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Zusammenfassung

Das binäre Rasch-Modell ist eines der bekanntesten Item-Response-Modelle. Anwendung

findet es in der Psychologie bei der Auswertung von Intelligenztests. Grundannahme des

Modells ist, dass die Wahrscheinlichkeit für die korrekte Beantwortung eines Testitems ge-

nau von zwei Parametern abhängt. Der erste Parameter steht für die Fähigkeit der Person

und der zweite Parameter für die Schwierigkeit des Items. Unterscheidet sich die Wahr-

scheinlichkeit für eine korrekte Antwort für Personen aus unterschiedlichen Subgruppen

mit derselben Fähigkeit, spricht man von Differential Item Functioning.

Die vorliegende Arbeit beschäftigt sich mit einer Erweiterung des binären Rasch-Modells

um itemmodifizierende Effekte. Mithilfe itemmodifizierender Effekte kann der Einfluss

von Kovariablen auf die Beantwortung von Testitems berücksichtigt werden. Eine regu-

larisierte Schätzung der Modelle wird mithilfe von Boosting umgesetzt. In einer Simula-

tionsstudie wird untersucht, wie gut sich das Boosting-Verfahren eignet, um Items mit

itemmodifizierenden Effekten korrekt zu bestimmen.

Eine Selektion der relevanten Parameter wird bei der Boosting-Schätzung durch frühzeiti-

ges Stoppen des Algorithmus realisiert. Die optimale Anzahl an Iterationen wird mithilfe

eines BIC bestimmt. Die Selektionsergebnisse der Simulation sind sehr gut, falls die An-

zahl an Freiheitsgraden der Modelle über die Spur der Hat-Matrix bestimmt wird. Durch

Hinzunahme einer zusätzlichen Threshold-Regel können diese nochmals deutlich verbes-

sert werden.

Eine Problematik bei der Durchführung der Analysen ist der mit guten Selektionsergeb-

nissen verbundene Rechenaufwand. Ist die Anzahl an Items des Modells zu groß, kann die

Spur der Hat-Matrix mit den zur Verfügung stehenden Rechen- und Speicherkapazitäten

nicht mehr berechnet werden. Dies ist auch im Anwendungsbeispiel der Fall.
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Notation

Verwendete griechische Buchstaben

Buchstabe Bedeutung

θ Personen-Parameter (Fähigkeit)

β Item-Parameter (Schwierigkeit)

γ Itemmodifizierende Effekte

δ Vektor der Modell-Parameter,

Regressionskoeffizient der Basis-Methode

α Koeffizienten der linearen und logistischen Regression

η Lineare Prädiktoren

π Bedingte und absolute Wahrscheinlichkeiten

ρ Verlustfunktion

ν Verhältnis-Faktor, Schrittlänge

σ Standardabweichung des Fehlerterms,

Geschätzte Standardabweichungen

ε Fehler der linearen Regression

ξ Exponentieller Personen-Parameter exp(θ)

λ Exponentieller Item-Parameter exp(β)

ζ Verhältnis ξ
λ

χ χ2-Verteilung

Verwendete Indizes

Buchstabe Bedeutung

i = 1, . . . , I Items

p = 1, . . . , P Personen

q = 1, . . . , Q Kovariablen

m = 1, . . . ,mstop Boosting-Iterationen

J = P + 2 · I − 1 Anzahl an Parametern des Modells (2.11)

N = P · I Anzahl an Beobachtungen
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1 EINLEITUNG 1

1 Einleitung

In unterschiedlichen Situationen des Alltags finden psychologische Tests Anwendung. Ziel

ist es unter anderem, Aussagen über die Ausprägung bestimmter Persönlichkeitsmerkmale

von Personen zu treffen. Gerade in der Psychologie ist es nicht einfach, die zu messenden

Eigenschaften in Zahlen zu fassen, da es sich um latente, d.h. nicht beobachtbare Merkma-

le handelt. Aufschluss über die interessierenden Größen soll die Beantwortung mehrerer

Aufgaben eines psychologischen Tests geben [Strobl, 2010]. Im Folgenden werden die Auf-

gaben eines solchen Tests immer mit Items bezeichnet.

Bei einem Intelligenztest wird beispielsweise erfasst, wie viele Items eine Testperson rich-

tig gelöst hat. Als Ergebnis erhält die jeweilige Person eine Schätzung ihrer Fähigkeit

[Strobl, 2010]. Das wohl bekannteste statistische Modell zur Auswertung der Ergebnisse

solcher Intelligenztests ist das Rasch-Modell [Rasch, 1960]. Dieses ist ein Vertreter der

probabilistischen Testtheorie bzw. Item-Response-Theorie (IRT). Die IRT umfasst eine

Familie von mathematischen Messmodellen, welche postulieren, dass den beobachtbaren

manifesten Daten (hier die Antworten auf Testitems) latente Variablen wie z.B. Eigen-

schaften oder Fähigkeiten der Personen zugrunde liegen, die das Testverhalten steuern

[Rost und Spada, 1982].

1.1 Gegenstand der Arbeit

Geht man in einer Testsituation davon aus, dass das Rasch-Modell Gültigkeit besitzt, so

ist die Wahrscheinlichkeit für die richtige Beantwortung eines Testitems für alle Personen

mit derselben Fähigkeit exakt gleich. Falls dies nicht erfüllt ist und die Wahrscheinlich-

keit für die richtige Beantwortung bestimmter Testitems für Personen verschiedene Sub-

gruppen mit derselben Fähigkeit unterschiedlich ist, spricht man von „Differential Item

Functioning“ (DIF) [Osterlind und Everson, 2009]. Differential Item Functioning tritt bei-

spielsweise dann auf, wenn ein Item für eine Gruppe eines der schwierigsten und für eine

andere Gruppe eines der leichtesten Items darstellt. Differential Item Functioning heißt

aber nicht einfach, dass ein Item für eine Gruppe schwerer zu lösen ist als für eine andere.

Bestehen nämlich grundsätzliche Wissensunterschiede, z.B. zwischen Gruppen von Stu-



2 1 EINLEITUNG

denten, werden diese im gesamten Test besser bzw. schlechter abschneiden. DIF ist also

vorhanden, falls ein Item für eine Gruppe wesentlich schwerer zu beantworten ist als für

eine andere Gruppe, nachdem der allgemeine Wissensunterschied über die Thematik des

Tests berücksichtigt wurde. Typische Variablen zur Untersuchung von Subgruppeneffek-

ten sind Rasse, Religion und Geschlecht [Osterlind und Everson, 2009].

Die vorliegende Arbeit beschäftigt sich mit einer Erweiterung des klassischen Rasch-

Modells zur Berücksichtigung des Differential Item Functioning. Dies wird durch die Hin-

zunahme sogenannter „itemmodifizierender Effekte“ erreicht. Hauptziel der Analysen ist

es herauszufinden, für welche Items itemmodifizierende Effekte vorhanden sind, d.h. wel-

che Items in verschiedenen Subgruppen unterschiedlich beantwortet werden. Des Weiteren

ist von Interesse, welches die relevanten Subgruppen-Variablen sind, für die itemmodifi-

zierende Effekte vorhanden sind.

Um bei der Schätzung der vorgestellten Modelle die gewünschte Variablenselektion zu

erzielen und dem Problem der großen Anzahl zu schätzender Parameter vorzubeugen,

ist eine gewöhnliche Maximum-Likelihood-Schätzung nicht umsetzbar. Inhalt der Arbeit

ist die Schätzung der Modelle mithilfe von Boosting. Dies ist eine Möglichkeit, mit der

regularisierte Maximum-Likelihood-Schätzungen durchgeführt werden können. Einen al-

ternativen Ansatz durch penalisierte Maximum-Likelihood Schätzung untersuchen Tutz

und Schauberger [2013]. Ein Großteil der theoretischen Ausführungen in Kapitel 2, unter

anderem die Einbettung der betrachteten Modelle in das Framework der generalisierten

Regressionsmodelle, basiert auf den Vorarbeiten von Tutz und Schauberger [2013]. Die

Stärke dieser Betrachtungsweise ist, dass die Variablen, für welche itemmodifizierende Ef-

fekte untersucht werden, nicht nur binär oder kategorial, sondern auch stetig sein können

und, dass die Anzahl an Variablen beliebig groß sein kann.

1.2 Gleichmäßiges und ungleichmäßiges DIF

Im Zusammenhang mit itemmodifizierenden Effekten gilt es im Allgemeinen zwei Kon-

zepte zu unterscheiden. Itemmodifizierende Effekte können entweder gleichmäßig oder

ungleichmäßig vorliegen. Unter einem itemmodifizierenden Effekt versteht man den Unter-
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schied der Wahrscheinlichkeit einer korrekten Antwort auf ein Testitem zwischen Personen

verschiedener Subgruppen mit derselben Fähigkeit. Falls dieser Unterschied unabhängig

von der Fähigkeit der Personen immer gleich ist, spricht man von „gleichmäßigem“ DIF.

Ist dieser Unterschied nicht konstant, sondern von der Fähigkeit der Person abhängig, so

spricht man von „ungleichmäßigem“ DIF [Osterlind und Everson, 2009]. Abbildung 1.1

visualisiert die beiden unterschiedlichen Effekte beispielhaft für den einfachen Vergleich

zweier Gruppen. Die eingezeichneten Kurven ergeben sich bei Modellierung der Wahr-

scheinlichkeiten durch ein logistisches Regressionsmodell. In Abbildung 1.1 sind diese rein

qualitativ zur Verdeutlichung der beschriebenen Effekte dargestellt.
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Abb. 1.1: Wahrscheinlichkeit für die richtige Beantwortung einer Frage in Abhängigkeit

der Fähigkeit der Person. Unterschieden werden gleichmäßige Effekte (links)

und ungleichmäßige Effekte (rechts).

In der linken Graphik in Abbildung 1.1 sieht man, dass die Wahrscheinlichkeit für eine

korrekte Antwort in Gruppe 2 immer höher ist als in Gruppe 1. In der rechten Graphik

hingegen schneiden sich die beiden Kurven. Unter den Personen mit geringeren Fähigkei-
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ten ist die Wahrscheinlichkeit einer richtigen Antwort in Gruppe 1 höher als in Gruppe

2. Unter den Personen mit höheren Fähigkeiten ist dies genau umgekehrt.

Anhand der Item-Response-Modelle, die Gegenstand der Arbeit sind (Kapitel 2), können

nur gleichmäßige itemmodifizierende Effekte modelliert werden. Die Unterschiede zwi-

schen den Subgruppen sind für alle Personen, unabhängig von ihrer Fähigkeit, immer

gleich.

1.3 Aufbau der Arbeit

In Kapitel 2 werden die in der Arbeit betrachteten Modelle, insbesondere das Rasch-

Modell mit itemmodifizierenden Effekten, vorgestellt. Entscheidend für die Schätzung der

Modelle ist die Einbettung in das Framework der generalisierten Regressionsmodelle.

Kapitel 3 führt in die Theorie des Boosting ein und erläutert im Besonderen die Vor-

gehensweise für das Rasch-Modell mit itemmodifizierenden Effekten. An entsprechenden

Stellen wird auch auf die praktische Umsetzung mit statistischer Software eingegangen.

In Kapitel 4 werden alternative Schätzverfahren eingeführt, die sich ebenfalls zur Model-

lierung itemmodifizierender Effekte eignen.

Kapitel 5 beinhaltet eine Simulationsstudie, in der untersucht wird, wie gut die Boosting-

Methode zur Modellierung relevanter itemmodifizierender Effekte geeignet ist.

Abschließend enthält Kapitel 6 zwei Anwendungsbeispiele, an denen die Schätzung mithil-

fe von Boosting praktisch umgesetzt wird. Anhand der Simulationsergebnisse aus Kapitel

5 kann Rückschluss auf die Güte der Schätzung gezogen werden.

Alle Analysen, die in der Arbeit vorgestellt werden, wurden mit der Software R durchge-

führt [R Core Team, 2013]. Anhang B enthält eine Übersicht der Ordnerstruktur, in der die

erzeugten Source-Dateien („.R“) und die Ergebnisse der Analysen („.RData“) gespeichert

sind.

In den mathematischen Formeln und Ausdrücken der Arbeit sind Vektoren klein und fett

markiert (z.B. γ) und Matrizen groß und fett markiert (z.B. Z), um diese von Skalaren

und Funktionen zu unterscheiden.



2 ITEM-RESPONSE-MODELLIERUNG 5

2 Item-Response-Modellierung

Grundlage für die der Arbeit vorliegenden Modelle sind die Konzepte von Georg Rasch zur

Auswertung von Intelligenztests [Rasch, 1960]. Seine initiale Idee ist, dass das Ergebnis

eines Intelligenztests einer Person nur von zwei Komponenten abhängt, nämlich einem

Faktor für die Fähigkeit der Person und einem Faktor für die Schwierigkeit des Tests. In

dieser Arbeit wird jeweils die Schwierigkeit einzelner Testitems betrachtet.

Beide von Rasch identifizierten Komponenten werden durch latente Parameter ausge-

drückt, die nur relativ zu einem festgelegten Referenzwert interpretiert werden können.

Im Kapitel „A structural model for items of a test“ stellt Rasch [Rasch, 1960] Überlegun-

gen an, wie man die Messungen für die Personen-Fähigkeit und die Item-Schwierigkeit

auf einer Verhältnisskala ausdrücken kann.

2.1 Das klassische Rasch-Modell

Sei ξ der Parameter für die Fähigkeit der Person und λ der Parameter für die Schwierigkeit

des Items eines Tests, so gelte für zwei Personen und zwei Items folgende Relation:

ξ1 = νξ2

λ1 = νλ2

⇒ ξ1
λ1

=
ξ2
λ2

(2.1)

Inhaltlich bedeutet Gleichung (2.1), dass sich sowohl die Fähigkeit von Person 1 und Per-

son 2 als auch die Schwierigkeit von Item 1 und Item 2 um den Faktor ν unterscheidet.

Die Wahrscheinlichkeit, dass Person 1 Item 1 löst, ist also genauso groß wie die Wahr-

scheinlichkeit, dass Person 2 Item 2 löst [Rasch, 1960].

Damit obige Aussage als gültig angesehen werden kann, sollten die Relationen (2.1) auch

auf alle weiteren Items und alle anderen Personen übertragbar sein. Sei ν > 1, dann

sollte Person 1 bei allen Items um den Faktor ν besser abschneiden als Person 2, und

Item 1 sollte für alle Personen um den Faktor ν schwieriger sein als Item 2. Es ist somit

sinnvoll, die Wahrscheinlichkeit, dass eine Person ein Item korrekt löst, als Funktion des

Verhältnisses ζ = ξ
λ

zu modellieren [Rasch, 1960]. Um Personen jeder Fähigkeit und



6 2 ITEM-RESPONSE-MODELLIERUNG

Items jeder Schwierigkeit zu berücksichtigen, sollte der Wertebereich von ζ zwischen 0

und +∞ liegen. Eine Transformation von ζ in den Wertebereich zwischen 0 und 1 ist die

naheliegende Transformation [Rasch, 1960]:

ζ

1 + ζ
=

ξ

ξ + λ
∈ (0, 1), falls ζ ∈ (0,+∞) (2.2)

Für die Wahrscheinlichkeit πpi, dass Person p Item i korrekt löst, gilt dann:

πpi =
ξp

ξp + λi
⇔ log

(
πpi

1− πpi

)
= log(ξp)− log(λi) (2.3)

Die rechte Seite von Gleichung (2.3) entspricht dem bekannten binären Rasch-Modell. Sei

ypi ∈ {0, 1} der Indikator, ob Person p Item i korrekt löst, so gilt für dessen Wahrschein-

lichkeit [Strobl, 2010]:

πpi = P (ypi = 1|θp, βi) =
exp(θp − βi)

1 + exp(θp − βi)
mit p = 1, . . . , P, i = 1, . . . , I, (2.4)

wobei θp für den Personen-Parameter und βi für den Item-Parameter steht. Eine alterna-

tive Formulierung des Modells lautet:

logit (P (ypi = 1|θp, βi)) = log
(

P (ypi = 1|θp, βi)
1− P (ypi = 1|θp, βi)

)
= θp − βi (2.5)

Mit θp = log(ξp) und βi = log(λi) entsprechen sich die Gleichungen (2.3) und (2.5).

Wie einleitend angedeutet wurde, sind die zu schätzenden Personen- und Itemparameter

nur relativ interpretierbar. Modell (2.5) ist in dieser Form nicht eindeutig lösbar. Es ist

notwendig, vor der Schätzung einen Parameter festzusetzen, der als Referenzwert dient.

Gewählt wird der Personen-Parameter θP = 0. Dies macht eine einfache Darstellung des

Modells in Abschnitt 2.4 möglich [Tutz und Schauberger, 2013].

2.2 Rasch-Modell mit itemmodifizierenden Effekten

Im Rasch-Modell (2.5) wird die Schwierigkeit von Item i allein durch den Parameter βi

modelliert. Im Folgenden wird zusätzlich der Effekt des Differential Item Functioning
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berücksichtigt. Um zuzulassen, dass die Schwierigkeit bestimmter Items von Kovariablen

abhängen kann, wird Modell (2.5) um itemmodifizierende Effekte γi erweitert.

Sei xp der Vektor an Kovariablen von Person p, so wird der Item-Parameter βi um den

linearen Prädiktor xTp γi ergänzt. Es gilt zu beachten, dass xp einen personenspezifischen

und γi einen itemspezifischen Parameter darstellt [Tutz und Schauberger, 2013].

Das vollständige Modell in äquivalenter Form zu (2.5) lautet:

logit(P (ypi = 1|θp, βi,xp)) = log
(

P (ypi = 1|θp, βi,xp)
1− P (ypi = 1|θp, βi,xp)

)
= θp − (βi + xTp γi) (2.6)

Mit Modell (2.6) ist es möglich, Unterschiede in der Beantwortung einzelner Items eines

Tests zwischen Subgruppen zu modellieren, die durch die Kovariablen x gebildet werden.

Im einfachsten Fall ist xp die Realisierung einer binären Variable, z. B. Geschlecht. Sei xp =

1 für eine männliche Person und xp = 0 für eine weibliche Person. Falls ein Unterschied

zwischen Männern und Frauen besteht, erhält man als Item-Parameter

βi + γi für Männer und

βi für Frauen.
(2.7)

Der Parameter γi entspricht in diesem Beispiel dem Unterschied der Schwierigkeit von

Item i zwischen Männern und Frauen [Tutz und Schauberger, 2013].

Die Stärke von Modell (2.6) ist, dass im Allgemeinen auch metrische oder mehrkategoriale

Kovariablen xp ins Modell aufgenommen werden können und es weiterhin seine Gültigkeit

behält. Des Weiteren ist die Anzahl an Kovariablen des Modells beliebig wählbar, ohne,

dass Modell (2.6) an Gültigkeit verliert. Nimmt man Linearität in den Logits an, so lautet

der Item-Parameter für die stetige Kovariable Alter:

βi + Alter · γi (2.8)

Falls γi gleich Null ist, so ist die Schwierigkeit von Item i in jedem Alter gleich [Tutz und

Schauberger, 2013].

Im Weiteren bezeichne Q die Anzahl an Kovariablen im Modell, mit q = 1, . . . , Q. Ist ein
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Parameter γiq ungleich Null, bedeutet es, dass das Item von den Personen der Gruppen,

die durch die Kovariable q gebildet werden, unterschiedlich beantwortet wird. Modell (2.6)

gibt also nicht nur an, welche Items dem klassischen Rasch-Modell (2.5) nicht genügen,

sondern auch explizit, durch welche Kovariablen die Item-Parameter βi modifiziert werden

[Tutz und Schauberger, 2013].

2.3 Das logistische Regressionsmodell

Ein gängiges, statistisches Modell für die Modellierung einer binären Zufallsvariable in

Abhängigkeit anderer Einflussgrößen ist das logistische Regressionsmodell. Eine ausführ-

liche Darstellung der Theorie zu generalisierten Regressionsmodellen findet man in [Fahr-

meir et al., 2009]. Gegeben seien die Daten (yi,xi), i = 1, . . . , n, wobei yi ∈ {0, 1} und

E(yi|xi) = P (yi = 1|xi) = πi.

Damit lautet das vollständige Modell:

1. Zufallskomponente

yi|πi ∼ B(πi)

2. Linearer Prädiktor

ηi = xTi δ

3. Link-Funktion

πi =
exp(xTi δ)

1 + exp(xTi δ)
⇒ g(πi) = log

(
πi

1− πi

)
= xTi δ

Im Folgenden werden die Modelle (2.5) und (2.6) in das vorgestellte Framework des lo-

gistischen Regressionsmodells eingebettet.

