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Zusammenfassung

Die Verweildaueranalyse betrachtet eine Zeitspanne bis zum Eintritt eines interessierenden
Ereignisses. Aufgrund der vielfältigen Anwendungsgebiete gibt es viele unterschiedliche
Bezeichnungen für die Verweildaueranalyse. In der Medizin spricht man beispielsweise
von der Lebensdaueranalyse oder der Survivalanalyse. Im Folgenden wird der Begriff
Survivalanalyse für die Verweildaueranalyse verwendet.
Wird die Zeit diskret beobachtet und angegeben, so werden für die Survivalanalysen zeit-
diskrete Survivalmodelle verwendet, welche den Einfluss von unterschiedlichen Variablen
auf die Lebensdauer untersuchen. Einfache lineare oder auch generalisierte Regressions-
modelle können für Survivaldaten nicht verwendet werden. Grund hierfür ist, dass diese
Modelle die Dynamik der Lebensdauern und die Zensierung, die bei Survivaldaten häufig
auftritt, nicht berücksichtigen.
Mithilfe von Simulationen wird in dieser Arbeit untersucht, ob es zwischen dem Logit-,
Probit- und komplementärem loglog-Modell für diskrete Lebensdauern Unterschiede gibt
oder ob die Verwendung dieser Modelle zu den gleichen Ergebnissen führt.
Die Simulation zeigt, dass das Modell für die Analyse zu wählen ist, welches die Daten am
besten anpasst. Dabei sollte beachtet werden, dass die Verwendung des komplementären
loglog-Modells bei einer größeren maximalen Beobachtungszeit, trotz besserer Datenan-
passung als Logit- und Probit-Modell, nicht unbedingt bessere Schätzungen der Intercepts
liefert. Aber auch die Verwendung des Logit-Links bei einer großen maximalen Beobach-
tungszeit führt trotz guter Datenanpassung nicht immer zu den besten Schätzungen der
Intercepts.
Dies verhält sich jedoch nur bei der Schätzung der Intercepts so. Die besten Schätzun-
gen der Parameter der Kovariablen werden bei kleinen und großen maximalen Beob-
achtungszeiten mit dem Modell, welches die Daten am besten anpasst, erhalten. Bei
einer kleinen Anzahl möglicher Ausprägungen der Zeit. weisen die Schätzungen der
betrachteten Modelle nur geringe Unterschiede in den Schätzungen der Regressionsko-
effizienten auf. Vor allem die Schätzungen bzw. die normierten Schätzungen von Probit-
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und Logit-Modell unterscheiden sich bei kleineren maximalen Beobachtungszeitpunkten
kaum.
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1 Einführung

Die Survivalanalyse untersucht die Zeitspanne von einem Anfangszustand bis zum Ein-
tritt eines zuvor festgelegten Ereignisses. Survivaldaten sind speziell, da diesen zum
Einen eine Dynamik zugrunde liegt und zum Anderen bei Survivaldaten das so genann-
te Zensierungsproblem auftritt. Dies bedeutet, dass das Eintreten des Ereignisses nicht
immer beobachtet werden kann. Die Besonderheiten von Verweildauern ermöglichen im
Allgemeinen keine korrekte Verwendung einfacher Regressionsmodelle, welche zur Über-
prüfung des Einflusses eines Prädiktors auf die Verweildauer genutzt werden könnte Bei
der Angabe der Zeit in diskreter Form werden zur Analyse der Verweildauern zeitdiskrete
Verweildauermodelle verwendet.
Ziel der Arbeit ist es die diskreten Survivalmodelle Logit-, Probit-, Gruppiertes Cox- und
das Cauchy-Modell zu vergleichen und herauszufinden, ob sich die Parameter, die diese
Modelle schätzen, voneinander unterscheiden. Ein Lösungsansatz dieser Fragestellung ist
die Durchführung einer Simulationsstudie. Dabei werden Datensätze generiert, die sich
in der Verteilung der Kovariablen, der maximal beobachtbaren Zeitspanne und in dem
zugrundeliegenden Modell unterscheiden. Für den Vergleich der geschätzten Parameter
wird die mittlere quadratische Abweichung der geschätzten Parameter zu den Parametern,
die für die Generierung des verwendeten Datensatzes gewählt wurden, genutzt.
Die Arbeit ist folgendermaßen aufgebaut:
Kapitel 2 erläutert die theoretischen Hintergründe zu den diskreten Survivalmodellen.
Kapitel 3 befasst sich mit der Inversionsmethode, welche zur Generierung der Daten-
sätze in der Simulation genutzt wird. In Kapitel 4 werden der Simulationsaufbau und
die Ergebnisse der Simulation beschrieben. Kapitel 5 beinhaltet ein Anwendungsbei-
spiel.
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2 Survival - Analyse

Die Bezeichnung der Verweildaueranalyse variiert je nach Kontext. So findet sich beispiels-
weise in der Biostatistik häufig die Bezeichnung der Survival-Analyse. Aber auch die
Bezeichnungen der Lebenszeit- oder Überlebenszeitanalysen werden in diesem Kontext in
der (deutschen) Literatur verwendet.
Die Survival-Analyse betrachtet den Zeitpunkt T bis zum Eintreten eines bestimmten
Ereignisses (Kleinbaum and Klein, 2010, S.4). Im Anwendungsbereich Medizin wird die
Zeitspanne T meist als (Über-)Lebenszeit oder Lebensdauer bezeichnet. Das bestimmte
Ereignis ist bei diesem Anwendungsgebiet oftmals der Tod.
Die Zeitspanne T kann jedoch auch als Dauer der Arbeitslosigkeit, Lebensdauern von
politischen oder gesellschaftlichen Organisationen und ähnlichem aufgefasst werden. Im
Folgenden wird T als Lebensdauer und das Ereignis als Ausfall bezeichnet.
Die Lebensdauer T ist eine nichtnegative Zufallsvariable (T ≥ 0). Durch Transformationen,
wie zum Beispiel log(T), kann sichergestellt werden, dass die Lebensdauer nicht negativ
ist. Einfache Ansätze nutzen solche Transformationen, um T in Abhängigkeit von Kovaria-
blen mithilfe linearer Modelle oder generalisierten Regressionsmodelle zu modellieren.
Da bei Survival-Daten oftmals der exakte Zeitpunkt, bei welchem das interessierende
Ereignis eintritt, nicht bekannt ist (Zensierungsproblem), ist die Verwendung einer spe-
ziellen Modellierung für diese Lebensdauern notwendig. Darüber hinaus spielt die so
genannte Hazardrate (Ausfallrate) eine wichtige Rolle bei der Survival-Analyse, da diese
die Dynamik, die den Survival-Daten zugrunde liegt, berücksichtigt (vgl.Tutz and Schmid
(2013)).

2.1 Zeitdiskrete Survival- Analysen

Obwohl Zeit als ein stetiges Merkmal aufgefasst wird, werden die Werte einer Messung
meist diskret angegeben. Dies liegt an den gebräuchlichen Messgrößen wie Tage, Wochen
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2 Survival - Analyse

oder Monaten.
Diese Messgrößen können als diskretisiertes Maß der zugrundeliegenden stetigen Zeit
aufgefasst werden. Eine diskrete Zeiteinteilung erfolgt durch die Unterteilung der Zeit in
q + 1 Intervalle: [a0, a1), [a1, a2), ..., [aq−1, aq), [aq, ∞). Dabei wird a0 = 0 gesetzt und aq gibt
das Ende des Beobachtungszeitraums an. Für eine beobachtbare diskrete Zeit t, welche
den Zeitpunkt des Ereigniseintritts angibt, und für die Lebensdauer T ∈ {1, ..., q + 1},
bedeutet die Entsprechung von beobachteter Zeit und Lebenszeit t = T, dass das Intervall
[at−1, at) nicht überlebt wird.

2.1.1 Zensierung

Eine Besonderheit der Survivaldaten ist das Zensierungsproblem, das heißt,
dass nur ein gewisser Anteil der Daten eine genaue Lebensdauer T angibt. Bei den Daten,
die keine genaue Lebensdauer angeben, kann nur die Aussage gemacht werden, dass
ein gewisser Zeitpunkt überlebt wird. In solchen Fällen spricht man von rechtszensierten
Daten. Das grundlegende Modell der Rechtszensierung gibt an, dass für jedes Individuum
i (i = 1, . . . , n) der Studie zwei latente Größen wirken.
Zum Einen wirkt die wahre Lebensdauer Ti und zum Anderen die maximale Beobachtungs-
dauer Ci, welche auch als Zensierungszeit bezeichnet wird. Die tatsächlich beobachtete
Zeit ist die jeweils kürzere Zeit der beiden: ti = min(Ti, Ci) (Fahrmeir and Tutz, 1994,
S.391). Der folgendermaßen definierte Zensierungsindikator

δi =

1 falls Ti ≤ Ci

0 falls Ti > Ci

gibt an, ob die Lebensdauer T oder die Zensierungszeit C beobachtet wurde.
Gründe für das Auftreten von Zensierungen bei Survival-Daten können folgende sein (vgl.
(Kleinbaum and Klein, 2010, S.6)):

• das interessierende Ereignis tritt nicht vor Ende der Studie auf

• die Person scheidet vor Eintritt des Ereignisses aus der Studie aus; Gründe hierfür
können beispielsweise das Versterben des Individuums sein, falls Tod nicht das
interessierende Ereignis ist, oder der Kontaktabbruch zwischen Individuum und den
Verantwortlichen der Studiendurchführung
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2 Survival - Analyse

Bei der Zensierung werden auch verschiedene Zensierungsmechanismen unterschieden
(vgl. (Fahrmeir, 2007, S.19)):

• Modell 1 (Typ I -Zensierung):
Für jedes Individuum i (i = 1, . . . , n) ist eine feste (deterministische) Beobachtungs-
dauer Ci vorgegeben

• Modell 2 (Typ II -Zensierung):
Die Studie wird beendet, sobald eine zuvor festgelegte Zahl von Lebensdauern Ti

unzensiert beobachtet wurde

• Modell 3 (Random Censoring):
Die Zensierungszeiten Ci werden als unabhängig und identisch verteilte Zufallsva-
riablen aufgefasst, welche von den Lebensdauern Ti unabhängig sind.

