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Zusammenfassung

Die Verweildaueranalyse betrachtet eine Zeitspanne bis zum Eintritt eines interessierenden
Ereignisses. Aufgrund der vielfiltigen Anwendungsgebiete gibt es viele unterschiedliche
Bezeichnungen fiir die Verweildaueranalyse. In der Medizin spricht man beispielsweise
von der Lebensdaueranalyse oder der Survivalanalyse. Im Folgenden wird der Begriff
Survivalanalyse fiir die Verweildaueranalyse verwendet.

Wird die Zeit diskret beobachtet und angegeben, so werden fiir die Survivalanalysen zeit-
diskrete Survivalmodelle verwendet, welche den Einfluss von unterschiedlichen Variablen
auf die Lebensdauer untersuchen. Einfache lineare oder auch generalisierte Regressions-
modelle konnen fiir Survivaldaten nicht verwendet werden. Grund hierfiir ist, dass diese
Modelle die Dynamik der Lebensdauern und die Zensierung, die bei Survivaldaten haufig
auftritt, nicht berticksichtigen.

Mithilfe von Simulationen wird in dieser Arbeit untersucht, ob es zwischen dem Logit-,
Probit- und komplementdrem loglog-Modell fiir diskrete Lebensdauern Unterschiede gibt
oder ob die Verwendung dieser Modelle zu den gleichen Ergebnissen fiihrt.

Die Simulation zeigt, dass das Modell fiir die Analyse zu wéahlen ist, welches die Daten am
besten anpasst. Dabei sollte beachtet werden, dass die Verwendung des komplementidren
loglog-Modells bei einer grofieren maximalen Beobachtungszeit, trotz besserer Datenan-
passung als Logit- und Probit-Modell, nicht unbedingt bessere Schiatzungen der Intercepts
liefert. Aber auch die Verwendung des Logit-Links bei einer groflen maximalen Beobach-
tungszeit fiihrt trotz guter Datenanpassung nicht immer zu den besten Schatzungen der
Intercepts.

Dies verhilt sich jedoch nur bei der Schiatzung der Intercepts so. Die besten Schatzun-
gen der Parameter der Kovariablen werden bei kleinen und grofien maximalen Beob-
achtungszeiten mit dem Modell, welches die Daten am besten anpasst, erhalten. Bei
einer kleinen Anzahl moglicher Ausprdagungen der Zeit. weisen die Schitzungen der
betrachteten Modelle nur geringe Unterschiede in den Schitzungen der Regressionsko-

effizienten auf. Vor allem die Schitzungen bzw. die normierten Schiatzungen von Probit-
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und Logit-Modell unterscheiden sich bei kleineren maximalen Beobachtungszeitpunkten
kaum.
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1 Einfithrung

Die Survivalanalyse untersucht die Zeitspanne von einem Anfangszustand bis zum Ein-
tritt eines zuvor festgelegten Ereignisses. Survivaldaten sind speziell, da diesen zum
Einen eine Dynamik zugrunde liegt und zum Anderen bei Survivaldaten das so genann-
te Zensierungsproblem auftritt. Dies bedeutet, dass das Eintreten des Ereignisses nicht
immer beobachtet werden kann. Die Besonderheiten von Verweildauern ermdoglichen im
Allgemeinen keine korrekte Verwendung einfacher Regressionsmodelle, welche zur Uber-
priifung des Einflusses eines Pradiktors auf die Verweildauer genutzt werden konnte Bei
der Angabe der Zeit in diskreter Form werden zur Analyse der Verweildauern zeitdiskrete
Verweildauermodelle verwendet.

Ziel der Arbeit ist es die diskreten Survivalmodelle Logit-, Probit-, Gruppiertes Cox- und
das Cauchy-Modell zu vergleichen und herauszufinden, ob sich die Parameter, die diese
Modelle schétzen, voneinander unterscheiden. Ein Losungsansatz dieser Fragestellung ist
die Durchfiihrung einer Simulationsstudie. Dabei werden Datenséitze generiert, die sich
in der Verteilung der Kovariablen, der maximal beobachtbaren Zeitspanne und in dem
zugrundeliegenden Modell unterscheiden. Fiir den Vergleich der geschitzten Parameter
wird die mittlere quadratische Abweichung der geschdtzten Parameter zu den Parametern,
die fiir die Generierung des verwendeten Datensatzes gewihlt wurden, genutzt.

Die Arbeit ist folgendermafsen aufgebaut:

erldutert die theoretischen Hintergriinde zu den diskreten Survivalmodellen.
befasst sich mit der Inversionsmethode, welche zur Generierung der Daten-
sdtze in der Simulation genutzt wird. In werden der Simulationsaufbau und
die Ergebnisse der Simulation beschrieben. beinhaltet ein Anwendungsbei-
spiel.



2 Survival - Analyse

Die Bezeichnung der Verweildaueranalyse variiert je nach Kontext. So findet sich beispiels-
weise in der Biostatistik hdaufig die Bezeichnung der Survival-Analyse. Aber auch die
Bezeichnungen der Lebenszeit- oder Uberlebenszeitanalysen werden in diesem Kontext in
der (deutschen) Literatur verwendet.

Die Survival-Analyse betrachtet den Zeitpunkt T bis zum Eintreten eines bestimmten
Ereignisses (Kleinbaum and Klein, 2010, S.4). Im Anwendungsbereich Medizin wird die
Zeitspanne T meist als (Uber-)Lebenszeit oder Lebensdauer bezeichnet. Das bestimmte
Ereignis ist bei diesem Anwendungsgebiet oftmals der Tod.

Die Zeitspanne T kann jedoch auch als Dauer der Arbeitslosigkeit, Lebensdauern von
politischen oder gesellschaftlichen Organisationen und dhnlichem aufgefasst werden. Im
Folgenden wird T als Lebensdauer und das Ereignis als Ausfall bezeichnet.

Die Lebensdauer T ist eine nichtnegative Zufallsvariable (T > 0). Durch Transformationen,
wie zum Beispiel log(T), kann sichergestellt werden, dass die Lebensdauer nicht negativ
ist. Einfache Ansitze nutzen solche Transformationen, um T in Abhdngigkeit von Kovaria-
blen mithilfe linearer Modelle oder generalisierten Regressionsmodelle zu modellieren.
Da bei Survival-Daten oftmals der exakte Zeitpunkt, bei welchem das interessierende
Ereignis eintritt, nicht bekannt ist (Zensierungsproblem), ist die Verwendung einer spe-
ziellen Modellierung fiir diese Lebensdauern notwendig. Dariiber hinaus spielt die so
genannte Hazardrate (Ausfallrate) eine wichtige Rolle bei der Survival-Analyse, da diese
die Dynamik, die den Survival-Daten zugrunde liegt, berticksichtigt (vgl.Tutz and Schmid
(2013)).

2.1 Zeitdiskrete Survival- Analysen

Obwohl Zeit als ein stetiges Merkmal aufgefasst wird, werden die Werte einer Messung
meist diskret angegeben. Dies liegt an den gebrauchlichen Messgrofien wie Tage, Wochen
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oder Monaten.

Diese Messgrofien konnen als diskretisiertes Maf3 der zugrundeliegenden stetigen Zeit
aufgefasst werden. Eine diskrete Zeiteinteilung erfolgt durch die Unterteilung der Zeit in
q + 1Intervalle: [ag, a1), [a1,a2), ..., [a5-1,44), [ag, 00). Dabei wird ag = 0 gesetzt und a, gibt
das Ende des Beobachtungszeitraums an. Fiir eine beobachtbare diskrete Zeit ¢, welche
den Zeitpunkt des Ereigniseintritts angibt, und fiir die Lebensdauer T € {1,...,q + 1},
bedeutet die Entsprechung von beobachteter Zeit und Lebenszeit t = T, dass das Intervall
[a;—1,at) nicht tiberlebt wird.

2.1.1 Zensierung

Eine Besonderheit der Survivaldaten ist das Zensierungsproblem, das heifst,

dass nur ein gewisser Anteil der Daten eine genaue Lebensdauer T angibt. Bei den Daten,
die keine genaue Lebensdauer angeben, kann nur die Aussage gemacht werden, dass
ein gewisser Zeitpunkt tiberlebt wird. In solchen Féllen spricht man von rechtszensierten
Daten. Das grundlegende Modell der Rechtszensierung gibt an, dass fiir jedes Individuum
i(i=1,...,n)der Studie zwei latente Grofsen wirken.

Zum Einen wirkt die wahre Lebensdauer T; und zum Anderen die maximale Beobachtungs-
dauer C;, welche auch als Zensierungszeit bezeichnet wird. Die tatsdchlich beobachtete
Zeit ist die jeweils kiirzere Zeit der beiden: t; = min(T;, C;) (Fahrmeir and Tutz, (1994,
5.391). Der folgendermafien definierte Zensierungsindikator

1 falls Tl' < Ci
0 fallsT; > C;

gibt an, ob die Lebensdauer T oder die Zensierungszeit C beobachtet wurde.
Griinde fiir das Auftreten von Zensierungen bei Survival-Daten kénnen folgende sein (vgl.
(Kleinbaum and Klein, 2010}, S.6)):

e das interessierende Ereignis tritt nicht vor Ende der Studie auf

e die Person scheidet vor Eintritt des Ereignisses aus der Studie aus; Griinde hierfiir
konnen beispielsweise das Versterben des Individuums sein, falls Tod nicht das
interessierende Ereignis ist, oder der Kontaktabbruch zwischen Individuum und den
Verantwortlichen der Studiendurchfiihrung
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Bei der Zensierung werden auch verschiedene Zensierungsmechanismen unterschieden
(vgl. (Fahrmeir, 2007, S5.19)):

e Modell 1 (Typ I -Zensierung):
Fiir jedes Individuum i (i = 1, ..., n) ist eine feste (deterministische) Beobachtungs-
dauer C; vorgegeben

e Modell 2 (Typ II -Zensierung):
Die Studie wird beendet, sobald eine zuvor festgelegte Zahl von Lebensdauern T;

unzensiert beobachtet wurde

e Modell 3 (Random Censoring):
Die Zensierungszeiten C; werden als unabhédngig und identisch verteilte Zufallsva-

riablen aufgefasst, welche von den Lebensdauern T; unabhingig sind.