2.4 Rasch-Modell als logistisches Regressionsmodell

Zur Schätzung der Rasch-Modelle aus Abschnitt 2.1 und 2.2 sollen Algorithmen verwendet

werden, die auf Maximum-Likelihood-Schätzungen basieren. Dazu ist es hilfreich, die Mo-

delle (2.5) und (2.6) in die bekannte Form eines logistischen Regresssionsmodells, welches
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im vorherigen Abschnitt 2.3 vorgestellt wurde, zu bringen. Die Darstellung der Modelle

ist entnommen aus [Tutz und Schauberger, 2013].

Gegeben seien die Daten (ypi,xp), p = 1, . . . , P, i = 1, . . . , I. Mit Wahrscheinlichkeit

πpi = P (ypi = 1|zpi) gilt für die Linkfunktion des logistischen Regressionsmodells:

g(πpi) = zTpiδ, (2.9)

wobei zpi den Designvektor für Person p bzgl. Item i darstellt. Diesen gilt es klar vom

Kovariablen-Vektor xp für Person p zu unterscheiden.

Mit Vektor δT = (θT ,βT ) lässt sich Modell (2.5) folgendermaßen schreiben:

log
(

P (ypi = 1|zpi)
1− P (ypi = 1|zpi)

)
= θp − βi = 1TP (p)θ − 1TI(i)β =

=
(
1TP (p) , −1TI(i)

)θ
β

 = zTpiδ

(2.10)

In Modellgleichung (2.10) gilt:

1TP (p) = (0, . . . , 0, 1, 0, . . . , 0), mit Länge P-1 und 1 an Position p

θ = (θ1, . . . , θP−1)

1TI(i) = (0, . . . , 0, 1, 0, . . . , 0), mit Länge I und 1 an Position i

β = (β1, . . . , βI)

Für das Modell gilt die Restriktion θP = 0. Nur durch Festsetzen eines Parameters ist das

Modell eindeutig lösbar.

Mit Vektor δT = (θT ,βT ,γT1 , . . . ,γ
T
I ) lässt sich Modell (2.6) folgendermaßen schreiben:

log
(

P (ypi = 1|zpi)
1− P (ypi = 1|zpi)

)
= θp − βi − xTp γi = 1TP (p)θ − 1TI(i)β − xTp γi =

= zTpiδ

(2.11)

Der gesamte Designvektor in (2.11) lautet zTpi = (1TP (p) , −1TI(i), 0, . . . ,−xTp , . . . , 0) mit

Komponente −xTp bezüglich Parameter γi.
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Für einen kleinen Datensatz mit zwei Personen und zwei Items sehen die vollständigen

Komponenten von Modell (2.11) wie folgt aus:

y =


y11

y12

y21

y22

 , Z =


1 −1 0 −xT1 0

1 0 −1 0 −xT1

0 −1 0 −xT2 0

0 0 −1 0 −xT2

 und δ =



θ1

β1

β2

γ1

γ2


(2.12)

In dieser Darstellung hat die Matrix Z genau P·I Zeilen, was der Anzahl an Beobachtungen

und P + 2 · I − 1 Spalten, was der Anzahl zu schätzender Parameter in Modell (2.11)

entspricht. Die Parametervektoren der itemmodifizierenden Effekte γ1, . . . ,γI stellen in

dieser Form des Modells jeweils einen Parameter dar. Für die weitere Notation gilt:

• N = P · I =̂ Anzahl an Beobachtungen

• J = P + 2 · I− 1 =̂ Anzahl an Parametern in Modell (2.11)

Es ist zu beachten, dass die Anzahl zu schätzender Parameter in Modell (2.11) im Allge-

meinen nicht größer ist als die Anzahl an Beobachtungen. Sie ist jedoch so groß, dass eine

regularisierte Schätzung des Modells notwendig ist (siehe Kapitel 3).

2.5 Modell mit zusätzlichem Populationseffekt

In Modell (2.6) wird implizit angenommen, dass Unterschiede zwischen den Gruppen,

die durch die Kovariablen x gebildet werden, nur bezüglich bestimmter Items eines Test

bestehen. Tatsächlich kann es jedoch sein, dass ein grundsätzlicher Fähigkeitsunterschied

zwischen den Gruppen besteht. Dies führe dazu, dass das Ergebnis der betrachteten Grup-

pen bezüglich des gesamten Tests unterschiedlich gut ausfällt. Dieser Effekt ist klar vom

Effekt des Differential Item Functioning zu unterscheiden, welcher durch die itemmodifi-

zierenden Effekte γ1, . . . ,γI modelliert wird.

Um grundsätzliche Fähigkeitsunterschiede zu berücksichtigen, kann Modellgleichung (2.11)

um eine weitere Kovariable γ erweitert werden [Tutz und Schauberger, 2013].
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Der lineare Prädiktor des logistischen Regressionsmodells lässt sich dann folgendermaßen

schreiben:

ηpi = zTpiδ = 1TP (p)θ − 1TI(i)β − xTp γ − xTp γi, (2.13)

mit zTpi = (1TP (p) , −1TI(i),−xTp , 0, . . . ,−xTp , . . . , 0) und δT = (θT ,βT ,γT ,γT1 , . . . ,γ
T
I ).

Der Parameter γ entspricht dem Effekt der Kovariablen xp bezüglich des Ergebnisses im

gesamten Test. Im Fall einer binären Kovariable wird durch den Parameter γ modelliert,

ob eine Gruppe den Test besser absolviert als die andere Gruppe [Tutz und Schauberger,

2013].

2.6 Identifizierbarkeit der Modelle

Der lineare Prädiktor des Rasch-Modells mit itemmodifizierenden Effekten (2.11) lautet

ηpi = θp− βi−xTp γi für Person p und Item i . Bei genauerer Betrachtung sieht man, dass

der lineare Prädiktor ηpi mit einer Konstante c folgendermaßen umparametrisiert werden

kann [Tutz und Schauberger, 2013]:

ηpi = θp − βi − xTp γi

= θp − βi − xTp (γi − c)− xTp c

= θ̃p − βi − xTp γ̃i,

(2.14)

mit θ̃p = θp − xTp c und γ̃i = γi − c.

Die Parameter δT = (θT ,βT ,γT1 , . . . ,γ
T
I ) und δ̃

T
= (θ̃

T
,βT , γ̃T1 , . . . , γ̃

T
I ) ergeben exakt

dasselbe Modell. Die Parameter θp sind um den Wert xTp c und die Parameter γi um den

Wert c verschoben. Diese Überlegungen zeigen, dass Modell (2.11) in der bisherigen Form

nicht eindeutig lösbar ist [Tutz und Schauberger, 2013].

Unter folgenden Restriktionen ist Modell (2.11) eindeutig identifizierbar:

1. βI = 0, γTI = (0, . . . , 0) (oder für ein beliebiges, anderes Item).

2. Die gewöhnliche Designmatrix mit Zeilen (1,xT1 ), . . . , (1,xTP ) hat vollen Rang.
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Um die Identifizierbarkeit von Modell (2.11) zu garantieren, müssen lt. Bedingung 1 der

Koeffizient βi und die Koeffizienten γiq eines Items festgesetzt werden. Im Allgemeinen

kann hierfür jedes beliebige Item gewählt werden. Bedingung 2 ist eine allgemeine Bedin-

gung, wie sie in ähnlicher Form auch in üblichen Regressionsmodellen benötigt wird. Den

Beweis und weitere Details zu den Bedingungen findet sich in [Tutz und Schauberger,

2013]. Die eingeführten Bedingungen sind unabhängig von der ursprünglichen Restriktion

des Modells θP = 0.

Modelliert man Daten durch ein Rasch-Modell mit itemmodifizierenden Effekten (2.6), so

geht man grundsätzlich davon aus, dass für die meisten Items das einfache Rasch-Modell

(2.5) gültig ist und nur für wenige Items die Koeffizienten γi ungleich Null sind. Es ist

wünschenswert, dass bei der Schätzung die maximale Anzahl an Items bestimmt wird,

für die das Rasch-Modell Gültigkeit besitzt. Welches Item in Bedingung 1 gewählt wird,

hängt genau von dieser Zielsetzung ab. Wie die Restriktionen bei der Schätzung explizit

umgesetzt werden, um am Ende eine eindeutig identifizierbare Lösung vorliegen zu haben,

wird in Abschnitt 3.5 erläutert.

Betrachtet man das erweiterte Modell mit zusätzlichem Populationseffekt (2.13), so stößt

man auf ein weiteres Identifikationsproblem. Trotz der Festsetzung von βi = 0 und

γTi = (0, . . . , 0) für ein Item i ist es nicht möglich, die Parameter γ und θp ohne weitere

Restriktion klar voneinander zu unterscheiden. Der lineare Prädiktor ηpi kann folgender-

maßen umparametrisiert werden [Tutz und Schauberger, 2013]:

ηpi = θp − βi − xTp γ − xTp γi

= θp + xTp c− βi − xTp (γ + c)− xTp γi

= θ̃p − βi − xTp γ̃ − xTp γi,

(2.15)

mit θ̃p = θp + xTp c und γ̃ = γ + c.

Nachdem Vektor c beliebig wählbar ist, kann immer γ = (0, . . . , 0) festgelegt werden, und

man erhält wieder die ursprüngliche Form des linearen Prädiktors (2.11). In dieser Form

ist also nicht eindeutig, welcher Teil der Fähigkeit der Person durch die Zugehörigkeit zur

jeweiligen Gruppe erklärt werden kann [Tutz und Schauberger, 2013].
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Eine Möglichkeit, dies zu identifizieren, ist ein zweistufiges Schätzverfahren:

1. Schätze das Modell (2.11) ohne zusätzlichen Populationseffekt.

2. Berechne eine Regression der geschätzten Parameter θ̂p auf den Kovariablenvektor

xp.

Das Regressionsmodell in Schritt 2 gibt schließlich an, welcher Teil der Variation der

geschätzten Fähigkeiten durch die Kovariablen x erklärt werden kann, nachdem die ein-

zelnen itemmodifizierenden Effekte bereits berücksichtigt wurden. Dies entspricht einem

globalen Effekt der Gruppenzugehörigkeit [Tutz und Schauberger, 2013]. Die explizite

Umsetzung der Regression bei der Schätzung wird in Abschnitt 3.5 erläutert.

Hauptteil der Simulation in Kapitel 5 ist die Analyse des Rasch-Modells mit itemmodifizie-

renden Effekten (2.11) in den Abschnitten 5.1 und 5.2. In einem weiteren Teil (Abschnitt

5.3) wird das zweistufige Schätzverfahren für das Modell mit zusätzlichem Populations-

effekt (2.13) durchgeführt. In den simulierten Daten wird der grundsätzliche Fähigkeits-

unterschied nur bezüglich einer binären Kovariable modelliert. Ziel der Simulation ist es

herauszufinden, wie gut sich das in Kapitel 3 vorgestellte Schätzverfahren zur Schätzung

der beiden Modelle eignet, um relevante itemmodifizierende Effekte zu bestimmen.
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3 Schätzung mithilfe von Boosting

Um Schätzungen für die Modelle, die in den Abschnitten 2.2 und 2.5 vorgestellt wurden,

zu erhalten, wäre es am einfachsten, die Maximum-Likelihood-Schätzer der logistischen

Regressionsmodelle (2.11) und (2.13) zu berechnen. Für die vorliegenden Modelle ist dies

jedoch problematisch. Einer der Gründe ist die große Anzahl an Parametern der Modelle.

Vor allem, falls die Anzahl zu schätzender Parameter größer ist als die Anzahl an Be-

obachtungen, sind die Maximum-Likelihood-Schätzer ungenau oder gar nicht eindeutig

definiert. Siehe dazu auch [Hastie et al., 2009]. Ein weiterer Grund ist die Verfehlung des

eigentlichen Ziels der Analyse. Bestimmt werden sollen die Items mit itemmodifizierenden

Effekten, und nur die zugehörigen Parametervektoren γi sollen ins geschätzte Modell auf-

genommen werden. Durch Maximum-Likelihood-Schätzung wird keine Variablenselektion

durchgeführt, und man erhält Schätzungen für alle Parameter des Modells. Eine zielfüh-

rende und korrekte Lösung der Schätzung erhält man durch regularisierte Schätzung der

Modelle. Die vorliegende Arbeit beschäftigt sich mit der Schätzung mithilfe von Boosting.

Im folgenden Kapitel wird in Abschnitt 3.1 zunächst allgemein der Boosting Algorithmus

bzw. funktionale Gradienten-Abstieg (FGD) vorgestellt und anschließend speziell für den

Fall binärer Klassifikation durch logistische Regression (Abschnitt 3.2). Als Datengrund-

lage für die Darstellung der Algorithmen dienen die Daten in der Form, in der sie in

Abschnitt 2.4 eingeführt wurden.

Neben dem Ziel, alle relevanten Parameter γi zu bestimmen, die ungleich Null sind, sollen

alle Personen-Parameter θp und Item-Parameter βi vollständig ins Modell aufgenommen

werden. Dies macht eine Schätzung der Modelle in zwei Schritten notwendig. Das Vorgehen

wird in Abschnitt 3.3 erläutert.

Die Implementierung der Boosting-Schätzung mithilfe der statistischen Software R [R Core

Team, 2013] basiert auf Boosting-Funktionen aus dem Paket mboost [Hothorn et al., 2013].

Bei Verwendung wichtiger Funktionen und Umsetzung entscheidender Schritte sind Teile

des Programm-Codes angegeben.
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3.1 Allgemeiner FGD-Algorithmus

Der Boosting-Algorithmus, der in Bühlmann und Hothorn [2007] erläutert wird, wurde

ursprünglich von Friedman et al. [2000] entwickelt. Sie entwarfen ein allgemeines Frame-

work, das sich direkt als Methode zur Schätzung einer Funktion interpretieren lässt. Das

Schätzverfahren erfolgt dabei schrittweise, und die Lösung berechnet sich additiv. Die

Darstellung des Algorithmus ist entnommen aus [Bühlmann und Hothorn, 2007].

Gegeben seien der Responsevektor y und

• die Zufallsvariablen Z1, . . . , ZJ (Spalten der Matrix Z) bzw.

• die Beobachtungen z11, . . . , zPI (Zeilen der Matrix Z).

Die vorliegenden Daten wurden bereits durch den Beispiel-Datensatz (2.12) illustriert.

Ziel ist es, eine reelwertige Funktion

f(·) = argmin
f(·)

E [ρ(y, f(Z1, . . . , ZJ))] (3.1)

zu schätzen. Dabei bezeichnet ρ(·, ·) eine Verlustfunktion. Welche Verlustfunktion im vor-

liegenden Fall der binären Klassifikation verwendet wird, ist in Abschnitt 3.2 dargestellt.

Um die Funktion f(·) zu schätzen, betrachtet man das empirische Risiko summiert über

alle N = P · I Beobachtungen 1
N

∑
N

ρ(ypi, f(zpi)) und folgt folgendem Algorithmus.

1. Initialisiere f̂ [0](·) mit einem Startwert. Möglich sind beispielsweise

f̂ [0](·) = argmin
c

1

N

∑
N

ρ(ypi, c) oder f̂ [0](·) = 0. (3.2)

Setze m=0.

2. Erhöhe m um 1. Berechne den negativen Gradienten − ∂
∂f
ρ(y, f) und werte ihn für

jede Beobachtung an der Stelle f̂ [m−1](zpi) aus:

upi = − ∂

∂f
ρ(ypi, f)|f=f̂ [m−1](zpi)

(3.3)
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3. Fitte die negativen Gradienten u11, . . . , uPI auf die linearen Prädiktoren z11, . . . , zPI

durch eine Basis-Methode:

(zpi, upi)
Basis-Methode→ ĝ[m](·) (3.4)

Im vorliegenden Fall wird als Basis-Methode die lineare Regression verwendet (siehe

Abschnitt 3.2).

4. Aktualisiere f̂ [m](·) = f̂ [m−1](·)+νĝ[m](·), wobei 0 < ν ≤ 1 die Schrittlänge in jedem

Schritt m bezeichnet.

5. Wiederhole Schritt 2 bis 4 bis m = mstop, d.h. bis zu einer bestimmten Anzahl an

Iterationen mstop.

Die optimale Anzahl an Iterationen wird mithilfe von Modellwahl-Kriterien bestimmt

(siehe Abschnitt 3.4) und stellt die wichtigste Stellschraube des Algorithmus dar. Durch

frühzeitiges Stoppen des Algorithmus wird die gewünschte Regularisierung der Schätzung

erzielt.

3.2 Boosting im Fall binärer Klassifikation

Einer der Bestandteile des Algorithmus aus Abschnitt 3.1, der spezifiziert werden muss,

ist die Verlustfunktion ρ(·, ·). Alle zugrundeliegenden Item-Response-Modelle betrachten

die binäre Zufallsvariable, ob ein bestimmtes Item richtig oder falsch beantwortet wurde,

d.h. Y ∈ {0, 1}. Mit P (Y = 1) = π ist die log-Likelihood gegeben durch [Bühlmann und

Hothorn, 2007]:

log (L) = ` = πlog(π) + (1− y)log(1− π) (3.5)

Mit der alternativen Kodierung Ỹ = 2Y − 1 ∈ {−1, 1} und der Umparametrisierung

f = 1
2
· log

(
π

1−π

)
erhält man durch Umformung von (3.5) für die negative log-Likelihood:

log (1 + exp(−2ỹf)) (3.6)
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Bei binärer Klassifikation ist es üblich, äquivalent zu Formel (3.6), die Funktion

ρlog-lik(ỹ, f) = log2 (1 + exp(−2ỹf)) (3.7)

als Verlustfunktion zu verwenden. In dieser Form ist sie auch im Paket mboost [Hothorn

et al., 2013] implementiert.

Es kann gezeigt werden, dass bei Verwendung der Verlustfunktion (3.7) die optimale

Lösung bezüglich der Grundgesamtheit für die vorliegenden Daten die Form

f(Z1, . . . , ZJ) =
1

2
log
(

P (Y = 1|Z1, . . . , ZJ)

1− P (Y = 1|Z1, . . . , ZJ)

)
(3.8)

hat (vgl. [Friedman et al., 2000]).

Die Boosting-Schätzung f̂ [m](·) kann als Schätzung der optimalen Lösung f(Z1, . . . , ZJ)

(3.8) angesehen werden. Die Lösungen sind Schätzungen für die halbierten Werte der

Logits, die den linearen Prädiktoren eines logistischen Regressionsmodells entsprechen.

Als Basis-Methode wird in Schritt 3 des Boosting-Algorithmus aus Abschnitt 3.1 die Me-

thode der komponentenweise linearen kleinsten Quadrate verwendet. Dabei wird ĝ[m](·) in

jedem Schritt durch ein einfaches lineares Modell mit einer Kovariablen gebildet, nämlich

[Boulesteix und Hothorn, 2010]:

ĝ(Z1, . . . , ZJ) = δ̂j∗Zj∗ (3.9)

δ̂j∗ stellt dabei den Schätzer eines einfachen linearen Modells mit Zj als einziger Einfluss-

größe dar:

δ̂j =

(∑
N

zpijupi

)
/

(∑
N

(zpij)
2

)
(3.10)

Mit j∗ wird die Kovariable mit der besten Prädiktion im univariaten Modell bezeichnet:

j∗ = arg min
1≤j≤J

∑
N

(
upi − δ̂jzpij

)2
(3.11)
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Zusammenfassend: In jedem Schritt m wird die Boosting-Schätzung durch ein univariates

lineares Modell aktualisiert, wobei in jedem Schritt die Kovariable ausgewählt wird, welche

die größte Verbesserung der Prädiktion mit sich bringt.

Verwendet man den Boosting-Algorithmus mit Verlustfunktion (3.7) und als Basis-Methode

komponentenweise lineare kleinste Quadrate, so erhält man für mstop → ∞ die Lösung

eines logistischen Regressionsmodells, wie es in Abschnitt 2.4 dargestellt wurde.

Zur Durchführung der Schätzung in R wird die Funktion gamboost aus dem Paket mboost

verwendet. Der Funktionsaufruf sieht ausschnittsweise folgendermaßen aus:

> gamboost(formula,data,family=Binomial(),...)

Das Argument family legt die Verteilung der betrachteten Zielgröße fest. Mit fami-

ly=Binomial() wird die gewünschte Verlustfunktion (3.7) verwendet. Mithilfe der for-

mula wird die Basis-Methode spezifiziert. In der formula wird jede der Kovariablen des

Modells als mögliche Komponente einzeln angegeben. Mit der Funktion bols bewirkt man,

dass als Basis-Methode komponentenweise lineare kleinste Quadrate verwendet werden.

