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Zusammenfassung

Das binére Rasch-Modell ist eines der bekanntesten Item-Response-Modelle. Anwendung
findet es in der Psychologie bei der Auswertung von Intelligenztests. Grundannahme des
Modells ist, dass die Wahrscheinlichkeit fiir die korrekte Beantwortung eines Testitems ge-
nau von zwei Parametern abhéngt. Der erste Parameter steht fiir die Fahigkeit der Person
und der zweite Parameter fiir die Schwierigkeit des Items. Unterscheidet sich die Wahr-
scheinlichkeit fiir eine korrekte Antwort fiir Personen aus unterschiedlichen Subgruppen
mit derselben Fahigkeit, spricht man von Differential Item Functioning.

Die vorliegende Arbeit beschéftigt sich mit einer Erweiterung des bindren Rasch-Modells
um itemmodifizierende Effekte. Mithilfe itemmodifizierender Effekte kann der Einfluss
von Kovariablen auf die Beantwortung von Testitems beriicksichtigt werden. Eine regu-
larisierte Schatzung der Modelle wird mithilfe von Boosting umgesetzt. In einer Simula-
tionsstudie wird untersucht, wie gut sich das Boosting-Verfahren eignet, um Items mit
itemmodifizierenden Effekten korrekt zu bestimmen.

Eine Selektion der relevanten Parameter wird bei der Boosting-Schéitzung durch friihzeiti-
ges Stoppen des Algorithmus realisiert. Die optimale Anzahl an Iterationen wird mithilfe
eines BIC bestimmt. Die Selektionsergebnisse der Simulation sind sehr gut, falls die An-
zahl an Freiheitsgraden der Modelle iiber die Spur der Hat-Matrix bestimmt wird. Durch
Hinzunahme einer zusétzlichen Threshold-Regel konnen diese nochmals deutlich verbes-
sert werden.

Eine Problematik bei der Durchfithrung der Analysen ist der mit guten Selektionsergeb-
nissen verbundene Rechenaufwand. Ist die Anzahl an Items des Modells zu grofs, kann die
Spur der Hat-Matrix mit den zur Verfiigung stehenden Rechen- und Speicherkapazitiaten

nicht mehr berechnet werden. Dies ist auch im Anwendungsbeispiel der Fall.
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Notation

Verwendete griechische Buchstaben

Buchstabe | Bedeutung

0 Personen-Parameter (Fahigkeit)

o} Item-Parameter (Schwierigkeit)

v [temmodifizierende Effekte

0 Vektor der Modell-Parameter,
Regressionskoeffizient der Basis-Methode

« Koeffizienten der linearen und logistischen Regression

n Lineare Préadiktoren

s Bedingte und absolute Wahrscheinlichkeiten

p Verlustfunktion

v Verhaltnis-Faktor, Schrittlange

o Standardabweichung des Fehlerterms,

Geschétzte Standardabweichungen

€ Fehler der linearen Regression

1 Exponentieller Personen-Parameter exp(6)
A Exponentieller Item-Parameter exp(()

¢ Verhéltnis §

% x2-Verteilung

Verwendete Indizes

Buchstabe Bedeutung

1=1,...,1 Items

p=1,...,P Personen

qg=1,...,Q Kovariablen

m=1,...,Mgep | Boosting-Iterationen

J=P+2-1—1| Anzahl an Parametern des Modells (2.11)
N=P-1I Anzahl an Beobachtungen
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1 Einleitung

In unterschiedlichen Situationen des Alltags finden psychologische Tests Anwendung. Ziel
ist es unter anderem, Aussagen tiber die Auspriagung bestimmter Personlichkeitsmerkmale
von Personen zu treffen. Gerade in der Psychologie ist es nicht einfach, die zu messenden
Eigenschaften in Zahlen zu fassen, da es sich um latente, d.h. nicht beobachtbare Merkma-
le handelt. Aufschluss iiber die interessierenden Gréften soll die Beantwortung mehrerer
Aufgaben eines psychologischen Tests geben [Strobl, 2010]. Im Folgenden werden die Auf-
gaben eines solchen Tests immer mit Items bezeichnet.

Bei einem Intelligenztest wird beispielsweise erfasst, wie viele Items eine Testperson rich-
tig gelost hat. Als Ergebnis erhélt die jeweilige Person eine Schitzung ihrer Fahigkeit
[Strobl, 2010]. Das wohl bekannteste statistische Modell zur Auswertung der Ergebnisse
solcher Intelligenztests ist das Rasch-Modell [Rasch, 1960|. Dieses ist ein Vertreter der
probabilistischen Testtheorie bzw. Item-Response-Theorie (IRT). Die IRT umfasst eine
Familie von mathematischen Messmodellen, welche postulieren, dass den beobachtbaren
manifesten Daten (hier die Antworten auf Testitems) latente Variablen wie z.B. Eigen-
schaften oder Fahigkeiten der Personen zugrunde liegen, die das Testverhalten steuern

|[Rost und Spada, 1982.

1.1 Gegenstand der Arbeit

Geht man in einer Testsituation davon aus, dass das Rasch-Modell Giiltigkeit besitzt, so
ist die Wahrscheinlichkeit fiir die richtige Beantwortung eines Testitems fiir alle Personen
mit derselben Fahigkeit exakt gleich. Falls dies nicht erfiillt ist und die Wahrscheinlich-
keit fiir die richtige Beantwortung bestimmter Testitems fiir Personen verschiedene Sub-
gruppen mit derselben Fahigkeit unterschiedlich ist, spricht man von ,Differential Item
Functioning” (DIF) [Osterlind und Everson, 2009]. Differential Item Functioning tritt bei-
spielsweise dann auf, wenn ein Item fiir eine Gruppe eines der schwierigsten und fiir eine
andere Gruppe eines der leichtesten Items darstellt. Differential Item Functioning heift
aber nicht einfach, dass ein Item fiir eine Gruppe schwerer zu 16sen ist als fiir eine andere.

Bestehen namlich grundsétzliche Wissensunterschiede, z.B. zwischen Gruppen von Stu-
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denten, werden diese im gesamten Test besser bzw. schlechter abschneiden. DIF ist also
vorhanden, falls ein Item fiir eine Gruppe wesentlich schwerer zu beantworten ist als fiir
eine andere Gruppe, nachdem der allgemeine Wissensunterschied iiber die Thematik des
Tests berticksichtigt wurde. Typische Variablen zur Untersuchung von Subgruppeneffek-
ten sind Rasse, Religion und Geschlecht [Osterlind und Everson, 2009].

Die vorliegende Arbeit beschéftigt sich mit einer Erweiterung des klassischen Rasch-
Modells zur Beriicksichtigung des Differential Item Functioning. Dies wird durch die Hin-
zunahme sogenannter ,itemmodifizierender Effekte” erreicht. Hauptziel der Analysen ist
es herauszufinden, fiir welche Items itemmodifizierende Effekte vorhanden sind, d.h. wel-
che Items in verschiedenen Subgruppen unterschiedlich beantwortet werden. Des Weiteren
ist von Interesse, welches die relevanten Subgruppen-Variablen sind, fiir die itemmodifi-
zierende Effekte vorhanden sind.

Um bei der Schéatzung der vorgestellten Modelle die gewiinschte Variablenselektion zu
erzielen und dem Problem der grofsen Anzahl zu schétzender Parameter vorzubeugen,
ist eine gewohnliche Maximum-Likelihood-Schétzung nicht umsetzbar. Inhalt der Arbeit
ist die Schéatzung der Modelle mithilfe von Boosting. Dies ist eine Mdoglichkeit, mit der
regularisierte Maximum-Likelihood-Schiatzungen durchgefiihrt werden koénnen. Einen al-
ternativen Ansatz durch penalisierte Maximum-Likelihood Schétzung untersuchen Tutz
und Schauberger [2013]. Ein Grofiteil der theoretischen Ausfithrungen in Kapitel 2, unter
anderem die Einbettung der betrachteten Modelle in das Framework der generalisierten
Regressionsmodelle, basiert auf den Vorarbeiten von Tutz und Schauberger [2013]. Die
Starke dieser Betrachtungsweise ist, dass die Variablen, fiir welche itemmodifizierende Ef-
fekte untersucht werden, nicht nur binér oder kategorial, sondern auch stetig sein kénnen

und, dass die Anzahl an Variablen beliebig grof sein kann.

1.2 Gleichméafliges und ungleichméfliges DIF

Im Zusammenhang mit itemmodifizierenden Effekten gilt es im Allgemeinen zwei Kon-
zepte zu unterscheiden. Itemmodifizierende Effekte konnen entweder gleichméfig oder

ungleichméfig vorliegen. Unter einem itemmodifizierenden Effekt versteht man den Unter-
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schied der Wahrscheinlichkeit einer korrekten Antwort auf ein Testitem zwischen Personen
verschiedener Subgruppen mit derselben Fahigkeit. Falls dieser Unterschied unabhéngig
von der Fahigkeit der Personen immer gleich ist, spricht man von ,gleichméfigem* DIF.
Ist dieser Unterschied nicht konstant, sondern von der Fahigkeit der Person abhéngig, so
spricht man von ,ungleichméfigem* DIF [Osterlind und Everson, 2009]. Abbildung 1.1
visualisiert die beiden unterschiedlichen Effekte beispielhaft fiir den einfachen Vergleich
zweier Gruppen. Die eingezeichneten Kurven ergeben sich bei Modellierung der Wahr-
scheinlichkeiten durch ein logistisches Regressionsmodell. In Abbildung 1.1 sind diese rein

qualitativ zur Verdeutlichung der beschriebenen Effekte dargestellt.

GleichméRiges DIF UngleichméaRiges DIF
o o
— 7| — Gruppel - — 7| —— Gruppel . = o
- - - Gruppe2 P - - - Gruppe2 7
<] <]
g o g o
< o 7| < o 7|
g g
= =
o o
g © _| £ © ]
o o v o
c c
£ £
5 5
2 < | T T
4 o X o
< <
= o
= =
£ £
R R
o o 7 2 S
< <
S S
= =
o o
o o
T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Fahigkeit Fahigkeit

Abb. 1.1: Wahrscheinlichkeit fiir die richtige Beantwortung einer Frage in Abhédngigkeit
der Fahigkeit der Person. Unterschieden werden gleichméBige Effekte (links)
und ungleichméBige Effekte (rechts).

In der linken Graphik in Abbildung 1.1 sieht man, dass die Wahrscheinlichkeit fiir eine
korrekte Antwort in Gruppe 2 immer hoher ist als in Gruppe 1. In der rechten Graphik

hingegen schneiden sich die beiden Kurven. Unter den Personen mit geringeren Féahigkei-
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ten ist die Wahrscheinlichkeit einer richtigen Antwort in Gruppe 1 hoher als in Gruppe
2. Unter den Personen mit hoheren Fahigkeiten ist dies genau umgekehrt.

Anhand der Item-Response-Modelle, die Gegenstand der Arbeit sind (Kapitel 2), konnen
nur gleichméfige itemmodifizierende Effekte modelliert werden. Die Unterschiede zwi-
schen den Subgruppen sind fiir alle Personen, unabhéngig von ihrer Fahigkeit, immer

gleich.

1.3 Aufbau der Arbeit

In Kapitel 2 werden die in der Arbeit betrachteten Modelle, insbesondere das Rasch-
Modell mit itemmodifizierenden Effekten, vorgestellt. Entscheidend fiir die Schitzung der
Modelle ist die Einbettung in das Framework der generalisierten Regressionsmodelle.
Kapitel 3 fiithrt in die Theorie des Boosting ein und erldautert im Besonderen die Vor-
gehensweise fiir das Rasch-Modell mit itemmodifizierenden Effekten. An entsprechenden
Stellen wird auch auf die praktische Umsetzung mit statistischer Software eingegangen.
In Kapitel 4 werden alternative Schétzverfahren eingefiihrt, die sich ebenfalls zur Model-
lierung itemmodifizierender Effekte eignen.

Kapitel 5 beinhaltet eine Simulationsstudie, in der untersucht wird, wie gut die Boosting-
Methode zur Modellierung relevanter itemmodifizierender Effekte geeignet ist.
Abschliefsend enthélt Kapitel 6 zwei Anwendungsbeispiele, an denen die Schétzung mithil-
fe von Boosting praktisch umgesetzt wird. Anhand der Simulationsergebnisse aus Kapitel

5 kann Riickschluss auf die Giite der Schatzung gezogen werden.

Alle Analysen, die in der Arbeit vorgestellt werden, wurden mit der Software R durchge-
fiihrt [R Core Team, 2013|. Anhang B enthilt eine Ubersicht der Ordnerstruktur, in der die
erzeugten Source-Dateien (,,.R*) und die Ergebnisse der Analysen (,,RData®) gespeichert
sind.

In den mathematischen Formeln und Ausdriicken der Arbeit sind Vektoren klein und fett
markiert (z.B. 7) und Matrizen groft und fett markiert (z.B. Z), um diese von Skalaren

und Funktionen zu unterscheiden.
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2 Item-Response-Modellierung

Grundlage fiir die der Arbeit vorliegenden Modelle sind die Konzepte von Georg Rasch zur
Auswertung von Intelligenztests [Rasch, 1960]. Seine initiale Idee ist, dass das Ergebnis
eines Intelligenztests einer Person nur von zwei Komponenten abhédngt, ndmlich einem
Faktor fiir die Fahigkeit der Person und einem Faktor fiir die Schwierigkeit des Tests. In
dieser Arbeit wird jeweils die Schwierigkeit einzelner Testitems betrachtet.

Beide von Rasch identifizierten Komponenten werden durch latente Parameter ausge-
driickt, die nur relativ zu einem festgelegten Referenzwert interpretiert werden kénnen.
Im Kapitel ,A structural model for items of a test” stellt Rasch [Rasch, 1960] Uberlegun-
gen an, wie man die Messungen fiir die Personen-Fahigkeit und die Item-Schwierigkeit

auf einer Verhaltnisskala ausdriicken kann.

2.1 Das klassische Rasch-Modell

Sei & der Parameter fiir die Fahigkeit der Person und A der Parameter fiir die Schwierigkeit

des Items eines Tests, so gelte fiir zwei Personen und zwei Items folgende Relation:

& = v jéié

- (2.1)
)\1 = I/)\g )\1 )\2

Inhaltlich bedeutet Gleichung (2.1), dass sich sowohl die Féahigkeit von Person 1 und Per-
son 2 als auch die Schwierigkeit von Item 1 und Item 2 um den Faktor v unterscheidet.
Die Wahrscheinlichkeit, dass Person 1 Item 1 16st, ist also genauso grofs wie die Wahr-
scheinlichkeit, dass Person 2 Item 2 16st [Rasch, 1960].

Damit obige Aussage als giiltig angesehen werden kann, sollten die Relationen (2.1) auch
auf alle weiteren Items und alle anderen Personen iibertraghar sein. Sei v > 1, dann
sollte Person 1 bei allen Items um den Faktor v besser abschneiden als Person 2, und
Item 1 sollte fiir alle Personen um den Faktor v schwieriger sein als Item 2. Es ist somit
sinnvoll, die Wahrscheinlichkeit, dass eine Person ein Item korrekt 16st, als Funktion des

Verhéltnisses ( = % zu modellieren [Rasch, 1960]. Um Personen jeder Fahigkeit und
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Items jeder Schwierigkeit zu beriicksichtigen, sollte der Wertebereich von ( zwischen 0
und +oo liegen. Eine Transformation von ¢ in den Wertebereich zwischen 0 und 1 ist die

naheliegende Transformation [Rasch, 1960]:
LS € (0,1), falls ¢ € (0,400) (2.2)
L+¢ &+ A
Fir die Wahrscheinlichkeit 7,;, dass Person p Item i korrekt 16st, gilt dann:
T = =2 & log [ 2 ) = log(g,) — log(\) (2.3)
! &+ A L — mp; .

Die rechte Seite von Gleichung (2.3) entspricht dem bekannten bindren Rasch-Modell. Sei
Ypi € {0,1} der Indikator, ob Person p Item i korrekt 16st, so gilt fiir dessen Wahrschein-
lichkeit [Strobl, 2010]:

exp(6, — B;)

.= Py, = 116, 8;) = tp=1.. .. P i=1....1 (24
ﬂ-p (yp | p /8) 1 +eXp(9p _5Z> mit p ? ( )

wobei 0, fiir den Personen-Parameter und ; fiir den Item-Parameter steht. Eine alterna-

tive Formulierung des Modells lautet:

P i = 1 Qp, i
ogit (P = 11,6) = tog (L =) ) g5 ey

Mit 6, = log(¢,) und ; = log(\;) entsprechen sich die Gleichungen (2.3) und (2.5).

Wie einleitend angedeutet wurde, sind die zu schéitzenden Personen- und Itemparameter
nur relativ interpretierbar. Modell (2.5) ist in dieser Form nicht eindeutig l6sbar. Es ist
notwendig, vor der Schétzung einen Parameter festzusetzen, der als Referenzwert dient.

Gewahlt wird der Personen-Parameter §p = 0. Dies macht eine einfache Darstellung des

Modells in Abschnitt 2.4 moglich |[Tutz und Schauberger, 2013].

2.2 Rasch-Modell mit itemmodifizierenden Effekten

Im Rasch-Modell (2.5) wird die Schwierigkeit von Item i allein durch den Parameter 3;

modelliert. Im Folgenden wird zusétzlich der Effekt des Differential Item Functioning
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beriicksichtigt. Um zuzulassen, dass die Schwierigkeit bestimmter Items von Kovariablen
abhéngen kann, wird Modell (2.5) um itemmodifizierende Effekte v, erweitert.

Sei x, der Vektor an Kovariablen von Person p, so wird der Item-Parameter 5; um den
linearen Pradiktor X;‘I;’)’Z- erganzt. Es gilt zu beachten, dass x, einen personenspezifischen
und =y, einen itemspezifischen Parameter darstellt [Tutz und Schauberger, 2013].

Das vollstdndige Modell in dquivalenter Form zu (2.5) lautet:

P(ypl = 1|9p76ivxp)
L — P(yp = 110y, Bi, %)

logit(P(y,: = 1|0, Bi,x,)) = log ( ) =0,— (8 + X;Z%’) (2.6)

Mit Modell (2.6) ist es moglich, Unterschiede in der Beantwortung einzelner Items eines
Tests zwischen Subgruppen zu modellieren, die durch die Kovariablen x gebildet werden.
Im einfachsten Fall ist x,, die Realisierung einer binéren Variable, z. B. Geschlecht. Sei x,, =
1 fiir eine mannliche Person und x, = 0 fiir eine weibliche Person. Falls ein Unterschied

zwischen Méannern und Frauen besteht, erhélt man als Item-Parameter

Bi +~; fiir Manner und
(2.7)
B; fiir Frauen.

Der Parameter 7; entspricht in diesem Beispiel dem Unterschied der Schwierigkeit von
Item i zwischen Méannern und Frauen |[Tutz und Schauberger, 2013].
Die Stérke von Modell (2.6) ist, dass im Allgemeinen auch metrische oder mehrkategoriale
Kovariablen x, ins Modell aufgenommen werden konnen und es weiterhin seine Giiltigkeit
behélt. Des Weiteren ist die Anzahl an Kovariablen des Modells beliebig wahlbar, ohne,
dass Modell (2.6) an Giiltigkeit verliert. Nimmt man Linearitdt in den Logits an, so lautet

der Item-Parameter fiir die stetige Kovariable Alter:

Bi + Alter - ~; (2.8)

Falls v; gleich Null ist, so ist die Schwierigkeit von Item i in jedem Alter gleich [Tutz und
Schauberger, 2013].

Im Weiteren bezeichne QQ die Anzahl an Kovariablen im Modell, mit ¢ = 1,..., Q. Ist ein
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Parameter v;, ungleich Null, bedeutet es, dass das Item von den Personen der Gruppen,
die durch die Kovariable ¢ gebildet werden, unterschiedlich beantwortet wird. Modell (2.6)
gibt also nicht nur an, welche Items dem klassischen Rasch-Modell (2.5) nicht geniigen,
sondern auch explizit, durch welche Kovariablen die Item-Parameter 3; modifiziert werden

[Tutz und Schauberger, 2013|.

2.3 Das logistische Regressionsmodell

Ein géngiges, statistisches Modell fiir die Modellierung einer bindren Zufallsvariable in
Abhéngigkeit anderer Einflussgrofen ist das logistische Regressionsmodell. Eine ausfiihr-
liche Darstellung der Theorie zu generalisierten Regressionsmodellen findet man in [Fahr-
meir et al., 2009]. Gegeben seien die Daten (y;,%;), i = 1,...,n, wobei y; € {0,1} und
E(yilxi) = P(yi = 1]x;) = m;.

Damit lautet das vollstandige Modell:

1. Zufallskomponente

yi\m ~ B(Wi)

2. Linearer Pradiktor

N =x%.6

3. Link-Funktion
~ exp(x/4)
1+ exp(x/é)

: = g(m;) = log ( L ) =x, 6

1—7Tl'

Im Folgenden werden die Modelle (2.5) und (2.6) in das vorgestellte Framework des lo-

gistischen Regressionsmodells eingebettet.

