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Abstract

In the last few years, increasing attention has been devoted to the
problem of the stability of multivariable regression models, understood
as the resistance of the model to small changes in the data on which
it has been fitted. Resampling techniques, mainly based on the boot-
strap, have been developed to address this issue. In particular, the
approaches based on the idea of “inclusion frequency” consider the re-
peated implementation of a variable selection procedure, for example
backward elimination, on several bootstrap samples. The analysis of
the variables selected in each iteration provides useful information on
the model stability and on the variables’ importance. Recent findings,
nevertheless, show possible pitfalls in the use of the bootstrap, and
alternatives such as subsampling have started to be taken into con-
sideration in the literature. Based on model selection frequencies and
variable inclusion frequencies, we aim to empirically compare these
two different resampling techniques, investigating the effect of their
use in a model selection procedure for multivariable regression. We
conduct our investigations by analyzing two real data examples and
by performing a simulation study. Our results reveal some advantages
in using a subsampling technique rather than the bootstrap in this
context.
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1 Introduction

In statistical practice, the analyst often faces the problem of choosing which
variables should be included in the final model from the numerous poten-
tially important variables collected in the study. Often, variable selection
procedures such as backward elimination, stepwise regression or all-subset
approaches are used, although it is well known that they have several short-
comings, such as high instability and a possible bias in parameter estimates
(see e.g. Copas and Long, 1991; Miller, 2002). In this context, with “in-
stability” we are referring to the sensitivity of a model to small changes in
the data, which may modify the set of selected variables (Gifi, 1990). The
selection criterion, usually the significance level related to a test on the pa-
rameters or an information criterion such as the AIC (Akaike, 1973) or the
BIC (Schwarz, 1978), plays a central role. For the sake of various method-
ological issues it is important to distinguish between models for prediction
and for explanation (Sauerbrei et al., 2014). Here we are mainly interested
in the latter. In order to investigate model stability and to provide better
insight into the variable selection procedure, methods based on bootstrap
resampling have been presented in the literature (see, for example, Gong,
1982; Chen and George, 1985; Altman and Andersen, 1989; Sauerbrei and
Schumacher, 1992). By using the bootstrap technique (Efron, 1979), it is
possible to generate pseudo-samples which can be seen as perturbed versions
of the original data. The possible differences among the models obtained
by applying a stepwise selection procedure to the different pseudo-samples
provide useful information on the stability of model selection. Please note
that any selection procedure can be used within this framework: for exam-
ple, Sauerbrei and Schumacher (1992) perform this analysis using backward
elimination. In their paper, they focus on the frequency of inclusion of the
variables in models derived from the pseudo-samples, which allows a better
feeling for the final model, the importance of the different variables and their
interrelationship.

Recent studies, however, have highlighted some issues related to the use
of bootstrap pseudo-samples, in particular the tendency to select too many
variables (see Janitza et al., 2014, for an overview). Alternatives such as sub-
sampling (Hartigan, 1969) have been taken into consideration, and profitably
applied in the context of model stability (Meinshausen and Bühlmann, 2006,
2010). The aim of this paper is to provide a detailed comparison between
bootstrapping and subsampling in the context of model selection for multi-
variable regression based on inclusion frequencies, as first proposed by Gong
(1982) and later extended by Sauerbrei and Schumacher (1992) to take into
considerations the interrelationships. In particular, the use of subsampling
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in this framework has not been extensively investigated and contrasted with
the original bootstrap approach. We start our investigation from the same
dataset used in Sauerbrei and Schumacher (1992), comparing the variable
inclusion frequencies obtained for the different resampling approaches and
some characteristics of the selected models. We extend the analysis by con-
sidering a second dataset, which is used both as an additional descriptive
example and as the basis for a simulation study. In contrast to the former
dataset, which contains survival data, the latter has a normally distributed
response variable. Moreover, the analysis of simulated data drawn from a
known distribution allows a suitable quantitative comparison of the perfor-
mances of bootstrapping and subsampling in terms of identification of the
relevant variables.

The paper is structured as follows: in Section 2 we briefly describe the
two datasets, named “Glioma data” and “Ozone data”, and we present the
simulation design. The methods are described in Section 3: we introduce the
concept of inclusion frequency and the statistical tools used in our analysis,
including the model selection procedure and the resampling approaches. The
results obtained from the two real datasets and from the simulation study are
analyzed and reported in Section 4. Finally, some remarks and conclusions
are provided in Section 5.

2 Data and simulation design

2.1 Glioma data

The Glioma dataset includes 411 patients with malignant glioma (an aggres-
sive type of brain tumor) who took part in a randomized controlled trial for
comparing two kinds of chemotherapy. Of these 411 patients, 276 (67.2%)
died. In addition to the form of chemotherapy, 12 variables are considered, in-
cluding sex, age, time from first symptoms to diagnosis (binary: either long
or short) and information on health-related conditions (malignancy grade,
Karnofsky index, presence/absence of convulsions, epilepsy, amnesia, organic
psycho-syndrome, aphasia) and on treatment history (resection type, use of
cortisone). Three variables that were originally measured on 3-value ordi-
nal scales (malignancy grade, Karnofsky index, resection type) are coded by
two dummy variables according to the split-coding scheme (see, e.g., Tutz,
2012, page 17). More details on the Glioma data can be found in Ulm et al.
(1989) and Sauerbrei and Schumacher (1992). Please note that in these
two studies 36 further observations were available and different sample sizes
were used in the paper. Treatment will not be considered here. The data
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used have no missing data and are publicly available at http://portal.uni-
freiburg.de/imbi/Royston-Sauerbrei-book.

Table A.1 in the Web Appendix shows the Cox model fitted by includ-
ing all the available variables. Significant associations are present for the
variables age (hazard ratio (HR): 1.04, p < 0.0001), gradd1 (HR: 2.22,
p = 0.0015), kard1 (HR: 0.73, p = 0.0230) and surgd1 (HR: 0.35, p <
0.0001). From a descriptive point of view, besides the high positive corre-
lations (Spearman rank) between the dummy variables related to the same
categorical variable (in particular between gradd1 and gradd2, ρ = 0.672),
we note a moderate positive correlation between the variables amnesia and
ops (0.343), convul and epi (0.265) and between age and gradd2 (0.215).
Moreover, the variables time and gradd2 show a non-negligible negative cor-
relation (-0.233). All the other correlations are, in absolute value, below
0.200.

2.2 Ozone data

In a study by Ihorst et al. (2004) the long- and medium-term effects of ozone
on the forced vital capacity and on the forced expiratory volume of 2153
school children are investigated. Forced vital capacity is the total amount of
exhaled breath, and higher values indicate a better functionality of the lung.
A well-defined subset of the data is used in Buchholz et al. (2008) in a paper
on a two-step bootstrap model averaging approach and recently in a study
on model stability (Sauerbrei et al., 2014). We use the same data, which
feature 496 children and 24 variables potentially affecting the (continuous)
outcome, “forced vital capacity in autumn 1997”. For more details see Ihorst
et al. (2004) and Buchholz et al. (2008). In the Web Appendix (Table A.2)
we present the full model, which includes all 24 variables. For one variable
(f03h24 ) a fractional polynomial of degree 2 was significantly better than the
linear function, but the functional form was not much different from linearity
(Royston and Sauerbrei, 2008). As in the aforementioned papers, we consider
the linearity assumption acceptable for all variables.