Für den Parameter γ1 mit fünf Kovariablen sieht der Aufruf der Funktion beispielsweise

folgendermaßen aus:

> bols(gamma11, gamma12, gamma13, gamma14, gamma15, intercept = FALSE, df = 1)

Die Parameter γiq werden jeweils als gemeinsame Komponente mit einem Freiheitsgrad

(df=1) spezifiziert. Daher gilt für die geschätzten Parameter, dass

γ̂i = 0 oder

γ̂iq 6= 0 ∀ q = 1, . . . , Q.
(3.12)

Nach diesem Vorgehen sind die geschätzten itemmodifizierenden Effekte eines Items ent-

weder für alle Kovariablen gleich oder für alle Kovariablen ungleich Null.

3.3 Kombination von logistischer Regression und Boosting

Ziel der regularisierten Schätzung der Modelle (2.11) und (2.13) ist es, die relevanten

itemmodifizierenden Effekte zu identifizieren und die Parameter γi der Items, die nicht
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von zusätzlichen Kovariablen beeinflusst werden, auf Null zu schätzen. Wendet man den

in Abschnitt 3.1 und 3.2 beschriebenen Boosting-Algorithmus an, so wird dies schritt-

weise umgesetzt. Gleichzeitig sollen alle Personen-Parameter θp und Item-Parameter βi

des klassischen Rasch-Modells vollständig in das geschätzte Modell aufgenommen werden.

Um dies sicherzustellen, wird die Schätzung der Modelle mit itemmodifizierenden Effek-

ten in zwei Schritten durchgeführt. Die Darstellung des Vorgehens ist angelehnt an die

Ausführungen in [Boulesteix und Hothorn, 2010].

1. Schätze das einfache Rasch-Modell ohne itemmodifizierende Effekte (2.5) als logis-

tisches Regressionsmodell, wie es in Gleichung (2.10) dargestellt ist.

1.1. Man erhält Schätzungen θ̂[1]1 , . . . , θ̂
[1]
P−1, β̂

[1]
1 , . . . , β̂

[1]
I , wobei θP = 0 vorher fest-

gelegt wird.

1.2. Berechne für alle Beobachtungen N die linearen Prädiktoren

η̂
[1]
pi = 1TP (p)θ̂

[1] − 1TI(i)β̂
[1]
.

2. Schätze das Rasch-Modell mit itemmodifzierenden Effekten (2.6) mithilfe des vor-

gestellten Boosting-Algorithmus in den Abschnitten 3.1 und 3.2.

2.1. Definiere den Startwert f̂ [0](·) für alle Beobachtungen über f̂ [0](zpi) = η̂
[1]
pi /2

als Offset-Wert, und berechne den Boosting-Algorithmus mit log-Likelihood-

Verlustfunktion (3.7) und komponentenweise linearen kleinsten Quadraten als

Basis-Methode bis Iteration mstop.

2.2. Man erhält Schätzungen δ̂
[mstop] für alle Parameter des Modells mit itemmodi-

fizierenden Effekten.

2.3. Berechne für alle Beobachtungen N die resultierenden linearen Prädiktoren

η̂
[mstop]
pi = 1TP (p)θ̂

[mstop] − 1TI(i)β̂
[mstop] − xTp γ̂

[mstop]
i = zTpiδ̂

[mstop].

Wie in Abschnitt 3.2 beschrieben, ist das Boosting-Ergebnis eine Schätzung der halbier-

ten Werte der Logits des logistischen Regressionsmodells. Als Offset-Werte werden der

Boosting-Funktion daher die halbierten linearen Prädiktoren übergeben.
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Da die Schätzungen des einfachen Rasch-Modells bereits als Offset in das Modell auf-

genommen wurden, ist zu erwarten, dass weitgehend nur die zusätzlichen Parameter γi
aktualisiert werden. Der Algorithmus macht es aber auch möglich, dass nochmals die

Parameter θp und βi zur Schätzung herangezogen werden.

Im mboost-Paket ist die Möglichkeit, einen Offset als Startwert der Boosting-Schätzung

zu übergeben, implementiert. Dafür wird der Funktion gamboost ein Parameter offset

übergeben:

> gamboost(formula,data,family=Binomial(),offset=offset,

control=boost_control(mstop=mstop))

Über das Argument control=boost_control() wird die Anzahl zu berechnender Itera-

tionen festgelegt.

3.4 Kriterium für die Modellwahl

Einer der wichtigsten Komponenten des Boosting-Algorithmus ist die Anzahl an Iteratio-

nen mstop. Als Ergebnis der Boosting-Schätzung erhält man im Grenzwert für mstop →∞

die halbierten Werte der Lösungen eines logistischen Regressionsmodells. Eine regularisier-

te Schätzung und die damit verbundene Variablenselektion realisiert man durch frühzei-

tiges Stoppen des Algorithmus. Für die vorliegenden Modelle (2.11) und (2.13) entspricht

das optimale Modell dem Modell mit den relevanten itemmodifizierenden Effekten. Durch

frühzeitiges Stoppen wird erreicht, dass nur die Schätzungen γ̂i ungleich Null sind, deren

Items dem einfachen Rasch-Modell (2.5) nicht genügen.

Eine Möglichkeit zur Bestimmung der optimalen Anzahl an Iterationen ist die Kreuzva-

lidierung. Allgemeines zur Theorie über Modellwahlkriterien findet man in [Hastie et al.,

2009]. Bei der k-fachen Kreuzvalidierung werden die Daten (ypi,xp), p = 1, . . . , P, i =

1, . . . , I zufällig in k gleichgroße Teile aufgeteilt. Das Modell wird jeweils ohne den k-ten

Teil der Daten geschätzt, und anschließend wird für den k-ten Teil der Daten eine Vor-

hersage berechnet. In Item-Response-Modellen ist die besondere Struktur der Zielgröße

y zu beachten. Es ist davon auszugehen, dass die Ergebnisse des Tests einer Person p
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yp1, . . . , ypI ähnlicher sind als die Ergebnisse verschiedener Personen. Teilt man den Da-

tensatz zufällig in k Teile auf, so kommt es vor, dass alle Daten einer Person in einem der

k Teile enthalten sind. Es ist anschließend nicht mehr möglich, sinnvolle Schätzungen bzw.

Prognosen für diese Person zu erhalten. Eine Modellwahl mithilfe von Kreuzvalidierung

ist für die betrachteten Item-Response-Modelle somit nicht geeignet.

Eine weitere Möglichkeit zur Bestimmung der optimalen Anzahl an Iterationen sind In-

formationskriterien. Vorarbeiten von Tutz und Schauberger [2013] zeigen, dass sich dies-

bezüglich am besten das Bayesianische Informationskriterium (BIC) eignet. Gesucht ist

der beste Kompromiss zwischen Verbesserung der Likelihood und Erhöhung der Modell-

komplexität. Im vorliegenden Fall ist das BIC folgendermaßen definiert:

BIC = −2`(δ) + log (N) · df (3.13)

N=P·I entspricht der Anzahl an Beobachtungen, die log-Likelihood ` ist gegeben durch

(3.5) und df entspricht der Anzahl an Freiheitsgraden des Modells. Eine allgemeine Form

des BIC findet sich in [Hastie et al., 2009].

Die Anzahl an Freiheitsgraden df in Boosting-Schritt m kann über die aktuelle Anzahl

an Parametern des geschätzten Modells, dem sogenannten „activ set“, bestimmt werden.

Die Anzahl ergibt sich aus allen Personenparametern θp, Itemparametern βi und der

Parametervektoren γi, die in Schritt m ungleich Null sind. Wird ein Parametervektor γi
ins Modell aufgenommen, erhöht sich die Anzahl an Freiheitsgraden um die Anzahl der

Elemente des Vektors. Dies entspricht der Anzahl an Kovariablen Q des Modells. Es gilt:

df(m) = P + I + #m {γi|γi 6= 0} ·Q− 1, (3.14)

wobei #m{·} die Anzahl in Boosting-Schritt m bezeichnet.

Bühlmann und Hothorn [2007] stellen einen Ansatz vor, mit dem man die Anzahl an

Freiheitsgraden über die Hat-Matrix der komponentenweisen linearen kleinsten Quadra-

te berechnen kann. Die Hat-Matrix ist im Allgemeinen eine Projektionsmatrix, die den

Vektor beobachteter Werte auf den Vektor gefitteter Werte abbildet.
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Im vorliegenden Kontext gilt für die Hat-Matrix:

Hj∗ : (u11, . . . , uPI) 7→ û11, . . . , ûPI , (3.15)

wobei j*, wie in (3.11) definiert, die Kovariable mit der besten Prädiktion im univariaten

linearen Modell darstellt. Ausgehend von Lösung (3.10) ist die Hat-Matrix gegeben durch:

Hj∗ = zj∗
(
z>j∗zj∗

)−1
z>j∗, (3.16)

wobei zj der j-ten Spalte der Matrix Z entspricht.

Nach Bühlmann und Hothorn [2007] gilt im Fall einer binären Zielgröße für eine approxi-

mierte Hat-Matrix Bm:

B1 = 4νW[0]Hj∗

Bm = Bm−1 + 4νW[m−1]Hj∗(I −Bm−1) (m ≥ 2) mit (3.17)

W[m] = diag
(
π̂
[m]
pi (1− π̂[m]

pi )
)
,

mit π̂[m]
pi = P (ypi = 1|zpi)[m] der geschätzten Wahrscheinlichkeit in Boosting-Schritt m.

Der Beweis zu (3.17) und weitere Details finden sich in [Bühlmann und Hothorn, 2007].

Die Anzahl an Freiheitgraden in Boosting-Schritt m, wie sie auch im Paket mboost be-

rechnet werden kann, ist definiert durch:

df(m) = Spur
(
2 ·Bm −B>mBm

)
(3.18)

Die Berechnung der Freiheitsgrade über die Spur der Hat-Matrix ist im Paket mboost

über die Funktion AIC möglich:

> model <- gamboost(formula,data,family=Binomial(),offset=offset,

control=boost_control(mstop=mstop))

> AIC(model,method="classical")
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Bei der Modellwahl mithilfe des BIC geht man schließlich folgendermaßen vor:

1. Berechne die Werte des BIC für alle Iterationen m = 1, . . . ,mstop.

2. Wähle das Modell mit dem kleinsten BIC. Für die optimale Anzahl an Iterationen

m∗stop gilt:

m = m∗stop ⇔ BIC(m∗stop) = min
m=1,...,mstop

BIC(m) (3.19)

Um sicherzustellen, dass tatsächlich das Modell mit dem minimalsten BIC gefunden

wird, sollte mstop >> m∗stop gewählt werden.

In der Simulation in Kapitel 5 wird die optimale Anzahl an Iterationen m∗stop mithilfe

des BIC (3.13) bestimmt. Die Anzahl an Freiheitsgraden wird sowohl über die aktuelle

Anzahl an Parametern im Modell (3.14) als auch über die Spur der Hat-Matrix (3.18)

bestimmt. Es gilt herauszufinden, welche der beiden Methoden besser zur Schätzung der

vorliegenden Item-Response-Modelle geeignet ist.

3.5 Schätzung und Identifizierbarkeit

Wie in Abschnitt 2.6 erläutert, ist das Modell (2.11) abgesehen von θP = 0 ohne zusätz-

liche Restriktionen, wie sie auf Seite 11 angegeben sind, nicht eindeutig lösbar. Um eine

eindeutige Lösung zu erhalten, geht man bei Berechnung der Boosting-Schätzung folgen-

dermaßen vor. Die Darstellung des Vorgehens ist angelehnt an die Ausführungen in [Tutz

und Schauberger, 2013].

1. Schätze das Modell ohne zusätzliche Restriktionen in zwei Schritten, wie es in Ab-

schnitt 3.3 beschrieben ist. Aufgrund der regularisierten Schätzung sind die Para-

meter berechenbar, obwohl sie nicht eindeutig identifizierbar sind. Friedman et al.

[2010] verwenden dieses Vorgehen beispielsweise im Fall multivariater Regressions-

modelle.
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2. Wähle als Referenz-Item das maximale Item mit γ̂i = 0, d.h.

ref = max {i | γ̂i = 0} , i = 1, . . . , I (3.20)

3. Berechne neue Personen-Parameter θ̂p− β̂ref, neue Item-Parameter β̂i− β̂ref und neue

itemmodifizierenenden Effekte γ̂i − γ̂ref, für alle i = 1, . . . , I.

Damit gilt:

θ̂
[neu]
P = −β̂ref, β̂

[neu]
ref = 0 und γ̂

[neu]
ref = γ̂ref = (0, . . . , 0)> (3.21)

Als Resultat erhält man eindeutig identifizierbare Parameter. Bei der Darstellung der

Ergebnisse in Abschnitt 5.1.2 der Simulation werden eben diese Parameter in Betracht

gezogen.

Je höher die Anzahl an Iterationen mstop gewählt wird, desto höher ist die Anzahl an

Parametervektoren γi, die ungleich Null geschätzt werden. Damit steigt die Anzahl an

Items, für die das einfache Rasch-Modell (2.5) nicht ausreicht. Es ist zu erwarten, dass

nach dem gewählten Modellwahlkriterium in den meisten Fällen nur sehr wenige Parame-

terschätzungen γ̂i des optimalen Modells ungleich Null sind. Insbesondere kommt es nicht

vor, dass alle Schätzungen γ̂i ungleich Null sind. Damit ist sichergestellt, dass das oben

beschriebene Vorgehen immer funktioniert und die maximale Anzahl an Items identifiziert

wird, für die das einfache Rasch-Modell Gültigkeit besitzt [Tutz und Schauberger, 2013].

In Abschnitt 2.6 wurde für Modell (2.13) mit globalem Populationseffekt ein zweistufiges

Schätzverfahren zur Identifizierung des globalen Parameters γ vorgestellt. Die konkrete

Umsetzung der Schätzung sieht folgendermaßen aus:

1. Schätze Modell (2.13) wie im bisherigen Kapitel beschrieben, äquivalent zu Modell

(2.11), ohne den zusätzlichen Parameter γ zu berücksichtigen. Als Ergebnis erhält

man die Parameter θ̂ [neu]
p , β̂ [neu]

i und γ̂ [neu]
i mit p = 1, . . . , P, i = 1, . . . , I.

2. Berechne ein lineares Regressionsmodell der geschätzen Parameter θ̂ [neu]
p auf die

Kovariablenvektoren xp.
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Die Modellgleichung sieht folgendermaßen aus:

θ̂ [neu]
p = α0 + xTpα+ εp , p = 1, . . . , P (3.22)

Für die Fehlerterme gelte, wie im linearen Modell üblich, dass εp ∼ N(0, σ2). Näheres

dazu findet man in [Fahrmeir et al., 2003].

Modell (3.22) liefert keine direkte Schätzung des Parameters γ. Der Modelloutput gibt

jedoch an, welcher Teil der Varianz der geschätzten Fähigkeiten durch die Kovariablen x

erklärt werden kann, nachdem die relevanten itemmodifizierenden Effekte bereits berück-

sichtigt wurden [Tutz und Schauberger, 2013]. Der Parameter α lässt sich als Unterschied

der geschätzten Fähigkeit zwischen den Gruppen, die durch die Kovariablen x gebildet

werden, interpretieren. Im einfachsten Fall ist xp die Realisierung einer binären Variable,

z. B. Geschlecht. Sei xp = 1 für eine männliche Person und xp = 0 für eine weibliche

Person. Für die geschätzte Fähigkeit θ̂p ergibt sich nach Modell (3.22)

α0 + α für Männer und

α0 für Frauen.
(3.23)

Der Parameter α entspricht in diesem Beispiel dem Unterschied der geschätzten Fähig-

keiten zwischen Männern und Frauen.

Im dritten Teil der Simulation in Abschnitt 5.3 werden zwei Simulationsszenarien be-

trachtet. In den zugehörigen Daten wird der grundsätzliche Fähigkeitsunterschied nur

bezüglich einer binären Kovariable modelliert. Ziel ist es, eine signifikante Schätzung des

zugehörigen Parameters α zu erhalten.

3.6 Einführung einer Threshold-Regel

Wie in der bisherigen Arbeit beschrieben, ist das Ziel der Schätzung der vorliegenden

Modelle die Extrahierung der relevanten itemmodifizierenden Effekte. Durch regularisierte
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Schätzung mithilfe des Boosting-Algorithmus sollen diejenigen Parametervektoren γi, für

die das einfache Rasch-Modell (2.5) nicht gültig ist, ungleich Null geschätzt werden.

Bei Verwendung der Funktion gamboost aus dem Paket mboost werden alle Parameter

in das endgültige Modell aufgenommen, die in einem Boosting-Schritt wenigstens einmal

durch die Basis-Methode aktualisiert wurden. Dies kann zum Ergebnis führen, dass einige

γi von Null verschieden sind, aber sehr kleine Werte nahe bei Null annehmen, da sie nur

einmal oder sehr selten zur Schätzung herangezogen wurden. Man kann davon ausgehen,

dass der wahre Wert einer Schätzung, die sehr nahe bei Null ist, tatsächlich Null ist.

Um dies zu berücksichtigen und die Identifizierung der relevanten itemmodifizierenden

Effekte zu verbessern, wird eine zusätzliche Threshold-Regel definiert, welche die Varia-

blenselektion beeinflusst. Festgelegt wird ein Threshold, der

• die minimale Anzahl an Boosting-Iterationen, in denen der Parametervektor γi ak-

tualisiert wurde oder

• die minimale Größe des geschätzten Parametervektors γi

angibt, die vorhanden sein muss, damit der Parameter ins Modell aufgenommen wird.

Andernfalls bleibt die Parameterschätzung exakt gleich Null.

Im ersten Fall sei mγi
die Anzahl an Iterationen, in denen der Parametervektor γi aktua-

lisiert wurde. Die relative Häufigkeit in Boosting-Schritt m ist dann gleich mγi

m
. Geht man

davon aus, dass alle γi gleichwertig sind, so sollte jeder Parametervektor mit relativer

Häufigkeit 1
I
aktualisiert werden. Für Item i betrachtet man in jedem Boosting-Schritt

m die tatsächliche Auswahlhäufigkeit relativ zur durchschnittlichen Auswahlhäufigkeit,

nämlich:

thi(m) =
mγi

m
· I (3.24)

Ein Wert thi(m) = 0.5 bedeutet inhaltlich, dass Item i halb so häufig ausgewählt wurde,

als durchschnittlich zu erwarten ist.

Im zweiten Fall wird als Wert für die Größe des Vektors γi die euklidische Norm ‖γi‖ =√
γ2i1, . . . , γ

2
iQ betrachtet. Diese setzt man in jedem Boosting-Schritt m in Relation zur
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mittleren euklidischen Norm aller Parametervektoren γi, nämlich:

thi(m) =
‖γi‖m

1
I

∑I
i=1 ‖γi‖m

(3.25)

dabei steht ‖ · ‖m jeweils für die euklidische Norm in Iteration m.

Bei Schätzung der Modelle mit zusätzlicher Threshold-Regel wird schließlich folgender-

maßen vorgegangen:

1. Schätze das Modell mit der Funktion gamboost mit mstop >> m∗stop.

2. Lege einen Vektor mit kritischen Treshold-Werten fest.

3. Berechne für jede Iteration m die Werte thi(m), i = 1, . . . , I, m = 1, . . . ,mstop.

4. Setze für jede Iteration m und jeden Threshold alle γi gleich Null, für die gilt, dass

thi(m) < Threshold.

5. Berechne für jede Iteration und jeden Threshold das zugehörige BIC.

6. Wähle das Modell mit dem minimalen BIC. Das Minimum bestimmt sich in Ab-

hängigkeit der Iteration und des Thresholds.

In der Simulation, Kapitel 5, wird im ersten Schritt die Boosting-Schätzung ohne zu-

sätzliche Threshold-Regel durchgeführt. Anhand der Ergebnisse lässt sich feststellen, in

welchen Fällen eine Threshold-Regel zur Verbesserung der Variablenselektion notwendig

ist. Diese wird im zweiten Schritt hinzugenommen, um die Selektion - wenn möglich - zu

verbessern. Dabei soll auch die Frage beantwortet werden, welche der beiden vorgestellten

Methoden zu besseren Ergebnissen führt.
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4 Alternative Schätzmethoden

4.1 Penalisierung der Likelihood

Wie zu Beginn von Kapitel 3 erläutert, sind für die Schätzung der betrachteten Item-

Response-Modelle regularisierte Schätzverfahren notwendig. Eine Alternative zur Schät-

zung mithilfe von Boosting-Methoden ist die penalisierte Maximum-Likelihood-Schätzung.

Im Allgemeinen werden die Parameterschätzungen hierbei durch Maximierung einer pena-

lisierten Form der log-Likelihood bestimmt. Sei δ, äquivalent zur Notation in Abschnitt

2.4, der Vektor der zu schätzenden Parameter δT = (θT ,βT ,γT1 , . . . ,γ
T
I ), so lautet die

penalisierte Log-Likelihood [Tutz und Schauberger, 2013]:

`pen(δ) = `(δ)− λJ(δ), (4.1)

wobei `(δ) die gewöhnliche log-Likelihood (3.5) darstellt. J(δ) ist ein Penalisierungsterm,

der die Parametervektoren auf bestimmte Weise bestraft. Die Stärke der Bestrafung wird

durch den Tuning-Parameter λ bestimmt.