2.4 Rasch-Modell als logistisches Regressionsmodell

Zur Schétzung der Rasch-Modelle aus Abschnitt 2.1 und 2.2 sollen Algorithmen verwendet
werden, die auf Maximum-Likelihood-Schatzungen basieren. Dazu ist es hilfreich, die Mo-

delle (2.5) und (2.6) in die bekannte Form eines logistischen Regresssionsmodells, welches
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im vorherigen Abschnitt 2.3 vorgestellt wurde, zu bringen. Die Darstellung der Modelle
ist entnommen aus [Tutz und Schauberger, 2013|.

Gegeben seien die Daten (y,:,%,), p = 1,..., P, i = 1,...,1. Mit Wahrscheinlichkeit
Ty = P(ypi = 1|z,;) gilt fir die Linkfunktion des logistischen Regressionsmodells:

g(mp) = z;-(s, (2.9)

wobei z,; den Designvektor fiir Person p bzgl. Item i darstellt. Diesen gilt es klar vom
Kovariablen-Vektor x, fiir Person p zu unterscheiden.

Mit Vektor 67 = (8", 3") lasst sich Modell (2.5) folgendermaRen schreiben:

P(ypi = 1zp)
1 o ” =0,— 6, =1} 17
©8 (1 — P(Ypi = 1Zps) i

0 (2.10)
(1hg) » —1i) = 7,0
In Modellgleichung (2.10) gilt:
=(0,...,0,1,0,...,0), mit Ldnge P-1 und 1 an Position p
0= (0,...,0p1)
=(0,...,0,1,0,...,0), mit Lange I und 1 an Position i
B = (B, 0r)

Fiir das Modell gilt die Restriktion #p = 0. Nur durch Festsetzen eines Parameters ist das
Modell eindeutig 16sbar.
Mit Vektor 67 = (87,87, ~47, ..., ~T) ldsst sich Modell (2.6) folgendermafen schreiben:

P(ypi = 1]zp:) T
log< r 5 =0, — Bi — %, v, = 17 1708 —
1= P(ypi = 1]2p) g : P = Lo (2.11)
= zg;(s
Der gesamte Designvektor in (2.11) lautet z); = (15, —174,0,...,—%,,...,0) mit

Komponente —XII; beziiglich Parameter ;.
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Fiir einen kleinen Datensatz mit zwei Personen und zwei Items sehen die vollstandigen

Komponenten von Modell (2.11) wie folgt aus:

th
Y11 1 -1 0 —xI' 0 4
1
Y12 1 0 -1 0 —X?
y = . 7= und 6 = B (2.12)
Y21 0 —1 0 —Xg 0
71
Y22 0 0 —1 0 —XCQF
Yo

In dieser Darstellung hat die Matrix Z genau P-1 Zeilen, was der Anzahl an Beobachtungen
und P + 2 -1 — 1 Spalten, was der Anzahl zu schitzender Parameter in Modell (2.11)
entspricht. Die Parametervektoren der itemmodifizierenden Effekte «,,...,~y; stellen in

dieser Form des Modells jeweils einen Parameter dar. Fiir die weitere Notation gilt:

e N=P-1 = Anzahl an Beobachtungen

e J=P+2.1—1 = Anzahl an Parametern in Modell (2.11)

Es ist zu beachten, dass die Anzahl zu schétzender Parameter in Modell (2.11) im Allge-
meinen nicht grofer ist als die Anzahl an Beobachtungen. Sie ist jedoch so grof, dass eine

regularisierte Schiatzung des Modells notwendig ist (siche Kapitel 3).

2.5 Modell mit zusitzlichem Populationseffekt

In Modell (2.6) wird implizit angenommen, dass Unterschiede zwischen den Gruppen,
die durch die Kovariablen x gebildet werden, nur beziiglich bestimmter Items eines Test
bestehen. Tatséchlich kann es jedoch sein, dass ein grundsétzlicher Féahigkeitsunterschied
zwischen den Gruppen besteht. Dies fithre dazu, dass das Ergebnis der betrachteten Grup-
pen beziiglich des gesamten Tests unterschiedlich gut ausféllt. Dieser Effekt ist klar vom
Effekt des Differential Item Functioning zu unterscheiden, welcher durch die itemmodifi-
zierenden Effekte ~,,...,v; modelliert wird.

Um grundsétzliche Fahigkeitsunterschiede zu berticksichtigen, kann Modellgleichung (2.11)

um eine weitere Kovariable v erweitert werden |[Tutz und Schauberger, 2013].
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Der lineare Pradiktor des logistischen Regressionsmodells ldsst sich dann folgendermafien

schreiben:

Mpi = 7,0 = 1p)0 = 1B =%, 7 =%, %, (2:13)

mit zgi = (112(7,) , —1}F(2.), —XIY;, 0,..., —XZ, ...,0)und 67 = (67,87, 47, AT, ..., 4T).
Der Parameter ~ entspricht dem Effekt der Kovariablen x, beziiglich des Ergebnisses im
gesamten Test. Im Fall einer bindren Kovariable wird durch den Parameter v modelliert,

ob eine Gruppe den Test besser absolviert als die andere Gruppe |Tutz und Schauberger,

2013].

2.6 Identifizierbarkeit der Modelle

Der lineare Préadiktor des Rasch-Modells mit itemmodifizierenden Effekten (2.11) lautet
Npi = 0p — Bi — X;‘I;")’Z- fiir Person p und Item i . Bei genauerer Betrachtung sieht man, dass

der lineare Préadiktor 7, mit einer Konstante ¢ folgendermafien umparametrisiert werden

kann [Tutz und Schauberger, 2013]:

Mpi = Op — Bi — X}

=0,— 0 — X;";(“yi —c)— X;FC (2.14)

= ép - Bi— X;J;’S/ia
mit 9~p =0, — xgc und 4; =, — c.
Die Parameter 6° = (87,8",~47,...,4F) und 5 = (éT,BT,'?lT, .., AF) ergeben exakt
dasselbe Modell. Die Parameter 6, sind um den Wert XZC und die Parameter «; um den
Wert c verschoben. Diese Uberlegungen zeigen, dass Modell (2.11) in der bisherigen Form
nicht eindeutig 16sbar ist [Tutz und Schauberger, 2013].
Unter folgenden Restriktionen ist Modell (2.11) eindeutig identifizierbar:

1. Br=0, 4" =(0,...,0) (oder fiir ein beliebiges, anderes Item).

2. Die gewohnliche Designmatrix mit Zeilen (1,x7),...,(1,x%) hat vollen Rang.
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Um die Identifizierbarkeit von Modell (2.11) zu garantieren, miissen lt. Bedingung 1 der
Koeffizient 5; und die Koeflizienten +;, eines Items festgesetzt werden. Im Allgemeinen
kann hierfiir jedes beliebige Item gew#hlt werden. Bedingung 2 ist eine allgemeine Bedin-
gung, wie sie in ahnlicher Form auch in tiblichen Regressionsmodellen bendtigt wird. Den
Beweis und weitere Details zu den Bedingungen findet sich in [Tutz und Schauberger,
2013]. Die eingefiihrten Bedingungen sind unabhéngig von der urspriinglichen Restriktion

des Modells 6p = 0.

Modelliert man Daten durch ein Rasch-Modell mit itemmodifizierenden Effekten (2.6), so
geht man grundsétzlich davon aus, dass fiir die meisten Items das einfache Rasch-Modell
(2.5) giiltig ist und nur fiir wenige Items die Koeffizienten -+, ungleich Null sind. Es ist
wiinschenswert, dass bei der Schitzung die maximale Anzahl an Items bestimmt wird,
fiir die das Rasch-Modell Giiltigkeit besitzt. Welches Item in Bedingung 1 gewéhlt wird,
héngt genau von dieser Zielsetzung ab. Wie die Restriktionen bei der Schatzung explizit
umgesetzt werden, um am Ende eine eindeutig identifizierbare Losung vorliegen zu haben,

wird in Abschnitt 3.5 erlautert.

Betrachtet man das erweiterte Modell mit zusétzlichem Populationseffekt (2.13), so stoft
man auf ein weiteres Identifikationsproblem. Trotz der Festsetzung von 3; = 0 und
~F = (0,...,0) fiir ein Item i ist es nicht moglich, die Parameter 4 und 6, ohne weitere
Restriktion klar voneinander zu unterscheiden. Der lineare Pradiktor n,, kann folgender-

mafsen umparametrisiert werden [Tutz und Schauberger, 2013]:

Mpi = Op — Bi — X,y — X

=0,+x)c—p —x) (v+¢)—x, (2.15)

=0, — Bi — x5 — XL i,
mit 0, = 6, +xJc und ¥ = v + c.
Nachdem Vektor ¢ beliebig wahlbar ist, kann immer v = (0, ..., 0) festgelegt werden, und
man erhélt wieder die urspriingliche Form des linearen Pradiktors (2.11). In dieser Form
ist also nicht eindeutig, welcher Teil der Féahigkeit der Person durch die Zugehorigkeit zur
jeweiligen Gruppe erklart werden kann [Tutz und Schauberger, 2013|.
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Eine Moglichkeit, dies zu identifizieren, ist ein zweistufiges Schétzverfahren:

1. Schétze das Modell (2.11) ohne zusétzlichen Populationseffekt.

2. Berechne eine Regression der geschétzten Parameter ép auf den Kovariablenvektor

Xp.

Das Regressionsmodell in Schritt 2 gibt schlieflich an, welcher Teil der Variation der
geschitzten Fahigkeiten durch die Kovariablen x erklart werden kann, nachdem die ein-
zelnen itemmodifizierenden Effekte bereits beriicksichtigt wurden. Dies entspricht einem
globalen Effekt der Gruppenzugehorigkeit [Tutz und Schauberger, 2013]. Die explizite

Umsetzung der Regression bei der Schatzung wird in Abschnitt 3.5 erldutert.

Hauptteil der Simulation in Kapitel 5 ist die Analyse des Rasch-Modells mit itemmodifizie-
renden Effekten (2.11) in den Abschnitten 5.1 und 5.2. In einem weiteren Teil (Abschnitt
5.3) wird das zweistufige Schétzverfahren fiir das Modell mit zusétzlichem Populations-
effekt (2.13) durchgefiihrt. In den simulierten Daten wird der grundsétzliche Fahigkeits-
unterschied nur beziiglich einer bindren Kovariable modelliert. Ziel der Simulation ist es
herauszufinden, wie gut sich das in Kapitel 3 vorgestellte Schéatzverfahren zur Schéatzung

der beiden Modelle eignet, um relevante itemmodifizierende Effekte zu bestimmen.
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3 Schitzung mithilfe von Boosting

Um Schétzungen fiir die Modelle, die in den Abschnitten 2.2 und 2.5 vorgestellt wurden,
zu erhalten, wire es am einfachsten, die Maximum-Likelihood-Schétzer der logistischen
Regressionsmodelle (2.11) und (2.13) zu berechnen. Fiir die vorliegenden Modelle ist dies
jedoch problematisch. Einer der Griinde ist die grofe Anzahl an Parametern der Modelle.
Vor allem, falls die Anzahl zu schétzender Parameter grofser ist als die Anzahl an Be-
obachtungen, sind die Maximum-Likelihood-Schéitzer ungenau oder gar nicht eindeutig
definiert. Sieche dazu auch [Hastie et al., 2009]. Ein weiterer Grund ist die Verfehlung des
eigentlichen Ziels der Analyse. Bestimmt werden sollen die Items mit itemmodifizierenden
Effekten, und nur die zugehorigen Parametervektoren =y, sollen ins geschétzte Modell auf-
genommen werden. Durch Maximum-Likelihood-Schétzung wird keine Variablenselektion
durchgefiihrt, und man erhalt Schatzungen fiir alle Parameter des Modells. Eine zielfiih-
rende und korrekte Losung der Schiatzung erhélt man durch regularisierte Schétzung der

Modelle. Die vorliegende Arbeit beschéftigt sich mit der Schatzung mithilfe von Boosting.

Im folgenden Kapitel wird in Abschnitt 3.1 zunéchst allgemein der Boosting Algorithmus
bzw. funktionale Gradienten-Abstieg (FGD) vorgestellt und anschlieffend speziell fiir den
Fall bindrer Klassifikation durch logistische Regression (Abschnitt 3.2). Als Datengrund-
lage fiir die Darstellung der Algorithmen dienen die Daten in der Form, in der sie in

Abschnitt 2.4 eingefithrt wurden.

Neben dem Ziel, alle relevanten Parameter ~; zu bestimmen, die ungleich Null sind, sollen
alle Personen-Parameter 6, und Item-Parameter 3; vollstandig ins Modell aufgenommen
werden. Dies macht eine Schatzung der Modelle in zwei Schritten notwendig. Das Vorgehen

wird in Abschnitt 3.3 erldutert.

Die Implementierung der Boosting-Schétzung mithilfe der statistischen Software R [R Core
Team, 2013] basiert auf Boosting-Funktionen aus dem Paket mboost [Hothorn et al., 2013].
Bei Verwendung wichtiger Funktionen und Umsetzung entscheidender Schritte sind Teile

des Programm-Codes angegeben.
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3.1 Allgemeiner FGD-Algorithmus

Der Boosting-Algorithmus, der in Bithlmann und Hothorn [2007] erldutert wird, wurde
urspriinglich von Friedman et al. [2000] entwickelt. Sie entwarfen ein allgemeines Frame-
work, das sich direkt als Methode zur Schétzung einer Funktion interpretieren lasst. Das
Schétzverfahren erfolgt dabei schrittweise, und die Losung berechnet sich additiv. Die
Darstellung des Algorithmus ist entnommen aus [Bithlmann und Hothorn, 2007].

Gegeben seien der Responsevektor y und
e die Zufallsvariablen 71, ..., Z; (Spalten der Matrix Z) bzw.
e die Beobachtungen zy1,...,zp; (Zeilen der Matrix Z).

Die vorliegenden Daten wurden bereits durch den Beispiel-Datensatz (2.12) illustriert.

Ziel ist es, eine reelwertige Funktion

f() = argminE{p(y, f(Z1, ..., Z1)) (3.1)

zu schitzen. Dabei bezeichnet p(-, ) eine Verlustfunktion. Welche Verlustfunktion im vor-
liegenden Fall der bindren Klassifikation verwendet wird, ist in Abschnitt 3.2 dargestellt.
Um die Funktion f(-) zu schétzen, betrachtet man das empirische Risiko summiert iiber

alle N = P - I Beobachtungen %Zp(ypi, f(zp:)) und folgt folgendem Algorithmus.
N

1. Initialisiere fI(.) mit einem Startwert. Moglich sind beispielsweise

FO() = arg m&n%;mym,c) oder () = 0. (32)

Setze m=0.
2. Erhohe m um 1. Berechne den negativen Gradienten —(%p(y, f) und werte ihn fiir

jede Beobachtung an der Stelle fim—1l (zp:) aus:

0
Up; = _Wp(ypi7 f)|f:f[m*1](zzﬂ) (39
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3. Fitte die negativen Gradienten uqq, ..., upr auf die linearen Pradiktoren zq1,...,zp;s

durch eine Basis-Methode:

Basis-Methode [y
(Zpi, Upi) - g™ (3.4)

Im vorliegenden Fall wird als Basis-Methode die lineare Regression verwendet (siche

Abschnitt 3.2).

4. Aktualisiere fIm(.) = fim=1(.) 4 pglml () wobei 0 < v < 1 die Schrittlinge in jedem

Schritt m bezeichnet.

5. Wiederhole Schritt 2 bis 4 bis m = msgep, d.h. bis zu einer bestimmten Anzahl an

Iterationen mygyop.

Die optimale Anzahl an Iterationen wird mithilfe von Modellwahl-Kriterien bestimmt
(siche Abschnitt 3.4) und stellt die wichtigste Stellschraube des Algorithmus dar. Durch
frithzeitiges Stoppen des Algorithmus wird die gewiinschte Regularisierung der Schatzung

erzielt.

3.2 Boosting im Fall binérer Klassifikation

Einer der Bestandteile des Algorithmus aus Abschnitt 3.1, der spezifiziert werden muss,
ist die Verlustfunktion p(-,-). Alle zugrundeliegenden Item-Response-Modelle betrachten
die bindre Zufallsvariable, ob ein bestimmtes Item richtig oder falsch beantwortet wurde,
d.h. Y €{0,1}. Mit P(Y = 1) = 7 ist die log-Likelihood gegeben durch [Bithlmann und
Hothorn, 2007]:

log (L) = ¢ = wlog(m) + (1 — y)log(1L — ) (3.5)

Mit der alternativen Kodierung ¥ = 2Y — 1 € {—1,1} und der Umparametrisierung
f= % -log (ﬁ) erhélt man durch Umformung von (3.5) fiir die negative log-Likelihood:

log (1 + exp(—27f)) (3.6)
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Bei bindrer Klassifikation ist es iiblich, dquivalent zu Formel (3.6), die Funktion

plog-lik(g> f) = 10g2 (1 + eXp(_2gf)) (37)

als Verlustfunktion zu verwenden. In dieser Form ist sie auch im Paket mboost [Hothorn
et al., 2013] implementiert.
Es kann gezeigt werden, dass bei Verwendung der Verlustfunktion (3.7) die optimale

Losung beziiglich der Grundgesamtheit fiir die vorliegenden Daten die Form

1 PY =1|Z1,...,Z))
f(Zl""’ZJ)_§1°g(1—P(Y=1|Zl,...,ZJ)) (3:8)

hat (vgl. [Friedman et al., 2000]).

Die Boosting-Schitzung fI™)(-) kann als Schiitzung der optimalen Lésung f(Zy, ..., Z;)
(3.8) angesehen werden. Die Losungen sind Schéitzungen fiir die halbierten Werte der
Logits, die den linearen Pradiktoren eines logistischen Regressionsmodells entsprechen.
Als Basis-Methode wird in Schritt 3 des Boosting-Algorithmus aus Abschnitt 3.1 die Me-
thode der komponentenweise linearen kleinsten Quadrate verwendet. Dabei wird ¢l () in

jedem Schritt durch ein einfaches lineares Modell mit einer Kovariablen gebildet, nadmlich

[Boulesteix und Hothorn, 2010]:

9(Zy,..., Z5) = 02 (3.9)

A~

d;- stellt dabei den Schétzer eines einfachen linearen Modells mit Z; als einziger Einfluss-

grofe dar:

0; = (Z sz‘jupz) / (Z(Zpij)2> (3.10)
N N
Mit j* wird die Kovariable mit der besten Prédiktion im univariaten Modell bezeichnet:

R 2
Jjt=arg minz <um - 5jzpij> (3.11)
N

1<j<T
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Zusammenfassend: In jedem Schritt m wird die Boosting-Schitzung durch ein univariates
lineares Modell aktualisiert, wobei in jedem Schritt die Kovariable ausgewéhlt wird, welche
die grokte Verbesserung der Pradiktion mit sich bringt.

Verwendet man den Boosting-Algorithmus mit Verlustfunktion (3.7) und als Basis-Methode
komponentenweise lineare kleinste Quadrate, so erhélt man fiir mg,p — 00 die Losung
eines logistischen Regressionsmodells, wie es in Abschnitt 2.4 dargestellt wurde.

Zur Durchfithrung der Schétzung in R wird die Funktion gamboost aus dem Paket mboost

verwendet. Der Funktionsaufruf sieht ausschnittsweise folgendermafsen aus:
> gamboost (formula,data,family=Binomial(),...)

Das Argument family legt die Verteilung der betrachteten Zielgrofe fest. Mit fami-
ly=Binomial () wird die gewiinschte Verlustfunktion (3.7) verwendet. Mithilfe der for-
mula wird die Basis-Methode spezifiziert. In der formula wird jede der Kovariablen des
Modells als mégliche Komponente einzeln angegeben. Mit der Funktion bols bewirkt man,
dass als Basis-Methode komponentenweise lineare kleinste Quadrate verwendet werden.
Fiir den Parameter -, mit fiinf Kovariablen sieht der Aufruf der Funktion beispielsweise

folgendermafien aus:
> bols(gammall, gammal2, gammal3, gammal4, gammal5, intercept = FALSE, df = 1)
Die Parameter «;, werden jeweils als gemeinsame Komponente mit einem Freiheitsgrad

(df=1) spezifiziert. Daher gilt fiir die geschitzten Parameter, dass

v, =0 oder

Vg 70 Vg=1,...,Q.

(3.12)

Nach diesem Vorgehen sind die geschétzten itemmodifizierenden Effekte eines Items ent-

weder fiir alle Kovariablen gleich oder fiir alle Kovariablen ungleich Null.