Neben der Rechtszensierung ist auch eine Linkszensierung möglich, bei welcher der
Beginn eines bestimmten Zustands nicht bekannt ist. Bei dieser Art der Zensierung wird
jedoch der Eintritt des interessierenden Ereignisses beobachtet. Trotzdem ist auch hier die
genaue Länge der Lebensdauer Ti nicht bekannt. Die Behandlung dieser Zensierung ist
schwieriger, da es nicht möglich ist, den Einfluss der nicht bekannten Vorgeschichte auf
zukünftige Ereignisse einzuschätzen (vgl. Fahrmeir et al. (1996)).
Bei den zeitdiskreten Modellen gilt für den Zensierungsindikator der Survival-Daten,
welche durch (ti, δi, xi) gegeben sind, folgendes:

δi =

1 Ausfall in [ati−1, at)

0 Zensierung in [ati−1, at)

Das xi stellt den Kovariablen-Vektor xi = (xi1, ..., xip)
T und ti die beobachtete Lebensdauer

dar. Im Folgenden wird davon ausgegangen, dass die Zensierung am Ende des Intervalls
auftritt.

2.1.2 Hazardrate und Survivorfunktion

Die Zufallsvariable T hat eine Verteilungsfunktion F(T) = P(T ≤ t). Die diskrete Survi-
vorfunktion S(t|x) gibt die Wahrscheinlichkeit für das Überleben des Intervalls [at−1, at)
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2 Survival - Analyse

an:
S(t|x) = P(T > t|x) = 1− F(t) , t = 1, . . . , q

Wichtige Kenngrößen der Survival-Analyse sind die Survivorfunktion und die Hazardrate.
Bei diskreten Zeitangaben stellt die Hazardrate die bedingte Wahrscheinlichkeit für den
Eintritt des interessierenden Ereignisses im Intervall [at−1, at) unter der Bedingung der
Kovariablen und des Erreichens dieses Intervalls dar:

λ(t|x) = P(T = t|T ≥ t, x) , t = 1, . . . , q

Die Hazardrate ist eine Messgröße für die Stärke der Tendenz von einem Zustand in einen
anderen Zustand zu wechseln (vgl. Tutz and Schmid (2013)). Diese Größe misst zu jedem
Zeitpunkt die Tendenz eines Wechsels.
Über die Zeit variierende Kovariablen können ebenfalls in die Hazardrate aufgenommen
werden:

λ(t|xt) = P(T = t|T ≥ t, xt) , t = 1, . . . , q

wobei xt alle Informationen über die Kovariable bis zum Zeitpunkt t beinhaltet.
Die Survivorfunktion kann auch als Produkt über die Differenz von 1 und der Hazardrate
dargestellt werden:

S(t|x) = P(T > t|x) =
t

∏
i=1

(1− λ(i|x)) , t = 1, . . . , q

Die Wahrscheinlichkeit das Intervall [at−1, at) zu erreichen, ist durch

S̃(t|x) = P(T ≥ t|x) =
t−1

∏
i=1

(1− λ(i|x)) = 1− F(t) = S(t− 1|x) , t = 1, . . . , q

gegeben. Außerdem erhält man die unbedingte Wahrscheinlichkeit für einen Ausfall im
Intervall [at−1, at) durch

P(T = t|x) = λ(t|x)
t−1

∏
s=1

(1− λ(s|x)) = λ(t|x)S̃(t|x).
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2 Survival - Analyse

2.1.3 Parametrische Regressionsmodelle

Für den Erhalt eines binären Response wird ein binärer Ereignisindikator yit definiert:

yit =

1 für t = ti und δi = 1

0 sonst

Die Darstellung der Daten bei drei Individuen mit
{(t1 = 3, δ1 = 0, x1), (t2 = 2.δ2 = 1, x2), (t3 = 4, δ3 = 1, x3)} nimmt bei Hinzufügen des
Ereignisindikators die in Tabelle 2.1 beschriebene Form an.

Die dazugehörige Harzardrate hat die Form:

λi(t|xi) = P(yit = 1|xi) = h(β0t + xTβ) ,

wobei h(·) eine feste Responsefunktion darstellt.
Da hier ein binäres Modell für die Entscheidung zwischen {t} und {t + 1, . . . , k} gegeben
T ≥ t verwendet wird, hängt der Intercept β0t des Modells von der Zeit ab. Die Definition
des Ereignisindikators ermöglicht die Berechnung der β und der Intercepts β0t mit einem
binären Regressionsmodell.

Die Intercepts β0t werden in der Survival-Analyse als Baseline-Hazard bezeichnet. Der
Baseline-Hazard gibt den Ausfall in t an, wenn alle Einflussvariablen gleich null sind

t y x
Individuum I 1 0 x1

2 0 x1
3 0 x1

Individuum II 1 0 x2
2 1 x2

Individuum III 1 0 x3
2 0 x3
3 0 x3
4 1 x3

Tabelle 2.1: Bestimmung des Ereignisindikators
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2 Survival - Analyse

(vgl. Ziegler et al. (2007)). Weiterhin muss es sich bei der Responsfunktion um eine streng
monoton steigende Funktion handeln, was eine Bildung der Umkehrfunktion g = h−1

möglich macht. Für die Umkehrfunktion erhält man g(λ(t|x)) = β0t + xTβ.

2.1.4 Zeitdiskrete Survivalmodelle

Ein binärer Response, welcher durch die Definition des Ereignisindikators erhalten wird,
kann mit der Bernoulli-Verteilung y ∼ B(1, π) modelliert werden. Für die Wahrscheinlich-
keit, dass der Response den Wert 1 annimmmt, gilt:

P(y = 1|x) = λ(t|x)

Im Folgenden sind Modelle aufgeführt, welche den Zusammenhang zwischen der Wahr-
scheinlickeit des Response und dem linearen Prädiktor ηt = β0t + xTβ beschreiben.

• Logit-Modell
Das Logit-Modell ist ein binäres Regressionsmodell, welches die logistische Vertei-
lungsfunktion h(η) = exp(η)/(1 + exp(η)) verwendet. Für die diskrete logistische
Hazardrate, welche das Auftreten des Ausfalls zum Zeitpunkt t gegeben das Errei-
chen dieses Zeitpunktes mit einem logistischen Modell modelliert, ergibt sich:

λ(t|x) = π = P(y = 1|x) = exp(β0t + xTβ)

1 + exp(β0t + xTβ)
(2.1)

Die Darstellung mittels der Linkfunktion sieht wie folgt aus:

log
λ(t|x)

1− λ(t|x) = β0t + xTβ

• Probit-Modell
Die diskrete Hazardrate des Probit-Modells hat folgende Form:

λ(t|x) = P(y = 1|x) = Φ(β0t + xTβ)

• Gruppiertes Cox-Modell (komplementäres loglog-Modell)

7



2 Survival - Analyse

λ(t|x) = 1− exp(−exp((β0t + xTβ)))

• Gumbel-Modell (loglog-Modell)

λ(t|x) = exp(−exp(−(β0t + xTβ)))

• Cauchy-Modell
λ(t|x) = tan−1(β0t + xTβ)/π + 1/2

2.2 Ridge Regression

Um einem Regressionsmodell Stabilität zu verleihen, wird versucht die Minimierung des
Prognosefehlers und die Aufnahme möglichst weniger Prädiktoren zu verbinden. Eine
Möglichkeit der Regularisierung des Regressionsmodells, welches bei Multikollinearität
sinnvolle Schätzungen erlaubt (Schlittgen, 2013, S.113), ist die Ridge Regression. Die Stabi-
lisierung des Modells erfolgt dabei, indem die Parameter βi verkleinert werden. Dadurch
erhält man verzerrte Schätzungen, die jedoch kleinere Varianzen haben (Le Cassie and van
Houwelingen, 1992, S.193). Die Ridge-Regression, sowohl im linearen Modell wie auch
in erweiterten generalisierten linearen Regressionsmodellen, basiert auf dem Strafterm
J(β) = ∑

p
j=1 β2

j , wobei hier gilt: βT = (β0, β1, ..., βp) und ηi = xT
i β . Aus der Definition des

Strafterms ergibt sich für die entsprechende Log-Likelihood:

lp(β) =
p

∑
i=1

li(β)− λ

2

p

∑
j=1

β2
j

In manchen Fällen ist folgende Darstellung des Strafterms sinnvoll:

J(β) =
p

∑
j=1

β2
j = βTPβ

P = (pij) unterscheidet sich von der (p + 1)× (p + 1) Einheitsmatrix an der Stelle p11.
Statt p11 = 1 gilt für die P Matrix p11 = 0 (Tutz, 2012, S.147). Für die Score-Funktion ergibt
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2 Survival - Analyse

sich:

sp(β) =
p

∑
i=1

xi
∂h(ηi)

∂η
(yi − µi)/σ2

i − λPβ

und die Schätzgleichung hat die Form:

XTD(β)Σ−1(β)(y− µ)− λPβ = 0

wobei yT = (y1, ..., yn), µT = (µ1, ..., µn), XT = (x1, ..., xn),
D(β) = diag(∂h(η1)/∂η, ..., ∂h(ηr)/∂η und σ2

i = var(yi).
Bei generalisierten linearen Regressionsmodellen müssen für die Lösung der Gleichung
sp(β) = 0 iterative Algorithmen, wie zum Beispiel das Fisher-Scoring, verwendet werden.
Die Formel des Strafterms J(β) = ∑

p
j=1 β2

j zeigt, dass die Verkleinerung aller β nur von
dem Parameter λ abhängen. Da die Parameter β j abhängig von der Skalierung der Kovaria-
blen xj sind, ist auch die Lösung von sp(β) = 0 nicht skaleninvariant. Deshalb sollten die
Kovariablen vor der Schätzung der Parameter standardisiert werden (Tutz, 2012, S.148).
Bei der Verwendung von zeitdiskreten Survivalmodellen mit dem Parameter
θ = (β0t, t = 1, . . . , q, β)T ist die parametrische ML-Inferenz für große q instabil. Um dem
entgegen zu wirken kann unter anderem auch die Ridge Regression verwendet werden,
die jedoch nur den Intercept β0t „bestraft“. Die log-Likelihood hat im Fall der Bestrafung
des Intercepts die Form: lt(θ) = lt(θ)− λ

2 β2
0t

2.3 Diskrepanz zwischen Daten und Fit

Die Sum of Squared Residuals ∑i(yi − h(xT
i β))2, welche als Maß der Diskrepanz zwischen

Daten und Fit bei „normalen“ Regressionsmodellen verwendet wird, kann bei der Mo-
dellierung von binären Daten nicht verwendet werden, da die Verwendung dieses Maßes
symmetrische Normalverteilungen und homogene Varianzen annimmt (Tutz, 2012, S.87).
Die Devianz hingegen ist ein Maß für die Modellgüte, wenn der Response binär ist
und die unbekannten Parameter mittels Maximum-Likelihood geschätzt werden. Die
Devianz ist mit der Teststatistik „Likelihood-Ratio“, welche für die Auswertung geneste-
ter Modelle verwendet wird, verbunden. Die Likelihood-Ratio ist folgendermaßen defi-
niert:

λ = −2Log
L(Submodell)
L(Obermodell)

9



2 Survival - Analyse

Dabei steht L(Obermodell) für die maximale Likelihood eines Obermodells und L(Submodell)
entsprechend für die maximale Likelihood eines restringierten Modells.
Wird das binäre Modell als Submodell und das saturierte Modell als Obermodell betrachtet,
so ergibt sich:

λ = −2{logL(ge f ittetesSubmodell)− logL(ge f ittetesObermodell)}

Das saturierte Modell ist das maximal an die Daten angepasste Modell und dient als
Maßstab zur Beurteilung der Modellanpassung geschätzter Regressionsmodelle (Fahrmeir
et al., 2009, S.205).
Seien die Daten durch (yi, xi), i = 1, . . . , n gegeben, wobei y binär ist. Weiterhin soll l(y; π̂)

die log-Likelihood des gefitteten Modells mit yT = (y1, . . . , yn), π̂T = (π̂1, . . . , π̂n), π̂i =

π̂i(x) = h(xT
i β̂) sein. Das saturierte Modell wird durch die Likelihood l(y; y) dargestellt.

Die Devianz für die binäre abhängige Variable hat somit die Form:

D(y, π̂) = 2{l(y, y)− l(y, π̂)}

= 2

{
n

∑
i

yi log
(yi

π̂

)
+ (1− yi) log

(
1− yi

1− π̂i

)}

= −2
n

∑
i=1
{yi log(π̂i) + (1− yi) log(1− π̂i)}

Dabei wird von der Konvention 0 ·∞ = 0 Gebrauch gemacht. Aufgrund der Tatsache, dass
bei binären Daten l(y, y) = 0 gilt, kann die Formel der Devianz auf D(y, π̂) = −2l(y, π̂)

reduziert werden. Eine weitere Darstellungsmöglichkeit der Devianz ist:

D(y, π̂) = 2
n

∑
i=1

d(yi, π̂i)

mit

d(yi, π̂i) =

−log(π̂i) für yi = 1

−log(1− π̂i) für yi = 0

= −log(1− |yi − π̂i|)

An dieser Darstellung wird deutlich, dass die Devianz für binäre Daten ebenfalls durch
die Differenz von Beobachtungen und gefitteten Werten berechnet wird.
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2 Survival - Analyse

Die asymptotische χ2- Verteilung der Devianz D(y, π̂), falls n→ ∞, gilt für binäre Varia-
blen nicht (Tutz, 2012, S.89). Dies liegt an der Anzahl der Freiheitsgrade, die in diesem
Fall nicht fest ist, sondern sich mit dem Stichprobenumfang vergrößert. Es gibt also keine
approximative Verteilung mit welcher der Wert D(y, π̂) verglichen werden kann. Anders
verhält es sich bei einem binomialverteilten Response, da die Freiheitsgrade in diesem Fall
für eine feste Anzahl von Beobachtungen N und ni → ∞ für i = 1, . . . , N fest sind. Obwohl
die Verwendung der Devianz bei binären Beobachtungen als „Goodness of Fit“-Statistik
nicht sinnvoll ist, eignet sich diese trotzdem gut zur Residuenanalyse und zum Vergleich
unterschiedlicher Linkfunktionen (Tutz, 2012, S.89). Für Modelle mit gleichem linearen
Prädiktor und gleicher Beobachtungszahl lassen sich die Devianzen dieser Modelle infor-
mell vergleichen. Dabei gilt, dass das Modell mit der kleineren Devianz die Daten besser
anpasst.
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3 Inversionsmethode

Die Inversionsmethode beruht auf dem Verfahren der Darstellung einer eindimensionalen
Verteilung mit Hilfe von U(0, 1). Ist die Inverse der Verteilungsfunktion berechenbar, so
ist es mit dieser Methode möglich diese Verteilung auf R zu simulieren und Pseudozu-
fallszahlen x1, x2, . . . mit dieser Verteilungsfunktion zu erzeugen. Sei F : R→ [0, 1] eine
Verteilungsfunktion mit limx→−∞ F(x) = 0 und limx→∞ F(x) = 1.
Die verallgemeinerte Inverse F−1 : (0, 1] → R ∪ {∞} der Verteilungsfunktion F ist defi-
niert durch (Kolonko, 2008, S.85) :

F−1(r) = inf{t ∈ R∪ {∞}|F(t) ≥ r} , r ∈ [0, 1]

Für die Verteilungsfunktion F und die zugehörige verallgemeinerte Inverse F−1 gilt (Ko-
lonko, 2008, S.86):

• F−1 = min{t ∈ R∪ {∞}}, r ∈ [0, 1]

• F−1 ≤ t⇔ F(t) ≥ r für alle r ∈ [0, 1] und t ∈ R∪ {∞}

• F−1 ist die Umkehrabbildung von F, falls F streng monoton wachsend und stetig.

• r 7→ F−1(r) ist monoton wachsend und von links stetig.

Ist die Bestimmung aller Werte von F−1 für alle r ∈ [0, 1] möglich und sei F eine Vertei-
lungsfunktion und U eine U(0, 1)-verteilte Zufallsvariable, dann gilt, dass Y := F−1(U)

die Verteilungsfunktion F hat (vgl. Kolonko (2008), S.87):

P(Y ≤ t) = F(t) , t ∈ R

Dies erlaubt folgenden Schluss: xn := F−1(un) mit n = 0, 1, . . . simuliert die Vertei-
lung mit der Verteilungsfunktion F, wenn (un)n≥0 eine Folge von Zufallszahlen ist, die
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3 Inversionsmethode

U(0, 1) simulieren, und F−1 die verallgemeinerte Inverse einer Verteilungsfunktion F
ist.

Inversion bei diskreten Verteilungen

Im Folgenden wird beschrieben, wie eine Zufallsvariable X mit endlich vielen Werten
(x1, ..., xk) ∈ R, die die Wahrscheinlichkeiten (p1, ..., pk) besitzen, simuliert wird. Es sei Z
eine Zufallsvariable auf einem geeigneten Wahrscheinlichkeitsraum (Ω, Σ, P) mit
pi = P({Z = xi}) , i = 1, . . . , s . Der Wahrscheinlichkeitsraum wird als ([0, 1], B([0, 1]), λ)

gewählt. Die Borel-Sigma-Algebra von [0, 1]wird durch B([0, 1]) dargestellt und λ ist das
Lebesgue-Maß auf [0, 1] (Baumeister (2009)) . Im Folgenden erfolgt eine Aufteilung des
Intervalls [0, 1] in s Teilintervalle I1, . . . , Is mit
Ii = [p1 + · · ·+ pi−1, p1 + · · ·+ pi−1 + pi), i = 1, . . . , k− 1 ,
Is = [p1 + · · ·+ ps−1, 1]
Die Definition der Zufallsgröße Z lautet :
Z(y) = i, falls y ∈ Ii .
Für i = 1, . . . , s gilt:

P(Z = i) = λ({ω ∈ [0, 1]|Z(ω) = i})
= λ({ω ∈ [0, 1]|ω ∈ i})
= λ(Ii) = pi .

Dies ermöglicht die Simulation einer Zufallsvariable, deren Verteilung der vorgegebenen
entspricht (Baumeister (2009)).