From the analysis of the full model, we note that variables sex, flgew and
flgross yield highly significant influence (p < 0.0001). Significant associations
are also present for hochozon (p = 0.0120), fnoh24 (p = 0.0047), and for fspfei
(p = 0.0283). A moderate or strong Spearman correlation is present between
pairs of variables fsatem and fspei (correlation: 0.553), flgross and flgew
(0.716) and fo3h24 and fteh24 (0.860). There are strong positive correlations
(up to 0.842) among different allergies (i.e., variables adheu, fmilb, ftier, fpoll
fspt), and among coughing and breathing problems (fsnight, fshlauf, fspfei,
fsatem). In summary, a relatively complex structure.
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2.3 Simulated data

The analyses performed on the two real data examples should be considered
only descriptive, because the true model is unknown. In particular, we do
not know which variables are actually related to the outcome and which are
pure noise, i.e. which variables should be selected for and which should be
excluded from the final model. This prevents us from properly evaluating
the quality of the inclusion frequencies for the available variables. To tackle
this issue, we perform a simulation study, which allows for a more objective
assessment of the inclusion frequencies obtained for the bootstrap and for
subsampling. In order to attain a scenario which reflects realistic associations
between explanatory variables and the response, we keep the data structure
of the Ozone data. The idea is to generate a new outcome that depends only
on some selected variables, in order to have a set of known relevant variables
and a set of noise variables. We proceed as follows:

• we studentize the continuous variables of the Ozone data, to have com-
parable effects;

• we fit a full regression model (containing both the studentized and the
binary variables);

• based on the estimates of the regression coefficients we define:

– the variables with high effect, i.e. those with an estimate in abso-
lute value larger than 0.15: here flgross and sex ;

– the variables with low effect, i.e. those with an estimate, in ab-
solute value, between 0.06 and 0.15: here flgew, hochozon, fsatem
and fspfei ;

– the noise variables, i.e. those with effect in absolute value smaller
than 0.06;

• we generate a further noise variable from a standard Gaussian distri-
bution, uncorrelated to all other variables.

Please note that the first six variables are related to the response, while
the other nineteen are not. We use these six variables to generate 1,000
artificial outcomes, drawing from a Gaussian distribution with mean 2.5 +
0.2flgross+ 0.1flgew− 0.2sex− 0.1hochozon+ 0.1fsatem+ 0.1fspfei and
standard deviation 3.5. Both the values of the intercept and of the standard
deviation are approximations of their estimates in the original data. Note
that, in order to preserve the data structure, the signs of the regression
coefficients are kept as they were in the original estimates. For presentation
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clarity, we reorder and rename the variables. The true mean, then, is codified
as 2.5 + 0.2x1 − 0.2x2 + 0.1x3 − 0.1x4 + 0.1x5 + 0.1x6. Combining the new
response vectors with the original explanatory variables, we finally obtain
1,000 artificial datasets, for which we know the true model. Note that the
average R2 of the full models fit on the artificial datasets is 0.476, smaller
than the R2 of the full model fit on the original data (0.648). It is worth
noting that x2, x4, x5 and x6 are binary: the latter two, in particular, are
strongly unbalanced, containing only 26 (5.34% of the total) non-zero values.
This characteristic affects the variability of their regression coefficient, which
in the simulated data may be far from the nominal 0.1 in some replications
(see Table A.3 in the Appendix). Note that, due to the correlation structure
inherited from the Ozone data, the variables x5 and x6 are strongly correlated
with each other (ρ = 0.553), and with other variables (e.g., both have a
correlation larger than 1/3 with x17 and x24). Noticeable correlation involving
at least one relevant variable is also present between pairs x1 and x3 (ρ =
0.716) and x4 and x9 (ρ = −0.519).

Summarizing, the artificial datasets have the following characteristics:

• 25 explanatory variables, of which 2 have a strong effect on the re-
sponse, 4 have a weak effect and 19 are noise variables (no effect);

• the explanatory variables are correlated to each other as in the Ozone
data, but the last variable that is totally uncorrelated with the others;

• the sample size is 496, as in the original Ozone data;

• the X matrix (values of the explanatory variables) is the same in each
artificial dataset;

• the Gaussian distributed response vector is different for each artificial
dataset.

For each of these 1,000 datasets, we perform our analyses by generating B =
1,000 pseudo-samples with each of the different resampling techniques and
use backward elimination as variable selection strategy. Therefore, the results
for the resampling approaches are based on 1,000,000 replications.

3 Methods

3.1 Variable selection

Variable selection is a crucial part of the model building process. A good
model should include as few variables as possible, in order to avoid overfitting
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and favor its interpretability, but without discarding any relevant variables,
in order to not face the serious problem of underfitting (Sauerbrei et al.,
2014). The literature on the variable selection issue is boundless and it is
outside the scope of this paper to provide an overview. Here we use backward
elimination, without reinclusion of previously excluded variables. Arguments
in favor of backward elimination can be found in Mantel (1970), while for
a brief comparison of the stepwise approaches for variable selection we refer
the reader to Royston and Sauerbrei (2008, Section 2.7). More precisely, in
our analysis we apply a numerically stable version of fast backward selection
based on an algorithm described in Lawless and Singhal (1978). The method
selects the variables through an approximation of the Wald statistic, com-
puted using the conditional (restricted) maximum likelihood estimates under
the hypothesis of multivariate normality; it is implemented in the R package
rms (Harrell, 2013).

A key aspect of the variable selection procedure is the choice of the inclu-
sion criterion. Although several alternatives are possible, for example choos-
ing the total number of variables to include in the model by cross-validation
(as, for example, in De Bin et al., 2014), the most common approach is to
consider a significance level α for a statistical test on the regression coeffi-
cients, or a related quantity, for example an information criterion such as
the AIC or the BIC. In the backward elimination procedure, at each step
a variable, generally that corresponding to the highest p-value, is removed
from the model if its p-value is larger than α. The procedure ends when all
the p-values associated with the significance tests are smaller than α. The
choice of the significance level greatly impacts the stability and the complex-
ity of the final model (Royston and Sauerbrei, 2008). In this paper we use
three different significance levels (namely 0.05, 0.10 and 0.157, with the last
related to the Akaike information criterion), but throughout the paper we
will only report the results for α = 0.05. For α = 0.10 and α = 0.157 we give
some results in the Web Appendix.

3.2 Resampling

3.2.1 Inclusion frequencies and models selected

The use of resampling techniques in the model building process is related to
the stability issues mentioned in the introduction. The idea is to generate
several pseudo-samples containing small perturbations of the original data.
For each pseudo-sample, a model selection procedure, in our case backward
selection, is then applied, leading to different models due to the small changes
in the data. By analyzing the inclusion/exclusion of the variables in these
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models, we can distinguish between the relevant variables, i.e. those useful
for explaining the outcome, and the noise variables, which are not associated
with the outcome. We expect, indeed, that the relevant variables are al-
ways (or almost always) included in the models, while the others are selected
in only few cases, corresponding to particular configurations of the pseudo-
sample. We define the proportion of times in which a variable is included in
the models as the “inclusion frequency”, which can range from 0 (never in-
cluded) to 1 (always included). In the ideal case, the relevant variables have
inclusion frequencies equal to 1 and the others 0, or, in terms of models, the
same model (the one including only the relevant variables) is selected every
time. Unfortunately, this does not occur in reality. Firstly, some variables
have a “weak” effect and their inclusion may depend on chance: in earlier
analyses inclusion frequencies between about 20% and 60% have often been
observed (Sauerbrei and Schumacher, 1992; Buchholz et al., 2008). Secondly,
variables without any effect are sometimes included because of type I errors.
More critically, in the case of two highly correlated variables, it may hap-
pen that they are alternately selected for the models. For example, if both
are relevant, we may obtain, instead of a theoretical value of 1, an inclusion
frequency around 0.50 for both. Details on this issue can be found in Sauer-
brei and Schumacher (1992). In real data, this “alternate selection” issue
is even more relevant, due to complex and higher dimensional relationships
(i.e., three-way correlation) among the variables.