3.3 Kombination von logistischer Regression und Boosting

Ziel der regularisierten Schétzung der Modelle (2.11) und (2.13) ist es, die relevanten

itemmodifizierenden Effekte zu identifizieren und die Parameter «, der Items, die nicht
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von zusétzlichen Kovariablen beeinflusst werden, auf Null zu schéitzen. Wendet man den
in Abschnitt 3.1 und 3.2 beschriebenen Boosting-Algorithmus an, so wird dies schritt-
weise umgesetzt. Gleichzeitig sollen alle Personen-Parameter ¢, und Item-Parameter 3
des klassischen Rasch-Modells vollstédndig in das geschétzte Modell aufgenommen werden.
Um dies sicherzustellen, wird die Schatzung der Modelle mit itemmodifizierenden Effek-
ten in zwei Schritten durchgefiihrt. Die Darstellung des Vorgehens ist angelehnt an die

Ausfithrungen in [Boulesteix und Hothorn, 2010].

1. Schétze das einfache Rasch-Modell ohne itemmodifizierende Effekte (2.5) als logis-

tisches Regressionsmodell, wie es in Gleichung (2.10) dargestellt ist.

1.1. Man erhélt Schatzungen 9[1”, e ,QAE]_I, AP, cee AF], wobei 6p = 0 vorher fest-

gelegt wird.

1.2. Berechne fiir alle Beobachtungen N die linearen Pradiktoren

1] 4T Alll 7 Al
My = 1pp0 = 1B

pt

2. Schétze das Rasch-Modell mit itemmodifzierenden Effekten (2.6) mithilfe des vor-

gestellten Boosting-Algorithmus in den Abschnitten 3.1 und 3.2.

2.1. Definiere den Startwert fI(.) fiir alle Beobachtungen iiber fl (zpi) = ﬁz[,li] /2
als Offset-Wert, und berechne den Boosting-Algorithmus mit log-Likelihood-
Verlustfunktion (3.7) und komponentenweise linearen kleinsten Quadraten als

Basis-Methode bis Iteration mgqp.

2.2. Man erhélt Schatzungen ) rtor] fiir alle Parameter des Modells mit itemmodi-

fizierenden Effekten.

2.3. Berechne fiir alle Beobachtungen N die resultierenden linearen Pradiktoren

A~ [Mstop) Almstop]

~[Mstop) ~ [Mstop] almstop]

— X,

T
— 1

Wie in Abschnitt 3.2 beschrieben, ist das Boosting-Ergebnis eine Schiatzung der halbier-
ten Werte der Logits des logistischen Regressionsmodells. Als Offset-Werte werden der

Boosting-Funktion daher die halbierten linearen Préadiktoren iibergeben.
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Da die Schatzungen des einfachen Rasch-Modells bereits als Offset in das Modell auf-
genommen wurden, ist zu erwarten, dass weitgehend nur die zusétzlichen Parameter ~,
aktualisiert werden. Der Algorithmus macht es aber auch moglich, dass nochmals die
Parameter 6, und ; zur Schétzung herangezogen werden.

Im mboost-Paket ist die Moglichkeit, einen Offset als Startwert der Boosting-Schétzung
zu iibergeben, implementiert. Dafiir wird der Funktion gamboost ein Parameter offset

iibergeben:

> gamboost (formula,data,family=Binomial () ,offset=offset,

control=boost_control (mstop=mstop))

Uber das Argument control=boost_control() wird die Anzahl zu berechnender Itera-

tionen festgelegt.

3.4 Kriterium fiir die Modellwahl

Einer der wichtigsten Komponenten des Boosting-Algorithmus ist die Anzahl an Iteratio-
nen Mgiop. Als Ergebnis der Boosting-Schétzung erhalt man im Grenzwert fiir mggop — 00
die halbierten Werte der Losungen eines logistischen Regressionsmodells. Eine regularisier-
te Schiatzung und die damit verbundene Variablenselektion realisiert man durch friihzei-
tiges Stoppen des Algorithmus. Fiir die vorliegenden Modelle (2.11) und (2.13) entspricht
das optimale Modell dem Modell mit den relevanten itemmodifizierenden Effekten. Durch
frithzeitiges Stoppen wird erreicht, dass nur die Schiatzungen 4, ungleich Null sind, deren
Items dem einfachen Rasch-Modell (2.5) nicht geniigen.

Eine Moglichkeit zur Bestimmung der optimalen Anzahl an Iterationen ist die Kreuzva-
lidierung. Allgemeines zur Theorie iber Modellwahlkriterien findet man in [Hastie et al.,
2009]. Bei der k-fachen Kreuzvalidierung werden die Daten (v, %,), p = 1,..., P, i =
1,..., I zufallig in k gleichgrofse Teile aufgeteilt. Das Modell wird jeweils ohne den k-ten
Teil der Daten geschétzt, und anschliefsend wird fiir den k-ten Teil der Daten eine Vor-
hersage berechnet. In Item-Response-Modellen ist die besondere Struktur der Zielgrofie

y zu beachten. Es ist davon auszugehen, dass die Ergebnisse des Tests einer Person p
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Ypl, - - -, Ypr ahnlicher sind als die Ergebnisse verschiedener Personen. Teilt man den Da-
tensatz zuféllig in k Teile auf, so kommt es vor, dass alle Daten einer Person in einem der
k Teile enthalten sind. Es ist anschliefsend nicht mehr moglich, sinnvolle Schatzungen bzw.
Prognosen fiir diese Person zu erhalten. Eine Modellwahl mithilfe von Kreuzvalidierung

ist fiir die betrachteten Item-Response-Modelle somit nicht geeignet.

Eine weitere Moglichkeit zur Bestimmung der optimalen Anzahl an Iterationen sind In-
formationskriterien. Vorarbeiten von Tutz und Schauberger [2013| zeigen, dass sich dies-
beziiglich am besten das Bayesianische Informationskriterium (BIC) eignet. Gesucht ist
der beste Kompromiss zwischen Verbesserung der Likelihood und Erhchung der Modell-

komplexitat. Im vorliegenden Fall ist das BIC folgendermafien definiert:

BIC = —2/(d) + log (N) - df (3.13)

N=P-I entspricht der Anzahl an Beobachtungen, die log-Likelihood ¢ ist gegeben durch
(3.5) und df entspricht der Anzahl an Freiheitsgraden des Modells. Eine allgemeine Form
des BIC findet sich in [Hastie et al., 2009].

Die Anzahl an Freiheitsgraden df in Boosting-Schritt m kann iiber die aktuelle Anzahl
an Parametern des geschétzten Modells, dem sogenannten ,activ set”, bestimmt werden.
Die Anzahl ergibt sich aus allen Personenparametern 6,, Itemparametern 3; und der
Parametervektoren ~,, die in Schritt m ungleich Null sind. Wird ein Parametervektor =,
ins Modell aufgenommen, erhoht sich die Anzahl an Freiheitsgraden um die Anzahl der

Elemente des Vektors. Dies entspricht der Anzahl an Kovariablen Q des Modells. Es gilt:

Af(m) = P+ T+ o Ll £ 0 Q — 1, (3.14)

wobei #,,{-} die Anzahl in Boosting-Schritt m bezeichnet.

Biithlmann und Hothorn [2007] stellen einen Ansatz vor, mit dem man die Anzahl an
Freiheitsgraden iiber die Hat-Matrix der komponentenweisen linearen kleinsten Quadra-
te berechnen kann. Die Hat-Matrix ist im Allgemeinen eine Projektionsmatrix, die den

Vektor beobachteter Werte auf den Vektor gefitteter Werte abbildet.
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Im vorliegenden Kontext gilt fiir die Hat-Matrix:

g'Cj : (UH,. .. ,UP[) — 1111,. .. ,ﬂp[, (315)

wobei j*, wie in (3.11) definiert, die Kovariable mit der besten Pradiktion im univariaten

linearen Modell darstellt. Ausgehend von Losung (3.10) ist die Hat-Matrix gegeben durch:

Hjw = 2zjs (z;zj*)fl 2], (3.16)

wobei z; der j-ten Spalte der Matrix Z entspricht.
Nach Biihlmann und Hothorn [2007] gilt im Fall einer binéren Zielgrofe fiir eine approxi-
mierte Hat-Matrix B,,:

Bl = 4VW[O}}C]'*
B = Bt + W UIC (T — B, 1) (m>2) mit (3.17)

Wil — diag (#577(1 — 747))

pr

mit 77 = P(yp = 1]z,;)™ der geschitzten Wahrscheinlichkeit in Boosting-Schritt m.

P
Der Beweis zu (3.17) und weitere Details finden sich in [Bithlmann und Hothorn, 2007].
Die Anzahl an Freiheitgraden in Boosting-Schritt m, wie sie auch im Paket mboost be-

rechnet werden kann, ist definiert durch:

df(m) = Spur (2 - B,, — B, B, (3.18)

Die Berechnung der Freiheitsgrade iiber die Spur der Hat-Matrix ist im Paket mboost
iiber die Funktion AIC mdglich:

> model <- gamboost(formula,data,family=Binomial(),offset=offset,
control=boost_control (mstop=mstop))

> AIC(model,method="classical")
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Bei der Modellwahl mithilfe des BIC geht man schliefslich folgendermafien vor:

1. Berechne die Werte des BIC fiir alle Iterationen m =1, ..., Mgop.

2. Wahle das Modell mit dem kleinsten BIC. Fiir die optimale Anzahl an Iterationen

Moy Silt:

_ *
m = mstop

< BIC(m; ):m min  BIC(m) (3.19)

Um sicherzustellen, dass tatséchlich das Modell mit dem minimalsten BIC gefunden

*

stop gewahlt werden.

wird, sollte mgiep >> m

In der Simulation in Kapitel 5 wird die optimale Anzahl an Iterationen mg,, mithilfe
des BIC (3.13) bestimmt. Die Anzahl an Freiheitsgraden wird sowohl iiber die aktuelle
Anzahl an Parametern im Modell (3.14) als auch iiber die Spur der Hat-Matrix (3.18)
bestimmt. Es gilt herauszufinden, welche der beiden Methoden besser zur Schéatzung der

vorliegenden Item-Response-Modelle geeignet ist.

3.5 Schitzung und Identifizierbarkeit

Wie in Abschnitt 2.6 erldutert, ist das Modell (2.11) abgesehen von §p = 0 ohne zusétz-
liche Restriktionen, wie sie auf Seite 11 angegeben sind, nicht eindeutig 16sbar. Um eine
eindeutige Losung zu erhalten, geht man bei Berechnung der Boosting-Schéatzung folgen-
dermafen vor. Die Darstellung des Vorgehens ist angelehnt an die Ausfiihrungen in [Tutz

und Schauberger, 2013|.

1. Schétze das Modell ohne zuséatzliche Restriktionen in zwei Schritten, wie es in Ab-
schnitt 3.3 beschrieben ist. Aufgrund der regularisierten Schétzung sind die Para-
meter berechenbar, obwohl sie nicht eindeutig identifizierbar sind. Friedman et al.
[2010] verwenden dieses Vorgehen beispielsweise im Fall multivariater Regressions-

modelle.
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2. Wahle als Referenz-Item das maximale Item mit 4, = 0, d.h.

ref =max{i |4, =0}, i=1...,1 (3.20)

3. Berechne neue Personen-Parameter 0, — (3,ct, neue Item-Parameter §; — B.cf und neue

itemmodifizierenenden Effekte 4, — 4, fir alles =1,... 1.

Damit gilt:

é;neu] = _Brefa Br([erfleu] = O und ’Ayr[er;eU] = ’?ref = (Oa s 70)T (321)

Als Resultat erhélt man eindeutig identifizierbare Parameter. Bei der Darstellung der
Ergebnisse in Abschnitt 5.1.2 der Simulation werden eben diese Parameter in Betracht
gezogen.

Je hoher die Anzahl an Iterationen myg, gewdhlt wird, desto hoher ist die Anzahl an
Parametervektoren «y,, die ungleich Null geschétzt werden. Damit steigt die Anzahl an
Items, fiir die das einfache Rasch-Modell (2.5) nicht ausreicht. Es ist zu erwarten, dass
nach dem gewahlten Modellwahlkriterium in den meisten Féllen nur sehr wenige Parame-
terschatzungen 4, des optimalen Modells ungleich Null sind. Insbesondere kommt es nicht
vor, dass alle Schéatzungen 4, ungleich Null sind. Damit ist sichergestellt, dass das oben
beschriebene Vorgehen immer funktioniert und die maximale Anzahl an Items identifiziert
wird, fiir die das einfache Rasch-Modell Giiltigkeit besitzt [Tutz und Schauberger, 2013|.
In Abschnitt 2.6 wurde fiir Modell (2.13) mit globalem Populationseffekt ein zweistufiges
Schétzverfahren zur Identifizierung des globalen Parameters « vorgestellt. Die konkrete

Umsetzung der Schitzung sieht folgendermafen aus:

1. Schétze Modell (2.13) wie im bisherigen Kapitel beschrieben, dquivalent zu Modell
(2.11), ohne den zusétzlichen Parameter - zu beriicksichtigen. Als Ergebnis erhélt

man die Parameter 6,""/, Bi[neu] und ”yi[neul mitp=1,...,P,i=1,...,1.

2. Berechne ein lineares Regressionsmodell der geschiitzen Parameter 6" auf die

Kovariablenvektoren x,.
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Die Modellgleichung sieht folgendermafsen aus:

ép[neu] :ao_i_mga_'_GP, p: 1,_..7P (322)

Fiir die Fehlerterme gelte, wie im linearen Modell iiblich, dass €, ~ N(0, 0%). Niheres

dazu findet man in [Fahrmeir et al., 2003].

Modell (3.22) liefert keine direkte Schiatzung des Parameters . Der Modelloutput gibt
jedoch an, welcher Teil der Varianz der geschitzten Fahigkeiten durch die Kovariablen x
erklart werden kann, nachdem die relevanten itemmodifizierenden Effekte bereits beriick-
sichtigt wurden [Tutz und Schauberger, 2013|. Der Parameter o lésst sich als Unterschied
der geschéatzten Fahigkeit zwischen den Gruppen, die durch die Kovariablen x gebildet
werden, interpretieren. Im einfachsten Fall ist x,, die Realisierung einer binéren Variable,
z. B. Geschlecht. Sei x, = 1 fiir eine ménnliche Person und x, = 0 fiir eine weibliche

Person. Fiir die geschatzte Fahigkeit ép ergibt sich nach Modell (3.22)

oo + o flir Manner und

(3.23)
oo fiir Frauen.

Der Parameter a entspricht in diesem Beispiel dem Unterschied der geschitzten Fahig-
keiten zwischen Méannern und Frauen.

Im dritten Teil der Simulation in Abschnitt 5.3 werden zwei Simulationsszenarien be-
trachtet. In den zugehdrigen Daten wird der grundséatzliche Fahigkeitsunterschied nur
beziiglich einer bindren Kovariable modelliert. Ziel ist es, eine signifikante Schétzung des

zugehorigen Parameters a zu erhalten.

3.6 Einfithrung einer Threshold-Regel

Wie in der bisherigen Arbeit beschrieben, ist das Ziel der Schatzung der vorliegenden

Modelle die Extrahierung der relevanten itemmodifizierenden Effekte. Durch regularisierte
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Schétzung mithilfe des Boosting-Algorithmus sollen diejenigen Parametervektoren ~y,, fiir
die das einfache Rasch-Modell (2.5) nicht giiltig ist, ungleich Null geschétzt werden.

Bei Verwendung der Funktion gamboost aus dem Paket mboost werden alle Parameter
in das endgiiltige Modell aufgenommen, die in einem Boosting-Schritt wenigstens einmal
durch die Basis-Methode aktualisiert wurden. Dies kann zum Ergebnis fiihren, dass einige
v, von Null verschieden sind, aber sehr kleine Werte nahe bei Null annehmen, da sie nur
einmal oder sehr selten zur Schatzung herangezogen wurden. Man kann davon ausgehen,
dass der wahre Wert einer Schiatzung, die sehr nahe bei Null ist, tatsédchlich Null ist.

Um dies zu beriicksichtigen und die Identifizierung der relevanten itemmodifizierenden
Effekte zu verbessern, wird eine zusétzliche Threshold-Regel definiert, welche die Varia-

blenselektion beeinflusst. Festgelegt wird ein Threshold, der

e die minimale Anzahl an Boosting-Iterationen, in denen der Parametervektor -, ak-

tualisiert wurde oder
e die minimale Grofe des geschitzten Parametervektors ~,

angibt, die vorhanden sein muss, damit der Parameter ins Modell aufgenommen wird.
Andernfalls bleibt die Parameterschitzung exakt gleich Null.

Im ersten Fall sei m,, die Anzahl an Iterationen, in denen der Parametervektor v, aktua-
lisiert wurde. Die relative Haufigkeit in Boosting-Schritt m ist dann gleich % Geht man
davon aus, dass alle ~, gleichwertig sind, so sollte jeder Parametervektor mit relativer
Héaufigkeit %, aktualisiert werden. Fiir Item i betrachtet man in jedem Boosting-Schritt
m die tatsdchliche Auswahlhéufigkeit relativ zur durchschnittlichen Auswahlhaufigkeit,

namlich:

thi(m) = 2% . (3.24)

m

Ein Wert th;(m) = 0.5 bedeutet inhaltlich, dass Item i halb so héufig ausgewéhlt wurde,
als durchschnittlich zu erwarten ist.

Im zweiten Fall wird als Wert fiir die Grofse des Vektors =, die euklidische Norm ||v,|| =
N ,’y?Q betrachtet. Diese setzt man in jedem Boosting-Schritt m in Relation zur



28 3 SCHATZUNG MITHILFE VON BOOSTING

mittleren euklidischen Norm aller Parametervektoren «,, namlich:

thy(m) = —7+——— (3.25)
%21:1 [17illm
dabei steht || - ||, jeweils fiir die euklidische Norm in Iteration m.

Bei Schitzung der Modelle mit zusétzlicher Threshold-Regel wird schlieflich folgender-

mafen vorgegangen:

*

1. Schitze das Modell mit der Funktion gamboost mit msiep >> M,y

2. Lege einen Vektor mit kritischen Treshold-Werten fest.
3. Berechne fiir jede Iteration m die Werte th;(m), i =1,...,1, m = 1,..., Mgop.

4. Setze fiir jede Iteration m und jeden Threshold alle v, gleich Null, fiir die gilt, dass
th;(m) < Threshold.

5. Berechne fiir jede Iteration und jeden Threshold das zugehorige BIC.

6. Wahle das Modell mit dem minimalen BIC. Das Minimum bestimmt sich in Ab-

héngigkeit der Iteration und des Thresholds.

In der Simulation, Kapitel 5, wird im ersten Schritt die Boosting-Schétzung ohne zu-
sitzliche Threshold-Regel durchgefiihrt. Anhand der Ergebnisse lésst sich feststellen, in
welchen Fillen eine Threshold-Regel zur Verbesserung der Variablenselektion notwendig
ist. Diese wird im zweiten Schritt hinzugenommen, um die Selektion - wenn moglich - zu
verbessern. Dabei soll auch die Frage beantwortet werden, welche der beiden vorgestellten

Methoden zu besseren Ergebnissen fiihrt.
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4 Alternative Schatzmethoden

4.1 Penalisierung der Likelihood

Wie zu Beginn von Kapitel 3 erlautert, sind fiir die Schétzung der betrachteten Item-
Response-Modelle regularisierte Schitzverfahren notwendig. Eine Alternative zur Schét-
zung mithilfe von Boosting-Methoden ist die penalisierte Maximum-Likelihood-Schatzung.
Im Allgemeinen werden die Parameterschéatzungen hierbei durch Maximierung einer pena-
lisierten Form der log-Likelihood bestimmt. Sei §, dquivalent zur Notation in Abschnitt
2.4, der Vektor der zu schitzenden Parameter 67 = (87, 87,~47,...,~F), so lautet die

penalisierte Log-Likelihood [Tutz und Schauberger, 2013|:

Cpen(8) = £(8) — \I(8), (4.1)

wobei £(d) die gewohnliche log-Likelihood (3.5) darstellt. J(6) ist ein Penalisierungsterm,
der die Parametervektoren auf bestimmte Weise bestraft. Die Stiarke der Bestrafung wird
durch den Tuning-Parameter A\ bestimmt.

Eine Penalisierung, die sich im vorliegenden Fall eignet, ist die L;—Penalisierung, da
sie bewirkt, dass Variablen selektiert werden. Diese Penalisierung wird auch mit Lasso
(least absolute shrinkage and selection operator) bezeichnet. Allgemeines zur Theorie
tiber L;—Penalisierung findet man in [Hastie et al., 2009].

Eine Verallgemeinerung dieser Penalisierung ist die Group-Lasso-Penalisierung. Durch
diese erreicht man zuséatzlich, dass alle Komponenten einer mehrkategorialen Kovariable
oder eines Parametervektors gleichzeitig auf Null geschrumpft werden [Hastie et al., 2009].
Tutz und Schauberger [2013| verwenden diesen Penalisierungsansatz zur Modellierung
itemmodifizierender Effekte in den vorgestellten Rasch-Modellen (2.11) und (2.13). Mit

~v! = (Vi1,---,%g) lautet der verwendete Group-Lasso-Penalisierungsterm:
I
J(8) =Y Ilill (4.2)
i=1

wobei ||y, = \/%217 e 7%'262-
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Der Penalisierungs-Term (4.2) beinhaltet nur die Parameter «,. Das hat den Effekt, dass
die Personen-Parameter 6, und die Item-Parameter f; des einfachen Rasch-Modells (2.5)
vollstéandig ins Modell aufgenommen werden. Im Fall des Boostings wird dies durch eine
Schétzung in zwei Schritten realisiert (siche Abschnitt 3.3).