Eine Penalisierung, die sich im vorliegenden Fall eignet, ist die L1−Penalisierung, da

sie bewirkt, dass Variablen selektiert werden. Diese Penalisierung wird auch mit Lasso

(least absolute shrinkage and selection operator) bezeichnet. Allgemeines zur Theorie

über L1−Penalisierung findet man in [Hastie et al., 2009].

Eine Verallgemeinerung dieser Penalisierung ist die Group-Lasso-Penalisierung. Durch

diese erreicht man zusätzlich, dass alle Komponenten einer mehrkategorialen Kovariable

oder eines Parametervektors gleichzeitig auf Null geschrumpft werden [Hastie et al., 2009].

Tutz und Schauberger [2013] verwenden diesen Penalisierungsansatz zur Modellierung

itemmodifizierender Effekte in den vorgestellten Rasch-Modellen (2.11) und (2.13). Mit

γ>i = (γi1, . . . , γiQ) lautet der verwendete Group-Lasso-Penalisierungsterm:

J(δ) =
I∑
i=1

‖γi‖, (4.2)

wobei ‖γi‖ =
√
γ2i1, . . . , γ

2
iQ.
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Der Penalisierungs-Term (4.2) beinhaltet nur die Parameter γi. Das hat den Effekt, dass

die Personen-Parameter θp und die Item-Parameter βi des einfachen Rasch-Modells (2.5)

vollständig ins Modell aufgenommen werden. Im Fall des Boostings wird dies durch eine

Schätzung in zwei Schritten realisiert (siehe Abschnitt 3.3).

Bei Verwendung der Group-Lasso-Penalisierung (4.2) gilt ebenfalls, dass γi = 0 oder

γiq 6= 0 ∀ q = 1, . . . , Q. Regularisierung erreicht man über den Parameter λ. Im Fall,

dass λ = 0, erhält man die vollständige Maximum-Likelihood-Schätzung. Falls λ → ∞,

wird das einfache Rasch-Modell ohne itemmodifizierende Effekte geschätzt. Die Wahl des

optimalen Tuning-Parameters λ wird mithilfe eines BIC getroffen [Tutz und Schauberger,

2013].

Die Simulationen in Kapitel 5 sind identisch zu denen, die in [Tutz und Schauberger, 2013]

vorgestellt werden. In Abschnitt 5.2.1 werden die Ergebnisse der Boosting-Schätzung und

der Schätzung mit Group-Lasso-Penalisierung miteinander verglichen.

4.2 Methoden zum Vergleich mehrerer Gruppen

Stellt man die Item-Response-Modelle aus Kapitel 2 in Form logistischer Regressionsmo-

delle dar (Abschnitt 2.4) und schätzt diese mithilfe von Boosting, so ist eine der Stärken,

dass die Anzahl an Kovariablen der Modelle beliebig groß sein kann. Insbesondere kann

sie deutlich größer sein als 1. Eine zweite Stärke dieser Betrachtungsweise ist, dass die

Kovariablen der Modelle nicht nur binär oder kategorial, sondern auch stetig sein können.

Existierende Methoden, um Items mit itemmodifizierenden Effekten zu identifizieren, sind

diesbezüglich deutlich eingeschränkt. Magis et al. [2010] stellen eine Übersicht an Metho-

den zur Bestimmung itemmodifizierender Effekte in Bezug auf eine binäre Kovariable

zur Verfügung. Drei Verfahren, die sich im Fall gleichmäßiger itemmodifizierender Effekte

anwenden lassen, werden im Folgenden kurz beschrieben.

Mantel-Haenszel

Die erste Methode, die nicht auf der Item-Response-Theorie basiert, ist die Mantel-

Haenszel (MH) Methode. Bedingt auf das Gesamtergebnis des Tests wird untersucht,
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ob ein Zusammenhang zwischen Gruppenzugehörigkeit der Person und Beantwortung der

Items des Tests besteht.

Sei I die Anzahl an Items des Tests und pi, i = 1, . . . , I die Anzahl an Personen mit

Gesamtergebnis i, d.h. mit i korrekt beantworteten Items. Dann betrachtet man für die

pi Personen pro Item eine 2 x 2-Kontingenztafel, wie sie für den Fall zweier Gruppen in

Tabelle 4.1 dargestellt ist.

richtig falsch

Gruppe 1 ai bi p1i

Gruppe 2 ci di p2i

pri pfi pi

Tabelle 4.1: Kontingenztafel der pi Personen für ein beliebiges Item zur Berechnung der

MH-Teststatistik.

Mit der Notation, wie sie in Tabelle 4.1 eingeführt wurde, lautet die MH-Teststatistik:

MH =

(
|
∑I

i=1 ai −
∑I

i=1 E(ai)| − 0.5
)2

∑I
i=1 Var(ai)

, mit (4.3)

E(ai) =
p1i pri
pi

und Var(ai) =
p1i p2i pri pfi
p2i (pi − 1)

Unter der Nullhypothese, dass kein Unterschied zwischen den beiden Gruppen bzgl. des

betrachteten Items vorhanden ist, ist die MH-Teststatistik asymptotisch χ2-verteilt mit

einem Freiheitsgrad. Die Nullhypothese wird abgelehnt, falls die MH-Statistik größer ist

als der kritische Wert der χ2-Verteilung [Magis et al., 2010]. Die MH-Methode kann auch

auf den Fall mehrerer Gruppen erweitert werden und ist in R im Paket difR [Magis et al.,

2013] in der Funktion difGMH implementiert.

Logistische Regression

Eine zweite Möglichkeit zur Bestimmung von Items mit itemmodifizierenden Effekten

ist die Verwendung eines logistischen Regressionsmodells. Magis et al. [2011] stellen ein
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generalisiertes Verfahren für den Vergleich mehrerer Gruppen bzgl. einer mehrkategorialen

Kovariable vor.

Sei im Folgenden Sp das Testergebnis von Person p mit Sp ∈ {0, . . . , I}, R die Varia-

ble der Gruppenzugehörigkeit mit R ∈ {1, . . . , k} und πpR die Wahrscheinlichkeit, dass

Person p aus Gruppe R das Item richtig beantwortet. Nimmt man an, dass das Tester-

gebnis für die Fähigkeit der Person steht, so betrachtet man zum Test auf gleichmäßige

itemmodifizierende Effekte ein logistisches Regressionsmodell mit Linkfunktion

logit(πpR) = α0 + αSp + αR (4.4)

und testet die Nullhypothese

H0 : α1 = · · · = αk = 0 vs.

H1 : αR 6= 0 für mind. ein R ∈ {1, . . . , k}.
(4.5)

Inhaltlich bedeutet die Nullhypothese, dass die Wahrscheinlichkeit einer richtigen Antwort

nur vom Ergebnis der Testperson und nicht zusätzlich von der Gruppenzugehörigkeit

der Person abhängt. Kann die Nullhypothese abgelehnt werden, wird die Schwierigkeit

des betrachteten Items von der Kovariable beeinflusst. Die Durchführung des Tests kann

mithilfe des Wald-Tests oder des Likelihood-Ratio-Tests erfolgen (siehe dazu [Magis et al.,

2011]). Der Test ist im difR-Paket in der Funktion difGenLogistic implementiert.

Lord’s χ2-Test

Eine dritte Methode zur Untersuchung, ob Items itemmodifizierende Effekte aufweisen, ist

ein χ2-Test nach Lord. Dieser beruht auf der Schätzung eines beliebigen Item-Response-

Modells. Für den einfachen Fall einer binären Kovariable, die zwei Gruppen kodiert, lautet

die Teststatistik des einfachen Rasch-Modells (2.5) für Item i [Magis et al., 2010]:

Qi =
(βi1 − βi2)

2

σ̂2
i1 + σ̂2

i2

, (4.6)

wobei βi1 und βi2 die Vektoren der Item-Schwierigkeiten der beiden Gruppen und σ̂i1 und
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σ̂i2 die zugehörigen geschätzten Standardabweichungen in den beiden Gruppen darstellen.

Mit Teststatistik (4.6) wird die Nullhypothese überprüft, ob alle Item-Parameter des Mo-

dells in den Gruppen, die durch die Kovariable gebildet werden, gleich sind [Magis et al.,

2010]. Lord’s χ2-Test ist ebenfalls im difR-Paket in der Funktion difGenLord umgesetzt.

In Abschnitt 5.2.2 werden die drei beschriebenen Methoden auf simulierte Daten ange-

wendet und die Ergebnisse der Selektion mit den Ergebnissen der Boosting-Schätzung zur

Modellierung itemmodifizierender Effekte verglichen.
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5 Simulation

Der Boosting-Algorithmus zur Schätzung itemmodifizierender Effekte, der in Kapitel 3

dargestellt wurde, wird im Folgenden in einer Simulationsstudie auf seine Funktionalität

überprüft. Es gilt herauszufinden, wie gut sich der Algorithmus zur Modellierung item-

modifizierender Effekte eignet und welche der variablen Komponenten der Schätzung die

besten Ergebnisse liefern. Dies betrifft insbesondere die Berechnung der Freiheitsgrade

(Abschnitt 3.4) und die zusätzliche Threshold-Regel (Abschnitt 3.6). Im Hauptteil der Si-

mulation, Abschnitt 5.1, wird das Rasch-Modell mit itemmodifizierenden Effekten (2.11)

in Betracht gezogen. Die Ergebnisse der Boosting-Schätzung werden anschließend in Ab-

schnitt 5.2 mit den Ergebnissen der penalisierten Maximum-Likelihood-Schätzung, welche

in Abschnitt 4.1 kurz eingeführt wurde, verglichen. Außerdem wird ein weiteres Simula-

tionsszenario für den Vergleich mit den Methoden für mehrere Gruppen (Abschnitt 4.2)

betrachtet. Im letzten Teil der Simulation, Abschnitt 5.3, wird das zweistufige Schätzver-

fahren für das Modell mit zusätzlichem Populationseffekt (2.13) analysiert.

5.1 Simulation des Rasch-Modells mit itemmodifizierenden Ef-

fekten

Im folgenden Abschnitt wird eine Simulationsstudie für das Rasch-Modell mit itemmodi-

fizierenden Effekten aus Abschnitt 2.2 vorgestellt und deren Ergebnisse analysiert.

5.1.1 Simulationsaufbau

Die Datensätze der Simulation (ypi,xp, zpi) sind nach der in Abschnitt 2.4 vorgestellten

Modellgleichung (2.11) gebildet:

log
(

P (ypi = 1|zpi)
1− P (ypi = 1|zpi)

)
= 1TP (p)θ − 1TI(i)β − xTp γi = ηpi

⇔ P (ypi = 1|zpi) =
exp(ηpi)

1 + exp(ηpi)
(5.1)
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Folgende Parameter sind für die Simulation der Datensätze des Modells relevant:

1. θp: Parameter der Fähigkeit von Person p

P: Anzahl der Personen

2. βi: Parameter der Schwierigkeit von Item i

I: Anzahl der Items

3. xp: Kovariablen von Person p

Q: Anzahl der Kovariablen

4. γi: Itemmodifizierende Effekte

Idif: Anzahl an Items mit itemmodifizierenden Effekten

In der Simulationsstudie werden insgesamt fünf verschiedene Parameter-Kombinationen

(Szenarien) betrachtet. Für jedes der Szenarien werden wiederum drei Fälle mit unter-

schiedlicher Stärke der itemmodifizierenden Effekte untersucht. Es werden Datensätze mit

starken, mittleren und schwachen Effekten simuliert.

Bestimmte Spezifikationen sind für alle Szenarien gleich:

• Die Personen- und Item-Parameter sind standardnormalverteilt: θp, βi ∼ N(0, 1)

• Anzahl an Kovariablen: Q = 5

• Die Verteilung der Kovariablen x lautet:

x1 ∼ B(1, 0.5), x3 ∼ B(1, 0.3) und

x2, x4 und x5 ∼ N(0, 1)

Die Kovariablen x werden jeweils standardisiert. Jede Komponente hat anschließend

eine Varianz von 1.
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• Die ersten vier Parameter γi sind:

γ>1 = (−0.8, 0.6, 0, 0, 0.8), γ>2 = (0, 0.8,−0.7, 0, 0.7), γ>3 = (0.6, 0, 0.8,−0.8, 0) und

γ>4 = (0, 0, 0.8, 0.7,−0.5)

• Stärke der itemmodifizierenden Effekte:

γiq = γiq · 1 (stark), γiq = γiq · 0.75 (mittel) und γiq = γiq · 0.5 (schwach)

Ein allgemeines Maß für die Stärke der itemmodifizierenden Effekte ist die Varianz Vi der

Item-Parameter βi + x>p γi. Falls die Komponenten in xp unabhängig sind, gilt:

Vi = Var(βi + x>p γi) = Var(βi)︸ ︷︷ ︸
=0

+Var(
Q∑
q=1

xpqγiq) =

=

Q∑
q=1

γ2iq Var(xpq)︸ ︷︷ ︸
=1

=

Q∑
q=1

γ2iq (5.2)

Der Durchschnitt von 1
Q
·
√
Vi über alle Items mit itemmodifizierenden Effekten ergibt

eine Kennzahl für die Stärke der itemmodifizierenden Effekte dieser Items [Tutz und

Schauberger, 2013]. Für die Datensätze der Simulation ergeben sich die Werte 0.25 (stark),

0.1875 (mittel) und 0.125 (schwach).

Die Ausprägungen der variierenden Parameter, anhand derer sich die fünf Szenarien un-

terscheiden, sind in Tabelle 5.1 aufgelistet.

Szenario 1 2 3 4 5

P 250 500 500 500 500

I 20 20 20 40 20

Idif 4 4 8 8 4

Tabelle 5.1: Übersicht über die Parameter-Kombinationen der fünf Szenarien der Simu-

lation.

In Tabelle 5.1 sind jeweils die Werte unterstrichen, die sich im Vergleich zum vorherigen

Szenario verändern. Für die Parametervektoren γi in Szenario 3 und 4 (mit Idif=8) gilt,
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dass γ5, . . . ,γ8 = γ1, . . . ,γ4. Alle anderen Parameter γi der Items ohne itemmodifizie-

rende Effekte sind jeweils entsprechend gleich Null.

Die Parameter-Kombination von Szenario 5 ist identisch zu der von Szenario 2. Die-

ses Szenario unterscheidet sich jedoch durch eine andere Besonderheit von allen anderen

Szenarien. In diesem Fall ist die Personen-Fähigkeit θp mit der Ausprägung der ersten

Kovariable x1 korreliert. Es gilt:

θp ∼

N(0, 1), falls x1p = 0

N(1, 1), falls x1p = 1.

(5.3)

In diesen Datensätzen ist ein genereller Fähigkeitsunterschied der beiden Gruppen, die

durch die Kovariable x1 gebildet werden, vorhanden. Dieses Phänomen wird bei der Model-

lierung in diesem Abschnitt nicht berücksichtigt. Im erweiterten Modell (2.13) entspricht

es dem Effekt des globalen Parameters γ. Dieses wird im letzten Teil dieses Kapitels,

Abschnitt 5.3, behandelt.

Für jedes der fünf Szenarien werden je 100 Datensätze mit starken, mittleren und schwa-

chen itemmodifizierenden Effekten generiert.

5.1.2 Funktion zur Durchführung der Schätzung

Die Durchführung der Boosting-Schätzung erfolgt schrittweise, wie es in den Abschnitten

3.3 bis 3.6 beschrieben ist. Berechnet werden die Boosting-Ergebnisse in R mit der Funk-

tion boostIME (boosting Item Modifizierende Effekte). Der zugehörige R-Code ist in der

Datei boostIME.R verfügbar. Der Kopf der Funktion sieht folgendermaßen aus:

boostIME <- function(Y,DM_kov,mstop,

df_method=c("trace","actset"),

thresh_method=c("no_thresh","freq_rel","size_quad"),

thresh=seq(0,1,by=0.1),

dfs_trace=c())

Der Funktion boostIME werden die Matrix mit den Realisierungen der Zielgröße Y ∈

RPxI, die Designmatrix der Kovariablen DM_kov ∈ RPxQ und die Anzahl zu berechnender
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Iterationen mstop = mstop übergeben.

Die optimale Anzahl an Iterationen wird mithilfe des BIC bestimmt (siehe Abschnitt

3.4). Die Freiheitsgrade können entweder über die aktuelle Anzahl an Parametern im

Modell, df_method="actset", oder über die Spur der Hat-Matrix bestimmt werden,

df_method="trace". In den weiteren Darstellungen werden für diese beiden Fälle die

Bezeichnungen „actset“ und „trace“ verwendet.

Mit der Option thresh_method="no_thresh" wird die Boosting-Schätzung ohne zusätz-

liche Threshold-Regel berechnet. Durch thresh_method="freq_rel" wird als Threshold-

Kriterium die minimale Anzahl an Iterationen, in denen der Parametervektor γi aktuali-

siert wurde, und durch thresh_method="size_quad" die euklidische Norm der Parame-

terschätzungen γ̂i verwendet (siehe Abschnitt 3.6). In den weiteren Darstellungen werden

für diese beiden Fälle die Bezeichnungen „freq“ und „size“ verwendet. Der Vektor der

kritischen Threshold-Werte wird durch das Argument thresh übergeben.

Im Fall trace werden die Freiheitsgrade über die Funktion AIC aus dem Paket mboost

berechnet. Wurden diese im Vorfeld bereits für das Modell bestimmt, so können diese der

Funktion direkt über das Argument dfs_trace übergeben werden.

5.1.3 Auswertung des ersten Simulationsszenarios

In diesem Abschnitt werden alle Ergebnisse und Auswertungen des ersten Simulationss-

zenarios aus Tabelle 5.1 dargestellt und diskutiert.

In Abbildung 5.1 sieht man die Koeffizienten-Pfade beispielhaft für den ersten Daten-

satz mit starken itemmodifizierenden Effekten. In Betracht gezogen wird die Boosting-

Schätzung ohne zusätzlichen Threshold. Abgetragen sind die Werte der Koeffizienten γiq

in Abhängigkeit der Iteration m. Die Koeffizienten der Items mit itemmodifizierenden Ef-

fekten γ1, . . . ,γ4 sind farbig gekennzeichnet. Die Parameter der Parametervektoren eines

Items besitzen dieselbe Farbe. Die Koeffizienten γ5, . . . ,γ20 sind durch schwarze Linien

zu sehen. Eingezeichnet ist in Abbildung 5.1 mit gestrichelten Linien die optimale Anzahl

an Iterationen nach dem BIC bei Berechnung der Freiheitsgrade über die aktuelle Anzahl

an Parametern (actset) und über die Spur der Hat-Matrix (trace).

Aus der Graphik wird ersichtlich, dass jeweils alle Komponenten eines Parametervektors
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Abb. 5.1: Koeffizientenpfade der Parameter γiq für Datensatz 1 von Szenario 1 mit star-

ken Effekten. Eingezeichnet ist zusätzlich die optimale Anzahl an Iterationen

nach dem BIC (gestrichelte Linien).

γi gemeinsam aktualisiert werden, da sich alle fünf Pfade gleichzeitig von der Nulllinie

entfernen. Es gilt: γ̂i = 0 oder γ̂iq 6= 0 ∀ q = 1, . . . , Q. Bei mstop=0 liegt das reine Rasch-

Modell ohne itemmodifizierende Effekte vor, bei mstop=500 sind nahezu alle Koeffizienten

γ̂iq ungleich Null.

Ziel der Berechnung ist die korrekte Identifizierung der Items, die itemmodifizierende

Effekte aufweisen. Ein optimales Ergebnis der Berechnungen liegt dann vor, wenn die

Parametervektoren γ1, . . . ,γ4 ungleich Null und alle anderen Parameter γi, i = 5, . . . , 20

gleich Null geschätzt werden. Aus Abbildung 5.1 wird ersichtlich, dass in beiden Fällen

alle Items, die itemmodifizierende Effekte aufweisen, erkannt werden. Im Fall actset ist die
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Selektion perfekt, da γ̂5, . . . , γ̂20 gleich Null gesetzt sind. Im Fall trace ist die Selektion

hingegen nicht perfekt, da nicht alle Items ohne itemmodifizierende Effekte gleich Null

geschätzt werden. Das optimale Modell nach dem BIC ist in diesem Fall zu groß.

Die Parameterschätzungen γ̂iq aller 100 Datensätze mit starken Effekten sind in Abbildung

5.2 in Form von Boxplots dargestellt. Zusätzlich sind jeweils die wahren Parameter-Werte

γiq mit roten Punkten eingezeichnet.