Neben der Rechtszensierung ist auch eine Linkszensierung mdoglich, bei welcher der
Beginn eines bestimmten Zustands nicht bekannt ist. Bei dieser Art der Zensierung wird
jedoch der Eintritt des interessierenden Ereignisses beobachtet. Trotzdem ist auch hier die
genaue Linge der Lebensdauer T; nicht bekannt. Die Behandlung dieser Zensierung ist
schwieriger, da es nicht moglich ist, den Einfluss der nicht bekannten Vorgeschichte auf
zukiinftige Ereignisse einzuschdtzen (vgl. Fahrmeir et al. (1996)).

Bei den zeitdiskreten Modellen gilt fiir den Zensierungsindikator der Survival-Daten,
welche durch (t;, ;, x;) gegeben sind, folgendes:

5 — 1 Ausfallin [a;,_q,a¢)
Z 0 Zensierungin [a;_1,a;)

Das x; stellt den Kovariablen-Vektor x; = (x;q, ..., xip)T und t; die beobachtete Lebensdauer
dar. Im Folgenden wird davon ausgegangen, dass die Zensierung am Ende des Intervalls
auftritt.

2.1.2 Hazardrate und Survivorfunktion

Die Zufallsvariable T hat eine Verteilungsfunktion F(T) = P(T < t). Die diskrete Survi-
vorfunktion S(t|x) gibt die Wahrscheinlichkeit fiir das Uberleben des Intervalls [a;_1,4;)
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an:
S(tx) = P(T>t|x) =1—F(t), t=1,...,q

Wichtige Kenngrofien der Survival-Analyse sind die Survivorfunktion und die Hazardrate.
Bei diskreten Zeitangaben stellt die Hazardrate die bedingte Wahrscheinlichkeit fiir den
Eintritt des interessierenden Ereignisses im Intervall [a;_1,a;) unter der Bedingung der
Kovariablen und des Erreichens dieses Intervalls dar:

Alt|lx) = P(T =t|T > t,x), t=1,...,q9

Die Hazardrate ist eine MessgrofSe fiir die Starke der Tendenz von einem Zustand in einen
anderen Zustand zu wechseln (vgl. Tutz and Schmid| (2013)). Diese Grofse misst zu jedem
Zeitpunkt die Tendenz eines Wechsels.
Uber die Zeit variierende Kovariablen konnen ebenfalls in die Hazardrate aufgenommen
werden:

Alt|x;) = P(T = t|T > t,x¢), t=1,...,q

wobei x; alle Informationen tiber die Kovariable bis zum Zeitpunkt t beinhaltet.
Die Survivorfunktion kann auch als Produkt iiber die Differenz von 1 und der Hazardrate
dargestellt werden:

t

S(tx) = P(T > tlx) = [[1 = A(i]x)),  t=1,...,q

i=1
Die Wahrscheinlichkeit das Intervall [a;_1, a;) zu erreichen, ist durch

t—1
S(tlx) =P(T > t|x) = J(A — A(i|x)) =1—F(t) = S(t —1]x) , t=1,...,9
i=1
gegeben. Aufierdem erhilt man die unbedingte Wahrscheinlichkeit fiir einen Ausfall im
Intervall [a;_1,a¢) durch

t—

P(T =t|x) = A(t|x) [ J(1 = A(t|x)S(t|x).

s=1

;_\
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2.1.3 Parametrische Regressionsmodelle
Fiir den Erhalt eines bindren Response wird ein binarer Ereignisindikator y;; definiert:

1 furt=tundd;, =1
Yit =
0 sonst
Die Darstellung der Daten bei drei Individuen mit
{(t4y =3,01 =0,x1),(t2 = 2.0, = 1,x2), (t3 = 4,03 = 1, x3) } nimmt bei Hinzufiigen des
Ereignisindikators die in beschriebene Form an.

Die dazugehorige Harzardrate hat die Form:
Ai(tlx;) = P(yis = 1|x;) = h(Bor +x' B) ,

wobei hi(-) eine feste Responsefunktion darstellt.

Da hier ein bindres Modell fiir die Entscheidung zwischen {t} und {t +1,...,k} gegeben
T > t verwendet wird, hdangt der Intercept Bo; des Modells von der Zeit ab. Die Definition
des Ereignisindikators ermdglicht die Berechnung der  und der Intercepts fo; mit einem

bindren Regressionsmodell.

Die Intercepts Bo: werden in der Survival-Analyse als Baseline-Hazard bezeichnet. Der

Baseline-Hazard gibt den Ausfall in t an, wenn alle Einflussvariablen gleich null sind

ty x
IndividuumI 1 0 x;
2 0 X1
3 0 X1
IndividuumIl 1 0 x»
2 1 X2
IndividuumIIl 1 0 x3
2 0 X3
3 0 X3
4 1 X3

Tabelle 2.1: Bestimmung des Ereignisindikators
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(vgl. Ziegler et al. (2007)). Weiterhin muss es sich bei der Responsfunktion um eine streng
monoton steigende Funktion handeln, was eine Bildung der Umkehrfunktion g = i~
moglich macht. Fiir die Umkehrfunktion erhalt man g(A(tx)) = Bo +xT B.

2.1.4 Zeitdiskrete Survivalmodelle

Ein bindrer Response, welcher durch die Definition des Ereignisindikators erhalten wird,
kann mit der Bernoulli-Verteilung y ~ B(1, ) modelliert werden. Fiir die Wahrscheinlich-

keit, dass der Response den Wert 1 annimmmt, gilt:
P(y = 1]x) = A(tx)

Im Folgenden sind Modelle aufgefiihrt, welche den Zusammenhang zwischen der Wahr-
scheinlickeit des Response und dem linearen Pradiktor 17; = Bo; + xT B beschreiben.

e Logit-Modell
Das Logit-Modell ist ein binédres Regressionsmodell, welches die logistische Vertei-
lungsfunktion h(y) = exp(y) /(1 + exp(n)) verwendet. Fiir die diskrete logistische
Hazardrate, welche das Auftreten des Ausfalls zum Zeitpunkt t gegeben das Errei-

chen dieses Zeitpunktes mit einem logistischen Modell modelliert, ergibt sich:

T
Altlx) = 7= Ply = 1|x) = { ixfx(;f(ozt%; f— fT)ﬁ) &y

Die Darstellung mittels der Linkfunktion sieht wie folgt aus:

A(t]x)

8T A )

= Bor +x'B

e Probit-Modell
Die diskrete Hazardrate des Probit-Modells hat folgende Form:

A(tlx) = P(y = 1]x) = ®(Bo; +x'B)

e Gruppiertes Cox-Modell (komplementires loglog-Modell)
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A(tx) =1 —exp(—exp((Bo: +x' B)))

e Gumbel-Modell (loglog-Modell)
A(tlx) = exp(—exp(—(Bor +x'B)))

e Cauchy-Modell
A(t|x) = tan™ " (Bor + x"B)/m +1/2

2.2 Ridge Regression

Um einem Regressionsmodell Stabilitdt zu verleihen, wird versucht die Minimierung des
Prognosefehlers und die Aufnahme moglichst weniger Pradiktoren zu verbinden. Eine
Moglichkeit der Regularisierung des Regressionsmodells, welches bei Multikollinearitét
sinnvolle Schatzungen erlaubt (Schlittgen, 2013, S.113), ist die Ridge Regression. Die Stabi-
lisierung des Modells erfolgt dabei, indem die Parameter ; verkleinert werden. Dadurch
erhdlt man verzerrte Schdtzungen, die jedoch kleinere Varianzen haben (Le Cassie and van
Houwelingen,|, 1992, 5.193). Die Ridge-Regression, sowohl im linearen Modell wie auch
in erweiterten generalisierten linearen Regressionsmodellen, basiert auf dem Strafterm
J(B) = 2]’.7:1 ﬁjz, wobei hier gilt: BT = (Bo, B1, ..., Bp) und 1; = xI B . Aus der Definition des
Strafterms ergibt sich fiir die entsprechende Log-Likelihood:
p AL
L(B) =) Li(B) - > 215]2
j=

i=1

In manchen Fallen ist folgende Darstellung des Strafterms sinnvoll:
oy T
J(B)=)_B;=B'PP
j=1

P = (p;;) unterscheidet sich von der (p + 1) x (p + 1) Einheitsmatrix an der Stelle p1;.
Statt p11 = 1 gilt fiir die P Matrix py; = 0 (Tutz] 2012, S5.147). Fiir die Score-Funktion ergibt
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sich:

p .
sp(B) = ;xi%(% — ui)/ o} — AP

und die Schitzgleichung hat die Form:
X'D(B)Z(B)(y —u) —APB =0

wobei yT = (y1, ..., yn), 7 = (1, oo i), XT = (X1, 00 Xn),

D(B) = diag(oh(n1) /0, ..., 0h(1,) /9 und 0 = var(y;).

