200

Molekiilen ist also nur ein geringer Anteil normalverteilt.

Shaprio-Wilk-Test
(Zeitpunkt 0)
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Abb. 5: Histogramme der p-Werte des Shapiro-Wilk-Tests (oben) und des Levene-
Tests (unten), jeweils der erste Balken stellt die Molekiile dar, die die jeweilige
Annahme verletzen.

Auch die Homoskedastizitat ist iiberwiegend verletzt. Zum Messzeitpunkt 0 liegen
lediglich 45 p-Werte des Levene-Tests iiber 0.05. Es finden sich 63 homoskedastische
Molekiile zum Zeitpunkt 1. Und schlieflich liegen zu den Zeitpunkten 2 und 3 37 und

51 Molekiile mit Varianzhomogenitat zwischen den Erregertypen vor.

Zusammenfassend ist sowohl die Annahme der Normalverteilung als auch die der Ho-
moskedastizitat verletzt, so dass die Ergebnisse der Varianzanalyse mit Vorsicht zu

geniefen sind. Trotzdem ist diese hier gerechnet worden und ihre Ergebnisse wer-
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den anschliefend gezeigt. Zuvor wird aber noch dargestellt, wie die Verteilungen der
Molekiile stattdessen aussehen. Da hier nicht 200 Histogramme, Boxplots, QQ-Plots
oder andere Grafiken gezeigt werden konnen um die Verteilungen zu beschreiben, wird
versucht mit Hilfe von verschiedenen Mafizahlen ein paar Eigenschaften der Verteilun-
gen der Molekiile zusammenzufassen. Die Darstellung der Mafizahlen bezieht sich
immer auf ein beliebiges Molekiil 7, wobei darauf verzichtet wird tiberall den Index j
hinzuschreiben.

Ein Merkmal von Verteilungen ist die Symmetrie bzw. Schiefe. Man unterscheidet zwi-
schen symmetrischen, linkssteilen und rechtssteilen Verteilungen. Bei symmetrischen
Verteilungen sind die linke und die rechte Halfte der Verteilung anndhernd spiegel-
bildlich. Linkssteile Verteilungen haben den iiberwiegenden Teil ihrer Daten linksseitig
und bei rechssteilen Verteilungen ist der Grofiteil der Daten entsprechend rechtsseitig.
Eine Moglichkeit die Schiefe zu beurteilen bietet der Quantilskoeffizient der Schiefe,
der im Gegensatz zum Momentkoeffizient resistent gegen Ausreifler ist und deshalb

hier verwendet wird. Der Quantilskoeffizient hat folgende Formel:

gp = (xl—p — ‘%) - (j: - xp) : (28)

Ti—p — Tp

die im Zahler den Unterschied zwischen der Entfernung des p-Quantils und der des
(1 — p)-Quantils jeweils zum Median Z misst. Da bei linkssteilen Verteilungen das
untere Quantil naher am Median ist und bei rechtssteilen weiter entfernt liegt vom
Median, gilt:

gp = 0 fir symmetrische Verteilungen,

gp > 0 fiir linkssteile Verteilungen und

gp < 0 fiir rechtssteile Verteilungen.

Ist p = 0.25 erhalt man den Quartilskoeffizienten. (vgl. Farhmeir u.a. (2010): S. 48
und S.74-75)

Wie die Histogramme der Quartilskoeffizienten der vier Messzeitpunkte in Abbildung 6
(oben) zeigen, sind symmetrische, linkssteile und rechtssteile Verteilungen alle vertreten.
Es sind jedoch mehr linkssteile Verteilungen als rechtssteile und unter den linkssteilen

sind auch extremer ausgepragte Verteilungen.