In der oberen Graphik in Abbildung 5.2 sieht man, dass nur bei einer Schätzung γ19

fälschlicherweise ins Modell aufgenommen wird. In allen anderen Fällen sind γ̂5, . . . , γ̂20

gleich Null. Die Parameterschätzungen γ̂1, . . . , γ̂4 sind deutlich kleiner als die wahren

Werte, falls diese von Null verschieden sind. Anhand der Boxplots wird ersichtlich, dass

viele der zugehörigen Parameterschätzungen γ̂iq gleich Null sind. Dies bedeutet, dass nicht

alle Items mit itemmodifizierenden Effekten ins Modell aufgenommen werden und somit

die Selektion nicht funktioniert.

In der unteren Graphik in Abbildung 5.2, in der die Schätzungen im Fall trace zu sehen

sind, zeigt sich ein anderes Bild. Im Vergleich zur oberen Graphik sind die Parameter-

schätzungen γ̂1, . . . , γ̂4 der Items mit itemmodifizierenden Effekten deutlich näher an den

wahren Werten. Insbesondere sind die Schätzungen immer ungleich Null, was bedeutet,

dass alle Items mit itemmodifizierenden Effekten korrekt identifiziert werden. Wie schon

im Beispiel in Abbildung 5.1 sind jedoch in einigen Fällen die Parameterschätzungen

γ̂5, . . . , γ̂20 von Null verschieden. Im Fall trace werden häufig zu viele Parametervekto-

ren γi ins Modell aufgenommen, sodass das geschätzt optimale Modell größer ist als das

zugrundeliegende wahre Modell.

Zwei allgemeine Kennzahlen, die angeben, wie gut die Selektion funktioniert, sind:

• Anteil der korrekt spezifizierten Items mit itemmodifizierenden Effekten (richtig-

positiv)

• Anteil der Items, für die fälschlicherweise itemmodifizierende Effekte geschätzt wer-

den (falsch-positiv)
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Abb. 5.2: Boxplots der geschätzten Parameter γ̂iq von Szenario 1 mit starken Effekten

für den Fall actset (oben) und trace (unten). Eingezeichnet sind zusätzlich die

wahren Parameter-Werte γiq (rote Punkte).
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Tabelle 5.2 zeigt die Ergebnisse des Anteils richtig-positiver und falsch-positiver Items des

ersten Simulationsszenarios der Schätzungen ohne zusätzlichen Threshold. Aufgelistet ist

jeweils der Durchschnitt über alle 100 Datensätze. Die Freiheitsgrade des BIC wurden im

ersten Fall über die aktuelle Anzahl an Parametern im Modell (actset) und im zweiten

Fall über die Spur der Hat-Matrix (trace) bestimmt.

richtig-positiv falsch-positiv

actset trace actset trace

stark 0.5100 1.0000 0.0006 0.1000

mittel 0.0175 0.9900 0.0000 0.0506

schwach 0.0000 0.7675 0.0000 0.0200

Tabelle 5.2: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

von Szenario 1 der Simulation.

Aus Tabelle 5.2 wird ersichtlich, dass die Selektion im Fall actset im Allgemeinen sehr

schlecht funktioniert. Ein durchschnittlicher richtig-positiv Anteil von 0.51 im Fall starker

Effekte bedeutet, dass im Schnitt nur die Hälfte der relevanten itemmodifizierenden Effek-

te korrekterweise ins Modell aufgenommen werden. Sind mittlere oder schwache Effekte

im Modell enthalten, liegt dieser Anteil bei 0.0175 bzw. 0. In diesen Fällen wird das ein-

fache Rasch-Modell ohne itemmodifizierende Effekte angepasst. Die Freiheitsgrade über

die aktuelle Anzahl an Parametern im Modell sind zu groß und das geschätzt optimale

Modell meistens deutlich zu klein.

Im Fall trace funktioniert die Selektion der itemmmodifizierenden Effekte hingegen gut.

Falls starke Effekte vorliegen, erhält man einen richtig-positiv Anteil von 1 und alle Items

mit itemmodifizierenden Effekten werden korrekt erkannt. Bei mittleren Effekten ist dies

auch nahezu immer der Fall. Liegen schwache itemmodifizierende Effekte vor, so ist die

Selektion schwerer und man erhält einen richtig-positiv Anteil von nur 0.7675. Trotz des

zufriedenstellenden richtig-positiv Anteils, sind die falsch-positiv Anteile der Berechnun-

gen mit trace zu hoch. Im Modell sind jeweils 16 Items ohne itemmodifizierende Effekte

vorhanden. Der falsch-positiv Anteil von 0.1 im Fall starker Effekte bedeutet, dass jedes

Modell um ein bis zwei Parametervektoren γi zu groß ist.
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Die Parameterschätzungen der Item-Parameter β̂i der 100 Datensätze mit starken Effekten

sind in Abbildung 5.3 in Form von Boxplots zu sehen. Abgetragen sind die Schätzungen im

Fall trace. Die Werte sind jeweils um den wahren Wert βi zentriert. Wurde der Parameter

korrekt geschätzt, so ist der resultierende Wert exakt Null. Die Nulllinie ist zusätzlich als

gestrichelte Linie gekennzeichnet.
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Abb. 5.3: Boxplots der geschätzten Parameter β̂i von Szenario 1 mit starken Effekten.

Aus Abbildung 5.3 ist erkennbar, dass die geschätzten Werte β̂i größtenteils unauffällig

um die wahren Werte schwanken. Lediglich die Schätzungen für Item 3 und 4 sind sys-

tematisch zu klein. Auch die Schätzungen für Item 1 und 18 sind weitgehend kleiner als

die wahren Werte. Dies entspricht der allgemeinen Tendenz, dass die Parameter βi eher

leicht unterschätzt werden. Als Referenz-Item wird das maximale Item gewählt, für das

γ̂i = 0 (vgl. Abschnitt 3.5). In den meisten Fällen fungiert Item 20 als Referenz-Item und

der wahre und der geschätzte Wert sind gleich Null. Vier Schätzungen nehmen Item 20

fälschlicherweise ins Modell auf, sodass Item 19 als Referenz-Item festgelegt wird.
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Als quantitatives Maß für die Güte der Schätzung der Parameter werden mittlere quadrati-

sche Fehler (MSE) in Betracht gezogen [Tutz und Schauberger, 2013]. Für die geschätzten

Personen-Parameter θp ist der mittlere quadratische Fehler:

MSEpersons =
1

P

P∑
p=1

(θ̂p − θp)2 (5.4)

Der mittlere quadratische Fehler der Item-Parameter βi + x>p γi lautet:

MSEitems =
1

P · I

P∑
p=1

I∑
i=1

{
(βi + x>p γi)− (β̂i + x>p γ̂i)

}2

(5.5)

Als Resultat der Simulation wird der Durchschnitt der beiden mittleren quadratischen

Fehler über alle 100 Datensätze berechnet. Die Ergebnisse der mittleren quadratischen

Fehler für Simulationsszenario 1 ohne zusätzlichen Threshold sind in Tabelle 5.3 einge-

tragen. Unterschieden werden wieder die Methoden actset und trace der Berechnung der

Freiheitsgrade des BIC.

MSEpersons MSEitems

actset trace actset trace

stark 0.3455 0.3448 0.2604 0.1474

mittel 0.3520 0.3522 0.2360 0.1308

schwach 0.3566 0.3566 0.1406 0.1140

Tabelle 5.3: Durchschnittliche mittlere quadratische Fehler der Personen-und Item-

Parameter von Szenario 1 der Simulation.

Man kann ablesen, dass der MSE der Personen-Parameter weder von der Stärke der item-

modifizierenden Effekte noch von der Berechnung der Freiheitsgrade abhängt. Der durch-

schnittliche Wert schwankt in allen sechs Fällen in etwa um den Wert 0.35. Das Ergebnis

ist nicht verwunderlich, da die Schätzung der Personen-Parameter θp unabhängig von

der Modellselektion ist. Alle Personen-Parameter werden jeweils zunächst durch ein lo-

gistisches Regressionsmodell geschätzt und vollständig ins Modell aufgenommen. Im Fall

schwacher Effekte sind die MSEs der Personen-Parameter sogar identisch. Die mittleren
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quadratischen Fehler der Item-Parameter unterscheiden sich hingegen deutlich. Wie schon

aus Abbildung 5.2 ersichtlich, sind die Schätzungen der Parameter γ̂1, . . . , γ̂4, der Items

mit itemmodifizierenden Effekten im Fall trace deutlich besser als im Fall actset. Dement-

sprechend sind die geschätzten MSEs wesentlich kleiner. Die MSEs der Item-Parameter

hängen außerdem von der Stärke der itemmodifizierenenden Effekte ab. Je geringer die im

Modell vorhandenen Effekte sind, desto kleiner sind die geschätzten Fehler. Das liegt dar-

an, dass die absoluten Werte γiq jeweils kleiner sind und die Abweichungen zur Schätzung

damit auch entsprechend kleiner werden.

Alle bisherigen Analysen von Simulationsszenario 1 ergeben, dass die Selektion der item-

modifizierenden Effekte anhand des BIC gut funktioniert, falls man die Freiheitsgrade

über die Spur der Hat-Matrix bestimmt. Die falsch-positiv Anteile in Tabelle 5.2 haben

jedoch gezeigt, dass die Selektion nicht perfekt ist. Die geschätzt optimalen Modelle sind

größer als das zugrundeliegende wahre Modell. Wie in Abschnitt 3.6 beschrieben wurde,

bewirkt die Einführung einer Threshold-Regel, dass sehr kleine Parameterschätzungen γ̂i
durch vorheriges Nullsetzen nicht ins endgültige Modell aufgenommen werden. Dies sollte

die Modellselektion verbessern, falls das selektierte Modell, wie es hier der Fall ist, zu

groß ist. Der kritische Threshold, für den sich das optimale Modell ergibt, bestimmt sich

für alle Berechnungen der Simulation aus einer Sequenz von 0 bis 1 mit elf Elementen.

Betrachtet wird der Vektor (0, 0.1, . . . , 0.9, 1).

In Tabelle 5.4 sind die durchschnittlichen Anteile richtig-positiver und falsch-positiver

Items der 100 Datensätze der Boosting-Schätzung für den Fall trace mit zusätzlichem

Threshold eingetragen. Im ersten Fall wird der kritische Threshold mit der Anzahl an

Boosting-Iterationen, in denen der Parametervektor γi aktualisiert wurde (freq) und im

zweiten Fall mit der euklidischen Norm des Parametervektors γi (size) verglichen.

Die Ergebnisse aus Tabelle 5.4 zeigen, dass die Schätzung mit zusätzlicher Threshold-

Regel die gewünschte Verbesserung der Selektion ergibt. Der Anteil falsch-positiver Items

sinkt in allen Fällen deutlich in Richtung Null. Für die Schätzungen mit starken Effek-

ten, die einen richtig-positiv Anteil von 1 ergeben, liegt der Anteil fälschlicherweise ins

Modell aufgenommener Parameter nur noch bei 0.0138 bzw. 0.0044. Die Modellselektion

ist in diesen Fällen perfekt. Ohne Threshold-Regel lag der falsch-positiv Anteil bei 0.1
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richtig-positiv falsch-positiv

freq size freq size

stark 1.0000 1.0000 0.0138 0.0044

mittel 0.9800 0.9800 0.0094 0.0050

schwach 0.7350 0.7300 0.0094 0.0075

Tabelle 5.4: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

von Szenario 1 der Simulation im Fall trace mit zusätzlichem Threshold.

(vgl. Tabelle 5.2). Es fällt auf, dass die Anteile richtig-positiver Items, falls mittlere oder

schwache Effekte im Modell vorhanden sind, durch die zusätzliche Threshold-Regel leicht

sinken. Dies verändert die Grundaussage über die Selektionsgüte jedoch nicht.

In Abbildung 5.4 sind die MSEs der Item-Parameter für die 100 Datensätze mit starken

Effekten in Form von Boxplots dargestellt. Gegenübergestellt sind die Ergebnisse der

Schätzung ohne Threshold und die Ergebnisse der beiden Schätzungen mit zusätzlichem

Threshold.
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Abb. 5.4: Boxplot der MSEs der Item-Parameter der Datensätze mit starken Effekten.

Verglichen werden die Ergebnisse mit und ohne zusätzlichen Threshold.
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Aufgrund der besseren Selektionsgüte verringert sich der mittlere quadratische Fehler der

Item-Parameter βi+x>p γi mit zusätzlicher Threshold-Regel sichtbar. Im Median sinkt der

MSE von 0.13 auf 0.11 ab.

Ein Vergleich der beiden Threshold-Methoden ergibt, dass die Ergebnisse mit der eu-

klidischen Norm der Parametervektoren besser sind als mit der minimalen Anzahl an

Boosting-Iterationen. Die falsch-positiv Anteile im Fall size liegen deutlich unter einem

Prozent (vgl. Tabelle 5.4). Anhand der Boxplots (Abbildung 5.4) lassen sich nur geringfü-

gige Unterschiede zwischen den Methoden ausmachen. Die Werte im Fall size sind jedoch

am niedrigsten.

In diesem Abschnitt wurden die Ergebnisse des ersten Simulationsszenarios mit 250 Per-

sonen und 20 Items analysiert. Die Modelle enthalten 4 Items mit itemmodifizierenden

Effekten. Bestimmt man die Freiheitsgrade über die aktuelle Anzahl an Parametern im

Modell, so funktioniert die Selektion itemmodifizierender Effekte sehr schlecht. Die al-

ternative Methode, bei der die Freiheitsgrade über die Spur der Hat-Matrix bestimmt

werden, funktioniert hingegen gut. Hier erhält man mit zusätzlicher Threshold-Regel für

die Schätzungen mit starken und mittleren Effekten perfekte Selektionsergebnisse. Für

die Analyse der weiteren Simulationsszenarien ist vor allem die Verbesserung der Selekti-

onsgüte im Fall schwacher itemmodifizierender Effekte von Interesse.

5.1.4 Auswertung der weiteren Simulation

Im vorherigen Abschnitt 5.1.3 wurden die Ergebnisse des ersten Simulationsszenarios aus-

führlich analysiert. Die vorgestellten Kennzahlen werden im Folgenden für die Szenarien 2

bis 5 der Simulation ausgewertet und in Bezug zu den Ergebnissen von Szenario 1 gesetzt.

Tabelle 5.5 zeigt die Ergebnisse des Anteils richtig-positiver und falsch-positiver Items der

Berechnungen ohne zusätzlichen Threshold. Aufgelistet ist jeweils der Durchschnitt über

alle 100 Datensätze. Die Anteile, die sich für Szenario 1 ergeben, sind der Vollständigkeit

halber nochmals mit angeführt.

Die Ergebnisse aus Tabelle 5.5 bestätigen die Analysen aus Abschnitt 5.1.3, dass die

Selektion itemmodifizierender Effekte bei Berechnung der Freiheitsgrade über die Spur
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richtig-positiv falsch-positiv

Szenario actset trace actset trace

stark 0.5100 1.0000 0.0006 0.1000

1 mittel 0.0175 0.9900 0.0000 0.0506

schwach 0.0000 0.7675 0.0000 0.0200

stark 1.0000 1.0000 0.0038 0.1300

2 mittel 0.9500 1.0000 0.0025 0.0894

schwach 0.0075 0.9800 0.0000 0.0338

stark 1.0000 1.0000 0.0233 0.2800

3 mittel 0.9900 1.0000 0.0208 0.1783

schwach 0.0000 0.9850 0.0000 0.0625

stark 1.0000
nicht

berechenbar

0.0072
nicht

berechenbar
4 mittel 0.9788 0.0063

schwach 0.0000 0.0000

stark 0.9975 1.0000 0.0031 0.1238

5 mittel 0.8275 1.0000 0.0006 0.0763

schwach 0.0000 0.9100 0.0000 0.0375

Tabelle 5.5: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

der fünf Szenarien der Simulation.

der Hat-Matrix (trace) sehr gut, bei Berechnung der Freiheitsgrade über die aktuelle

Anzahl an Parametern im Modell (actset) hingegen weniger gut funktioniert.

In Szenario 2 bis 5 werden jeweils 500 Personen betrachtet. Falls starke oder mittlere

Effekte vorhanden sind, steigt der richtig-positiv Anteil im Fall actset, verglichen mit

Szenario 1 mit 250 Personen, auf 1 bzw. nahe an 1 heran. Lediglich in Szenario 5 liegt

der richtig positiv Anteil der Schätzung mit mittleren Effekten bei 0.8275 und ist damit

etwas niedriger. Für alle fünf Szenarien gilt, dass die Selektion nicht funktioniert, falls nur

schwache itemmodifizierende Effekte im Modell enthalten sind. Diese können mithilfe des

activ set nicht identifiziert werden und man erhält jeweils einen richtig-positiv Anteil von

0.

Im Fall trace erhält man wie in Szenario 1 für alle Berechnung mit starken und mittleren

Effekten optimale richtig-positiv Anteile von 1. Auch im Fall schwacher itemmodifizieren-

der Effekte steigt der richtig-positiv Anteil deutlich in Richtung 1. Lediglich für Szenario 5
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ist er mit 0.91 etwas niedriger. Die sehr guten richtig-positiv Anteile bringen mit sich, dass

auch die falsch-positiv Anteile wie in Szenario 1 sehr hohe Werte annehmen. Vor allem

in Szenario 3 ist der falsch-positiv Anteil deutlich zu groß. In Szenario 3 weisen 12 der

20 im Modell enthaltenen Items keine itemmodifizierende Effekte auf. Ein falsch-positiv

Anteil von 0.28 für die Schätzung mit starken Effekten bedeutet, dass im Schnitt drei

Parametervektoren γi fälschlicherweise ins Modell aufgenommen werden. Die zusätzliche

Threshold-Regel ermöglicht es im Folgenden, den Anteil falsch-positiver Items stark zu

senken und die Selektionsgüte zu optimieren.

Die mittleren quadratischen Fehler der fünf Szenarien der Simulation ohne zusätzlichen

Threshold sind in Tabelle 5.6 zusammengestellt. Eingetragen sind der quadratische Fehler

der Personen-Parameter (5.4) und der quadratische Fehler der Item-Parameter (5.5) als

Durchschnitt über alle 100 Datensätze.

MSEpersons MSEitems

Szenario actset trace actset trace

stark 0.3455 0.3448 0.2604 0.1474

1 mittel 0.3520 0.3522 0.2360 0.1308

schwach 0.3566 0.3566 0.1406 0.1140

stark 0.3090 0.3108 0.0814 0.0712

2 mittel 0.3135 0.3148 0.0680 0.0575

schwach 0.3196 0.3195 0.0985 0.0504

stark 0.3185 0.3216 0.1671 0.1342

3 mittel 0.3190 0.3208 0.1139 0.0972

schwach 0.3219 0.3233 0.1764 0.0812

stark 0.1674
nicht

berechenbar

0.0897
nicht

berechenbar
4 mittel 0.1690 0.0721

schwach 0.1695 0.1029

stark 0.3334 0.3341 0.1020 0.0891

5 mittel 0.3376 0.3374 0.0949 0.0702

schwach 0.3407 0.3403 0.1024 0.0587

Tabelle 5.6: Durchschnittliche mittlere quadratische Fehler der Personen-und Item-

Parameter der fünf Szenarien der Simulation.
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Die MSEs der Personen-Parameter verringern sich im Vergleich zu Szenario 1 für die

Szenarien 2 bis 5 mit 500 Personen. Eine deutliche Verbesserung ergibt sich für Szenario 4

mit 40 Items. Der durchschnittliche MSE ist in etwa um die Hälfte kleiner als der MSE der

anderen Szenarien. Es bestätigt sich, dass die Berechnung der Freiheitsgrade und damit

die Modellselektion keinen Einfluss auf die Schätzung der Personen-Parameter hat. Die

MSEs der Personen-Parameter nehmen im Fall actset und im Fall trace jeweils nahezu

dieselben Werte an.

Die MSEs der Item-Parameter sind aufgrund der besseren Selektion der Parameter γi
im Fall trace durchgehend kleiner als im Fall actset. Die niedrigsten Werte erhält man

für Szenario 2. Etwas höher sind die Werte für Szenario 3, dessen Modell acht Items mit

itemmodifizierenden Effekten enthält.

Großer Nachteil der Berechnungen im Fall trace ist der Rechenaufwand und die Rechenzeit

für die Berechnung der Hat-Matrix (vgl. Theorie in Abschnitt 3.4). Für Szenario 3 liegt die

optimale Anzahl an Iterationen m∗stop in etwa bei 1000. Die Berechnung der Freiheitsgrade

df(m) in jedem Iterationsschritt nimmt dafür einige Stunden in Anspruch. Das Modell in

Szenario 4 beinhaltet 40 Items und damit 40 Parametervektoren γi. Die Größe dieser

Modelle lässt die Berechnung der Freiheitsgrade mit der Funktion AIC aus dem Paket

mboost mit den zur Verfügung stehenden Rechen- und Speicherkapazitäten gar nicht

mehr zu. In den Tabellen 5.5 und 5.6 sind daher für Szenario 4 keine Werte eingetragen.