Bei generalisierten linearen Regressionsmodellen miissen fiir die Losung der Gleichung
sp(B) = O iterative Algorithmen, wie zum Beispiel das Fisher-Scoring, verwendet werden.
Die Formel des Strafterms J(B) = Z]P:l ﬁjz zeigt, dass die Verkleinerung aller B nur von
dem Parameter A abhéngen. Da die Parameter §; abhéngig von der Skalierung der Kovaria-
blen x; sind, ist auch die Losung von s, (B) = 0 nicht skaleninvariant. Deshalb sollten die
Kovariablen vor der Schiatzung der Parameter standardisiert werden (Tutz, 2012, 5.148).
Bei der Verwendung von zeitdiskreten Survivalmodellen mit dem Parameter

0 = (Bot,t =1,...,q,B)T ist die parametrische ML-Inferenz fiir grofle g instabil. Um dem
entgegen zu wirken kann unter anderem auch die Ridge Regression verwendet werden,
die jedoch nur den Intercept Bo; , bestraft”. Die log-Likelihood hat im Fall der Bestrafung
des Intercepts die Form: ;(0) = 1;(6) — 483,

2.3 Diskrepanz zwischen Daten und Fit

Die Sum of Squared Residuals y_;(y; — h(x B))?, welche als Maf der Diskrepanz zwischen
Daten und Fit bei ,normalen” Regressionsmodellen verwendet wird, kann bei der Mo-
dellierung von bindren Daten nicht verwendet werden, da die Verwendung dieses Mafses
symmetrische Normalverteilungen und homogene Varianzen annimmt (Tutz, 2012, S.87).
Die Devianz hingegen ist ein Mafs fiir die Modellgiite, wenn der Response binér ist
und die unbekannten Parameter mittels Maximum-Likelihood geschitzt werden. Die
Devianz ist mit der Teststatistik , Likelihood-Ratio”, welche fiir die Auswertung geneste-
ter Modelle verwendet wird, verbunden. Die Likelihood-Ratio ist folgendermafien defi-

niert:
L(Submodell)

L(Obermodell)

A = —2Log
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Dabei steht L(Obermodell) fiir die maximale Likelihood eines Obermodells und L(Submodell)
entsprechend fiir die maximale Likelihood eines restringierten Modells.

Wird das bindre Modell als Submodell und das saturierte Modell als Obermodell betrachtet,
so ergibt sich:

A = —2{logL(gefittetesSubmodell) — logL(gefittetesObermodell) }

Das saturierte Modell ist das maximal an die Daten angepasste Modell und dient als
Mafistab zur Beurteilung der Modellanpassung geschitzter Regressionsmodelle (Fahrmeir
et al., 2009, S.205).

Seien die Daten durch (y;, x;),i = 1,...,n gegeben, wobei y binér ist. Weiterhin soll /(y; #)
die log-Likelihood des gefitteten Modells mit y” = (yy,...,yn), AL = (A1,..., ), #i =
#ti(x) = h(x] B) sein. Das saturierte Modell wird durch die Likelihood (y;y) dargestellt.

Die Devianz fiir die bindre abhdngige Variable hat somit die Form:

D(y, #t) = 2{l(y,y) =y, 7)}
- 2 {iyi log (%) + (1 —yi) log (11:—7{1) }
— ) _ {yilog(7t;) + (1 —y;) log(1 — 7;) }

i=1

Dabei wird von der Konvention 0 - co = 0 Gebrauch gemacht. Aufgrund der Tatsache, dass
bei bindren Daten I(y, y) = 0 gilt, kann die Formel der Devianz auf D(y, &) = —2I(y, &)

reduziert werden. Eine weitere Darstellungsmoglichkeit der Devianz ist:
n
D(y, &) =2 d(yi, #;)
i=1
mit

R —log(7;) fury; =1
d(yi, 7t;) = { g Y

—log(1—7;) fury; =0
= —log(1 — |yi — 7il)

An dieser Darstellung wird deutlich, dass die Devianz fiir bindre Daten ebenfalls durch

die Differenz von Beobachtungen und gefitteten Werten berechnet wird.

10



2 Survival - Analyse

Die asymptotische x2- Verteilung der Devianz D(y, 7t), falls n — oo, gilt fiir binére Varia-
blen nicht (Tutz, 2012, S.89). Dies liegt an der Anzahl der Freiheitsgrade, die in diesem
Fall nicht fest ist, sondern sich mit dem Stichprobenumfang vergrofert. Es gibt also keine
approximative Verteilung mit welcher der Wert D(y, 7) verglichen werden kann. Anders
verhilt es sich bei einem binomialverteilten Response, da die Freiheitsgrade in diesem Fall
tiir eine feste Anzahl von Beobachtungen N und n; — oo fiiri = 1,..., N fest sind. Obwohl
die Verwendung der Devianz bei bindren Beobachtungen als ,,Goodness of Fit”-Statistik
nicht sinnvoll ist, eignet sich diese trotzdem gut zur Residuenanalyse und zum Vergleich
unterschiedlicher Linkfunktionen (Tutz, 2012, S.89). Fiir Modelle mit gleichem linearen
Pradiktor und gleicher Beobachtungszahl lassen sich die Devianzen dieser Modelle infor-
mell vergleichen. Dabei gilt, dass das Modell mit der kleineren Devianz die Daten besser

anpasst.

11



3 Inversionsmethode

Die Inversionsmethode beruht auf dem Verfahren der Darstellung einer eindimensionalen
Verteilung mit Hilfe von U(0, 1). Ist die Inverse der Verteilungsfunktion berechenbar, so
ist es mit dieser Methode moglich diese Verteilung auf R zu simulieren und Pseudozu-
fallszahlen x1, xp, . . . mit dieser Verteilungsfunktion zu erzeugen. Sei F : R — [0, 1] eine
Verteilungsfunktion mit limy_, _ F(x) = 0 und limy_,e F(x) = 1.

Die verallgemeinerte Inverse F~! : (0,1] — R U {co} der Verteilungsfunktion F ist defi-
niert durch (Kolonko), 2008, S.85) :

FY(r) = inf{t e RU {0} F(t) > 1}, re [0,1]

Fiir die Verteilungsfunktion F und die zugehorige verallgemeinerte Inverse F~! gilt (Kos
lonko), 2008, S.86):

o Il =min{t c RU{co}}, r € [0,1]

Fl1<te F(t)>rfiraller € [0,1] und t € RU {co}

F~!ist die Umkehrabbildung von F, falls F streng monoton wachsend und stetig.

e 7 — F~1(r) ist monoton wachsend und von links stetig.

Ist die Bestimmung aller Werte von F~! fiir alle » € [0,1] moglich und sei F eine Vertei-
lungsfunktion und U eine U(0, 1)-verteilte Zufallsvariable, dann gilt, dass Y := F~1(U)
die Verteilungsfunktion F hat (vgl. Kolonko| (2008), S.87):

P(Y<t)=F(t),teR

Dies erlaubt folgenden Schluss: x;,, := F ’1(un) mit n = 0,1,... simuliert die Vertei-

lung mit der Verteilungsfunktion F, wenn (u,),>0 eine Folge von Zufallszahlen ist, die

12



3 Inversionsmethode

Uu(0,1) simulieren, und F —1 die verallgemeinerte Inverse einer Verteilungsfunktion F

ist.

Inversion bei diskreten Verteilungen

Im Folgenden wird beschrieben, wie eine Zufallsvariable X mit endlich vielen Werten
(x1, ..., x¢) € R, die die Wahrscheinlichkeiten (pj, ..., py) besitzen, simuliert wird. Es sei Z
eine Zufallsvariable auf einem geeigneten Wahrscheinlichkeitsraum (€, 2, P) mit
pi=P{Z=1x;}),i=1,...,s.Der Wahrscheinlichkeitsraum wird als ([0, 1], B([0,1]), A)
gewihlt. Die Borel-Sigma-Algebra von [0, 1]Jwird durch B([0,1]) dargestellt und A ist das
Lebesgue-MaSB auf [0, 1] (Baumeister (2009)) . Im Folgenden erfolgt eine Aufteilung des
Intervalls [0, 1] in s Teilintervalle I, . .., I; mit

L=[p1+ - +pL,p+-+pa+p)i=1,...k-1,

s =[pr+-+psa1]

Die Definition der Zufallsgrofie Z lautet :

Z(y)=ifallsy e I;.

Firi=1,...,sgilt:

P(Z =1i) = A{w € [0,1]|Z(w) =i})
= A{w € [0,1]|w € i})
= A(L) = pi.

Dies ermoglicht die Simulation einer Zufallsvariable, deren Verteilung der vorgegebenen
entspricht (Baumeister| (2009)).

Der Algorithmus fiir die Konstruktion von Zufallszahlen mit vorgegebener diskrete Ver-

teilung :

e EIN: Die Verteilungsparameter py, ..., ps und der Mechanismus zur Erzeugung von
gleichméflig verteilten Zufallszahlen muss tibergeben werden

e Schritt 1: Erzeugung einer Zufallszahl uy fiirk = 1,..., N; ist uy € I; so wird z; := i

gesetzt

e AUS: N diskrete Zufallszahlen zq, .. ., zx, die nach py, . .., ps verteilt sind

13



3 Inversionsmethode

Die Simulation einer diskreten Zufallsvariablen mit abzdhlbaren Werten mit positiver

Wahrscheinlichkeit erfolgt analog (Baumeister| (2009)).

14



4 Simulation

4.1 Aufbau

Mithilfe der Simulationsstudie wird gepriift wie gut die in|Unterabschnitt 2.1.4/beschriebe-

nen Modelle bzw. die unterschiedlichen Linkfunktionen die Parameter Bo; und B schitzen.
Fiir jedes Szenario werden mehrere Wiederholungen durchgefiihrt. Jeder Durchlauf gene-

riert eine Zensierungszeit C; und eine Lebensdauer T;, welche die in [Unterabschnitt 2.1.2|

beschriebenen Verteilungsfunktion hat. Die Simulation von T; erfolgt mit der Inversionsme-
thode. Die generierten Lebensdauern und Zensierungszeiten werden fiir die Bestimmung
des Zensierungsindikators J; und der tatsachlich beobachteten Zeit ¢ benétigt.