Ein weiteres Merkmal von Verteilungen ist die Wélbung, auch Kurtosis genannt. Diese
gibt an wie stark der zentrale Bereich bzw. die Enden der Daten besetzt sind. Ist eine
Verteilung in der Mitte eher spitz, sind die Enden stérker besetzt als bei Verteilungen,
die in der Mitte flacher sind. Als Vergleich dafiir, was breit oder spitz bedeutet, dient
die Normalverteilung. Das Wolbungsmafl von Fisher, das als Mafizahl fiir die Kurtosis
dient, ist so definiert, dass es bei Normalverteilungen gleich Null ist:

_ My S (2 — )

Y= s

~3. (29)
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Quartilskoeffizient der Schiefe Quartilskoeffizient der Schiefe Quartilskoeffizient der Schiefe Quartilskoeffizient der Schiefe

(Zeitpunkt 0) (Zeitpunkt 1) (Zeitpunkt 2) (Zeitpunkt 3)
g g g g
o o o o
== @ = o I o = =
2 g2 2 2
g g 8 R 5 g
= z o [
“oe “oe “oe “oe
(=] o (=] o
[ T T T 1 [ T T T 1 [ T T T 1 [ T T T 1
1.0 -0 00 0 1.0 1.0 -0 00 05 1.0 1.0 -0 00 0 1.0 1.0 -0 0.0 0 1.0
Wolbungsmaf von Fisher Wolbungsmaf von Fisher Wolbungsmaf von Fisher Wolbungsmaf von Fisher
(Zeitpunkt 0) (Zeitpunkt 1) (Zeitpunkt 2) (Zeitpunkt 3)
(=] o (=] (=]
o [=1 o o
(Y] o (3] o
o o o o
wn uwy wn w
g g g g
g 8 £ 8 g 8 £ B
o - o - o - o -—
= z o [
G © o8 “ o8 B

o
u]
o
o

I T T T 1 | N I S D R —r1r T 1 T 1 1 1 T 1
-2 0 2 4 6 -2 0 2 4 6 8 10 0 5 1 15 20 25 0 10 20 30 40

Abb. 6: Oben sind die Werte des Quartilskoeffizienten der Schiefe dargestellt und
unten die Werte des WélbungsmafBes von Fisher.

Dabei ist s* die quadrierte Stichprobenvarianz und es gilt:

v = 0 bei Normalverteilung,

v > 0 bei spitzeren Verteilungen und

v < 0 bei flacheren Verteilungen. (vgl. Fahrmeir u.a. (2010): S. 76)

Bei Betrachtung der Histogramme des WoélbungsmafBies in Abbildung 6 (unten) wird
deutlich, dass der Grofiteil der Molekiile flachere Verteilungen hat als die Normalverteilung.
Wobei beachtet werden muss, dass die vier Grafiken zu den vier Messzeitpunkten ver-
schieden skalierte x-Achsen haben, also optisch nicht direkt vergleichbar sind. Es ist
trotzdem eindeutig erkennbar, dass alle Histogramme eine linkssteile Verteilung zeigen,

also mehr kleine Werte von « zu beobachten sind.

Und schliellich konnen mogliche Ausreifler eine Verteilung charakterisieren. Um poten-
zielle Ausreifler, also Datenpunkte, die weit entfernt von den anderen Daten liegen, zu
ermitteln verwendet man haufig den Interquartilsabstand dg = .75 —¢.25. Wobei x¢ 75
das 75%-Quantil und x5 das 25%-Quantil bezeichnet. Dieser Interquartilsabstand
dient als MaBzahl fir die Streuung von Daten. Liegen Datenpunkte auflerhalb eines
sogenannten Zauns, der anhand des Interquartilsabstands berechnet wird, gelten sie,
einer Faustregel nach, als potenzielle Ausreifler. Dazu gehoren also Punkte, die kleiner
als die Untergrenze z,, = 25 — 1.5dg oder grofler als die Obergrenze z, = 75 + 1.5dg
sind. (vgl. Fahrmeir u.a. (2010): S. 66-67)

Tabelle 9 zeigt wie viele potenzielle Ausreifler oder zumindest Extrempunkte nach

dieser Faustregel zu den vier Messzeitpunkten bei den 200 Molekiilen gefunden wur-
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den. Dabei gibt es insgesamt 67 Beobachtungen je Molekiil zum Messzeitpunkt 0 und

68 zu den anderen drei Messzeitpunkten.