3.2.2 Resampling strategies

In order to generate the pseudo-samples for our analyses, we need to chose
a resampling technique. The literature provides several options: we men-
tioned in the introduction that the early studies on model building based
on the variable inclusion frequencies (Gong, 1982; Chen and George, 1985;
Altman and Andersen, 1989; Sauerbrei and Schumacher, 1992) use the boot-
strap approach introduced by Efron (1979). This is likely the most popular
resampling technique in statistical practice. It consists of drawing with re-
placement n observations from the original data, where n denotes the sample
size of the original data. Sampling with replacement allows the possible repli-
cation of some observations, forcing the exclusion of others: on average, in
a bootstrap pseudo-sample there are 0.632n unique observations. The ap-
proach just described is also known as nonparametric bootstrap, in order to
distinguish it from the parametric bootstrap. In this latter approach, the
pseudo-samples are instead randomly generated from a parametric model, in
which the parameters are estimated using the original data. Several other
modifications, such as the wild bootstrap (Wu, 1986; Mammen, 1993) or
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the sequential bootstrap (Rao et al., 1997) are available in the literature
(see,e.g., Chernick, 2011). In this paper, however, we focus on the classical
nonparametric bootstrap.

The asymptotic properties of bootstrap procedures have been studied
deeply in recent years, starting from Bickel and Freedman (1981), as have
counterexamples where their consistency is not achieved (see, e.g., Mammen,
1992; Bickel et al., 1997). For this reason, alternative methods have been
taken into consideration, especially those based on resampling fewer than n
observations (Bickel et al., 1997). Among these alternatives, the subsam-
pling technique (also known as delete-d jackknife, see Wu, 1986) has been
intensively investigated (Shao and Wu, 1989; Politis and Romano, 1994; Poli-
tis et al., 1999), showing its asymptotic consistency even in cases where the
classical bootstrap fails (Davison et al., 2003; Chernick, 2011). Subsam-
pling consists of generating pseudo-samples by drawing without replacement
m < n observations from the original data. In this paper, we choose m
equal to [0.632n] (i.e., the nearest integer to 0.632n), in order to have a num-
ber of observations in the subsample equal to the average number of unique
observations in the bootstrap pseudo-samples. The optimal choice of this
parameter is delicate (Davison et al., 2003), and it is not treated here. For
more information on this specific issue, see Bickel and Sakov (2008).

In order to have a comparison between bootstrapping and subsampling
based on the same sample size, in this paper we also explore the m out of n
bootstrap, which consists of drawing with replacement m observations from
the original data. As with subsampling, we set m = [0.632n]. Focusing on
the m out of n version of the bootstrap, we can avoid possible differences
caused by the different powers of the tests on the significance of the regres-
sion coefficients. The power of a test computed on a single pseudo-sample,
indeed, is strictly related to the number of pseudo-observations: conversely
to the classical bootstrap, subsampling and m out of n bootstrap here share
the same sample size, and are thus directly comparable in our study. The
difference between these two approaches lies only in the presence or absence
of duplicated observations in the pseudo-samples and therefore their proper-
ties are often discussed together (see, e.g., Bickel and Sakov, 2008; del Barrio
et al., 2009). In particular, the latter study highlights some relevant charac-
teristics of the procedures based on resampling less than n observations; for
example, their possible robustness against outliers. For a recent review on
the properties of the bootstrap, subsampling and m out of n bootstrap, refer
to Chernick (2011) and Mammen and Nandi (2012).

To summarize, in our study we use the following resampling schemes:

• classical bootstrap: n observations drawn from the original data with

9



replacement;

• m out of n bootstrap: m = [0.632n] observations drawn from the origi-
nal data with replacement;

• subsampling: m = [0.632n] observations drawn from the original data
without replacement.

Hereafter, we denote the three approaches by bootstrap(n), bootstrap(m) and
subsample(m), respectively.

When dealing with time-to-event data, as, for example, in the Glioma
dataset, some complications occur due the presence of censored observations.
By directly applying the resampling technique, indeed, we obtain pseudo-
samples with different effective sizes (number of events). In order to tackle
this problem, it would be possible to sample events and censored observations
separately. However, we do not see the randomness of the effective sample size
as critical for our purposes, and therefore we perform the simpler alternative.
We note that the number of events in our sample is relatively large, and
therefore we do not face the issue of obtaining pseudo-samples with only a
small number of events. In any case, at least for bootstrap(n), studies such as
Burr (1994) seem to suggest that for censored data more elaborate schemes
(e.g., in our case, stratified resampling) do not necessarily outperform the
simpler ones. Other reasons not to sample events and censored observations
separately, especially under the proportional hazards assumption, can be
found in Zelterman et al. (1996).

3.2.3 Criteria to compare results

Our comparison focuses on the different variable inclusion frequencies ob-
tained for bootstrap(n), bootstrap(m) and subsample(m). Dealing with real
data, i.e. ignoring the true model, we can provide only descriptive analyses.
Nevertheless, we know that the inclusion frequencies should allow us to rec-
ognize the importance of the variables, and to include in the final model only
the relevant ones. For this reason, in the real data examples we enhance our
investigation with a description of the effects of the different variable inclusion
frequencies on the models: we investigate the average number of variables in
the models, the number of unique models selected and the model selection
frequencies. A small study on the prediction accuracy of the selected models
allows us to draw some heuristic conclusions on their prediction performances
and, indirectly, on the appropriateness of the variable inclusion frequencies
derived using the three different resampling approaches. To compute the
prediction ability, we follow a cross-validation procedure: we split the data
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into 10 folds and we predict in turn the values of one fold with the model
obtained by applying backward selection on a pseudo-sample generated from
the observations belonging to the other 9 folds. We then measure the dis-
crepancies between the observed and the predicted values with a quadratic
score. For the Glioma dataset, in which we deal with time-to-event data,
this is performed using the integrated Brier score (IBS) (Graf et al., 1999),
which is the area under the prediction error curves based on the difference
between the predicted survival probability and the true survival status (e.g.,
alive/dead) of each observation at time t. To avoid the issues related to small
numbers of patients at risk for large values of t, we compute the IBS only
up to the median follow-up calculated from the original data. For the Ozone
datatset, in which we apply classical linear regression, instead, the prediction
ability of the models is computed using the sum of squared residuals. For
both datasets, we repeat the cross-validation 10,000 times for each resam-
pling approach in order to reduce the influence of a specific split, and we
provide the average value of the prediction accuracy measure.

With the results obtained in the simulation study, instead, we can directly
assess the quality of the inclusion frequencies obtained via bootstrap(n),
bootstrap(m) and subsample(m). The knowledge of the true model, indeed,
allows us to compare the values of the observed inclusion frequencies with
the expected ones (close to 1 for the high effect variables, close to 0.05 for the
noise variables, between these two values for these with low effect). More-
over, we can compute a measure which quantifies how well the inclusion
frequencies by an arbitrary resampling approach can be used to discriminate
between the relevant and the noise variables. To do this, we compute the rel-
ative frequency of noise variables with lower inclusion frequencies than that
of a relevant variable, in turn for all pairs of relevant (x1, . . . , x6) and noise
(x7, . . . , x25) variables. Then, we average these values, obtaining an estimate
of the area under the curve (AUC). Please note that the AUC becomes 1
for a perfect discrimination and 0.5 for a discrimination which is not better
than random. We compute this measure for the inclusion frequencies ob-
tained with all the three resampling approaches and we compare the results
in terms of distribution of the AUC over the 1,000 simulated datasets.