Der Algorithmus für die Konstruktion von Zufallszahlen mit vorgegebener diskrete Ver-
teilung :

• EIN: Die Verteilungsparameter p1, . . . , ps und der Mechanismus zur Erzeugung von
gleichmäßig verteilten Zufallszahlen muss übergeben werden

• Schritt 1: Erzeugung einer Zufallszahl uk für k = 1, . . . , N; ist uk ∈ Ii so wird zk := i
gesetzt

• AUS: N diskrete Zufallszahlen z1, . . . , zk, die nach p1, . . . , ps verteilt sind
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3 Inversionsmethode

Die Simulation einer diskreten Zufallsvariablen mit abzählbaren Werten mit positiver
Wahrscheinlichkeit erfolgt analog (Baumeister (2009)).
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4 Simulation

4.1 Aufbau

Mithilfe der Simulationsstudie wird geprüft wie gut die in Unterabschnitt 2.1.4 beschriebe-
nen Modelle bzw. die unterschiedlichen Linkfunktionen die Parameter β0t und β schätzen.
Für jedes Szenario werden mehrere Wiederholungen durchgeführt. Jeder Durchlauf gene-
riert eine Zensierungszeit Ci und eine Lebensdauer Ti, welche die in Unterabschnitt 2.1.2
beschriebenen Verteilungsfunktion hat. Die Simulation von Ti erfolgt mit der Inversionsme-
thode. Die generierten Lebensdauern und Zensierungszeiten werden für die Bestimmung
des Zensierungsindikators δi und der tatsächlich beobachteten Zeit t benötigt.
Das „wahre“ Modell der Daten bei vier Kovariablen, welches für die Datengenerierung
der Simulationen 1- 8 verwendet wird, hat folgende Form:
formula = y ∼ v(1,u)+x1+x2+x3+x4

family=binomial(link="cloglog")

Und das „wahre“ Modell der Simulation 9 und 10, genauso wie das der Simulationen,
deren Ergebnisse im Anhang zu finden sind, haben die Form:
formula = y ∼ v(1,u)+x1+x2+x3+x4

family=binomial(link="logit"),
wobei v(1, u) für einen variierenden Intercept steht.
Für den generierten Datensatz, welcher die Spalten (ID, time.discrete (t), state (δi), x1, x2, x3,
x4) umfasst, wird das Programm "data.Long“ von Möst (2013) angewandt, welches einen
neuen Datensatz mit einem Beobachtungsindikator y nach dem in Unterabschnitt 2.1.3
beschriebenen Prinzip erstellt. Der Code für die Generierung der Survivaldaten basiert
auf dem von der Betreuung zur Verfügung gestellten Code.
In den folgenden Schritten werden die Parameter β und β0t mithilfe der Ridge Regression
geschätzt. Dabei wird für die Schätzung der Intercepts β0t die Ridge Regression mit dem
Parameter λ = 0.0001 (siehe Abschnitt 2.2) verwendet. Die Umsetzung der Ridge Regres-
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4 Simulation

sion erfolgt mit dem R-Paket gvcm.cat .
Für jeden generierten Datensatz werden die Parameter mit dem Logit-, Probit-, und dem
Cloglog-Link geschätzt. Die dazugehörigen Modelle werden in Unterabschnitt 2.1.4 be-
schrieben.
Für den Vergleich der unterschiedlichen Parameter der Modelle ist die Standardisierung
der ε notwendig (Tutz, 2012, S.128-129).

Logit Probit Cloglog

Erwartungswert 0 0 −0.577
Varianz π2/3 1 π2/6

Tabelle 4.1: Erwartungswert und Varianz von ε für verschiedene Modelle

Die Standardisierung der Parameter β und β0t erfolgt durch:

β̃0t =
β0t − E(εi)√

var(εi)
, β̃i =

βi√
var(εi)

.

Im Anschluss wird die mittlere quadratische Abweichung der Intercepts

MSE(β0t) =
1

t.max

t.max

∑
i=1

(β̂0i(standardisiert) − β̃0i)
2 ,

der MSE der Parameter β

MSE(β) =
1
k

k

∑
j=1

(β̂ j(standardisiert) − β̃ j)
2

und der MSE der Parameter β0t und β

MSE(β, β0t) =
1

k + t.max
(

k

∑
j=1

(β̂ j(standardisiert) − β̃ j)
2 +

t.max

∑
i=1

(β̂0i(standardisiert) − β̃0i)
2)

berechnet. Für β̃ und β̃0t erfolgt die Standardisierung mit dem Erwartungswert und der
Varianz des „wahren“ Modells. Für die Normierung der β̂(standardisiert) und β̂0t(standardisiert)

werden die Erwartungswerte und Varianzen des Modells, welches diese Werte geschätzt
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4 Simulation

hat, verwendet.
t.max steht für die maximal beobachtbare Zeit und k für die Anzahl der Kovariablen. Diese
mittleren quadratischen Abweichungen der Schätzer aus den generierten Datensätzen
werden mit Boxplots graphisch dargestellt. Anhand der Boxplots soll geprüft werden, wie
gut die unterschiedlichen Links die Parameter schätzen und ob es dabei einen Unterschied
zwischen den Links gibt.
Zusätzlich wird in den Boxplots die Anzahl der bei den Schätzungen auftretenden Warn-
meldungen angezeigt.

Die Werte der „wahren“ Parameter β werden für jedes Szenario auf folgende Werte
festgelegt:

• β1 = −2

• β2 = −0.5

• β3 = −1

• β4 = 0

Folgendes wird für die unterschiedlichen Simulationen variiert:

• Anzahl der maximalen Zeitpunkte t.max ∈ {7, 20, 30}
Für die „wahren“ β0t und für die Zensierungswahrscheinlichkeiten zu den t.max-
Zeitpunkten werden folgende Vektoren gewählt:

– Für t.max = 7
Zensierungswahrscheinlichkeiten:
(0.1, ..., 0.1︸ ︷︷ ︸

6

, 0.4)

Parameter:
β0t = (−2,−1.5,−1,−0.5,−0.25, 0, 0.5)T

Anzahl der Beobachtungen N = 1500
Anzahl der Durchläufe a = 100

– Für t.max = 20
Zensierungswahrscheinlichkeiten:
(0.1, ..., 0.1︸ ︷︷ ︸

15

, 0.15, 0.2, 0.2, 0.2, 0.2)

Parameter:
β0t = (−2.0,−1.8, ..., 1.6, 1.8)T
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4 Simulation

Anzahl der Beobachtungen N = 1500
Anzahl der Durchläufe a = 100

– Für t.max = 30
Zensierungswahrscheinlichkeiten:
(0.1, ..., 0.1︸ ︷︷ ︸

15

, 0.15, ..., 0.15︸ ︷︷ ︸
10

, 0.25, 0.2, 0.2, 0.2, 0.2)

Parameter:
β0t = (−2.0,−1.8620,−1, 7241, ..., 1.8620, 2.0)T

Anzahl der Beobachtungen N = 1500
Anzahl der Durchläufe a = 550

• Verteilung der xi

– x1, x2, x3, x4 als binäre Kovariablen

– x1, x2, x3, x4 als standardnormalverteilte Kovariablen

– x1, x2 binär und x3, x4 standardnormalverteilt

• Korrelation der Kovariablen

4.2 Simulation 1

Die erste Simulation generiert einen Datensatz mit vier unabhängigen binären Kovariablen
und einer Beobachtungszeit t ∈ {1, 2, ..., 7}.
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4 Simulation

Abbildung 4.1: MSE(β0t) bei Simulation 1

Logit Probit Cloglog

Min. 0.004615 0.007246 0.001633
1st Qu. 0.017961 0.023999 0.005085

Median 0.025573 0.033891 0.007412
Mean 0.026565 0.034402 0.008438

3rd Qu. 0.034364 0.043539 0.009840
Max. 0.076051 0.088886 0.039142

Tabelle 4.2: MSE(β0t) bei Simulation 1

Abbildung 4.1 zeigt, dass die Schätzung der Parameter β0t mit dem Cloglog-Link, welcher
zur Generierung der Daten verwendet wird, zu den kleinsten mittleren quadratischen
Abweichungen führt. Somit erhält man mit diesem Link eine bessere Schätzung der In-
tercepts. Die mit dem Logit-Link geschätzten Intercepts weisen hingegen etwas größere
MSE auf. So liegt bei der Schätzung der β0t mit diesem Modell der Median der MSE bei
0.0256 (vgl. Tabelle 4.2). Die Verwendung des Probit-Modells führt zu größten mittleren
quadratischen Abweichungen, wobei der Unterschied zu dem MSE des Logit-Modells
gering ist. Die Zahl, die hinter den unterschiedlichen Links steht, ist die Anzahl der Schät-
zungen, die ein Auftreten von Warnmeldungen verzeichnet. Bei vier binären Kovariablen
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4 Simulation

und maximal sieben Zeitpunkten, tritt bei keiner Parameterschätzung eine Warnmeldung
auf.

Abbildung 4.2: MSE(β) bei Simulation 1

Abbildung 4.2 stellt die mittleren quadratischen Abweichungen der β dar. Auch hier
erkennt man, dass die Verwendung des Cloglog-Links kleinere MSE liefert, als einer der
zwei anderen Links. Tabelle 4.3 macht neben der Abbildung deutlich wie gering die Abwei-
chungen von den mit dem Cloglog-Link geschätzten Parameter zu den „wahren“ Werten
sind. Die mittleren quadratischen Abweichungen des Logit- und des Probit-Modells unter-
scheiden sich kaum.

Logit Probit Cloglog

Min. 0.004434 0.004108 6.079 · 10−05

1st Qu. 0.011409 0.010843 8.663 · 10−04

Median 0.015869 0.013970 1.406 · 10−03

Mean 0.015785 0.014127 1.621 · 10−03

3rd Qu. 0.019378 0.017621 2.158 · 10−03

Max. 0.032295 0.026562 4.742 · 10−03

Tabelle 4.3: MSE(β) bei Simulation 1
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4 Simulation

Abbildung 4.3: MSE(β0t, β) bei Simulation 1

Die Betrachtung der mittleren quadratischen Abweichungen von β0t und β zeigt, dass die
Abweichung der geschätzten Parameter von den „wahren“ Werten bei Verwendung des
Cloglog-Links am geringsten ist (vgl. Abbildung 4.3). Aber auch die Werte, die man mit
dem Probit-und dem Logit-Modell erhält, scheinen die Regressionskoeffizienten gut zu
schätzen. Man erkennt auch, dass die mittleren quadratischen Abweichungen des Logit-
und des Probit-Modells ähnlich sind.