Zeitpunkt\ Ausreifier O 1| 23| 4|5[6|7(8]9]|10]11]12
0 144 11| 4111243 (7|1]0|0} 2] 0| 3
1 163111 7{4] 6[{0[5[4]0/0] O O] O
2 6711} 62 4]2[3]0[3/0] 1| 1] O
3 M2 1111712713131 0 1| 1

Tabelle 9: Anzahl potenzieller Ausreifler je Messzeitpunkt von 67 Beobachtungen je
Molekiil zum Messzeitpunkt 0 und 68 Beobachtungen je Molekiil zu den restlichen
Messzeitpunkten, bei insgesamt 200 Molekiilen

Es sind auffélligere Messwerte bei einigen Molekiilen zu beobachten, der Grofiteil hat

jedoch keine oder nur wenige potenzielle Ausreifler.

Nun kommen die Ergebnisse der Varianzanalyse und der anschlieBenden Adjustierun-
gen, die in Tabelle 10 zusammengefasst sind. Von insgesamt 200 Molekiilen haben die

Verfahren folgende Anzahlen an abgelehnten Hypothesen ergeben.

Zeitpunkt | Bonferroni | Holm | Hochberg | minP | maxT | BY | BH | Anova
0 151 156 156 161 161 | 165 | 178 178
1 153 165 165 166 166 | 168 | 178 180
2 149 156 156 161 162 | 168 | 174 175
3 141 146 146 153 153 | 162 | 177 178

Tabelle 10: Anzahl signifikanter p-Werte der 200 Hypothesen bei der Varianzanalyse
bzw. Anova und der verschiedenen Adjustierungsmethoden zu den Zeitpunkten 0,
1, 2 und 3

Die Ergebnisse sind sehr ahnlich zu denen des Kruskal-Wallis-Tests. Die Varianzanalyse
lehnt etwas weniger Hypothesen ab, genauso das Verfahren von Benjamini&Hochberg.
Einzig das Verfahren von Bonferroni lehnt hier durchweg mehr Hypothesen ab als beim
Kruskal-Wallis-Test. Die restlichen Verfahren haben keine so eindeutige Tendenz. Der
zeitliche Aspekt, dass je spater die Messung durchgefithrt wird, desto weniger sig-
nifikante Hypothesen beobachtet werden, ist hier nicht ganz so klar zu erkennen.
Auch hier werden die adjustierten p-Werte der verschiedenen Methoden in Abhéngigkeit
der p-Werte der Varianzanalyse in den Abbildungen 7-10 grafisch dargestellt. Wie nach
Betrachtung der Anzahlen der abgelehnten Hypothesen zu erwarten, ergibt sich ein ver-
gleichbares Bild wie bei den p-Werten des Kruskal-Wallis-Tests und deren adjustierten
p-Werte.
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Adjustierte p-Werte der Varianzanalyse
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Abb. 7: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um
signifikante Werte erkenntlich zu machen. Oben sind alle p-Werte der Varianzana-
lyse abgebildet und unten nur die p-Werte der Varianzanalyse bis 0.05.
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Adjustierte p-Werte der Varianzanalyse
(Zeitpunkt 1)
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Abb. 8: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um
signifikante Werte erkenntlich zu machen. Oben sind alle p-Werte der Varianzana-
lyse abgebildet und unten nur die p-Werte der Varianzanalyse bis 0.05.
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Adjustierte p-Werte der Varianzanalyse

(Zeitpunkt 2)
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Abb. 9: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um
signifikante Werte erkenntlich zu machen. Oben sind alle p-Werte der Varianzana-
lyse abgebildet und unten nur die p-Werte der Varianzanalyse bis 0.05.
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Adjustierte p-Werte der Varianzanalyse
(Zeitpunkt 3)
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Abb. 10: Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um signifikante Werte
erkenntlich zu machen. Die rot gestrichelten Linien sind bei 0.05 eingezeichnet um
signifikante Werte erkenntlich zu machen. Oben sind alle p-Werte der Varianzana-
lyse abgebildet und unten nur die p-Werte der Varianzanalyse bis 0.05.
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Vergleicht man die inhaltlichen Ergebnisse, also welche Molekiile signifikante Hypothe-
sen haben und welche nicht, kommt man auch hier zu vergleichbaren Ergebnissen. In
Tabelle 11 sind die Molekiile aufgelistet, die bei allen Verfahren und zu allen Messzeit-
punkten einen signifikanten p-Wert haben. Das trifft bei der Analyse mit der Varian-
zanalyse auf 130 Molekiile zu. Um den Vergleich mit den Ergebnissen des Kruskal-
Wallis-Tests zu erleichtern, sind in dieser Tabelle die Molekiile, die dazukommen (13)
also, die die nur bei der Varianzanalyse durchweg signifikante Resultate haben, mit **
markiert und die, die nur beim Kruskal-Wallis-Test ausnahmslos signifikante Ergeb-

