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Abstract

Random forest is currently one of the prevalent algorithms for large datasets, since it easily scales
by parallelization. Boosting is an iterative algorithm, and therefore harder to parallelize, but has a
superior forecasting performance to random forests in many situations. Furthermore, boosting
offers better interpretability. Current implementations of boosting do not scale to large datasets.
I design and implement a more scalable version of gradient boosting using subsampling and
parallelization techniques, both in a shared and distributed memory setting. To evaluate these
new algorithms on predictive performance, variable selection capabilities and scalability, I run
simulations and real data experiments. I make my implementations of these scalable gradient
boosting algorithms available in two open source R-packages.
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1. Introduction

1.1. Goal of this thesis

Boosting outperforms random forests in many applications, yet random forest is one of the
prevalent methods in the machine learning community. One of the reasons for the prevalence of
random forests is its scalability. Each tree in a random forest can be calculated independently, thus it
is an “embarrassingly parallel” problem. Boosting on the other hand, is an iterative procedure, and
therefore much harder to parallelize. I aim to make boosting as scalable—if not more scalable—as
the random forests algorithm, while preserving its predictive performance and variable selection
capabilities. I plan to do this in two settings:

1. Shared memory setting (one computer, multiple cores).

2. Distributed memory setting (a cluster of computers, each node possibly using multiple
cores).

I achieve 1) by extending the mboost (Hothorn et al. 2012) R-package to fit the base learners in
step 2 of algorithm 2 in parallel; implementing subsampling of the observations (with and without
replacement); subsampling of the features (with and without replacement) and postprocessing
using regularized regression. I achieve 2) by splitting the data into disjoint subsamples and
distributing them over the cluster nodes. Alternatively, bootstrap samples can also be used. Each
cluster node independently fits a boosting model (possibly using shared memory parallelization),
which is then combined into an ensemble of ensembles. Optionally, the ensemble components can
be postprocessed by (regularized) regression on their out-of-sample predictions to weigh them by
their predictive performance. I implement the distributed memory algorithm I call ParBoost in a
dedicated R-package of the same name (Obst 2013).

I demonstrate the predictive performance, scalability and variable selection capabilities of these
variations of gradient boosting in a variety of simulations and real data experiments. To the best of
my knowledge, parboost and isleboost are the first open source software packages to implement
parallel boosting in a distributed and shared memory setting respectively.

1.2. Overview of this thesis

First, I will motivate boosting in section 1.3.1, followed by a short history of boosting in section 1.3.2
and an introduction to gradient boosting in section 1.3.3. In section 1.4, I talk about previous
work on scaling up boosting. Section 2 presents the theory of ParBoost and ISLEBoost. I test
the speedup of ParBoost and ISLEBoost in section 3.1. In section 3.2, I present the results of
the simulations designed to examine the predictive performance of ParBoost and ISLEBoost,



compared to ordinary gradient boosting and random forests. I discuss the simulation results for
the variable selection capabilities of ParBoost and ISLEBoost, compared to ordinary gradient
boosting, in section 3.3. Section 4 looks at the results of the real data experiments. Lastly, I discuss
the implications of this thesis in section 5. Appendix A gives a short introduction to parallel and
distributed computing and the electronic supplement to this thesis is explained in appendix B.

1.3. Boosting
1.3.1. Motivation: bias-variance tradeoff

Why use boosting over simpler models, such as generalized linear models (GLMs) or generalized
additive models (GAMs)? In practice, the goal of predictive models is to generate accurate
out-of-sample forecasts. To do this, the learned model must not only fit the training data well, but
it also has to generalize well to new data. To achieve this for a given model, the main parameter
we can vary is model complexity. Model complexity influences the bias and variance of a model
and in turn, its expected generalization error. To explain this, I borrow an analogy from Moore,
McCabe, and Craig (2010):

We can think of the true value of the population parameter as the bull’s-eye on a target,
and of the sample statistic as an arrow fired at the bull’s-eye. Bias and variability
[variance] describe what happens when an archer fires many arrows at the target. Bias
means that the aim is off, and the arrows land consistently off the bull’s-eye in the same
direction. The sample values do not center about the population value. Large variability
[variance] means that repeated shots are widely scattered on the target. Repeated
samples do not give similar results but differ widely among themselves. Figure 1 shows
this target illustration of the two types of error.

High bias, low variance Low bias, high variance High bias, high variance Low bias, low variance

FIGURE 1: Bias and variability in shooting arrows at a target. Bias means the archer systematically
misses in the same direction. Variability [variance] means that the arrows are scattered.
(Dartboard analogy, Moore, McCabe, and Craig (2010))



Increasing the complexity of the model increases the variance and reduces the bias. Decreasing
the complexity reduces variance but increases bias. Since both a low variance and low bias are
desirable, there is a tradeoff between the two (Geman, Bienenstock, and Doursat 1992). The
difficulty of minimizing the expected generalization error lies in finding the sweet-spot of this
bias-variance tradeoft', which is depicted in fig. 2.

High Bias Low Bias
Low Variance High Variance

Test Sample

/

Prediction Error

Training Sample

Low Model Complexity High

FIGURE 2: Test and training error as a function of model complexity (source: Hastie, Tibshirani,
and J. H. Friedman 2009)

Boosting regulates model complexity in two ways:
1. By shrinking the coeflicients towards 0 (regularization)

2. and by selecting a subset of variables determined by their predictive accuracy (variable
selection).

By optimizing model complexity to minimize the expected generalization error, boosting can
achieve better out-of-sample performance than GLMs and GAMs.

1See Geman, Bienenstock, and Doursat (1992) for a detailed and technical discussion of the bias-variance tradeoff.



1.3.2. History: AdaBoost

Robert E. Schapire and Yoav Freund—the inventors of the first boosting algorithm AdaBoost—describe
their idea as follows (Schapire and Freund 2012):

[...] boosting, an approach to machine learning based on the idea of creating a highly
accurate prediction rule by combining many relatively weak and inaccurate rules.

This principle is best explained by an analogy to the show “Who Wants to be a Millionaire?”
Whenever a contestant is unsure of an answer, he or she can use a “lifeline” to help answer the
question. One of the lifelines is called “ask the audience,” where the audience is polled for the
answer, and then the results are displayed on the contestant’s screen (e.g. 54 % of audience members
chose answer a), 21 % chose b), and so on). This lifeline is known for its accuracy, even though
individual audience members have probably not trained for the show and are, on average, no
more intelligent than the general population. So polling a single random individual from the
audience would be of little value to a contestant. Yet, aggregating all of the votes gives highly
accurate answers. This phenomenon is called the wisdom of the crowd.

Boosting tries to make use of this phenomenon by combining “weak” base learners into an ensemble.
Examples of base learners are:

« Componentwise linear least squares;

o B-Splines;

o Trees (or tree stumps).
A large number of these base learners are then aggregated into an ensemble, and in the case of a
categorical response, a majority vote is conducted to determine the predicted class. Real-valued
data is predicted by taking the average of all forecasts of the base learners. This corresponds to the
audience voting (or giving an estimate in the case of real-valued data) in our analogy. Weak base

learners are preferred to avoid overfitting. Picture a deep neural network as a base learner—it is
clear how iteratively fitting this complex algorithm would lead to a woefully overfit model.
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In each round of boosting, the algorithm fits all the base learners to the given data and chooses
the one that minimizes the given loss criterion.

However, if the base learner is simply called repeatedly, always with the same set of
training data, we cannot expect anything interesting to happen; instead, we expect the
same, or nearly the same base classifier to be produced over and over again, so that
little is gained over running the base learner just once. This shows, that the boosting
algorithm, if it is to improve on the base learner, must in some way manipulate the data
that feeds to it.

—Schapire and Freund (2012)

Boosting achieves this manipulation by using the residuals of the previous round as the response
for the current round. In this way, observations that are hard to forecast get a larger and larger
weight, until their forecasts become more accurate. Tukey (1977) almost discovered boosting
three decades earlier: he proposed Twicing, which was essential L,Boosting (table 1) for just two
iterations. He did not pursue the idea further though.

Freund and Schapire (1996) called the first boosting algorithm AdaBoost (algorithm 1).

AdaBoost proceeds in rounds or iterative calls to the base learner. For choosing the train-
ing sets provided to the base learner on each round, AdaBoost maintains a distribution
over the training examples. The distribution used on the m-th round is denoted D,,,,
and the weight it assigns to training example i is denoted by D, (i). Intuitively, this
weight is a measure of the importance of correctly classifying example i on the current
round. Initially, all weights are set equally, but on each round, the weights of incorrectly
classified examples are increased so that, effectively, hard examples get successively higher
weight, forcing the base learner to focus its attention on them.

— Schapire and Freund (2012)

1-€,

Using «,,, = %ln( (step 4, algorithm 1), AdaBoost gives larger weights to more accurate

em
classifiers. A downside of AdaBoost is its exponential loss function (table 1), which can give

outliers a disproportionate influence’.

1.3.3. Gradient Boosting

Breiman (Breiman (1998) and Breiman (1999b)) was the first to realize that AdaBoost is a functional
gradient descent algorithm. J. Friedman, Hastie, and Tibshirani (2000) then linked AdaBoost
to additive basis expansion. J. H. Friedman (2001) and Bithlmann and B. Yu (2003) further

2The logistic loss would be more robust for example (table 1).
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Algorithm 1: AdaBoost (Freund and Schapire 1996)

Given: (x;,¥,)...(x,, y,) where x; € X, y; € {-1,+1}
Initialize weights D,(i) = 1/nfori=1,...,n

for min1:mgy,, do

1. Fit base learners to the weighted data using Distribution D.
2. Get weak hypothesis f,, : X — {-1,+1}

3. Select f,, to minimize the weighted error:

€ =P [fm(xi) # }’i] .

4. Choose a,,, = %ln<1;ﬂ>

5. Update the weights fori=1,...n

D (l) _ Dm(i) x e fm(xi) =i
ez, e fulx) #
_ D, (0)exp(~a,3; fin(x)
- 7

where Z,, is a normalization factor (chosen so that D, will be a distribution).

end
Output the final hypothesis:

F(x) = sign< i? ocmfm(x)> .

m=1

12



generalized AdaBoost to a gradient descent algorithm that fits the base learners to the negative
gradient of a variety of loss functions, resulting in an additive model—similar to a Gam—with
variable selection and shrinkage. J. H. Friedman (2001) call this stagewise, additive modeling and
Hastie, Tibshirani, and ]. H. Friedman (2009) observe a close connection between boosting and
the lasso. Algorithm 2 outlines the generic componentwise gradient boosting algorithm, and table 1
shows some typical loss functions for boosting.

Algorithm 2: Generic boosting (Bithlmann and Hothorn 2007)

Initialize: F, = 0 or Fy(x) = argmin Zf\il L(y;,c)

forminl:m, do

stop
1. Calculate the residuals of the previous round U; = Y; - F,,_(X;), i=1,...,n

2. Fit base learners f,,(-) to working residuals U
and pick the one that minimizes the loss function

3. Update the ensemble F,,(-) = F,,,_, () + vf,,,(-)

end

TABLE 1: Various loss functions p(y, f), population minimizers f*(x) and names of corresponding
boosting algorithms; p(x) = P[Y = 1| X = x] (Bithlmann and Hothorn 2007)
Range spaces p(y, f) f*(x) Algorithm
yef{0,1}, f eR exp(—(zy— l)f) Llog :;’86) AdaBoost
ye{0,1}, feR log, (l +e_2(2y_l)f) 20
2
yeERfeR  ly-f|

2

1 . . . .
2108705 LogitBoost/BinomialBoosting
E

[Y|X=x] L,Boosting
Usually, a fixed step-size® v is chosen® (v = 0.1 or v = 0.01) and the model is optimized over the
number of iterations 1, to minimize the generalization error (fig. 2) using cross-validation or
some information criterion®. Boosting is attractive because it performs regularization (due to
v < 1), and at the same time, variable selection (due to early stopping). Efficient variable selection is
especially important in high-dimensional situations (p >> N), when many variables are irrelevant.
Underlying variable selection and regularization is the bet on sparsity principle:

Use a procedure that does well in sparse problems, since no procedure does well in dense
problems.