Note that with this approach we do not evaluate the appropriateness
of the models with respect to the inclusion of all relevant variables since
we completely ignore the models but only consider the variable inclusion
frequencies. Moreover, we note that with our approach we give the same
importance to the inclusion of the relevant variables and the exclusion of the
noise variables. This is a result of our focus on explanatory models, otherwise
different weighting schemes would be preferable.
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4 Results

4.1 Results for the real data examples

4.1.1 Variable inclusion frequencies

Figures 1 and 2 show the inclusion frequencies for the variables of the Glioma
and Ozone data, respectively. In both datasets we identify three variables
with high inclusion frequencies, namely gradd1, age and surgd1 (Glioma
data) and sex, flgross and flgew (Ozone data): these variables seem to have
strong effects, and for this reason we will refer to them as “core variables”.
With regard to the Glioma data (Figure 1), we note the ability of subsam-
ple(m) to achieve large inclusion frequencies for the three core variables, with
values comparable to those obtained for bootstrap(n), despite the lower power
of the significance tests due to m < n. The values obtained for bootstrap(m),
instead, are smaller, likely indicating poor performance. For the Ozone data
(Figure 2), this situation is less pronounced, due to the very strong effects of
the three core variables, whose inclusion frequencies are close to 1 for all the
three resampling approaches.

If we consider the least included variables, instead, subsample(m) pro-
vides smaller inclusion frequencies than the two bootstrap approaches for
both the Glioma and the Ozone data. In the former dataset (Figure 1), this
is evident for time, convul, amnesia and aph. For kard2, the inclusion fre-
quency obtained for subsample(m) seems to be even too small. It is worth
noting, indeed, that for an uncorrelated noise variable, we expect an inclu-
sion frequency equal to the value of the type I error, here 0.05. The inclusion
frequency of kard2 is in fact influenced by the high correlation between this
variable and kard1 : the inclusion frequencies of both variables are probably
underestimated due to the “alternate selection” problem described in Sec-
tion 3.2.1. Although less pronounced, the same phenomenon seems to occur
also between convul and epi and between gradd1 and gradd2. It is worth
noting that these correlation issues would have been completely missed had
the backward selection been simply applied to the original data, without
analyzing the variable inclusion frequencies.

Several variables have inclusion frequencies far from both 0.05 and 1.
These variables may have low effect or their inclusion frequencies may be
influenced by the inclusion frequencies of other variables. As per the strate-
gies described in Sauerbrei and Schumacher (1992), further investigations are
necessary to decide whether these variables should be included or excluded
from the final model. Interestingly, kard1 ’s inclusion frequency for subsam-
ple(m), as well as those for the three core variables, is higher than that for
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Figure 1: Glioma data: inclusion frequencies, based on 10,000 pseudo-
samples, for all the 15 available variables. The results refer to the case
α = 0.05.
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Figure 2: Ozone data: inclusion frequencies, based on 10,000 pseudo-samples,
for all the 24 available variables. The results refer to the case α = 0.05.
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bootstrap(m), while for all the other variables the opposite is true. It seems
that subsample(m) provides results in which the variables with high/medium
effect and the variables with low/no effect are more distinctly separated than
in the results for bootstrap(n) and bootstrap(m). It is worth noting, how-
ever, that the three resampling methods rank the variables in the same order.
Similar observations apply to the Ozone data.

For the Glioma data, we also performed the analyses using 0.10 and
0.157 as significance levels, obtaining very similar results (see Table A.4 in
the Appendix).

4.1.2 Number of unique models

The characteristics of the variable inclusion frequencies for the different re-
sampling techniques described above have an effect on the number of different
models selected in the 10,000 iterations: in the Ozone data, using subsam-
ple(m) we select 580 unique models, versus 1,787 and 1,829 for bootstrap(n)
and bootstrap(m), respectively. From a practical point of view, this ability of
subsample(m) to focus on few different models can be advantageous. The re-
sults for different significant levels (Table A.5 in the Web Appendix) confirm
that this property is not related to the specific significance level used. We
obtain an even more extreme result for the Ozone data, probably due to the
larger number of variables available in this dataset: subsample(m) leads to
927 unique models, versus 4,650 for bootstrap(m) and 5,154 for bootstrap(n).

4.1.3 Model selection frequencies

In addition to the number of unique models, we compute the selection fre-
quencies for the selected models for the three resampling approaches. The
results for the Glioma data are reported in Table 1. We note the ability
of subsample(m) to highlight a distinctly favorite model, namely that with
the three core variables and kard1. Noticeably, it has a selection frequency
almost 4 times larger than the second top ranked model (which includes the
three core variables and epi). We see a similar situation for bootstrap(m) as
well, but not as extreme: the selection frequency for the top ranked model
is definitely smaller (326 versus 1,615 for subsample(m)) and the second top
ranked model (in this case with sex instead of epi) is less separated. The re-
sults for bootstrap(n), instead, do not allow us to recognize a favored model,
because the top ten models all have similar (and relatively small) selection
frequencies. Finally, it is worth noting the higher selection frequencies of the
sparsest models for subsample(m): for example, the model with only the core
variables (denoted by “basic” in Table 1), is the third most selected (with

15



Table 1: Glioma data: selection frequencies of the 10 top ranked models
for bootstrap(n), bootstrap(m) and subsample(m), based on 10,000 pseudo-
samples for α = 0.05 and presented in decreasing sum of the three selection
frequencies.

bootstrap(n) bootstrap(m) subsample(m)
model rank freq. rank freq. rank freq.
basic+kard1 2 124 1 326 1 1615
basic+kard1+epi 8 93 7 128 2 417
basic+kard1+surgd2 6 103 3 163 4 352
basic+kard1+sex 3 108 2 187 6 290
basic 140 15 8 123 3 398
basic+kard1+cort 5 106 4 148 5 298
basic+kard1+sex+epi 1 156 6 140 9 225
basic+cort+ops 22 62 4 148 7 264
basic+epi 54 33 12 104 8 242
basic+ops 101 20 9 121 12 189
basic* 717 2 10 117 10 205
basic+kard1+cort+ops 7 97 15 93 15 134
basic+gradd2+kard1+cort 8 93 43 40 23 84
basic+gradd2+kard1+cort+ops 3 108 55 33 55 35
basic+kard1+surgd2+sex+epi 10 89 52 35 67 27
basic=intercept+gradd1+age+surgd1; basic*=intercept+gradd2+age+surgd1

selection frequency 398), while for bootstrap(m) it is the eighth (123) and
only the 140th for bootstrap(n), selected only 15 times. This result is con-
firmed by the analysis of the structure of the models: we note the prevalence
of the structure “3 core + 2 additional” variables for models selected for
subsample(m), “3 core + 3 additional” for bootstrap(m) and “3 core + 4 ad-
ditional” for bootstrap(n). This is even more clear if we consider gradd2 and
surgd2 exchangeable with gradd1 and surgd1, respectively (they are dummy
codifications of the same original categorical variables). See Table A.7 for
the details.