Abbildung 4.4: Devianz bei Simulation 1
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Abbildung 4.4 lässt den Schluss zu, dass die Anpassung der Daten mit dem Cloglog-Modell
die Beste ist. Die zuvor betrachteten mittleren quadratischen Abweichungen bestätigen
dies.

4.3 Simulation 2

Es werden wieder vier binäre Kovariablen generiert. Die maximale Beobachtungszeit
wird auf 20 erhöht. Dabei treten bei 18 generierten Datensätzen nicht alle Ausprägungen
der beobachtbaren Zeit t auf. Die Schätzung der Parameter erfolgt somit nur bei 82
Datensätzen.

Abbildung 4.5: MSE(β0t) bei Simulation 2

Abbildung 4.5 zeigt, dass die Schätzung der Parameter β0t mit dem Logit- und dem
Probit-Link größere mittlere quadratische Abweichungen erzielen, als die Verwendung
des Cloglog-Links. Fünfzig Prozent der kleinsten berechneten mittleren quadratischen
Abweichung liegen bei der Verwendung des Cloglog-Links unter 0.316, bei der Verwen-
dung des Probit-Links liegt der Median bei 0.742. Obwohl 50% der kleinsten MSE des
Cloglog-Modells kleiner sind als die der zwei anderen Modelle, liegt das obere Quartil
dieser MSE über den oberen Quartilen der MSE des Logit- und Probit-Modells. Außerdem
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lässt sich der Abbildung 4.5 entnehmen, dass bei fünf der 82 Schätzungen mittels Probit-
Link Warnmeldungen auftreten. Bei der Verwendung des Cloglog-Links treten nur zwei
Warnmeldungen auf.

Abbildung 4.6: MSE(β) bei Simulation 2

Bei Abbildung 4.6 fällt auf, dass die Verwendung des Cloglog-Links für die Schätzung der
Parameter β zu sehr kleinen Abweichungen zwischen geschätzten und „wahren“ Werten
führt. Die Verwendung des Logit- und Probit-Links für die Schätzung der β führt zu
ähnlichen mittleren quadratischen Abweichungen, die etwas größer als die des Cloglog-
Links sind. Der Median der mittleren quadratischen Abweichungen des Logit-Modells
liegt bei 0.023 und liegt somit etwas unter dem Median der MSE des Probit-Modells (0.026).
Die Schätzungen mittels des Cloglog-Links scheinen auch hier näher an den „wahren“
Parameter zu liegen.
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4 Simulation

Abbildung 4.7: MSE(β, β0t) bei Simulation 2

Bei Betrachtung von Abbildung 4.7, welche aufgrund der 20 geschätzten Intercepts der
Abbildung der MSE(β0t) sehr ähnelt, sieht man nochmals, dass die Schätzungen von
Logit- und Probit-Modell zu ähnlichen mittleren quadratischen Abweichungen führen
und dass der Interquartilsabstand der MSE des Cloglog-Modells größer ist, als der der
zwei anderen Modelle.

Abbildung 4.8: Devianz bei Simulation 2
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Abbildung 4.8 zeigt, dass die Cloglog-Modelle kleinere Devianzen haben. Somit lässt sich
sagen, dass die Anpassung der Daten mit diesem Modell besser ist, als die der anderen
Modelle.

4.4 Simulation 3

Die maximale Beobachtungszeit beträgt in diesem Szenario t.max = 30. Wie in den zwei
vorangegangenen Simulationen bestehen die generierten Datensätze unter anderem aus
vier binären unabhängigen Kovariablen. Die Beobachtungszahl wird auch hier auf N =

1500 gesetzt, jedoch wird die Durchlaufzahl, also die Anzahl der generierten Datensätze
auf 550 erhöht. Grund hierfür ist, dass die Anzahl der Datensätze, die jede mögliche
Ausprägung der beobachteten Zeit t enthält, bei nur 100 Durchläufen zu gering wäre.
Bei 550 Durchläufen kann die Schätzung der Regressionskoeffizienten an 74 generierten
Datensätzen erfolgen.

Abbildung 4.9: Devianz bei Simulation 3

Abbildung 4.9 zeigt, dass die Daten am besten mit dem gruppiertem Cox-Modell angepasst
werden.
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Abbildung 4.10: MSE(β0t) bei Simulation 3

Die mittlere quadratischen Abweichungen der β0t bei Verwendung des Logit-,Probit-und
Cloglog-Modell sind in Abbildung 4.10 zu sehen.
Obwohl die Anpassung mit dem Cloglog-Modell besser als die der anderen betrachteten
Modelle zu sein scheint (vgl. Abbildung 4.9), ist es die Schätzung der Intercepts mit diesem
Modell nicht. Der Median der mittleren quadratischen Abweichungen der β0t liegt bei
Verwendung des Cloglog-Modells bei 3.423. Der Median der MSE(β0t) bei Verwendung
des Probit-Modells liegt hingegen bei 2.087. Und auch die mittleren quadratischen Abwei-
chungen des Logit-Modells sind kleiner als die des Cloglog-Modells.
Weiterhin kann der Abbildung entnommen werde, dass bei der Schätzung mit dem Probit-
Modell bei 33 von den 74 Schätzungen Warnmeldungen auftreten. Bei der Schätzung mit
den zwei anderen Modellen treten keine auf.
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Abbildung 4.11: MSE(β) bei Simulation 3

Die normierten Schätzungen der Parameter β weisen bei Verwendung des Cloglog-Modells
die geringste Abweichung zu dem normierten „wahren“ Parameter auf. Der Median
der mittleren quadratischen Abweichungen liegt für das Cloglog-Modell bei 0.001. Der
Median der MSE bei Verwendung des Logit-Modells liegt bei 0.025. Die Betrachtung
der Abbildung 4.11 zeigt, dass die mittlere quadratische Abweichung bei Verwendung des
Probit-Links zur Schätzung der Parameter vergleichsweise am größten ist, wobei unter
anderem der maximale Wert der MSE des Probit-Modells (0.049) zeigt, dass auch diese
Abweichungen sehr gering sind.
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Abbildung 4.12: MSE(β, β0t) bei Simulation 3

Aufgrund der großen Anzahl der möglichen Intercepts ähnelt Abbildung 4.12 der Abbil-
dung 4.10, welche nur die mittleren quadratischen Abweichungen der Intercepts darstellt.
Obwohl der bessere Fit des Cloglog-Modells die Wahl dieses Modells nahelegt, erkennt
man an den mittleren quadratischen Abweichungen, dass die Schätzungen der Parameter
mit diesem Modell nicht die Besten sind. Die Verwendung des Probit-Modells scheint die
Regressionskoeffizienten besser zu schätzen.

4.5 Simulation 4

Folgendes Szenario beinhaltet vier korrelierte standardnormalverteilte Kovariablen.
Die Korrelation der Variablen x1, . . . , x4 beträgt: cor(xi, xj) = 0.1 für i 6= j , i, j ∈ {1, ..., 4}.
Außerdem wird die maximale Beobachtungszeit t.max = 7 gewählt.
Für die mittlere quadratische Abweichung der β0t bei Verwendung der Links : Logit, Probit,
Cloglog ergeben sich die in Abbildung 4.13 dargestellten Boxplots.
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Abbildung 4.13: MSE(β0t) bei Simulation 4

An den Zahlen, die in Klammern hinter den Links stehen, lässt sich erkennen, dass bei der
Schätzung der Parameter unter der Verwendung des Probit- und des Cloglog-Links 100
Warnmeldungen aufgetreten sind. Auch bei der Schätzung der Parameter mittels Logit-
Link treten bei 43 Durchläufen Warnmeldungen auf. Bei normalverteilten Variablen und
maximal sieben beobachtbaren Zeitpunkten ist der Median der mittleren quadratischen
Abweichungen der β0t des Cloglog-Links am kleinsten (vgl. Abbildung 4.13). Der Median
des MSE des Cloglog-Links liegt bei 0.007. Auch die Schätzungen der Intercepts mit dem
Logit-Modell weichen nur gering von den „wahren“ Werten ab. So liegt der Median der
MSE der β0t bei Verwendung des Logit-Modells bei 0.022.
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Abbildung 4.14: MSE(β) bei Simulation 4

Die mittleren quadratischen Abweichungen der Parameter β sind bei der Verwendung des
Cloglog-Links sehr klein. Der maximale Wert der MSE des Cloglog-Modells beträgt 0.009.
Abbildung 4.14 zeigt, dass die standardisierten Schätzungen des Cloglog-Modells am
geringsten von den „wahren“ standardisierten Werten der β abweichen. Die Schätzungen
mit dem Logit- und dem Probit-Link scheinen auch nur gering von den Parametern, die
zur Generierung der Datensätze gewählt werden, abzuweichen. Die mittleren quadrati-
schen Abweichungen des Logit- und des Probit-Modells unterscheiden sich nicht stark
voneinander.
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Abbildung 4.15: MSE(β, β0t) bei Simulation 4

Bei der Betrachtung der MSE der Parameter β und β0t sieht man nochmals, dass die
mittleren quadratischen Abweichungen des Cloglog-Modells am kleinsten sind und somit
durch Verwendung dieses Modells bessere Schätzungen erhalten werden (vgl. Abbil-
dung 4.15).

Abbildung 4.16: Devianz bei Simulation 4
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Abbildung 4.16 zeigt, dass die beste Anpassung der Daten mit dem Cloglog-Modell
erfolgt.

