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ABSTRACT

Abstract

Für die Diagnose und Behandlung von Krebs ist eine exakte Klassi�kation von Tu-

moren essentiell. Die verhältnismäÿig neue Technologie der Microarrays ermöglicht

die simultane Messung tausender Genexpressionen. Mit ihrer Hilfe ist es möglich,

komplexe Fragestellungen präziser zu beantworten. Microarrays führen zu umfang-

reichen Datensätzen mit p >> n. Klassische statistische Methoden sind für die

Analyse solcher Daten meist ungeeignet. Es wurde eine Vielzahl an Methoden zur

Klassi�kation von Microarrays entwickelt, ein eindeutiger Favorit konnte allerdings

noch nicht ausgemacht werden. Ziel dieser Arbeit ist es, in einem geeigneten Frame-

work ein lineares Regressionsmodell zu formulieren, mit dem der Ein�uss verschie-

dener Datensatzcharakteristiken auf die relative Güte von Prädiktionsalgorithmen

untersucht werden kann. Nach der theoretischen Formulierung folgt eine praktische

Anwendung des formulierten Regressionsmodells. Dafür liegen die Daten von 50

Microarray-Studien vor. Als Klassi�kationsverfahren werden die lineare, die diago-

nale lineare sowie die quadratische Diskriminanzanalyse betrachtet.
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Kapitel 1 Einleitung

1 Einleitung
Die verhältnismäÿig neue Technologie der Microarrays ermöglicht die simultane Mes-

sung tausender Genexpressionen. Durch diese Technik gewonnene, hochdimensiona-

le Daten erlangen eine immer gröÿere Bedeutung in der medizinischen Forschung.

Mit ihrer Hilfe ist es möglich, komplexe Fragestellungen präziser zu beantworten.

Microarray-Daten führen allerdings zu statistischen Herausforderungen. Die Daten-

sätze sind mit einer immer gröÿer werdenden Anzahl an Variablen sehr umfangreich.

Aufgrund des hohen �nanziellen Aufwandes stehen dieser nur relativ wenige Beob-

achtungen gegenüber. Dieses Problem wird mit p >> n bezeichnet, wobei p für

die Anzahl der Variablen und n für die Anzahl an Beobachtungen steht. Klassische

statistische Methoden sind für die Analyse solcher Daten meist ungeeignet. Somit

sind Microarrays nicht nur in der medizinischen, sondern auch in der statistischen

Forschung ein aktuelles Thema.

Insbesondere in der Analyse von Tumordaten werden Microarrays verwendet. An-

hand des Genexpressionsniveaus eines Patienten lassen sich Rückschlüsse auf einen

Krankheitsbefall oder bösartige Veränderungen von Zellen ziehen. Dafür wurden

verschiedene Prädiktionsalgorithmen entwickelt. Die Aufgabe von Prädiktionsalgo-

rithmen besteht darin, das Genexpressionsniveau von Patienten, für die bereits eine

Diagnose vorliegt, zu untersuchen und Entscheidungskriterien für die Klassi�kation

zukünftiger Patienten zu ermitteln.

Für die Diagnose und Behandlung von Krebs ist eine präzise Klassi�kation von

Tumoren essentiell. Aus diesem Grund ist es wichtig, verlässliche Prädiktionsalgo-

rithmen zu identi�zieren. Es wurde eine Vielzahl an Methoden zur Klassi�kation

von Microarrays entwickelt. In der heutigen Forschung hat sich allerdings noch kein

eindeutiger Favorit für alle Arten von Datensätzen herauskristallisiert. Manche Me-

thoden schneiden bei einer bestimmten Art von Datensätzen besser ab, manche

bei einer anderen. Nun stellt sich die Frage, welche Datensatzcharakteristiken einen

Ein�uss auf die relative Güte von Prädiktionsalgorithmen haben.

Zur Beantwortung dieser Frage werden in der vorliegenden Arbeit 50 Microarray-

Studien untersucht. Zunächst werden alle Individuen mit Hilfe des R Package CMA

klassi�ziert. Als Klassi�kationsmethoden werden die lineare, die diagonale linea-

re sowie die quadratische Diskriminanzanalyse verwendet. In jeder Studie existieren

zwei mögliche Gruppen. Diese Gruppen sind je nach Studie unterschiedlich de�niert.

Einige Studien beschäftigen sich mit dem momentanen Zustand des Patienten, an-

dere mit längerfristigen Prognosen. Die wahre Klassenzugehörigkeit aller Patienten
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Kapitel 1 Einleitung

ist bereits bekannt. Somit kann anschlieÿend die Prädiktionsgenauigkeit der linea-

ren, der diagonalen linearen und der quadratischen Diskriminanzanalyse für die 50

Microarray-Studien untersucht werden. Ist die Prädiktionsgenauigkeit bekannt, kann

die eigentliche Fragestellung dieser Arbeit untersucht werden. Ziel ist es, in einem

geeignetem Framework ein lineares Regressionsmodell zu formulieren, mit dem der

Ein�uss verschiedener Datensatzcharakteristiken auf die relative Güte von Prädik-

tionsalgorithmen untersucht werden kann. Als Response wird die jeweilige Di�erenz

der geschätzten Prädiktionsfehler zweier Klassi�kationsmethoden eingesetzt. Inter-

essante Ein�ussgröÿen sind beispielsweise die Anzahl an Beobachtungen und an

Variablen eines Datensatzes.

Der Aufbau dieser Arbeit ist folgender: Im zweiten Kapitel wird die verwendete

Methodik vorgestellt. Dazu zählen die verschiedenen Arten der Diskriminanzanaly-

se, Möglichkeiten der Variablenselektion sowie die Messung der relativen Güte mit

Monte-Carlo-Kreuzvalidierung. Das dritte Kapitel beschäftigt sich mit dem theore-

tischen Hintergrund des Vergleichs zweier Methoden. Dazu werden Hypothesentests

formuliert und die theoretischen Hintergründe des linearen Regressionsmodells erläu-

tert. Im vierten Kapitel folgt die bereits beschriebene Anwendung auf 50 Microarray-

Studien sowie die qualitative und quantitative Darstellung der Ergebnisse.
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Kapitel 2 Methodik

2 Methodik
Vor der Anwendung auf reale Daten werden alle dazu benötigten Methoden vor-

gestellt. Dazu gehören verschiedene Klassi�kationsverfahren sowie ihre Prädiktions-

fehler, Variablenselektion und Kreuzvalidierung.

2.1 Diskriminanzanalyse

Die Diskriminanzanalyse ist ein Verfahren aus der multivariaten Statistik. Hier-

bei geht man von einer Grundgesamtheit aus, die in k disjunkte Populationen mit

Indikator c ∈ {1, ..., k} zerfällt. Ziel ist es, ein Individuum i (i ∈ {1, ..., n}) mit

unbekannter Klassenzugehörigkeit einer dieser Gruppen eindeutig zuzuordnen.

Dazu wird für jedes Individuum ein Merkmalsvektor xi der Länge p erhoben. Seine

Einträge sind die Ausprägungen von p beobachtbaren Variablen. Mit Hilfe dieses

Merkmalsvektors kann auf das nicht beobachtbare c geschlossen werden. Die gezo-

gene Stichprobe wird mit s0 = {(x1, c1), ..., (xn, cn)} bezeichnet. Prädiktor und Re-

sponse folgen einer gemeinsamen Verteilung, die mit f bezeichnet wird. Für k = 2

(2-Klassen-Fall) spricht man von einer einfachen Diskriminanzanalyse, für k > 2 von

einer multiplen. In der Praxis wird die einfache Diskriminanzanalyse am häu�gsten

benötigt.

Die Diskriminanzanalyse wird in unterschiedlichen Forschungsgebieten verwendet.

Das klassische Anwendungsbeispiel ist die Überprüfung der Kreditwürdigkeit. An-

hand der Kontodaten werden Kreditnehmer als bedenklich beziehungsweise unbe-

denklich eingestuft. In der Medizin wird die Diskriminanzanalyse zur frühzeitigen

Diagnose und Prognose des Therapieerfolges eingesetzt. Marktforscher nutzen sie

zur Einschätzung des Konsumverhaltens, Meteorologen zur Wettervorhersage.

In einem ersten Schritt wird die Entscheidungsregel δ(x) geschätzt:

δ : Rp −→ {1, ..., k}
x 7−→ δ(x)

Diese Entscheidungsregel klassi�ziert Individuen mit unbekannter Gruppenzugehö-

rigkeit. Sinnvoll ist es, die Daten dafür in einen Lerndatensatz L und einen Testda-

tensatz T aufzuteilen und δ(x) nur anhand der Lerndaten zu schätzen. Die Güte von

δ(x) kann anschlieÿend mittels der Trainingsdaten evaluiert werden (vgl. Abschnitt

2.3).
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Fasst man x und c als Zufallsvariablen auf, so sind diese durch folgende relevante

Gröÿen charakterisiert:

• p(r) = P(c = r) a-priori-Wahrscheinlichkeit der Klasse r

• P(r | x) = P(c = r | x) a-posteriori-Wahrscheinlichkeit der Klasse r

• f(x | 1), ..., f(x | k) Verteilung der Merkmale, gegeben die Klasse

• f(x) = f(x | 1)p(1) + ...+ f(x | k)p(k) Mischverteilung der Population

[Fahrmeir et al. (1984), Leisch (2009), Wiesböck (1987)].

2.1.1 Bayes-Zuordnung

Eine mögliche Zuordnungsregel δ(x) ist die Bayes-Zuordnung. Sie teilt jedes Indi-

viduum in die Klasse mit der gröÿten a-posteriori-Wahrscheinlichkeit ein und mini-

miert damit die Gesamtfehlerrate ε. Sie ist de�niert als:

δ(x) = r ⇔ P(c = r|x) = max
j=1,...,k

P(c = j|x). (1)

Zu jeder Klasse r ist eine Diskriminanzfunktion dr(x) de�niert:

dr(x) = P(c = r|x). (2)

Um ein Individuum zu klassi�zieren ist nicht die genaue Kenntnis von P(c = r|x)

nötig. Es genügt zu wissen, welche Diskriminanzfunktion für x maximal ist. Somit

ist jede monotone Transformation wie

dr(x) = f(x|r) · p(r) (3)

oder

dr(x) = log(f(x|r)) + log(p(r)) (4)

äquivalent bezüglich der Zuordnung.