The results for the Ozone data are reported in Table A.8 in the Web
Appendix. In this case the evidence for a favored model is less strong, prob-
ably due to the high correlation among the variables, which makes them
interchangeable and, as a consequence, several models are competitive. Nev-
ertheless, in this case as well the selection frequencies of the ten top models
are larger for subsample(m) than for bootstrap(m) and bootstrap(n). Table
A.9 in the Web Appendix reports the analysis of the models’ structures for
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this example as well.

4.1.4 Average number of variables in the models

We saw in the previous subsection that subsample(m) tends to favor sparser
models. As a consequence, the average number of variables included in the
selected models is smaller for subsample(m) (5.057 for the Glioma data, 5.941
for the Ozone data) than for bootstrap(m) (5.856 and 7.486) and boot-
strap(n) (6.864 and 8.856). We obtain again a very similar tendency for
α = 0.10 and for α = 0.157 (see Table A.6 in the Web Appendix).

4.1.5 Prediction accuracy

We stated before that in the real examples we are ignorant of the true model
and, therefore, we do not know if the exclusion of the least included variables,
and the consequent disfavor of the more complex models, is positive. Before
considering the simulated data, we compare the performances of the three
resampling approaches by looking at the cross-validated prediction accuracy
of the selected models.

For the Glioma data, we obtained an estimate of the integrated Brier
score of 0.157 for bootstrap(n), 0.160 for the bootstrap(m) and 0.156 for
subsample(m), where larger IBS values correspond to worse prediction abil-
ity. For the Ozone data, the sums of squared residuals are 2.411 for boot-
strap(n), 2.467 for bootstrap(m) and 2.358 for subsample(m), where again
larger values correspond to worse predictions. In both the examples we note
very similar results for the three resampling approaches, suggesting that the
additional variables included in the models derived using bootstrap(m) and
bootstrap(n) do not have added predictive value. The (very) slightly better
results obtained for subsample(m), moreover, seem to suggest that the in-
clusion of additional variables can even worsen the prediction abilities of the
models, likely due to overfitting.

Please note that for the Glioma data we compute the integrated Brier
score up to 712 days, which represents the median follow-up (computed via
reverse Kaplan-Meier). In our computations we experienced some cases in
which a resampling procedure on the 9 folds produced a singular X matrix
(usually because all the pseudo-observations have surgd1 equal to 1): we
discarded them, leading to a number of repetitions slightly smaller than
10,000.
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4.2 Results for the simulation study

Figure 3 shows the variable inclusion frequencies obtained from the simulated
data for the three resampling approaches. We recall that the first two vari-
ables have strong effects (0.2) while the third, fourth, fifth and sixth have low
effects (0.1). All the others have no effect. We immediately note that for the
two bootstrap approaches the variables with no effect are selected too many
times: their inclusion frequencies, indeed, are noticeably higher than the the-
oretical value of 0.05 (type I error), the significance level used in the Wald
tests during the backward elimination procedure. It is worth noting that for
subsample(m) the inclusion frequencies of these variables are also slightly
higher than the nominal value 0.05. This may partly be a consequence of the
multiple testing problem associated with the backward elimination procedure
and of the correlation among the variables. The effect of the former issue
can be seen for variable x25, whose inclusion frequency is 0.058 and therefore
slightly larger than 0.05 although it is uncorrelated to the other variables.
This agrees with results from previous simulation studies (Sauerbrei, 1992,
1993); see also some discussions in Royston and Sauerbrei (2008, Chapter 2).
Therefore, multiple testing does not explain the high values obtained for the
two bootstrap approaches.

About the correlation issue, we can see its effect on the inclusion frequency
of x9, which is noticeably larger than 0.05 for all three resampling approaches.
In addition to the aforementioned multiple testing problem, this variable
suffers the effect of its high correlation with x4 (ρ = −0.519). We can analyze
the effect of the correlation on the inclusion frequencies of x4 and x9 following
the approach introduced by Sauerbrei and Schumacher (1992). It consists of
displaying the inclusions/exclusions of the two variables in a 2 × 2 table: it
is then straightforward to understand whether the inclusion of one variable
influences the inclusion of the other. This is the case of variables x4 and x9:
the inclusion of the former decreases the chances that the latter is selected by
the backward elimination procedure, and vice versa. As a consequence, the
inclusion frequencies of both variables are lower than those that we would
have obtained in the uncorrelated case. Table A.10 in the Web Appendix
reports the analysis.

If we consider the relevant variables, we note that their inclusion fre-
quencies for subsample(m) are higher than those for bootstrap(m) (x2, x3
and x4, while x1’s inclusion frequency is 1 for all approaches), behavior fur-
ther recommending subsample(m) and seeming to validate its performance
in the real data example. The only case in which the bootstrap approaches
perform better than subsample(m) is for x5 and x6. As remarked in Sec-
tion 2.3, these two variables are binary and strongly unbalanced: as a con-
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sequence, the power of the tests decreases due to their variances, leading to
lower inclusion frequencies. Moreover, the algorithm here used to perform
backward elimination excludes a binary variable from the model when it
takes the same value (either 0 or 1) for all observations in the pseudo-sample
(see also Harrell, 2013), thus further decreasing the frequency of selection of
strongly unbalanced binary variables. Finally, x5 and x6 are highly correlated
(ρ = 0.553), and therefore their inclusion frequencies may be affected by the
problem of “alternate selection” mentioned in Section 3.2.1 and previously
observed between x4 and x9. An analysis based on the results of Sauerbrei
and Schumacher (1992), similar to that performed for x4 and x9, confirms
the presence of this issue (see also Table A.11 in the Web Appendix): also
in this case, the inclusion of one variable seems to lead to the exclusion of
the other. Furthermore, the variables x17 and x24 are correlated with x5 and
x6 as well (ρ = 0.368 and 0.407, respectively, for x17, ρ = 0.336 and 0.373
for x24), and may also slightly contribute to the low inclusion frequencies of
x5 and x6 (in any case the effect is minimum, being the inclusion frequencies
of x17 and x24 not so far from 0.05). In any case, the difference between the
inclusion frequencies of these two variables and the noise variables is greater
for subsample(m) than for the two bootstrap approaches. Using inclusion fre-
quencies as a criterion, we note that all three approaches rank the variables
in the same way.

As described in Section 3.2.3, we base our considerations on the ability
of the resampling approaches to identify the relevant variables on the com-
putation of the area under the curve (AUC). The distributions of the AUC
for bootstrap(n), bootstrap(m) and subsample(m), computed in the 1,000
datasets generated in our simulation study, are reported in Figure 4. We
note a better performance for subsample(m) compared to the two bootstrap
approaches, with bootstrap(m) slightly better than bootstrap(n). The rea-
son for this result mainly lies in the tendency of the bootstrap approaches
to include noise variables in the model. Bootstrap(n), indeed, has the worst
AUC even though the inclusion frequencies for the relevant variables are
higher than those obtained with bootstrap(m) and, to a lesser extent, than
those obtained with subsample(m) (see Figure 3). The analysis of the AUC,
therefore, also suggests that subsample(m) is preferable to the bootstrap in
this context.