- J. Friedman, Hastie, Rosset, et al. (2004)

3 Also called learning rate.

4 An alternative to a fixed step size v, is to select v using a line search for the greatest decrease in the loss function
L(F).
SEstimation of the degrees of freedom in boosting remains an open question though, see Hastie (2007).
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Variables remain unpenalized if the algorithm is initialized with them. E.g. boosting can be
initialized with an unpenalized linear model and boosting then fits an additive nonlinear effect
using componentwise smoothing splines as base learners.

1.4. Related work

Breiman (1999a) first introduced the idea of subsampling small “bites” from a large dataset, so
they fit into memory. A predictor is fit on each of these bites, and then all of the predictors are
“pasted” together into an ensemble. Fan, Stolfo, and Zhang (1999) propose two ways of scaling up
boosting: 1) Subsampling of observations (without replacement) in each iteration of AdaBoost to
speed up the algorithm and 2) Splitting the data into disjoint subsets over the observations and
using a different subset in each iteration. C. Yu and Skillicorn (2001) partition the observations
across available processors, and in each iteration of AdaBoost, the predictors are exchanged.

J. H. Friedman (2002) uses subsampling of the observations (without replacement) in each iteration
of gradient boosting (step 2 of algorithm 2) and called it stochastic gradient boosting. “It is shown
that both the approximation accuracy and execution speed of gradient boosting can be substantially
improved by incorporating randomization into the procedure” (J. H. Friedman 2002). J. H.
Friedman and Popescu (2003) observed that popular ensemble learning procedures—such as
boosting—can be seen as high-dimensional numerical quadrature®. They called these methods
importance sampled learning ensembles (1SLE). In this context, ]. H. Friedman and Popescu (2003)
proposed to postprocess ensembles by performing regularized regression on their components in
conjunction with subsampling. Through simulations and real data experiments, they demonstrated
that postprocessing can reduce the generalization error and variance of these learning ensembles.

Lazarevic and Obradovic (2002) develop a parallel version of AdaBoost for shared memory systems
with a small number of processors. The authors also use a distributed version, where the data is
split into disjoint subsets and distributed among cluster nodes. They find that:

Experimental results on several datasets indicate that the proposed boosting techniques
can effectively achieve the same or even slightly better level of prediction accuracy than
standard boosting when applied to centralized data, while the cost of learning and
memory requirements are considerably lower.

- Lazarevic and Obradovic (2002)

But opposed to ParBoost, the classifiers are merged in each iteration, requiring a lot of communi-
cation and locking between the nodes.

Xie, Rojkova, and Pal (2009) bag boosting models to compete in the 2009 KDD’ Cup. Pavlov,

®Integration.
"Knowledge discovery and data mining,

14



Gorodilov, and Brunk (2010) also present a combination of bagging and boosting: BagBoo.
Through real data experiments, Pavlov, Gorodilov, and Brunk (2010) show that BagBoo has
better predictive performance than bagging and is much more scalable than boosting.

We also emphasize that BagBoo is intrinsically scalable and parallelizable, allowing us
to train order of half a million trees on 200 nodes in 2 hours CPU time and beat all of
the competitors in the Internet Mathematics relevance competition sponsored by Yandex
and be one of the top algorithms in both tracks of Yahoo ICML-2010 challenge.

— Pavlov, Gorodilov, and Brunk (2010)

BagBoo is similar to ParBoost in spirit, although it does not use postprocessing and it subsamples
from observations and features without replacement instead of partitioning the data. Also, BagBoo
only uses tree base learners and runs for short boosting spurts of 10-20 trees. They do not
postprocess the ensemble. There is no publicly available software package that implements BagBoo.
But Pavlov, Gorodilov, and Brunk (2010) show that combining boosting models trained on a subset
of the data is a promising strategy to achieve the prediction accuracy of boosting, in combination
with the scalability of bagging.

Palit (2012) develop a parallel boosting algorithm in the MapReduce (Dean and Ghemawat 2008)
context for AdaBoost and LogitBoost for classification. They achieve parallelization in both time
and space by splitting the data into subsets and fitting AdaBoost or LogitBoost on each subset. But
their algorithms, AbABo0sT.PL and LoGgITBoOsT.PL, are limited to classification and do not make
use of the more general gradient boosting framework. AbABoosT.PL and LoGiTBoosT.PL do not
postprocess the final ensemble with (regularized) regression, and there is no publicly available
implementation of their algorithms. BagBoo, AbABo0sT.PL and LoGiTBoosT.PL are much more
scalable than traditional boosting, and Palit (2012) shows that they have a competetive predictive
performance compared to their sequential versions.

Tyree et al. (2011) scale gradient boosted regression trees by constructing individual trees in
parallel and Appel et al. (2013) speed up boosted decision trees by pruning underachieving features
early. They train a model on a small subsample of the data first, and eliminate underachieving
features. The authors prove that their algorithm produces identical trees as classical algorithms,
and experimentally show that it is an order of magnitude faster for classification tasks. This
approach is orthogonal to ParBoost and ISLEBoost, and can be used in conjunction with it for
even greater speedup. Sapp, Laan, and Canny (2013) fit individual models on subsamples of
the data and combine them into an ensemble, using a clever cross-validation scheme to weigh
individual ensemble components. However, this scheme requires access to the whole data, and is
thus not easily implemented in a distributed memory environment, where communication is the
bottleneck.

15



2. Theory

2.1. Shared memory setting: ISLEBoost

J. H. Friedman and Popescu (2003) view boosting from the perspective of high-dimensional
numerical quadrature, which helps to explain the effectiveness of stochastic subsampling and
postprocessing (algorithm 4). Let the base learners f(x;y,,) be characterized by a parameter vector
y=(yp>...»Yum)- For example if the base learners are trees, then y indexes the splitting variables,

the split-points and the values in the terminal nodes (Hastie, Tibshirani, and J. H. Friedman 2009).
The learning problem can then be formulated as finding a high dimensional integral

Fy(xsa) = oy + J a(y) f(x;y,,)dy. (1)

“Numerical quadrature amounts to finding a set of M evaluation points y,, € I' and corresponding

weights «,, so that
M

Fp(%) = ag+ Y o, b(x37,,) ()
m=1

approximates f(x) well over the domain of x. Importance sampling amounts to sampling y at
random, but giving more weight to relevant regions of the space I" (Hastie, Tibshirani, and J. H.
Friedman 2009)”

Using only a single evaluation point y € I' (M = 1), minimizing the prediction risk / amounts to
J(y) = minE [L(y, 00+ af (x,)) (3)
0
for some loss function L. Denote the optimal rule for (M = 1 iterations, eq. (2)) by

p* =argminJ(y). (4)
yerl

This is akin to using a single decision tree or other base learner.
The assumption (hope) is that a collection of such evaluation points {y,,}}", each with
relatively small values of ](y,,), will result in a integration rule with higher accuracy
than with either a similar sized collection of points sampled with constant probability,

or the best single point rule (eq. (4)). As evidenced by the success of bagging and random
forests, this is often the case in practice.

- J. H. Friedman and Popescu (2003)

The goal is to sample y such that points close to y* have a higher probability of being sampled
than points further away. The corresponding distance measure is

d(y,y*) =J(y)-J(y"). (5)

16



The scale (width) of the density used for importance sampling (with a sampling probability density
r(y)) is then:

o= j d(y,y*)r(y)dy. ©)
r

Hastie, Tibshirani, and J. H. Friedman (2009) state that:
o 0 too narrow suggests too many of the f(x;y,,) look alike, and similar to f(x;y");

o 0 too wide implies a large spread in the f(x;y,,), but possibly consisting of many
irrelevant cases.

Figure 3 shows several potential sampling distributions r(y) characterized by a location and
scale parameter. When choosing the width o (eq. (6)), there is a tradeoff between minimizing

04 -

0.3 -

0.1 -

0.0 -

FIGURE 3: Potential sampling distributions r(y) characterized by a location and scale parameter.
The blue density is the target F(y). The red proposal is almost constant with a very
large scale, so few samples come from high probability regions of the target. The orange
proposal has too narrow scale o and thus samples few points in the outer regions of
the target. The green proposal has the right scale, but the wrong location. The purple
proposal has the right scale and location to efficiently integrate the target, since it covers
the entire region of F(y) and has higher mass at high probability regions of the target
F(y) (J. H. Friedman and Popescu 2003).

the individual bias of the base learners and the correlation between them (Breiman 2001). “A

narrow sampling distribution (small o (eq. (6))), produces base learners { f (x; ym)}jlw all of which
having similar strength to the strongest one f(x;y"), and thereby yielding similar highly correlated

17



predictions” (J. H. Friedman and Popescu 2003). This situation is akin to the narrow orange
proposal in fig. 3. “A very broad r(y) (large o) produces highly diverse base learners, most of
which have larger values of J(y) (smaller strength) and less correlated predictions” (J. H. Friedman
and Popescu 2003). This situation is analogous to the red proposal in fig. 3. The optimal width o
depends on the target function F(x*).

J. H. Friedman and Popescu (2003) use perturbation sampling as a sampling strategy r(y) for im-
portance sampling. Perturbation sampling works by perturbing the data in some way before fitting
each base learner. The width o is then determined by the amount of perturbation. Specifically,
J. H. Friedman and Popescu (2003) use subsampling of the observations without replacement.
The size of the subsample K, relative to the number of observations N, = K/N, determines the
width 0. “Reducing # increases the randomness, and hence the width o. The parameter v € [0, 1]
introduces memory into the randomization process; the larger v, the more the procedure avoids
f(x;y) similar to those found before” (Hastie, Tibshirani, and J. H. Friedman 2009).

Despite remarks from J. H. Friedman and Popescu (2003) and J. H. Friedman (2002) to the contrary,
I found that in the context of boosting, setting 77 < 1 does not speed up the computation by N/K
for most base learners, as one might initially expect (it does for non-sequential algorithms like
bagging Breiman (1996)). Take piecewise linear base learners for example. The estimator for the
coeflicient vector is

B=X'X)"X'y. (7)
Setting =1,

(x'X)"x’ (8)
stays constant over all boosting iterations for each base learner. Only the response vector y gets
updated with the current working residuals. When setting # < 1, eq. (8) needs to be updated
in every iteration, and may actually slow down computation. Updating the inverse (X'X)™!
using the Sherman-Morrison-Woodbury formula (Hager 1989), or using low rank updates for the
Cholesky decomposition (Seeger 2007), is not efficient in this case either, since # is typically small
(0.05-0.5). Denote the selected subsample in iteration m by S,, and the part of the data not in
the subsample by —S,,,. The product X_g_ -X' ¢ excluding the subsample of the observations has
to be recalculated in every iteration for these uyf)dates, which is typically slower than calculating
the inverse (X SmX,S )"! including the subsample when 7 is small. Additionally, out-of-sample
predictions have to be computed in each iteration to calculate the working response, which further
slows down computation.

J. H. Friedman and Popescu (2003) estimate the quadrature coeflicients {ocm}g/l with regularized
regression on the response y using the selected base learners { f(x;,,)} as predictors:

N M M
N 1
{(xm}éw = argmin-—— ZL (yi,oco + Z vamf(xi;ym)> +A- Z pen(«x,,,). 9)
m=1 m=1

M i
{onty i=1

I included the Lasso (Tibshirani 1996), Ridge (Hoerl and Kennard 1970) and Elastic Net (Zou and
Hastie 2005) penalty functions (pen, eq. (9)) in isleboost from the glmnet (J. Friedman, Hastie,
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and Tibshirani 2010) package. The regularization parameter A (eq. (9)) determines the degree of
shrinkage and is optimized using cross-validation. ISLEBoost optimizes mg, and A sequentially
to avoid a quadratic optimization procedure.