4.6 Simulation 5

Wie bereits in Simulation 4 besteht hier das „wahre“ Modell aus vier standardnormalver-
teilten Kovariablen, die wie in Simulation 4 korreliert sind. Die maximale Beobachtungs-
zeit bei dieser Simulation beträgt t.max = 20. Trotz Verwendung der Ridge Regression
produziert die Schätzung in R für alle 100 Schätzungen mit dem Probit- und dem Cloglog-
Link Warnmeldungen. Und auch bei der Schätzung mit dem Logit-Link treten bei 38
Schätzungen Warnmeldung auf. Bei der Generierung der Datensätze mit 1500 Beobach-
tungen beinhaltet jeder der 100 generierten Datensätzen alle möglichen Ausprägungen
der beobachtbaren Zeit. Somit erfolgt die Parameterschätzung auch an 100 Datensät-
zen.

Abbildung 4.17: MSE(β0t) bei Simulation 5

Aus Abbildung 4.17 lässt sich entnehmen, dass der Median der MSE des Cloglog-Modells
der kleinste ist (0.080). Gleichzeitig liegt das 75%-Quantil der MSE dieses Modells am
höchsten. Somit lässt sich nicht sagen, dass die Schätzung mit dem Cloglog-Modell die
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besten Ergebnisse liefert. Weiterhin zeigt die Abbildung, dass der Median des Logit-
Modells kleiner als der des Probit-Modells ist. Aber auch beim Logit-Link ist das obere
Quartil größer als das des Probit-Modells.

Abbildung 4.18: MSE(β) bei Simulation 5

Bei der Schätzung der Koeffizienten β ist die mittlere quadratische Abweichung bei Ver-
wendung des Probit-Links, wie in Abbildung 4.18 zu sehen ist, am größten. Bei Betrachtung
der MSE erkennt man, dass die Schätzungen der β bei Verwendung des Cloglog-Modells
weniger von den „wahren“ standardisierten Werten abweichen. Der Median der MSE des
Cloglog-Modells bei 8.891 · 10−04. Man erkennt, dass die Schätzungen dieser Werte sehr
nah an den „wahren“ Werten liegen müssen.
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Abbildung 4.19: MSE(β, β0t)bei Simulation 5

Die Mediane der mittleren quadratischen Abweichungen von β und β0t der drei betrachte-
ten Modelle liegen unter dem Wert 0.2 (vgl. Abbildung 4.19). Der Median der MSE des
Cloglog-Modells ist zwar kleiner als die der anderen Modelle, aber das obere Quartil der
mittleren quadratischen Abweichungen dieses Modells ist größer als das des Logit- und
Probit-Modells.

Abbildung 4.20: Devianz bei Simulation 5
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Das Cloglog-Modell, welches auch als Grundlage zur Generierung der Daten dient, scheint
die Daten am besten anzupassen (vgl. Abbildung 4.20).

4.7 Simulation 6

Diese Simulation generiert Datensätze mit vier standardnormalverteilten, korrelierten
Kovariablen, wie es auch bei den Simulationen 4 und 5 der Fall ist. Hier werden jedoch
30 mögliche Ausprägungen der Zeit betrachtet. Außerdem beträgt die Anzahl der gene-
rierten Datensätze 550. Davon können jedoch nur 52 für die Berechnung der Hazardraten
verwendet werden, da nur diese 52 Datensätze alle Ausprägungsmöglichkeiten der Zeit
beinhalten.

Abbildung 4.21: Devianz bei Simulation 6

Die kleinste Devianz der betrachteten Modelle hat das Cloglog-Modell, welches auch für
die Datengenerierung gewählt wurde. Die Anpassung der Daten vom komplementären
loglog-Modell scheint also besser als die der drei anderen Modelle zu sein.

35



4 Simulation

Abbildung 4.22: MSE(β0t) bei Simulation 6

Die mittlere quadratische Abweichung bei den Intercepts ist trotz der besseren Anpassung
durch das Cloglog-Modell bei der Verwendung des Probit-Modells kleiner (vgl. Abbil-
dung 4.22). Auch die Verwendung des Logit-Modells scheint bessere Schätzungen der β0t

zu erzielen als das komplementäre loglog Modell.

Abbildung 4.23: MSE(β) bei Simulation 6
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Die bessere Schätzung der β erfolgt mit dem Cloglog-Modell. Der Median der mittleren
quadratischen Abweichungen des Cloglog-Modells liegt bei 0.001 und ist kleiner als der
Median der mittleren quadratischen Abweichungen des Logit-Modells (0.023) und des
Probit-Modells (0.034). Die Schätzung der Parameter β mit dem Probit-Modell führt vergli-
chen mit den anderen zwei Modellen zu größeren mittleren quadratischen Abweichungen
(vgl. Abbildung 4.23).

Abbildung 4.24: MSE(β, β0t) bei Simulation 6

Aufgrund der großen mittleren quadratischen Abweichungen der Intercepts des Cloglog-
Modells, sind auch die MSE(β, β0t) für dieses Modell recht groß (vgl. Abbildung 4.24).
Man kann der Abbildung entnehmen, dass die Schätzungen der Regressionskoeffizienten
mit dem Probit-Modell den „wahren“ Werten am nächsten sind und das obwohl die An-
passungsgüte für das komplementäre loglog-Modell spricht.

4.8 Simulation 7

Dieses Szenarion beinhaltet zwei binäre Kovariablen und zwei korrelierte normalverteilte
Variablen. Die normalverteilten Variablen haben den Erwartungswert 0 und die Varianz
1. Für die Korrelation dieser Variablen x3 und x4 gilt: cor(x3, x4) = 0.1. Außerdem ist
die maximal beobachtbare Zeit t.max = 7. Trotz Regularisierung der Regression treten
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bei der Schätzung mit Probit- und Cloglog-Link bei mehr als 50 Durchläufen Warnmel-
dungen aufgrund instabil geschätzter Parameter auf. Beim Cloglog-Link sind es sogar
80.

Abbildung 4.25: MSE(β0t) bei Simulation 7

Logit Probit Cloglog

Min. 0.004313 0.0073058 0.002093
1st Qu. 0.017385 0.022820 0.004546

Median 0.021936 0.030050 0.007234
Mean 0.026189 0.034460 0.009537

3rd Qu. 0.032025 0.041405 0.011182
Max. 0.108361 0.132790 0.067211

Tabelle 4.4: MSE(β0t) bei Simulation 7

Bereits der Boxplot in Abbildung 4.25 zeigt, dass die mittleren quadratischen Abweichun-
gen von β0t für alle drei Links unterschiedlich sind. Bei der Verwendung des Cloglog-Links
liegt der Median der MSE(β0t) bei 0.007. Die Abweichung der mit dem Logit-Link ge-
schätzten Parameter ist etwas größer. So liegt bei diesem Link der Median der MSE(β0t)

bei 0.022 (vgl. Tabelle 4.4). Die Schätzung der Intercepts mit dem Probit-Link scheint
etwas schlechtere Ergebnisse zu liefern. Wobei man beachten sollte, dass auch hier die
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mittleren quadratischen Abweichungen nicht groß sind. Hier liegt die maximale mittlere
quadratische Abweichung bei 0.133.

Abbildung 4.26: MSE(β) bei Simualtion 7

Abbildung 4.26 zeigt die Ergebnisse der MSE für den Parameter β. Es ist zu erkennen, dass
die mittleren quadratischen Abweichungen von β des Cloglog-Modells kleiner als die der
zwei anderen Modelle sind und somit den Parameter β am besten schätzen. Aber auch die
MSE der zwei anderen Modelle sind nicht sonderlich groß. Außerdem fällt auf, dass sich
die Boxplots der mittleren quadratischen Abweichungen von Logit- und Probit-Modell
kaum unterscheiden.
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Abbildung 4.27: MSE(β, β0t) bei Simulation 7

In Abbildung 4.27 wird nochmals deutlich, dass die Schätzungen mit dem Cloglog-Link
von β0t und β verglichen mit den anderen zwei Links die geringsten Abweichungen zu
den standardisierten „wahren“ Werten aufweisen.

Abbildung 4.28: Devianz bei Simulation 7

Die Anpassung des Cloglog-Modells scheint auch hier im Vergleich zu den anderen
betrachteten Modellen besser zu sein (vgl. Abbildung 4.32).
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4.9 Simulation 8

Wie auch in Simulation 7 werden für diese Simulation zwei binäre und zwei standard-
normalverteilte Kovariablen verwendet. Die Korrelation der standardnormalverteilten
Kovariablen, die in Simulation 7 aufgeführt wird, wird hier ebenfalls verwendet. In diesem
Szenario wird jedoch t.max = 20 gesetzt.
Es werden zwei Datensätze generiert, die nicht alle 20 Ausprägungen der beobachteten
Zeit beinhalten. Das führt dazu, dass in diesem Szenario die Parameterschätzung bei 98
Datensätzen erfolgt.

Abbildung 4.29: MSE(β0t) bei Simulation 8

Der Median der mittleren quadratischen Abweichungen ist bei der Verwendung des
Cloglog-Links zur Schätzung der Intercepts am kleinsten. Bei Betrachtung des oberen
Quartils der MSE schneidet die Verwendung des Probit-Modells jedoch besser ab, da
dieses kleiner ist als das des Cloglog-Modells (vgl. Abbildung 4.29). Außerdem sind die
mittleren quadratischen Abweichungen der β0t des Probit-Modells kleiner als die des
Logit-Modells. So liegt der Median des Logit-Modells bei 0.434 und der des Probit-Modells
bei 0.391.
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Abbildung 4.30: MSE(β) bei Simulation 8

Abbildung 4.30 zeigt, dass die Koeffizienten β bei 20 möglichen Ausprägungen der beob-
achteten Zeit t vom Cloglog-Link am besten geschätzt werden. Der Median der MSE(β)

des Cloglog-Modells liegt bei 0.001. Die Verwendung des Logit-Links für die Schätzung
der β schneidet in diesem Szenario besser ab als die Verwendung des Probit-Links (vgl. Ta-
belle 4.5). Trotzdem sind die mittleren quadratischen Abweichungen dieser zwei Modelle
recht klein. Sie liegen alle unterhalb des Wertes 0.044 .