Das ,, wahre” Modell der Daten bei vier Kovariablen, welches fiir die Datengenerierung
der Simulationen 1- 8 verwendet wird, hat folgende Form:

formula = y ~ v(1,u)+x1+x2+x3+x4

family=binomial (link="cloglog")

Und das ,wahre” Modell der Simulation 9 und 10, genauso wie das der Simulationen,
deren Ergebnisse im Anhang zu finden sind, haben die Form:

formula = y ~ v(1,u)+x1+x2+x3+x4

family=binomial (link="logit"),

wobei v(1, u) fiir einen variierenden Intercept steht.

Fiir den generierten Datensatz, welcher die Spalten (ID, time.discrete (), state (J;), x1, x2, X3,

x4) umfasst, wird das Programm "data.Long” von Most (2013) angewandt, welches einen

neuen Datensatz mit einem Beobachtungsindikator y nach dem in |[Unterabschnitt 2.1.3|

beschriebenen Prinzip erstellt. Der Code fiir die Generierung der Survivaldaten basiert
auf dem von der Betreuung zur Verfiigung gestellten Code.

In den folgenden Schritten werden die Parameter  und pBo; mithilfe der Ridge Regression
geschétzt. Dabei wird fiir die Schatzung der Intercepts Bo; die Ridge Regression mit dem
Parameter A = 0.0001 (siehe verwendet. Die Umsetzung der Ridge Regres-
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4 Simulation

sion erfolgt mit dem R-Paket gvcm. cat .
Fiir jeden generierten Datensatz werden die Parameter mit dem Logit-, Probit-, und dem

Cloglog-Link geschitzt. Die dazugehorigen Modelle werden in [Unterabschnitt 2.1.4{be-

schrieben.
Fiir den Vergleich der unterschiedlichen Parameter der Modelle ist die Standardisierung
der € notwendig (Tutz, 2012, S.128-129).

Logit Probit Cloglog

Erwartungswert 0 0 —0.577
Varianz 71%/3 1 72 /6

Tabelle 4.1: Erwartungswert und Varianz von e fiir verschiedene Modelle

Die Standardisierung der Parameter § und By erfolgt durch:

Bor = Bor — E(€i) B = Bi

var(€;) var(e;)

Im Anschluss wird die mittlere quadratische Abweichung der Intercepts

1 t.%a:x . M
MSE(Bor) = (Boi(standardisiert) — Boi)~
t max = i(standardisiert)
der MSE der Parameter
R -
MSE E Z standardlszert) ﬁ])
]:
und der MSE der Parameter Bo; und
k t.max

MSE(B. for) = Z (standardisiert) — Bi) + 3 (Boi(standardisiert) — Poi)°)
k + t.max fst (standardisiert) — = i(standardisiert) i

berechnet. Fiir f und fo; erfolgt die Standardisierung mit dem Erwartungswert und der
Varianz des ,wahren” Modells. Fiir die Normierung der .B(standardisiert) und BOt(standardisiert)
werden die Erwartungswerte und Varianzen des Modells, welches diese Werte geschétzt

16



4 Simulation

hat, verwendet.

t.max steht fiir die maximal beobachtbare Zeit und k fiir die Anzahl der Kovariablen. Diese
mittleren quadratischen Abweichungen der Schitzer aus den generierten Datensédtzen
werden mit Boxplots graphisch dargestellt. Anhand der Boxplots soll gepriift werden, wie
gut die unterschiedlichen Links die Parameter schidtzen und ob es dabei einen Unterschied
zwischen den Links gibt.

Zusétzlich wird in den Boxplots die Anzahl der bei den Schédtzungen auftretenden Warn-
meldungen angezeigt.

Die Werte der ,,wahren” Parameter  werden fiir jedes Szenario auf folgende Werte

festgelegt:
o f1=-2
e B =-05
o B3 =—1
e By =0

Folgendes wird fiir die unterschiedlichen Simulationen variiert:

e Anzahl der maximalen Zeitpunkte t.max € {7,20,30}
Fiir die ,,wahren” Bo; und fiir die Zensierungswahrscheinlichkeiten zu den t.max-

Zeitpunkten werden folgende Vektoren gewdihlt:

— Fir t.max =7
Zensierungswahrscheinlichkeiten:
(0.1,..,0.1,0.4)

N——

6
Parameter:

Bot = (=2,-15,-1,-0.5,-0.25,0,0.5)T
Anzahl der Beobachtungen N = 1500
Anzahl der Durchldufe a = 100

— Fir t.max = 20
Zensierungswahrscheinlichkeiten:
(0.1,..,0.1,0.15,0.2,0.2,0.2,0.2)
N——

15
Parameter:

Bor = (—2.0,—-18,..,1.6,1.8)T

17



4 Simulation

Anzahl der Beobachtungen N = 1500
Anzahl der Durchldufe 2 = 100

— Fiir t.max = 30
Zensierungswahrscheinlichkeiten:
(Q.l, . 0.1, 9.15, . 0.1§, 0.25,0.2,0.2,0.2,0.2)

15 10
Parameter:

Bor = (—2.0, —1.8620, —1,7241, ..., 1.8620,2.0) T
Anzahl der Beobachtungen N = 1500
Anzahl der Durchldufe a = 550

e Verteilung der x;
— X1,Xp, X3, X4 als bindre Kovariablen
— X1,X2, X3, x4 als standardnormalverteilte Kovariablen
— X1, X7 bindr und x3, x4 standardnormalverteilt

e Korrelation der Kovariablen

4.2 Simulation 1

Die erste Simulation generiert einen Datensatz mit vier unabhéngigen bindren Kovariablen
und einer Beobachtungszeit t € {1,2,...,7}.
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MSE(Bor)
= @ o
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Logit(0) Probit(0) Cloglog (0)

Bindre Kovariablen

Abbildung 4.1: MSE(B:) bei Simulation 1

Logit Probit Cloglog

Min. 0.004615 0.007246 0.001633
1st Qu. 0.017961 0.023999 0.005085
Median 0.025573 0.033891 0.007412
Mean 0.026565 0.034402 0.008438
3rd Qu. 0.034364 0.043539 0.009840
Max. 0.076051 0.088886 0.039142

Tabelle 4.2: MSE(Bo;) bei Simulation 1

IAbbildung 4.1| zeigt, dass die Schdtzung der Parameter Bo; mit dem Cloglog-Link, welcher

zur Generierung der Daten verwendet wird, zu den kleinsten mittleren quadratischen
Abweichungen fiithrt. Somit erhdlt man mit diesem Link eine bessere Schatzung der In-
tercepts. Die mit dem Logit-Link geschitzten Intercepts weisen hingegen etwas grofiere
MSE auf. So liegt bei der Schdtzung der Bo; mit diesem Modell der Median der MSE bei
0.0256 (vgl.[Tabelle 4.2). Die Verwendung des Probit-Modells fithrt zu groften mittleren
quadratischen Abweichungen, wobei der Unterschied zu dem MSE des Logit-Modells
gering ist. Die Zahl, die hinter den unterschiedlichen Links steht, ist die Anzahl der Schét-

zungen, die ein Auftreten von Warnmeldungen verzeichnet. Bei vier bindren Kovariablen
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4 Simulation

und maximal sieben Zeitpunkten, tritt bei keiner Parameterschidtzung eine Warnmeldung

auf.
MSE(p)

o [s]
o
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e i
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8
(e ]
o
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. | i i‘
8 E
S -
o T I T

Logit(0) Prabit(0) Cloglog (0)

Bindre Kovariablen

Abbildung 4.2: MSE(p) bei Simulation 1

|IAbbildung 4.2 stellt die mittleren quadratischen Abweichungen der  dar. Auch hier
erkennt man, dass die Verwendung des Cloglog-Links kleinere MSE liefert, als einer der
zwei anderen Links. macht neben der Abbildung deutlich wie gering die Abwei-
chungen von den mit dem Cloglog-Link geschétzten Parameter zu den ,, wahren” Werten

sind. Die mittleren quadratischen Abweichungen des Logit- und des Probit-Modells unter-

scheiden sich kaum.

Logit Probit Cloglog

Min. 0.004434 0.004108 6.079-10"%°

IstQu. 0.011409 0.010843 8.663-10~%
Median 0.015869 0.013970 1.406-10"%
Mean 0.015785 0.014127 1.621-10"%

3rd Qu. 0.019378 0.017621 2.158-10~%
Max. 0.032295 0.026562 4.742-10~%

Tabelle 4.3: MSE(B) bei Simulation 1
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MSE(Bot, B)
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Abbildung 4.3: MSE(Bot, B) bei Simulation 1

Die Betrachtung der mittleren quadratischen Abweichungen von Bo; und B zeigt, dass die

Abweichung der geschitzten Parameter von den ,,wahren” Werten bei Verwendung des

Cloglog-Links am geringsten ist (vgl.|Abbildung 4.3). Aber auch die Werte, die man mit

dem Probit-und dem Logit-Modell erhilt, scheinen die Regressionskoeffizienten gut zu
schdtzen. Man erkennt auch, dass die mittleren quadratischen Abweichungen des Logit-

und des Probit-Modells dhnlich sind.
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T
Cauchit

Abbildung 4.4: Devianz bei Simulation 1
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4 Simulation

IAbbildung 4.4|1dsst den Schluss zu, dass die Anpassung der Daten mit dem Cloglog-Modell
die Beste ist. Die zuvor betrachteten mittleren quadratischen Abweichungen bestitigen
dies.

4.3 Simulation 2

Es werden wieder vier bindre Kovariablen generiert. Die maximale Beobachtungszeit
wird auf 20 erhoht. Dabei treten bei 18 generierten Datensédtzen nicht alle Auspragungen
der beobachtbaren Zeit t auf. Die Schatzung der Parameter erfolgt somit nur bei 82
Datensétzen.