[...] the shrinkage implicit in eq. (9) has the important function of reducing bias of the
coefficient estimates as well as variance. The importance sampling procedure selects
predictors f(x;vy,,) that have low empirical risk and thereby preferentially high values
for their empirical partial regression coefficients &,,,. If the multiple regression coefficients
{&,,}01 were estimated using data independent of that used to select y,,, then using
eq. (9) with A = 0 would produce unbiased estimates (see Copas (1983)). However, using
the same data for selection and estimation produces coefficient estimates that are biased
towards high absolute values. The shrinkage [...] helps compensate for this bias.

- J. H. Friedman and Popescu (2003)

Postprocessing gradient boosting is also a way to make the algorithm sparser, since it reduces the
number of selected base learners. See for example Bithlmann and B. Yu (2006) and Bithlmann
and Hothorn (2010) for other techniques to achieve more sparsity in boosting.

Algorithm 3: Generic ISLE ensemble generation (Hastie, Tibshirani, and J. H. Friedman
2009)

1. Fy(x)=argminy N L(y;c)

2. Form=1 t;Mdo
(@) Y=argmin, s ) Ly, Frooy (x)) + f(x57))
(b) F,(x)= ;m_lm +f (%59,,)

3. Tise = {f 5y, f572)s 0 f (730}

I call the shared memory algorithm ISLEBoost, because I borrow most ideas from J. H. Friedman
and Popescu (2003)). Specifically, ISLEBoost makes use of subsampling of observations and post-
processing of the resulting ensemble. What sets ISLEBoost apart from the proposed modifications
to gradient boosting in J. H. Friedman and Popescu (2003), is the ability to optionally subsample
from features instead of observations, and improvements in computational efficiency: namely
fitting individual base learners in parallel. It should be pointed out, that the postprocessing step
for ISLEBoost (algorithm 4) uses the same distribution family that was used for boosting. This
ensures that e.g. probability estimates for binomial responses are bounded by [0, 1] and estimates
for Poisson responses are counts. Postprocessing a boosting ensemble in this way has a somewhat
similar structure to a single hidden layer, feed-forward neural network with a single output unit
(see fig. 4).

Subsampling features instead of observations in every iteration also varies the width o (eq. (6)),
but it offers linear speedup, e.g. taking a 50 % subsample of features will speed up the algorithm
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Algorithm 4: Generic ISLEBoost
Initialize: Fy = 0 or Fy(x) = argmin} Y L(y;,c)
do

forminl:mgy,,

1. Optional: Subsample observations or features from complete data d,, < D
with or without replacement

2. Calculate residuals U; =Y, - F,,_(X;) V X,,Y; ed

m

3. Fit base learners f,,(-) to working residuals U,
and pick the one that minimizes the loss function

4. Update model F,,(-) = F,,,_{(-) + vf,,,(*)

end
Optional postprocessing: Regularized regression on ensemble components f,,(-) using an
appropriate response function h:

M
E, = h(oco + Z vocmfm(x)>
m=1

{or,, 10

N M M
X .1
{a,, 10" = argmin-— ZL (y,»,(xo + Z ocmvf(xi;ym)> +A- Z pen(w,,).
i=1 m=1 m=1

by approximately 100 %. Hsu et al. (2012) describe the tradeoff as “convergence time versus
representation power.” Subsampling features will learn restricted forms of linear predictors relative
to what can be learned without subsampling (Hsu et al. 2012). The resulting predictor is somewhere
between naive Bayes and the unrestricted form, depending on the size of the subsample. The
subsample of features can only account for feature correlation within the subsample, whereas
naive Bayes assumes complete independence. Postprocessing using regularized regression on
the base learners can eliminate highly correlated features and alleviate some of the shortfall in
representation power.

Subsampling features is vulnerable to datasets with only a few relevant features relative to the total
number of features. For example, if only 5 % of the features are relevant, and 20 % of features are
sampled in each iteration, it is easy to see that many selected base learners will be irrelevant too,
crippling boosting’s ability for variable selection. Postprocessing using regularized regression can
help in this regard too, setting the weights of ineffective base learners to 0—but this is inefficient. If
the problem is known to be sparse, it is best to avoid feature subsampling altogether. If the problem
is dense though, feature subsampling can yield nearly identical results to ordinary boosting in a
fraction of the time.

Using piecewise linear base learners for simplicity, gradient boosting has a computational com-

plexity of
O(pn(M+1nn))), (10)
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FI1GURE 4: ISLEBoost network diagram with postprocessing. Note the similarity to a single hidden
layer, feed-forward neural network with a single output unit.

with O(pn) for finding the best regression function and O(pnInn) for sorting the features (Palit
2012). Fitting the base learners on K cores reduces the computational complexity to

O(%n(M+pnlnn)), (11)

thus we should expect a linear speedup in the number of cores.

2.2. Distributed memory setting: ParBoost

The idea of ISLEBoost is to make boosting more scalable on a single computer with multiple cores,
whereas ParBoost tries to scale boosting to a whole cluster of machines. The two algorithms can
be combined of course: each node in the cluster may have multiple cores and can therefore use
ISLEBoost to speed up the computation locally.

ParBoost works by partitioning the data into K samples. Boosting is then run on each k € K

samples independently to minimize communication overhead, which is the bottleneck in a cluster
setting. For smaller datasets, bootstrapping the original data and then fitting boosting models
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Algorithm 5: ParBoost

Partition data into K subsamples or generate K bootstrap samples, {d} € D}k
and send each sample d, to a different cluster node.
for k in K parallel do
Initialize: F, = 0 or F,(x) = argmin Zf\i L L(y;s0)
c

forminl:m___do

max
1. Calculate residuals U; = Y; = Fy ,, ) (X;) V X, Y; € dy

2. Fit base learners f,,(-) to working residuals U; in parallel
and pick the one that minimizes the loss function

3. Update model Fy ,,,(-) = Fy (;,_1)(") + v£,,(")

end
Optimize m

stop USING cross-validation.

end
Either

1. Create ensemble of ensembles F = Zle F, /K using equal weights of the components or

2. Postprocess by weighing the individual ensemble components with (penalized) regression on
their predictions for the complete dataset D using an appropriate response function h:

K
F:h<ﬁo+2ﬁka>
k=1

N K K
B = argmin% ZL <yi,ﬁ0 + Z ﬁka(xi)> +A- Z pen(f;)
B i=1 k=1 k=1
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FIGURE 5: ParBoost network diagram with postprocessing.

on each bootstrap sample is an alternative. The resulting boosting models are combined in an
ensemble of ensembles, either equally weighted or postprocessed using (regularized) regression
(algorithm 5). For postprocessing, each of the k models generate predictions for the entire dataset
D. Thus N - N/K data points are “out-of-bag” for every model. These predictions are then used
as features in the postprocessing step:

K
F=By+ ) B (12)
A . L K K
B= argminﬁ ZL (yi,ﬁo + z Bka(xi)> +A- Z pen(By). (13)
B i=1 k=1 k=1

I have included GLMs, the Lasso, Ridge regression and the Elastic Net as postprocessing procedures
in parboost. The higher the proportion of out-of-bag data points for each model in eq. (13), the less
effective regularized regression theoretically becomes. This happens because more out-of-bag data
points means using more data independent of estimating the models F is used for estimating the
model weights f8, hence A = 0 would produce less biased estimates (see Copas (1983)). Therefore,
if the proportion of out-of-bag samples is high, the analyst should choose the unregularized GLm
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procedure over the regularized variants.

ParBoost can easily be adapted to run in the MapReduce framework (Dean and Ghemawat 2008)
on platforms such as Hadoop® (algorithm 6). The data would be automatically partitioned among
the cluster nodes by HDFs. Each mapper fits an independent boosting model—possibly using
parallelism from isleboost. These models are then postprocessed and aggregated in the reduce
step.

Algorithm 6: ParBoost in the MapReduce framework

Partition data into K subsamples or generate K bootstrap samples, {d; < D};.x
and send each sample d to a different cluster node.

Map Fit a gradient boosting model on each mapper using the local subset dj. € D of the data:
forminl:m,, do

1. Calculate residuals U; = Y; = Fy (,,.1)(X;) V X,,Y; € dj,

2. Fit base learners f,,(-) to residuals U, in parallel
and pick the one that minimizes the loss function

3. Update model Fy ,,,(-) = Fy (,-1)(-) + v/, ()

end

Optimize myg,, using cross-validation.

Reduce Postprocess the models:

1. Create ensemble of ensembles F = Zf:l F./K or

2. Postprocess by weighing the individual ensemble components with (penalized) regression on
their predictions for the complete dataset D:

K
F:ﬁo+2ﬁka

k=1

N K K
B= argmin% ZL <yi,ﬁ0 + z ﬁka(xi)> +A- Z pen(f)
B i=1 k=1 k=1

3. Output final model F

Ignoring the postprocessing step and communication overhead—again for simplicity—ParBoost
has a computational complexity of (see eq. (10))

o(%ln%+M£”>. (14)

Figure 6 shows the computational complexity of ParBoost when varying the number of cluster
nodes K and keeping the number of observations fixed at n = 100000 using p = 100 piecewise

8http://hadoop.apache.org
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linear base learners and M = 1000 iterations. On small datasets, the overhead of setting up the
cluster and communication between the nodes will outweigh any benefits in speed. On large
datasets though, there is a clear benefit in scalability to using ParBoost over ordinary gradient
boosting.

5e+10 —
4e+10 —
3e+10 —
2e+10 —

le+10 —

Computational Complexity

0e+00 —
\ \ \ \ \

0 5 10 15 20
Number of nodes in cluster

FIGURE 6: Computational complexity of ParBoost with fixed number of observations n = 100000,
100 piecewise linear base learners and 1000 iterations M while varying the number of
cluster nodes K.

3. Simulation experiments

The purpose of ParBoost and ISLEBoost is to make Boosting scalable without sacrificing predictive
performance. Furthermore, ParBoost should have a similar ability to select relevant base learners
and discard irrelevant ones as ordinary Boosting. To test the effectiveness of ParBoost and ISLE-
Boost towards reaching these goals, I designed three simulation studies, which I will cover in the
following three sections.

3.1. Speedup

To examine the scalability of ISLEBoost and ParBoost, I measure the speedup of each algorithm.
“[Speedup] is defined as the ratio of the time taken to solve a problem on a single processing
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element to the time required to solve the same problem on a parallel computer with p identical
processing elements” (Grama et al. 2003). Denote speedup by

S=—L, (15)

with T} for the time taken on a single processing element and T, for the time taken on p processing
elements. In the shared memory framework of ISLEBoost, a processing element is a cpu Core,
whereas in the distributed memory framework of ParBoost, a processing element is a cluster
node.

3.1.1. ISLEBoost

For ISLEBoost, I simulated a dataset with 1,000,000 observations consisting of a normally dis-
tributed response and 80 normally distributed features. I measured the time to fit an ISLEBoost
model on the simulated data using 2 and 4 cpu cores, relative to the time it took on a single cpu
core’. No subsampling or postprocessing was used, so the speedup measured here is simply the
result of fitting the base learners in parallel. Section 3.1.1 shows the speedup for ISLEBoost. The

2.0 -
Basel

o aselearner
,.QU:)’ bbs
O 1.6 bols
o b
» @ btree

1.2 -

| | | |
2 3 4

1 2 :
Number of CPU Cores

FIGURE 7: Speedup for ISLEBoost on simulated data with 1,000,000 observations and 80 features.
The base learners are bbs=splines, bols=piecewise linear and bt ree=regression stumps.

speedup is fairly linear as expected (see eq. (11)), although going from one to two cores does not
halve the computation time—clearly the overhead of the parallel computation is taking its toll.

9The simulation was run on an Amazon EC2 cr1.8xlarge instance (as of September 2013).
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3.1.2. ParBoost

Going by the computational complexity of gradient boosting (eq. (10)) and that of ParBoost
(eq. (14)), the theoretical speedup of ParBoost should be (Palit 2012):

nlnn+ Mpn
Speedup=O H =0 Kllnzl—-kﬁ
e+ o

(16)

Setting the number of nodes greater than one (K > 1), the fraction

Inn+M
n
IHE-FM

in eq. (16) will be greater than 1. Thus the speedup for ParBoost should be greater than the number
of nodes K.