If we look at the models obtained in the analysis (Table 2), we note that
the true model is selected only a few times, no matter which resampling
approach is used. For subsample(m), its selection frequency is slightly better
than for bootstrap(n) (1041 vs 780) and bootstrap(m) (774), but it appears
lower in the ranking (128th, while it is 65th for bootstrap(n) and 105th for
bootstrap(m)). This situation seems to be related to the unbalanced nature of

19



bootstrap(n)
bootstrap(m)
subsample(m)

variable

fr
eq

ue
nc

y 
of

 in
cl

us
io

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1 x2 x3 x4 x5 x6 x7 x8 x9 x1
0

x1
1

x1
2

x1
3

x1
4

x1
5

x1
6

x1
7

x1
8

x1
9

x2
0

x2
1

x2
2

x2
3

x2
4

x2
5

strong
effect

low effect
no effect−

 −
 −

−
 −

 −

Figure 3: Simulated data: inclusion frequencies of the variables based on
1,000,000 pseudo-samples, 1,000 for each dataset.
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Table 2: Simulated data: selection frequencies of the 10 top ranked models for
bootstrap(n), bootstrap(m) and subsample(m), based on 1,000,000 pseudo-
samples for α = 0.05 and presented in decreasing sum of the three selection
frequencies. The true model is included in the table although it is not selected
in the top 10 positions for any resampling technique.

bootstrap(n) bootstrap(m) subsample(m)
model rank freq. rank freq. rank freq.
basic+x3+x4 3 5089 1 14317 1 77518
basic+x3 5 2047 2 11621 2 56363
basic+x3+x4+x5 1 7172 3 10312 3 55180
basic+x3+x4+x6 2 6434 4 9850 4 53321
basic+x3+x5 4 2119 5 6281 5 28902
basic+x3+x6 8 1656 6 5054 6 21646
basic+x3+x4+x17 6 1849 7 3132 7 10736
basic+x3+x9 46 959 9 3041 8 10450
basic+x3+x4+x24 7 1772 8 3064 9 9996
basic+x3+x17 68 756 10 2541 10 8597
basic+x3+x4+x5+x25 9 1537 74 1508 20 3464
basic+x3+x4+x5+x16 10 1444 76 1443 90 3009
basic+x3+x4+x5+x6 65 780 105 774 128 1041
basic=intercept+x1+x2

x5 and x6 and to their correlations (between them and with other variables).
Due to the large number of variables available and the complex correlation

structure, we note a high dispersion of selection frequencies. For example,
for bootstrap(n) the most selected model has a selection frequency smaller
than 1% (0.71%). The situation is slightly better for bootstrap(m) (selection
frequency for the best model around 1.43%) and for subsample(m) (7.75%).
The high dispersion is more evident when we look at the number of unique
models selected in the analysis: for bootstrap(n) we obtain 244,392 different
models, 181,258 for bootstrap(m) and 36,552 for subsample(m).

Finally, we also report the average number of variables included in the
models for the simulation study. As seen in Table 2 and in agreement with
the results of the real studies, we again note the preference of subsample(m)
for sparse models. The average number of variables per model, indeed, is
5.311, slightly smaller than the true value (6). Conversely, the two boot-
strap techniques tend to select too many variables, an average of 6.886 for
bootstrap(m) and 8.048 for bootstrap(n).
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5 Discussion

In this paper we compared the subsampling and the bootstrap approaches
in a model building procedure for multivariable regression using backward
elimination. From our study, subsampling emerged as a valid alternative to
the bootstrap. Our simulation study, in particular, shows how the bootstrap
approaches lead to high inclusion frequencies for noise variables, considerably
larger than the theoretical value of 0.05 (see also Rospleszcz et al., 2014). As
a consequence, subsampling provides better results in terms of variable inclu-
sion frequencies, with consequences on the ability of recognizing the relevant
variables (they are more separated from the noise ones) and, consequently,
on the selection of useful models. This is confirmed by the analysis of the
AUC, which summarizes the ability of separating relevant and noise variables
using all possible thresholds.

The results of the simulation study cast new light on the least included
variables in the real data studies. Those variables have inclusion frequencies
close to 0.05, just as the noise variables in the simulation study do. Therefore,
we may safely suppose that they do not have any effect, or, at most, a very
weak one, and that the inclusion frequencies for these variables obtained in
the real data examples with bootstrap(n) and bootstrap(m) are too high.
Our conclusion here is confirmed by the results obtained by analyzing the
prediction abilities of the models: we saw no improvement in the greater
inclusion of these variables conferred by the two bootstrap approaches.

In the future, we would like to investigate the reasons for this behavior:
as one possibility, the higher number of variables included in a model derived
from a bootstrap sample is surely related to the incorrect significance level for
a test based on a bootstrap sample, which is larger than the nominal (see,
for example, Janitza et al., 2014, and references therein). However, other
characteristics of the pseudo-samples generated via bootstrap may also play
an important role: for example, the replication of possible influential points
(or even outliers) due to the resampling with replacement may contribute to
the selection of noise variables. An analysis based, for example, on the work
of Sauerbrei et al. (2014) may help to clarify this point.

A possible issue related to the use of subsample(m) is the correct selection
of the low-effect variables. We saw in the simulation studies that these vari-
ables may have inclusion frequencies which are too low, partially due to the
correlation structure and partially to the decrease in the power of significance
tests due to m < n. This may lead to the construction of models which are
too sparse (as seen in the analysis of the average number of variables included
in the models) and, eventually, to underfitting issues.

An important choice that may be related to this issue and that we did
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not consider in this paper is that of m and its effect on the results. We used
a value of 0.632n for m to set the size of the pseudo-samples generated via
subsample(m) equal to the average number of unique observations for boot-
strap(n). A larger value of m may improve the performance of subsample(m),
increasing the inclusion frequencies of the low-effect variables (as an effect
of the increased power of the significance tests). If m increases too much,
however, we do not investigate instability anymore since the pseudo-samples
are too similar to each other. A smaller value for m, instead, may decrease
the too high inclusion frequencies of the noise variables for bootstrap(m).
However, in decreasing m, the probable simultaneous decrease of the inclu-
sion frequencies for the relevant variables may lead to serious problems of
underfitting for both bootstrap(m) and subsample(m).
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Table A.1: Glioma data, effect estimates (log hazard ratios), standard error
and p-values for the Cox model including all variables.

variable estimate std error p-value
sex -0.175 0.129 0.17460
time -0.128 0.140 0.36274
gradd1 0.798 0.251 0.00151
gradd2 0.257 0.190 0.17585
age 0.038 0.007 9× 10−7

kard1 -0.317 0.139 0.02305
kard2 -0.039 0.172 0.82208
surgd1 -1.046 0.213 9× 10−9

surgd2 -0.216 0.139 0.11962
convul 0.095 0.138 0.49361
cort 0.264 0.139 0.05755
epi -0.270 0.150 0.07148
amnesia 0.097 0.198 0.62390
ops 0.253 0.164 0.12328
aph -0.119 0.137 0.27478
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Table A.2: Ozone data, effect estimates, standard error and p-values for the
linear model including all variables.

variable estimate std error p-value
intercept -1.721 0.264 2× 10−10

alter 0.025 0.017 0.15708
adheu -0.038 0.043 0.37135
sex -0.197 0.020 1× 10−16

hochozon -0.069 0.027 0.01202
amatop -0.003 0.023 0.87883
avatop -0.017 0.024 0.48672
adekz 0.009 0.025 0.70635
arauch 0.007 0.022 0.75821
agebgew 2× 10−5 2× 10−5 0.33302
fsnight 0.026 0035. 0.44492
flgross 0.026 0.002 1× 10−16

fmilb -0.057 0.037 0.12073
fnoh24 -0.002 0.001 0.00468
ftier -0.013 0.037 0.71378
fpoll -0.060 0.045 0.18902
fltotmed -0.054 0.028 0.05463
fo3h24 0.001 0.001 0.11463
fspt 0.032 0.049 0.51448
fteh24 -0.005 0.003 0.12744
fsatem 0.102 0.054 0.06102
fsauge 0.010 0.032 0.76082
flgew 0.012 0.002 3× 10−9

fspfei 0.122 0.055 0.02825
fshlauf -0.032 0.043 0.45219
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Table A.3: regression coefficients in the full models fitted for the first 10
simulated datasets.