MSE(Bot)
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Logit(0) Probit(5) Cloglog (2)

Binare Kovariablen

Abbildung 4.5: MSE(B:) bei Simulation 2

|IAbbildung 4.5| zeigt, dass die Schitzung der Parameter Bo; mit dem Logit- und dem

Probit-Link grofiere mittlere quadratische Abweichungen erzielen, als die Verwendung

des Cloglog-Links. Fiinfzig Prozent der kleinsten berechneten mittleren quadratischen
Abweichung liegen bei der Verwendung des Cloglog-Links unter 0.316, bei der Verwen-
dung des Probit-Links liegt der Median bei 0.742. Obwohl 50% der kleinsten MSE des
Cloglog-Modells kleiner sind als die der zwei anderen Modelle, liegt das obere Quartil
dieser MSE tiber den oberen Quartilen der MSE des Logit- und Probit-Modells. AufSerdem
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4 Simulation

lasst sich der|Abbildung 4.5|entnehmen, dass bei fiinf der 82 Schatzungen mittels Probit-

Link Warnmeldungen auftreten. Bei der Verwendung des Cloglog-Links treten nur zwei

Warnmeldungen auf.

MSE(B)
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T T T
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Binire Kovariablen

Abbildung 4.6: MSE() bei Simulation 2

Bei |Abbildung 4.6/ fallt auf, dass die Verwendung des Cloglog-Links fiir die Schatzung der

Parameter B zu sehr kleinen Abweichungen zwischen geschétzten und ,, wahren” Werten
fiihrt. Die Verwendung des Logit- und Probit-Links fiir die Schiatzung der B fiihrt zu
dhnlichen mittleren quadratischen Abweichungen, die etwas grofier als die des Cloglog-
Links sind. Der Median der mittleren quadratischen Abweichungen des Logit-Modells
liegt bei 0.023 und liegt somit etwas unter dem Median der MSE des Probit-Modells (0.026).
Die Schatzungen mittels des Cloglog-Links scheinen auch hier ndher an den ,, wahren”

Parameter zu liegen.
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MSE(Bot, B)
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Abbildung 4.7: MSE(B, Bo:) bei Simulation 2

Bei Betrachtung von [Abbildung 4.7, welche aufgrund der 20 geschétzten Intercepts der

Abbildung der MSE(By:) sehr dhnelt, sieht man nochmals, dass die Schéitzungen von
Logit- und Probit-Modell zu dhnlichen mittleren quadratischen Abweichungen fiihren
und dass der Interquartilsabstand der MSE des Cloglog-Modells grofier ist, als der der
zwei anderen Modelle.

o Devianz
[
0 e o
[s]
o (s} I E—
a i
o e e— ! 1
[rs) ! \ _— 1
| |
o i \ |
(=] ! | !
@ i
o i
[ |
w0 T 1
T T ! |
i i i
=1 i i —
2 4 i R
s [ i
Q
8 o
w7 (=]
= o
T T I T
Logit Probit Cloglog Cauchit

Binédre Kovanablen und t max=20

Abbildung 4.8: Devianz bei Simulation 2
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4 Simulation

IAbbildung 4.8| zeigt, dass die Cloglog-Modelle kleinere Devianzen haben. Somit ldsst sich

sagen, dass die Anpassung der Daten mit diesem Modell besser ist, als die der anderen
Modelle.

4.4 Simulation 3

Die maximale Beobachtungszeit betrédgt in diesem Szenario t.max = 30. Wie in den zwei
vorangegangenen Simulationen bestehen die generierten Datensdtze unter anderem aus
vier bindren unabhéngigen Kovariablen. Die Beobachtungszahl wird auch hier auf N =
1500 gesetzt, jedoch wird die Durchlaufzahl, also die Anzahl der generierten Datensatze
auf 550 erhoht. Grund hierfiir ist, dass die Anzahl der Datensédtze, die jede mogliche
Auspragung der beobachteten Zeit t enthélt, bei nur 100 Durchldufen zu gering wire.
Bei 550 Durchldufen kann die Schiatzung der Regressionskoeffizienten an 74 generierten

Datensitzen erfolgen.
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Abbildung 4.9: Devianz bei Simulation 3

IAbbildung 4.9|zeigt, dass die Daten am besten mit dem gruppiertem Cox-Modell angepasst

werden.
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MSE(Bot)
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Abbildung 4.10: MSE(B:) bei Simulation 3

Die mittlere quadratischen Abweichungen der Bo; bei Verwendung des Logit-,Probit-und
Cloglog-Modell sind in|Abbildung 4.10| zu sehen.
Obwohl die Anpassung mit dem Cloglog-Modell besser als die der anderen betrachteten

Modelle zu sein scheint (vgl.|/Abbildung 4.9), ist es die Schatzung der Intercepts mit diesem

Modell nicht. Der Median der mittleren quadratischen Abweichungen der By liegt bei
Verwendung des Cloglog-Modells bei 3.423. Der Median der MSE(By;) bei Verwendung
des Probit-Modells liegt hingegen bei 2.087. Und auch die mittleren quadratischen Abwei-
chungen des Logit-Modells sind kleiner als die des Cloglog-Modells.

Weiterhin kann der Abbildung enthommen werde, dass bei der Schdtzung mit dem Probit-
Modell bei 33 von den 74 Schitzungen Warnmeldungen auftreten. Bei der Schatzung mit
den zwei anderen Modellen treten keine auf.
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Abbildung 4.11: MSE(B) bei Simulation 3

Die normierten Schdtzungen der Parameter  weisen bei Verwendung des Cloglog-Modells
die geringste Abweichung zu dem normierten ,,wahren” Parameter auf. Der Median
der mittleren quadratischen Abweichungen liegt fiir das Cloglog-Modell bei 0.001. Der
Median der MSE bei Verwendung des Logit-Modells liegt bei 0.025. Die Betrachtung
der|Abbildung 4.11| zeigt, dass die mittlere quadratische Abweichung bei Verwendung des

Probit-Links zur Schitzung der Parameter vergleichsweise am grofiten ist, wobei unter
anderem der maximale Wert der MSE des Probit-Modells (0.049) zeigt, dass auch diese
Abweichungen sehr gering sind.
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MSE(Bot, B)
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Abbildung 4.12: MSE(B, Bot) bei Simulation 3

Aufgrund der grofien Anzahl der moglichen Intercepts dhnelt|Abbildung 4.12| der |Abbil+
dung 4.10| welche nur die mittleren quadratischen Abweichungen der Intercepts darstellt.
Obwohl der bessere Fit des Cloglog-Modells die Wahl dieses Modells nahelegt, erkennt

man an den mittleren quadratischen Abweichungen, dass die Schatzungen der Parameter

mit diesem Modell nicht die Besten sind. Die Verwendung des Probit-Modells scheint die

Regressionskoeffizienten besser zu schitzen.

4.5 Simulation 4

Folgendes Szenario beinhaltet vier korrelierte standardnormalverteilte Kovariablen.

Die Korrelation der Variablen x1, .. ., x4 betragt: cor(x;, x]-) =01furi#j,ije{l,..4}.
Aufierdem wird die maximale Beobachtungszeit t.max = 7 gewahlt.

Fiir die mittlere quadratische Abweichung der Bo; bei Verwendung der Links : Logit, Probit,

Cloglog ergeben sich die in|Abbildung 4.13|dargestellten Boxplots.
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MSE(Bot)
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Abbildung 4.13: MSE(B:) bei Simulation 4

An den Zahlen, die in Klammern hinter den Links stehen, 1asst sich erkennen, dass bei der
Schitzung der Parameter unter der Verwendung des Probit- und des Cloglog-Links 100
Warnmeldungen aufgetreten sind. Auch bei der Schatzung der Parameter mittels Logit-
Link treten bei 43 Durchldufen Warnmeldungen auf. Bei normalverteilten Variablen und
maximal sieben beobachtbaren Zeitpunkten ist der Median der mittleren quadratischen
Abweichungen der Bo; des Cloglog-Links am kleinsten (vgl.|Abbildung 4.13). Der Median
des MSE des Cloglog-Links liegt bei 0.007. Auch die Schitzungen der Intercepts mit dem

Logit-Modell weichen nur gering von den ,, wahren” Werten ab. So liegt der Median der
MSE der By bei Verwendung des Logit-Modells bei 0.022.
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MSE(B)
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Abbildung 4.14: MSE() bei Simulation 4

Die mittleren quadratischen Abweichungen der Parameter B sind bei der Verwendung des
Cloglog-Links sehr klein. Der maximale Wert der MSE des Cloglog-Modells betragt 0.009.
IAbbildung 4.14] zeigt, dass die standardisierten Schiatzungen des Cloglog-Modells am

geringsten von den ,,wahren” standardisierten Werten der B abweichen. Die Schitzungen
mit dem Logit- und dem Probit-Link scheinen auch nur gering von den Parametern, die
zur Generierung der Datensitze gewdhlt werden, abzuweichen. Die mittleren quadrati-
schen Abweichungen des Logit- und des Probit-Modells unterscheiden sich nicht stark

voneinander.
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Abbildung 4.15: MSE(B, Bo:) bei Simulation 4

Bei der Betrachtung der MSE der Parameter  und By; sieht man nochmals, dass die
mittleren quadratischen Abweichungen des Cloglog-Modells am kleinsten sind und somit
durch Verwendung dieses Modells bessere Schidtzungen erhalten werden (vgl.

dung £15).
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Abbildung 4.16: Devianz bei Simulation 4
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Abbildung 4.16| zeigt, dass die beste Anpassung der Daten mit dem Cloglog-Modell
g g P & glog
erfolgt.