Bei Verwendung der Group-Lasso-Penalisierung (4.2) gilt ebenfalls, dass v, = 0 oder
Yig 7 0 Vg = 1,...,Q. Regularisierung erreicht man tiber den Parameter A. Im Fall,
dass A = 0, erhélt man die vollstdndige Maximum-Likelihood-Schétzung. Falls A — oo,
wird das einfache Rasch-Modell ohne itemmodifizierende Effekte geschétzt. Die Wahl des
optimalen Tuning-Parameters A wird mithilfe eines BIC getroffen [Tutz und Schauberger,
2013].

Die Simulationen in Kapitel 5 sind identisch zu denen, die in [Tutz und Schauberger, 2013|
vorgestellt werden. In Abschnitt 5.2.1 werden die Ergebnisse der Boosting-Schétzung und

der Schétzung mit Group-Lasso-Penalisierung miteinander verglichen.

4.2 Methoden zum Vergleich mehrerer Gruppen

Stellt man die Item-Response-Modelle aus Kapitel 2 in Form logistischer Regressionsmo-
delle dar (Abschnitt 2.4) und schétzt diese mithilfe von Boosting, so ist eine der Stérken,
dass die Anzahl an Kovariablen der Modelle beliebig grofs sein kann. Insbesondere kann
sie deutlich grofler sein als 1. Eine zweite Stérke dieser Betrachtungsweise ist, dass die
Kovariablen der Modelle nicht nur binér oder kategorial, sondern auch stetig sein konnen.
Existierende Methoden, um Items mit itemmodifizierenden Effekten zu identifizieren, sind
diesbeziiglich deutlich eingeschrinkt. Magis et al. [2010] stellen eine Ubersicht an Metho-
den zur Bestimmung itemmodifizierender Effekte in Bezug auf eine binédre Kovariable
zur Verfligung. Drei Verfahren, die sich im Fall gleichméfiger itemmodifizierender Effekte

anwenden lassen, werden im Folgenden kurz beschrieben.

Mantel-Haenszel

Die erste Methode, die nicht auf der Item-Response-Theorie basiert, ist die Mantel-
Haenszel (MH) Methode. Bedingt auf das Gesamtergebnis des Tests wird untersucht,
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ob ein Zusammenhang zwischen Gruppenzugehorigkeit der Person und Beantwortung der
Items des Tests besteht.

Sei I die Anzahl an Items des Tests und p;, ¢ = 1,...,I die Anzahl an Personen mit
Gesamtergebnis i, d.h. mit i korrekt beantworteten Items. Dann betrachtet man fiir die
p; Personen pro Item eine 2 x 2-Kontingenztafel, wie sie fiir den Fall zweier Gruppen in

Tabelle 4.1 dargestellt ist.

richtig | falsch

Gruppe 1 a; b; P

Gruppe 2 & d; P2i

Pri Dyi Di

Tabelle 4.1: Kontingenztatel der p; Personen fiir ein beliebiges Item zur Berechnung der

MH-Teststatistik.

Mit der Notation, wie sie in Tabelle 4.1 eingefiihrt wurde, lautet die MH-Teststatistik:

(ISiia- YL Bl -05)
MH = . , mit (4.3)
i Var(a)

P1i Pri P1i P2i Pri Dfi
E(a;) = und Var(q;) = —————>—
(@) pi (@) pi(pi— 1)

Unter der Nullhypothese, dass kein Unterschied zwischen den beiden Gruppen bzgl. des
betrachteten Items vorhanden ist, ist die MH-Teststatistik asymptotisch y2-verteilt mit
einem Freiheitsgrad. Die Nullhypothese wird abgelehnt, falls die MH-Statistik grofser ist
als der kritische Wert der y?-Verteilung [Magis et al., 2010]. Die MH-Methode kann auch
auf den Fall mehrerer Gruppen erweitert werden und ist in R im Paket difR [Magis et al.,

2013] in der Funktion difGMH implementiert.

Logistische Regression

Eine zweite Moglichkeit zur Bestimmung von Items mit itemmodifizierenden Effekten

ist die Verwendung eines logistischen Regressionsmodells. Magis et al. [2011] stellen ein



32 4  ALTERNATIVE SCHATZMETHODEN

generalisiertes Verfahren fiir den Vergleich mehrerer Gruppen bzgl. einer mehrkategorialen
Kovariable vor.

Sei im Folgenden S, das Testergebnis von Person p mit S, € {0,...,7}, R die Varia-
ble der Gruppenzugehorigkeit mit R € {1,...,k} und 7,z die Wahrscheinlichkeit, dass
Person p aus Gruppe R das Item richtig beantwortet. Nimmt man an, dass das Tester-
gebnis fiir die Fahigkeit der Person steht, so betrachtet man zum Test auf gleichméfige

itemmodifizierende Effekte ein logistisches Regressionsmodell mit Linkfunktion

logit(m,r) = oo + @S, + ag (4.4)
und testet die Nullhypothese

Hy:a1,=---=qa,=0 vs.
(4.5)

Hy:ar#0 fir mind. ein R € {1,...,k}.
Inhaltlich bedeutet die Nullhypothese, dass die Wahrscheinlichkeit einer richtigen Antwort
nur vom Ergebnis der Testperson und nicht zusétzlich von der Gruppenzugehorigkeit
der Person abhéngt. Kann die Nullhypothese abgelehnt werden, wird die Schwierigkeit
des betrachteten Items von der Kovariable beeinflusst. Die Durchfithrung des Tests kann
mithilfe des Wald-Tests oder des Likelihood-Ratio-Tests erfolgen (siehe dazu [Magis et al.,
2011]). Der Test ist im difR-Paket in der Funktion difGenLogistic implementiert.

Lord’s y?-Test

Eine dritte Methode zur Untersuchung, ob Items itemmodifizierende Effekte aufweisen, ist
ein x2-Test nach Lord. Dieser beruht auf der Schitzung eines beliebigen Item-Response-
Modells. Fiir den einfachen Fall einer bindren Kovariable, die zwei Gruppen kodiert, lautet

die Teststatistik des einfachen Rasch-Modells (2.5) fiir Item i [Magis et al., 2010]:

(B — Bi)’

P = —= = , 4.6
Q 01'21"'%22 (4.6)

wobei 3;; und 3,, die Vektoren der Item-Schwierigkeiten der beiden Gruppen und ¢;; und



4 ALTERNATIVE SCHATZMETHODEN 33

0,9 die zugehorigen geschéitzten Standardabweichungen in den beiden Gruppen darstellen.
Mit Teststatistik (4.6) wird die Nullhypothese iiberpriift, ob alle Item-Parameter des Mo-
dells in den Gruppen, die durch die Kovariable gebildet werden, gleich sind [Magis et al.,
2010]. Lord’s x2-Test ist ebenfalls im difR-Paket in der Funktion difGenLord umgesetzt.

In Abschnitt 5.2.2 werden die drei beschriebenen Methoden auf simulierte Daten ange-
wendet und die Ergebnisse der Selektion mit den Ergebnissen der Boosting-Schétzung zur

Modellierung itemmodifizierender Effekte verglichen.
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5 Simulation

Der Boosting-Algorithmus zur Schétzung itemmodifizierender Effekte, der in Kapitel 3
dargestellt wurde, wird im Folgenden in einer Simulationsstudie auf seine Funktionalitét
iiberpriift. Es gilt herauszufinden, wie gut sich der Algorithmus zur Modellierung item-
modifizierender Effekte eignet und welche der variablen Komponenten der Schatzung die
besten Ergebnisse liefern. Dies betrifft insbesondere die Berechnung der Freiheitsgrade
(Abschnitt 3.4) und die zusétzliche Threshold-Regel (Abschnitt 3.6). Im Hauptteil der Si-
mulation, Abschnitt 5.1, wird das Rasch-Modell mit itemmodifizierenden Effekten (2.11)
in Betracht gezogen. Die Ergebnisse der Boosting-Schitzung werden anschliefsend in Ab-
schnitt 5.2 mit den Ergebnissen der penalisierten Maximum-Likelihood-Schéatzung, welche
in Abschnitt 4.1 kurz eingefithrt wurde, verglichen. Aufierdem wird ein weiteres Simula-
tionsszenario fiir den Vergleich mit den Methoden fiir mehrere Gruppen (Abschnitt 4.2)
betrachtet. Im letzten Teil der Simulation, Abschnitt 5.3, wird das zweistufige Schétzver-

fahren fiir das Modell mit zusétzlichem Populationseffekt (2.13) analysiert.

5.1 Simulation des Rasch-Modells mit itemmodifizierenden Ef-

fekten
Im folgenden Abschnitt wird eine Simulationsstudie fiir das Rasch-Modell mit itemmodi-
fizierenden Effekten aus Abschnitt 2.2 vorgestellt und deren Ergebnisse analysiert.
5.1.1 Simulationsaufbau

Die Datensétze der Simulation (v, X,,Z,;) sind nach der in Abschnitt 2.4 vorgestellten

Modellgleichung (2.11) gebildet:

log ( P(yp; = 1|zy:)

— 1T 0 _ 1TA - T _ .
1 - P(ypz - 1‘ZP'L>> P(p) I(Z)/@ Xp ’71 np

exp (7p:)
s Py, = 1|z,,) = 1
(s = o) = T T (5.1)



36 5 SIMULATION

Folgende Parameter sind fiir die Simulation der Datensétze des Modells relevant:

1. 0,: Parameter der Fahigkeit von Person p
P: Anzahl der Personen

2. fB;: Parameter der Schwierigkeit von Item i
I: Anzahl der Items

3. x,: Kovariablen von Person p
Q: Anzahl der Kovariablen

4. ~,: Itemmodifizierende Effekte

Laie: Anzahl an Items mit itemmodifizierenden Effekten

In der Simulationsstudie werden insgesamt fiinf verschiedene Parameter-Kombinationen
(Szenarien) betrachtet. Fiir jedes der Szenarien werden wiederum drei Félle mit unter-
schiedlicher Stéarke der itemmodifizierenden Effekte untersucht. Es werden Datenséitze mit

starken, mittleren und schwachen Effekten simuliert.

Bestimmte Spezifikationen sind fiir alle Szenarien gleich:

e Die Personen- und Item-Parameter sind standardnormalverteilt: 6, 5; ~ N(0,1)
e Anzahl an Kovariablen: () = 5
e Die Verteilung der Kovariablen x lautet:

x; ~ B(1,0.5), x3 ~ B(1,0.3) und

Xg, X4 und x5 ~ N(0, 1)

Die Kovariablen x werden jeweils standardisiert. Jede Komponente hat anschliefend

eine Varianz von 1.
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e Die ersten vier Parameter ~y, sind:

v{ = (—0.8,0.6,0,0,0.8), vJ = (0,0.8,—0.7,0,0.7), 7§ = (0.6,0,0.8,—0.8,0) und
~vJ = (0,0,0.8,0.7, —0.5)
e Stdrke der itemmodifizierenden Effekte:

Vig = Vig - 1 (stark), viq = 7ig - 0.75 (mittel) und ~;, = 7iq - 0.5 (schwach)

Ein allgemeines Mafs fiir die Starke der itemmodifizierenden Effekte ist die Varianz V; der

[tem-Parameter (; + X;")’i. Falls die Komponenten in x, unabhéngig sind, gilt:

Q
Vi = Var(p; + X;’Yi) = Var(f;) —i—Var(Z TpgVig) =

=0 q=1
Q Q
2 2
= E Vig Var(z,q) = E Vi 5.2
p q _(1 PQ) po q ( )

Der Durchschnitt von % - /V; iiber alle Items mit itemmodifizierenden Effekten ergibt
eine Kennzahl fiir die Stdrke der itemmodifizierenden Effekte dieser Items [Tutz und
Schauberger, 2013]. Fiir die Datensétze der Simulation ergeben sich die Werte 0.25 (stark),
0.1875 (mittel) und 0.125 (schwach).

Die Auspriagungen der variierenden Parameter, anhand derer sich die fiinf Szenarien un-

terscheiden, sind in Tabelle 5.1 aufgelistet.

Szenario | 1 2 3 4 5

P 250 500 500 500 500
| 20 20 20 40 20
Lais 4 4 8 8 4

Tabelle 5.1: Ubersicht iiber die Parameter-Kombinationen der fiinf Szenarien der Simu-

lation.

In Tabelle 5.1 sind jeweils die Werte unterstrichen, die sich im Vergleich zum vorherigen

Szenario verdndern. Fiir die Parametervektoren -, in Szenario 3 und 4 (mit I4;=8) gilt,



38 5 SIMULATION

dass v5,...,Ys = Y15---,Y4- Alle anderen Parameter v, der Items ohne itemmodifizie-
rende Effekte sind jeweils entsprechend gleich Null.

Die Parameter-Kombination von Szenario 5 ist identisch zu der von Szenario 2. Die-
ses Szenario unterscheidet sich jedoch durch eine andere Besonderheit von allen anderen
Szenarien. In diesem Fall ist die Personen-Féhigkeit 6, mit der Auspragung der ersten

Kovariable x; korreliert. Es gilt:

N(0,1), falls x1, =0
0, ~ (0,1) Ip (5.3)

N(1,1), falls x5, = 1.

In diesen Datensétzen ist ein genereller Fahigkeitsunterschied der beiden Gruppen, die
durch die Kovariable x; gebildet werden, vorhanden. Dieses Phdnomen wird bei der Model-
lierung in diesem Abschnitt nicht beriicksichtigt. Im erweiterten Modell (2.13) entspricht
es dem Effekt des globalen Parameters «. Dieses wird im letzten Teil dieses Kapitels,
Abschnitt 5.3, behandelt.

Fiir jedes der fiinf Szenarien werden je 100 Datenséatze mit starken, mittleren und schwa-

chen itemmodifizierenden Effekten generiert.

5.1.2 Funktion zur Durchfiihrung der Schitzung

Die Durchfiihrung der Boosting-Schatzung erfolgt schrittweise, wie es in den Abschnitten
3.3 bis 3.6 beschrieben ist. Berechnet werden die Boosting-Ergebnisse in R mit der Funk-
tion boostIME (boosting Item Modifizierende Effekte). Der zugehorige R-Code ist in der

Datei boostIME.R verfiighbar. Der Kopf der Funktion sieht folgendermafsen aus:

boostIME <- function(Y,DM_kov,mstop,
df _method=c("trace","actset"),
thresh_method=c("no_thresh","freq_rel","size_quad"),
thresh=seq(0,1,by=0.1),

dfs_trace=c())

Der Funktion boostIME werden die Matrix mit den Realisierungen der Zielgrofe Y €

RP* die Designmatrix der Kovariablen DM_kov € RP*? und die Anzahl zu berechnender
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Iterationen mstop = myg,, libergeben.

Die optimale Anzahl an Iterationen wird mithilfe des BIC bestimmt (siche Abschnitt
3.4). Die Freiheitsgrade konnen entweder iiber die aktuelle Anzahl an Parametern im
Modell, df _method="actset", oder iiber die Spur der Hat-Matrix bestimmt werden,
df _method="trace". In den weiteren Darstellungen werden fiir diese beiden Félle die
Bezeichnungen ,actset und ,trace* verwendet.

Mit der Option thresh_method="no_thresh" wird die Boosting-Schiatzung ohne zusétz-
liche Threshold-Regel berechnet. Durch thresh_method="freq_rel" wird als Threshold-
Kriterium die minimale Anzahl an Iterationen, in denen der Parametervektor ~, aktuali-
siert wurde, und durch thresh_method="size_quad" die euklidische Norm der Parame-
terschétzungen <, verwendet (siehe Abschnitt 3.6). In den weiteren Darstellungen werden
fiir diese beiden Fille die Bezeichnungen ,freq* und ,size* verwendet. Der Vektor der
kritischen Threshold-Werte wird durch das Argument thresh iibergeben.

Im Fall trace werden die Freiheitsgrade tiber die Funktion AIC aus dem Paket mboost
berechnet. Wurden diese im Vorfeld bereits fiir das Modell bestimmt, so kénnen diese der

Funktion direkt iber das Argument dfs_trace iibergeben werden.

5.1.3 Auswertung des ersten Simulationsszenarios

In diesem Abschnitt werden alle Ergebnisse und Auswertungen des ersten Simulationss-
zenarios aus Tabelle 5.1 dargestellt und diskutiert.

In Abbildung 5.1 sieht man die Koeffizienten-Pfade beispielhaft fiir den ersten Daten-
satz mit starken itemmodifizierenden Effekten. In Betracht gezogen wird die Boosting-
Schétzung ohne zusétzlichen Threshold. Abgetragen sind die Werte der Koeffizienten -,
in Abhéngigkeit der Iteration m. Die Koeffizienten der Items mit itemmodifizierenden Ef-
fekten 7y, ..., 7, sind farbig gekennzeichnet. Die Parameter der Parametervektoren eines
Items besitzen dieselbe Farbe. Die Koeffizienten ~;, ..., 74, sind durch schwarze Linien
zu sehen. Eingezeichnet ist in Abbildung 5.1 mit gestrichelten Linien die optimale Anzahl
an Iterationen nach dem BIC bei Berechnung der Freiheitsgrade iiber die aktuelle Anzahl
an Parametern (actset) und tiber die Spur der Hat-Matrix (trace).

Aus der Graphik wird ersichtlich, dass jeweils alle Komponenten eines Parametervektors
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Abb. 5.1: Koeffizientenpfade der Parameter v;, fiir Datensatz 1 von Szenario 1 mit star-
ken Effekten. Eingezeichnet ist zusétzlich die optimale Anzahl an Iterationen

nach dem BIC (gestrichelte Linien).

v, gemeinsam aktualisiert werden, da sich alle fiinf Pfade gleichzeitig von der Nulllinie
entfernen. Es gilt: 4, = 0 oder 4, #0V ¢ =1, ..., Q. Bei mg,—0 liegt das reine Rasch-
Modell ohne itemmodifizierende Effekte vor, bei mg,, =500 sind nahezu alle Koeffizienten

Yiq ungleich Null.

Ziel der Berechnung ist die korrekte Identifizierung der Items, die itemmodifizierende
Effekte aufweisen. Ein optimales Ergebnis der Berechnungen liegt dann vor, wenn die
Parametervektoren 4, ..., 7y, ungleich Null und alle anderen Parameter ~,, i =5,...,20
gleich Null geschétzt werden. Aus Abbildung 5.1 wird ersichtlich, dass in beiden Féllen

alle Items, die itemmodifizierende Effekte aufweisen, erkannt werden. Im Fall actset ist die



5 SIMULATION 41

Selektion perfekt, da 45, ..., 79, gleich Null gesetzt sind. Im Fall trace ist die Selektion
hingegen nicht perfekt, da nicht alle Items ohne itemmodifizierende Effekte gleich Null
geschatzt werden. Das optimale Modell nach dem BIC ist in diesem Fall zu grok.

Die Parameterschéatzungen 4;, aller 100 Datensétze mit starken Effekten sind in Abbildung
5.2 in Form von Boxplots dargestellt. Zusatzlich sind jeweils die wahren Parameter-Werte
Vi mit roten Punkten eingezeichnet.

In der oberen Graphik in Abbildung 5.2 sieht man, dass nur bei einer Schétzung =,
falschlicherweise ins Modell aufgenommen wird. In allen anderen Fallen sind 5, ..., 9
gleich Null. Die Parameterschitzungen 44,...,%, sind deutlich kleiner als die wahren
Werte, falls diese von Null verschieden sind. Anhand der Boxplots wird ersichtlich, dass
viele der zugehorigen Parameterschétzungen 4;, gleich Null sind. Dies bedeutet, dass nicht
alle Items mit itemmodifizierenden Effekten ins Modell aufgenommen werden und somit
die Selektion nicht funktioniert.

In der unteren Graphik in Abbildung 5.2, in der die Schétzungen im Fall trace zu sehen
sind, zeigt sich ein anderes Bild. Im Vergleich zur oberen Graphik sind die Parameter-
schiatzungen 44, ..., 4, der Items mit itemmodifizierenden Effekten deutlich nédher an den
wahren Werten. Insbesondere sind die Schatzungen immer ungleich Null, was bedeutet,
dass alle Items mit itemmodifizierenden Effekten korrekt identifiziert werden. Wie schon
im Beispiel in Abbildung 5.1 sind jedoch in einigen Féllen die Parameterschitzungen
Y5, - - -, Yoo von Null verschieden. Im Fall trace werden haufig zu viele Parametervekto-
ren 7; ins Modell aufgenommen, sodass das geschétzt optimale Modell grofier ist als das
zugrundeliegende wahre Modell.