Aufgrund der bisherigen Ergebnisse werden in den folgenden Analysen und in den Ab-

schnitten 5.2 und 5.3 nur noch die Berechnungen für den Fall trace und dabei die Simu-

lationsszenarien 1, 2, 3 und 5 in Betracht gezogen.

Tabelle 5.7 enthält die durchschnittlichen Anteile richtig-positiver und falsch-positiver

Items der vier berechenbaren Szenarien der Simulation im Fall trace mit zusätzlichem

Threshold. Im ersten Fall wird als Kriterium die Anzahl an Boosting-Iterationen, in denen

der Parametervektor γi aktualisiert wurde (freq), und im zweiten Fall als Kriterium die

euklidische Norm des Parametervektors γi (size) verwendet.

Wie schon in Szenario 1 zeigt sich auch für die Szenarien 2, 3 und 5, dass die Selektion der

itemmodifizierenden Effekte mit zusätzlicher Threshold-Regel deutlich verbessert werden

kann. Die Anteile falsch-positiver Items in Tabelle 5.7 sind im Vergleich zu den Werten
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richtig-positiv falsch-positiv

Szenario freq size freq size

stark 1.0000 1.0000 0.0138 0.0044

1 mittel 0.9800 0.9800 0.0094 0.0050

schwach 0.7350 0.7300 0.0094 0.0075

stark 1.0000 1.0000 0.0081 0.0013

2 mittel 1.0000 1.0000 0.0063 0.0019

schwach 0.9675 0.9625 0.0063 0.0044

stark 1.0000 1.0000 0.0108 0.0108

3 mittel 1.0000 1.0000 0.0033 0.0025

schwach 0.9588 0.9563 0.0041 0.0033

stark 1.0000 1.0000 0.0119 0.0038

5 mittel 0.9975 0.9975 0.0100 0.0063

schwach 0.8950 0.8925 0.0081 0.0069

Tabelle 5.7: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

der Simulation im Fall trace mit zusätzlichem Threshold. Unterschieden

werden die beiden Methoden freq und size.

in Tabelle 5.5 wesentlich kleiner. Der falsch-positiv Anteil von Szenario 3 reduziert sich

beispielsweise, falls starke Effekte im Modell vorhanden sind, von 0.28 auf 0.01 und, falls

mittlere Effekte im Modell enthalten sind, von 0.1783 auf 0.0033 bzw. 0.0025. Dies bringt

eine enorme Verbesserung der Selektion mit sich.

Der Vergleich der beiden Threshold-Methoden ergibt, dass die Verwendung der euklidi-

schen Norm der Parametervektoren γi als Threshold-Kriterium etwas bessere Ergebnisse

liefert. Hier erreicht man die niedrigsten Anteile falsch-positiver Items.

Es ist anzumerken, dass die richtig-positiv Anteile der Szenarien mit schwachen itemmo-

difizierenden Effekten jeweils im Vergleich zur Berechnung ohne zusätzlichen Threshold

(vgl. Tabelle 5.5) leicht sinken. Dies schadet aber dem perfekten Selektionsergebnis, wie

es sich in Tabelle 5.7 darstellt, nicht.

Um den Effekt der Threshold-Regel graphisch zu visualisieren, sind in Abbildung 5.5 die

geschätzten Parameter γ̂iq von Szenario 2 mit starken itemmodifizierenden Effekten in

Form von Boxplots dargestellt. Zusätzlich sind jeweils die wahren Parameter-Werte γiq
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Abb. 5.5: Boxplots der geschätzten Parameter γ̂iq von Szenario 2 mit starken Effekten

im Fall trace ohne Threshold (oben) und mit Threshold (unten). Eingezeich-

net sind zusätzlich die wahren Parameter-Werte γiq (rote Punkte).
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mit roten Punkten eingezeichnet. Die obere Graphik zeigt die geschätzten Parameter ohne

zusätzlichen Threshold. Man sieht, dass einige Schätzungen γ̂5, . . . , γ̂20 fälschlicherweise

von Null verschieden sind. Dies äußert sich in einem Anteil falsch-positiver Items von 0.13

(vgl. Tabelle 5.5). Die untere Graphik zeigt die geschätzten Parameter mit zusätzlichem

Threshold. Angewendet wurde die Threshold-Regel size, für welche der Anteil falsch-

positiver Items nur bei 0.0013 liegt (vgl. Tabelle 5.7). Es ist ersichtlich, dass genau bei einer

Schätzung γ̂5 und bei einer Schätzung γ̂17 ungleich Null ist. Alle anderen Schätzungen

γ̂5, . . . , γ̂20 sind korrekterweise gleich Null.

Die Schätzungen der Item-Parameter β̂i für Szenario 2 mit starken itemmodifizierenden

Effekten mit Threshold-Methode size sind in Abbildung 5.6 in Form von Boxplots darge-

stellt. Die geschätzten Parameter sind jeweils um den wahren Wert βi zentriert.
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Abb. 5.6: Boxplots der geschätzten Parameter β̂i mit Threshold-Methode size von Sze-

nario 2 mit starken Effekten.
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Da der Parametervektor γ20 nie ins Modell mit aufgenommen wird (vgl. Abbildung 5.5

unten), fungiert Item 20 immer als Referenzitem. Der zugehörige Schätzwert β̂20 ist immer

korrekterweise gleich Null. Es ist auffällig, dass im Vergleich zu allen anderen Items die

Schätzungen β̂1 deutlich vom wahren Wert abweichen. Diese Auffälligkeit tritt bei den

Schätzungen der Item-Parameter βi für alle Szenarien mit 500 Personen auf. Die Abwei-

chung reduziert sich jeweils mit abnehmender Stärke der itemmodifizierenden Effekte.

Die Simulationen des Rasch-Modells mit itemmodifizierenden Effekten (2.6) ergeben, dass

die Bestimmung relevanter itemmodifizierender Effekte bei Berechnung der Freiheitsgrade

des BIC über die aktuelle Anzahl an Parametern im Modell nicht funktioniert, falls nur

schwache Effekte im Modell vorhanden sind. Berechnet man die Freiheitsgrade über die

Spur der Hat-Matrix, ist es immer möglich, die relevanten itemmodifizierenden Effekte

zu selektieren. Mithilfe einer zusätzlichen Threshold-Regel erreicht man, dass nur in den

seltensten Fällen fälschlicherweise weitere Items ins Modell aufgenommen werden. Die

vorliegenden Selektionsergebnisse sind nahezu perfekt. Weitere graphische Auswertungen

der Schätzungen der Parameter βi und γiq finden sich in Anhang A.

5.2 Vergleich alternativer Schätzmethoden

5.2.1 Penalisierung der Likelihood

Als Alternative zur Boosting-Schätzung kann eine regularisierte Schätzung der Parame-

tervektoren γi auch durch penalisierte Maximum-Likelihood-Schätzung erreicht werden.

Diese Methode wurde in Abschnitt 4.1 kurz eingeführt. Tutz und Schauberger [2013] füh-

ren zur Evaluierung dieses Schätzverfahrens die gleiche Simulationsstudie durch, die in

Abschnitt 5.1 vorgestellt wurde. Sie bezeichnen ihre Methode mit „DIF-Lasso“. Nachfol-

gend werden die Ergebnisse der in dieser Arbeit vorgestellten Boosting-Schätzung mit den

Ergebnissen der DIF-Lasso-Schätzung verglichen.

Die Auswertungen in Abschnitt 5.1 haben gezeigt, dass die Selektion bei Berechnung

der Freiheitsgrade des BIC mit der aktuellen Anzahl an Parametern im Modell (actset)

nicht gut funktioniert. Es ist naheliegend, dass die Boosting-Schätzungen in diesem Fall
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richtig-positiv falsch-positiv

Szenario DIF-Lasso Boosting DIF-Lasso Boosting

stark 0.9900 1.0000 0.0160 0.0044

1 mittel 0.7900 0.9800 0.0030 0.0050

schwach 0.0400 0.7300 0.0000 0.0075

stark 1.0000 1.0000 0.0220 0.0013

2 mittel 1.0000 1.0000 0.0130 0.0029

schwach 0.7100 0.9625 0.0010 0.0044

stark 1.0000 1.0000 0.0890 0.0108

3 mittel 1.0000 1.0000 0.0420 0.0025

schwach 0.7700 0.9563 0.0020 0.0033

stark 1.0000 1.0000 0.0220 0.0038

5 mittel 0.9900 0.9975 0.0090 0.0063

schwach 0.5600 0.8925 0.0010 0.0069

Tabelle 5.8: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven

Items der Szenarien der Simulation für die DIF-Lasso-Schätzung und die

Boosting-Schätzung.

auch nicht mit den Schätzungen der DIF-Lasso-Methode mithalten können. Anders ist

es hingegen bei Berechnung der Freiheitsgrade über die Spur der Hat-Matrix (trace).

In Tabelle 5.8 sind die Ergebnisse der Boosting-Schätzung im Fall trace den Ergebnis-

sen der DIF-Lasso-Schätzung für die Simulationsszenarien 1, 2, 3 und 5 (vgl. Abschnitt

5.1.1) gegenübergestellt. Aufgelistet sind die Anteile richtig-positiver und falsch-positiver

Items bei Berechnung der Boosting-Schätzung mit zusätzlicher Threshold-Methode size

als Durchschnitt über alle 100 Datensätze. Die Anteile der DIF-Lasso-Schätzung sind aus

[Tutz und Schauberger, 2013] übernommen.

Der Vergleich der Anteile aus Tabelle 5.8 zeigt, dass die Selektion in Szenario 1 mit

250 Personen mithilfe der Boosting-Schätzung besser funktioniert. Sind mittlere Effekte

im Modell vorhanden, liegt der richtig-positiv Anteil der DIF-Lasso-Schätzung nur bei

0.79. Schwache itemmodifizierende Effekte können in Szenario 1 mit DIF-Lasso gar nicht

selektiert werden. Für die Szenarien 2, 3 und 5 mit 500 Personen selektieren im Fall star-

ker und mittlerer Effekte beide Methoden alle itemmodifzierenden Effekte korrekt. Der
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richtig-positiv Anteil liegt jeweils bei 1. Unterschiede zeigen sich im Fall schwacher item-

modifizierender Effekte. Hier liegen die richtig-positiv Anteile der DIF-Lasso-Schätzung

deutlich unter denen der Boosting-Schätzung. Die falsch-positiv Anteile der Szenarien mit

guter Selektion sind für die Boosting-Schätzung geringer als für die DIF-Lasso-Schätzung.

Für Szenario 3 mit starken Effekten liegt der falsch-positiv Anteil mit Threshold-Regel

size nur bei 0.0108, für DIF-Lasso immerhin bei 0.089 (vgl. Tabelle 5.8).

Die mittleren quadratischen Fehler der Personen-Parameter (5.4) und Item-Parameter

(5.5) der beiden Schätzmethoden sind als Durchschnitt über alle 100 Datensätze in Tabelle

5.9 gegenübergestellt. Im Gegensatz zu Tabelle 5.6 sind hier für die Boosting-Schätzung

die Werte mit zusätzlicher Threshold-Regel size angegeben. Die Werte der DIF-Lasso-

Schätzung sind aus [Tutz und Schauberger, 2013] übernommen.

MSE persons MSE items

Szenario DIF-Lasso Boosting DIF-Lasso Boosting

stark 0.3440 0.3455 0.1490 0.1321

1 mittel 0.3500 0.3520 0.1450 0.1258

schwach 0.3470 0.3566 0.1270 0.1136

stark 0.3260 0.3090 0.0700 0.0581

2 mittel 0.3280 0.3135 0.0640 0.0492

schwach 0.3320 0.3196 0.0690 0.0491

stark 0.3270 0.3180 0.1060 0.1292

3 mittel 0.3280 0.3182 0.0960 0.0864

schwach 0.3350 0.3219 0.1080 0.0782

stark 0.3440 0.3334 0.0820 0.0745

5 mittel 0.3440 0.3376 0.0750 0.0628

schwach 0.3510 0.3407 0.0800 0.0576

Tabelle 5.9: Durchschnittliche mittlere quadratische Fehler der Szenarien der Simulation

für die DIF-Lasso-Schätzung und die Boosting-Schätzung.

Die MSEs der Personen-Parameter sind im Fall der Boosting-Schätzung für Szenario 1

etwas höher und für die Szenarien 2, 3 und 5 mit 500 Personen jeweils etwas niedriger

als die MSEs der DIF-Lasso-Schätzung. Im Allgemeinen nehmen diese jedoch Werte der-

selben Größenordnung an (vgl. Tabelle 5.9). Größere Unterschiede ergeben sich für die
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MSEs der Item-Parameter. Aufgrund der besseren Selektion der Parameter γi sind diese

im Fall der Boosting-Schätzung niedriger als im Fall der DIF-Lasso-Schätzung. Auffällig

ist einzig Szenario 3 mit starken Effekten. Hier ist der MSE der DIF-Lasso-Schätzung

wesentlich niedriger als der MSE der Boosting-Schätzung.

Der Vergleich der die Arbeit betreffende Boosting-Methode mit der in [Tutz und Schau-

berger, 2013] vorgestellten DIF-Lasso-Methode ergibt, dass die Ergebnisse der Boosting-

Schätzung größtenteils besser sind. Nachteil der Boosting-Schätzung ist der hohe Re-

chenaufwand für die Berechnung der Spur der Hat-Matrix und die Durchführung der

Threshold-Regel. Mit DIF-Lasso sind vor allem auch die Schätzungen von Szenario 4 mit

40 Items durchführbar. DIF-Lasso ist somit für sehr große Datensätze die empfehlenswer-

tere Alternative.

5.2.2 Methoden zum Vergleich mehrerer Gruppen

In Abschnitt 4.2 wurden drei Methoden zur Identifizierung von Items mit itemmodifizie-

renden Effekten vorgestellt. Diese sind limitiert auf den Fall einer binären oder mehrkate-

gorialen Kovariable. Um diese Methoden mit der in dieser Arbeit vorgestellten Boosting-

Schätzung zu vergleichen, wird ein weiteres Simulationsszenario betrachtet. Auf die dar-

aus simulierten Daten können alle vier Schätzmethoden zur Bestimmung von Items mit

itemmodifizierenden Effekten angewendet werden.

Die Daten (ypi,xp, zpi) sind äquivalent zu Abschnitt 5.1 nach dem Rasch-Modell mit item-

modifizierenden Effekten (2.11) gebildet. Das hier betrachtete Szenario ist folgendermaßen

spezifiziert:

• θp, βi ∼ N(0, 1)

• P = 500, I = 20 und Idif = 4

Als Kovariable wird eine Faktorvariable mit fünf Kategorien verwendet. Für die Boosting-

Schätzung wird dies durch vier binäre Dummy-Variablen umgesetzt. In Modell (2.11) sind:

• Q = 4
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• xpq =

1, falls Person p aus Gruppe q, q ∈ {1, . . . , 4}

0, sonst

• γ>1 = (0.7, 0, 0.5,−0.5), γ>2 = (0.9, 0.6,−0.3, 0), γ>3 = (0,−0.4, 0.6, 0.5) und

γ>4 = (−0.4, 0.6, 0, 0.7)

• γ5, . . . ,γ20 = 0

Betrachtet werden Modelle mit starken, mittleren und schwachen itemmodifizierenden

Effekten. Für jeden der drei Fälle werden 100 Datensätze generiert. Wie in Abschnitt

5.1.1 definiert, ergeben sich für das Maß der Stärke der itemmodifizierenden Effekte (vgl.

Gleichung (5.2)) die Werte 0.25 (stark), 0.1875 (mittel) und 0.125 (schwach).

Für die Berechnung der drei zu vergleichenden Methoden wird die Matrix mit den Rea-

lisierungen der Zielgröße Y ∈ RPxI mit Einträgen ypi und ein Vektor der Gruppenzuge-

hörigkeit der Personen g ∈ RPx1 mit gp ∈ {1, . . . , 5} benötigt. Implementiert sind die

Methoden in R im Paket difR [Magis et al., 2013].

Die Anteile richtig-positiver und falsch-positiver Items der drei Methoden für den Ver-

gleich mehrerer Gruppen und der Boosting-Schätzung sind als Durchschnitt über alle 100

Datensätze in Tabelle 5.10 aufgelistet. Die Simulationsszenarien in Abschnitt 5.1 haben

gezeigt, dass sich eine optimale Boosting-Schätzung ergibt, falls man die Freiheitsgrade des

BIC über die Spur der Hat-Matrix (trace) berechnet und die zusätzliche Threshold-Regel

über die euklidische Norm der Parametervektoren γi (size) verwendet. Die Boosting-

Lösung wurde daher mit dieser Parametereinstellung berechnet.

Die Ergebnisse aus Tabelle 5.10 zeigen, dass die Identifizierung der Items mit itemmodi-

fizierenden Effekten mit allen vier Methoden sehr gut funktioniert. Falls schwache Effek-

te im Modell vorhanden sind, liegt der richtig-positiv Anteil für Lords χ2-Test und die

Boosting-Schätzung bei 0.9425 und ist damit etwas niedriger als für Mantel-Haenszel und

die logistische Regression. Die falsch-positiv Anteile sind hingegen jeweils deutlich kleiner.

Für die Boosting-Schätzung sind die falsch-positiv Anteile am geringsten.

In diesem Simulationsszenario sind die Ergebnisse der Boosting-Schätzung genauso gut

bzw. sogar besser als die Ergebnisse der alternativen Schätzmethoden. Diese funktionieren
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Methode richtig-positiv falsch-positiv

stark 1.0000 0.0600

Mantel-Haenszel mittel 1.0000 0.0556

schwach 0.9750 0.0531

stark 1.0000 0.0675

Logistisch mittel 1.0000 0.0594

schwach 0.9750 0.0581

stark 1.0000 0.0250

Lord mittel 1.0000 0.0219

schwach 0.9425 0.0188

stark 1.0000 0.0038

Boosting mittel 1.0000 0.0075

schwach 0.9425 0.0125

Tabelle 5.10: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

der drei Methoden für den Vergleich mehrerer Gruppen und der Boosting-

Schätzung.

im Fall einer binären oder mehrkategorialen Kovariable bekanntermaßen gut. Die Rechen-

zeit der Boosting-Schätzung steht jedoch in keinem Verhältnis zu den Alternativen. Die

Berechnung der Hat-Matrix nimmt mit den aktuellen Rechenkapazitäten mehrere Stun-

den in Anspruch. Es empfiehlt sich daher, eine der alternativen Methoden anzuwenden,

falls das betrachtete Modell nur eine binäre oder mehrkategoriale Kovariable enthält.

5.3 Simulation des Modells mit zusätzlichem Populationseffekt

Im folgenden, letzten Teil der Simulation wird das Modell mit zusätzlichem Populations-

effekt aus Abschnitt 2.5 analysiert.

5.3.1 Simulationsszenarien

Zur Schätzung des Modells (2.13) mit globalem Populationseffekt wurde in den Abschnit-

ten 2.6 und 3.5 ein zweistufiges Schätzverfahren beschrieben. Um dieses durchzuführen,

werden zwei Simulationsszenarien betrachtet. Die zugehörigen Daten (ypi,xp, zpi) sind

äquivalent zu Abschnitt 5.1 nach dem Rasch-Modell mit itemmodifizierenden Effekten



5 SIMULATION 61

(2.11) gebildet. Zunächst wird ein Simulationsszenario mit nur einer binären Kovariable

betrachtet. Ein globaler Populationseffekt, d.h. ein genereller Fähigkeitsunterschied zwi-

schen den Personen der beiden Gruppen, wird bzgl. dieser einen Kovariable modelliert.

Das Szenario ist folgendermaßen spezifiziert:

• βi ∼ N(0, 1)

• P = 250, I = 20, Idif = 4 und Q = 1

• γ1 = −0.4, γ2 = 0.3, γ3 = −0.2 und γ4 = 0.1

Als Maß der Stärke der itemmodifizierenden Effekte 1
Q
·
√
Vi (vgl. Gleichung (5.2)) ergeben

sich wieder die Werte 0.25 (stark), 0.1875 (mittel) und 0.125 (schwach).

Der Unterschied in den Fähigkeiten der Personen wird durch Ziehen der Personen-Para-

meter aus zwei verschiedenen Normalverteilungen realisiert. Für die Personen-Parameter

θp gilt:

θp ∼


N(1, 1), falls p = 1, . . . , P

2

N(0, 1), falls p = P
2

+ 1, . . . , P − 1

0, falls p = P.

(5.6)

Um diesen Fähigkeitsunterschied an die Ausprägung der Kovariable x zu koppeln, gilt:

xp ∼

1, falls p = 1, . . . , P
2

0, falls p = P
2

+ 1, . . . , P.