2.00 -

1.00 -
[ [ [ [

2 3
Number of Nodes

FI1GURE 8: Speedup for ParBoost on simulated data with 500,000 observations and 80 features
using piecewise linear base learners.

Figure 8 shows the simulation results for the speedup of ParBoost. The speedup is linear but not
greater than 100 % for each node, as the computational complexity (eq. (16)) suggests—this is due
to the overhead of setting up the cluster'’, reading the data on each node, and transmitting back
the results. But as I demonstrate in section 4.2, ParBoost scales to 50 cluster nodes and beyond,
making boosting feasible for very large datasets.

10The simulation was run on an Amazon EC2 crl.8xlarge instance (as of September 2013).
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3.2. Predictive performance

I ran the following simulation to compare the predictive performance of ParBoost (algorithm 5)
and ISLEBoost (algorithm 4) to random forests (Breiman 2001), L,Boosting (Bithlmann and B. Yu
2003) for regression and BinomialBoosting (Biihlmann and Hothorn 2007) for classification. I
compare the MSE for regression and the misclassification rate for classification. To this end, I
generate a random target function in each of the 10 simulation runs with N = 20,000 observations
and P = 100 predictors. Of those 100 predictors, 25 are relevant and 75 are noise'' variables. The
predictors X ~ N(0,1,,) are i.i.d. normal with unit variance truncated at [-2,2]. The target is
generated as a function of the predictors

Y =F(B,X)+e (17)

with

5 10 15 20 25
FBX)= Y BX;+ Y BX2+ Y BX3+ Y Bysin(X,)+ ). B———.  (18)
=1 =6

j=11 j=16 j=21 1+exp(—Xj)

Each influence function f] € F is centered and scaled to mean 0 and standard deviation 1. The

coefficient vector B is sampled from the uniform distribution U[~1,1]**. Denote F(B,X) by #,
then the standard deviation is

(19)
and the signal-to-noise ratio is
n sd%
SNR = . (20)
"ol
i=1"i
Given a signal-to-noise ratio of 2 and #, I generated the target using
sd%
~N| 1, — 21
yl 171 SNR ( )

For the classification task, I split the target on the median of y to {0, 1}. I used half of the data for
training and half of the data as a test set (i.e. 10,000 observations each) for every simulation run.
To tune my,,, I used 10-fold cross-validation on the training set for each of the 10 simulation
runs.

stop?

The algorithms in this simulation are:

1. Random Forests from the randomForest (Liaw and Wiener 2002) R-package with 500 trees.

U They are completely unrelated to the response.
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2. L,Boosting for regression and BinomialBoosting for classification, both from the mboost
(Hothorn et al. 2012) R-package with a maximum of 2000 iterations and a stepsize of v = 0.1.
With:

i) Spline base learners (cubic B-spline with 2™ order difference penalty, 20 knots and 1
degree of freedom) using the p-spline decomposition'? (see Kneib, Hothorn, and Tutz
(2009), Hofner et al. (2011)).

ii) Tree stumps.

3. ISLEBoost from the isleboost R-package (appendix B.1) with identical settings to 2), but
additionally using:

i) Postprocessing with the lasso.

ii) Feature subsampling (1 = 0.5, without replacement) with and without lasso postpro-
cessing.

iii) Observation subsampling (1 = 0.1, without replacement) with and without lasso post-
processing.

4. ParBoost from the parboost R-package (appendix B.2), splitting the data into 4 disjoint
subsets, with a maximum of 2000 iterations and a stepsize of v = 0.1. The base learners
and loss functions for each boosting model are identical to 2). Each ParBoost model was
postprocessed (see section 2.2 for details) by:

i) Simply taking the mean of the ensemble components.
ii) Usinga GLM
iii) Fitting a Lasso.

Looking at the MSE ratios to the baseline L,Boosting model for the boosting simulation with
the real-valued response for the models using p-spline decomposition base learners in fig. 9, the
MSE of the boosting models are all within 5 % of each other. ParBoost using GLM postprocessing
does particularly well, with virtually identical MSEs to the baseline model. Keeping in mind that
ParBoost is much more scalable than ordinary L,Boosting, this result is very promising. ParBoost
with no postprocessing at all (weighing each ensemble component equally) does slightly worse,
whereas ParBoost with lasso postprocessing does a lot worse. Using lasso postprocessing on
L,Boosting (fig. 9, isleboost.bbs. lasso) slightly worsens predictive performance. ISLEBoost
with feature or observation subsampling also does worse than the baseline L,Boosting model and
increases variance.

12 Allows the algorithm to choose linear and smooth effects separately.
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FIGURE 9: Predictive simulation (regression) with p-spline decomposition base learners: ratios of
mean square error over 10 simulation runs to the baseline model for the real-valued
response. Models from top to bottom: ISLEBoost using subsampling of the obser-
vations and lasso postprocessing; ISLEBoost using subsampling of the observations;
ISLEBoost using feature subsampling and lasso postprocessing; ISLEBoost using feature
subsampling; ISLEBoost using Lasso postprocessing; ParBoost using lasso postprocess-
ing; ParBoost using GLM postprocessing; ParBoost without postprocessing; L,Boosting
(baseline). The light grey lines connect simulation runs.

30



isleboost.btree.obs.lasso — m

isleboost.btree.obs — 0ﬂ
isleboost.btree.features.lasso — *|:|:|~

isleboost.btree.features —

Model

isleboost.btree.lasso —

parboost.btree.lasso — ‘|:|]
parboost.btree.glm - ‘|:|]~
parboost.btree.none - ’I]
\

mboost.btree —

[ [ [
1.00 1.05 1.10 1.1

MSE Ratio

1.20

wu

FIGURE 10: Predictive simulation (regression) with tree stump base learners: ratios of mean square
error over 10 simulation runs to the baseline model for the real-valued response.
Models from top to bottom: Random forest; ISLEBoost using subsampling of the
observations and lasso postprocessing; ISLEBoost using subsampling of the obser-
vations; ISLEBoost using feature subsampling and lasso postprocessing; ISLEBoost
using feature subsampling; ISLEBoost using lasso postprocessing; ParBoost using lasso
postprocessing; ParBoost using GLM postprocessing; ParBoost without postprocessing;
L,Boosting (baseline). The light grey lines connect simulation runs.
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The MSE ratios to the baseline L,Boosting model for the simulation with the real-valued response
for the boosting models using tree stump base learners (and the random forest) in fig. 10 show
a different picture than the p-spline decomposition base learners in fig. 9. First of all, there are
several models that do better than the baseline L,Boosting model. All three ParBoost models show
a superior performance to the baseline, and ParBoost using lasso postprocessing is actually the
strongest model of all. Again, considering the superior scalability of ParBoost to ordinary gradient
boosting, this is a very promising result for the algorithm. ISLEBoost using feature subsampling
does worse than the baseline L,Boosting model, but postprocessing improves performance—the
opposite of the results using p-spline decomposition base learners.

Besides the strong results of ParBoost, the main difference to the p-spline decomposition base
learners in fig. 9 is the strong showing of the ISLEBoost models using subsampling of the ob-
servations (especially using postprocessing). The gain in predictive performance using lasso
postprocessing carries through to ParBoost, which does slightly better than the GLM postprocess-
ing—as opposed to p-spline decomposition base learners, where GLM postprocessing was superior
to lasso postprocessing. Figure 11 shows the MSEs for all the models in the predictive simulation
with the real-valued response. The models using the p-spline decomposition base learners perform
better than tree stump base learners for this particular target.

Figure 12 shows the ratios of the misclassification rate to the baseline BinomialBoosting model for
the binary response using p-spline decomposition base learners. ISLEBoost using subsampling
of the observations does slightly worse than the baseline, similar to the real-valued response
(fig. 9). Whereas ParBoost using GLM postprocessing had virtually identical performance to the
baseline for the real-valued response, it does worse for the classification problem. Figure 12
displays the ratios of the misclassification rate for the boosting models with tree base learners
and the random forest to the baseline BinomialBoosting model. Random forest has a much
higher misclassification rate than the boosting models. Subsampling observations also does
badly—opposed to the real-valued response, where subsampling observations improved predictive
performance (fig. 10). The ParBoost models using postprocessing perform better than the baseline
(fig. 13), but ParBoost using no postprocessing does worse. This is in line with the findings for the
real-valued response, where postprocessing generally seems to help models with tree base learners,
but worsens performance for piecewise linear and spline base learners. Table 2 and table 3 show a
summary of this simulation.
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FIGURE 11: Predictive simulation (regression) mean square errors over 10 simulation runs. The
light grey lines connect simulation runs.
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FIGURE 12: Predictive simulation (classification) with p-spline decomposition base learners: aver-
age ratio of misclassification rate over 10 simulation runs to the baseline model for
the real-valued response. Models from top to bottom: ISLEBoost using subsampling
of the observations and lasso postprocessing; ISLEBoost using subsampling of the ob-
servations; ISLEBoost using feature subsampling and lasso postprocessing; ISLEBoost
using feature subsampling; ISLEBoost using lasso postprocessing; ParBoost using lasso
postprocessing; ParBoost using GLM postprocessing; ParBoost without postprocessing;
BinomialBoosting (baseline). The light grey lines connect simulation runs.
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FIGURE 13: Predictive simulation (classification) with tree stump base learners: average ratio
of misclassification rate over 10 simulation runs to the baseline model for the real-
valued response. Models from top to bottom: ISLEBoost using subsampling of the
observations and lasso postprocessing; ISLEBoost using subsampling of the obser-
vations; ISLEBoost using feature subsampling and lasso postprocessing; ISLEBoost
using feature subsampling; ISLEBoost using lasso postprocessing; ParBoost using lasso
postprocessing; ParBoost using GLM postprocessing; ParBoost without postprocessing;
BinomialBoosting (baseline). The light grey lines connect simulation runs.
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O.I.’)O 0.I35 0.I40 0.I45 O.ISO

Misclassification rate

FIGURE 14: Predictive simulation (classification) misclassification rates over 10 simulation runs.
The light grey lines connect simulation runs.