Die Klassi�kation erfolgt über Di�erenzen. Sind i, j ∈ c und i 6= j, so gilt:

δ(x) =

i, di(x)− dj(x) ≥ 0

j, di(x)− dj(x) < 0

Die a-posteriori-Wahrscheinlichkeiten P(c = r|x) können über den Satz von Bayes
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bestimmt werden, falls p(r) und f(x | r) bekannt sind:

P(c = r|x) =
P(x|c = r) · P(c = r)
k∑
j=1

P(x|c = j) · P(c = j)

=
f(x|r) · P(c = r)
k∑
j=1

f(x|j) · P(c = j)

. (5)

In den meisten Fällen muss man allerdings von unbekanntem p(r) und f(x | r)
ausgehen. Diese müssen im Voraus aus der Lernstichprobe geschätzt werden.

Für den Spezialfall p(1) = ... = p(k) entspricht die Bayes-Zuordnung der Maximum-

Likelihood-Zuordnung. Eine alternative Zuordnungsregel ist zum Beispiel die kosten-

optimale Zuordnung. Die Diskriminanzanalyse ist ein (Bayes-)optimales Verfahren,

falls die Merkmale, gegeben die Klasse, normalverteilt sind [Slawski et al. (2008),

Fahrmeir et al. (1984), Völkl (2013)].

2.1.2 Quadratische Diskriminanzanalyse (QDA)

Abbildung 1: QDA
Quelle: Rahnenführer (2009)

In der quadratischen Diskriminanzanalyse (QDA) geht

man von multivariat normalverteilten Klassendichten

mit Erwartungswert µr und Kovarianzmatrix Σr aus.

x|c = r ∼ N(µr,Σr)

Für die Verteilung der Merkmale, gegeben der Klasse

r, ergibt sich somit:

f(x|r) =
1

(2π)p/2|Σr|1/2
exp{−1

2
(x−µr)TΣ−1r (x−µr)}.

(6)

In die logarithmierte Form der Bayes-Regel (4) eingesetzt, erhält man folgende Dis-

kriminanzfunktion:

dr(x) = −1

2
(x− µr)TΣ−1r (x− µr)−

1

2
log(|Σr|) + log(p(r)). (7)

Der additive Term −p
2
log(2π) wird hier vernachlässigt. Die Klassen werden somit

von einer quadratischen Trennfunktion geteilt.

Im 2-Klassen-Fall lautet die Entscheidungsregel:

d1(x)− d2(x) > 0⇔ δ(x) = 1. (8)
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Die Trenn�äche zwischen den beiden Klassen ergibt sich für d1(x)− d2(x) = 0.

In der Praxis sind die Parameter der Normalverteilung meist unbekannt. Sie müssen

deshalb aus der Lernstichprobe geschätzt werden. Klassischerweise werden folgende

unverzerrte Schätzer verwendet:

• p̂(r) =
nr
n

geschätzte a-priori-Wahrscheinlichkeit der Klasse r

• µ̂r = xr geschätzter Mittelpunkt der Klasse r

• Σ̂r = Sk geschätzte Kovarianzmatrix der Klasse r.

Die quadratische Diskriminanzanalyse ist für orthogonale Matrizen A invariant ge-

genüber singulären Transformationen, d.h. das Klassi�kationsergebnis wird nicht

durch Merkmalstransformationen beein�usst. Die Trenn�ächen zwischen den Klas-

sen sind Hyperebenen und nehmen eine elliptische, parabolische oder hyperbolische

Form an.

Der Vorteil der quadratischen Diskriminanzanalyse ist, dass weniger Annahmen als

in der linearen oder diagonalen linearen Diskriminanzanalyse vorausgesetzt werden.

Es werden keinerlei Aussagen über die Kovarianzmatrizen Σr getro�en. Dies führt

allerdings zu einer groÿen Anzahl zu schätzender Parameter für die verschiedenen

Kovarianzmatrizen. Somit ist diese Methode nur für Datensätze mit vielen Beob-

achtungen in jeder Klasse geeignet [Fahrmeir et al. (1984), Nothnagel (1971), Tutz

(2013)].

2.1.3 Lineare Diskriminanzanalyse (LDA)

Abbildung 2: LDA
Quelle: Rahnenführer (2009)

Die lineare Diskriminanzanalyse (LDA) ergibt sich für

den Spezialfall von klassenweise identischen Kovari-

anzmatrizen Σr = Σ mit r = 1, ..., k.

x|c = r ∼ N(µr,Σ)

Daraus ergibt sich die Diskriminanzfunktion

dr(x) = −1

2
(x− µr)TΣ−1(x− µr)︸ ︷︷ ︸

quadratische Mahalanobis Distanz

+log(p(r)).

Da das quadratische Glied aus (7) nun nicht mehr von r abhängt, kann es vernachläs-

sigt werden. Somit ist die Trennfunktion für klassenweise identische Kovarianzmatri-

zen linear. Aus diesem Grund spricht man von einer linearen Diskriminanzanalyse.
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Für gleiche a-priori-Wahrscheinlichkeiten p(1) = ... = p(k) wird das Individuum i

derjenigen Klasse zugeordnet, deren quadratische Mahalanobis Distanz minimal ist.

Unter Verwendung der obigen Parameterschätzer ergibt sich folgende geschätzte

Diskriminanzfunktion:

d̂r(x) = xTr S
−1x− 1

2
xTr S

−1xr + log(p(r)) (9)

mit

S =
1

n− k

k∑
c=1

nc∑
i=1

(xci − xc)(xci − xc)T . (10)

Die Entscheidungsregel im 2-Klassen-Fall (8) kann man somit umformen zu:

(x− 1

2
(x1 + x2))

TS−1(x1 − x2) > log(
p(2)

p(1)
)⇔ δ(x) = 1.

Die Klassengrenzen der LDA bestehen abschnittsweise aus Hyperebenen. Sie ist

invariant gegenüber singulären Transformationen. Ihr Vorteil liegt in der einfachen

Struktur und Interpretierbarkeit. Im Gegensatz zur QDA müssen nur wechselseitige

Di�erenzen zwischen den Diskriminanzfunktionen der Klassen geschätzt werden.

Das heiÿt, die Anzahl der zu schätzenden Parameter ist deutlich niedriger [Fahrmeir

et al. (1984), Nothnagel (1971), Tutz (2013)].

2.1.4 Diagonale Lineare Diskriminanzanalyse (DLDA)

Abbildung 3: DLDA
Quelle: Rahnenführer (2009)

Bei der zusätzlichen Annahme von unkorrelierten Ko-

variablen wird die diagonale lineare Diskriminanzana-

lyse (DLDA) verwendet. Die gemeinsame Kovarianz-

matrix der Klassen ist diagonal.

x|c = r ∼ N(µr, σ
2I)

Die Klassen werden von einer linearen Funktion ge-

trennt:

dr(x) = − 1

2σ2
(x− µr)T (x− µr) + log(p(r)). (11)

Im Gegensatz zur LDA müssen die Variablen in der DLDA nicht dieselbe Varianz

haben. Die Einträge auf der diagonalen Kovarianzmatrix sind unterschiedlich.

Die DLDA ist in der Umsetzung am simpelsten und kann viele Variablen aufnehmen.
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Man kann in praktischen Anwendungen mit guten Ergebnissen rechnen, solange die

Variablen nicht zu stark korreliert sind. In der Analyse von Microarray-Studien, in

denen typischerweise p >> n gilt, �ndet sie eine häu�ge Anwendung. QDA und LDA

haben Probleme bei Datensätzen mit mehr Beobachtungen als Variablen. Möchte

man diese Methoden verwenden, ist eine vorherige Variablenselektion nötig (vgl.

Abschnitt 2.2) [Pang et al. (2009), Tutz (2013)].

2.2 Dimensionsproblematik

Microarray-Studien führen zu sehr umfangreichen Datenmengen. Bei den meisten

Klassi�kationsmethoden ist eine zu hohe Anzahl an Variablen allerdings problema-

tisch. Manche Prädiktionsregeln lassen sich gar nicht berechnen, wenn alle Varia-

blen aufgenommen werden. Und selbst wenn es möglich ist, so führt die Aufnahme

von Variablen mit niedrigem oder gar keinem Beitrag zur Klassi�kation zu einer

Verschlechterung der Performance. Die statistische Schwierigkeit besteht darin, die

Menge an Informationen auf die wichtigsten zu reduzieren. Dabei können drei ver-

schiedene Ansätze unterschieden werden:

• (explizite) Variablenselektion

• Dimensionsreduktion

• integrierte Variablenselektion.

Auch Kombinationen dieser Ansätze sind möglich. Beispielsweise könnte zunächst

eine Variablenselektion und im Anschluss eine Dimensionsreduktion durchgeführt

werden. Da die Variablenselektion Teil der Konstruktion der Prädiktionsregel ist,

sollte sie nur auf Basis des Lerndatensatzes durchgeführt werden.

2.2.1 (Explizite) Variablenselektion

Ziel der expliziten Variablenselektion ist es, im Voraus eine Auswahl der aussage-

kräftigsten Variablen zu tre�en. Basierend auf dieser Vorauswahl, kann dann ein tra-

ditionelles Klassi�kationsverfahren (z.B. QDA, LDA, k-Nearest-Neighbors) durch-

geführt werden. Hierbei unterscheidet man zwischen univariaten und multivariaten

Ansätzen.

Im univariaten Verfahren werden die einzelnen Variablen getrennt voneinander be-

trachtet. Es wird, beispielsweise mit Hilfe einer Teststatistik, ein Ranking erstellt.

Der Rang einer Variablen hängt von ihrem Nutzen zur Ermittlung der Klassen-

zugehörigkeit ab. Anhand dieses Rankings können nun die relevanten Ein�ussgrö-

ÿen ausgewählt und zur Klassi�kation verwendet werden. Für die Ermittlung der
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Rangfolge sind verschiedene Kriterien wie der t-Test, der AUC-Wert oder der nicht

parametrische Wilcoxon Rangsummentest denkbar.

Ein groÿer Vorteil des univariaten Ansatzes ist die schnelle und einfache Durch-

führung. Allerdings werden weder Korrelationen noch Interaktionen zwischen den

Variablen beachtet. Sind die laut Ranking besten Variablen stark korreliert, so ist

der Informationsgehalt gering.