4.6 Simulation 5

Wie bereits in Simulation 4 besteht hier das ,,wahre” Modell aus vier standardnormalver-
teilten Kovariablen, die wie in Simulation 4 korreliert sind. Die maximale Beobachtungs-
zeit bei dieser Simulation betragt t.max = 20. Trotz Verwendung der Ridge Regression
produziert die Schédtzung in R fiir alle 100 Schiatzungen mit dem Probit- und dem Cloglog-
Link Warnmeldungen. Und auch bei der Schiatzung mit dem Logit-Link treten bei 38
Schatzungen Warnmeldung auf. Bei der Generierung der Datensitze mit 1500 Beobach-
tungen beinhaltet jeder der 100 generierten Datensitzen alle moglichen Auspragungen
der beobachtbaren Zeit. Somit erfolgt die Parameterschdtzung auch an 100 Datensat-
zen.
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Abbildung 4.17: MSE(B:) bei Simulation 5

Aus|Abbildung 4.17|1dsst sich entnehmen, dass der Median der MSE des Cloglog-Modells
der kleinste ist (0.080). Gleichzeitig liegt das 75%-Quantil der MSE dieses Modells am
hochsten. Somit lasst sich nicht sagen, dass die Schitzung mit dem Cloglog-Modell die
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4 Simulation

besten Ergebnisse liefert. Weiterhin zeigt die Abbildung, dass der Median des Logit-
Modells kleiner als der des Probit-Modells ist. Aber auch beim Logit-Link ist das obere
Quartil grofer als das des Probit-Modells.
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Abbildung 4.18: MSE(B) bei Simulation 5

Bei der Schiatzung der Koeffizienten f ist die mittlere quadratische Abweichung bei Ver-

wendung des Probit-Links, wie in|Abbildung 4.18/zu sehen ist, am grofsten. Bei Betrachtung

der MSE erkennt man, dass die Schatzungen der  bei Verwendung des Cloglog-Modells
weniger von den ,wahren” standardisierten Werten abweichen. Der Median der MSE des
Cloglog-Modells bei 8.891 - 10~%. Man erkennt, dass die Schitzungen dieser Werte sehr

nah an den , wahren” Werten liegen miissen.
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Abbildung 4.19: MSE(B, Bo:)bei Simulation 5

Die Mediane der mittleren quadratischen Abweichungen von B und Bo; der drei betrachte-
ten Modelle liegen unter dem Wert 0.2 (vgl.|[Abbildung 4.19). Der Median der MSE des
Cloglog-Modells ist zwar kleiner als die der anderen Modelle, aber das obere Quartil der

mittleren quadratischen Abweichungen dieses Modells ist grofier als das des Logit- und
Probit-Modells.
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Abbildung 4.20: Devianz bei Simulation 5
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Das Cloglog-Modell, welches auch als Grundlage zur Generierung der Daten dient, scheint

4 Simulation

die Daten am besten anzupassen (vgl.|Abbildung 4.20).

4.7 Simulation 6

Diese Simulation generiert Datensdtze mit vier standardnormalverteilten, korrelierten
Kovariablen, wie es auch bei den Simulationen 4 und 5 der Fall ist. Hier werden jedoch
30 mogliche Auspragungen der Zeit betrachtet. Aufierdem betrdgt die Anzahl der gene-
rierten Datensédtze 550. Davon konnen jedoch nur 52 fiir die Berechnung der Hazardraten

verwendet werden, da nur diese 52 Datensatze alle Auspragungsmoglichkeiten der Zeit

beinhalten.

Devianz

4800 4900 5000 5100 5200

1
R S

|
R —

Logit

Abbildung 4.21: Devianz bei Simulation 6

Die kleinste Devianz der betrachteten Modelle hat das Cloglog-Modell, welches auch fiir
die Datengenerierung gewidhlt wurde. Die Anpassung der Daten vom komplementédren

T
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Standardnormalverteilte Kovariablen und tmax=30

T
Cloglog

T
Cauchit

loglog-Modell scheint also besser als die der drei anderen Modelle zu sein.
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Abbildung 4.22: MSE(B:) bei Simulation 6

Die mittlere quadratische Abweichung bei den Intercepts ist trotz der besseren Anpassung
durch das Cloglog-Modell bei der Verwendung des Probit-Modells kleiner (vgl. [Abbil
dung 4.22). Auch die Verwendung des Logit-Modells scheint bessere Schatzungen der Bo;

zu erzielen als das komplementare loglog Modell.
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Abbildung 4.23: MSE () bei Simulation 6
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4 Simulation

Die bessere Schiatzung der B erfolgt mit dem Cloglog-Modell. Der Median der mittleren
quadratischen Abweichungen des Cloglog-Modells liegt bei 0.001 und ist kleiner als der
Median der mittleren quadratischen Abweichungen des Logit-Modells (0.023) und des
Probit-Modells (0.034). Die Schédtzung der Parameter § mit dem Probit-Modell fiihrt vergli-
chen mit den anderen zwei Modellen zu grofieren mittleren quadratischen Abweichungen
(vgl.|Abbildung 4.23).
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Abbildung 4.24: MSE(B, Bo:) bei Simulation 6

Aufgrund der grofien mittleren quadratischen Abweichungen der Intercepts des Cloglog-
Modells, sind auch die MSE(B, Bo:) fiir dieses Modell recht grof3 (vgl. |[Abbildung 4.24).

Man kann der Abbildung entnehmen, dass die Schitzungen der Regressionskoeffizienten

mit dem Probit-Modell den ,,wahren” Werten am nichsten sind und das obwohl die An-
passungsgiite fiir das komplementare loglog-Modell spricht.

4.8 Simulation 7

Dieses Szenarion beinhaltet zwei bindre Kovariablen und zwei korrelierte normalverteilte
Variablen. Die normalverteilten Variablen haben den Erwartungswert 0 und die Varianz
1. Fiir die Korrelation dieser Variablen x3 und x4 gilt: cor(x3,x4) = 0.1. Auflerdem ist
die maximal beobachtbare Zeit t.max = 7. Trotz Regularisierung der Regression treten
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4 Simulation

bei der Schiatzung mit Probit- und Cloglog-Link bei mehr als 50 Durchldufen Warnmel-
dungen aufgrund instabil geschitzter Parameter auf. Beim Cloglog-Link sind es sogar
80.
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Abbildung 4.25: MSE(B:) bei Simulation 7

Logit Probit Cloglog

Min. 0.004313 0.0073058 0.002093
1st Qu. 0.017385  0.022820 0.004546
Median 0.021936  0.030050 0.007234
Mean 0.026189  0.034460 0.009537
3rd Qu. 0.032025 0.041405 0.011182
Max. 0.108361  0.132790 0.067211

Tabelle 4.4: MSE(Bo:) bei Simulation 7

Bereits der Boxplot in|Abbildung 4.25|zeigt, dass die mittleren quadratischen Abweichun-

gen von By fiir alle drei Links unterschiedlich sind. Bei der Verwendung des Cloglog-Links
liegt der Median der MSE(Bo;) bei 0.007. Die Abweichung der mit dem Logit-Link ge-
schitzten Parameter ist etwas groBer. So liegt bei diesem Link der Median der MSE(Bo;)
bei 0.022 (vgl. [Tabelle 4.4). Die Schitzung der Intercepts mit dem Probit-Link scheint
etwas schlechtere Ergebnisse zu liefern. Wobei man beachten sollte, dass auch hier die
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mittleren quadratischen Abweichungen nicht grof3 sind. Hier liegt die maximale mittlere
quadratische Abweichung bei 0.133.
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Abbildung 4.26: MSE() bei Simualtion 7

IAbbildung 4.26|zeigt die Ergebnisse der MSE fiir den Parameter . Es ist zu erkennen, dass

die mittleren quadratischen Abweichungen von B des Cloglog-Modells kleiner als die der
zwei anderen Modelle sind und somit den Parameter f am besten schitzen. Aber auch die
MSE der zwei anderen Modelle sind nicht sonderlich grofs. Aufierdem fallt auf, dass sich
die Boxplots der mittleren quadratischen Abweichungen von Logit- und Probit-Modell
kaum unterscheiden.

39



4 Simulation
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Abbildung 4.27: MSE(B, Bo:) bei Simulation 7

In|Abbildung 4.27|wird nochmals deutlich, dass die Schdtzungen mit dem Cloglog-Link

von PBo: und B verglichen mit den anderen zwei Links die geringsten Abweichungen zu

den standardisierten ,wahren” Werten aufweisen.
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Abbildung 4.28: Devianz bei Simulation 7

Die Anpassung des Cloglog-Modells scheint auch hier im Vergleich zu den anderen
betrachteten Modellen besser zu sein (vgl.|Abbildung 4.32).
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4.9 Simulation 8

Wie auch in Simulation 7 werden fiir diese Simulation zwei bindre und zwei standard-
normalverteilte Kovariablen verwendet. Die Korrelation der standardnormalverteilten
Kovariablen, die in Simulation 7 aufgefiihrt wird, wird hier ebenfalls verwendet. In diesem
Szenario wird jedoch t.max = 20 gesetzt.

Es werden zwei Datensédtze generiert, die nicht alle 20 Auspragungen der beobachteten
Zeit beinhalten. Das fithrt dazu, dass in diesem Szenario die Parameterschitzung bei 98
Datensatzen erfolgt.
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Abbildung 4.29: MSE(B:) bei Simulation 8

Der Median der mittleren quadratischen Abweichungen ist bei der Verwendung des
Cloglog-Links zur Schitzung der Intercepts am kleinsten. Bei Betrachtung des oberen
Quartils der MSE schneidet die Verwendung des Probit-Modells jedoch besser ab, da
dieses kleiner ist als das des Cloglog-Modells (vgl.[Abbildung 4.29). Auflerdem sind die
mittleren quadratischen Abweichungen der Bo; des Probit-Modells kleiner als die des
Logit-Modells. So liegt der Median des Logit-Modells bei 0.434 und der des Probit-Modells
bei 0.391.
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MSE(B)
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Abbildung 4.30: MSE() bei Simulation 8

IAbbildung 4.30| zeigt, dass die Koeffizienten B bei 20 moglichen Auspragungen der beob-

achteten Zeit t vom Cloglog-Link am besten geschétzt werden. Der Median der MSE(f)
des Cloglog-Modells liegt bei 0.001. Die Verwendung des Logit-Links fiir die Schatzung
der B schneidet in diesem Szenario besser ab als die Verwendung des Probit-Links (vgl.
belle 4.5). Trotzdem sind die mittleren quadratischen Abweichungen dieser zwei Modelle
recht klein. Sie liegen alle unterhalb des Wertes 0.044 .