36



99¢°8¢ 020°8 89%'8 SLETT $991], 15210 Wopuey
769°%€ 1029 788/ €€0'61 swdumig 9217, Gurssaooadisod osseT yim suonearssqo urduresqns 3s00g TSI
0vF¥€ €85'9 6€8°L 708'ST swdumg 9217, suonea1asqo Surduresqns 1s00gH TSI
101°S¢ 0929 8€6°L 18161 swdurmg 217, Surssaooidisod osseT yym sarnjesy Surduresqns 3soogqIST
00¥'LE 091~ €8¥'8 LES0T swduwmyg 991, samjeay Surduresqns 15004 TST
1¥TSE 0049 G708 99T 61 swdumig 9217, Surssaooidisod osseT ym 150099 TSI
CLLFE 999 $68°L €€0'61 uonsodwoosop surds-g Surssaooadisod osseT yym suonearasqo Jurduresqns 35009 TSI
GIT'SE 0€L°9 066°L 2T 61 uonyisodwodap aur(ds-q suornjearasqo Jurduresqns 3s00g TSI
€61°7€ /%S9 Y 1S2°81 uonsodwoosap aurdg-q Surssaooidisod osseT yim sarnjesy Juriduresqns 3s00gqIS]
TTTYe 8659 LLLL 9¢/'81 uonsodwosap surfds-q sarnyedy Surduresqns 3s00g TSI
8IT'HE 695°9 S¢L L 099°81 uonsodwodsap surds-q Surssaooidisod osseT ym 1s00gq TSI
0%0°F€ 18%'9 9¢/°/ S65°81 swdumig a1y, Surssaooadisod osseT ym 3soogred
€LTHE 695°9 69L°L 169°S1 swrdwinyg 9217, Surssaoordysod W1d M 3s00g IR
¥99°%€ £99°9 €L8°L L8681 swdumg 9217, 1s00g1eq
$80°SE $82°9 796°L 661 uonyisodwodap aur(ds-q Surssaooxdisod osseT [ym Jsooqied
6ETHE S6%°9 09Z°Z 809°81 uonyisodwodap aurds-q Surssaoordisod W1d YIIm Jsoogred
65€ 7€ £5S°9 ¥08°2 €L 81 uontsodwodap aurds-q 1s00g1ed
19L7%¢€ ¥99°9 €68°L LT0°61 swdumng da1], Sunsoog®
1€0°7€ 879 SeLL 965°8T uonsodwodap aurds-q Sunsoog®1

XeA UIN "A(T IS UeIN SIoUIed aseq [PPOIN

SUNI UONB[NWIS ()T J9AO (UOTSSaI391) UoTje[NWIS dANOIPaId o) 10] SHSIA T TdV],

37



7050 96¥%°0 €00°0 00S°0 $391], 15910,] WoOpUeY
80 08¢0 020°0 0 swdwnyg 921y,  Surssaooidysod osseT yim suonearssqo urduresqns 350099 TSI
¥F0 6S€°0 020°0 10%°0 swdumig 9a17, suonjearasqo Jurjduresqns 350099 TS]
67€°0 182T°0 ¥10°0 €1€0 swdurnig 9a17, Surssaooidisod osseT yim sarnjesy Jurjduresqns 3s00gqIS]
€5¢°0 S0€°0 $10°0 LEE0 swdwnig 99217, sornyedy Juriduresqns 3s00gqIS]
0€€°0 €87°0 ¥10°0 SI€0 swdwnjg 99217, Surssaooidisod osseT ym 150099 TSI
€0 6L7°0 €10°0 0T€0 uontsodwooop surdg-g  Surssaooxdisod osseT yym suorjearasqo Surduwresqns 3s00gTS]
I€€0 ¥8C°0 S10°0 S1€0 uonrsodwodap aurrds-q suoneA1asqo Suriduwesqns 3500gH TSI
81¢°0 SLT0 €10°0 10€°0 uonsodwoosap aurdg-q Surssaooidisod osseT yim sarnjesy Juriduresqns 3s00gqIS]
81€°0 vLT0 ¥10°0 90€°0 uonrsodwodap aurfds-q samyedy Surjduresqns 300gHTS]
02€°0 SLT0 €100 70€°0 uonsodwoosop surds-g Surssaooidisod osseT ym 1s00gq TSI
81¢0 ¥LT0 €100 20€°0 swdurng 9917, Surssaooadisod osseT ym 3soogred
12€°0 SLT0 €10°0 €0€°0 swdurmig 9217, Surssaoordysod W1d M 3s00g IR
8¥1°0 08¢0 020°0 (4440 swdwmg 3317, 1s00g1eq
¥eeo 9LT0 ¥10°0 60€°0 uonsodwoddp surdsg-g Burssaooidysod osseT yam 3s00qIed
STy 65€°0 0200 %0 uonsodwoddp surds-g Burssacoxdysod WO yam Jsoogreq
02¢°0 €LT0 7100 €0€°0 uonrsodwodap aurfds-q }soogqreq
¥eeo 6,70 7100 0T€°0 swdwmg sa1g, Sunsoogrerwourg
81¢€°0 ¥LT0 €100 0¢°0 uonsoduwrodap surds-g Sunsoogrerwourg

Xe U ‘AT 1S uBIN SIOUIRST dSey [PPOIN

SUNI UOTJR[NWIS ()T A0 (UWOTJBOTISSE[D) UOTJB[NUIS dATIOTPaId o) J0J S2Jel UOTJROYISSB[ISIIAl € ATAV],

38



3.3. Variable selection

This simulation experiment examines the ability of ParBoost and ISLEBoost to select relevant
features and discard irrelevant ones in comparison to “standard” boosting. For each of the 25
simulation runs, I generated 40000 observations with 100 features, of which 25 are relevant and 75
are noise'”. The variables are drawn from multivariate Gaussian truncated at [—2,2]. There are 5
blocks of 5 variables each (to give a total of 25 relevant variables), with each block having a different
compound symmetry covariance structure': {0,0.2,0.4,0.8,0.99}. All variables have mean 0 and
variance 1. The coefficient vector g ~ U[0, 1]** is sampled from the uniform distribution. The target
was then generated by eq. (21) with a signal-to-noise ratio of 2 and # = X. For the classification
task, I split the target on the median of y to {0, 1}.

The algorithms are evaluated on the false positive and false negative rates of selected variables.
To evaluate the predictive impact of variable selection, I also evaluate the ratios of the MsE for
regression and the misclassification rate for classification, using standard boosting as the baseline
model. As in section 3.2, I split the data in a training and a test set, each consisting of 20000
observations. 10-fold cross-validation was used to tune the algorithms on the training set for each
of the 25 simulation runs.
The algorithms compared in this simulation are:
1. L,Boosting for regression and BinomialBoosting for classification, both from the mboost
R-package with a maximum of 2000 iterations and a stepsize of v = 0.1 using linear base

learners.

2. ISLEBoost from the isleboost R-package (appendix B.1) with identical parameters to 1)
using:

i) Lasso postprocessing
ii) Feature subsampling with # = 0.5 (no replacement)
iii) Feature subsampling with lasso postprocessing and # = 0.5 (no replacement)
iv) Subsampling of the observations with # = 0.1 (no replacement)
v) Subsampling of the observations with lasso postprocessing and # = 0.1 (no replacement)
3. ParBoost from the parboost R-package (appendix B.2), splitting the data into 4 disjoint

subsets. The rest of the boosting parameters are identical to 1). Each ParBoost model was
postprocessed (see section 2.2 for details) by:

BThey are completely unrelated to the response.
“41dentical correlation between all predictors within a group.
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i) Simply taking the mean of the ensemble components.
ii) Usinga GLM.

iii) Fitting a Lasso.
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FIGURE 15: Variable selection simulation (regression): false negative and false positive rates for
selecting the relevant coefficients over 25 simulation runs. The I° norm of the true
model is 25. Models from left to right: L,Boosting, ISLEBoost with lasso postprocess-
ing; ISLEBoost using feature subsampling; ISLEBoost using feature subsampling and
lasso postprocessing; ISLEBoost subsampling observations; ISLEBoost subsampling
observations with lasso postprocessing; ParBoost without postprocessing. The light
grey lines connect simulation runs.

Figure 15, table 4 and table 5 show the false negative and false positive rates for the real-valued
response over the 25 simulation runs. As expected, the three models postprocessed by the lasso
show the lowest average false positive rates by eliminating weak base learners in the postprocess-
ing step. ISLEBoost with postprocessing but without subsampling, and ISLEBoost with feature
subsampling and postprocessing, only show a slightly higher false negative rate than the baseline
model. This makes them interesting alternatives to other sparse boosting techniques, such as
SparseL,Boost (Bithimann and B. Yu 2006) or Twin Boosting (Bithlmann and Hothorn 2010).

ParBoost and ISLEBoost using subsampling of the observations without postprocessing have low
false negative rates, but at the cost of high false positives. This suggests that these two methods
have a harder time identifying relevant coefficients because of the subsampling of the observations.
These two subsampling schemes of the observations are very different, but this simulation shows
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that the effect on variable selection is similar. Subsampling features without postprocessing displays
a somewhat higher false positive rate than L,Boosting —but only slightly—and has a lower false
negative rate. This is to be expected, since some iterations are bound to sample mostly irrelevant
features in this rather sparse setting. The impact on variable selection here is small nevertheless,
especially compared to the linear reduction in computing time due to the subsampling.
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FIGURE 16: Variable selection simulation (regression): ratio of the mean square error using
L,Boosting as the baseline. 25 simulation runs. Models from left to right (all with piece-
wise linear base learners): L,Boosting (baseline), ISLEBoost with lasso postprocessing;
ISLEBoost using feature subsampling; ISLEBoost using feature subsampling and lasso
postprocessing; ISLEBoost subsampling observations; ISLEBoost subsampling obser-
vations with lasso postprocessing; ParBoost without postprocessing; ParBoost using
GLM Postprocessing; ParBoost using lasso postprocessing. The light grey lines connect
simulation runs.

The MSE ratios to the baseline L,Boosting model are shown in fig. 16. Note the scale of the y-axis:
it only goes up to 1.015—so all models here show little difference in predictive performance to
the baseline. That being said, ISLEBoost using lasso postprocessing has a nearly identical MSE
to the baseline, whereas the ISLEBoost models using subsampling—with and without postpro-
cessing—have higher MSEs. This supports the finding that postprocessing in ISLEBoost seems to
harm piecewise linear base learners (see section 3.2). ParBoost using GLM postprocessing performs
very well. The algorithms predictive performance displays very little variance and near identical
performance to the baseline—yet it is much more scalable.

Figure 17, table 7 and table 8 show the false negative and false positive rates for the binary response
over the 25 simulation runs. The rates of the models are nearly identical to the real valued response,
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FIGURE 17: Variable selection simulation (classification): average false negative and false positive
rates for selecting the relevant coefficients over 25 simulation runs. The I° norm
of the true model is 25. Models from left to right: BinomialBoosting, ISLEBoost
with lasso postprocessing; ISLEBoost using feature subsampling; ISLEBoost using
feature subsampling and lasso postprocessing; ISLEBoost subsampling observations;
ISLEBoost subsampling observations with lasso postprocessing; ParBoost without
postprocessing. The light grey lines connect simulation runs.

so please refer to the analysis above. Looking at the ratio of the misclassification rates to the
baseline BinomialBoosting model in fig. 18, it is obvious that ISLEBoost using subsampling of the
observations and ParBoost using GLM postprocessing have a higher misclassification rate than the
rest of the models—which have virtually identical misclassification rates. The result for ParBoost
is similar to that for the predictive simulation for the binary response and p-spline decomposition
base learners (see fig. 12). Table 6 and table 9 summarize the predictive performance of the various
models in this simulation.
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FIGURE 18: Variable selection simulation (classification): ratio of the misclassification rate using Bi-
nomialBoosting as the baseline. 25 simulation runs. Models from left to right (all with
piecewise linear base learners): BinomialBoosting (baseline), ISLEBoost with lasso
postprocessing; ISLEBoost using feature subsampling; ISLEBoost using feature sub-
sampling and lasso postprocessing; ISLEBoost subsampling observations; ISLEBoost
subsampling observations with lasso postprocessing; ParBoost without postprocessing;
ParBoost using GLM Postprocessing; ParBoost using lasso postprocessing. The light
grey lines connect simulation runs.
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4. Real data experiments

4.1. UCI binary classification benchmarks

I use a collection of 21 binary classification problems from the uct Machine Learning Repository
(Newman et al. 1998)—previously analyzed in Scheipl (2011) and Eugster (2011)—to examine
the predictive performance of ParBoost and ISLEBoost, compared to standard gradient boosting
and random forests. See table 10 for a summary of the datasets. Following Scheipl (2011), I
evaluate the predictive performance of the algorithms using 20-fold cross-validation on each
dataset. Specifically, I compare the Auc (area under the receiver-operator-characteristic curve, see
Fawcett (2004)) and misclassification rate on each dataset. The ROC curve plots true positives vs.
false positives for binary classification models as its discrimination threshold is varied. The idea
behind the Auc is to reduce this plot to a single numerical value representing expected performance,
where higher auc values signify better classification rules. “The Auc has an important statistical
property: the Auc of a classifier is equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative instance” (Fawcett
2004).

The algorithms in this simulation are:
1. Random Forests from the randomForest (Liaw and Wiener 2002) R-package with 500 trees.

2. BinomialBoosting from the mboost (Hothorn et al. 2012) R-package with a maximum of
1000 iterations and a stepsize of v = 0.1. With:

i) Spline base learners (cubic B-spline with 2™ order difference penalty, 10 knots and 1
degree of freedom) using the p-spline decomposition'> (see Kneib, Hothorn, and Tutz
(2009), Hofner et al. (2011)).

ii) Tree stumps.

iii) Trees with 6 terminal nodes to allow for interactions.