Im multivariaten Ansatz hingegen werden nicht die einzelnen Variablen, sondern

Variablenkombinationen betrachtet. Er wird durch das Kriterium zum Ranking der

Variablenkombinationen sowie durch den Algorithmus, der eine Auswahl aus allen

2p−1 möglichen Kombinationen tri�t, charakterisiert. Das Ranking kann anhand von

�Wrapper-� oder von �Filter-� Kriterien erstellt werden. Das erste basiert auf der Prä-

diktionsgenauigkeit und damit auf der Prädiktionsregel. Das zweite misst die Stärke

der Abgrenzung der Variablenkombination (zum Beispiel mit der Mahalanobis Di-

stanz) und ist somit unabhängig von der Prädiktionsregel.

Nachteile dieses Ansatzes sind der rechnerisch hohe Aufwand, die Anfälligkeit ge-

genüber kleinen Änderungen in den Daten und die Tendenz zum Over�tting. Hinzu

kommt, dass zwar meist die Korrelationen zwischen den Variablen beachtet werden,

nicht aber die Interaktionen. Eine Ausnahme ist die auf Random Forest basierende

Methode von Diaz-Uriarte und de Andrés.

Einen Mittelweg stellen die �semi-multivariaten� Methoden dar. Hierbei wird zu-

nächst ein univariates Ranking durchgeführt. Aus der Gruppe der univariat höchst-

rangigsten Variablen werden die paarweise niedrig korrelierten ausgewählt [Ambroise

and McLachlan (2002), Boulesteix et al. (2008)].

2.2.2 Dimensionsreduktion

Ein Nachteil der Variablenselektion besteht in dem relativ starken Informationsver-

lust aufgrund der Auswahl einiger weniger Ein�ussgröÿen. Die Dimensionsreduktion

verfolgt deshalb einen anderen Ansatz: Eine groÿe Menge an Variablen wird zu

wenigen neuen Variablen zusammengefasst. Dies geschieht oftmals mit Hilfe von

Linearkombinationen. Daraufhin können klassische Klassi�kationsverfahren mit den

neuen Ein�ussgröÿen durchgeführt werden. Allerdings sind die einzelnen Komponen-

ten nun nicht mehr interpretierbar. Methoden zur Dimensionsreduktion sind unter

anderem Principal Component Analysis oder Partial Least Squares [Boulesteix et al.

(2008)].
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2.2.3 Integrierte Variablenselektion

Die dritte mögliche Lösung des Dimensionsproblems ist die Anwendung einer Klas-

si�kationsmethode, die mit einer groÿen Anzahl an Variablen umgehen kann. Dies

kann als integrierte Variablenselektion angesehen werden, da direkt zwischen re-

levanten und irrelevanten Variablen unterschieden wird. Dafür gibt es zum einen

statistische Modelle, die auf Penalisierung oder Shrinkage basieren (z.B. Penalized

Logistic Regression). Diese beinhalten normalerweise einen oder mehrere Penalty-

beziehungsweise Shrinkage-Parameter, je nach dem Grad der Regularisierung. Zum

anderen existieren Methoden aus dem Bereich des Machine Learnings (z.B. Ran-

dom Forests). Diese Methoden können problemlos für Daten mit n < p angewandt

werden. Microarrays könnten sie allerdings überfordern, weshalb eine Kombinati-

on mit vorhergehender Variablenselektion oder Dimensionsreduktion oft sinnvoll ist

[Boulesteix et al. (2008)].

In dieser Arbeit wird eine explizite Variablenselektion durchgeführt. Im Voraus wer-

den mit einem klassischem t-Test die Mittelwerte der beiden Gruppen auf Gleichheit

getestet. Ausgewählt werden die Variablen mit den kleinsten p-Werten.

2.3 Messung der relativen Güte

Eine genaue Schätzung der Fehlklassi�kationsrate ist ein wichtiger Bestandteil der

Diskriminanzanalyse. Dabei wird der Anteil der falsch klassi�zierten Individuen für

die gegebenen Daten ermittelt. Der Prädiktionsfehler ist auch für den Vergleich

verschiedener Prädiktionsalgorithmen ein wichtiges Hilfsmittel.

2.3.1 Prädiktionsfehler

Die Wahrscheinlichkeit einer Fehlklassi�kation, gegeben der feste Merkmalsvektor

x, ist de�niert als:

ε(x) = P(δ(x) 6= c | x) = 1− P(δ(x) = c | x). (12)

Die Gesamtfehlerrate ist der Anteil der falsch klassi�zierten Individuen an der Grund-

gesamtheit. Sie ist de�niert als:

ε = P(δ(x) 6= c) = E(L(δ(x) 6= c)), (13)
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wobei L eine Verlustfunktion, zum Beispiel die Indikatorfunktion

L =

0, Individuum wurde der richtigen Klasse zugeordnet

1, Individuum wurde der falschen Klasse zugeordnet

darstellt.

Es gilt:

ε = P(δ(x) 6= c) =

∫
P(δ(x) 6= c | x) · f(x)dx =

∫
ε(x) · f(x)dx.

Diese De�nitionen der Fehlerrate gelten allerdings nur für ungeordnete Klassen. Für

ordinal skalierte c wäre es sinnvoller eine Verlustfunktion zu wählen, die Fehlklas-

si�kationen in weiter entfernte Klassen stärker bestraft als Fehlklassi�kationen in

benachbarte Klassen.

Die Bayes-Zuordnung - basierend auf der wahren Verteilung f(x | r) - minimiert die

theoretische Gesamtfehlerrate ε und ist somit eine optimale Zuordnung für bekannte

Verteilungen in den Klassen. In Kapitel 3 wird die Fehlerrate für unbekannte Ver-

teilungen näher betrachtet [Boulesteix et al. (2008), Fahrmeir et al. (1984), Leisch

(2009)].

2.3.2 Monte-Carlo-Kreuzvalidierung (MCCV)

Evaluiert man die relative Güte eines Modells mit denselben Daten, die zur Aufstel-

lung der Klassi�kationsregel benutzt wurden, erhält man einen verzerrten Schätzer.

Um dieses Problem zu umgehen, wird typischerweise eine Form der Kreuzvalidierung

verwendet. Die Kreuzvalidierung ist eine Methode zur Evaluierung der Performance

eines Modells. Hier wird die Monte-Carlo-Kreuzvalidierung betrachtet. Dabei wer-

den die Daten mehrmals gesplittet, um den Prädiktionsfehler eines Klassi�kations-

modells unverzerrt zu schätzen. Somit kann das Modell mit der besten Anpassung

an die Daten identi�ziert werden.

Man geht von einem Datensatz S mit n Beobachtungen aus. Um für diesen Daten-

satz ein Prädiktionsmodell aufzustellen, wird er in einen Lerndatensatz L und einen

Testdatensatz T aufgeteilt. Der Lerndatensatz mit nl Beobachtungen wird verwen-

det, um ein Modell zu �tten. Die Prädiktionsgenauigkeit dieses Modells wird am

Testdatensatz mit nv = n− nl Beobachtungen evaluiert.

Für die MCCV werden nv Beobachtungen zufällig und ohne Zurücklegen aus dem
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Datensatz gezogen. Dieser Vorgang wird Hunderte oder sogar Tausende Mal wie-

derholt, bis b Test- und Lerndatensätze entstehen. Die Anzahl der Iterationen kann

vom Anwender beliebig hoch gewählt werden, solange die Leistung des Computers

ausreicht. Je mehr Iterationen, desto robuster ist die Schätzung des Prädiktionsfeh-

lers.

Das Verhältnis von L zum gesamten Datensatz β ist laut Smyth (1996) mit Werten

von 0,5 und höher üblicherweise relativ groÿ. Shao (1993) zeigte, dass ein relativ

groÿes β die Varianz in den Testdaten im Vergleich zur CV(nv) reduziert. Allerdings

gibt es keine weit verbreiteten Richtlinien dafür, welcher genaue Wert für β gewählt

werden sollte. Nach Boulesteix et al. (2008) sind typische Verhältnisse von Lern- zu

Testdaten 2:1, 4:1 oder 9:1. Dies hängt auch vom Ziel der Studie ab. Geht es nur um

den Vergleich zweier Methoden, ist ein relativ kleiner Lerndatensatz angemessen.

Ist auch der genaue Prädiktionsfehler von Interesse, sollte der Lerndatensatz gröÿer

gewählt werden.

Nach dem wiederholten Splitting wird für jedes Modell der durchschnittliche Prä-

diktionsfehler berechnet. Anhand dieses unverzerrten Schätzers für den wahren Prä-

diktionsfehler kann das am besten angepasste Modell ausgewählt werden [Dudoit

et al. (2002), Shao (1993), Slawski et al. (2008), Smyth (1996)].

Abbildung 4: MCCV Quelle: Boulesteix et al. (2008)

Abbildung 4 zeigt eine schematische Darstellung der Monte-Carlo-Kreuzvalidierung

für einen Datensatz S mit n = 5 und β = 2/5.
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3 Benchmarking
Im Benchmarking ist in erster Linie nicht die Beurteilung der Performance verschie-

dener Algorithmen das Ziel, sondern die Identi�kation des besten unter ihnen. Ein

Vergleich der Leistung verschiedener Methoden - meist mit Hilfe des Prädiktionsfeh-

lers - �ndet sich in vielen Artikeln über Machine Learning oder computationale Sta-

tistik. Dabei werden Unterschiede zwischen neuen oder bereits bekannten Methoden

anhand von realen Daten ermittelt. Im Folgenden wird der statistische Hintergrund

zu der Frage, welcher Algorithmus den besseren Klassi�kator produziert, erläutert.

3.1 Hypothesentests

Um die Güte verschiedener Verfahren zu vergleichen, werden normalerweise Hy-

pothesentests verwendet. Hypothesentests dienen der Überprüfung von Annahmen

über einen Parameter oder auch eine Verteilung in der Grundgesamtheit. Zur Be-

antwortung solcher Fragestellungen muss das statistische Testproblem formuliert

werden. Im Benchmarking ist der Anteil der falsch klassi�zierten Individuen das in-

teressierende Merkmal. Um Alternativ- und Nullhypothese aufzustellen, muss man

also zunächst die Prädiktionsfehler der zu prüfenden Methoden kennen (vgl. Ab-

schnitt 2.3.1).

Die Entscheidungsregel δ, basierend auf der Stichprobe s0, ist de�niert als:

δ : Rp −→ c

x 7−→ δs0(x).