Zwei allgemeine Kennzahlen, die angeben, wie gut die Selektion funktioniert, sind:

e Anteil der korrekt spezifizierten Items mit itemmodifizierenden Effekten (richtig-

positiv)

e Anteil der Items, fiir die falschlicherweise itemmodifizierende Effekte geschétzt wer-

den (falsch-positiv)
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Abb. 5.2: Boxplots der geschétzten Parameter 7,;, von Szenario 1 mit starken Effekten
fiir den Fall actset (oben) und trace (unten). Eingezeichnet sind zusétzlich die

wahren Parameter-Werte v,, (rote Punkte).
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Tabelle 5.2 zeigt die Ergebnisse des Anteils richtig-positiver und falsch-positiver Items des
ersten Simulationsszenarios der Schitzungen ohne zusétzlichen Threshold. Aufgelistet ist
jeweils der Durchschnitt tiber alle 100 Datensétze. Die Freiheitsgrade des BIC wurden im
ersten Fall iber die aktuelle Anzahl an Parametern im Modell (actset) und im zweiten
Fall iiber die Spur der Hat-Matrix (trace) bestimmt.

richtig-positiv falsch-positiv

‘ actset  trace ‘ actset  trace

stark | 0.5100 1.0000 | 0.0006 0.1000

mittel | 0.0175 0.9900 | 0.0000 0.0506
schwach | 0.0000 0.7675 | 0.0000 0.0200

Tabelle 5.2: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

von Szenario 1 der Simulation.

Aus Tabelle 5.2 wird ersichtlich, dass die Selektion im Fall actset im Allgemeinen sehr
schlecht funktioniert. Ein durchschnittlicher richtig-positiv Anteil von 0.51 im Fall starker
Effekte bedeutet, dass im Schnitt nur die Hélfte der relevanten itemmodifizierenden Effek-
te korrekterweise ins Modell aufgenommen werden. Sind mittlere oder schwache Effekte
im Modell enthalten, liegt dieser Anteil bei 0.0175 bzw. 0. In diesen Féllen wird das ein-
fache Rasch-Modell ohne itemmodifizierende Effekte angepasst. Die Freiheitsgrade iiber
die aktuelle Anzahl an Parametern im Modell sind zu grofs und das geschétzt optimale

Modell meistens deutlich zu klein.

Im Fall trace funktioniert die Selektion der itemmmodifizierenden Effekte hingegen gut.
Falls starke Effekte vorliegen, erhélt man einen richtig-positiv Anteil von 1 und alle Items
mit itemmodifizierenden Effekten werden korrekt erkannt. Bei mittleren Effekten ist dies
auch nahezu immer der Fall. Liegen schwache itemmodifizierende Effekte vor, so ist die
Selektion schwerer und man erhélt einen richtig-positiv Anteil von nur 0.7675. Trotz des
zufriedenstellenden richtig-positiv Anteils, sind die falsch-positiv Anteile der Berechnun-
gen mit trace zu hoch. Im Modell sind jeweils 16 Items ohne itemmodifizierende Effekte
vorhanden. Der falsch-positiv Anteil von 0.1 im Fall starker Effekte bedeutet, dass jedes

Modell um ein bis zwei Parametervektoren =, zu grof ist.
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Die Parameterschéitzungen der [tem-Parameter BZ der 100 Datensétze mit starken Effekten
sind in Abbildung 5.3 in Form von Boxplots zu sehen. Abgetragen sind die Schétzungen im
Fall trace. Die Werte sind jeweils um den wahren Wert (3; zentriert. Wurde der Parameter
korrekt geschétzt, so ist der resultierende Wert exakt Null. Die Nulllinie ist zuséatzlich als

gestrichelte Linie gekennzeichnet.
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Abb. 5.3: Boxplots der geschétzten Parameter BZ von Szenario 1 mit starken Effekten.

Aus Abbildung 5.3 ist erkennbar, dass die geschitzten Werte BZ groftenteils unauffillig
um die wahren Werte schwanken. Lediglich die Schétzungen fiir Item 3 und 4 sind sys-
tematisch zu klein. Auch die Schitzungen fiir Item 1 und 18 sind weitgehend kleiner als
die wahren Werte. Dies entspricht der allgemeinen Tendenz, dass die Parameter (3; eher
leicht unterschétzt werden. Als Referenz-Item wird das maximale Item gewahlt, fiir das
4, = 0 (vgl. Abschnitt 3.5). In den meisten Fillen fungiert Item 20 als Referenz-Item und
der wahre und der geschétzte Wert sind gleich Null. Vier Schitzungen nehmen Item 20

falschlicherweise ins Modell auf, sodass Item 19 als Referenz-Item festgelegt wird.
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Als quantitatives Mals fiir die Giite der Schétzung der Parameter werden mittlere quadrati-
sche Fehler (MSE) in Betracht gezogen [Tutz und Schauberger, 2013]. Fiir die geschétzten

Personen-Parameter 0, ist der mittlere quadratische Fehler:

1 N
MSEpersons = 5 »_ (0, — 0,) (5.4)

Der mittlere quadratische Fehler der Item-Parameter 3; + X;")’i lautet:

P
MSEitems = 75 7 Z

1 I
P4

[ x7) - (G40} (55)

p=1 i=1

Als Resultat der Simulation wird der Durchschnitt der beiden mittleren quadratischen
Fehler iiber alle 100 Datensédtze berechnet. Die Ergebnisse der mittleren quadratischen
Fehler fiir Simulationsszenario 1 ohne zusétzlichen Threshold sind in Tabelle 5.3 einge-
tragen. Unterschieden werden wieder die Methoden actset und trace der Berechnung der
Freiheitsgrade des BIC.
MSEpersons 1\/ISE)items
actset  trace | actset trace
stark | 0.3455 0.3448 | 0.2604 0.1474

mittel | 0.3520 0.3522 | 0.2360 0.1308
schwach | 0.3566 0.3566 | 0.1406 0.1140

Tabelle 5.3: Durchschnittliche mittlere quadratische Fehler der Personen-und Item-

Parameter von Szenario 1 der Simulation.

Man kann ablesen, dass der MSE der Personen-Parameter weder von der Stéarke der item-
modifizierenden Effekte noch von der Berechnung der Freiheitsgrade abhéngt. Der durch-
schnittliche Wert schwankt in allen sechs Féllen in etwa um den Wert 0.35. Das Ergebnis
ist nicht verwunderlich, da die Schatzung der Personen-Parameter ), unabhangig von
der Modellselektion ist. Alle Personen-Parameter werden jeweils zundchst durch ein lo-
gistisches Regressionsmodell geschétzt und vollstandig ins Modell aufgenommen. Im Fall

schwacher Effekte sind die MSEs der Personen-Parameter sogar identisch. Die mittleren
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quadratischen Fehler der Item-Parameter unterscheiden sich hingegen deutlich. Wie schon
aus Abbildung 5.2 ersichtlich, sind die Schétzungen der Parameter 4, ...,4,, der Items
mit itemmodifizierenden Effekten im Fall trace deutlich besser als im Fall actset. Dement-
sprechend sind die geschatzten MSEs wesentlich kleiner. Die MSEs der Item-Parameter
héngen aufserdem von der Starke der itemmodifizierenenden Effekte ab. Je geringer die im
Modell vorhandenen Effekte sind, desto kleiner sind die geschéitzten Fehler. Das liegt dar-
an, dass die absoluten Werte ;, jeweils kleiner sind und die Abweichungen zur Schétzung
damit auch entsprechend kleiner werden.

Alle bisherigen Analysen von Simulationsszenario 1 ergeben, dass die Selektion der item-
modifizierenden Effekte anhand des BIC gut funktioniert, falls man die Freiheitsgrade
iiber die Spur der Hat-Matrix bestimmt. Die falsch-positiv Anteile in Tabelle 5.2 haben
jedoch gezeigt, dass die Selektion nicht perfekt ist. Die geschétzt optimalen Modelle sind
grofer als das zugrundeliegende wahre Modell. Wie in Abschnitt 3.6 beschrieben wurde,
bewirkt die Einfiihrung einer Threshold-Regel, dass sehr kleine Parameterschatzungen 4,
durch vorheriges Nullsetzen nicht ins endgiiltige Modell aufgenommen werden. Dies sollte
die Modellselektion verbessern, falls das selektierte Modell, wie es hier der Fall ist, zu
grof ist. Der kritische Threshold, fiir den sich das optimale Modell ergibt, bestimmt sich
fiir alle Berechnungen der Simulation aus einer Sequenz von 0 bis 1 mit elf Elementen.
Betrachtet wird der Vektor (0,0.1,...,0.9,1).

In Tabelle 5.4 sind die durchschnittlichen Anteile richtig-positiver und falsch-positiver
Items der 100 Datensétze der Boosting-Schétzung fiir den Fall trace mit zusétzlichem
Threshold eingetragen. Im ersten Fall wird der kritische Threshold mit der Anzahl an
Boosting-Iterationen, in denen der Parametervektor v, aktualisiert wurde (freq) und im
zweiten Fall mit der euklidischen Norm des Parametervektors ~y, (size) verglichen.

Die Ergebnisse aus Tabelle 5.4 zeigen, dass die Schétzung mit zusétzlicher Threshold-
Regel die gewiinschte Verbesserung der Selektion ergibt. Der Anteil falsch-positiver Items
sinkt in allen Féllen deutlich in Richtung Null. Fiir die Schatzungen mit starken Effek-
ten, die einen richtig-positiv Anteil von 1 ergeben, liegt der Anteil félschlicherweise ins
Modell aufgenommener Parameter nur noch bei 0.0138 bzw. 0.0044. Die Modellselektion
ist in diesen Féllen perfekt. Ohne Threshold-Regel lag der falsch-positiv Anteil bei 0.1
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richtig-positiv falsch-positiv

freq size freq size
stark | 1.0000 1.0000 | 0.0138 0.0044
mittel | 0.9800 0.9800 | 0.0094 0.0050
schwach | 0.7350 0.7300 | 0.0094 0.0075

Tabelle 5.4: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

von Szenario 1 der Simulation im Fall trace mit zusétzlichem Threshold.

(vgl. Tabelle 5.2). Es fallt auf, dass die Anteile richtig-positiver Items, falls mittlere oder
schwache Effekte im Modell vorhanden sind, durch die zusétzliche Threshold-Regel leicht

sinken. Dies veriandert die Grundaussage iiber die Selektionsgiite jedoch nicht.

In Abbildung 5.4 sind die MSEs der Item-Parameter fiir die 100 Datensétze mit starken
Effekten in Form von Boxplots dargestellt. Gegeniibergestellt sind die Ergebnisse der
Schétzung ohne Threshold und die Ergebnisse der beiden Schiatzungen mit zusétzlichem

Threshold.
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Abb. 5.4: Boxplot der MSEs der Item-Parameter der Datensétze mit starken Effekten.

Verglichen werden die Ergebnisse mit und ohne zusétzlichen Threshold.
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Aufgrund der besseren Selektionsgiite verringert sich der mittlere quadratische Fehler der
Item-Parameter j3; —i—X; v, mit zusatzlicher Threshold-Regel sichtbar. Im Median sinkt der
MSE von 0.13 auf 0.11 ab.

Ein Vergleich der beiden Threshold-Methoden ergibt, dass die Ergebnisse mit der eu-
klidischen Norm der Parametervektoren besser sind als mit der minimalen Anzahl an
Boosting-Iterationen. Die falsch-positiv Anteile im Fall size liegen deutlich unter einem
Prozent (vgl. Tabelle 5.4). Anhand der Boxplots (Abbildung 5.4) lassen sich nur geringfii-
gige Unterschiede zwischen den Methoden ausmachen. Die Werte im Fall size sind jedoch

am niedrigsten.

In diesem Abschnitt wurden die Ergebnisse des ersten Simulationsszenarios mit 250 Per-
sonen und 20 Items analysiert. Die Modelle enthalten 4 Items mit itemmodifizierenden
Effekten. Bestimmt man die Freiheitsgrade iiber die aktuelle Anzahl an Parametern im
Modell, so funktioniert die Selektion itemmodifizierender Effekte sehr schlecht. Die al-
ternative Methode, bei der die Freiheitsgrade iiber die Spur der Hat-Matrix bestimmt
werden, funktioniert hingegen gut. Hier erhélt man mit zuséatzlicher Threshold-Regel fiir
die Schétzungen mit starken und mittleren Effekten perfekte Selektionsergebnisse. Fiir
die Analyse der weiteren Simulationsszenarien ist vor allem die Verbesserung der Selekti-

onsgiite im Fall schwacher itemmodifizierender Effekte von Interesse.

5.1.4 Auswertung der weiteren Simulation

Im vorherigen Abschnitt 5.1.3 wurden die Ergebnisse des ersten Simulationsszenarios aus-
fiithrlich analysiert. Die vorgestellten Kennzahlen werden im Folgenden fiir die Szenarien 2
bis 5 der Simulation ausgewertet und in Bezug zu den Ergebnissen von Szenario 1 gesetzt.
Tabelle 5.5 zeigt die Ergebnisse des Anteils richtig-positiver und falsch-positiver Items der
Berechnungen ohne zusétzlichen Threshold. Aufgelistet ist jeweils der Durchschnitt iiber
alle 100 Datensétze. Die Anteile, die sich fiir Szenario 1 ergeben, sind der Vollstdndigkeit
halber nochmals mit angefiihrt.

Die Ergebnisse aus Tabelle 5.5 bestétigen die Analysen aus Abschnitt 5.1.3, dass die

Selektion itemmodifizierender Effekte bei Berechnung der Freiheitsgrade iiber die Spur
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richtig-positiv falsch-positiv

Szenario actset trace actset trace
stark | 0.5100 1.0000 0.0006 0.1000
1 mittel | 0.0175 0.9900 0.0000 0.0506

schwach | 0.0000  0.7675 | 0.0000  0.0200

stark | 1.0000  1.0000 | 0.0038  0.1300

2 mittel | 0.9500  1.0000 | 0.0025  0.0894
schwach | 0.0075  0.9800 | 0.0000  0.0338

stark | 1.0000  1.0000 | 0.0233  0.2800

3 mittel | 0.9900 1.0000 0.0208 0.1783
schwach | 0.0000 0.9850 0.0000 0.0625
stark | 1.0000 ) 0.0072 )
nicht nicht
4 mittel | 0.9788 0.0063
schwach | 0.0000 berechenbar 0.0000 berechenbar
stark | 0.9975 1.0000 0.0031 0.1238
5 mittel | 0.8275 1.0000 0.0006 0.0763

schwach | 0.0000  0.9100 | 0.0000  0.0375

Tabelle 5.5: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

der fiinf Szenarien der Simulation.

der Hat-Matrix (trace) sehr gut, bei Berechnung der Freiheitsgrade tiber die aktuelle

Anzahl an Parametern im Modell (actset) hingegen weniger gut funktioniert.

In Szenario 2 bis 5 werden jeweils 500 Personen betrachtet. Falls starke oder mittlere
Effekte vorhanden sind, steigt der richtig-positiv Anteil im Fall actset, verglichen mit
Szenario 1 mit 250 Personen, auf 1 bzw. nahe an 1 heran. Lediglich in Szenario 5 liegt
der richtig positiv Anteil der Schitzung mit mittleren Effekten bei 0.8275 und ist damit
etwas niedriger. Fiir alle fiinf Szenarien gilt, dass die Selektion nicht funktioniert, falls nur
schwache itemmodifizierende Effekte im Modell enthalten sind. Diese konnen mithilfe des
activ set nicht identifiziert werden und man erhélt jeweils einen richtig-positiv Anteil von
0.

Im Fall trace erhélt man wie in Szenario 1 fiir alle Berechnung mit starken und mittleren
Effekten optimale richtig-positiv Anteile von 1. Auch im Fall schwacher itemmodifizieren-

der Effekte steigt der richtig-positiv Anteil deutlich in Richtung 1. Lediglich fiir Szenario 5
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ist er mit 0.91 etwas niedriger. Die sehr guten richtig-positiv Anteile bringen mit sich, dass
auch die falsch-positiv Anteile wie in Szenario 1 sehr hohe Werte annehmen. Vor allem
in Szenario 3 ist der falsch-positiv Anteil deutlich zu grofs. In Szenario 3 weisen 12 der
20 im Modell enthaltenen Items keine itemmodifizierende Effekte auf. Ein falsch-positiv
Anteil von 0.28 fiir die Schitzung mit starken Effekten bedeutet, dass im Schnitt drei
Parametervektoren -y, filschlicherweise ins Modell aufgenommen werden. Die zusatzliche
Threshold-Regel erméglicht es im Folgenden, den Anteil falsch-positiver Items stark zu

senken und die Selektionsgiite zu optimieren.

Die mittleren quadratischen Fehler der fiinf Szenarien der Simulation ohne zusétzlichen
Threshold sind in Tabelle 5.6 zusammengestellt. Eingetragen sind der quadratische Fehler
der Personen-Parameter (5.4) und der quadratische Fehler der Item-Parameter (5.5) als

Durchschnitt iiber alle 100 Datensétze.

MSEpersons MSEitems
Szenario actset trace actset trace
stark | 0.3455  0.3448 | 0.2604  0.1474
1 mittel | 0.3520  0.3522 0.2360  0.1308

schwach | 0.3566  0.3566 | 0.1406  0.1140

stark | 0.3090  0.3108 | 0.0814  0.0712

2 mittel | 0.3135  0.3148 | 0.0680  0.0575
schwach | 0.3196  0.3195 | 0.0985  0.0504

stark | 0.3185  0.3216 | 0.1671  0.1342

3 mittel | 0.3190 0.3208 0.1139 0.0972
schwach | 0.3219 0.3233 0.1764 0.0812
stark | 0.1674 ) 0.0897 )
nicht nicht
4 mittel | 0.1690 0.0721
schwach | 0.1695 berechenbar 0.1029 berechenbar
stark | 0.3334 0.3341 0.1020 0.0891
5 mittel | 0.3376 0.3374 0.0949 0.0702

schwach | 0.3407  0.3403 | 0.1024  0.0587

Tabelle 5.6: Durchschnittliche mittlere quadratische Fehler der Personen-und Item-

Parameter der fiinf Szenarien der Simulation.
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Die MSEs der Personen-Parameter verringern sich im Vergleich zu Szenario 1 fiir die
Szenarien 2 bis 5 mit 500 Personen. Eine deutliche Verbesserung ergibt sich fiir Szenario 4
mit 40 Items. Der durchschnittliche MSE ist in etwa um die Hélfte kleiner als der MSE der
anderen Szenarien. Es bestétigt sich, dass die Berechnung der Freiheitsgrade und damit
die Modellselektion keinen Einfluss auf die Schétzung der Personen-Parameter hat. Die
MSEs der Personen-Parameter nehmen im Fall actset und im Fall trace jeweils nahezu
dieselben Werte an.

Die MSEs der Item-Parameter sind aufgrund der besseren Selektion der Parameter -,
im Fall trace durchgehend kleiner als im Fall actset. Die niedrigsten Werte erhalt man
fiir Szenario 2. Etwas hoher sind die Werte fiir Szenario 3, dessen Modell acht Items mit
itemmodifizierenden Effekten enthélt.

Grofier Nachteil der Berechnungen im Fall trace ist der Rechenaufwand und die Rechenzeit

fiir die Berechnung der Hat-Matrix (vgl. Theorie in Abschnitt 3.4). Fiir Szenario 3 liegt die

*

optimale Anzahl an Iterationen mg,,,

in etwa bei 1000. Die Berechnung der Freiheitsgrade
df(m) in jedem Iterationsschritt nimmt dafiir einige Stunden in Anspruch. Das Modell in
Szenario 4 beinhaltet 40 Items und damit 40 Parametervektoren ~,. Die Grofse dieser
Modelle léasst die Berechnung der Freiheitsgrade mit der Funktion AIC aus dem Paket
mboost mit den zur Verfliigung stehenden Rechen- und Speicherkapazitdten gar nicht
mehr zu. In den Tabellen 5.5 und 5.6 sind daher fiir Szenario 4 keine Werte eingetragen.
Aufgrund der bisherigen Ergebnisse werden in den folgenden Analysen und in den Ab-
schnitten 5.2 und 5.3 nur noch die Berechnungen fiir den Fall trace und dabei die Simu-
lationsszenarien 1, 2, 3 und 5 in Betracht gezogen.

Tabelle 5.7 enthélt die durchschnittlichen Anteile richtig-positiver und falsch-positiver
Items der vier berechenbaren Szenarien der Simulation im Fall trace mit zusétzlichem
Threshold. Im ersten Fall wird als Kriterium die Anzahl an Boosting-Iterationen, in denen
der Parametervektor 4y, aktualisiert wurde (freq), und im zweiten Fall als Kriterium die
euklidische Norm des Parametervektors v, (size) verwendet.