3. ISLEBoost from the isleboost R-package (appendix B.1) with identical settings to 2), but
additionally using:

i) Postprocessing with the lasso.

ii) Feature subsampling (1 = 0.5, without replacement) with and without lasso postpro-
cessing.

15 Allows the algorithm to choose linear and smooth effects separately.
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iii) Observation subsampling (1 = 0.5, without replacement) with and without lasso post-
processing.

4. ParBoost from the parboost R-package (appendix B.2), using 10 bootstrap samples of the
original data, with a maximum of 1000 iterations and a stepsize of v = 0.1. The base learners
and loss functions for each boosting model are identical to 2). Each ParBoost model was
postprocessed (see section 2.2 for details) by:

i) Simply taking the mean of the ensemble components.
ii) Usinga GLM
iii) Fitting a Lasso.

All algorithms were tuned using 10-fold cross-validation. I preprocessed the data identically to
Scheipl (2011), using the following scheme: “All covariates with less than 6 unique values are
coded as factor variables. All numeric covariates are scaled to the unit interval [0, 1] first, followed
by taking the logarithm of the covariate values (plus an offset of 0.1) if skewness is greater than
2 or taking the logarithm of 1.1 minus the covariate value if skewness is below —2. All numeric
covariates (transformed or not) are then standardized to have mean 0 and standard deviation 1.
All incomplete observations are removed” (Scheipl 2011).

51



TABLE 10: Summary of UCI binary classification datasets (Scheipl 2011)

Dataset Observations ~ All Features Categorical Features Class Balance p/N
BreastCancer 683 9 9 0.526 0.01
Cards 653 15 5 0.802 0.02
Circle 1200 2 0 0.974 0.00
Heartl 296 13 5 0.836 0.04
HouseVotes84 232 16 16 0.629 0.07
Ionosphere 351 33 0 0.560 0.09
PimalndiansDiabetes 768 8 0 0.536 0.01
Sonar 208 60 0 0.874 0.29
Spirals 1200 2 0 1.000 0.00
chess 3196 36 1 0.915 0.01
credit 1000 24 9 0.429 0.02
hepatitis 80 19 10 0.260 0.24
liver 345 6 0 0.725 0.02
monks3 554 6 4 0.924 0.01
musk 476 166 0 0.770  0.35
promotergene 106 57 57 1.000 0.54
ringnorm 1200 20 0 1.000 0.02
threenorm 1200 20 0 1.000 0.02
tictactoe 958 9 9 0.530 0.01
titanic 2201 3 1 0.477 0.00
twonorm 1200 20 0 1.000 0.02
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Figures 19 to 25 show the misclassification rates and figs. 26 to 32 the AUCs for the 21 datasets. To
draw a more formal analysis from this experiment than simply plotting the results with a qualitative
discussion, I make use of the framework of Eugster (2011) for the analysis of domain-based bench-
mark experiments. Eugster (2011) models benchmark experiments using linear mixed-effects
models. The model is specified as

Pk = Kkt Bt Bk + B  €mpkc (22)

with m =1,..., M datasets, b = 1, ..., B replications (cross-validation folds in this case) and k =
1,... K algorithms. The response p,,; is the performance measure for dataset m1, replication b and
algorithm k.

Ky represents the algorithms’ mean performances, b,, the mean performances of the
domain’s datasets, f3,, the interactions between datasets and algorithms, f3,,, the effect
of the subsampling within the datasets, and €, the systematic error. The candidate
algorithms’ effect k. is modeled as fixed effect, the datasets’ effect 3,, as random effect (as
the datasets can be seen as randomly drawn from the domain they define). Furthermore,
Bonic> By and €, are defined as random effects as well. The random effects follow
B~ N(0,61), By ~ N(0,63), By, ~ N(0,07) and €, ~ N(0,02). [....] The model
allows the following interpretation—of course conditional on the domain D—for an
algorithm a;. and a dataset L,,: & is the algorithm’s performance difference from its
mean performance conditional on the dataset.

— Eugster (2011)

Table 11 shows the fixed effects «; for the mixed effects model eq. (22) using the misclassification
rate as the performance measure. The ParBoost variants have the worst performance—probably a
result of the small sample sizes of the uci binary classification domain. ISLEBoost subsampling
features using p-spline decomposition base learners does best, in contrast to the predictive sim-
ulation (section 3.2), where it was not among the top performing models. The larger sampling
width o (section 2.1), and in turn lower false negative rate, of ISLEBoost with feature subsampling,
compared to BinomialBoosting (fig. 17), works well for this domain. Random forest is also among
the best algorithms for this domain (confirming the findings of Eugster (2011)). The estimated
fixed effects for BinomialBoosting, ISLEBoost and random forest are very similar though—perfor-
mance only starts to degrade with the ParBoost models, which are designed for larger datasets.
Note that Lasso postprocessing without subsampling does not improve performance for these
data—Dbut this may be a result of the denseness of the uci binary classification domain. Looking at
the misclassification rates for the 21 datasets in figs. 19 to 25 confirms the good performance of
random forests and ISLEBoost using feature subsampling, which show consistently good results
with little variability.
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TABLE 11: Estimated fixed effects (lower is better).

Model Base Learners Fixed Effect
ISLEBoost subsampling features P-Spline Decomp. 0.092
ISLEBoost subsampling features Stumps 0.100
Random Forest Trees 0.100
ISLEBoost subsampling observations with Lasso postprocessing  P-Spline Decomp. 0.100
ISLEBoost subsampling features with Lasso postprocessing Trees 0.104
ISLEBoost subsampling features with Lasso postprocessing P-Spline Decomp. 0.104
ISLEBoost subsampling observations P-Spline Decomp. 0.105
ISLEBoost subsampling observations with Lasso postprocessing  Trees 0.106
ISLEBoost subsampling observations Stumps 0.106
BinomialBoosting Trees 0.107
ISLEBoost subsampling features with Lasso postprocessing Stumps 0.107
ISLEBoost with Lasso postprocessing Trees 0.108
BinomialBoosting Stumps 0.109
BinomialBoosting P-Spline Decomp. 0.110
ISLEBoost subsampling observations Trees 0.110
ISLEBoost subsampling features Trees 0.111
ISLEBoost subsampling observations with Lasso postprocessing ~ Stumps 0.117
ISLEBoost with Lasso postprocessing Stumps 0.132
ISLEBoost with Lasso postprocessing P-Spline Decomp. 0.143
ParBoost P-Spline Decomp. 0.150
ParBoost with GLM postprocessing P-Spline Decomp. 0.150
ParBoost with Lasso postprocessing P-Spline Decomp. 0.151
ParBoost Trees 0.153
ParBoost with Lasso postprocessing Trees 0.167
ParBoost Stumps 0.169
ParBoost with GLM postprocessing Stumps 0.196
ParBoost with GLM postprocessing Trees 0.233
ParBoost with Lasso postprocessing Stumps 0.256

54



Misclassification Rate

P-Spline Decomp. Stumps Trees
0.15 = ° o
Model
°s * mboost.bbs
0.10 - isleboost.bbs.lasso
isleboost.bbs.features
isleboost.bbs.features.lasso
EI isleboost.bbs.obs
EI isleboost.bbs.obs.lasso
E] parboost.bbs.none
EI parboost.bbs.glm
E parboost.bbs.lasso

mboost.stumps

IaoueDisearq

° ° isleboost.stumps.lasso
isleboost.stumps.features
isleboost.stumps.features.lasso

02— |
isleboost.stumps.obs

spIeD

‘ | isleboost.stumps.obs.lasso
el )7 i ' T 17 parboost.stumps.none
R TR LA ) parboost.stumps.glm

parboost.stumps.lasso
') _— ° of

0.6 | mboost.btree

isleboost.btree.lasso

isleboost.btree.features

0.4 - ° U Al Il isleboost.btree.features.lasso
isleboost.btree.obs

EI isleboost.btree.obs.lasso

JEANA e SR B : E- parboost.btree.none

...": ‘ 1. 9% Wi el \ £ parboost.btree.glm

E] parboost.btree.lasso

JPID

0.0 - °

FIGURE 19: UCI binary classification benchmark experiments misclassification rate on test sets us-
ing 20-fold cross-validation. Plot 1/7. mboost stands for BinomialBoosting, isleboost
for ISLEBoost, parboost for ParBoost and rf for random forests. bbs are p-spline
base learners, stumps are tree stump base learners and trees are tree base learners
with 6-terminal nodes. features stands for feature subsampling, obs for subsampling
of the observations and lasso for Lasso postprocessing. The light grey lines connect
the folds.
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FIGURE 20: UCI binary classification benchmark experiments misclassification rate on test sets us-
ing 20-fold cross-validation. Plot 2/7. mboost stands for BinomialBoosting, isleboost
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FIGURE 21: UCI binary classification benchmark experiments misclassification rate on test sets us-
ing 20-fold cross-validation. Plot 3/7. mboost stands for BinomialBoosting, isleboost
for ISLEBoost, parboost for ParBoost and rf for random forests. bbs are p-spline
base learners, stumps are tree stump base learners and trees are tree base learners
with 6-terminal nodes. features stands for feature subsampling, obs for subsampling
of the observations and lasso for Lasso postprocessing. The light grey lines connect

the folds.
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FIGURE 22: UCI binary classification benchmark experiments misclassification rate on test sets us-
ing 20-fold cross-validation. Plot 4/7. mboost stands for BinomialBoosting, isleboost
for ISLEBoost, parboost for ParBoost and rf for random forests. bbs are p-spline
base learners, stumps are tree stump base learners and trees are tree base learners
with 6-terminal nodes. features stands for feature subsampling, obs for subsampling
of the observations and lasso for Lasso postprocessing. The light grey lines connect
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FIGURE 23: UCI binary classification benchmark experiments misclassification rate on test sets us-
ing 20-fold cross-validation. Plot 5/7. mboost stands for BinomialBoosting, isleboost
for ISLEBoost, parboost for ParBoost and rf for random forests. bbs are p-spline
base learners, stumps are tree stump base learners and trees are tree base learners
with 6-terminal nodes. features stands for feature subsampling, obs for subsampling
of the observations and lasso for Lasso postprocessing. The light grey lines connect