simulated datatset
variable 1 2 3 4 5 6 7 8 9 10
intercept 2.473 2.564 2.533 2.487 2.493 2.546 2.470 2.439 2.537 2.435
x1 0.182 0.222 0.175 0.187 0.190 0.208 0.231 0.174 0.168 0.211
x2 -0.138 -0.210 -0.195 -0.226 -0.215 -0.159 -0.165 -0.194 -0.213 -0.152
x3 0.123 0.086 0.120 0.124 0.130 0.125 0.083 0.091 0.099 0.068
x4 -0.052 -0.118 -0.110 -0.094 -0.119 -0.146 -0.083 -0.040 -0.134 -0.077
x5 -0.043 0.193 -0.040 0.203 0.096 0.131 0.185 0.162 0.045 0.125
x6 0.136 -0.088 -0.026 0.090 0.134 0.133 0.037 0.053 0.012 -0.004
x7 0.009 -0.023 -0.004 0.005 0.023 -0.016 -0.000 0.023 0.009 0.002
x8 -0.018 0.047 0.001 0.006 -0.027 -0.017 0.029 -0.009 -0.031 0.021
x9 0.029 -0.065 -0.018 0.025 -0.004 -0.017 0.039 0.035 -0.040 -0.024
x10 -0.097 0.001 0.012 0.003 -0.026 0.046 0.018 -0.008 0.002 -0.036
x11 0.102 0.049 -0.041 -0.004 0.027 -0.045 -0.036 -0.002 0.009 0.018
x12 -0.033 -0.127 -0.032 0.083 -0.041 0.007 -0.016 -0.056 0.018 -0.072
x13 -0.031 -0.003 0.009 0.012 0.033 0.044 0.060 -0.017 0.019 0.066
x14 0.037 -0.011 0.018 -0.041 0.055 -0.007 -0.004 -0.021 -0.023 -0.017
x15 0.010 0.008 -0.024 0.028 -0.047 -0.057 -0.006 0.068 -0.043 0.027
x16 0.026 0.001 -0.012 0.038 0.018 -0.062 0.008 0.009 -0.030 0.048
x17 -0.024 -0.117 0.052 -0.039 -0.072 0.017 0.003 0.037 0.080 -0.133
x18 0.080 -0.017 0.059 -0.066 -0.058 0.023 -0.112 0.055 0.047 -0.016
x19 0.042 -0.023 0.044 0.028 0.027 -0.078 0.046 -0.034 -0.048 -0.040
x20 0.013 0.172 -0.102 0.046 0.041 0.060 0.055 0.202 -0.027 0.103
x21 -0.025 0.032 0.044 -0.039 0.062 -0.083 0.010 0.009 0.050 0.065
x22 -0.089 -0.133 0.006 -0.027 0.009 -0.112 -0.038 -0.177 -0.029 -0.067
x23 -0.094 0.062 -0.006 0.020 0.029 0.013 0.048 -0.024 0.043 -0.032
x24 -0.036 -0.045 0.150 0.002 0.052 -0.130 0.053 -0.125 0.023 0.185
x25 0.000 0.009 -0.020 -0.009 -0.020 0.009 0.009 0.033 0.022 0.030
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Table A.4: Glioma data, inclusion frequencies of the variables (based on 10,000 pseudo-samples).

α = 0.05 α = 0.10 α = 0.157
bootstrap bootstrap subsample bootstrap bootstrap subsample bootstrap bootstrap subsample

(n) (m) (m) (n) (m) (m) (n) (m) (m)
sex 0.32 0.14 0.24 0.43 0.25 0.33 0.50 0.35 0.42
time 0.19 0.06 0.16 0.27 0.12 0.23 0.34 0.19 0.30
gradd1 0.87 0.84 0.77 0.92 0.89 0.81 0.94 0.94 0.85
gradd2 0.37 0.23 0.31 0.45 0.32 0.38 0.52 0.41 0.44
age 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kard1 0.70 0.63 0.53 0.76 0.73 0.62 0.80 0.79 0.67
kard2 0.09 0.02 0.09 0.14 0.04 0.15 0.19 0.06 0.20
surgd1 1.00 1.00 0.97 1.00 1.00 0.98 1.00 1.00 0.99
surgd2 0.36 0.16 0.26 0.47 0.29 0.36 0.55 0.41 0.44
convul 0.14 0.03 0.12 0.22 0.07 0.20 0.28 0.12 0.26
cort 0.52 0.29 0.39 0.62 0.46 0.50 0.71 0.59 0.58
epi 0.51 0.30 0.38 0.62 0.45 0.49 0.69 0.57 0.57
amnesia 0.21 0.10 0.19 0.27 0.14 0.26 0.33 0.19 0.32
ops 0.43 0.24 0.33 0.52 0.37 0.43 0.60 0.48 0.50
aph 0.17 0.03 0.13 0.27 0.10 0.21 0.36 0.17 0.29
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Table A.5: Glioma data, number of unique models based on 10,000 pseudo-
samples for three significance level.

resampling approach α = 0.05 α = 0.10 α = 0.157
bootstrap(n) 1787 2296 2450
bootstrap(m) 1829 2573 3100
subsample(m) 580 1047 1461

Table A.6: Glioma data, average number of included variable for three sig-
nificance levels.

resampling approach α = 0.05 α = 0.10 α = 0.157
bootstrap(n) 6.864 7.957 8.832
bootstrap(m) 5.857 6.931 7.829
subsample(m) 5.057 6.242 7.278
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Table A.7: Glioma data, cluster of the selected models with respect to their structure (based on 10,000 pseudo-
samples). The term “core” denotes the variable gradd1, age and surgd1. The term “core*” means that gradd1 and
surgd1 can be replaced by gradd2 and surgd2, respectively.

Variable
bootstrap bootstrap subsample

Variable
bootstrap bootstrap subsample

(n) (m) (m) (n) (m) (m)
Only the 3 core 15 123 398 Only the 3 core* 17 178 473
3 core + 1 additional 247 878 2432 3 core* + 1 additional 304 1213 2841
3 core + 2 additional 1030 1923 2786 3 core* + 2 additional 1272 2590 3441
3 core + 3 additional 2071 2123 1956 3 core* + 3 additional 2472 2772 2309
3 core + 4 additional 2505 1451 653 3 core* + 4 additional 2832 1825 730
3 core + 5 additional 1742 676 155 3 core* + 5 additional 1904 803 163
3 core + > 5 additional 1103 275 27 3 core* + > 5 additional 1180 321 27
Without at least 1 core 1287 2551 1593 Without at least 1 core* 19 298 16
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Table A.8: Ozone data, selection frequencies of the 10 top ranked models for bootstrap(n), bootstrap(m) and
subsample(m), based on 10,000 pseudo-samples for α = 0.05. The order of presentation depends on the sum of the
three selection frequencies (decreasing).