Wie schon in Szenario 1 zeigt sich auch fiir die Szenarien 2, 3 und 5, dass die Selektion der

itemmodifizierenden Effekte mit zusétzlicher Threshold-Regel deutlich verbessert werden

kann. Die Anteile falsch-positiver Items in Tabelle 5.7 sind im Vergleich zu den Werten
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richtig-positiv falsch-positiv

Szenario freq size freq size
stark | 1.0000 1.0000 | 0.0138 0.0044
1 mittel | 0.9800 0.9800 | 0.0094 0.0050

schwach | 0.7350 0.7300 | 0.0094 0.0075

stark | 1.0000 1.0000 | 0.0081 0.0013

2 mittel | 1.0000 1.0000 | 0.0063 0.0019
schwach | 0.9675 0.9625 | 0.0063 0.0044

stark | 1.0000 1.0000 | 0.0108 0.0108

3 mittel | 1.0000 1.0000 | 0.0033 0.0025
schwach | 0.9588 0.9563 | 0.0041 0.0033

stark | 1.0000 1.0000 | 0.0119 0.0038
) mittel | 0.9975 0.9975 | 0.0100 0.0063
schwach | 0.8950 0.8925 | 0.0081 0.0069

Tabelle 5.7: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items
der Simulation im Fall trace mit zusétzlichem Threshold. Unterschieden

werden die beiden Methoden freq und size.

in Tabelle 5.5 wesentlich kleiner. Der falsch-positiv Anteil von Szenario 3 reduziert sich
beispielsweise, falls starke Effekte im Modell vorhanden sind, von 0.28 auf 0.01 und, falls
mittlere Effekte im Modell enthalten sind, von 0.1783 auf 0.0033 bzw. 0.0025. Dies bringt

eine enorme Verbesserung der Selektion mit sich.

Der Vergleich der beiden Threshold-Methoden ergibt, dass die Verwendung der euklidi-
schen Norm der Parametervektoren -, als Threshold-Kriterium etwas bessere Ergebnisse

liefert. Hier erreicht man die niedrigsten Anteile falsch-positiver Items.

Es ist anzumerken, dass die richtig-positiv Anteile der Szenarien mit schwachen itemmo-
difizierenden Effekten jeweils im Vergleich zur Berechnung ohne zusétzlichen Threshold
(vgl. Tabelle 5.5) leicht sinken. Dies schadet aber dem perfekten Selektionsergebnis, wie
es sich in Tabelle 5.7 darstellt, nicht.

Um den Effekt der Threshold-Regel graphisch zu visualisieren, sind in Abbildung 5.5 die
geschatzten Parameter 4;, von Szenario 2 mit starken itemmodifizierenden Effekten in

Form von Boxplots dargestellt. Zusétzlich sind jeweils die wahren Parameter-Werte -,
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Abb. 5.5: Boxplots der geschétzten Parameter 7,, von Szenario 2 mit starken Effekten

im Fall trace ohne Threshold (oben) und mit Threshold (unten). Eingezeich-

net sind zusétzlich die wahren Parameter-Werte v,, (rote Punkte).
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mit roten Punkten eingezeichnet. Die obere Graphik zeigt die geschétzten Parameter ohne
zusétzlichen Threshold. Man sieht, dass einige Schatzungen s, ..., %4, féalschlicherweise
von Null verschieden sind. Dies &ufiert sich in einem Anteil falsch-positiver Items von 0.13
(vgl. Tabelle 5.5). Die untere Graphik zeigt die geschétzten Parameter mit zusétzlichem
Threshold. Angewendet wurde die Threshold-Regel size, fiir welche der Anteil falsch-
positiver Items nur bei 0.0013 liegt (vgl. Tabelle 5.7). Es ist ersichtlich, dass genau bei einer
Schitzung 4, und bei einer Schitzung 4., ungleich Null ist. Alle anderen Schitzungen

Y5, - - -, Yoo sind korrekterweise gleich Null.

Die Schitzungen der Item-Parameter f; fiir Szenario 2 mit starken itemmodifizierenden
Effekten mit Threshold-Methode size sind in Abbildung 5.6 in Form von Boxplots darge-

stellt. Die geschatzten Parameter sind jeweils um den wahren Wert (; zentriert.
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Abb. 5.6: Boxplots der geschiatzten Parameter Bz mit Threshold-Methode size von Sze-

nario 2 mit starken Effekten.
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Da der Parametervektor -, nie ins Modell mit aufgenommen wird (vgl. Abbildung 5.5
unten), fungiert Item 20 immer als Referenzitem. Der zugehorige Schétzwert fBap ist immer
korrekterweise gleich Null. Es ist auffillig, dass im Vergleich zu allen anderen Items die
Schiitzungen f3; deutlich vom wahren Wert abweichen. Diese Auffilligkeit tritt bei den
Schétzungen der Item-Parameter ; fiir alle Szenarien mit 500 Personen auf. Die Abwei-

chung reduziert sich jeweils mit abnehmender Starke der itemmodifizierenden Effekte.

Die Simulationen des Rasch-Modells mit itemmodifizierenden Effekten (2.6) ergeben, dass
die Bestimmung relevanter itemmodifizierender Effekte bei Berechnung der Freiheitsgrade
des BIC iiber die aktuelle Anzahl an Parametern im Modell nicht funktioniert, falls nur
schwache Effekte im Modell vorhanden sind. Berechnet man die Freiheitsgrade {iber die
Spur der Hat-Matrix, ist es immer mdglich, die relevanten itemmodifizierenden Effekte
zu selektieren. Mithilfe einer zusétzlichen Threshold-Regel erreicht man, dass nur in den
seltensten Féllen félschlicherweise weitere Items ins Modell aufgenommen werden. Die
vorliegenden Selektionsergebnisse sind nahezu perfekt. Weitere graphische Auswertungen

der Schitzungen der Parameter 3; und +;, finden sich in Anhang A.

5.2 Vergleich alternativer Schitzmethoden
5.2.1 Penalisierung der Likelihood

Als Alternative zur Boosting-Schitzung kann eine regularisierte Schétzung der Parame-
tervektoren =y, auch durch penalisierte Maximum-Likelihood-Schitzung erreicht werden.
Diese Methode wurde in Abschnitt 4.1 kurz eingefiihrt. Tutz und Schauberger [2013] fiih-
ren zur Evaluierung dieses Schétzverfahrens die gleiche Simulationsstudie durch, die in
Abschnitt 5.1 vorgestellt wurde. Sie bezeichnen ihre Methode mit , DIF-Lasso”. Nachfol-
gend werden die Ergebnisse der in dieser Arbeit vorgestellten Boosting-Schétzung mit den
Ergebnissen der DIF-Lasso-Schétzung verglichen.

Die Auswertungen in Abschnitt 5.1 haben gezeigt, dass die Selektion bei Berechnung
der Freiheitsgrade des BIC mit der aktuellen Anzahl an Parametern im Modell (actset)

nicht gut funktioniert. Es ist naheliegend, dass die Boosting-Schétzungen in diesem Fall
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richtig-positiv falsch-positiv
Szenario DIF-Lasso Boosting | DIF-Lasso Boosting
stark 0.9900 1.0000 0.0160 0.0044
1 mittel 0.7900 0.9800 0.0030 0.0050

schwach 0.0400 0.7300 0.0000 0.0075

stark 1.0000 1.0000 0.0220 0.0013

2 mittel 1.0000 1.0000 0.0130 0.0029
schwach 0.7100 0.9625 0.0010 0.0044

stark 1.0000 1.0000 0.0890 0.0108

3 mittel 1.0000 1.0000 0.0420 0.0025
schwach 0.7700 0.9563 0.0020 0.0033

stark 1.0000 1.0000 0.0220 0.0038
5 mittel 0.9900 0.9975 0.0090 0.0063
schwach 0.5600 0.8925 0.0010 0.0069

Tabelle 5.8: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven
Items der Szenarien der Simulation fiir die DIF-Lasso-Schéatzung und die

Boosting-Schatzung.

auch nicht mit den Schétzungen der DIF-Lasso-Methode mithalten konnen. Anders ist
es hingegen bei Berechnung der Freiheitsgrade iiber die Spur der Hat-Matrix (trace).
In Tabelle 5.8 sind die Ergebnisse der Boosting-Schéitzung im Fall trace den Ergebnis-
sen der DIF-Lasso-Schitzung fiir die Simulationsszenarien 1, 2, 3 und 5 (vgl. Abschnitt
5.1.1) gegeniibergestellt. Aufgelistet sind die Anteile richtig-positiver und falsch-positiver
Items bei Berechnung der Boosting-Schiatzung mit zuséatzlicher Threshold-Methode size
als Durchschnitt iiber alle 100 Datensétze. Die Anteile der DIF-Lasso-Schétzung sind aus

[Tutz und Schauberger, 2013] iibernommen.

Der Vergleich der Anteile aus Tabelle 5.8 zeigt, dass die Selektion in Szenario 1 mit
250 Personen mithilfe der Boosting-Schiatzung besser funktioniert. Sind mittlere Effekte
im Modell vorhanden, liegt der richtig-positiv Anteil der DIF-Lasso-Schétzung nur bei
0.79. Schwache itemmodifizierende Effekte konnen in Szenario 1 mit DIF-Lasso gar nicht
selektiert werden. Fiir die Szenarien 2, 3 und 5 mit 500 Personen selektieren im Fall star-

ker und mittlerer Effekte beide Methoden alle itemmodifzierenden Effekte korrekt. Der
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richtig-positiv Anteil liegt jeweils bei 1. Unterschiede zeigen sich im Fall schwacher item-
modifizierender Effekte. Hier liegen die richtig-positiv Anteile der DIF-Lasso-Schiatzung
deutlich unter denen der Boosting-Schitzung. Die falsch-positiv Anteile der Szenarien mit
guter Selektion sind fiir die Boosting-Schétzung geringer als fiir die DIF-Lasso-Schétzung.
Fiir Szenario 3 mit starken Effekten liegt der falsch-positiv Anteil mit Threshold-Regel
size nur bei 0.0108, fiir DIF-Lasso immerhin bei 0.089 (vgl. Tabelle 5.8).

Die mittleren quadratischen Fehler der Personen-Parameter (5.4) und Item-Parameter
(5.5) der beiden Schétzmethoden sind als Durchschnitt tiber alle 100 Datensétze in Tabelle
5.9 gegeniibergestellt. Im Gegensatz zu Tabelle 5.6 sind hier fiir die Boosting-Schétzung
die Werte mit zusédtzlicher Threshold-Regel size angegeben. Die Werte der DIF-Lasso-

Schétzung sind aus [Tutz und Schauberger, 2013] tibernommen.

MSE_persons MSE_items
Szenario DIF-Lasso Boosting | DIF-Lasso Boosting
stark 0.3440 0.3455 0.1490 0.1321
1 mittel 0.3500 0.3520 0.1450 0.1258

schwach 0.3470 0.3566 0.1270 0.1136

stark 0.3260 0.3090 0.0700 0.0581

2 mittel 0.3280 0.3135 0.0640 0.0492
schwach 0.3320 0.3196 0.0690 0.0491

stark 0.3270 0.3180 0.1060 0.1292

3 mittel 0.3280 0.3182 0.0960 0.0864
schwach 0.3350 0.3219 0.1080 0.0782

stark 0.3440 0.3334 0.0820 0.0745
5 mittel 0.3440 0.3376 0.0750 0.0628
schwach 0.3510 0.3407 0.0800 0.0576

Tabelle 5.9: Durchschnittliche mittlere quadratische Fehler der Szenarien der Simulation

fiir die DIF-Lasso-Schétzung und die Boosting-Schéitzung.

Die MSEs der Personen-Parameter sind im Fall der Boosting-Schétzung fiir Szenario 1
etwas hoher und fiir die Szenarien 2, 3 und 5 mit 500 Personen jeweils etwas niedriger
als die MSEs der DIF-Lasso-Schéitzung. Im Allgemeinen nehmen diese jedoch Werte der-
selben Grofkenordnung an (vgl. Tabelle 5.9). Grofere Unterschiede ergeben sich fiir die
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MSEs der Item-Parameter. Aufgrund der besseren Selektion der Parameter -, sind diese
im Fall der Boosting-Schiatzung niedriger als im Fall der DIF-Lasso-Schatzung. Auffallig
ist einzig Szenario 3 mit starken Effekten. Hier ist der MSE der DIF-Lasso-Schétzung

wesentlich niedriger als der MSE der Boosting-Schétzung.

Der Vergleich der die Arbeit betreffende Boosting-Methode mit der in [Tutz und Schau-
berger, 2013] vorgestellten DIF-Lasso-Methode ergibt, dass die Ergebnisse der Boosting-
Schétzung groftenteils besser sind. Nachteil der Boosting-Schétzung ist der hohe Re-
chenaufwand fiir die Berechnung der Spur der Hat-Matrix und die Durchfiihrung der
Threshold-Regel. Mit DIF-Lasso sind vor allem auch die Schétzungen von Szenario 4 mit
40 Ttems durchfiithrbar. DIF-Lasso ist somit fiir sehr grofte Datensétze die empfehlenswer-

tere Alternative.

5.2.2 Methoden zum Vergleich mehrerer Gruppen

In Abschnitt 4.2 wurden drei Methoden zur Identifizierung von Items mit itemmodifizie-
renden Effekten vorgestellt. Diese sind limitiert auf den Fall einer bindren oder mehrkate-
gorialen Kovariable. Um diese Methoden mit der in dieser Arbeit vorgestellten Boosting-
Schétzung zu vergleichen, wird ein weiteres Simulationsszenario betrachtet. Auf die dar-
aus simulierten Daten konnen alle vier Schitzmethoden zur Bestimmung von Items mit
itemmodifizierenden Effekten angewendet werden.

Die Daten (ypi, X,, 2,;) sind dquivalent zu Abschnitt 5.1 nach dem Rasch-Modell mit item-
modifizierenden Effekten (2.11) gebildet. Das hier betrachtete Szenario ist folgendermafen

spezifiziert:
L 9;07 ﬁz ~ N(Oa 1)
e P=500, I=20 und Iy=4

Als Kovariable wird eine Faktorvariable mit fiinf Kategorien verwendet. Fiir die Boosting-

Schétzung wird dies durch vier bindre Dummy-Variablen umgesetzt. In Modell (2.11) sind:

e )=14
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1, falls Person p aus Gruppe q, q € {1,...,4}

® Xpg =
0, sonst
e v/ =(0.7,0,0.5,—0.5), 75 = (0.9,0.6,—0.3,0), v5 = (0,—0.4,0.6,0.5) und
~v4 = (—0.4,0.6,0,0.7)

® ¥5,...,Y9 =0

Betrachtet werden Modelle mit starken, mittleren und schwachen itemmodifizierenden
Effekten. Fiir jeden der drei Félle werden 100 Datenséitze generiert. Wie in Abschnitt
5.1.1 definiert, ergeben sich fiir das Mafs der Stérke der itemmodifizierenden Effekte (vgl.
Gleichung (5.2)) die Werte 0.25 (stark), 0.1875 (mittel) und 0.125 (schwach).

Fiir die Berechnung der drei zu vergleichenden Methoden wird die Matrix mit den Rea-
lisierungen der Zielgrofe Y € RP* mit Eintrigen y,; und ein Vektor der Gruppenzuge-
horigkeit der Personen g € R™! mit g, € {1,...,5} benétigt. Implementiert sind die
Methoden in R im Paket difR [Magis et al., 2013].

Die Anteile richtig-positiver und falsch-positiver Items der drei Methoden fiir den Ver-
gleich mehrerer Gruppen und der Boosting-Schéatzung sind als Durchschnitt iiber alle 100
Datensétze in Tabelle 5.10 aufgelistet. Die Simulationsszenarien in Abschnitt 5.1 haben
gezeigt, dass sich eine optimale Boosting-Schéitzung ergibt, falls man die Freiheitsgrade des
BIC iiber die Spur der Hat-Matrix (trace) berechnet und die zusétzliche Threshold-Regel
tiber die euklidische Norm der Parametervektoren =, (size) verwendet. Die Boosting-
Losung wurde daher mit dieser Parametereinstellung berechnet.

Die Ergebnisse aus Tabelle 5.10 zeigen, dass die Identifizierung der Items mit itemmodi-
fizierenden Effekten mit allen vier Methoden sehr gut funktioniert. Falls schwache Effek-
te im Modell vorhanden sind, liegt der richtig-positiv Anteil fiir Lords y2Test und die
Boosting-Schétzung bei 0.9425 und ist damit etwas niedriger als fiir Mantel-Haenszel und
die logistische Regression. Die falsch-positiv Anteile sind hingegen jeweils deutlich kleiner.
Fiir die Boosting-Schéatzung sind die falsch-positiv Anteile am geringsten.

In diesem Simulationsszenario sind die Ergebnisse der Boosting-Schitzung genauso gut

bzw. sogar besser als die Ergebnisse der alternativen Schiatzmethoden. Diese funktionieren
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Methode richtig-positiv | falsch-positiv
stark 1.0000 0.0600
Mantel-Haenszel mittel 1.0000 0.0556
schwach 0.9750 0.0531
stark 1.0000 0.0675
Logistisch mittel 1.0000 0.0594
schwach 0.9750 0.0581
stark 1.0000 0.0250
Lord mittel 1.0000 0.0219
schwach 0.9425 0.0188
stark 1.0000 0.0038
Boosting mittel 1.0000 0.0075
schwach 0.9425 0.0125

Tabelle 5.10: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items
der drei Methoden fiir den Vergleich mehrerer Gruppen und der Boosting-
Schétzung.

im Fall einer bindren oder mehrkategorialen Kovariable bekanntermafen gut. Die Rechen-
zeit der Boosting-Schiatzung steht jedoch in keinem Verhéltnis zu den Alternativen. Die
Berechnung der Hat-Matrix nimmt mit den aktuellen Rechenkapazitdten mehrere Stun-
den in Anspruch. Es empfiehlt sich daher, eine der alternativen Methoden anzuwenden,

falls das betrachtete Modell nur eine bindre oder mehrkategoriale Kovariable enthalt.

5.3 Simulation des Modells mit zusitzlichem Populationseffekt

Im folgenden, letzten Teil der Simulation wird das Modell mit zusétzlichem Populations-

effekt aus Abschnitt 2.5 analysiert.

5.3.1 Simulationsszenarien

Zur Schatzung des Modells (2.13) mit globalem Populationseffekt wurde in den Abschnit-
ten 2.6 und 3.5 ein zweistufiges Schétzverfahren beschrieben. Um dieses durchzufiihren,
werden zwei Simulationsszenarien betrachtet. Die zugehorigen Daten (ypi,x,,2,) sind

dquivalent zu Abschnitt 5.1 nach dem Rasch-Modell mit itemmodifizierenden Effekten
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(2.11) gebildet. Zunéchst wird ein Simulationsszenario mit nur einer bindren Kovariable
betrachtet. Ein globaler Populationseffekt, d.h. ein genereller Fahigkeitsunterschied zwi-
schen den Personen der beiden Gruppen, wird bzgl. dieser einen Kovariable modelliert.

Das Szenario ist folgendermafen spezifiziert:
o B~ N(0,1)
e P=250, =20, Issr=4 und Q=1
e 1y =—-04, 1%=03 v3=-02 und ~,=0.1

Als Maf der Stérke der itemmodifizierenden Effekte %\/VZ (vgl. Gleichung (5.2)) ergeben
sich wieder die Werte 0.25 (stark), 0.1875 (mittel) und 0.125 (schwach).

Der Unterschied in den Fahigkeiten der Personen wird durch Ziehen der Personen-Para-
meter aus zwei verschiedenen Normalverteilungen realisiert. Fiir die Personen-Parameter
0, gilt:

(

N(1,1), fallspzl,...,%

O~ N(0,1), fallsp=L+1,...,P—1 (5.6)

0, falls p = P.

\

Um diesen Féhigkeitsunterschied an die Auspragung der Kovariable x zu koppeln, gilt:

1, fallsp=1,..., %2
X, ~ 2 (5.7)

0, fallsng—l—l,...,P.

Betrachtet man beispielsweise die binare Kovariable Geschlecht mit x,, = 1 fiir eine mann-
liche Person und x,, = 0 fiir eine weibliche Person. Dann ist die inhaltliche Aussage von
Gleichung (5.6) und (5.7), dass Ménner im Mittel eine Féhigkeit von 1 haben und da-
mit bessere Fahigkeiten besitzen als Frauen, die im Mittel eine Féahigkeit von 0 besitzen.
Anhand des linearen Regressionsmodells (3.22), das im zweiten Schritt nach Durchfiih-
rung der Boosting-Schétzung berechnet wird, soll eben genau dieser Unterschied erkannt

werden.
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Als zweites wird Simulationsszenario 5 der Simulation in Abschnitt 5.1 analysiert (siehe
Tabelle 5.1). Wie alle bisherigen Simulationsszenarien enthélt Szenario 5 fiinf Kovariablen.
Die Personen-Fahigkeit 6, ist in diesem Szenario, wie schon in Abschnitt 5.1.1 erldutert,
mit der Ausprigung der ersten Kovariable x; korreliert. Aquivalent zum Szenario mit einer
bindren Kovariablen sind die Parameter 6, nach Gleichung (5.6) gebildet. Gleichung (5.7)
gilt ebenfalls, jedoch in diesem Szenario im Bezug auf Kovariable x;. Anhand des linearen
Regressionsmodells (3.22) soll der generelle Fahigkeitsunterschied der beiden Populatio-
nen, die durch x; gebildet werden, erkannt werden. Ein korrektes Ergebnis liegt dann vor,
wenn die Parameterschitzung & fiir den Einfluss der ersten Kovariable auf die geschétz-
ten Personen-Parameter ép signifikant ist, und die anderen Komponenten as, ..., &5 keine

signifikanten Effekte aufweisen.