nisse haben, bei der Varianzanalyse aber nicht (8), mit *.

Namen der Molekiile mit ”0 0 0 0” bei allen Verfahren

CHA4. X17.* X20. X21. Acetylene. Methanol.
X35. X38. X39. ACN. X42. X43.
Formic.Acid. X48.** X49. #* X50. X51. X52.

X54. X55. X56. X57. X5H8. X61.

X63. SO2. X65. X66. X67. XT72.
X75.%* X76. XT77. Benzene.Xe.  X80. X81.

X86. X8T7. X88. X&9.* X90. X91.

X93. X94. X96.** X98.** X909 ** X100.
X102. X103. X104. X107. X108. X109.
X111.%* X112. X113. X114. X115. X116.
X118. X119. X120. X121. X122. ELH2... M1**
ELLH20.18%* EIN2.28** EI.02.32** NH3 M19 Ethylene
NO CH3NH2 M33 H2S M36 M37

M40 M41 M43 Acetaldehyde Ethanol M48*
Mb51 M52** Butadiene M55 M56 Mb7
M62* M63 M64 M67 Isoprene®  M69*
MT74 M75 M76 MS80 MS81 M87*
M91 Toluene M93 M94 M98 M101
M108 M109 M115 M116 M117 M118
M120 M121 M122 M123 M135

02.33..
X45.
X53.
X62.
X73.
X84 **
X92.
X101.
X110.
X117.
EI.H2
M29
M38
M50*
M61
M73
M90
M103
M119

Tabelle 11: Auflistung aller Molekiile, die iiber alle Zeitpunkte und bei allen Me-
thoden immer signifikant sind; * bedeutet nur beim Kruskal-Wallis-Test immer

abgelehnt, ** bedeutet nur bei der Varianzanalyse immer abgelehnt.

Beim Kruskal-Wallis-Test sind neun Molekiile zu beobachten, deren Nullhypothesen nie
abgelehnt werden. Hier kommt zu diesen neun Molekiilen eines dazu M83, wobei auch
die Analyse mit dem Kruskal-Wallis-Test bei diesem Molekiil fast nur nicht-signifikante
Ergebnisse liefert, bis auf die Werte von Benjamini&Hochberg und des H-Tests zum
Messzeitpunkt 0. Insgesamt sind es somit bei der Varianzanalyse 10 Molekiile, die kein
signifikantes Resultat ergeben.
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Hier bleiben folglich 60 Molekiile tibrig, die je nach Messzeitpunkt und Methode mal
ein signifikantes, mal ein nicht-signifikantes Resultat haben. Diese Ergebnisse dhneln,
denen des Kruskal-Wallis-Tests, sind aber nicht ganz gleich. Die Tabelle 12 stellt die
Ergebnisse dar, wobei die acht Molekiile, die beim Kruskal-Wallis-Test nur signifikante
p-Werte hatten, hier wieder mit * markiert sind. Man erkennt, dass diese auch bei der
Varianzanalyse nur wenige nicht-signifikante Ergebnisse haben.