bootstrap(n) bootstrap(m) subsample(m)
model rank freq. rank freq. rank freq.
basic+fspfei+fpoll 25 24 1 80 1 416
basic+fsatem 94 10 2 73 2 371
basic+fspfei 94 10 4 68 3 340
basic+fsatem+fmilb 16 29 6 56 4 318
basic+fsatem+fpoll 22 25 3 69 5 312
basic+fspfei+fmilb+hochozon+fnoh24 1 72 5 63 6 295
basic+fspfei+fpoll+hochozon+fnoh24 3 59 10 48 7 269
basic+fspfei+fmilb 39 18 22 31 8 233
basic+fsatem+fmilb+hochozon+fnoh24 4 56 14 41 9 221
basic 244 5 7 51 10 206
basic+fsatem+hochozon+fnoh24 49 17 7 51 17 126
basic+fspfei+fmilb+hochozon+fnoh24+fo3h24+fteh24 2 60 9 49 31 70
basic+fspfei+fpoll+hochozon+fnoh24+fo3h24+fteh24+fltotmed 5 54 22 31 40 53
basic+fspfei+fpoll+fsatem+hochozon+fnoh24+fltotmed 6 46 49 19 64 30
basic+fspfei+hochozon+fnoh24+fo3h24+fteh24 7 42 19 32 24 79
basic+fspfei+fmilb+fsatem+hochozon+fnoh24+fltotmed 8 38 68 15 75 24
basic+fspfei+fpoll+fsatem+hochozon+fnoh24+fo3h24+fteh24+fltotmed 8 38 129 9 275 3
basic+fspfei+fpoll+hochozon+fnoh24+fltotmed 10 37 56 18 24 79
basic=intercept+sex+flgross+flgew
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Table A.9: Ozone data, cluster of the selected models with respect to their
structure (based on 10,000 pseudo-samples)

bootstrap(n) bootstrap(m) subsample(m)
basic 5 51 206
basic + 1 additional 31 309 953
basic + 2 additional 217 921 2639
basic + 3 additional 643 1666 2333
basic + 4 additional 1333 1989 2167
basic + 5 additional 1648 1830 796
basic + > 5 additional 6123 3189 906
Without at least 1 core 0 45 0
basic=intercept+sex+flgross+flgew

References

Akaike, H. (1973). Information theory and an extension of the maximum like-
lihood principle. In 2nd International Symposium on Information Theory,
pages 267–281.

Altman, D. G. and Andersen, P. K. (1989). Bootstrap investigation of the
stability of a Cox regression model. Statistics in Medicine 8, 771–783.

Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the
bootstrap. The Annals of Statistics 7, 1196–1217.

Bickel, P. J., Götze, F., and van Zwet, W. R. (1997). Resampling fewer than
n observations: gains, losses, and remedies for losses. Statistica Sinica 7,
1–31.

Bickel, P. J. and Sakov, A. (2008). On the choice of m in the m out of n
bootstrap and its application to confidence bounds for extreme percentiles.
Statistica Sinica 18, 967–985.

Buchholz, A., Holländer, N., and Sauerbrei, W. (2008). On properties of
predictors derived with a two-step bootstrap model averaging approach: a
simulation study in the linear regression model. Computational Statistics
& Data Analysis 52, 2778–2793.

Burr, D. (1994). A comparison of certain bootstrap confidence intervals in
the Cox model. Journal of the American Statistical Association 89, 1290–
1302.

32



Table A.10: Simulated data, contingency table with the inclusion/exclusion
of variables x4 and x9

b
o
ot

st
ra

p
(m

)

x
4

x9
in out Sum

in 0.075 0.486 0.561
out 0.121 0.317 0.438

Sum 0.196 0.803 1.000

b
o
ot

st
ra

p
(n

)

x
4

x9
in out Sum

in 0.112 0.573 0.685
out 0.125 0.190 0.315

Sum 0.237 0.763 1.000

su
b
sa

m
p
li
n
g(

m
)

x
4

x9
in out Sum

in 0.030 0.563 0.593
out 0.083 0.324 0.407

Sum 0.113 0.887 1.000

Chen, C.-H. and George, S. L. (1985). The bootstrap and identification of
prognostic factors via Cox’s proportional hazards regression model. Statis-
tics in Medicine 4, 39–46.

Chernick, M. R. (2011). Bootstrap Methods: a guide for practitioners and
researchers. Wiley.

Copas, J. B. and Long, T. (1991). Estimating the residual variance in or-
thogonal regression with variable selection. The Statistician 40, 51–59.

Davison, A. C., Hinkley, D. V., and Young, G. A. (2003). Recent develop-
ments in bootstrap methodology. Statistical Science 18, 141–157.

De Bin, R., Sauerbrei, W., and Boulesteix, A. L. (2014). Investigating the
prediction ability of survival models based on both clinical and omics data:
two case studies. Statistics in Medicine DOI: 10.1002/sim.6246,.

del Barrio, E., Janssen, A., and Matrán, C. (2009). Resampling schemes
with low resampling intensity and their applications in testing hypotheses.
Journal of Statistical Planning and Inference 139, 184–202.

33



Table A.11: Simulated data, contingency table with the inclusion/exclusion
of variables x5 and x6

b
o
ot

st
ra

p
(m

)

x
5

x6
in out Sum

in 0.032 0.256 0.288
out 0.240 0.472 0.712

Sum 0.272 0.728 1.000

b
o
ot

st
ra

p
(n

)

x
5

x6
in out Sum

in 0.056 0.313 0.369
out 0.286 0.345 0.631

Sum 0.342 0.658 1.000

su
b
sa

m
p
li
n
g(

m
)

x
5

x6
in out Sum

in 0.088 0.256 0.264
out 0.233 0.503 0.736

Sum 0.241 0.759 1.000

Efron, B. (1979). Bootstrap methods: another look at the jackknife. The
Annals of Statistics 7, 1–26.

Gifi, A. (1990). Nonlinear Multivariate Analysis. Wiley.

Gong, G. (1982). Some ideas on using the bootstrap in assessing model
variability. In Computer Science and Statistics: Proceedings of the 14th
Symposium on the Interface, pages 169–173. Springer.

Graf, E., Schmoor, C., Sauerbrei, W., and Schumacher, M. (1999). Assess-
ment and comparison of prognostic classification schemes for survival data.
Statistics in Medicine 18, 2529–2545.

Harrell, F. E. (2013). rms: Regression Modeling Strategies. R package version
3.6-3.

Hartigan, J. A. (1969). Using subsample values as typical values. Journal of
the American Statistical Association 64, 1303–1317.

Ihorst, G., Frischer, T., Horak, F., Schumacher, M., Kopp, M., Forster, J.,
Mattes, J., and Kuehr, J. (2004). Long-and medium-term ozone effects on

34



lung growth including a broad spectrum of exposure. European Respiratory
Journal 23, 292–299.

Janitza, S., Binder, H., and Boulesteix, A.-L. (2014). Pitfalls of hypothesis
tests and model selection on bootstrap samples: causes and consequences
in biometrical applications. Technical Report 163, Department of Statis-
tics, University of Munich.

Lawless, J. F. and Singhal, K. (1978). Efficient screening of nonnormal re-
gression models. Biometrics 34, 318–327.

Mammen, E. (1992). When Does Bootstrap Work? Springer.

Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional
linear models. The Annals of Statistics 21, 255–285.

Mammen, E. and Nandi, S. (2012). Bootstrap and resampling. In Handbook
of Computational Statistics, pages 499–527. Springer.

Mantel, N. (1970). Why stepdown procedures in variable selection. Techno-
metrics 12, 621–625.
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