Die möglichen Methoden zur Aufstellung der Entscheidungsregel werden als Mk

(k ∈ {1, ..., K}) bezeichnet. Der wahre Fehler ε der Methode Mk, basierend auf der

Stichprobe s0, wird mit ε(δs0Mk
, f) bezeichnet, wobei f nun als unbekannt angesehen

wird.

ε(δs0Mk
, f) = Ef [L(δs0Mk

(x) 6= c)]

Ef steht für den Erwartungswert der gemeinsamen Verteilung f und L für eine

Verlustfunktion (vgl. (13)). Die Notation betont die Abhängigkeit des Fehlers von

der Verteilung f , der Methode Mk sowie von der Stichprobe s0, die zur Aufstel-

lung der Klassi�kationsregel verwendet wurde. ε(δs0Mk
, f) wird als abhängiger Fehler

bezeichnet, da er auf der Wahl der Stichprobe s0 basiert.

Der Fehler ε(δsMk
, f) kann als Zufallsvariable angesehen werden, wobei s für eine
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zufällige i.i.d. Stichprobe, die der Verteilung fn folgt, steht.

ε(n,Mk, f) = Efn[ε(δsMk
, f)]

wird als unabhängiger Fehler der MethodeMk bezeichnet, da er vonMk, dem Stich-

probenumfang n und der gemeinsamen Verteilung f , nicht aber von einer bestimm-

ten Stichprobe so abhängt.

Im Benchmarking geht es um die Frage: Hat die mit der Methode M2 ge�ttete

Entscheidungsregel δs0M2 auf zukünftige Datensätze angewendet eine niedrigere Feh-

lerrate als die mit M1 ge�ttete Entscheidungsregel δs0M1? Dazu lassen sich folgende

Null- und Alternativhypothese aufstellen:

Hcond
0 : ε(δs0M2

, f)− ε(δs0M1
, f) ≥ 0

vs. Hcond
1 : ε(δs0M2

, f)− ε(δs0M1
, f) < 0.

Der Exponent �cond� steht für conditional. Er soll die Abhängigkeit der Hypothesen

von der Stichprobe s0 verdeutlichen.

Anwender sind allerdings in erster Linie nicht an der Anpassung der Methoden an

s0 interessiert, sondern an der mittleren Güte des Klassi�kators über verschiedene

Stichproben. Dafür stehen folgende Hypothesen:

Huncond
0 : ε(n,M2, f)− ε(n,M1, f) ≥ 0

vs. Huncond
1 : ε(n,M2, f)− ε(n,M1, f) < 0.

Ist der unabhängige Fehler fürM2 kleiner als fürM1, so kann die Nullhypothese ver-

worfen werden. Somit kann man sagen, dass die MethodeM2 besser als die Methode

M1 ist.

Problematisch dabei ist, dass in realen Daten die Verteilung f meist unbekannt ist.

Somit ist es schwierigHuncond
0 zu testen. Man benötigt einen Schätzer für ε(n,M2, f)−

ε(n,M1, f). Dafür kann man mehrere Stichproben ziehen und die Di�erenzen zwi-

schen den Fehlern mitteln. Eine mögliche Methode ist die Kreuzvalidierung (vgl.

Abschnitt 2.3.2). Allerdings bleibt die wahre unabhängige Varianz der Di�erenz un-

ter Huncond unbekannt. Schätzer basieren immer auf der Stichprobe s0, sollen aber

die Varianz über verschiedene Stichproben schätzen. Somit sind diese Schätzer wie-

derum abhängig [Boulesteix et al. (2013)].
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3.2 Framework zum Testen realer Daten

Das �no free lunch�-Theorem besagt, dass für die Klasse aller Probleme alle Algorith-

men durchschnittlich gleich gut sind. Man kann also nicht erwarten, dass eine neue

Methode M2 für alle Stichprobengröÿen und Verteilungen besser als die Standard-

methode M1 ist. Laut Webb (2000) ist es fraglich, ob das Messen von Fehlerraten

zwischen unterschiedlichen Gebieten (hier im Sinne von Verteilungen) überhaupt

sinnvoll ist. Durchschnittlich niedrige Fehlerraten weisen aber auf eine Tendenz zu

niedrigen Fehlerraten auf diesem bestimmten Gebiet hin.

Aus diesem Grund werden im von Boulesteix et al. (2013) vorgestellten Framework

zum Testen der Di�erenzen der Fehler von M1 und M2 mehrere Datensätze eines

bestimmten Forschungsfeldes betrachtet. Es werden J Datensätze unabhängig und

zufällig gezogen. In der Praxis ist dies eher ungewiss. Forscher könnten sich auf

Daten beschränken, die in Bezug auf Gröÿe oder Verteilung nicht repräsentativ für

das ganze Gebiet sind. Dennoch wird der Einfachheit halber eine zufällige Auswahl

angenommen.

Die Datensätze D1, ..., DJ haben unterschiedliche Verteilungen fj und einen Umfang

nj, (j = 1, ..., J). fj kann als das Outcome einer Zufallsvariable Φj : Ω→ V angese-

hen werden, wobei V die Menge aller möglichen Verteilungen auf diesem Forschungs-

feld ist. nj ist das Outcome der Zufallsvariable Nj : Ω → N . (Φ1, N1), ..., (ΦJ , NJ)

sind unabhängig und identisch verteilt, dabei ist nur Nj = nj beobachtbar. N und

Φ sind nicht zwangsläu�g voneinander unabhängig.

Es können folgende Hypothesen aufgestellt werden:

Hreal
0 : E(ε(N,M2,Φ))− E(ε(N,M1,Φ)) ≥ 0

vs. Hreal
1 : E(ε(N,M2,Φ))− E(ε(N,M1,Φ)) < 0.

ε(N,Mk,Φ) steht für eine Zufallsvariable mit Realisationen ε(n,Mk, f), k ∈ {1, 2}.
Der unbekannte Fehler für jeden Datensatz wird normalerweise durch ein Resampling-

Verfahren geschätzt, zum Beispiel wiederholtes Splitting in Test- und Trainingsda-

ten. Der geschätzte Fehler wird mit e(n,Mk, D) bezeichnet. Er kann als Schätzer für

den unbekannten Parameter ε(n,Mk, f) angesehen werden. Da der Lerndatensatz

immer weniger Beobachtungen als der gesamte Datensatz enthält, ist e(n,Mk, D)

im Schnitt gröÿer als ε(n,Mk, f). Geht man von einem gleichen Bias für die Metho-

den M1 und M2 aus, führt das zu folgenden Hypothesen:

Hreal
0 : E(e(N,M2, D))− E(e(N,M1, D)) ≥ 0

vs. Hreal
1 : E(e(N,M2, D))− E(e(N,M1, D)) < 0.
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Da man Zugang zu Realisationen von e(N,M2, D) − e(N,M1, D) hat, ist diese

Formulierung verglichen mit der vorherigen von Vorteil. Seien nun ∆e(nj, Dj) =

e(nj,M2, Dj) − e(nj,M1, Dj) unabhängig und identisch verteilte Realisationen von

e(N,M2, D)−e(N,M1, D). Unter der Normalverteilungsannahme oder für sehr groÿes

J kann man Hreal
0 mit einem t-Test für verbundene Stichproben testen. Die Teststa-

tistik T lautet:

T =
∆e√

1

J

1

J − 1

J∑
j=1

(∆e(nj, Dj)−∆e)2

.

Sie folgt einer Student-Verteilung mit J−1 Freiheitsgraden. Gilt T < tα,J−1, so kann

die Nullhypothese auf einem Signi�kanzniveau α abgelehnt werden. tα,J−1 bezeich-

net das α-Quantil der Student-Verteilung mit J − 1 Freiheitsgraden. Neben dem t-

Test werden auch häu�g nonparametrische Tests wie der Wilcoxon-Rangsummentest

durchgeführt [Boulesteix et al. (2013), Fahrmeir et al. (2011), Kruse and Moewes

(2011)].

3.3 Lineare Regression

Ist für einen bestimmten Datensatz Methode 1 besser als Methode 2, so tri�t das

auf einen anderen Datensatz nicht unbedingt zu, selbst wenn beide aus demselben

Forschungsgebiet stammen. Interessant ist nun, ob bestimmte Datensatzcharakteris-

tiken einen Ein�uss auf die Performance verschiedener Methoden haben. Um einen

solchen Ein�uss qualitativ und quantitativ zu untersuchen, ist es möglich ein Re-

gressionsmodell aufzustellen.

Ziel eines Regressionsmodells ist es, Eigenschaften einer Zielvariable y in Abhängig-

keit von p Kovariablen x1, ..., xp zu erklären. Dieser Zusammenhang lässt sich nicht

exakt als Funktion f(x1, ..., xp) angeben, da er von zufälligen Störungen überlagert

wird. Demnach ist die Zielgröÿe y eine Zufallsvariable. Ihre Verteilung hängt von

der Verteilung der Kovariablen ab. y kann nicht exakt bestimmt werden. Stattdes-

sen wird der durchschnittliche Wert für y, gegeben die unabhängigen Variablen,

ermittelt.

E(y | x1, ..., xp) = f(x1, ..., xp)

Für die Zielgröÿe gilt:

y = E(y | x1, ..., xp) + ε = f(x1, ..., xp) + ε.
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ε bezeichnet die zufällige, nicht durch Kovariablen erklärte Abweichung vom Er-

wartungswert. Sie wird als stochastische Komponente oder Fehlerterm bezeichnet.

f(x1, ..., xp) wird als systematische Komponente charakterisiert. Diese systematische

Komponente wird aus den Daten geschätzt. Ist f eine lineare Funktion, so spricht

man von einem linearen Regressionsmodell der Form

y = β0 + β1x1 + ...+ βpxp + ε. (14)

Das lineare Regressionsmodell wird für eine stetige und wenn möglich approxima-

tiv normalverteilte Zielgröÿe sowie lineare E�ekte der Kovariablen eingesetzt. Für

den Spezialfall p = 1 spricht man von einem einfachen linearen Regressionsmodell.

Die Regressionskoe�zienten β0, ..., βp sind unbekannt und müssen aus den Daten

geschätzt werden. Dafür wird üblicherweise die Methode der kleinsten Quadrate

verwendet. Die geschätzten Parameter werden mit β̂0, ..., β̂p bezeichnet, um sie von

den wahren Regressionskoe�zienten zu unterscheiden.