Molekiil Bonferroni | Holm | Hochberg | minP | maxT BY BH | H-Test
X17.* 1000|0000 0000(0000|00O0O0|000O00O0]0000| OOOO
M27. 11111111 1111|1111 }111140111|0011| 0011
M29.. 001170000 0000]0000|0000|0000|0000| O0OO0O
Formaldehyde. 11111111 1111|1111 }111111111|0100| 0000
X40. 11111111 1111111111117 1110|0000| 0000
N20. 1110|1010 1010/1010{1010{1000{0000| 0000
HNO2. 00010001 0001]0001(0001|10001/0001| 0001
Acetic.Acid. 11111111 111111111111 1111|1110} 1110
X68. 01110001 0001]0001(0001|10001/0001| 0001
X69. 11111111 111111111111 y11110111| 0111
X70. 11111111 111111111111 y1111/0111| 0011
XT71. 11111111 111111111111 1111|1110} 1110
X74. 1010|1000 1000,0000|0000{0000|0000| 0000
X79. 11111111 1111/0011{0011{0000{0000| 0000
X82. 01110011 0011]0000|0000|0000|0000| OO0O0O
X83. 11110011 0011700010001 |,0000|0000| 0000
X85. 11111111 111111111111 /0111|0011} 0010
X89.* 000170000 0000]0000|0000|0000|0000| O0OO0O
X95. 01110110 0110(0110(0110|0110|0000| 0000
X97. 01110011 0011]0000|0000|0000|0000| O0O0O
X105. 00010001 0001]0001(0001|0001|0000| 0000
X106. 0110|0110 0110(0110(0110|0100|0000| 0000
EI.CO2.44 00010001 0001]0000|0000|0000|0000| O0O0O
M35 11111111 111111111111 y1111/10011| 0011
M39 11111111 111111101110 11110|1000| 1000
Propene 11111111 1111|1111 }111111110|1010| 1010
M46 11111010 1010,1000|1000{0000|0000| 0000
M47 11111111 111111111111 1110|1110} 1110
M48* 00010001 0001(0001(0001|0000|0000| 0000
M50%* 00010001 0001(0001(0001|0001|0000| O0O0O
M53 0110]0000 0000|0000 |0000|0000|0000| OOOO
Acetone 1100|1000 1000,1000|1000{1000|0000| 0000
M62* 1000|1000 1000,1000|1000{1000{0000| 0000
M65 00010001 0001(0001(0001|0001|0000| 0000
M66 00010001 0001]0000|0000|0000|0000| O0O0O
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Molekiil Bonferroni | Holm | Hochberg | minP | maxT BY BH H-Test
Isoprene* 0001|0001 0001(0001|0001{0001]0000| 00O0O
M69* 11111011 1011710111011 {1010}1000| 1000
M70 0001|0001 0001(0001|0001{0001]0000| 00O0O
M71 11111111 1111111141111 {1111}1010| 1010
M72 11111111 1111111141111 {1111}1110| 1110
M7 1000|1000 1000{1000}1000,0000|0000| 0000
Benzene 111171001 1001{1001}1001,1001|1000} 1000
M79 11111111 1111(0111(0111{0101}(0001| 0001
M84 11111111 11111111 1111{1111}0110| 0110
M86 11111111 1111711011101 {1001}1000| 1000
M8T* 1000{0000 0000(0000|00O0OO0|0O0O0O00O0|0000| OOOO
M89 11111111 1111111141111 {1011}1001| 1001
M95 11111111 111171111 41111}1111}1110| 1100
M97 0010|0010 0010({0010|0010{0000]0000| 0O0O0O
M99 00110010 0010({0010|0000|0000]0000| OOOO
M100 1001]0001 0001(0000|0000|0000]0000| OOOO
M102 1010(0000 0000|0000 |0O0O0OO0|0O0O0O00O0]0000| OOOO
M104 0001|0001 0001/0000|0000|0000]0000| OOOO
M105 0001|0001 0001/0001|0001]0001}]0001| 0001
M106 111171001 1001/0001}0001|10001|10001| 0001
M107 11111111 1111111141111 {1110}(0110| 0110
M110 11111111 11111111 111111110111} 0111
M112 11111111 11111111 fy1111{1111}0111| 0111
M113 11111011 101110111011 ,1001|0000| 0000
M114 10011001 1001{0001}0001,0000|0000| 0000O0

Tabelle 12: Zusammenfassung aller Ergebnisse der Varianzanalyse bzw. Anova, die
je nach Zeitpunkte und Methode signifikant oder nicht signifikant sind; 0 steht fiir
signifikant und 1 steht fiir nicht signifikant. Mit * markierte Molekiile haben beim
Kruskal-Wallis-Test nur signifikante p-Werte.