5.3.2 Auswertung der Ergebnisse

Die Auswertung der Simulationsergebnisse in Abschnitt 5.1 haben gezeigt, dass die Se-
lektion itemmodifizierender Effekte mithilfe des BIC optimal funktioniert, falls die Frei-
heitsgrade iiber die Spur der Hat-Matrix bestimmt werden (trace). Die Ergebnisse der
Schétzungen der beiden Szenarien werden daher nur fiir den Fall trace dargestellt.

Wie auch in den Auswertungen der vorherigen Abschnitte ist zunéchst der Anteil der
richtig-positiven und falsch-positiven Items der Boosting-Schatzung von Interesse. Diese
Anteile sind fiir das Szenario mit einer bindren Kovariable bei Schéitzung ohne zusétzlichen

Threshold in Tabelle 5.11 aufgelistet.

richtig-positiv | falsch-positiv

stark 0.5075 0.0875
mittel 0.3550 0.0731
schwach 0.2125 0.0694

Tabelle 5.11: Durchschnittlicher Anteil der richtig-positiven und falsch-positiven Items

des Szenarios mit einer bindren Kovariable.

Die berechneten Anteile in Tabelle 5.11 zeigen, dass die Selektion der itemmodifizieren-

den Effekte nicht gut funktioniert. Es bedarf daher dem Vergleich zu den Ergebnissen des
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ersten Simulationsszenarios aus Abschnitt 5.1. In beiden Szenarien werden 250 Personen
und 20 Items betrachtet, von denen 4 Items itemmodifzierende Effekte aufweisen. Unter-
schiede der Szenarien sind die Anzahl an Kovariablen Q und die Werte der Parameter ;,.
Nimmt man nur eine Kovariable ins Modell auf, so ist die Selektion schlechter. Sind starke
Effekte im Modell vorhanden, liegt der richtig-positiv Anteil nur bei 0.5 und nimmt mit
schwicher werdenden Effekten ~; deutlich ab (vgl. Tabelle 5.11). Im Vergleich zum nied-
rigen richtig-positiv Anteil ist auch der Anteil falsch-positiver Items in allen drei Féllen
sehr hoch. Die guten Ergebnisse fiir Szenario 1 (siehe Tabelle 5.2) zeigen, dass die Anzahl
an Kovariablen Q) eine wichtige Komponente darstellt, die die Selektionsgiite mafgeblich
beeinflusst. Des Weiteren ist zu beachten, dass die Absolutbetrige der Werte v;,, die un-
gleich Null sind, in Szenario 1 grofer sind als im Szenario mit einer Kovariablen (siehe
Abschnitt 5.3.1). Dies macht eine Identifizierung der Parametervektoren =; in Szenario 1
einfacher als die Identifizierung der Parameter ;.

Die Parameterschatzungen 4; des Szenarios mit starken itemmodifizierenden Effekten sind
in Abbildung 5.7 in Form von Boxplots dargestellt. Die wahren Parameterwerte ; sind
mit roten Punkten gekennzeichnet. Die Boxplots bestéitigen visuell die Ergebnisse aus
Tabelle 5.11. Man sieht, dass viele Schatzungen s, . . ., 49 falschlicherweise von Null ver-
schieden sind. Dies resultiert in einem hohen Anteil falsch-positiver Items. Die Giite der
Schétzung der Parameter 71, ..., y4 hingt von der absoluten Grofse der wahren Werte ab.
1, dessen wahrer Wert bei —0.4 liegt, wird nahezu immer ungleich Null geschétzt. vy,
mit dem kleinsten Absolutwert von 0.1, wird in den meisten Féllen félschlicherweise nicht
ins Modell aufgenommen.

Die lineare Regression der geschétzten Personen-Parameter ép auf die Kovariable x wird
in R mit der Funktion 1m durchgefiihrt. Die Berechnungen ergeben zum Signifikanzniveau
von 0.05 jeweils fiir jede der 100 Schétzungen einen signifikanten Effekt der Kovariable x.
Die geschitzten Koeffizienten & des Szenarios mit einer bindren Kovariable sind in Form
von Boxplots in Abbildung 5.8 dargestellt. Unterschieden werden die Schitzungen mit
starken, mittleren und schwachen itemmodifizierenden Effekten. Nachdem die Datensétze
nach Gleichung (5.6) und (5.7) gebildet sind, ist der wahre Wert fiir alle 100 Datensétze

und unabhéngig von der Starke der itemmodifizierenden Effekte jeweils derselbe. Dieser
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Abb. 5.7: Boxplots der geschiatzten Parameter 7; des Szenarios mit starken Effekten fiir

den Fall trace ohne zuséatzlichen Threshold.

nimmt den Wert 0.7746 an und ist in Abbildung 5.8 zusétzlich als rote gestrichelte Linie
eingezeichnet. Die geschitzten Koeffizienten & liegen im Median bei 0.81 und iiberschéatzen
den wahren Wert in den meisten Féllen leicht. Es ist zu beachten, dass der Parameter
a aus Modell (3.22) als Unterschied zwischen den Fahigkeiten der beiden Populationen
interpretiert werden kann, jedoch keine direkte Schiatzung des Parameters v aus Modell
(2.13) darstellt.

Das Bestimmtheitsma R? gibt an, welcher Teil der Varianz der Personen-Parameter

durch die Kovariable x erkldrt werden kann. Siehe dazu auch |Fahrmeir et al., 2003|. Im

vorliegenden Fall ist das Bestimmtheitsmafs definiert als:

wobei 6 den Mittelwert iiber alle Personen-Parameter 0,, p=1,..., P darstellt.
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Abb. 5.8: Boxplots der geschétzten Parameter & der linearen Regression des Szenarios
mit einer bindren Kovariable. FEingezeichnet ist zusétzlich der wahre Parame-

ter a (rote Linie).

Die Werte des Bestimmtheitsmafes (5.8) fiir die drei Szenarien mit starken, mittleren und
schwachen Effekten sind in Abbildung 5.9 in Form von Boxplots dargestellt. Eingezeichnet
ist ebenfalls der wahre Wert von 0.1383 als gestrichelte, rote Linie.

Die Personen-Parameter 6, haben aufgrund der Modellierung iiber die Normalvertei-
lung jeweils Varianz 1 (vgl. Gleichung (5.6)). Der tatséchliche Unterschied der Personen-
Féhigkeit zwischen den beiden Populationen wird durch den Mittelwertsunterschied der
beiden Normalverteilungen modelliert und liegt ebenfalls bei 1. Die Varianz der Personen-
Parameter ist also im Vergleich zum tatsdchlichen Unterschied relativ grof. Es ist daher
nicht verwunderlich, dass nur 13.83 % der Varianz der Daten durch die Kovariable x er-
klart werden kann. Fiir die geschiatzten Parameter & liegt der Anteil erklarter Varianz
grofstenteils leicht unter dem Anteil des wahren Modells. In allen drei Fallen liegt das

Bestimmtheitsmafi R? im Median bei 0.11 und weicht damit gleichermafen vom Wert des

wahren Modells ab.
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Abb. 5.9: Boxplots der BestimmtheistmaBe R? der linearen Regression des Szenarios mit
einer bindren Kovariable. Eingezeichnet ist zusétzlich der wahre Wert von R?

(rote Linie).

Die Ergebnisse der linearen Regression des Modells mit einer bindren Kovariable zei-
gen, dass der generelle Fahigkeitsunterschied der Personen der beiden Gruppen durch die
zweistufige Schétzung korrekt modelliert werden kann. Dieser wird in Modell (2.13) durch
den globalen Parameter ~ reprasentiert. Anzumerken ist jedoch, dass die Resultate der
Regression weder von der Stéirke der itemmodifizierenden Effekte noch von der Modell-
selektion, also der im Modell enthaltenen Parameter v;, abhéngig sind. Die geschéatzten
Parameter a und der Erklarungswert der Kovariablen x sind in allen drei Féllen nahe-
zu identisch. Alle Personen-Parameter werden im ersten Schritt der Boosting-Schétzung
durch ein logistisches Regressionsmodell geschétzt. Die Resultate der linearen Regressi-
on deuten darauf hin, dass die Personen-Parameter bei der regularisierten Schiatzung der
Parameter ; nicht mehr aktualisiert werden. Diese Uberlegung ldsst den Schluss zu, dass
die lineare Regression auch zum selben Ergebnis fiihrt, falls zunéchst ein einfaches Rasch-

Modell ohne itemmodifizierende Effekte modelliert wird.
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Wie in Abschnitt 5.1.4 dargestellt, funktioniert die Selektion der itemmodifizierenden Ef-
fekte ~y, fiir Simulationsszenario 5 im Fall trace sehr gut. Regressiert man die aus der
Boosting-Schétzung resultierenden Koeffizienten ép auf die fiinf Kovariablen des Modells,
so erhélt man zum Signifikanzniveau von 0.05 jeweils fiir jede der 100 Schatzungen einen
signifikanten Effekt der Kovariable x;. Der im Modell vorhandene Fahigkeitsunterschied
bzgl. der beiden Gruppen, die durch x; gebildet werden, wird korrekt erkannt. Die Regres-
sionsmodelle enthalten jedoch noch weitere signifikante Effekte. Der Einfluss der Kova-
riablen xs, ..., x5 auf die geschétzte Fahigkeit der Personen ist in einigen Fallen félschli-
cherweise zusétzlich signifikant. Tabelle 5.12 enthélt die Anzahl der Modelle, die entweder
keinen oder einen bzw. zwei signifikante Effekte der Kovariablen x, ..., x5 aufweisen, die

nach dem wahren Modell keinen Einfluss auf die geschatzten Parameter ép haben.

Anzahl inkorrekter Signifikanzen
0 1 2
stark | 60 33 7
mittel | 69 25 6
schwach | 76 19 5

Tabelle 5.12: Anzahl der linearen Regressionsmodelle von Simulationsszenario 5 die

falschlicherweise signifikante Kovariablen enthalten.

Ein Grofsteil der Modelle enthélt jeweils korrekterweise nur einen signifikanten Effekt ;.
Wenige Modelle enthalten jedoch sogar zwei filschlicherweise als signifikant eingestufte
Kovariablen. Falls starke Effekte im Modell enthalten sind, trifft dies auf 7 Regressions-
modelle zu. In diesen Fallen geht nicht hervor, dass die Fahigkeit der Personen im wahren
Modell nur durch Kovariable x; erklart werden kann. Das Ergebnis wird minimal besser,
je schwécher die im Modell enthaltenen itemmodifizierenden Effekte sind.

Die absoluten H&ufigkeiten signifikanter Effekte der Kovariablen x, ... x5 fiir die linea-
ren Regressionsmodelle sind in Tabelle 5.13 aufgelistet. Es ist aufféllig, dass Kovariable
x9 am haufigsten signifikante Effekte aufweist, Kovariable x4 hingegen sehr selten. Da die
drei Kovariablen xg, x4 und x5 gleichermafen standardnormalverteilt sind (vgl. Abschnitt

5.1.1), ist die Schlussfolgerung naheliegend, dass dieses Ergebnis zufillig ist.
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Kovariablen
X9 X3 X4 X
stark [ 22 14 3 8
mittel | 19 9 3 6
schwach | 13 7 3 6

Tabelle 5.13: Absolute Haufigkeiten signifikanter Effekte der Kovariablen x,, . .., x5 der

linearen Regressionsmodelle von Szenario 5.

Die Werte des Bestimmtheitsmafes (5.8) fiir die drei Schidtzungen mit starken, mittleren
und schwachen Effekten sind in Abbildung 5.10 in Form von Boxplots dargestellt. Der
wahre Wert ist unabhéngig von der Stérke der itemmodifizierenden Effekte, unterscheidet
sich aber jeweils fiir jeden der 100 Datensétze. Der Durchschnitt tiber alle 100 Daten-
sétze liegt bei 0.1689. Dieser ist in Abbildung 5.10 zusétzlich als gestrichelte, rote Linie

eingezeichnet.
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Abb. 5.10: Boxplots der BestimmtheitsmaBe R? der linearen Regression von Szenario 5.

Eingezeichnet ist zusétzlich der gemittelte wahre Wert von R? (rote Linie).
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Wie bereits beim Modell mit einer bindren Kovariable (vgl. Abbildung 5.9) weicht der An-
teil erklérter Varianz der geschitzten Parameter & vom wahren Wert leicht nach unten
ab. Im Median liegt das Bestimmtheitsmaf R? unabhiingig von der Stirke der itemmodi-
fizierenden Effekte bei etwa 0.13.

Die Regressionsmodelle von Simulationsszenario 5 ergeben, dass Kovariable x; nicht in
allen Féllen als einzige erklarende Kovariable identifiziert werden kann. Es bestétigt sich,
dass das Ergebnis der Regression nur marginal von der Stdrke und Anzahl der im Modell
enthaltenen itemmodifizierenden Effekte «, abhéngt. Da alle Personen-Parameter 60, zu-
nachst vollstandig durch ein logistisches Regressionsmodell geschitzt werden, kommt es
bei der Boosting-Schétzung nicht vor, dass itemmodifizierende Effekte mit grundsétzlichen
Féhigkeitsunterschieden verwechselt werden und die Schétzungen ép der Boosting-Losung
deutlich von den wahren Werten 6, abweichen. Auf dieses Resultat kann bereits aus Ta-
belle 5.6 geschlossen werden, da sich die MSEs der Personen-Parameter fiir Szenario 5 nur

geringfiigig von denen fiir Szenario 2 unterscheiden.
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6 Anwendung

Die Boosting-Schéatzung zur Modellierung itemmodifizierender Effekte wird in diesem Ka-
pitel auf reale Datensétze angewendet. Anhand der Simulationsergebnisse aus Kapitel
5 soll Riickschluss darauf gezogen werden, wie plausibel die Ergebnisse der Boosting-

Schatzung an realen Daten sind.

6.1 Klausur - Multivariate Verfahren

Das erste Anwendungsbeispiel bezieht sich auf eine Klausur zur Statistik-Vorlesung Multi-
variate Verfahren. Die Klausur besteht aus 18 Aufgaben, die von 57 Studenten bearbeitet
wurden. Zur Modellierung itemmodifizierender Effekte werden zwei bindre Kovariablen in

Betracht gezogen:

e Geschlecht ménnlich /weiblich (gender)

e Bachelor-Student im Fach Statistik/Master-Student mit Bachelor-Abschluss in ei-

nem anderen Fach (level)

In Abbildung 6.1 ist das Ergebnis der Klausur und die Verteilung der beiden Kovariablen
graphisch dargestellt.

Ergebnis der Klausur Geschlecht Level

40
I
60
]

[T
B

50
1

30
1

40

Absolute Haufigkeit
20
1

Absolute Haufigkeit
20
1

Absolute Haufigkeit
30
1

10
1

10
1

[

r T T T T T 1 e - e -

0 3 6 9 12 15 18 méannlich weiblich Master Bachelor

Anzahl korrekter Aufgaben

Abb. 6.1: Graphische Darstellung des Ergebnisses der Klausur und der beiden binédren
Kovariablen der 57 Studenten der Vorlesung.
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Man sieht, dass die meisten Studenten (48 von 57) nur héchstens die Hélfte der Aufgaben
richtig 16sen. Der beste Student 16st genau 14 Aufgaben korrekt. Die Studenten, die die
Vorlesung besuchen, sind grofsteils Bachelorstudenten im Fach Statistik und etwa zwei
Drittel der Studenten ist weiblich (vgl. Abbildung 6.1).

Das Ergebnis der Boosting-Schitzung ist in Abbildung 6.2 dargestellt. Abgetragen sind
die Koeffizientenpfade der Parameter v; gender; - - - » Y18 gender (links) und die Koeflizienten-
pfade der Parameter vy jovel, - - -, V1s1ever (rechts) in Abhéngigkeit der Iteration m. Die Frei-

heitsgrade zur Berechnung des BIC wurden iiber die Spur der Hat-Matrix bestimmt

*

(df _method="trace"). Die daraus resultierende, optimale Anzahl an Iterationen mg,,

ist jeweils zusétzlich als gestrichelte Linie eingezeichnet.
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Abb. 6.2: Koeffizientenpfade der Parameter v;, des Datensatzes zur Klausur in Multiva-
riate Verfahren. Fingezeichnet ist zusétzlich die optimale Anzahl an Iteratio-

nen nach dem BIC (gestrichelte Linie).

Aus Abbildung 6.2 wird ersichtlich, dass die Schétzungen der itemmodifizierenden Effek-
te «v; nach 200 Iterationen fiir 10 Items ungleich Null sind. Das BIC mit Berechnung der
Freiheitsgrade iiber die Spur der Hat-Matrix liefert das optimale Modell bei Iteration 0.
Zur Modellierung der Daten ist das Rasch-Modell ohne itemmodifizierende Effekte (2.5)
ausreichend. Anhand der Ergebnisse der Simulationsstudie (Abschnitt 5.1.4), in der die
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Selektion itemmodifizierender Effekte bei Berechnung der Freiheitsgrade iiber die Spur
der Hat-Matrix sehr gut funktioniert, ist davon auszugehen, dass tatséchlich keine item-
modifizierenden Effekte im Datensatz vorhanden sind. Die Aufgaben der Klausur sind fiir
alle Gruppen gleich schwer bzw. leicht zu l6sen. Ziel des Aufgabenstellers ist es eben genau

zu erreichen, dass keine der Aufgaben eine der Subgruppen bevorzugt oder benachteiligt.

6.2 Test - Spiegel-Online

Als zweites Beispiel werden Daten eines Allgemeinwissenstests betrachtet, der online vom
deutschen Nachrichtenmagazin Spiegel durchgefithrt wurde. Der Test besteht insgesamt
aus 45 Items der fiinf Themengebiete Politik, Geschichte, Wirtschaft, Kultur und Natur-
wissenschaften. Ein Teildatensatz der Ergebnisse von 1075 bayerischen Studenten ist in R

im Paket psychotree verfiigbar:

library("psychotree")
data("SPISA")

Eine ausfiihrliche Analyse und Diskussion des Original-Datensatzes findet sich in [Trepte
und Verbeet, 2010].
Zur Modellierung von itemmodifizierenden Effekten werden fiinf Kovariablen berticksich-

tigt. Diese sind

e Geschlecht (gender)

Alter in Jahren (age)

Anzahl immatrikulierter Semester (semester)

Faktor, ob die Universitit des Studenten Elite-Status besitzt (elite)

Héufigkeit des Besuchs des Spiegel-Online-Magazins (spon)

Eine graphische Darstellung des Ergebnisses des Tests (Anzahl korrekt beantworteter

Items) und der fiinf Kovariablen ist in Abbildung 6.3 zusammengestellt.
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Abb. 6.3: Graphische Darstellung des Ergebnisses des Spiegel-Online-Tests (links oben)

und der fiinf in Betracht gezogenen Kovariablen.

Die Anzahl korrekt beantworteter Items ist symmetrisch um etwa 25 verteilt. Der schwéichs-
te Student beantwortet nur sieben Fragen, der beste Student 42 Fragen korrekt. Im Daten-
satz sind mehr méannliche als weibliche Studenten enthalten, und das zweite Semester ist
am héufigsten vertreten. Die meisten Studenten studieren nicht an einer Elite-Universitét,
und die Studenten sind im Mittel 23 Jahre alt. Es ist auffillig, dass viele Studenten ent-

weder téglich oder nie das Online-Magazin des Spiegels besuchen (vgl. Abbildung 6.3).