Setzt man die Daten jeder Beobachtung i ein, so erhält man n Gleichungen

yi = β0 + β1xi1 + ...+ βpxip + εi. (15)

Diese n Gleichungen lassen sich kompakt in Matrixnotation schreiben:

y = Xβ + ε.

Dabei sind y, β und ε als Vektoren

y=


y1
...

yn

, β =


β0
...

βp

 und ε =


ε1
...

εn


sowie X als Designmatrix

X =


1 x11 · · · x1p
...

...
...

1 xn1 · · · xnp

 =


xT1
...

xTn


de�niert. Die Spalten von X müssen linear unabhängig sein, das heiÿt keine Ko-

variable darf eine lineare Transformation einer anderen sein. Ist zum Beispiel x1
das Gewicht einer Person in kg und x2 das Gewicht in g, so ergeben sich durch x2
keinerlei neue Informationen.
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Im linearen Modell werden zwei grundsätzliche Annahmen getro�en. Zum einen ist

die Funktion f(x1, ..., xp) eine Linearkombination der Kovariablen, d.h.

f(x1, ..., xp) = β0 + β1x1 + ...+ βpxp = x′β,

zum anderen die Additivität des Fehlerterms ε. Diese Annahme ist in den vielen

praktischen Anwendungen zumindest annähernd erfüllt.

Im klassischen linearen Modell werden zusätzliche Anforderungen an die stochasti-

sche Komponente gestellt:

1. Die Störgröÿen sind im Mittel Null : E(εi)= 0.

2. Die Störgröÿen sind homoskedastisch: V ar(εi) = σ2.

3. Die Störungen sind unkorreliert: Cov(εi, εj) = 0, für i 6= j.

Aus den Annahmen 2. und 3. ergibt sich die Kovarianzmatrix Cov(ε) = E(εεT ) =

σ2I. Gilt auÿerdem ε ∼ N(0, σ2I), so spricht man von einer klassischen linearen

Normalregression.

Ein Maÿ für die Anpassung des Modells an die Daten ist das Bestimmtheitsmaÿ. Es

wird mit R2 bezeichnet und nimmt Werte zwischen 0 und 1 an. Das Bestimmtheits-

maÿ gibt den Anteil der Streuung an, der durch das Modell erklärt wird. R2 = 1

bedeutet also eine perfekte Anpassung an die Daten. Dies kann in realen Daten

allerdings nie erreicht werden [Fahrmeir et al. (2009)].

3.4 Formulierung eines Regressionsmodells

Nach der allgemeinen Einführung in die lineare Regression soll in diesem Abschnitt

ein eigenes Modell formuliert werden, um den Ein�uss von Datensatzcharakteristi-

ken auf die Performance verschiedener Diskriminanzanalysen zu untersuchen. Die

interessierende Variable ist in diesem Fall der Vergleich zweier Methoden. Es geht

also nicht um den Ein�uss verschiedener Variablen auf die Güte einer einzelnen

Methoden, sondern darum, wie sich das Verhältnis der Güte zweier Methoden än-

dert. Schneidet zum Beispiel die LDA mit wachsender Anzahl an Beobachtungen

besser ab als die DLDA? Oder kommt eine Methode besser mit Datensätzen zu

bestimmten Krebsarten zurecht als eine andere? Aus diesem Grund wird als Ziel-

gröÿe die Di�erenz der gemittelten Prädiktionsfehler zweier Methoden ∆e(N,D) =

e(N,M1, D)−e(N,M2, D) verwendet. Diese Di�erenzen sowie p Ein�ussgröÿen wer-

den für jeden Datensatz D ermittelt. In das Regressionsmodell �ieÿen also J Beob-

achtungen ein. Im Matrixnotation lässt sich das Regressionsmodell folgendermaÿen
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formulieren: 
∆e(n1, D1)

...

∆e(nJ , DJ)

 =


1 x11 · · · x1p
...

...
...

1 xJ1 · · · xJp



β0
...

βp

 +


ε1
...

εJ

.

Insgesamt wurden drei verschiedene Ein�ussgröÿen ausgewählt, die an allen Daten-

sätzen erhoben wurden. Es handelt sich dabei um die Anzahl an Beobachtungen,

die Anzahl der gemessenen Variablen (in diesem Fall die Anzahl der beobachteten

Gene) sowie den Fokus der Studie (hier: Art der untersuchten Krebserkankungen).

In diesem Modell sind zwei Punkte zu beachten. Zum einen handelt es sich bei der

Zielgröÿe um eine Di�erenz zweier Klassi�kationsfehler. Normalerweise wird eine

Variable als Response gewählt. Hier handelt es sich um eine Verknüpfung zweier,

eventuell korrelierter, Variablen. Zum anderen geht man normalerweise von Daten

eines Datensatzes aus. Hier wird aus J verschiedenen Datensätzen ein neuer ge-

bildet. Ob infolgedessen Modellannahmen verletzt werden, muss überprüft werden.

Dafür sind - neben formalen Tests - graphische Modelldiagnosen, die auf Residu-

en basieren, nützlich. Zur Überprüfung der Homoskedastizität ist zum Beispiel ein

Residualplot hilfreich. In einem Residualplot werden die standardisierten oder stu-

dentisierten Residuen gegen die geschätzten Werte ŷi abgetragen. Idealerweise, das

heiÿt bei Erfüllung der Modellannahmen, sollten die Residuen unsystematisch und

mit konstanter Variabilität um Null streuen [Fahrmeir et al. (2009)].
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4 Anwendung auf 50 Microarray-Studien
In den Kapiteln 2 und 3 wurden der theoretische Hintergrund verschiedener Klassi�-

kationsmethoden sowie deren Vergleich betrachtet. Mit diesem Wissen folgt nun die

praktische Anwendung anhand von 50 Microarray-Studien. Im ersten Abschnitt wird

die Technologie der Microarrays kurz erläutert. Es folgt der Vergleich der relativen

Güte von linearer, diagonaler linearer und quadratischer Diskriminanzanalyse an-

hand von 50 Datensätzen. Im letzten Teil wird mit Regressionsmodellen der Ein�uss

verschiedener Datensatzcharakteristiken auf die relative Güte der Prädiktionsalgo-

rithmen untersucht.

4.1 Microarrays

Für die Diagnose und Behandlung von Krebs ist eine verlässliche und präzise Klas-

si�kation von Tumoren essentiell. Die Technologie der Microarrays wurde in den

späten 90er Jahren entwickelt. Es handelt sich dabei um die simultane Messung des

Expressionsniveaus tausender oder sogar zehntausender Gene. Anhand des Expres-

sionsniveaus können Rückschlüsse auf einen Krankheitsbefall oder bösartige Verän-

derungen von Zellen gezogen werden.

Ein Microarray, auch Gen-Chip genannt, bezeichnet einen Glas-Objektträger, auf

dem tausende kurze Gen-Abschnitte angeordnet sind. Die Anzahl entspricht der

Anzahl der zu untersuchenden Gene. Diese Gen-Abschnitte dienen als �Andockstel-

len�.

Abbildung 5: Microarray
Quelle: Poirazi (n.d.)

Um ein Genexpressionspro�l zu erstellen, muss zunächst

die mRNA aus dem zu untersuchenden Gewebe isoliert

werden. Aus der mRNA wird mit dem Enzym Reverse

Transkriptase die dazu komplementäre cDNA syntheti-

siert. Anschlieÿend wird die cDNA mit einem roten, �uo-

reszierendem Farbsto� markiert und auf den Gen-Chip

aufgetragen. Eine grün markierte Vergleichsstichprobe

wird hinzugefügt. Es �ndet eine Hybridisierung statt,

das heiÿt die cDNA-Sequenzen lagern sich am jeweili-

gen komplementären Gegenpart auf dem Microarray an

(vgl. Abb. 5). Nun kann die Intensität der roten und grünen �uoreszierenden Lösung

gemessen werden. Sie entspricht der Menge an hybridisierter cDNA an jedem Punkt

des Microarrays. Diese Intensitäten werden in Expressionsniveaus umgerechnet. So-
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mit ist ein Genexpressionspro�l entstanden, welches die Aktivität von tausenden

Genen enthält [Amaratunga and Cabrera (2001), Efron et al. (2001)].

Bei der Auswertung der Microarrays ergeben sich mathematische Hindernisse. Da

diese Technologie mit hohen Kosten verbunden ist, werden meist nur wenige Gen-

expressionspro�le angefertigt. Dies führt zu Datensätzen mit sehr groÿem p - üb-

licherweise zwischen 5.000 und 50.000 - und vergleichsweise kleinem n (<300) .

Klassische statistische Verfahren sind für diese Art von Datensätzen meist ungeeig-

net. Im folgenden Abschnitt wird die Anpassung von linearer, diagonal linearer und

quadratischer Diskriminanzanalyse an 50 Microarray-Studien verglichen [Boulesteix

et al. (2008)].

4.2 Beschreibung der Daten

Bei den vorliegenden Microarray-Datensätzen handelt es sich um Studien zu ver-

schiedenen Krebsarten, wie Brustkrebs oder Leukämie, mit bereits bekannter Klas-

senzugehörigkeit c ∈ {0, 1}. Einige Studien beschäftigen sich mit dem momentanen

Zustand des Patienten andere mit längerfristigen Prognosen. Die Patienten werden

in Klassen wie �Metastasen ja / nein �, � Gute / schlechte Prognose � oder �erneu-

tes Auftreten des Tumors ja / nein � unterteilt. Die Anzahl an Beobachtungen n

liegt zwischen 23 und 286. Je nach Studie wurden an den untersuchten Personen

zwischen 1099 und 54676 Variablen p gemessen. Die Daten einer Studie sind jeweils

in einer n× p+ 1-Matrix zusammengefasst. Die Zeileneinträge xi = (xi1, ..., xip) be-

zeichnen das Genexpressionspro�l eines Individuums i. Der (p+ 1)-te Zeileneintrag

ci bezeichnet die Klassenzugehörigkeit des Individuums i.

Die Anzahl an Datensätzen ist mit J = 50 vergleichsweise hoch gewählt. Hinter-

grund dazu sind Powerbetrachtungen. Boulesteix et al. (2013) empfehlen, dies bei

der Planung von Benchmark-Experimenten zu berücksichtigen. Ist die Varianz der

Di�erenzen der Fehlerraten zwischen den unterschiedlichen Datensätzen hoch, so

ist eine groÿe Anzahl an Datensätzen nötig, um eine angemessene Power zu errei-

chen. Somit ist in diesem Vergleich eine ausreichende Power gewährleistet, um auch

niedrige Di�erenzen ∆ zu entdecken.