Im Groflen und Ganzen gehen die Ergebnisse der beiden Tests auf Lageparameter
in die gleichen Richtung und &dhneln sich sehr, obwohl die Voraussetzungen fiir die

Varianzanalyse bei diesem Datenbeispiel nicht optimal sind.

5.3 R-Befehle

Die eben beschriebene Analyse wurde mit R und folgenden Befehlen durchgefiihrt:

Die Methode MTP aus dem Packet multtest berechnet die adjustierten p-Werte nach
den step-down Verfahren minP und maxT. Nachdem es sich bei diesen beiden Verfahren
um Resampling-Verfahren handelt, muss diese Methode sowohl die Permutationen

machen und fir diese die p-Werte berechnen, als auch die nicht-adjustierten p-Werte
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der Originalstichprobe. Die anderen Adjustierungsverfahren kénnen mit der Methode
p.adjust aus dem Packet stats angewendet werden. Dieser Methode werden die bereits
berechneten nicht-adjustierten p-Werte iibergeben und sie adjustiert diese dann mit
dem gewiinschten Verfahren. Damit alle Verfahren auf der gleichen Basis arbeiten
konnen, wurden die von der Methode MTP berechneten nicht-adjustierten p-Werte
auch an die Methode p.adjust zur Adjustierung der p-Werte mit den restlichen Ver-
fahren weitergegeben. Der Befehl der Methode MTP sieht so aus MTP(X,Y, robust,
test =7 f” B = 100000, method = "7, nulldist = "perm”, seed = 30). X ist die Matrix
mit den Daten, wobei fiir jede Zeile eine Hypothese getestet wird und Y ist der Vektor
mit den Gruppenbezeichnungen. Mit method = ”"sd.minP” oder "sd.maxT” wahlt man
die step-down Varianten der minP und der maxT Prozeduren. test="f" steht fiir die
Walhl eines F-Tests, wobei mit robust=TRUE die nicht-parametrische Variante, also der
Kruskal-Wallis-Test, gewéhlt wird und mit robust=FALSE der parametrische Test, also
die Varianzanalyse. nulldist="perm” gibt an, dass eine Permutation als Resampling-
Variante verwendet werden soll. B gibt an wie viele Permutationen gemacht werden
sollen und mit seed wird der Startpunkt festgelegt, so dass immer dieselben Permuta-
tionen gezogen werden.

Die Adjustierungen nach Bonferroni, Holm, Hochberg, Benjamini& Yekutieli und Ben-
jamini&Hochberg konnen alle mit dem Befehl p.adjust(Z, method = ") ausgefiihrt
werden, wobei method="bonferroni”, "holm”, "hochberg”, "by” oder "bh” je nach ge-
wiinschter Methode ist und Z ist der Vektor der nicht-adjustierten p-Werte.

Fir die Analyse der Verteilungen wurden folgende Befehle verwendet:

Der Shapiro-Wilk-Test wird mit shapiro.test(Variable) berechnet. Der Levene-Test
hat den Befehl levene.test(Variable, Gruppenvariable) aus dem Packet lawstat. Fir
den Quartilskoeffizienten der Schiefe wurden erst die 25%-, 50%- und 75%-Quantile
berechnet mit g <- quantile(Variable, ¢(0.25,0.50,0.75), type = 1) und dann der Quar-
tilskoeffizient mit ((¢[3] — ¢[2]) — (¢[2] — ¢[1]))/(q[3] — ¢[1]). Das Wélbungsmafl von
Fisher kann mit Hilfe des Befehls kurtosis(Variable) aus dem Packet 1071 berech-
net werden. Und um die Ausreifler zu ermitteln wurden erst die obere und die untere
Grenze des Zauns berechnet mit ¢[1] — 1.5 * (¢[3] — ¢[1]) und ¢[3] + 1.5 * (¢[3] — ¢[1])-

Und dann fiir jedes Molekiil ermittelt wie viele Werte aulerhalb dieser Grenzen liegen.