Logit Probit Cloglog

Min. 0.006946 0.009906 0.0001064
1st Qu. 0.017054 0.021181 0.0004445

Median 0.022711 0.026388 0.0009271
Mean 0.022669 0.026788 0.0012289

3rd Qu. 0.027411 0.031471 0.0017630
Max. 0.040659 0.043555 0.0055169

Tabelle 4.5: MSE(β) bei Simulation 8
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Abbildung 4.31: MSE(β, β0t) bei Simulation 8

Abbildung 4.31 zeigt, dass der Median der mittleren quadratischen Abweichungen der
Regressionskoeffizienten für das komplementäre loglog-Modell der kleinste ist. Aufgrund
der Lage des oberen Quartils der MSE des komplementären loglog Modells, lässt sich
jedoch nicht sagen, dass die Schätzung mit diesem Modell die besseren Ergebnisse liefert.
Bei Betrachtung der Devianzen der Modelle mit Logit- ,Probit- ,Cloglog- und Cauchit-Link,
welche mit Boxplots in Abbildung 4.32 dargestellt werden, lässt sich erkennen, dass das
Cloglog-Modell die Daten am besten anpasst. Das Cauchit-Modell scheint verglichen mit
den anderen Links die Daten am schlechtesten anzupassen.
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Abbildung 4.32: Devianz bei Simulation 8

4.10 Simulation 9

Die Parameterschätzungen der folgenden Simulation erfolgen an generierten Datensätzen,
die das Logit-Modell als das „Wahre“ voraussetzen. Das hier verwendete Modell zur
Generierung besteht zudem aus vier binären Kovariablen und einer maximalen Beobach-
tungszeit t.max = 7.
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Abbildung 4.33: Devianz bei Simulation 9

Die Devianz der Modelle für die 100 generierten Datensätze wird in Abbildung 4.33
dargestellt. Obwohl das Logit-Modell zur Generierung der Daten verwendet wurde,
scheinen neben dem Logit-Modell auch das Cloglog- und das Probit-Modell die Daten gut
anzupassen.

Abbildung 4.34: MSE(β0t)bei Simulation 9
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Die mittleren quadratischen Abweichungen der Intercepts des Logit-Modells, welches
für die Datengenerierung verwendet wurde, sind die kleinsten (vgl. Abbildung 4.34).
So liegt der Median der MSE der Intercepts des Logit-Modells bei 0.005. Aber auch die
Schätzungen der Intercepts mit dem Probit-Link weichen nur gering von den „wahren“
Werten ab. Für dieses Modell liegt der Median der MSE(β0t) bei 0.007. Die mittleren qua-
dratischen Abweichungen, die mit dem komplementären loglog-Modell erhalten werden
sind größer als die der anderen zwei Modelle. Hier liegt der Median der MSE(β0t) bei
0.019.

Abbildung 4.35: MSE(β)bei Simulation 9

Die standardisierten Schätzungen der Parameter β, welche durch die Verwendung des
Logit-Modells erhalten werden, zeigen im Vergleich zu den anderen zwei betrachteten
Modellen die geringsten Abweichungen von den standardisierten „wahren“ Werten auf
(vgl. Abbildung 4.35). Die maximale mittlere quadratische Abweichung der β des Logit-
Modells liegt bei 6.148 · 10−03. Und auch bei der Verwendung des Probit-Modells erhält
man Schätzungen der β, die kaum von den „wahren“ Werten der Parameter abweichen.
Für dieses Modell liegt der Median der MSE bei 0.001. Im Vergleich zu den anderen zwei
betrachteten Modelle sind die MSE, die man bei der Verwendung des Cloglog-Modells
erhält größer. Fünfzig Prozent der kleinsten MSE(β) des Cloglog-Modells liegen unter
dem Wert 0.012.
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Abbildung 4.36: MSE(β, β0t)bei Simulation 10

Abbildung 4.36 zeigt, dass die Schätzungen des Logit-Modells für β und β0t den „wahren“
Werten am nächsten sind.

4.11 Simulation 10

Auch hier wird zur Generierung der Datensätze das Logit-Modell verwendet. Die vier
Variablen, die für die Datensätze erstellt werden, sind korreliert und standardnormal-
verteilt. Die Korrelation der vier Variablen ist cor(xi, xj) = 0.1 für i 6= j und i, j =

1, . . . , 4.
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Abbildung 4.37: Devianz bei Simulation 11

Die Devianzen der Modelle mit Logit-, Probit- und Cloglog-Link sind auch hier sehr
ähnlich. Die Devianzen des Logit-Modells sind nur geringfügig kleiner als die der anderen
zwei Modelle.

Abbildung 4.38: MSE(β0t)bei Simulation 10

Abbildung 4.38 zeigt, dass die mittleren quadratischen Abweichungen der Intercepts für
das Logit-Modell am kleinsten sind. Auch die Schätzung der β0t mit dem Probit-Modell
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führt zu kleinen mittleren quadratischen Abweichungen, die sich kaum von den MSE des
Logit-Modells unterscheiden.
Außerdem erkennt man an den Boxplots, dass bei der Verwendung des Probit- und des
Cloglog-Modells bei jedem der 100 Durchläufe Warnmeldungen aufgetreten sind. Bei
der Verwendung des Logit-Modells kommt es bei vier Schätzungen ebenso zu solchen
Warnmeldungen.

Abbildung 4.39: MSE(β) bei Simulation 10

Auch bei der Schätzung der Parameter β scheint es, dass bei der Verwendung des Logit-
Modells und des Probit-Modells Schätzungen erhalten werden, die kaum von den „wah-
ren“ Werten abweichen (vgl. Abbildung 4.39). Der Median der MSE(β) des Logit-Modells
liegt bei 6.497 · 10−04 und der des Probit-Modells bei 7.486 · 10−04 .
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Abbildung 4.40: MSE(β, β0t)bei Simulation 10

Bei Betrachtung der MSE(β, β0t) sieht man deutlich, dass die Schätzungen, die mit dem
Cloglog-Modell erhalten werden, am stärksten von den „wahren“ Werten abweichen,
wohingegen das Logit-Modell die Parameter am besten zu schätzen scheint.
Weitere Ergebnisse befinden sich in Abschnitt A.1.

4.12 Fazit

Die Simulationen mit maximal sieben beobachtbaren Zeitpunkten zeigen, dass die Ver-
wendung des Modells, welches die Daten besser anpasst, geringere Abweichungen von
geschätzten und „wahren“ Parameter zur Folge hat. Die Wahl des Modells sollte demnach
auf dem Maß der Diskrepanz zwischen Daten und Fit basieren.
Die Simulationen zeigen auch, dass die mittleren quadratischen Abweichungen der Pa-
rameter bei kleineren maximalen Beobachtungszeiten geringer sind. Dies zeigt sich be-
sonders bei den Schätzungen der Intercepts β0t. Die Schätzungen der Intercepts aller
betrachteten Modelle weichen bei nur sieben beobachtbaren Zeitpunkten kaum von den
Werten ab, die zur Datengenerierung gewählt wurden.
Bei den Simulationen mit 20 oder mehr beobachtbaren Zeitpunkten fällt auf, dass der
Interquartilsabstand der MSE(β0t) des Cloglog-Modells im Vergleich zu den zwei anderen
betrachteten Modellen größer ist. Auch die Streuung der MSE(β0t) des Logit- und des
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Probit-Modells nimmt bei Zunahme der Zeitausprägungen zu.
Für die Schätzung der β erhält man auch bei einer größeren Anzahl beobachtbarer Zeit-
punkte mit dem Modell, das die Daten am besten anpasst, Werte, die den „wahren“
Parameter am nächsten sind.
Bei den Simulationen mit einer maximalen Beobachtungszeit von 30 wird deutlich, dass
trotz einer besseren Anpassung des komplementären loglog-Modells an die Daten, die
Schätzungen der Intercepts β0t trotz Regularisierung nicht besser sind als die der anderen
betrachteten Modelle. Das zeigt, dass bei einer größeren maximalen Beobachtungszeit und
einer Anpassungsgüte, die für das komplementäre loglog-Modell spricht, die Schätzungen
kritisch betrachtet werden sollten. Außerdem lassen die Simulationen erkennen, dass es in
einem solchen Fall durchaus möglich ist, dass man durch die Verwendung des Logit- oder
des Probit-Modells für die Schätzungen der Intercepts bessere Ergebnisse erhält.
Weiterhin kann man den Simulationen entnehmen, dass die Verwendung des Logit- und
des Probit-Modell meist zu sehr ähnlichen Ergebnissen führt. Nur bei größeren maxima-
len Beobachtungszeitpunkten ist ein etwas größerer Unterschied bei der Schätzung der
Intercepts β0t zu erkennen.
Insgesamt lässt sich sagen, dass die Wahl der diskreten Survival-Modelle anhand des
„Goodness-of-Fit“ erfolgen sollte. Für möglichst gute Ergebnisse sollte bei einer größeren
Anzahl zu schätzender Intercepts trotz Ergebnisses des „Goodness-of-Fit“ eventuell ein
anderes Modell in Betracht gezogen werden. Die Ergebnisse der Simulationen legen für
diesen Fall die Verwendung des Probit-Modells nahe.
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5 Anwendungsbeispiel

Die bereits für die Simulationen verwendeten diskreten Hazardmodelle werden nun für
die Analyse eines realen Datensatzes verwendet. Die Ergebnisse für die unterschiedli-
chen Modelle werden unter Berücksichtigung der Simulationsergebnisse verglichen und
diskutiert.