(5.7)

Betrachtet man beispielsweise die binäre Kovariable Geschlecht mit xp = 1 für eine männ-

liche Person und xp = 0 für eine weibliche Person. Dann ist die inhaltliche Aussage von

Gleichung (5.6) und (5.7), dass Männer im Mittel eine Fähigkeit von 1 haben und da-

mit bessere Fähigkeiten besitzen als Frauen, die im Mittel eine Fähigkeit von 0 besitzen.

Anhand des linearen Regressionsmodells (3.22), das im zweiten Schritt nach Durchfüh-

rung der Boosting-Schätzung berechnet wird, soll eben genau dieser Unterschied erkannt

werden.
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Als zweites wird Simulationsszenario 5 der Simulation in Abschnitt 5.1 analysiert (siehe

Tabelle 5.1). Wie alle bisherigen Simulationsszenarien enthält Szenario 5 fünf Kovariablen.

Die Personen-Fähigkeit θp ist in diesem Szenario, wie schon in Abschnitt 5.1.1 erläutert,

mit der Ausprägung der ersten Kovariable x1 korreliert. Äquivalent zum Szenario mit einer

binären Kovariablen sind die Parameter θp nach Gleichung (5.6) gebildet. Gleichung (5.7)

gilt ebenfalls, jedoch in diesem Szenario im Bezug auf Kovariable x1. Anhand des linearen

Regressionsmodells (3.22) soll der generelle Fähigkeitsunterschied der beiden Populatio-

nen, die durch x1 gebildet werden, erkannt werden. Ein korrektes Ergebnis liegt dann vor,

wenn die Parameterschätzung α̂1 für den Einfluss der ersten Kovariable auf die geschätz-

ten Personen-Parameter θ̂p signifikant ist, und die anderen Komponenten α̂2, . . . , α̂5 keine

signifikanten Effekte aufweisen.

5.3.2 Auswertung der Ergebnisse

Die Auswertung der Simulationsergebnisse in Abschnitt 5.1 haben gezeigt, dass die Se-

lektion itemmodifizierender Effekte mithilfe des BIC optimal funktioniert, falls die Frei-

heitsgrade über die Spur der Hat-Matrix bestimmt werden (trace). Die Ergebnisse der

Schätzungen der beiden Szenarien werden daher nur für den Fall trace dargestellt.

Wie auch in den Auswertungen der vorherigen Abschnitte ist zunächst der Anteil der

richtig-positiven und falsch-positiven Items der Boosting-Schätzung von Interesse. Diese

Anteile sind für das Szenario mit einer binären Kovariable bei Schätzung ohne zusätzlichen

Threshold in Tabelle 5.11 aufgelistet.

richtig-positiv falsch-positiv

stark 0.5075 0.0875

mittel 0.3550 0.0731

schwach 0.2125 0.0694

Tabelle 5.11: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

des Szenarios mit einer binären Kovariable.

Die berechneten Anteile in Tabelle 5.11 zeigen, dass die Selektion der itemmodifizieren-

den Effekte nicht gut funktioniert. Es bedarf daher dem Vergleich zu den Ergebnissen des
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ersten Simulationsszenarios aus Abschnitt 5.1. In beiden Szenarien werden 250 Personen

und 20 Items betrachtet, von denen 4 Items itemmodifzierende Effekte aufweisen. Unter-

schiede der Szenarien sind die Anzahl an Kovariablen Q und die Werte der Parameter γiq.

Nimmt man nur eine Kovariable ins Modell auf, so ist die Selektion schlechter. Sind starke

Effekte im Modell vorhanden, liegt der richtig-positiv Anteil nur bei 0.5 und nimmt mit

schwächer werdenden Effekten γi deutlich ab (vgl. Tabelle 5.11). Im Vergleich zum nied-

rigen richtig-positiv Anteil ist auch der Anteil falsch-positiver Items in allen drei Fällen

sehr hoch. Die guten Ergebnisse für Szenario 1 (siehe Tabelle 5.2) zeigen, dass die Anzahl

an Kovariablen Q eine wichtige Komponente darstellt, die die Selektionsgüte maßgeblich

beeinflusst. Des Weiteren ist zu beachten, dass die Absolutbeträge der Werte γiq, die un-

gleich Null sind, in Szenario 1 größer sind als im Szenario mit einer Kovariablen (siehe

Abschnitt 5.3.1). Dies macht eine Identifizierung der Parametervektoren γi in Szenario 1

einfacher als die Identifizierung der Parameter γi.

Die Parameterschätzungen γ̂i des Szenarios mit starken itemmodifizierenden Effekten sind

in Abbildung 5.7 in Form von Boxplots dargestellt. Die wahren Parameterwerte γi sind

mit roten Punkten gekennzeichnet. Die Boxplots bestätigen visuell die Ergebnisse aus

Tabelle 5.11. Man sieht, dass viele Schätzungen γ̂5, . . . , γ̂20 fälschlicherweise von Null ver-

schieden sind. Dies resultiert in einem hohen Anteil falsch-positiver Items. Die Güte der

Schätzung der Parameter γ1, . . . , γ4 hängt von der absoluten Größe der wahren Werte ab.

γ1, dessen wahrer Wert bei −0.4 liegt, wird nahezu immer ungleich Null geschätzt. γ4,

mit dem kleinsten Absolutwert von 0.1, wird in den meisten Fällen fälschlicherweise nicht

ins Modell aufgenommen.

Die lineare Regression der geschätzten Personen-Parameter θ̂p auf die Kovariable x wird

in R mit der Funktion lm durchgeführt. Die Berechnungen ergeben zum Signifikanzniveau

von 0.05 jeweils für jede der 100 Schätzungen einen signifikanten Effekt der Kovariable x.

Die geschätzten Koeffizienten α̂ des Szenarios mit einer binären Kovariable sind in Form

von Boxplots in Abbildung 5.8 dargestellt. Unterschieden werden die Schätzungen mit

starken, mittleren und schwachen itemmodifizierenden Effekten. Nachdem die Datensätze

nach Gleichung (5.6) und (5.7) gebildet sind, ist der wahre Wert für alle 100 Datensätze

und unabhängig von der Stärke der itemmodifizierenden Effekte jeweils derselbe. Dieser
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Abb. 5.7: Boxplots der geschätzten Parameter γ̂i des Szenarios mit starken Effekten für

den Fall trace ohne zusätzlichen Threshold.

nimmt den Wert 0.7746 an und ist in Abbildung 5.8 zusätzlich als rote gestrichelte Linie

eingezeichnet. Die geschätzten Koeffizienten α̂ liegen im Median bei 0.81 und überschätzen

den wahren Wert in den meisten Fällen leicht. Es ist zu beachten, dass der Parameter

α aus Modell (3.22) als Unterschied zwischen den Fähigkeiten der beiden Populationen

interpretiert werden kann, jedoch keine direkte Schätzung des Parameters γ aus Modell

(2.13) darstellt.

Das Bestimmtheitsmaß R2 gibt an, welcher Teil der Varianz der Personen-Parameter

durch die Kovariable x erklärt werden kann. Siehe dazu auch [Fahrmeir et al., 2003]. Im

vorliegenden Fall ist das Bestimmtheitsmaß definiert als:

R2 =

∑P
p=1 (θ̂p − θ̄)2∑P
p=1 (θp − θ̄)2

(5.8)

wobei θ̄ den Mittelwert über alle Personen-Parameter θp, p = 1, . . . , P darstellt.
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Abb. 5.8: Boxplots der geschätzten Parameter α̂ der linearen Regression des Szenarios

mit einer binären Kovariable. Eingezeichnet ist zusätzlich der wahre Parame-

ter α (rote Linie).

Die Werte des Bestimmtheitsmaßes (5.8) für die drei Szenarien mit starken, mittleren und

schwachen Effekten sind in Abbildung 5.9 in Form von Boxplots dargestellt. Eingezeichnet

ist ebenfalls der wahre Wert von 0.1383 als gestrichelte, rote Linie.

Die Personen-Parameter θp haben aufgrund der Modellierung über die Normalvertei-

lung jeweils Varianz 1 (vgl. Gleichung (5.6)). Der tatsächliche Unterschied der Personen-

Fähigkeit zwischen den beiden Populationen wird durch den Mittelwertsunterschied der

beiden Normalverteilungen modelliert und liegt ebenfalls bei 1. Die Varianz der Personen-

Parameter ist also im Vergleich zum tatsächlichen Unterschied relativ groß. Es ist daher

nicht verwunderlich, dass nur 13.83 % der Varianz der Daten durch die Kovariable x er-

klärt werden kann. Für die geschätzten Parameter α̂ liegt der Anteil erklärter Varianz

größtenteils leicht unter dem Anteil des wahren Modells. In allen drei Fällen liegt das

Bestimmtheitsmaß R2 im Median bei 0.11 und weicht damit gleichermaßen vom Wert des

wahren Modells ab.
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Abb. 5.9: Boxplots der Bestimmtheistmaße R2 der linearen Regression des Szenarios mit

einer binären Kovariable. Eingezeichnet ist zusätzlich der wahre Wert von R2

(rote Linie).

Die Ergebnisse der linearen Regression des Modells mit einer binären Kovariable zei-

gen, dass der generelle Fähigkeitsunterschied der Personen der beiden Gruppen durch die

zweistufige Schätzung korrekt modelliert werden kann. Dieser wird in Modell (2.13) durch

den globalen Parameter γ repräsentiert. Anzumerken ist jedoch, dass die Resultate der

Regression weder von der Stärke der itemmodifizierenden Effekte noch von der Modell-

selektion, also der im Modell enthaltenen Parameter γi, abhängig sind. Die geschätzten

Parameter α und der Erklärungswert der Kovariablen x sind in allen drei Fällen nahe-

zu identisch. Alle Personen-Parameter werden im ersten Schritt der Boosting-Schätzung

durch ein logistisches Regressionsmodell geschätzt. Die Resultate der linearen Regressi-

on deuten darauf hin, dass die Personen-Parameter bei der regularisierten Schätzung der

Parameter γi nicht mehr aktualisiert werden. Diese Überlegung lässt den Schluss zu, dass

die lineare Regression auch zum selben Ergebnis führt, falls zunächst ein einfaches Rasch-

Modell ohne itemmodifizierende Effekte modelliert wird.



5 SIMULATION 67

Wie in Abschnitt 5.1.4 dargestellt, funktioniert die Selektion der itemmodifizierenden Ef-

fekte γi für Simulationsszenario 5 im Fall trace sehr gut. Regressiert man die aus der

Boosting-Schätzung resultierenden Koeffizienten θ̂p auf die fünf Kovariablen des Modells,

so erhält man zum Signifikanzniveau von 0.05 jeweils für jede der 100 Schätzungen einen

signifikanten Effekt der Kovariable x1. Der im Modell vorhandene Fähigkeitsunterschied

bzgl. der beiden Gruppen, die durch x1 gebildet werden, wird korrekt erkannt. Die Regres-

sionsmodelle enthalten jedoch noch weitere signifikante Effekte. Der Einfluss der Kova-

riablen x2, . . . , x5 auf die geschätzte Fähigkeit der Personen ist in einigen Fällen fälschli-

cherweise zusätzlich signifikant. Tabelle 5.12 enthält die Anzahl der Modelle, die entweder

keinen oder einen bzw. zwei signifikante Effekte der Kovariablen x2, . . . , x5 aufweisen, die

nach dem wahren Modell keinen Einfluss auf die geschätzten Parameter θ̂p haben.

Anzahl inkorrekter Signifikanzen

0 1 2

stark 60 33 7

mittel 69 25 6

schwach 76 19 5

Tabelle 5.12: Anzahl der linearen Regressionsmodelle von Simulationsszenario 5 die

fälschlicherweise signifikante Kovariablen enthalten.

Ein Großteil der Modelle enthält jeweils korrekterweise nur einen signifikanten Effekt α̂1.

Wenige Modelle enthalten jedoch sogar zwei fälschlicherweise als signifikant eingestufte

Kovariablen. Falls starke Effekte im Modell enthalten sind, trifft dies auf 7 Regressions-

modelle zu. In diesen Fällen geht nicht hervor, dass die Fähigkeit der Personen im wahren

Modell nur durch Kovariable x1 erklärt werden kann. Das Ergebnis wird minimal besser,

je schwächer die im Modell enthaltenen itemmodifizierenden Effekte sind.

Die absoluten Häufigkeiten signifikanter Effekte der Kovariablen x2, . . . , x5 für die linea-

ren Regressionsmodelle sind in Tabelle 5.13 aufgelistet. Es ist auffällig, dass Kovariable

x2 am häufigsten signifikante Effekte aufweist, Kovariable x4 hingegen sehr selten. Da die

drei Kovariablen x2, x4 und x5 gleichermaßen standardnormalverteilt sind (vgl. Abschnitt

5.1.1), ist die Schlussfolgerung naheliegend, dass dieses Ergebnis zufällig ist.
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Kovariablen

x2 x3 x4 x5

stark 22 14 3 8

mittel 19 9 3 6

schwach 13 7 3 6

Tabelle 5.13: Absolute Häufigkeiten signifikanter Effekte der Kovariablen x2, . . . , x5 der

linearen Regressionsmodelle von Szenario 5.

Die Werte des Bestimmtheitsmaßes (5.8) für die drei Schätzungen mit starken, mittleren

und schwachen Effekten sind in Abbildung 5.10 in Form von Boxplots dargestellt. Der

wahre Wert ist unabhängig von der Stärke der itemmodifizierenden Effekte, unterscheidet

sich aber jeweils für jeden der 100 Datensätze. Der Durchschnitt über alle 100 Daten-

sätze liegt bei 0.1689. Dieser ist in Abbildung 5.10 zusätzlich als gestrichelte, rote Linie

eingezeichnet.
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Abb. 5.10: Boxplots der Bestimmtheitsmaße R2 der linearen Regression von Szenario 5.

Eingezeichnet ist zusätzlich der gemittelte wahre Wert von R2 (rote Linie).
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Wie bereits beim Modell mit einer binären Kovariable (vgl. Abbildung 5.9) weicht der An-

teil erklärter Varianz der geschätzten Parameter α̂ vom wahren Wert leicht nach unten

ab. Im Median liegt das Bestimmtheitsmaß R2 unabhängig von der Stärke der itemmodi-

fizierenden Effekte bei etwa 0.13.

Die Regressionsmodelle von Simulationsszenario 5 ergeben, dass Kovariable x1 nicht in

allen Fällen als einzige erklärende Kovariable identifiziert werden kann. Es bestätigt sich,

dass das Ergebnis der Regression nur marginal von der Stärke und Anzahl der im Modell

enthaltenen itemmodifizierenden Effekte γi abhängt. Da alle Personen-Parameter θp zu-

nächst vollständig durch ein logistisches Regressionsmodell geschätzt werden, kommt es

bei der Boosting-Schätzung nicht vor, dass itemmodifizierende Effekte mit grundsätzlichen

Fähigkeitsunterschieden verwechselt werden und die Schätzungen θ̂p der Boosting-Lösung

deutlich von den wahren Werten θp abweichen. Auf dieses Resultat kann bereits aus Ta-

belle 5.6 geschlossen werden, da sich die MSEs der Personen-Parameter für Szenario 5 nur

geringfügig von denen für Szenario 2 unterscheiden.
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6 Anwendung

Die Boosting-Schätzung zur Modellierung itemmodifizierender Effekte wird in diesem Ka-

pitel auf reale Datensätze angewendet. Anhand der Simulationsergebnisse aus Kapitel

5 soll Rückschluss darauf gezogen werden, wie plausibel die Ergebnisse der Boosting-

Schätzung an realen Daten sind.

6.1 Klausur - Multivariate Verfahren

Das erste Anwendungsbeispiel bezieht sich auf eine Klausur zur Statistik-Vorlesung Multi-

variate Verfahren. Die Klausur besteht aus 18 Aufgaben, die von 57 Studenten bearbeitet

wurden. Zur Modellierung itemmodifizierender Effekte werden zwei binäre Kovariablen in

Betracht gezogen:

• Geschlecht männlich/weiblich (gender)

• Bachelor-Student im Fach Statistik/Master-Student mit Bachelor-Abschluss in ei-

nem anderen Fach (level)

In Abbildung 6.1 ist das Ergebnis der Klausur und die Verteilung der beiden Kovariablen

graphisch dargestellt.

Ergebnis der Klausur
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Abb. 6.1: Graphische Darstellung des Ergebnisses der Klausur und der beiden binären

Kovariablen der 57 Studenten der Vorlesung.
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Man sieht, dass die meisten Studenten (48 von 57) nur höchstens die Hälfte der Aufgaben

richtig lösen. Der beste Student löst genau 14 Aufgaben korrekt. Die Studenten, die die

Vorlesung besuchen, sind großteils Bachelorstudenten im Fach Statistik und etwa zwei

Drittel der Studenten ist weiblich (vgl. Abbildung 6.1).

Das Ergebnis der Boosting-Schätzung ist in Abbildung 6.2 dargestellt. Abgetragen sind

die Koeffizientenpfade der Parameter γ1 gender, . . . , γ18 gender (links) und die Koeffizienten-

pfade der Parameter γ1 level, . . . , γ18 level (rechts) in Abhängigkeit der Iteration m. Die Frei-

heitsgrade zur Berechnung des BIC wurden über die Spur der Hat-Matrix bestimmt

(df_method="trace"). Die daraus resultierende, optimale Anzahl an Iterationen m∗stop

ist jeweils zusätzlich als gestrichelte Linie eingezeichnet.
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Abb. 6.2: Koeffizientenpfade der Parameter γiq des Datensatzes zur Klausur in Multiva-

riate Verfahren. Eingezeichnet ist zusätzlich die optimale Anzahl an Iteratio-

nen nach dem BIC (gestrichelte Linie).

Aus Abbildung 6.2 wird ersichtlich, dass die Schätzungen der itemmodifizierenden Effek-

te γi nach 200 Iterationen für 10 Items ungleich Null sind. Das BIC mit Berechnung der

Freiheitsgrade über die Spur der Hat-Matrix liefert das optimale Modell bei Iteration 0.

Zur Modellierung der Daten ist das Rasch-Modell ohne itemmodifizierende Effekte (2.5)

ausreichend. Anhand der Ergebnisse der Simulationsstudie (Abschnitt 5.1.4), in der die
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Selektion itemmodifizierender Effekte bei Berechnung der Freiheitsgrade über die Spur

der Hat-Matrix sehr gut funktioniert, ist davon auszugehen, dass tatsächlich keine item-

modifizierenden Effekte im Datensatz vorhanden sind. Die Aufgaben der Klausur sind für

alle Gruppen gleich schwer bzw. leicht zu lösen. Ziel des Aufgabenstellers ist es eben genau

zu erreichen, dass keine der Aufgaben eine der Subgruppen bevorzugt oder benachteiligt.

6.2 Test - Spiegel-Online

Als zweites Beispiel werden Daten eines Allgemeinwissenstests betrachtet, der online vom

deutschen Nachrichtenmagazin Spiegel durchgeführt wurde. Der Test besteht insgesamt

aus 45 Items der fünf Themengebiete Politik, Geschichte, Wirtschaft, Kultur und Natur-

wissenschaften. Ein Teildatensatz der Ergebnisse von 1075 bayerischen Studenten ist in R

im Paket psychotree verfügbar:

library("psychotree")

data("SPISA")

Eine ausführliche Analyse und Diskussion des Original-Datensatzes findet sich in [Trepte

und Verbeet, 2010].

Zur Modellierung von itemmodifizierenden Effekten werden fünf Kovariablen berücksich-

tigt. Diese sind

• Geschlecht (gender)

• Alter in Jahren (age)

• Anzahl immatrikulierter Semester (semester)

• Faktor, ob die Universität des Studenten Elite-Status besitzt (elite)

• Häufigkeit des Besuchs des Spiegel-Online-Magazins (spon)

Eine graphische Darstellung des Ergebnisses des Tests (Anzahl korrekt beantworteter

Items) und der fünf Kovariablen ist in Abbildung 6.3 zusammengestellt.
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Ergebnis des Test
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Abb. 6.3: Graphische Darstellung des Ergebnisses des Spiegel-Online-Tests (links oben)

und der fünf in Betracht gezogenen Kovariablen.

Die Anzahl korrekt beantworteter Items ist symmetrisch um etwa 25 verteilt. Der schwächs-

te Student beantwortet nur sieben Fragen, der beste Student 42 Fragen korrekt. Im Daten-

satz sind mehr männliche als weibliche Studenten enthalten, und das zweite Semester ist

am häufigsten vertreten. Die meisten Studenten studieren nicht an einer Elite-Universität,

und die Studenten sind im Mittel 23 Jahre alt. Es ist auffällig, dass viele Studenten ent-

weder täglich oder nie das Online-Magazin des Spiegels besuchen (vgl. Abbildung 6.3).