4.3 Methodenvergleich

Im Folgenden werden die Prädiktionsfehler verschiedener Klassi�kationsverfahren

berechnet und auf signi�kante Unterschiede untersucht. Als Klassi�kationsverfahren

werden lineare, diagonale lineare und quadratische Diskriminanzanalyse verwendet.
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Dabei wird eine unterschiedlich hohe Anzahl an Kovariablen in die Modelle aufge-

nommen. In der DLDA ist es möglich alle Variablen aufzunehmen, die LDA verlangt

n ≤ p. In der QDA ist eine noch rigorosere Auswahl notwendig. Aus diesem Grund

muss im Voraus eine univariate Variablenselektion durchgeführt werden. Dazu wer-

den mit einem klassischem t-Test die Mittelwerte der beiden Gruppen auf Gleichheit

getestet. Ausgewählt werden die Variablen mit den kleinsten p-Werten.

Insgesamt wurden neun verschiedene Methoden berechnet:

• DLDA mit allen, 500, 20, 10 und 5 Variablen

• LDA mit 20, 10 und 5 Variablen

• QDA mit 5 Variablen

Für alle Analysen wurde das R Paket CMA ("Classi�cation for MicroArrays") von

Slawski et al. (2008) verwendet.

4.3.1 Prädiktionsfehler der Methoden

Zur Schätzung des Prädiktionsfehlers wird die Monte-Carlo-Kreuzvalidierung ver-

wendet (vgl. Abschnitt 2.3.2). Jeder Datensatz wird in einem Verhältnis von 4:1

in Trainings- und Testdaten aufgeteilt. Dieses Splitting wird 300 Mal durchgeführt.

Anhand der Testdatensätze wird der gemittelte Prädiktionsfehler berechnet.

Methode alle Variablen 500 Variablen 20 Variablen 10 Variablen 5 Variablen

DLDA 0.269 0.232 0.225 0.234 0.247

LDA - - 0.266 0.240 0.239

QDA* - - - - 0.257

Tabelle 1: Prädiktionsfehlerraten der Methoden DLDA, LDA, QDA für eine unter-
schiedliche Anzahl an aufgenommenen Variablen.
(*basierend auf 42 Datensätzen)

Tabelle 1 zeigt die geschätzten Prädiktionsfehler der drei Methoden mit unterschied-

lich starker Variablenselektion. Die DLDA mit allen verfügbaren Variablen liefert

durchschnittlich die schlechteste Performance. Dies bestätigt die These, dass die

Aufnahme nicht relevanter Variablen zu einer Verschlechterung der Modells führt.

In der LDA führt die niedrigste Variablenanzahl zu den besten Ergebnissen. Die qua-

dratische Diskriminanzanalyse kann selbst mit fünf Variablen nur für 42 Datensätze

durchgeführt werden, da in acht Studien zu wenig Beobachtungen in einer oder in

beiden Gruppen vorhanden sind. Aus diesem Grund wird die QDA in die weiteren

Analysen nicht mehr aufgenommen. Das insgesamt beste Ergebnis erhält man mit
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der linearen diagonalen Diskriminanzanalyse bei einer Aufnahme von 20 Variablen.

Eine Fehlerrate von 0,225 bedeutet, dass durchschnittlich 22,5 % der Individuen ei-

ner falschen Klasse zugeordnet werden. Generell liegen die Fehlerraten mit Werten

von 0,225 bis 0,269 relativ hoch. Demnach werden in jedem Modell circa ein Viertel

der Patienten falsch klassi�ziert.

4.3.2 Vergleich unterschiedlich starker Variablenselektion

Mit Hypothesentests werden die Unterschiede zwischen den Modellen auf Signi�kanz

überprüft.

Hreal
0 : E(e(N,M2, D))− E(e(N,M1, D)) ≥ 0

vs. Hreal
1 : E(e(N,M2, D))− E(e(N,M1, D)) < 0.

Die Realisationen von e(N,Mk, D) geben den mit MCCV geschätzten Fehler der

Methode k für den Datensatz Dj (vgl. Abschnitt 3.2) an. Die jeweiligen Di�erenzen

werden mit einem einseitigen t-Test für verbundene Stichproben sowie dem nonpa-

rametrischen Wilcoxon-Rangsummentest auf Signi�kanz überprüft.

Zunächst werden nur die Di�erenzen innerhalb einer Methode mit unterschiedlicher

Variablenanzahl betrachtet.

t-Test Wilcoxon-Test

Vergleich Di�erenz t p-Wert W p-Wert

DLDA-all vs. DLDA-500 0.038 -4.220 5e-05 210.0 2e-02

DLDA-all vs. DLDA-20 0.045 -3.252 0.00104 349.0 0.00272

DLDA-all vs. DLDA-10 0.036 -2.466 0.0086 409.0 0.01387

DLDA-500 vs. DLDA-20 0.007 -0.875 0.19298 550.0 0.2005

DLDA-10 vs. DLDA-500 0.002 -0.198 0.4221 603.0 0.46433

DLDA-10 vs. DLDA-20 0.009 -3.823 0.00019 276.0 0.00025

Tabelle 2: Ergebnisse des t-Tests und des Wilcoxon-Rangsummentests für die Hypo-
thesen Hreal

0 vs. Hreal
1 . Es werden die paarweisen Di�erenzen der DLDA

mit unterschiedlicher Variablenanzahl über alle Datensätze getestet.

In Tabelle 2 sind die Ergebnisse des t-Tests und des Wilcoxon-Rangsummentests für

die Unterschiede innerhalb der diagonalen linearen Diskriminanzanalyse dargestellt.

Es werden die paarweisen Unterschiede bei unterschiedlicher Variablenanzahl über

alle Datensätze getestet. Die erstgenannte Methode steht jeweils für M1, die zweite

für M2. Die über alle Datensätze gemittelten Di�erenzen liegen zwischen 0,002 und

0,045. Beide Tests zeigen für vier Di�erenzen signi�kante Unterschiede an (auf einem
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Signi�kanzniveau α = 0, 05). Lediglich die Unterschiede von 500 zu 20 bzw. 10

aufgenommenen Variablen sind nicht statistisch signi�kant.

t-Test Wilcoxon-Test

Vergleich Di�erenz t p-Wert W p-Wert

LDA-20 vs. LDA-10 0.026 -5.563 0.00000 123.0 0.00000

LDA-20 vs. LDA-5 0.027 -4.689 1e-05 244.5 8e-05

LDA-10 vs. LDA-5 0.002 -0.646 0.26064 556.0 0.21713

Tabelle 3: Ergebnisse des t-Tests und des Wilcoxon-Rangsummentests für die Hy-
pothesen Hreal

0 vs. Hreal
1 . Es werden die paarweisen Di�erenzen der LDA

mit unterschiedlicher Variablenanzahl über alle Datensätze getestet.

Tabelle 3 zeigt die Ergebnisse der gleichen Tests wie in Tabelle 2, diesmal allerdings

für die lineare Diskriminanzanalyse. Wieder stimmen die beiden Tests bezüglich der

Signi�kanz überein. Es gibt signi�kante Unterschiede zwischen der Aufnahme von

20 Variablen und der von 10 bzw. 5. Die Di�erenz der Modelle mit 5 und mit 10

Variablen hingegen ist nicht signi�kant.

4.3.3 Vergleich LDA, DLDA

Nun interessieren nicht nur die Unterschiede innerhalb einer Methode, sondern auch

die zwischen DLDA und LDA. Welches Modell besser ist, hängt von der Verteilung

f ab. Ist die Kovarianzmatrix Σ tatsächlich diagonal, so kann man von der DLDA

gute Ergebnisse erwarten. Existieren Korrelationen zwischen den Variablen und ist n

groÿ genug, so ist die LDA eine gute Wahl. Generell gilt: je näher das Modell an die

echte Verteilung f kommt, desto bessere Ergebnisse liefert es. Um einen Vergleich der

Performance zu erhalten, werden aus den DLDA- und den LDA-Modellen diejenigen

mit der niedrigsten Fehlerrate ausgewählt. Es werden also die Di�erenzen von LDA

mit 5 und von DLDA mit 20 Variablen untersucht.

t-Test Wilcoxon-Test

Vergleich Di�erenz t p-Wert W p-Wert

LDA-5 vs. DLDA-20 0.014 -2.894 0.00284 359.5 0.00369

Tabelle 4: Ergebnisse des t-Tests und des Wilcoxon-Rangsummentests für die Hy-
pothesen Hreal

0 vs. Hreal
1 . Es werden die paarweisen Di�erenzen von LDA

(5 Variablen) und DLDA (20 Variablen) getestet.

Tabelle 4 zeigt, dass sich die Prädiktionsfehler der Methoden LDA und DLDA si-

gni�kant voneinander unterschieden. Im Schnitt schneidet die DLDA mit 20 aufge-
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nommenen Variablen besser ab. Die Di�erenz liegt bei 0,014. Dies gilt allerdings nur

über alle 50 Datensätze gemittelt. Betrachtet man die Datensätze getrennt vonein-

ander, kann durchaus die LDA die bessere Wahl sein. Insgesamt liefert die DLDA

für 32 Studien die niedrigere Fehlerrate, die LDA für 18. Um den Grund für die-

se Unterschiede zu untersuchen, werden im nächsten Abschnitt Regressionsmodelle

gerechnet. Dabei werden verschiedene Datensatzcharakteristiken als Ein�ussgröÿen

aufgenommen, die Di�erenzen der Prädiktionsfehler dienen als Response.

4.4 Regressionsmodelle

Beispielhaft werden für drei verschiedene Di�erenzen des Prädiktionsfehlers ∆e(N,D)

lineare Modelle aufgestellt. Als Kovariablen werden für jeden Datensatz die beiden

stetigen Variablen �Anzahl an Beobachtungen� und �Anzahl an Genexpressionen�

erhoben. Zusätzlich wird die dummy-kodierte Variable �Art der Krebserkrankung�

aufgenommen. Es existieren hunderte verschiedene maligne Tumorerkrankungen.