the folds.
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FIGURE 24: UCI binary classification benchmark experiments misclassification rate on test sets us-
ing 20-fold cross-validation. Plot 6/7. mboost stands for BinomialBoosting, isleboost
for ISLEBoost, parboost for ParBoost and rf for random forests. bbs are p-spline
base learners, stumps are tree stump base learners and trees are tree base learners
with 6-terminal nodes. features stands for feature subsampling, obs for subsampling
of the observations and lasso for Lasso postprocessing. The light grey lines connect
the folds.
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FIGURE 25: UCI binary classification benchmark experiments misclassification rate on test sets us-
ing 20-fold cross-validation. Plot 7/7. mboost stands for BinomialBoosting, isleboost
for ISLEBoost, parboost for ParBoost and rf for random forests. bbs are p-spline
base learners, stumps are tree stump base learners and trees are tree base learners
with 6-terminal nodes. features stands for feature subsampling, obs for subsampling
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FIGURE 26: UCI binary classification benchmark experiments AUC on test sets using 20-fold cross-
validation. Plot 1/7. mboost stands for BinomialBoosting, isleboost for ISLEBoost,
parboost for ParBoost and rf for random forests. bbs are p-spline base learners,
stumps are tree stump base learners and trees are tree base learners with 6-terminal
nodes. features stands for feature subsampling, obs for subsampling of the obser-
vations and lasso for Lasso postprocessing. The light grey lines connect the folds.
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FIGURE 27: UCI binary classification benchmark experiments AUC on test sets using 20-fold cross-
validation. Plot 2/7. mboost stands for BinomialBoosting, isleboost for ISLEBoost,
parboost for ParBoost and rf for random forests. bbs are p-spline base learners,
stumps are tree stump base learners and trees are tree base learners with 6-terminal
nodes. features stands for feature subsampling, obs for subsampling of the obser-
vations and lasso for Lasso postprocessing. The light grey lines connect the folds.
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FIGURE 28: UCI binary classification benchmark experiments AUC on test sets using 20-fold cross-
validation. Plot 3/7. mboost stands for BinomialBoosting, isleboost for ISLEBoost,
parboost for ParBoost and rf for random forests. bbs are p-spline base learners,
stumps are tree stump base learners and trees are tree base learners with 6-terminal
nodes. features stands for feature subsampling, obs for subsampling of the obser-
vations and lasso for Lasso postprocessing. The light grey lines connect the folds.
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FIGURE 29: UCI binary classification benchmark experiments AUC on test sets using 20-fold cross-
validation. Plot 4/7. mboost stands for BinomialBoosting, isleboost for ISLEBoost,
parboost for ParBoost and rf for random forests. bbs are p-spline base learners,
stumps are tree stump base learners and trees are tree base learners with 6-terminal
nodes. features stands for feature subsampling, obs for subsampling of the obser-
vations and lasso for Lasso postprocessing. The light grey lines connect the folds.
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FIGURE 30: UCI binary classification benchmark experiments AUC on test sets using 20-fold cross-
validation. Plot 5/7. mboost stands for BinomialBoosting, isleboost for ISLEBoost,
parboost for ParBoost and rf for random forests. bbs are p-spline base learners,
stumps are tree stump base learners and trees are tree base learners with 6-terminal
nodes. features stands for feature subsampling, obs for subsampling of the obser-
vations and lasso for Lasso postprocessing. The light grey lines connect the folds.
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FIGURE 31: UCI binary classification benchmark experiments AUC on test sets using 20-fold cross-
validation. Plot 6/7. mboost stands for BinomialBoosting, isleboost for ISLEBoost,
parboost for ParBoost and rf for random forests. bbs are p-spline base learners,
stumps are tree stump base learners and trees are tree base learners with 6-terminal
nodes. features stands for feature subsampling, obs for subsampling of the obser-
vations and lasso for Lasso postprocessing. The light grey lines connect the folds.
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FI1GURE 32: UCI binary classification benchmark experiments AUC on test sets using 20-fold cross-
validation. Plot 7/7. mboost stands for BinomialBoosting, isleboost for ISLEBoost,
parboost for ParBoost and rf for random forests. bbs are p-spline base learners,
stumps are tree stump base learners and trees are tree base learners with 6-terminal
nodes. features stands for feature subsampling, obs for subsampling of the obser-
vations and lasso for Lasso postprocessing. The light grey lines connect the folds.
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4.2. Million Song Dataset

To demonstrate the scalability and predictive power of parboost, I wanted to find a large dataset
with baseline models to compare the performance of parboost to. Since the mboost and ran-
domForest packages do not scale to such large data, they could not serve as baseline models.
The million song dataset (MsD, Bertin-Mahieux et al. (2011)) fits the requirement well. Each
observation consists of a track from 1922-2011, and the task is to predict the year in which a
song was released, based on its audio features. “Listeners often have particular affection for music
from certain periods of their lives (such as high school), thus the predicted year could be a useful
basis for recommendation. Furthermore, a successful model of the variation in music audio
characteristics through the years could throw light on the long-term evolution of popular music”
(Bertin-Mahieux et al. 2011). The msD includes 515,576 tracks from 28,223 artists and is split
into a training (463,715 observations) and test set (51,861). The features consist of averages and
covariances of the timbre vectors of each song, giving a total of 90 features.

The two benchmark algorithms in Bertin-Mahieux et al. (2011) are k-nearest neighbors (k-NN)
and Vowpal Wabbit (vw, Langford, Li, and Strehl (2007)), a state-of-the-art online learning
algorithm. I trained ParBoost on a 50 node cluster, where each node'® had 2 CPUs and 17.1 6B
of RAM. ParBoost used spline base learners (cubic B-splines with 2™ order difference penalty,
20 knots and 3 degrees of freedom) and ran for 2000 iterations. The training took 27 minutes.
The mean absolute errors (MAE) for ParBoost and the baseline models are shown in table 12 (the
data on the nearest neighbors models and vw from Bertin-Mahieux et al. (2011)). Even without
further tuning (50 node clusters are expensive), ParBoost achieves comparable performance to
the best performing algorithm vw.

TABLE 12: Mean absolute errors for the MsD year prediction
Algorithm MAE

1-NN 9.81
50-NN 7.58
ParBoost 6.60
VW 6.14

5. Discussion

The goal of this thesis is to make gradient boosting more scalable. To this end, I implemented
the 1SLE boosting framework of J. H. Friedman and Popescu (2003) in an open source software
package named isleboost—based on the mboost package—with the additional features of parallel

16The simulation was run on an Amazon EC2 cluster with m2.xlarge instances as worker nodes. The master node was
a crl.8xlarge instance (as of September 2013).
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processing and feature subsampling (section 2.1). This software package is designed to work in
a shared memory setting. For a distributed memory setting, I have designed a novel approach
called ParBoost. I implemented ParBoost in an open source software package parboost, which is
freely available on crAN' (section 2.2).

Fitting the base learners in parallel using isleboost delivers linear speedup (section 3.1.1) in the
number of cores used. Feature subsampling also delivers linear speedup, but subsampling of the
observations does not result in any speedup—contrary to the findings of J. H. Friedman (2002)
and J. H. Friedman and Popescu (2003) (section 2.1). Postprocessing produces sparser models
that require less storage, it is thus computationally less expensive to generate predictions with
them. This is potentially useful for real-time applications or embedded devices, which need to
minimize storage and computational complexity.

The results of the predictive simulation (section 3.2) for ISLEBoost suggest that the impact of the
various techniques (subsampling of the observations or features, with and without postprocessing)
on predictive performance depends on the type of response (real-valued or binary) and on the
type of base learner. None of the ISLEBoost models outperform the baseline boosting models
(L,Boosting and BinomialBoosting) in any meaningful way though. This is in contrast to the real
data experiment of the uct binary classification domain (section 4.1), where feature subsampling in
particular outperforms BinomialBoosting. But this may be a result of the rather dense ucr domain.
Overall, I cannot recommend any variant of ISLEBoost that robustly and reliably outperforms
the baseline L,Boosting and BinomialBoosting models in predictive performance, based on the
simulation and real data experiments. Nevertheless, when the data is known to be dense, feature
subsampling can provide linear speedup and possibly better predictive performance than gradient
boosting without subsampling. The reasons for this are the increased sampling width o (eq. (6)),
and in turn the lower false negative rate.

In terms of variable selection (section 3.3), postprocessing reduces false positive rates, at the cost of
higher false negative rates. Subsampling features or observations increases the false positive rates
and reduces false negatives. This effect is much more pronounced for subsampling observations
though, and thus postprocessing also has a larger impact on models that use subsampling of the
observations rather than subsampling features—presumedly because of a larger sampling width ¢
(eq. (6)). Using the Lasso to postprocess a boosting ensemble (without subsampling) reduces the
false positive rate, while keeping the false negative rate nearly identical to the same model without
postprocessing (fig. 15). This makes postprocessing a viable alternative to other sparse boosting
techniques such as SparseL,Boost (Bithimann and B. Yu 2006) or Twin Boosting (Biihlmann and
Hothorn 2010).

ParBoost scales linearly in the number of cluster nodes (section 3.1.2), above a threshold of
computational complexity that exceeds the overhead of setting up the cluster nodes. I have
also shown that ParBoost scales to clusters with 50 nodes to process the million song dataset
and generates competetive predictions for a test set (section 4.2). In the predictive simulation

17http://cran. r-project.org/web/packages/parboost/
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(section 3.2), ParBoost generally does well, and sometimes even outperforms the baseline boosting
models (see fig. 10 and fig. 13), but occasionally some configurations of the various postprocessing
schemes produce worrisome outliers in predictive performance (see fig. 13 or fig. 18). I would have
liked to compare ParBoost to the other algorithms using even more data and ensemble components
to see whether these occasional outliers in performance are due to dataset size and the number of
ensemble components. But the shared memory algorithms do not scale as much as ParBoost due
to memory limits of single machines. Therefore, I am unable to compare them to ParBoost using
larger datasets. Also, I have already exceeded my budget on the current simulations.

Based on the variable selection simulation (section 3.3), ParBoost does not produce very sparse
models. This is mainly because it splits the data into disjoint subsamples, making it more difficult for
each boosting model to find the relevant coefficients. Combining ParBoost with ISLEBoost using
lasso postprocessing to achieve sparser models could be explored in future research. It is difficult
to extract meaningful coefficients from ParBoost models because of their neural network like
structure (see fig. 5), making them less useful for applications where interpretability is important.
ParBoost using bootstrapping to create submodels—instead of splitting the data into disjoint
subsets—for the relatively small datasets of the ucr binary classification domain did not do
well. For this particular domain, “bagging boosting models” performed markedly worse than
BinomialBoosting, ISLEBoost and random forests. ParBoost should be used for datasets that
are too large for shared memory boosting and random forests to process, in situations where
interpretability is not important. For these situations though, I have shown that ParBoost can
deliver very competetive results in a reasonably short amount of time (section 4.2). On small
datasets that fit into memory Random forests compared unfavorably to the boosting models in
the simulations, but was among the top performers in the real data experiment for the 21 datasets
of the uci binary classification domain (section 4.1). J. H. Friedman and Popescu (2003) had a
similar result, where random forests and bagging did worse than boosting for their simulations,
but performed well in their real data experiments. Random forests remain difficult to beat in many
real-world applications—yet we still have little theory on the algorithm. For example, it was only
recently shown to be consistent by Biau (2012).

In future research, I would like to explore the similarities to a neural network structure of ISLEBoost
and ParBoost further. In this context, I would also combine ParBoost and ISLEBoost in simulations
and real-data experiments. ParBoost could also be implemented in a distributed computing
system like Hadoop, since its data locality make it an ideal algorithm for such a distributed system.
Furthermore, I would like to rewrite a majority of the mboost codebase in C/C++ or Fortran,
which would speed up the algorithm.
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A. A shortintroduction to parallel and distributed computing

Parallel computing is about running independent computations on multiple cores or machines
simultaneously to shorten their running time. This thesis deals with two types of parallelism:

Shared memory Modern CPUs have multiple cores that can execute tasks in parallel which share
access to the same memory—hence shared memory. To make use of these capabilities,
the programmer has to decide on which level to parallelize his code. There is high-level
parallelism, such as running cross-validation folds in parallel, and low-level parallelism, e.g.
calculating an individual sum in parallel by dividing it in chunks. Depending on the task
at hand, different granularities of parallelism can offer varying gains in efficiency. Using
multiple cores in any given computation introduces overhead: tasks have to be distributed
to each core and then collected again. Thus parallelizing any given computation is only
sensible above some threshold where the computational load of the task is high enough to
outweigh the overhead—depending on the programming language, hardware and level of
parallelization used.

Distributed memory Shared memory parallelism is limited by the number of cores available in
current CPUs. Distributed memory computing works by linking many computers together
in a cluster over ethernet. Each node has its own memory—hence distributed memory. The
advantage of distributed memory over shared memory is its scalability: a cluster can consist
of hundreds of machines. The downside is, that network connections are comparatively
slow: communication between the nodes introduces a huge overhead compared to shared
memory parallelism. Therefore it is usually a good idea to only switch to distributed memory
parallelism once the technical limits in scalability of the shared memory framework are
reached.

B. Electronic supplement

B.1. isleboost

The isleboost R-package implements the ISLEBoost algorithm described in section 2.1. Since
the isleboost package is a fork of the mboost package (Hothorn et al. 2012), I will only discuss
the additional features of isleboost. mboost is the most comprehensive software package im-
plementing gradient boosting: it comes with a large variety of loss functions and base learners.
For the documentation for the basic mboost functionality, please see the help files included in
isleboost or visit http://cran.r-project.org/web/packages/mboost/. isleboost adds the
following features to mboost:

« Parallel computation of the base learners.
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o Subsampling of features or observations.