Die Komponenten des Rasch-Modells mit itemmodifizierenden Effekten (2.6) sind in der

Übersicht:

Y ∈ R1075 x 45, X ∈ R1075 x 5 und Z ∈ R48375 x 1118 (6.1)

Die Auswertung der Simulation in Abschnitt 5.1 hat gezeigt, dass die Berechnung der Frei-

heitsgrade des BIC über die Spur der Hat-Matrix mit der Funktion AIC aus dem Paket

mboost mit den zur Verfügung stehenden Rechen- und Speicherkapazitäten nicht möglich
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ist, falls die Anzahl an Items des betrachteten Modells zu groß ist. Dies war für Szenario 4

mit 40 Items der Fall. Auch der vorliegende Datensatz ist aufgrund der Größe nicht aus-

wertbar, falls man die Freiheitsgrade über die Spur der Hat-Matrix bestimmen möchte.

Die Boosting-Schätzung kann daher nur mit Berechnung der Freiheitsgrade des BIC über

die aktuelle Anzahl an Parametern im Modell (df_method="actset") durchgeführt wer-

den. In Abbildung 6.4 sind beispielhaft für die Kovariable spon die Koeffizientenpfade der

Parameter γ1 spon, . . . , γ45 spon in Abhängigkeit der Iteration m abgetragen. Die optimale

Anzahl an Iterationen m∗stop ist zusätzlich als gestrichelte Linie eingezeichnet.
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Abb. 6.4: Koeffizientenpfade der Parameter γiq für Kovariable spon. Eingezeichnet ist

zusätzlich die optimale Anzahl an Iterationen nach dem BIC (gestrichelte Li-

nien).
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Wie aus den Ergebnissen der Simulation in Abschnitt 5.1.2 zu sehen ist, funktioniert

die Selektion der itemmodifizierenden Effekte bei Bestimmung der Freiheitsgrade über

die aktuelle Anzahl an Parametern im Modell nicht, falls die itemmodifzierenden Effekte

schwach sind. Im Beispiel-Datensatz erhält man das optimale Modell nach diesem Krite-

rium bei Iteration 0. Demzufolge genügen alle Items dem einfach binären Rasch-Modell

(2.5). Geht man davon aus, dass mögliche Effekte im vorliegenden Datensatz nicht unbe-

dingt groß sind, so folgt, dass diese Lösung nicht korrekt ist.

Tutz und Schauberger [2013] analysieren denselben Datensatz und modellieren itemmodi-

fizierende Effekte mithilfe der Grouped-Lasso-Penalisierung (vgl. Abschnitt 4.1 und 5.2.1).

Anhand dieser Methode werden 17 Items mit itemmodifizierenden Effekten extrahiert.

Führt man die Boosting-Schätzung durch, so sind bei Iteration 488 17 Parameter-Vektoren

γi ungleich Null. Abgesehen von einem Item sind dies dieselben Items, die Tutz und Schau-

berger [2013] mit Grouped-Lasso-Penalisierung extrahieren.

Die Stärke der itemmodifizierenden Effekte kann über die euklidische Norm ‖γi‖ =√
γ2i1, . . . , γ

2
iQ bestimmt werden. Tabelle 6.1 enthält eine Übersicht der Items mit den

stärksten geschätzten Effekten, die nach Iteration 488 vorliegen.

Item ‖γi‖

19 0.3699

26 0.2686

23 0.2336

Tabelle 6.1: Euklidische Norm ‖γi‖ der drei Items mit den stärksten itemmodifizieren-

den Effekten nach Iteration 488.

Analog zu den Ergebnissen von Tutz und Schauberger [2013] sind die Items mit den

stärksten Effekten aus Tabelle 6.1 Items aus dem Bereich Wirtschaft. Item 19 ist die

Frage nach Dieter Zetsche, dem Vorstand von Mercedes-Benz, den gemäß der Schätzung

γ̂19 gender = −0.2815 männliche Teilnehmer besser kennen als weibliche Teilnehmer.
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7 Fazit

Hauptziel der Arbeit ist es, anhand einer Simulationsstudie die Güte der Boosting-Schätz-

ung zur Modellierung itemmodifizierender Effekte zu untersuchen. Gegenstand der Analy-

sen ist das erweiterte Rasch-Modell mit itemmodifizierenden Effekten (2.11). Stärke dieses

Modells ist, dass die betrachteten Kovariablen x nicht nur binär oder kategorial, sondern

auch stetig sein können. Außerdem kann die Anzahl an Kovariablen des Modells beliebig

groß sein. Die Stärke der itemmodifizierenden Effekte werden in der Simulation über die

Varianz der Item-Parameter βi + x>p γi bestimmt. Betrachtet werden Daten mit starken,

mittleren und schwachen Effekten.

Das Modell wurde in der Form eines üblichen, logistischen Regressionsmodells dargestellt

und mithilfe des Boosting-Algorithmus in zwei Schritten geschätzt. Dies ist notwendig,

damit alle Personen- und Item-Parameter des einfachen Rasch-Modells vollständig ins

Modell aufgenommen werden und nur die itemmodifizierenden Effekte γi regularisiert

geschätzt werden.

Die optimale Anzahl an Iterationen der Boosting-Schätzung wird mithilfe eines BIC be-

stimmt. Die zugehörigen Freiheitsgrade können über

• die aktuelle Anzahl an Parametern im Modell oder

• die Spur der Hat-Matrix

bestimmt werden. Über eine zusätzliche Threshold-Regel wird festgelegt, wie groß

• die minimale Anzahl an Boosting-Iterationen, in denen der Parametervektor γi ak-

tualisiert wurde oder

• die minimale Größe des geschätzten Parametervektors γi

mindestens sein muss, damit der Parameter ins endgültige Modell aufgenommen wird.

In einem weiteren Teil der Simulation wurde das Modell mit zusätzlichem Populationsef-

fekt (2.13) betrachtet. Ein grundsätzlicher Fähigkeitsunterschied zwischen Gruppen von

Personen wurde in den beiden Simulationsszenarien nur bezüglich einer binären Kovaria-

ble modelliert.
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Anhand der Simulation können folgende Aussagen getroffen werden:

1. Bestimmt man die Freiheitsgrade des BIC über die aktuelle Anzahl an Parametern

im Modell, funktioniert die Selektion relevanter itemmodifizierender Effekte nicht,

falls schwache Effekte im Modell vorhanden sind.

2. Bestimmt man die Freiheitsgrade über die Spur der Hat-Matrix, funktioniert die

Selektion relevanter itemmodifizierender Effekte gut. Bei der Schätzung ohne zu-

sätzliche Threshold-Regel sind die geschätzt optimalen Modelle jedoch in vielen

Fällen zu groß.

3. Mit zusätzlicher Threshold-Regel verringern sich die Anteile falsch-positiver Items

bei Berechnung der Freiheitsgrade über die Spur der Hat-Matrix deutlich, und man

erhält optimale Selektionsergebnisse.

4. Die besten Selektionsergebnisse erhält man, falls die minimale Größe der geschätzten

Parametervektoren γi als Threshold-Kriterium verwendet wird.

5. Der Rechenaufwand für die Berechnung der Spur der Hat-Matrix ist mit den zur

Verfügung stehenden Rechen- und Speicherkapazitäten deutlich zu hoch. Ist die

Anzahl an Items des Modells zu groß, ist die Berechnung gar nicht mehr möglich.

Dies ist für Simulationsszenario 4 mit 40 Items der Fall.

6. Ein Vergleich zeigt, dass die optimalen Selektionsergebnisse der Boosting-Schätzung

besser sind als die Ergebnisse der DIF-Lasso-Schätzung.

7. Für den Vergleich mehrerer Gruppen bzgl. einer mehrkategorialen Kovariable sind

die optimalen Selektionsergebnisse der Boosting-Schätzung genauso gut, wie die

Ergebnisse existierender Methoden.

8. Die Boosting-Schätzungen des Modells mit einer binären Kovariable ergeben deut-

lich schlechtere Selektionsergebnisse als die Schätzungen aller anderen Simulationss-

zenarien mit jeweils fünf Kovariablen. Das Maß für die Stärke der itemmodifizie-

renden Effekte, wie es in dieser Arbeit definiert ist, ist daher als problematisch

anzusehen.
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9. Die lineare Regression zur Extrahierung des globalen Populationseffekts, der in Mo-

dell (2.13) durch den Parameter γ ausgedrückt wird, funktioniert gut. Die Parame-

terschätzungen der binären Kovariablen α̂ sind signifikant und der Anteil erklärter

Varianz der geschätzten Modelle kommt nahe an den wahren Wert heran.

10. Die Ergebnisse der linearen Regressionsmodelle sind unabhängig von den item-

modifizierenden Effekten γi. Dies ist darauf zurückzuführen, dass alle Personen-

Parameter im ersten Schritt vollständig geschätzt werden und somit der grund-

sätzliche Fähigkeitsunterschied nicht mit itemmodifizierenden Effekten verwechselt

wird.

Die Anwendung der Schätzung auf die Daten des Spiegel-Online-Tests ergibt bei Berech-

nung der Freiheitsgrade über die aktuelle Anzahl an Parametern im Modell als Ergebnis

das einfache Rasch-Modell. Dies bestätigt das Ergebnis der Simulation, dass die Selektion

in diesem Fall nicht funktioniert. Die Spur der Hat-Matrix lässt sich aufgrund der Anzahl

an Items des Tests nicht berechnen. Die Boosting-Schätzung ist auf diesen Datensatz nicht

sinnvoll anwendbar.

Insgesamt ergibt die Analyse, dass die Modellierung itemmodifizierender Effekte mithilfe

des vorgestellten Boosting-Algorithmus nur mit sehr hohem Rechenaufwand gute Ergeb-

nisse liefert und auf große Modelle gar nicht anwendbar ist. Um die Performance der

Schätzung zu verbessern, ist in weiteren Arbeiten eine Modifikation des Algorithmus im

Bezug auf die Bestimmung des optimalen Modells notwendig.
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A Weitere graphische Auswertungen

Geschätzte Item-Parameter β̂i der Boosting-Schätzung mit den besten Selek-

tionsergebnissen

• Berechnung der Freiheitsgrade über die Spur der Hat-Matrix (trace)

• Threshold-Regel über die euklidische Norm der Parametervektoren γi (size)
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Geschätzte Itemmodifizierenden Effekte γiq der Boosting-Schätzung mit den

besten Selektionsergebnissen

• Berechnung der Freiheitsgrade über die Spur der Hat-Matrix (trace)

• Threshold-Regel über die euklidische Norm der Parametervektoren γi (size)
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Geschätzte Item-Parameter β̂i für Szenario 4 der Simulation

• Berechnung der Freiheitsgrade über die aktuelle Anzahl an Parametern (actset)

• keine Threshold-Regel
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Geschätzte Itemmodifizierenden Effekte γiq für Szenario 4 der Simulation

• Berechnung der Freiheitsgrade über die aktuelle Anzahl an Parametern (actset)

• keine Threshold-Regel
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B Verfügbare Dateien

Auf der beigelegten CD befinden sich die Arbeit im PDF-Format und zwei Dateiordner:

• R-Code: Beinhaltet den erzeugten R-Code (alle Dateien mit Dateiendung .R) und

die gespeicherten Ergebnisse (alle Dateien mit Dateiendung .RData).

• Graphiken: Beinhaltet alle für die Arbeit erstellten Graphiken (im PDF-Format).

Folgende Übersicht beinhaltet eine Aufstellung der verfügbaren Unterordner mit einer

kurzen Beschreibung der jeweiligen Inhalte.

R-Code:

Beispiele Berechnung und Auswertung der Boosting-

Ergebnisse der beiden Anwendungsbeispiele aus

Kapitel 6

Simulation

Auswertung Auswertung der Boosting-Ergebnisse der Simula-

tionsszenarien 1 bis 5

Daten Erstellung und Speicherung der Datensätze der Si-

mulationsszenarien 1 bis 5

Ergebnisse_act Berechnung der Boosting-Ergebnisse der Simulati-

onsszenarien 1 bis 5 mit df_method=actset

Ergebnisse_trace Berechnung der Boosting-Ergebnisse der Simulati-

onsszenarien 1, 2, 3 und 5 mit df_method=trace

Resultate Ergebnisse der Boosting-Schätzungen der Simula-

tionsszenarien 1 bis 5

Save_dfs Berechnung und Speicherung der Freiheitsgra-

de der Simulationsszenarien 1, 2, 3 und 5 mit

df_method=trace
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Useful_functions Hilfsfunktionen zur Berechnung und Auswertung

der Boosting-Schätzungen

Vergleich Berechnung und Auswertung der Boosting-

Schätzung für den Vergleich mehrerer Gruppen

aus Abschnitt 5.2.2

Zwei_Gruppen Berechnung und Auswertung der Boosting-

Schätzung und der linearen Regressionsmodelle

aus Abschnitt 5.3

boostIME.R Hauptfunktion zur Durchführung der Boosting-

Schätzung

Graphiken.R R-Code für die Erstellung der Graphiken der Ar-

beit

Hinweise.pdf Hinweise zur Verwendung der verfügbaren R-

Programme
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C Auszüge des R-Codes und Outputs

Ausschnitt aus Datensatz 1 des ersten Simulationsszenarios mit starken Effekten:

> load("./Daten/datasets_set1.RData")

> Y <- data_set1$strong[[1]]$Y

> Y[1:5,1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 1 1 0 0 1 1 1 1 1

[2,] 0 1 1 0 0 0 0 0 0 0

[3,] 0 1 0 0 1 0 1 1 1 1

[4,] 1 1 0 1 0 0 1 1 0 1

[5,] 0 1 0 0 0 0 1 1 0 0

> DM_kov <- data_set1$strong[[1]]$DM_kov

> DM_kov[1:5,]

x1 x2 x3 x4 x5

[1,] -0.9900457 0.71027987 -0.6909217 0.15988445 -1.3663358

[2,] -0.9900457 -0.06612265 1.4415527 -0.19614272 -0.7938377

[3,] 1.0060142 -0.03064156 -0.6909217 -1.03953370 -1.1743757

[4,] 1.0060142 -0.66661728 -0.6909217 0.09707504 0.6283364

[5,] -0.9900457 -0.31369460 -0.6909217 1.02984562 -1.2122486

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Durchführung der Boosting-Schätzung für den ersten Datensatz von Szenario 1 mit star-

ken Effekten durch die Funktion boostIME mit einer möglichen Parameter-Kombination:

> boost <- boostIME(Y,DM_kov,mstop=500,df_method="actset",

thresh_method="no_thresh")
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Die Funktion boostIME gibt folgende Werte zurück:

> attributes(boost)

$names

[1] "model" "coefs" "mstop" "thresh"

[5] "BICs" "npersons_valid" "referenz_item"

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Matrix der zwölf möglichen Parameter-Kombinationen der Boosting-Schätzung (auszugs-

weise):

> szenarios

df thresh dif

[1,] "actset" "no_thresh" "s"

...

[9,] "actset" "size_quad" "w"

[10,] "trace" "no_thresh" "s"

...

[18,] "trace" "size_quad" "w"

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Berechnung der Boosting-Lösung für den ersten Datensatz von Szenario 1 mit Parameter-

Kombination 1 durch die Funktion calc_boost:

> boost <- calc_boost(data_set1,sz=1,n=1,c(700,600,500))

Die Funktion calc_boost gibt folgende Werte zurück:

> attributes(boost)

$names

[1] "theta" "beta" "gamma" "true_pos"

[5] "false_pos" "mstop" "thresh" "npersons_n"

[9] "referenz_item"
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Geschätzte Koeffizienten βi:

> boost$beta

beta1 beta2 beta3 beta4 beta5 beta6 beta7

-1.6133246 -2.8407384 -1.0953543 -0.7576976 -0.6128823 -1.0300583 -1.7937692

beta8 beta9 beta10 beta11 beta12 beta13 beta14

-2.2369886 -1.0300583 -1.6334425 -0.8277188 -0.4076119 -1.1169168 -2.0744597

beta15 beta16 beta17 beta18 beta19 beta20

-0.7340246 -1.2862880 -0.7101753 -3.1050197 -2.0542995 0.0000000

Geschätzte Koeffizienten γi der Items mit itemmodifizierenden Effekten:

> boost$gamma[1:20]

gamma11 gamma12 gamma13 gamma14 gamma15 gamma21

-0.66344193 0.42702160 -0.12748959 0.12690549 0.41183193 0.04084752

gamma22 gamma23 gamma24 gamma25 gamma31 gamma32

0.35345265 -0.28302904 -0.01116281 0.25751359 0.38093726 0.11144642

gamma33 gamma34 gamma35 gamma41 gamma42 gamma43

0.48893214 -0.42173209 0.08104063 0.04462797 -0.02591759 0.14713254

gamma44 gamma45

0.18633666 -0.07285975

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Berechnung der Boosting-Lösung für zwei Datensätze von Szenario 1 mit Parameter-

Kombination 1 durch die Funktion calc_erg:

> boost <- calc_erg(data_set1,sz=1,sequenz=c(1,2),c(700,600,500))

Verwendete Parameter-Kombination:

> boost$sz

$sz

[1] "dif_strength=s ; df_method=actset ; thresh_method=no_thresh"
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Betrachtete Datensätze:

> boost$IDs

$IDs

[1] 1 2

Geschätzte Koeffizienten γi der Items mit itemmodifizierenden Effekten:

> boost$gamma_hat[,1:20]

gamma11 gamma12 gamma13 gamma14 gamma15 gamma21

[1,] -0.6634419 0.4270216 -0.1274896 0.1269055 0.4118319 0.04084752

[2,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000

gamma22 gamma23 gamma24 gamma25 gamma31 gamma32

[1,] 0.3534526 -0.283029 -0.01116281 0.2575136 0.3809373 0.1114464

[2,] 0.0000000 0.000000 0.00000000 0.0000000 0.0000000 0.0000000

gamma33 gamma34 gamma35 gamma41 gamma42 gamma43

[1,] 0.4889321 -0.4217321 0.08104063 0.04462797 -0.02591759 0.1471325

[2,] 0.0000000 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000

gamma44 gamma45

[1,] 0.1863367 -0.07285975

[2,] 0.0000000 0.00000000

Anteil richtig-positiver Items:

> boost$true_positive

$true_positive

[1] 1 0

Anteil falsch-positiver Items:

> boost$false_positive

$false_positive

[1] 0 0
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parallele Berechnung der Boosting-Lösung von Szenario 1 für alle neun Parameter-Kom-

binationen mit df_method=actset durch die Funktion calc_erg:

> library("foreach")

> library("doParallel")

> registerDoParallel(makeCluster(9))

> erg_set1_act <- foreach(j=seq(1,9)) %dopar% {

calc_erg(data_set1,j,sequenz=seq(1,100),mstop)

}

Ergebnis ist eine Liste mit neun Elementen der jeweils folgenden Struktur:

> str(erg_set1_act[[1]])

List of 10

$ theta_hat : num [1:100, 1:250] -1.1 -0.334 -1.771 -1.59 -1.647 ...

..- attr(*, "dimnames")=List of 2

$ beta_hat : num [1:100, 1:20] -1.61 -1.41 -0.98 -1.5 -1.36 ...

..- attr(*, "dimnames")=List of 2

$ gamma_hat : num [1:100, 1:100] -0.663 0 0 -0.415 0 ...

..- attr(*, "dimnames")=List of 2

$ mstop : num [1:100] 286 0 0 352 0 0 0 0 215 250 ...

$ thresh : num [1:100] 0 0 0 0 0 0 0 0 0 0 ...

$ referenz_item : int [1:100] 20 20 20 20 20 20 20 20 20 20 ...

$ true_positive : num [1:100] 1 0 0 1 0 0 0 0 1 1 ...

$ false_positive: num [1:100] 0 0 0 0 0 0 0 0 0 0 ...

$ sz : chr "dif_strength=s ; df_method=actset ;

thresh_method=no_thresh"

$ IDs : int [1:100] 1 2 3 4 5 6 7 8 9 10 ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Regression der geschätzten Parameter θ̂p auf die Kovariable x für den ersten Datensatz

des Simulationsszenarios mit einer binären Kovariable:

> boost <- calc_erg(datasets,sz=1,n=1,c(700,600,500))

> theta <- boost$theta

> reg <- lm(theta~DM_kov)

Zusammenfassung der Regression:

> summary(reg)

Call:

lm(formula = theta ~ DM_kov)

Residuals:

Min 1Q Median 3Q Max

-3.6463 -0.8169 0.1317 0.8972 2.8432

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.43326 0.07700 -18.614 < 2e-16 ***

DM_kov 0.39096 0.07715 5.067 7.91e-07 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.215 on 247 degrees of freedom

Multiple R-squared: 0.09417, Adjusted R-squared: 0.0905

F-statistic: 25.68 on 1 and 247 DF, p-value: 7.911e-07

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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