Logit Probit  Cloglog

Min. 0.006946 0.009906 0.0001064
1st Qu. 0.017054 0.021181 0.0004445
Median 0.022711 0.026388 0.0009271
Mean 0.022669 0.026788 0.0012289
3rd Qu. 0.027411 0.031471 0.0017630
Max. 0.040659 0.043555 0.0055169

Tabelle 4.5: MSE(B) bei Simulation 8
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MSE(Bot, B)
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Abbildung 4.31: MSE(B, Bo:) bei Simulation 8

|IAbbildung 4.31| zeigt, dass der Median der mittleren quadratischen Abweichungen der
Regressionskoeffizienten fiir das komplementére loglog-Modell der kleinste ist. Aufgrund
der Lage des oberen Quartils der MSE des komplementéren loglog Modells, ldsst sich
jedoch nicht sagen, dass die Schatzung mit diesem Modell die besseren Ergebnisse liefert.
Bei Betrachtung der Devianzen der Modelle mit Logit- ,Probit- ,Cloglog- und Cauchit-Link,
welche mit Boxplots in|{Abbildung 4.32| dargestellt werden, l4sst sich erkennen, dass das
Cloglog-Modell die Daten am besten anpasst. Das Cauchit-Modell scheint verglichen mit
den anderen Links die Daten am schlechtesten anzupassen.
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Abbildung 4.32: Devianz bei Simulation 8

4.10 Simulation 9

Die Parameterschdtzungen der folgenden Simulation erfolgen an generierten Datensétzen,
die das Logit-Modell als das ,,Wahre” voraussetzen. Das hier verwendete Modell zur
Generierung besteht zudem aus vier bindren Kovariablen und einer maximalen Beobach-

tungszeit t.max = 7.
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Abbildung 4.33: Devianz bei Simulation 9

Die Devianz der Modelle fiir die 100 generierten Datensdtze wird in |[Abbildung 4.33|

dargestellt. Obwohl das Logit-Modell zur Generierung der Daten verwendet wurde,
scheinen neben dem Logit-Modell auch das Cloglog- und das Probit-Modell die Daten gut

anzupassen.
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Abbildung 4.34: MSE(B:)bei Simulation 9
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Die mittleren quadratischen Abweichungen der Intercepts des Logit-Modells, welches

fiir die Datengenerierung verwendet wurde, sind die kleinsten (vgl. [Abbildung 4.34).
So liegt der Median der MSE der Intercepts des Logit-Modells bei 0.005. Aber auch die
Schiatzungen der Intercepts mit dem Probit-Link weichen nur gering von den ,, wahren”
Werten ab. Fiir dieses Modell liegt der Median der MSE (o) bei 0.007. Die mittleren qua-
dratischen Abweichungen, die mit dem komplementaren loglog-Modell erhalten werden
sind grofler als die der anderen zwei Modelle. Hier liegt der Median der MSE(By;) bei
0.019.
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Abbildung 4.35: MSE(p)bei Simulation 9

Die standardisierten Schitzungen der Parameter B, welche durch die Verwendung des
Logit-Modells erhalten werden, zeigen im Vergleich zu den anderen zwei betrachteten

Modellen die geringsten Abweichungen von den standardisierten ,,wahren” Werten auf

(vgl.|Abbildung 4.35). Die maximale mittlere quadratische Abweichung der B des Logit-
Modells liegt bei 6.148 - 10~%. Und auch bei der Verwendung des Probit-Modells erhalt
man Schitzungen der B, die kaum von den ,,wahren” Werten der Parameter abweichen.
Fiir dieses Modell liegt der Median der MSE bei 0.001. Im Vergleich zu den anderen zwei
betrachteten Modelle sind die MSE, die man bei der Verwendung des Cloglog-Modells
erhilt groer. Flinfzig Prozent der kleinsten MSE(B) des Cloglog-Modells liegen unter
dem Wert 0.012.
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Abbildung 4.36: MSE(B, Bo:)bei Simulation 10

IAbbildung 4.36| zeigt, dass die Schatzungen des Logit-Modells fiir § und Bo; den ,, wahren”
Werten am néchsten sind.

411 Simulation 10

Auch hier wird zur Generierung der Datensitze das Logit-Modell verwendet. Die vier
Variablen, die fiir die Datenséatze erstellt werden, sind korreliert und standardnormal-
verteilt. Die Korrelation der vier Variablen ist cor(x;, x;) = 0.1 fiir i # jund i,j =
1,...,4.
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Abbildung 4.37: Devianz bei Simulation 11

Die Devianzen der Modelle mit Logit-, Probit- und Cloglog-Link sind auch hier sehr
dhnlich. Die Devianzen des Logit-Modells sind nur geringfiigig kleiner als die der anderen
zwei Modelle.
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Abbildung 4.38: MSE(B:)bei Simulation 10

IAbbildung 4.38|zeigt, dass die mittleren quadratischen Abweichungen der Intercepts fiir
das Logit-Modell am kleinsten sind. Auch die Schidtzung der Bo; mit dem Probit-Modell
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fithrt zu kleinen mittleren quadratischen Abweichungen, die sich kaum von den MSE des
Logit-Modells unterscheiden.

Aufierdem erkennt man an den Boxplots, dass bei der Verwendung des Probit- und des
Cloglog-Modells bei jedem der 100 Durchldufe Warnmeldungen aufgetreten sind. Bei
der Verwendung des Logit-Modells kommt es bei vier Schdtzungen ebenso zu solchen

Warnmeldungen.
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Abbildung 4.39: MSE () bei Simulation 10

Auch bei der Schédtzung der Parameter B scheint es, dass bei der Verwendung des Logit-
Modells und des Probit-Modells Schitzungen erhalten werden, die kaum von den ,, wah-
ren” Werten abweichen (vgl.|Abbildung 4.39). Der Median der MSE(B) des Logit-Modells
liegt bei 6.497 - 10~ und der des Probit-Modells bei 7.486 - 10~%4 .
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Abbildung 4.40: MSE(B, Bo:)bei Simulation 10

Bei Betrachtung der MSE (B, Bo:) sieht man deutlich, dass die Schiatzungen, die mit dem
Cloglog-Modell erhalten werden, am stdrksten von den ,wahren” Werten abweichen,
wohingegen das Logit-Modell die Parameter am besten zu schétzen scheint.

Weitere Ergebnisse befinden sich in|Abschnitt A.1}

4,12 Fazit

Die Simulationen mit maximal sieben beobachtbaren Zeitpunkten zeigen, dass die Ver-
wendung des Modells, welches die Daten besser anpasst, geringere Abweichungen von
geschdtzten und ,, wahren” Parameter zur Folge hat. Die Wahl des Modells sollte demnach
auf dem Maf der Diskrepanz zwischen Daten und Fit basieren.

Die Simulationen zeigen auch, dass die mittleren quadratischen Abweichungen der Pa-
rameter bei kleineren maximalen Beobachtungszeiten geringer sind. Dies zeigt sich be-
sonders bei den Schidtzungen der Intercepts Bo;. Die Schitzungen der Intercepts aller
betrachteten Modelle weichen bei nur sieben beobachtbaren Zeitpunkten kaum von den
Werten ab, die zur Datengenerierung gewahlt wurden.

Bei den Simulationen mit 20 oder mehr beobachtbaren Zeitpunkten fillt auf, dass der
Interquartilsabstand der MSE(Bo;) des Cloglog-Modells im Vergleich zu den zwei anderen
betrachteten Modellen groBer ist. Auch die Streuung der MSE(Bo;) des Logit- und des
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Probit-Modells nimmt bei Zunahme der Zeitauspragungen zu.

Fiir die Schdtzung der B erhdlt man auch bei einer grofieren Anzahl beobachtbarer Zeit-
punkte mit dem Modell, das die Daten am besten anpasst, Werte, die den ,wahren”
Parameter am néchsten sind.

Bei den Simulationen mit einer maximalen Beobachtungszeit von 30 wird deutlich, dass
trotz einer besseren Anpassung des komplementéren loglog-Modells an die Daten, die
Schitzungen der Intercepts B trotz Regularisierung nicht besser sind als die der anderen
betrachteten Modelle. Das zeigt, dass bei einer grofieren maximalen Beobachtungszeit und
einer Anpassungsgiite, die fiir das komplementéare loglog-Modell spricht, die Schatzungen
kritisch betrachtet werden sollten. Aufserdem lassen die Simulationen erkennen, dass es in
einem solchen Fall durchaus mdoglich ist, dass man durch die Verwendung des Logit- oder
des Probit-Modells fiir die Schatzungen der Intercepts bessere Ergebnisse erhiilt.
Weiterhin kann man den Simulationen entnehmen, dass die Verwendung des Logit- und
des Probit-Modell meist zu sehr dhnlichen Ergebnissen fiihrt. Nur bei grofleren maxima-
len Beobachtungszeitpunkten ist ein etwas grofserer Unterschied bei der Schatzung der
Intercepts Bor zu erkennen.