Die Komponenten des Rasch-Modells mit itemmodifizierenden Effekten (2.6) sind in der
Ubersicht:

Y € :|R1075x457 X € R1075X5 und Z € ]R48375x1118 (61)

Die Auswertung der Simulation in Abschnitt 5.1 hat gezeigt, dass die Berechnung der Frei-
heitsgrade des BIC iiber die Spur der Hat-Matrix mit der Funktion AIC aus dem Paket

mboost mit den zur Verfiigung stehenden Rechen- und Speicherkapazitdten nicht moglich
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ist, falls die Anzahl an Items des betrachteten Modells zu grof ist. Dies war fiir Szenario 4
mit 40 Items der Fall. Auch der vorliegende Datensatz ist aufgrund der Grofe nicht aus-
wertbar, falls man die Freiheitsgrade iiber die Spur der Hat-Matrix bestimmen mochte.
Die Boosting-Schétzung kann daher nur mit Berechnung der Freiheitsgrade des BIC iiber
die aktuelle Anzahl an Parametern im Modell (df _method="actset") durchgefiihrt wer-
den. In Abbildung 6.4 sind beispielhaft fiir die Kovariable spon die Koeffizientenpfade der
Parameter i spon, - - - Yasspon il Abhéngigkeit der Iteration m abgetragen. Die optimale

Anzahl an Iterationen m*

stop 1t zusdtzlich als gestrichelte Linie eingezeichnet.
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Anzahl an lterationen

Abb. 6.4: Koeffizientenpfade der Parameter -,, fiir Kovariable spon. Eingezeichnet ist
zusétzlich die optimale Anzahl an Iterationen nach dem BIC' (gestrichelte Li-

nien).
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Wie aus den Ergebnissen der Simulation in Abschnitt 5.1.2 zu sehen ist, funktioniert
die Selektion der itemmodifizierenden Effekte bei Bestimmung der Freiheitsgrade iiber
die aktuelle Anzahl an Parametern im Modell nicht, falls die itemmodifzierenden Effekte
schwach sind. Im Beispiel-Datensatz erhélt man das optimale Modell nach diesem Krite-
rium bei Iteration 0. Demzufolge geniigen alle Items dem einfach bindren Rasch-Modell
(2.5). Geht man davon aus, dass mogliche Effekte im vorliegenden Datensatz nicht unbe-
dingt grof sind, so folgt, dass diese Losung nicht korrekt ist.

Tutz und Schauberger [2013| analysieren denselben Datensatz und modellieren itemmodi-
fizierende Effekte mithilfe der Grouped-Lasso-Penalisierung (vgl. Abschnitt 4.1 und 5.2.1).
Anhand dieser Methode werden 17 Items mit itemmodifizierenden Effekten extrahiert.
Fiihrt man die Boosting-Schétzung durch, so sind bei Iteration 488 17 Parameter-Vektoren
v, ungleich Null. Abgesehen von einem Item sind dies dieselben Items, die Tutz und Schau-
berger [2013] mit Grouped-Lasso-Penalisierung extrahieren.

Die Stdrke der itemmodifizierenden Effekte kann iiber die euklidische Norm |v,| =
/2, 7v% bestimmt werden. Tabelle 6.1 enthilt cine Ubersicht der Items mit den

stiarksten geschétzten Effekten, die nach Iteration 488 vorliegen.

Ttem | [l
19 | 0.3699
26 | 0.2686
23 | 0.2336

Tabelle 6.1: Euklidische Norm ||7;|| der drei Items mit den stérksten itemmodifizieren-

den Effekten nach Iteration 488.

Analog zu den Ergebnissen von Tutz und Schauberger [2013] sind die Items mit den
starksten Effekten aus Tabelle 6.1 Items aus dem Bereich Wirtschaft. Item 19 ist die
Frage nach Dieter Zetsche, dem Vorstand von Mercedes-Benz, den geméf der Schitzung

Y19 gender = —0.2815 ménnliche Teilnehmer besser kennen als weibliche Teilnehmer.
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7 Fazit

Hauptziel der Arbeit ist es, anhand einer Simulationsstudie die Giite der Boosting-Schétz-
ung zur Modellierung itemmodifizierender Effekte zu untersuchen. Gegenstand der Analy-
sen ist das erweiterte Rasch-Modell mit itemmodifizierenden Effekten (2.11). Stérke dieses
Modells ist, dass die betrachteten Kovariablen x nicht nur binar oder kategorial, sondern
auch stetig sein konnen. Auferdem kann die Anzahl an Kovariablen des Modells beliebig
grof sein. Die Stirke der itemmodifizierenden Effekte werden in der Simulation iiber die
Varianz der Item-Parameter (3; + X;—")/Z- bestimmt. Betrachtet werden Daten mit starken,
mittleren und schwachen Effekten.

Das Modell wurde in der Form eines iiblichen, logistischen Regressionsmodells dargestellt
und mithilfe des Boosting-Algorithmus in zwei Schritten geschétzt. Dies ist notwendig,
damit alle Personen- und Item-Parameter des einfachen Rasch-Modells vollstdndig ins
Modell aufgenommen werden und nur die itemmodifizierenden Effekte ~y, regularisiert
geschatzt werden.

Die optimale Anzahl an Iterationen der Boosting-Schétzung wird mithilfe eines BIC be-

stimmt. Die zugehorigen Freiheitsgrade kénnen iiber
e die aktuelle Anzahl an Parametern im Modell oder
e die Spur der Hat-Matrix
bestimmt werden. Uber eine zusitzliche Threshold-Regel wird festgelegt, wie grofy

e die minimale Anzahl an Boosting-Iterationen, in denen der Parametervektor -, ak-

tualisiert wurde oder
e die minimale Groke des geschétzten Parametervektors «,

mindestens sein muss, damit der Parameter ins endgiiltige Modell aufgenommen wird.

In einem weiteren Teil der Simulation wurde das Modell mit zusétzlichem Populationsef-
fekt (2.13) betrachtet. Ein grundsétzlicher Féahigkeitsunterschied zwischen Gruppen von
Personen wurde in den beiden Simulationsszenarien nur beziiglich einer bindren Kovaria-

ble modelliert.
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Anhand der Simulation kénnen folgende Aussagen getroffen werden:

1.

Bestimmt man die Freiheitsgrade des BIC iiber die aktuelle Anzahl an Parametern
im Modell, funktioniert die Selektion relevanter itemmodifizierender Effekte nicht,

falls schwache Effekte im Modell vorhanden sind.

Bestimmt man die Freiheitsgrade iiber die Spur der Hat-Matrix, funktioniert die
Selektion relevanter itemmodifizierender Effekte gut. Bei der Schitzung ohne zu-
sitzliche Threshold-Regel sind die geschitzt optimalen Modelle jedoch in vielen

Féllen zu grofk.

Mit zusétzlicher Threshold-Regel verringern sich die Anteile falsch-positiver Items
bei Berechnung der Freiheitsgrade iiber die Spur der Hat-Matrix deutlich, und man

erhélt optimale Selektionsergebnisse.

. Die besten Selektionsergebnisse erhéilt man, falls die minimale Grofe der geschétzten

Parametervektoren ~y, als Threshold-Kriterium verwendet wird.

Der Rechenaufwand fiir die Berechnung der Spur der Hat-Matrix ist mit den zur
Verfiigung stehenden Rechen- und Speicherkapazititen deutlich zu hoch. Ist die
Anzahl an Items des Modells zu grof, ist die Berechnung gar nicht mehr maoglich.

Dies ist fiir Simulationsszenario 4 mit 40 Items der Fall.

Ein Vergleich zeigt, dass die optimalen Selektionsergebnisse der Boosting-Schatzung

besser sind als die Ergebnisse der DIF-Lasso-Schétzung.

Fiir den Vergleich mehrerer Gruppen bzgl. einer mehrkategorialen Kovariable sind
die optimalen Selektionsergebnisse der Boosting-Schiatzung genauso gut, wie die

Ergebnisse existierender Methoden.

Die Boosting-Schétzungen des Modells mit einer bindren Kovariable ergeben deut-
lich schlechtere Selektionsergebnisse als die Schétzungen aller anderen Simulationss-
zenarien mit jeweils fiinf Kovariablen. Das Mafs fiir die Stirke der itemmodifizie-
renden Effekte, wie es in dieser Arbeit definiert ist, ist daher als problematisch

anzusehen.
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9. Die lineare Regression zur Extrahierung des globalen Populationseffekts, der in Mo-
dell (2.13) durch den Parameter « ausgedriickt wird, funktioniert gut. Die Parame-
terschédtzungen der bindren Kovariablen & sind signifikant und der Anteil erkléarter

Varianz der geschétzten Modelle kommt nahe an den wahren Wert heran.

10. Die Ergebnisse der linearen Regressionsmodelle sind unabhéngig von den item-
modifizierenden Effekten «,. Dies ist darauf zuriickzufiihren, dass alle Personen-
Parameter im ersten Schritt vollstdndig geschétzt werden und somit der grund-
sitzliche Fahigkeitsunterschied nicht mit itemmodifizierenden Effekten verwechselt

wird.

Die Anwendung der Schiatzung auf die Daten des Spiegel-Online-Tests ergibt bei Berech-
nung der Freiheitsgrade iiber die aktuelle Anzahl an Parametern im Modell als Ergebnis
das einfache Rasch-Modell. Dies bestétigt das Ergebnis der Simulation, dass die Selektion
in diesem Fall nicht funktioniert. Die Spur der Hat-Matrix lésst sich aufgrund der Anzahl
an Items des Tests nicht berechnen. Die Boosting-Schétzung ist auf diesen Datensatz nicht

sinnvoll anwendbar.

Insgesamt ergibt die Analyse, dass die Modellierung itemmodifizierender Effekte mithilfe
des vorgestellten Boosting-Algorithmus nur mit sehr hohem Rechenaufwand gute Ergeb-
nisse liefert und auf grofe Modelle gar nicht anwendbar ist. Um die Performance der
Schétzung zu verbessern, ist in weiteren Arbeiten eine Modifikation des Algorithmus im

Bezug auf die Bestimmung des optimalen Modells notwendig.
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A Weitere graphische Auswertungen

Geschitzte Item-Parameter BZ der Boosting-Schitzung mit den besten Selek-

tionsergebnissen

e Berechnung der Freiheitsgrade tiber die Spur der Hat-Matrix (trace)

e Threshold-Regel iiber die euklidische Norm der Parametervektoren =, (size)

Szenario 1, starke Effekte
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Szenario 5, schwache Effekte
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Geschitzte Itemmodifizierenden Effekte 7,, der Boosting-Schitzung mit den

besten Selektionsergebnissen

e Berechnung der Freiheitsgrade tiber die Spur der Hat-Matrix (trace)

e Threshold-Regel iiber die euklidische Norm der Parametervektoren ~y, (size)

Szenario 1, starke Effekte
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Szenario 1, mittlere Effekte
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Szenario 2, schwache Effekte
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Szenario 3, mittlere Effekte
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Szenario 5, starke Effekte
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Szenario 5, schwache Effekte
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Geschitzte Item-Parameter Bz fiir Szenario 4 der Simulation

e Berechnung der Freiheitsgrade iiber die aktuelle Anzahl an Parametern (actset)

e keine Threshold-Regel

Szenario 4, starke Effekte
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Szenario 4, mittlere Effekte
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Szenario 4, schwache Effekte
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A WEITERE GRAPHISCHE AUSWERTUNGEN

Geschitzte Itemmodifizierenden Effekte v;, fiir Szenario 4 der Simulation

e Berechnung der Freiheitsgrade iiber die aktuelle Anzahl an Parametern (actset)

e keine Threshold-Regel

Szenario 4, starke Effekte
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Szenario 4, mittlere Effekte
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Szenario 4, schwache Effekte
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B Verfiigbare Dateien

Auf der beigelegten CD befinden sich die Arbeit im PDF-Format und zwei Dateiordner:

e R-Code: Beinhaltet den erzeugten R-Code (alle Dateien mit Dateiendung .R) und

die gespeicherten Ergebnisse (alle Dateien mit Dateiendung .RData).

e Graphiken: Beinhaltet alle fiir die Arbeit erstellten Graphiken (im PDF-Format).

Folgende Ubersicht beinhaltet eine Aufstellung der verfiigbaren Unterordner mit einer

kurzen Beschreibung der jeweiligen Inhalte.

R-Code:
Beispiele Berechnung und Auswertung der Boosting-
Ergebnisse der beiden Anwendungsbeispiele aus
Kapitel 6
Simulation
Auswertung Auswertung der Boosting-Ergebnisse der Simula-
tionsszenarien 1 bis 5
Daten Erstellung und Speicherung der Datensétze der Si-

Ergebnisse act

Ergebnisse trace

Resultate

Save dfs

mulationsszenarien 1 bis 5

Berechnung der Boosting-Ergebnisse der Simulati-
onsszenarien 1 bis 5 mit df _method=actset
Berechnung der Boosting-Ergebnisse der Simulati-
onsszenarien 1, 2, 3 und 5 mit df _method=trace
Ergebnisse der Boosting-Schétzungen der Simula-
tionsszenarien 1 bis 5

Berechnung und Speicherung der Freiheitsgra-

de der Simulationsszenarien 1, 2, 3 und 5 mit

df _method=trace
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 Useful functions | Hilfsfunktionen zur Berechmung und Auswertung
der Boosting-Schitzungen
Vergleich Berechnung und Auswertung der Boosting-
Schétzung fiir den Vergleich mehrerer Gruppen
aus Abschnitt 5.2.2
Zwei_Gruppen Berechnung und Auswertung der Boosting-
Schatzung und der linearen Regressionsmodelle
aus Abschnitt 5.3
boostIME.R Hauptfunktion zur Durchfiihrung der Boosting-
Schéatzung
Graphiken.R R-Code fiir die Erstellung der Graphiken der Ar-

beit

Hinweise.pdf

Hinweise zur Verwendung der verfiigharen R-

Programme
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C Ausziige des R-Codes und Outputs

Ausschnitt aus Datensatz 1 des ersten Simulationsszenarios mit starken Effekten:

> load("./Daten/datasets_setl.RData")

> Y <- data_seti$strong[[1]1]1$Y

> Y[1:5,1:10]

(1,]
[2,]
(3,]
[4,]
(5,]

> DM_kov <- data_setl$strong[[1]]$DM_kov

(,11 [,21 [,3] [,4] [,5] [,e] L[,7]1 [,8] [,9] [,10]

0 1 1 0
0 1 1 0
0 1 0 0
1 1 0 1
0 1 0 0

> DM_kov[1:5,]

(1,]
[2,]
(3,]
[4,]
(5,]

x1 x2

-0.9900457 0.71027987 -0.6909217 0.15988445 -1.

-0.9900457 -0.06612265

1.0060142 -0.03064156 -0.6909217 -1.03953370 -1.
1.0060142 -0.66661728 -0.6909217 0.09707504 O.
-0.9900457 -0.31369460 -0.6909217

0
0
1

1

0
0
0
0

1

0

1

1
0
1

1
0
1

x4

1.4415527 -0.19614272 -0.

1
0
1

x5
3663358
7938377
1743757
6283364

1.02984562 -1.2122486

Durchfiihrung der Boosting-Schétzung fiir den ersten Datensatz von Szenario 1 mit star-

ken Effekten durch die Funktion boostIME mit einer moglichen Parameter-Kombination:

> boost <- boostIME(Y,DM_kov,mstop=500,df_method="actset",

thresh_method="no_thresh")
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Die Funktion boostIME gibt folgende Werte zuriick:

> attributes(boost)

$names
[1] "model" "coefs" "mstop" "thresh"
[5] "BICs" "npersons_valid" ‘"referenz_item"

Matrix der zwolf moglichen Parameter-Kombinationen der Boosting-Schitzung (auszugs-

weise):

> szenarios

daf thresh dif

[1,] "actset" "no_thresh" "s"

[9,] "actset" "size_quad" "w"

[10,] "trace" "no_thresh" "s"

[18,] "trace" '"size_quad" "w"

Berechnung der Boosting-Losung fiir den ersten Datensatz von Szenario 1 mit Parameter-

Kombination 1 durch die Funktion calc_boost:
> boost <- calc_boost(data_setl,sz=1,n=1,c(700,600,500))

Die Funktion calc_boost gibt folgende Werte zuriick:

> attributes(boost)

$names
[1] "theta" "beta" "gamma" "true_pos"
[6] "false_pos" "mstop" "thresh" "npersons_n"

[9] "referenz_item"
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Geschétzte Koeffizienten f;:

> boost$beta

betal beta2 betal beta4d betab betab beta7
-1.6133246 -2.8407384 -1.0953543 -0.7576976 -0.6128823 -1.0300583 -1.7937692
beta8 beta? betall betall betal2 betal3 betald
-2.2369886 -1.0300583 -1.6334425 -0.8277188 -0.4076119 -1.1169168 -2.0744597
betalb betal6 betal7? betal8 betald beta20
-0.7340246 -1.2862880 -0.7101753 -3.1050197 -2.0542995 0.0000000

Geschitzte Koeflizienten v; der Items mit itemmodifizierenden Effekten:

> boost$gamma [1:20]

gammall gammal?2 gammal3 gammal4 gammalb gamma21
-0.66344193 0.42702160 -0.12748959 0.12690549 0.41183193 0.04084752
gamma?22 gamma23 gamma24 gamma?25 gamma31 gamma32
0.35345265 -0.28302904 -0.01116281 0.25751359 0.38093726 0.11144642
gamma33 gamma34 gamma35 gamma4l gamma4?2 gamma43
0.48893214 -0.42173209 0.08104063 0.04462797 -0.02591759 0.14713254
gamma44 gamma45
0.18633666 -0.07285975

Berechnung der Boosting-Losung fiir zwei Datensétze von Szenario 1 mit Parameter-

Kombination 1 durch die Funktion calc_erg:
> boost <- calc_erg(data_setl,sz=1,sequenz=c(1,2),c(700,600,500))
Verwendete Parameter-Kombination:

> boost$sz

$sz

[1] "dif_strength=s ; df_method=actset ; thresh_method=no_thresh"
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Betrachtete Datensatze:

> boost$IDs

$1IDs

(1] 12

Geschitzte Koeffizienten v; der Items mit itemmodifizierenden Effekten:

> boost$gamma_hat[,1:20]

[1,]
2,]

[1,]
[2,]

[1,]
[2,]

[1,]
[2,]

gammall gammal2 gammal3
-0.6634419 0.4270216 -0.1274896
0.0000000 0.0000000 0.0000000
gamma22  gamma23 gamma24
0.3534526 -0.283029 -0.01116281
0.0000000 0.000000 ©0.00000000
gamma33 gamma34 gamma35
0.4889321 -0.4217321 0.08104063
0.0000000 0.0000000 0.00000000
gamma44 gamma4b
0.1863367 -0.07285975
0.0000000 0.00000000

Anteil richtig-positiver Items:

> boost$true_positive

$true_positive

(1] 10

Anteil falsch-positiver Items:

> boost$false_positive

$false_positive

[1] 00

gammal4

.1269055
.0000000

gamma25b

.2575136
.0000000

gamma4l

.00000000

0.
0.

gammalb gamma21

.4118319 0.04084752
.0000000 0.00000000

gamma31 gamma3?2
3809373 0.1114464
0000000 0.0000000

gamma42  gamma43

.04462797 -0.02591759 0.1471325

0.00000000 0.0000000
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Parallele Berechnung der Boosting-Lésung von Szenario 1 fiir alle neun Parameter-Kom-

binationen mit df _method=actset durch die Funktion calc_erg:

> library("foreach")
> library("doParallel")

> registerDoParallel (makeCluster(9))

> erg_setl_act <- foreach(j=seq(1,9)) Y%dopar’, {

calc_erg(data_setl, j,sequenz=seq(1,100) ,mstop)

Ergebnis ist eine Liste mit neun Elementen der jeweils folgenden Struktur:

> str(erg_setl_act[[1]])

List of 10
$ theta_hat : num [1:100, 1:250] -1.1 -0.334 -1.771 -1.59 -1.647 ...
..— attr(x, "dimnames")=List of 2
$ beta_hat : num [1:100, 1:20] -1.61 -1.41 -0.98 -1.5 -1.36 ...
..— attr(*, "dimnames")=List of 2
$ gamma_hat : num [1:100, 1:100] -0.663 0 O -0.415 0 ...

..— attr(*, "dimnames")=List of 2

$ mstop : num [1:100] 286 0 0 352 0 0 0 0 215 250 ...

$ thresh : num [1:100] 00 00000000 ...

$ referenz_item : int [1:100] 20 20 20 20 20 20 20 20 20 20 ...
$ true_positive : num [1:100] 1 001000011 ...

$ false_positive: num [1:100] 0 0 0 0O 000 00O ...

$ sz : chr "dif_strength=s ; df_method=actset ;
thresh_method=no_thresh"

$ IDs : int [1:100] 1 23 4567 89 10 ...
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Regression der geschatzten Parameter ép auf die Kovariable x fiir den ersten Datensatz

des Simulationsszenarios mit einer binaren Kovariable:

> boost <- calc_erg(datasets,sz=1,n=1,c(700,600,500))
> theta <- boost$theta

> reg <- lm(theta~DM_kov)

Zusammenfassung der Regression:

> summary(reg)

Call:

Im(formula = theta ~ DM_kov)

Residuals:
Min 1Q Median 3Q Max
-3.6463 -0.8169 0.1317 0.8972 2.8432

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -1.43326 0.07700 -18.614 < 2e-16 *x*x
DM_kov 0.39096 0.07715 5.067 7.91e-07 *x*x*

Signif. codes: O *xx 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 1.215 on 247 degrees of freedom
Multiple R-squared: 0.09417, Adjusted R-squared: 0.0905

F-statistic: 25.68 on 1 and 247 DF, p-value: 7.911e-07
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