6 Fazit

Ganz allgemein ist es wohl vorteilhaft, wenn man um multiples Testen nicht herum
kommt, sich im Vorfeld zu tiberlegen bei welchen Hypothesen es wirklich sinnvoll ist
sie zu testen. Sprich nicht unbedingt notwendige Nullhypothesen erst gar nicht in
die Analyse aufzunehmen, um fiir eine kleinere Anzahl an Hypothesen adjustieren zu
miissen. So sollte man bei weiterfithrenden Analysen, die zum Beispiel untersuchen

konnten welche Gruppen sich anhand der Messwerte der Molekiile genau voneinander
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unterscheiden lassen, jene Molekiile weglassen, die bei keiner Methode und zu keinem
Zeitpunkt einen signifikanten Unterschied zwischen den Erregertypen angezeigt haben.
Mochte man auf jeden Fall falsch positive Ergebnisse vermeiden, sollte man eher eine
FW E R-kontrollierende Prozedur wéahlen, da diese konservativer sind. Am extrem-
sten ist das Verfahren von Bonferroni, wobei dieses oft als zu konservativ gehalten
wird, weshalb die schrittweisen Verfahren von Holm und Hochberg, die mehr Power
haben, bevorzugt werden. Sollen mogliche Abhédngigkeitsstrukturen der Variablen
beriicksichtigt werden, empfehlen sich die Resampling-Verfahren minP und maxT von
Westfall& Young. So bieten sich diese Prozeduren bei diesem Datenbeispiel an, da es
durchaus moglich ist, dass das Vorhandensein von gewissen Molekiilen das anderer
Molekiile positiv oder negativ beeinflusst. Sind ein paar Fehler 1. Art jedoch to-
lerierbar, so kann auch ein F'D R-kontrollierendes Verfahren angewendet werden. Je
nachdem ob die Teststatistiken unabhéngig sind oder nicht, ist das Verfahren von
Bejamini&Hochberg oder das von Benjamini& Yekutiele ratsam.

Bei diesem Beispiel mochte man, wie bereits erwahnt, vermutlich noch wissen zwi-
schen welchen Gruppen sich denn hier die signifikanten Unterschiede befinden bzw.
welche sich nicht unterscheiden. Denn bisher kénnen nur Aussagen dariiber getrof-
fen werden, ob generell ein signifikanter Unterschied besteht, jedoch nicht ob dieser
nur zwei Gruppen betrifft und welche das sind oder ob sich gar alle Gruppen dif-
ferenzieren lassen. Um nicht wieder mit einer so groflen Anzahl an Hypothesen kon-
frontiert zu sein, sollten bei dieser Analyse die Molekiile ausgeschlossen werden, bei
denen keine Methode ein signifikantes Ergebnis gefunden hat. Da immerhin noch 125
Molekiile durchweg signifikante p-Werte haben, kénnte man sich mit diesen Molekiilen
begniigen, wenn ein Verlust von ein paar weiteren relevanten Molekiilen verkraftbar
ist. Sonst muss man sich tiberlegen welche Adjustierungsmethode als Mafl dienen soll.
Die von Benjamini&Hochberg zum Beispiel lehnt kaum weniger Hypothesen ab, als
der Kruskal-Wallis-Test ganz ohne Adjustierungen, ist also moglicherweise nicht strikt
genug und verbirgt einige falsch Positive. Auflerdem diirfte interessant sein, ob auch
die einzelnen Erreger innerhalb einer Gruppe mit Hilfe dieser Messungen voneinander
unterschieden werden kénnen.

Und schlieflich gentigt es nicht sich nur Gedanken iiber die Art der Adjustierung zu
machen, sondern das grundlegende Analyseverfahren muss ebenfalls richtig gewéhlt
sein. Denn wenn schon die nicht-adjustierten p-Werte falsch berechnet wurden, bringt
die Adjustierung auch nicht mehr viel. Bei diesem Beispiel scheint die Verletzung
der Normalverteilungsannahme und der Homoskedastizitat keine grofie Auswirkung zu
haben. Trotzdem sollte man sich immer bewusst sein, ob denn die Voraussetzungen
erfiillt werden oder nicht und im Zweifelsfall auch eine nicht-parametrische Alternative

anwenden und dann die Ergebnisse vergleichen.
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