« Postprocessing the boosting ensemble with regularized regression, using either a Lasso,
Ridge or Elastic Net penalty.

All source files of isleboost can be found in the isleboost directory of the electronic supple-
ment.

B.1.1. Parallel computation

There is a caveat with parallelizing any computation: it can actually increase computation time due
to the overhead of the parallel processing (see appendix A). With that being said, isleboost can
significantly speed up boosting on larger datasets (see section 3.1.1). On a UNIX type system, the
multicore (mclapply) backend is the fastest. To fit a model in parallel, simply specify the backend
you wish to use (parallel = "mclapply") and the number of cores (cores = 4):

library(isleboost)
data("bodyfat")

ctrl <- boost_control(mstop = 1000, parallel = "mclapply", cores = 4)
model <- isleboost(formula = DEXfat ~ ., data = bodyfat, baselearner = "bbs")

On a Windows based system, the fork function that mclapply relies on is not supported. Thus a
local cluster should be used by specifying parallel = "parLapply" and passing a cluster object
to boost_control:

library(isleboost)
data("bodyfat")

cl <- makeCluster(4)
ctrl <- boost_control(mstop = 1000, parallel = "parLapply", cluster = cl)
model <- isleboost(formula = DEXfat ~ ., data = bodyfat, baselearner = "bbs")

The only difference to mboost thus far, is that the baselearners are fitted in parallel (step 2 in
algorithm 2.

B.1.2. Subsampling

The subsample parameter specifies the proportion of observations or features the user wishes
to subsample. The type parameter determines the type of subsampling (*observations" or
"features"). Finally, the logical value replace regulates whether to sample with or without
replacement (defaults to FALSE). So to subsample 10 % of the observations without replacement
in each iteration, the user would specify:
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library(isleboost)
data("bodyfat")

ctrl <- boost_control(mstop = 1000, subsample = 0.1, type = "observations")
model <- isleboost(formula = DEXfat ~ ., data bodyfat, baselearner = "bbs")

To subsample 50 % of the features with replacement, the call to isleboost would look like this:

library(isleboost)
data("bodyfat")

ctrl <- boost_control(mstop = 1000, subsample = 0.5, type = "features", replace = TRUE)
model <- isleboost(formula = DEXfat ~ ., data = bodyfat, baselearner = "bbs")

A seed can also be passed to boost_control for reproducible results. The seed value gets incre-
mented by 1 in each iteration.

B.1.3. Postprocessing

Postprocessing the boosting ensemble as described in section 2.1 can also be specified in boost_con-
trol with the postprocess parameter, which can take the values "none" (default), "lasso",
"ridge" and "elasticnet". To fit a model using subsampling of the observations and lasso

postprocessing, enter the following:

library(isleboost)
data("bodyfat")

ctrl <- boost_control(mstop = 1000, subsample = 0.1, type = "observations", postprocess = "lasso")
model <- isleboost(formula = DEXfat ~ ., data bodyfat, baselearner = "btree")

The base learners will then be weighed by their lasso coefficients for increased sparsity.

B.2. parboost

The parboost package is available on crRan'® and implements the ParBoost algorithm from
section 2.2. Its purpose is to run on a cluster of machines using a cluster backend, but execution on
a single machine is supported. The individual boosting models are fit using the mboost (Hothorn
etal. 2012) package. As an example, I will use the million song dataset from section 4.2.

18http://cran.r—project.org/web/packages/parboost/
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# Load libraries
library(parboost)
path <- '"/Masterarbeit/real_data_experiments/msd/train.csv"

# Start cluster

cluster_names <- paste(''node00", 1:9, sep="")

cluster_names <- c(cluster_names, paste('node0", 10:50, sep=""))
cluster <- makePSOCKcluster(names = cluster_names)

# Estimate model and time it

formula <- V1 ~ .

ctrl <- boost_control(mstop = 2000)

model <- parboost(cluster_object = cluster,
path_to_data = path, nsplits = 50,
formula = formula, baselearner = "bbs",
control = ctrl, postprocessing = "none")

# Generate testset predictions

path.test <- '"/Masterarbeit/real_data_experiments/msd/testset.csv"
testset <- read.csv(path.test)

preds <- predict(model, newdata = testset[, -2])
stopCluster(cluster)

The parboost function takes a cluster object from the parallel package of base R. Simply pass
the node hostnames or IPs to the makePSOCKc luster function, which can then be used to execute
parboost on the cluster nodes. In appendix B.4, I explain how to set up a cluster on Amazon EC2"”
with StarCluster”’. The boost_control function comes from the mboost package and controls
the boosting parameters. It is more efficient to pass the path of the data to parboost instead of the
data itself. This is because if all the cluster nodes have access to the data locally, it is faster if each
node just reads the data from disk, instead of receiving it over the network from the master. You
can pass a data frame instead of the path with the data argument though. The nsplits argument
determines the number of disjoint subsets the data is split into.

Currently parboost supports spline (bbs), tree (btree) and piecewise linear (bols) baselearners.
The postprocessing options (see section 2.2) are none for equal weights of the sub-models—the
other four options (glm, lasso, ridge, elasticnet) for postprocessing perform (regularized)
regression on the predictions of the sub-models to determine their weight. Note that the re-
sponse functions of the postprocessing models change with the family of the underlying boosting
model—e.g. a Poisson boosting family will result in a Poisson postprocessing family.

Another option that parboost offers is bootstrapping the original data instead of using disjoint sub-
samples. This can be used for creating more robust models on smaller datasets. Bootstrapping can
be invoked with the split_data = "bagging" option like so (this time with GLM postprocessing
and passing a data frame directly to parboost):

19http://aws.amazon.com/ec2/
20http://star.mit.edu/cluster/docs/latest/overview.html
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data <- read.csv(path)

model <- parboost(split_data = "bagging", mc.cores = 4,
data = data, nsplits = 50,
formula = formula, baselearner = "bbs",

control = ctrl, postprocessing = "glm")

Here the nsplits = 50 parameter determines the number of bootstrap samples instead of the
number of disjoint subsets. Note the lack of a cluster object and the parameter mc.cores = 4.
This tells parboost to execute locally using 4 cpu cores. If you need finer control on how the data
gets read on the cluster nodes, you can pass a custom data import function and a preprocessing
function. For example, if the file does not have a header and you wish to read the first 10 columns,
you could do this:

model <- parboost(cluster_object = cluster,
path_to_data = path,
data_import_function = function(x) read.csv(x, header = FALSE)[, 1:10],

nsplits = 50,
formula = formula, baselearner = "bols",
control = ctrl, postprocessing = "lasso")

Each cluster node will then import the data according to the import function you specified.
Additionally, you can preprocess the data, e.g. centering and scaling all the variables:

model <- parboost(cluster_object = cluster,
path_to_data = path,
data_import_function = function(x) read.csv(x, header = FALSE)[, 1:10],
preprocessing = function(x) scale(x),

nsplits = 50,
formula = formula, baselearner = "bols",
control = ctrl, postprocessing = "lasso")

By default, parboost will use 10-folds cross-validation to determine the optimal value of m
You can change that behaviour like so:

stop*

model <- parboost(cluster_object = cluster,
path_to_data = path,

nsplits = 50,
formula = formula, baselearner = "btree",
control = ctrl, postprocessing = "elasticnet",

folds = 25, stepsize_mstop = 10)

Now parboost will use 25-fold cross-validation and a grid with a stepsize of 10 for optimizing
Myiop- You can also completely turn off cross-validation by setting cv = FALSE. Several methods
are available for parboost models:

e print(model) Prints information about the estimated model.

« summary(model) Prints a summary of the model.
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o predict(model) Generates predictions for new data, if no new data is supplied, it returns
the fitted values.

« coef(model) Displays the estimated coefficients for all the models (for base learners that
have a notion of coefficients).

 selected(model) Displays the selected coefficients of all the models

If you need additional help, type ?parboost in your R console. All of the source files for parboost
are available in the parboost directory of the electronic supplement. They can also be found
online at cRAN?'.

B.3. Simulations and real data experiments

All R-files for the simulations can be found in the simulations folder of the electronic supplement.
The R-scripts I used to conduct the real data experiments, including the data itself, can be found in
the real_data_experiments directory of the electronic supplement. I carried out all simulations
and real data experiments on Amazon EC2 with R version 3.01 using the Amazon Linux am1**.
Except for the simulations making use of clusters, I used cri1.8xlarge instances. For the clusters,
I used m2.x1large instances (configurations as of September 2013).

B.4. Setting up StarCluster with R

StarCluster is a utility for creating and managing distributed computing clusters hosted
on Amazon’s Elastic Compute Cloud (EC2). StarCluster utilizes Amazon s EC2 web
service to create and destroy clusters of Linux virtual machines on demand.

~ Riley (2013)
StarCluster provides a convenient way to quickly set up a cluster of machines to run parboost
and other tools using a distributed memory framework. I give a brief introduction here to using
StarCluster with R, so my simulation results can easily be reproduced.

Install StarCluster using

$ sudo easy_install StarCluster

21http 1//cran.r-project.org/web/packages/parboost/
22http ://aws.amazon.com/amazon-linux-ami/
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and then create a configuration file using

$ starcluster help

Add your aws credentials to the configuration file and follow the instructions on http://star.
mit.edu/cluster/docs/latest/quickstart.html.

Once you have StarCluster up and running, you need to install R on all the cluster nodes and any
packages you require. Here is a shell script to automate the process:

#!/bin/zsh

starcluster put $1 starcluster.setup.zsh /home/starcluster.setup.zsh
starcluster put $1 Rpkgs.R /home/Rpkgs.R

numNodes="starcluster listclusters | grep "Total nodes" | cut -d' ' -f3°
nodes=("eval echo $(seq —f node%03g 1 $(($numNodes-1))) )

for node in $nodes; do
cmd="source /home/starcluster.setup.zsh >& /home/install. log.$node"
starcluster sshmaster $1 "ssh $node $cmd" &

done

echo "Installation finished on Nodes"

starcluster sshmaster $1 $cmd &

echo "Installation finished on Master"

The script takes the name of your cluster as a parameter and pushes the two helper files to the cluster.
It then runs the installation on the master and every node. It assumes you are running an Ubuntu
Server based StarCluster Am1, which is the default. The first helper script, starcluster.setup.zsh,
installs the basic software required:

#!/bin/zsh

echo "deb http://stat.ethz.ch/CRAN/bin/linux/ubuntu precise/" >> /etc/apt/sources.list
gpg —keyserver keyserver.ubuntu.com ——-recv-key E@84DAB9

gpg -a ——export E@84DAB9 | sudo apt-key add -

apt-get update

apt—get install -y r-base r-base-dev

echo “DONE with Ubuntu package installation on $(hostname -s).”

R CMD BATCH --no-save /home/Rpkgs.R /home/install.Rpkgs.log

echo “DONE with R package installation on $(hostname -s).”

The second script, Rpkgs. R, is just a R script containing the packages you wish to install:

install.packages(c("randomForest", "caret", "mboost", "parboost", "plyr", "glmnet"),
repos = "http://cran.cnr.berkeley.edu")
print(paste("DONE with R package installation on ", system("hostname -s", intern = TRUE), "."))

Once you have everything installed, you can ssh into your master node and start up R as usual:
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$ starcluster sshmaster mycluster
$ R

Since StarCluster has set up all the networking nicely, you can use parLapply from the parallel
package to run a task on your cluster without further configuration:

library("parallel™)

cluster_names <- paste(''node00", 1:9, sep="")
cluster_names <- c(cluster_names, "node@10")
cluster <- makePSOCKcluster(names = cluster_names)
output <- parLapply(cluster, input, some_function)
stopCluster(cluster)

The above scripts for using StarCluster can be found in the StarCluster directory of the electronic
supplement.
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