Insgesamt ldsst sich sagen, dass die Wahl der diskreten Survival-Modelle anhand des
,Goodness-of-Fit” erfolgen sollte. Fiir moglichst gute Ergebnisse sollte bei einer grofieren
Anzahl zu schitzender Intercepts trotz Ergebnisses des ,,Goodness-of-Fit” eventuell ein
anderes Modell in Betracht gezogen werden. Die Ergebnisse der Simulationen legen fiir
diesen Fall die Verwendung des Probit-Modells nahe.
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Die bereits fiir die Simulationen verwendeten diskreten Hazardmodelle werden nun fiir
die Analyse eines realen Datensatzes verwendet. Die Ergebnisse fiir die unterschiedli-
chen Modelle werden unter Bertiicksichtigung der Simulationsergebnisse verglichen und
diskutiert.

5.1 Miinchner Griinderstudie

Der Datensatz tiber die Griindung von Firmen umfasst 1710 Beobachtungen mit jeweils 88
Variablen, welche die unterschiedlichsten Informationen tiber die zwischen 1985 und 1986
gegriindeten Unternehmen enthélt. Der im folgendem verwendete Datensatz beinhaltet
nur die Kovariablen die in Tutz (2000) betrachtet wurden. Eine detaillierte Beschreibung
der Miinchener Griinderstudie kann in Briiderl et al. (1996) gefunden werden.

Fiir die hier durchgefiihrte Analyse wird die Zeit bis zur Insolvenz, welche halbjdhrlich
gemessen wurde (,,b7“), als Response verwendet. Folgende Variablen werden ebenfalls in

die Analyse eingebunden:
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5 Anwendungsbeispiel

Variable Auspriagung

ezweck Erwerbszweck
1 Vollerwerbszweck (als Referenzkategorie)
2 Nebenerwerbszweck

neu Neugriindung oder Firmeniibernahme
1 vollstandige Neugriindung
teilweise Ubernahme, Firmeniibernahme (als Referenzkategorie)

tk Fremdkapital in DM
1 Fremdkapital gleich 0 (als Referenzkategorie)
2 Fremdkapital grofier 0

zielm Ziel Markt
1 lokaler Markt (als Referenzkategorie)
2 {iberregionaler Markt

Tabelle 5.1: Variablen fiir die Analyse der Miinchner Griinderstudie

Die Beobachtungszahl betrégt fiir die Analyse 1123, da nur die vollstandigen Beobach-
tungen der neu gegriindeten Firmen verwendet werden. Die Parameter werden mit der
Ridge Regression (siehe geschitzt, wobei nur auf die Schitzung der Inter-
cepts Bot, wie auch in der Simulationsstudie, der , Bestrafungsterm” A = 0.0001 gesetzt

wird. Die geschitzten, standardisierten B und B sind in [Tabelle 5.3 und [Tabelle 5.4
dargestellt.

Logit Probit Cloglog Cauchit
2752.8 2752242 2752.872 2761.835

Tabelle 5.2: Devianzen der unterschiedlichen Modelle, die fiir die Analyse der

Miinchner Griinderstudie verwendet wurden

Die Devianzen, die in dargestellt werden, zeigen, dass die Daten von den drei
Modelle Logit-, Probit- und Cloglog-Modell dhnlich gut angepasst werden.
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5 Anwendungsbeispiel

Logit Probit Cloglog
Bor —1.863492 —1.84 —2.201084
B —1576801 —1.60 —1.803439
Bz —1.698093 —1.70 —1.974972
Bos —1.714633 —1.72 —1.998363
Bos —1.835925 —1.82 —2.162099
Bos —1.824899 —1.81 —2.146505
Boy —1516154 —156 —1.717672

Tabelle 5.3: ,BOt fiir die Analyse der Miinchner Griinderstudie

Es lasst sich an den geschitzten standardisierten Intercepts, die in zu finden
sind, erkennen, dass die Schitzungen des Logit- und des Probit-Modells sehr dhnlich sind.
Die Werte des Logit-Modells lassen erkennen, dass das Verhiltnis

P(T =¢t|T > t,x)/(1 = P(T = t|T > t,x)) fir t = 1 und fir die Referenzkategorien
am kleinsten ist. Die Chance des Eintritts der Insolvenz zum Zeitpunkt ¢t = 1 fiir die
Unternehmen, die die Eigenschaften der Referenzkategorien aufweisen (vgl. Tabelle 5.1),
betrdgt exp(Bo1) = 0.15513.

Logit Probit Cloglog

Brra —0.06615947 —0.06 —0.08576665

Besweckz 040798338  0.35  0.55358473
Buewi 017642525  0.15  0.24170601

Buicima —0.43003654 —0.36 —0.59256957

Tabelle 5.4: § fiir die Analyse der Miinchner Griinderstudie

Die standardisierten Schiatzungen der B des Logit- und des Probit-Modells zeigen nur
geringe Unterschiede auf, wie es auch bei den Intercepts der Fall ist. Auch die Simulati-
onsstudie zeigt, dass die standardisierten Schatzungen des Logit- und des Probit-Modells
bei einer kleinen maximalen Beobachtungszeit und vier bindren Kovariablen sehr dhn-
lich sind. Auflerdem wird an den Simulationsergebnissen auch deutlich, dass bei einer
geringen Anzahl maximal beobachtbarer Zeitpunkte die Anpassungsgiite der Modelle

eine entscheidende Rolle bei der Modellwahl spielt.
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5 Anwendungsbeispiel

Aufgrund der Anpassungsgiite, die in diesem Beispiel fiir das Logit-, das Probit- und das
Cloglog-Modell dhnlich ist, ist es von Vorteil sich fiir das Logit-Modell zu entscheiden, da
die Ergebnisse dieses Modells einfacher zu interpretieren sind.

Bei der Verwendung des Logit-Modells ist folgende Interpretation moglich:

Die Chance des Eintritts der Insolvenz zum Zeitpunkt ¢ verringert sich fiir Firmen auf dem
tiberregionalen Markt um den Faktor exp(B,ie1m2) = 0.6505.
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6 Zusammenfassung

Die Simulationen zeigen, dass die Schdtzungen der Parameter mit den zur Datengenerie-
rung verwendeten Modellen verglichen mit den Schédtzungen der anderen betrachteten
Modellen meist besser sind. Dies gilt zumindest bei einer kleinen Anzahl von beobachtba-
ren Zeitpunkten.

Bei sieben Zeitpunkten sind die mittleren quadratischen Abweichungen fiir  und By fiir
alle drei untersuchten Modelle recht klein.

Bei den Simulationen mit einer hoheren Anzahl beobachtbarer Zeitpunkte fillt auf, dass
die mittleren quadratischen Abweichungen, MSE(Bo:) und MSE(B), grofier sind als es bei
einer kleineren maximalen beobachtbaren Zeit der Fall ist. Aufierdem erkennt man, dass
die Zunahme der Anzahl der zu schitzenden Intercepts auch eine Zunahme der Streuung
der MSE(Bo:) zur Folge hat. Weiterhin fiihrt die Schatzung mit dem Modell, das die Daten
am besten anpasst, bei einer hohen Anzahl von méglichen Auspragungen der Zeit nicht
immer zu den besten Schatzungen der Bo;. Bei den Schatzungen der B ist dies nicht der
Fall.

Aufierdem kann man den Simulationen entnehmen, dass die Schitzungen der Regres-
sionskoeffizienten mit dem Logit- und dem Probit-Modell meist sehr dhnlich sind. Ein
grofierer Unterschied zwischen den Modellen zeigt sich nur bei der Schitzung der By,
falls die maximale Anzahl der Beobachtungszeitpunkte grof? ist.

Aus den Simulationen lésst sich also zusammenfassend Folgendes entnehmen.

Bei einer kleinen Anzahl moglicher Auspragungen der Zeit sollte die Wahl auf das Modell
fallen, welches die Daten am besten anpasst. Fiir moglichst gute Ergebnisse sollte bei
einer grofSeren Anzahl zu schiatzender Intercepts nicht unbedingt das Modell verwendet
werden, welches die Daten am besten anpasst. Die Simulationen zeigen, dass fiir diesen

Fall meist die Schatzungen der Intercepts des Probit-Modells besser sind.
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A Anhang

A.1 Weitere Ergebnisse der Simulation

Im folgenden befinden sich weiter Ergebnisse der Simulationsstudie. Zur Generierung der
hier verwendeten Datensétze wird das Logit-Modell gewihlt.

A.1.1 Simulation 11
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Abbildung A.1: MSE(By;) fiir zwei bindre und zwei standardnormalverteilte Kova-

riablen und t.max=7

57



A Anhang

&

a (o]

o

Q i

™ I

o |

© i

o 1

= :

(e ] |

o

S -

o

w o ;

8_ N o I3 !

° —— —+— L

8 L ] [ 1

2 4

[ T I T
Logit(0) Probit(7) Cloglog (3)

Standardnormalverteilte und bindre Kovariablen

Abbildung A.2: MSE(p) fiir zwei binédre und zwei standardnormalverteilte Kovaria-

blen und t.max=7
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Devianz
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A.1.2 Simulation 12
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Abbildung A.5: MSE(By;) fiir vier bindre Kovariablen und t.max=20
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A.1.3 Simulation 13
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A.1.4 Simulation 14
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Devianz
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A.2 Inhalt der CD

Die beigefiigte CD beinhaltet die Arbeit im pdf-Format und folgende Ordner:

e Grafiken: beinhaltet alle in der Arbeit eingebundenen Grafiken im jpeg-Format
Der Benennung der Grafiken ist zu entnehmen, welchem Szenario diese zuzuordnen

sind.

e R: R beinhaltet den kommentierten R-Code fiir die Simulation und fiir das Anwen-
dungsbeispiel. Des weiteren befinden sich in diesem Ordner auch .RData-Dateien,
welche die Ergebnisse der Simulationen beinhalten, und das Programm ,,data.Long”
von Most| (2013).

e Datensatz: beinhaltet den Datensatz und Informationen zu diesem Datensatz, wel-

cher fiir das Anwendungsbeispiel verwendet wurde
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