Diese lassen sich je nach Gewebe- und Zellart, in der sie ihren Ursprung nehmen,

in drei Hauptgruppen untergliedern: Karzinome, Sarkome und Lymphone / Leuk-

ämien. Karzinome machen etwa 80% aller bösartigen Tumore aus. Sie haben ihren

Ursprung in Ephitelgeweben. Sarkome entstehen im Stützgewebe wie Muskeln oder

Fettgewebe, Leukämie oder Lymphone in blutbildenden Organen [Das Lebenshaus

e.V. (2011)]. Da zu Sarkomen nur ein Datensatz existiert, wird dieser als NA kodiert.

Demnach wird nur in Karzinome und Lymphone / Leukämien unterteilt, wobei die

Gruppe der Karzinome als Referenzkategorie dient.

In das Regressionsmodell werden also drei Ein�ussgröÿen aufgenommen. Allgemein

kann die Modellformel folgendermaÿen formuliert werden:
∆e(n1, D1)

...

∆e(n50, D50)

 =


1 x1,gen x1,beob x1,tumor
...

...
...

1 x50,gen x50,beob x50,tumor




β0

βgen

βbeob

βtumor

 +


ε1
...

ε50

,

mit ∆e(nj, Dj) = e(nj,M2, Dj)− e(nj,M1, Dj).

4.4.1 DLDA-20 vs. DLDA-10

Zum Vergleich unterschiedlich starker Variablenselektion in der DLDA wird beispiel-

haft die Di�erenz von 10 und 20 aufgenommenen Variablen betrachtet. Der Ein�uss

der Kovariablen wird zunächst anhand von Scatterplots graphisch dargestellt. Auf

der y-Achse wird die Zielvariable - hier die Di�erenz der Fehlerraten von DLDA-10
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Abbildung 6: Scatterplot zu DLDA mit Kovariable �Anzahl Beobachtungen�

und DLDA-20 - angetragen. Auf der x-Achse die jeweils interessierende Kovaria-

ble. Die dummy-kodierte Ein�ussgröÿe �Art der Krebserkrankung� wird zusätzlich

durch Färbung der einzelnen Punkte dargestellt. Die grün gefärbten Punkte markie-

ren Datensätze zu Karzinomen, die roten Punkte Datensätze zu Lymphonen oder

Leukämien. Die drei grauen Punkte stehen für den Datensatz zu Sarkomen sowie

für zwei Datensätze ohne weitere Angabe.

In Abbildung 6 ist die Anzahl der Beobachtungen gegen die Di�erenzen abgetragen.

Es fällt auf, dass der Betrag der Di�erenzen mit steigender Anzahl an Beobachtungen

niedriger wird. Das heiÿt, der Unterschied zwischen den beiden Methoden ist für

gröÿere Datensätze geringer als für kleine. Achtet man auf die Farbgebung, sieht

man, dass alle roten Punkte über einer gedachten horizontalen Linie bei y = 0

liegen. Für Lymphone und Leukämien ist die Aufnahme von 10 Variablen also mit

einer höheren Fehlerrate verbunden als die Aufnahme von 20 Variablen.

Abbildung 7 stellt ∆e(N,D) der Anzahl an Genexpressionen gegenüber. Anhand des

Scatterplot lässt sich kein klarer Trend entdecken. Man sieht, dass der Groÿteil der

Datensätze höchstens 25.000 Variablen enthält. Drei Datenpunkte liegen mit einer

Anzahl von etwa 55.000 Genexpressionen weit abseits.
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Abbildung 7: Scatterplot zu DLDA mit Kovariable �Anzahl Genexpressionen�

Nach dieser qualitativen Interpretation der Ein�ussgröÿen folgt nun eine quantita-

tive. Die Modellformel dazu lautet:

e(N,DLDA10, D)− e(N,DLDA20, D) = β0 +βgenxgen +βbeobxbeob +βtumorxtumor + ε

Variable Koe�zient Standardabweichung t p-Wert

Intercept 9.054e-03 4.547e-03 1.991 0.052810 .

Beobachtungen -1.191e-04 4.156e-05 -2.866 0.006413 **

Genexpressionen 1.448e-07 1.613e-07 0.897 0.374511

Tumor 1.908e-02 4.469e-03 4.269 0.000106 ***

Tabelle 5: Ergebnisse des Regressionsmodells mit den Di�erenzen der Fehlerraten
von DLDA-20 und DLDA-10 als Zielvariable

Die Ergebnisse des Regressionsmodells sind in Tabelle 5 dargestellt. Sowohl die An-

zahl der Beobachtungen als auch die Art des Tumors haben einen signi�kanten

Ein�uss auf die Zielvariable. Der geschätzte Regressionskoe�zient der Kovariable

�Anzahl an Beobachtungen� ist negativ, mit steigender Anzahl an Beobachtungen

werden die Werte der Zielgröÿe also niedriger. Enthält ein Datensatz j 150 Beobach-
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tungen, so nimmt ∆e(nj, Dj) durchschnittlich um 100 ∗ (−1.191e− 04) = −0.01191

niedrigere Werte an als für einen Datensatz i mit 50 Beobachtungen. Für kleinere

Datensätze liefert die DLDA mit 20 Variablen die besseren Ergebnisse. Ab einer

Gröÿe von n = (9.054e − 03)/(1.191e − 04) ≈ 77 ist die DLDA mit 10 Variablen

durchschnittlich besser. Der Schätzer β̂tumor sagt aus, dass die Werte der Zielva-

riable in der Kategorie �Lymphone / Leukämie� durchschnittlich um 0.01908 höher

liegen als in der Referenzkategorie �Karzinome�. Die Anzahl an Genexpressionen hat

keinen statistisch signi�kanten Ein�uss. Die Anpassung an die Daten ist für dieses

Regressionsmodell mit R2 = 0, 368 vergleichsweise gut.

Betrachtet man alle Di�erenzen innerhalb der DLDA, so fällt auf, dass eine hohe

Anzahl an Beobachtungen tendenziell für eine stärkere Variablenselektion spricht.

Ein möglicher Grund dafür ist, dass für sehr kleine Datensätze die Rangfolge der

Variablen nicht präzise berechenbar ist. So ist die Aufnahme einer gröÿeren Menge

an Variablen sinnvoll. Generell führen zu viele Variablen aber zu einer schlechteren

Performance. Ist für gröÿere Datensätze also die Erstellung einer exakten Rangfolge

möglich, so führt eine konsequentere Auswahl zu besseren Ergebnissen. Über die

Anzahl der Genexpressionen lässt sich keine klare Aussage tre�en. Datensätze zu

Leukämien oder Lymphonen schneiden im Verhältnis zu Karzinom-Studien tenden-

ziell mit einer höheren Anzahl an aufgenommenen Variablen besser ab. Zu beachten

ist, dass der Groÿteil der Ergebnisse keinen signi�kanten Ein�uss hat. Die Anzahl

der Beobachtungen ist nur in einem Modell signi�kant, die Art des Tumors für zwei

Modelle. Die Ergebnisse sollten also nicht überinterpretiert werden.

Nach der Schätzung müssen die Modellannahmen Homoskedastizität, Unkorreliert-

heit der Störgröÿen sowie die Linearität des Prädiktors überprüft werden. Diese

Annahmen sollten zumindest approximativ erfüllt sein, um Fehlschlüsse zu vermei-

den. Eine Korreliertheit zwischen den Residuen ist in erster Linie bei Daten mit

zeitlicher Struktur, wie Zeitreihen oder Longitudinaldaten, ein Problem. Da dies

hier nicht der Fall ist, wird die Überprüfung dieser Annahme vernachlässigt. Ob

eine Linearität der Ein�ussgröÿen gegeben ist, sieht man an den Scatterplots (vgl.

Abb. 6 / 7). Zumindest für Abbildung 6 scheint ein linearer Ein�uss plausibel.

Die Homoskedastizität wird anhand von Residuenplots überprüft. In Abbildung 8

wurden die standardisierten Residuen gegen die geschätzten Werte ŷi abgetragen.

Die Residuen streuen mit konstanter Variabilität um die Null. Es lassen sich keine

Regelmäÿigkeiten entdecken. Man kann also von homoskedastischen Fehlern ausge-

hen. Insgesamt sind zumindest keine schweren Verletzungen der Modellannahmen
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zu erkennen [Fahrmeir et al. (2009)].
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Abbildung 8: DLDA: Standardisierte Residuen gegen die geschätzten Werte ŷi

4.4.2 LDA-20 vs. LDA-10

In diesem Regressionsmodell wird die Di�erenz der Fehlerraten der LDA mit 10

und mit 20 aufgenommenen Variablen untersucht. Dabei werden dieselben Daten-

satzcharakteristiken wie im obigen Modell - zunächst mit Scatterplots - auf ihren

Ein�uss untersucht.

In Abbildung 9 sind die Di�erenzen von LDA-10 und LDA-20 gegen die Anzahl der

Beobachtungen abgetragen. Es ist ein deutlich positiver Trend zu erkennen. Für eine

steigende Anzahl an Beobachtungen streben die Di�erenzen zwischen den Fehlerra-

ten gegen Null. Insgesamt liegt ∆e(N,D) für die meisten Datensätze sehr nahe an

der Null. Das bedeutet, es existieren keine groÿen Unterschiede in der Performance

von LDA mit 20 oder 10 aufgenommenen Variablen. Die meisten Datenpunkte liegen

unter der Horizontalen durch y = 0. Die Di�erenzen von LDA-20 und LDA-10 sind

also häu�g kleiner Null. Tendenziell scheint die Aufnahme von nur 10 Variablen also

etwas bessere Ergebnisse zu liefern. Im Unterschied zu Abbildung 6 und 7 ist hier

kein Trend für verschiedene Krebsarten zu erkennen. Anhand des Scatterplots ist

Seite 29



Kapitel 4 Anwendung auf 50 Microarray-Studien

50 100 150 200 250

−
0.

10
−

0.
05

0.
00

LDA−20 vs. LDA−10

Anzahl Beobachtungen

D
iff

er
en

z 
de

r 
F

eh
le

rr
at

en

Karzinome
Lymphone

Abbildung 9: Scatterplot zu LDA mit Kovariable �Anzahl Beobachtungen�
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Abbildung 10: Scatterplot zu LDA mit Kovariable �Anzahl Genexpressionen�
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nicht klar zu erkennen, ob es sich hier um einen linearen Ein�uss handelt. Die Anzahl

der Beobachtungen könnte auch einen quadratischen Ein�uss haben. Anhand von

Abbildung 10 lässt sich weder ein negativer noch ein positiver Ein�uss der Anzahl

der Gene feststellen.