5.1 Münchner Gründerstudie

Der Datensatz über die Gründung von Firmen umfasst 1710 Beobachtungen mit jeweils 88
Variablen, welche die unterschiedlichsten Informationen über die zwischen 1985 und 1986
gegründeten Unternehmen enthält. Der im folgendem verwendete Datensatz beinhaltet
nur die Kovariablen die in Tutz (2000) betrachtet wurden. Eine detaillierte Beschreibung
der Münchener Gründerstudie kann in Brüderl et al. (1996) gefunden werden.
Für die hier durchgeführte Analyse wird die Zeit bis zur Insolvenz, welche halbjährlich
gemessen wurde („b7“), als Response verwendet. Folgende Variablen werden ebenfalls in
die Analyse eingebunden:
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Variable Ausprägung

ezweck Erwerbszweck
1 Vollerwerbszweck (als Referenzkategorie)
2 Nebenerwerbszweck

neu Neugründung oder Firmenübernahme
1 vollständige Neugründung
2 teilweise Übernahme, Firmenübernahme (als Referenzkategorie)

fk Fremdkapital in DM
1 Fremdkapital gleich 0 (als Referenzkategorie)
2 Fremdkapital größer 0

zielm Ziel Markt
1 lokaler Markt (als Referenzkategorie)
2 überregionaler Markt

Tabelle 5.1: Variablen für die Analyse der Münchner Gründerstudie

Die Beobachtungszahl beträgt für die Analyse 1123, da nur die vollständigen Beobach-
tungen der neu gegründeten Firmen verwendet werden. Die Parameter werden mit der
Ridge Regression (siehe Abschnitt 2.2) geschätzt, wobei nur auf die Schätzung der Inter-
cepts β0t, wie auch in der Simulationsstudie, der „Bestrafungsterm“ λ = 0.0001 gesetzt
wird. Die geschätzten, standardisierten β0t und β sind in Tabelle 5.3 und Tabelle 5.4
dargestellt.

Logit Probit Cloglog Cauchit

2752.8 2752.242 2752.872 2761.835

Tabelle 5.2: Devianzen der unterschiedlichen Modelle, die für die Analyse der

Münchner Gründerstudie verwendet wurden

Die Devianzen, die in Tabelle 5.2 dargestellt werden, zeigen, dass die Daten von den drei
Modelle Logit-, Probit- und Cloglog-Modell ähnlich gut angepasst werden.
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Logit Probit Cloglog

β01 −1.863492 −1.84 −2.201084
β02 −1.576801 −1.60 −1.803439
β03 −1.698093 −1.70 −1.974972
β04 −1.714633 −1.72 −1.998363
β05 −1.835925 −1.82 −2.162099
β06 −1.824899 −1.81 −2.146505
β07 −1.516154 −1.56 −1.717672

Tabelle 5.3: β̂0t für die Analyse der Münchner Gründerstudie

Es lässt sich an den geschätzten standardisierten Intercepts, die in Tabelle 5.3 zu finden
sind, erkennen, dass die Schätzungen des Logit- und des Probit-Modells sehr ähnlich sind.
Die Werte des Logit-Modells lassen erkennen, dass das Verhältnis
P(T = t|T ≥ t, x)/(1− P(T = t|T ≥ t, x)) für t = 1 und für die Referenzkategorien
am kleinsten ist. Die Chance des Eintritts der Insolvenz zum Zeitpunkt t = 1 für die
Unternehmen, die die Eigenschaften der Referenzkategorien aufweisen (vgl. Tabelle 5.1),
beträgt exp(β01) = 0.15513.

Logit Probit Cloglog

β f k2 −0.06615947 −0.06 −0.08576665
βezweck2 0.40798338 0.35 0.55358473

βneu1 0.17642525 0.15 0.24170601
βzielm2 −0.43003654 −0.36 −0.59256957

Tabelle 5.4: β̂ für die Analyse der Münchner Gründerstudie

Die standardisierten Schätzungen der β des Logit- und des Probit-Modells zeigen nur
geringe Unterschiede auf, wie es auch bei den Intercepts der Fall ist. Auch die Simulati-
onsstudie zeigt, dass die standardisierten Schätzungen des Logit- und des Probit-Modells
bei einer kleinen maximalen Beobachtungszeit und vier binären Kovariablen sehr ähn-
lich sind. Außerdem wird an den Simulationsergebnissen auch deutlich, dass bei einer
geringen Anzahl maximal beobachtbarer Zeitpunkte die Anpassungsgüte der Modelle
eine entscheidende Rolle bei der Modellwahl spielt.
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Aufgrund der Anpassungsgüte, die in diesem Beispiel für das Logit-, das Probit- und das
Cloglog-Modell ähnlich ist, ist es von Vorteil sich für das Logit-Modell zu entscheiden, da
die Ergebnisse dieses Modells einfacher zu interpretieren sind.
Bei der Verwendung des Logit-Modells ist folgende Interpretation möglich:
Die Chance des Eintritts der Insolvenz zum Zeitpunkt t verringert sich für Firmen auf dem
überregionalen Markt um den Faktor exp(βzielm2) = 0.6505.
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6 Zusammenfassung

Die Simulationen zeigen, dass die Schätzungen der Parameter mit den zur Datengenerie-
rung verwendeten Modellen verglichen mit den Schätzungen der anderen betrachteten
Modellen meist besser sind. Dies gilt zumindest bei einer kleinen Anzahl von beobachtba-
ren Zeitpunkten.
Bei sieben Zeitpunkten sind die mittleren quadratischen Abweichungen für β und β0t für
alle drei untersuchten Modelle recht klein.
Bei den Simulationen mit einer höheren Anzahl beobachtbarer Zeitpunkte fällt auf, dass
die mittleren quadratischen Abweichungen, MSE(β0t) und MSE(β), größer sind als es bei
einer kleineren maximalen beobachtbaren Zeit der Fall ist. Außerdem erkennt man, dass
die Zunahme der Anzahl der zu schätzenden Intercepts auch eine Zunahme der Streuung
der MSE(β0t) zur Folge hat. Weiterhin führt die Schätzung mit dem Modell, das die Daten
am besten anpasst, bei einer hohen Anzahl von möglichen Ausprägungen der Zeit nicht
immer zu den besten Schätzungen der β0t. Bei den Schätzungen der β ist dies nicht der
Fall.
Außerdem kann man den Simulationen entnehmen, dass die Schätzungen der Regres-
sionskoeffizienten mit dem Logit- und dem Probit-Modell meist sehr ähnlich sind. Ein
größerer Unterschied zwischen den Modellen zeigt sich nur bei der Schätzung der β0t,
falls die maximale Anzahl der Beobachtungszeitpunkte groß ist.
Aus den Simulationen lässt sich also zusammenfassend Folgendes entnehmen.
Bei einer kleinen Anzahl möglicher Ausprägungen der Zeit sollte die Wahl auf das Modell
fallen, welches die Daten am besten anpasst. Für möglichst gute Ergebnisse sollte bei
einer größeren Anzahl zu schätzender Intercepts nicht unbedingt das Modell verwendet
werden, welches die Daten am besten anpasst. Die Simulationen zeigen, dass für diesen
Fall meist die Schätzungen der Intercepts des Probit-Modells besser sind.
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A Anhang

A.1 Weitere Ergebnisse der Simulation

Im folgenden befinden sich weiter Ergebnisse der Simulationsstudie. Zur Generierung der
hier verwendeten Datensätze wird das Logit-Modell gewählt.

A.1.1 Simulation 11

Abbildung A.1: MSE(β0t) für zwei binäre und zwei standardnormalverteilte Kova-

riablen und t.max=7
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A Anhang

Abbildung A.2: MSE(β) für zwei binäre und zwei standardnormalverteilte Kovaria-

blen und t.max=7

Abbildung A.3: MSE(β, β0t) für zwei binäre und zwei standardnormalverteilte Ko-

variablen und t.max=7
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A Anhang

Abbildung A.4: Devianz (zwei binäre und zwei standardnormalverteilte Kovaria-

blen und t.max=7)

A.1.2 Simulation 12

Abbildung A.5: MSE(β0t) für vier binäre Kovariablen und t.max=20
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A Anhang

Abbildung A.6: MSE(β) für vier binäre Kovariablen und t.max=20

Abbildung A.7: MSE(β, β0t) für vier binäre Kovariablen und t.max=20
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A Anhang

Abbildung A.8: Devianz (vier binäre Kovariablen und t.max=20)

A.1.3 Simulation 13

Abbildung A.9: MSE(β0t) für vier standardnormalverteilte Kovariablen und

t.max=20
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A Anhang

Abbildung A.10: MSE(β) für vier standardnormalverteilte Kovariablen und

t.max=20

Abbildung A.11: MSE(β, β0t) für vier standardnormalverteilte Kovariablen und

t.max=20
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A Anhang

Abbildung A.12: Devianz (vier standardnormalverteilte Kovariablen und t.max=20)

A.1.4 Simulation 14

Abbildung A.13: MSE(β0t) für vier binäre Kovariablen und t.max=30
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A Anhang

Abbildung A.14: MSE(β) für vier binäre Kovariablen und t.max=30

Abbildung A.15: MSE(β, β0t) für vier binäre Kovariablen und t.max=30
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A Anhang

Abbildung A.16: Devianz (vier binäre Kovariablen und t.max=30)

A.2 Inhalt der CD

Die beigefügte CD beinhaltet die Arbeit im pdf-Format und folgende Ordner:

• Grafiken: beinhaltet alle in der Arbeit eingebundenen Grafiken im jpeg-Format
Der Benennung der Grafiken ist zu entnehmen, welchem Szenario diese zuzuordnen
sind.

• R : R beinhaltet den kommentierten R-Code für die Simulation und für das Anwen-
dungsbeispiel. Des weiteren befinden sich in diesem Ordner auch .RData-Dateien,
welche die Ergebnisse der Simulationen beinhalten, und das Programm „data.Long“
von Möst (2013).

• Datensatz: beinhaltet den Datensatz und Informationen zu diesem Datensatz, wel-
cher für das Anwendungsbeispiel verwendet wurde
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