Geht man von einem linearen Ein�uss der Beobachtungen aus, so lautet die Modell-

gleichung für die beschriebene Regression:

e(N,LDA10, D)− e(N,LDA20, D) = β0 + βgenxgen + βbeobxbeob + βtumorxtumor + ε.

Die zugehörigen Ergebnisse sind in Tabelle 6 dargestellt. Die Anzahl der Beob-

achtungen hat einen signi�kanten Ein�uss auf die Di�erenzen. Dieser Ein�uss ist

positiv, das heiÿt mit steigender Anzahl an Beobachtungen steigt ∆e(N,D). Für

den Groÿteil der Datensätze ist die Aufnahme von nur 10 Kovariablen sinnvoller.

Erst ab 170 Beobachtungen liefert die LDA mit 20 Kovariablen im Schnitt die besse-

ren Werte. Diese Beobachtung steht im Gegensatz zur DLDA. Dort schnitt für viele

Beobachtungen die Auswahl von 10 Variablen besser ab, für wenige die Wahl von

nur 20 Variablen. Das Bestimmtheitsmaÿ liegt bei 0,229. Das Modell erklärt also nur

22,9% der Streuung. Die Anpassung an die Daten ist demnach weniger gut als im

vorherigen Modell. Eine Transformation der Variable �Anzahl an Beobachtungen�,

um ihren quadratischen Ein�uss zu überprüfen, bringt keine Verbesserung.

Variable Koe�zient Standardabweichung t p-Wert

Intercept -5.304e-02 9.991e-03 5.309 3.66e-06 ***

Beobachtungen 3.120e-04 9.132e-05 -3.417 0.00139 **

Genexpressionen 7.433e-08 3.545e-07 -0.210 0.83489

Tumor 7.118e-03 9.821e-03 -0.725 0.47254

Tabelle 6: Ergebnisse des Regressionsmodells mit den Di�erenzen der Fehlerraten
von LDA-20 und LDA-10 als Zielvariable

Für alle drei LDA-Vergleiche ergeben sich zwei Trends. Zum einen sprechen Daten-

sätze mit vielen Beobachtungen für eine Berechnung anhand einer gröÿeren Anzahl

an Variablen. Dies ist in zwei von drei Modellen signi�kant und entgegengesetzt zu

den Ergebnissen aus dem DLDA-Vergleich. Allerdings muss man dazu bemerken,

dass die mögliche Aufnahme von Variablen in der LDA ohnehin auf 20 begrenzt ist.

Bei der Analyse von Leukämie- / Lymphon-Studien wirkt sich wie in der DLDA die

Aufnahme mehrerer Variablen positiv aus. Dieser Ein�uss ist allerdings in keinem

Modell signi�kant. Für die Anzahl der Gene lässt sich keine eindeutige Tendenz
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erkennen.

Zur Überprüfung der Modellannahmen wurde wieder ein Residuenplot erstellt (Ab-

bildung 11). In diesem Residuenplot lässt sich eine klare Verletzung der Modell-

annahmen feststellen. Der trichterförmige Verlauf ist typisch für heteroskedastische

Varianzen. Die Störgröÿen schwanken zwar um Null, doch die Varianz ist o�ensicht-

lich nicht gleichbleibend.
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Abbildung 11: LDA: Standardisierte Residuen gegen die geschätzten Werte ŷi

Heteroskedastische Varianzen der Störgröÿen wirken sich insbesondere auf die Schät-

zung der Varianz der Regressionskoe�zienten β̂i aus. Sind diese Varianzen falsch

geschätzt, hat das auch eine Ein�uss auf Hypothesentests über Regressionspara-

meter sowie deren Kon�denzintervalle. Um dies zu vermeiden, wäre es möglich ein

allgemeines lineares Regressionsmodell aufzustellen. Im allgemeinen Modell sind ho-

moskedastische Störgröÿen keine Voraussetzung. Die Regressionsparameter werden

dabei mit der gewichteten Methode der kleinsten Quadrate geschätzt [Fahrmeir et al.

(2009)].

Seite 32



Kapitel 4 Anwendung auf 50 Microarray-Studien

4.4.3 DLDA-20 vs. LDA-5

Das dritte Regressionsmodell hat einen Vergleich von LDA und DLDA als Zielgröÿe.

Dafür wurde für beide Methoden jeweils die Variablenanzahl gewählt, die die besten

Ergebnisse lieferte. Es werden also die Di�erenzen der Fehlerraten zwischen LDA

mit 5 Variablen und DLDA mit 20 Variablen als Response verwendet.
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Abbildung 12: Scatterplot zu LDA-DLDA mit Kovariable �Anzahl Beobachtungen�

Abbildung 12 zeigt einen Scatterplot mit der Anzahl an Beobachtungen auf der x-

Achse. Mit steigender Anzahl an Beobachtungen scheinen die Di�erenzen gegen Null

zu streben. Es liegen mehr Werte über der Horizontalen y = 0. Die Ausdehnung ist

von y = 0 aus betrachtet nach oben weiter als nach unten. Insgesamt schneidet die

DLDA-20 also besser ab. Die Leukämie- / Lymphon-Daten liegen tendenziell höher

als die der Karzinome.

Im Scatterplot zur Anzahl der Genexpressionen (Abb. 13) lassen sich keine Trends

ausmachen. Die Datenpunkte sind relativ gleichmäÿig verteilt.

Im Regressionsmodell

e(N,LDA5, D)− e(N,DLDA20, D) = β0 + βgenxgen + βbeobxbeob + βtumorxtumor + ε.

werden diese Vermutungen bestätigt (vgl. Tabelle 7).
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Abbildung 13: Scatterplot zu LDA-DLDA mit Kovariable �Anzahl Genexpressionen�

Variable Koe�zient Standardabweichung t p-Wert

Intercept 1.079e-02 1.121e-02 0.962 0.3414

Beobachtungen -1.381e-04 1.025e-04 -1.348 0.1848

Genexpressionen 4.962e-07 3.979e-07 1.247 0.2191

Tumor 2.320e-02 1.102e-02 2.105 0.0412 *

Tabelle 7: Ergebnisse des Regressionsmodells mit den Di�erenzen der Fehlerraten
von LDA-5 und DLDA-20 als Zielvariable

Den einzigen signi�kanten Ein�uss hat die Art der Krebserkrankung mit β̂tumor =

2.320e−02. Die Di�erenzen liegen also für Datensätze zu Lymphonen und Leukämien

durchschnittlich um 2.320e-02 höher als für Studien zu Karzinomen. Im Verhältnis

zur DLDA-20 schneidet die LDA-5 demnach für Lymphone und Leukämien schlech-

ter ab. Allerdings hat dieses Regressionmodell mit R2 = 0, 128 die mit Abstand

schlechteste Anpassung an die Daten.

Die Residuen im Plot 14 streuen gleichmäÿig und regellos um die Null. Man kann

in diesem Modell also von homoskedastischen Varianzen der Störgröÿen ausgehen.
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Abbildung 14: LDA-DLDA: Standardisierte Residuen gegen die geschätzten Werte
ŷi
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5 Fazit
In einem ersten Schritt wurde in dieser Arbeit ein Benchmarking durchgeführt. Da-

bei wurden verschiedene Formen der Diskriminanzanalyse anhand von 50 Microarray-

Studien miteinander verglichen. Für die jeweiligen Methoden war im Voraus eine

unterschiedlich starke Variablenselektion notwendig. Die diagonale lineare Diskrimi-

nanzanalyse ist in der Lage alle Variablen zur Schätzung einer Prädiktionsregel auf-

zunehmen. Die Aufnahme aller Variablen brachte allerdings die insgesamt schlech-

testen Ergebnisse. Mit 20 aufgenommen Variablen ergaben sich für die DLDA der

kleinste durchschnittliche Prädiktionsfehler. Die lineare und die quadratische Diskri-

minanzanalyse lieÿen sich ohne vorherige Variablenselektion nicht durchführen. Für

die LDA durften bis zu 20 Variablen aufgenommen werden. Die besten Ergebnisse

lieferte sie für 5 Variablen. Die QDA lieÿ sich mit 5 Variablen nur für 42 Datensätze

berechnen. Selbst mit 3 Variablen war sie nicht auf alle Daten anwendbar. Deshalb

wurde sie von weiteren Analysen ausgeschlossen. Insgesamt war die DLDA mit 20

Variablen die Methode mit der höchsten Prädiktionsgenauigkeit. Welche Methode

für einen Datensatz wirklich die beste ist, hängt jedoch vom Einzelfall ab. Es las-

sen sich also keine pauschalen Aussagen für Krebsstudien tre�en. Insgesamt lag der

durchschnittliche Prädiktionsfehler mit Werten zwischen 0,225 und 0,269 für alle

Methoden relativ hoch.

Nach der individuellen Betrachtung wurden die Di�erenzen der Prädiktionsfehler

zweier Methoden analysiert. Diese wurden mit einem einseitigen t-Test für verbunde-

ne Stichproben sowie dem nonparametrischen Wilcoxon-Rangsummentest auf Signi-

�kanz überprüft. Die zugehörigen Hypothesentests wurden in Kapitel 3 ausführlich

dargestellt. Es erwiesen sich übereinstimmend 7 von 10 Di�erenzen als signi�kant

von Null verschieden.

Im zweiten Schritt wurde die eigentliche Fragestellung der Arbeit untersucht: In-

wiefern beein�ussen Datensatzcharakteristiken die relative Güte verschiedener Prä-

diktionsalgorithmen? Um dies zu ermitteln, wurde ein lineares Regressionsmodell

formuliert. Dabei dient die Di�erenz der Prädiktionsfehler zweier Methoden als Re-

sponse. Als Ein�ussgröÿen wurden die Anzahl der Beobachtungen, die Anzahl der

gemessenen Genexpressionen sowie die Art der in der jeweiligen Studie untersuch-

ten Krebserkrankung gewählt. Basierend auf dieser Formulierung wurden insgesamt

zehn verschiedene Regressionsmodelle gerechnet.

Anhand dieser verschiedenen Regressionsmodelle lassen sich unterschiedliche Schlüs-

se ziehen. Die Art der Krebserkrankung zeigte in fast allen Modellen eine ähnliche
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Tendenz. Bei der Analyse von Leukämie- / Lymphon-Studien wirkt sich im Ver-

gleich zu Karzinom-Studien die Aufnahme mehrerer Variablen positiv aus. Dies gilt

sowohl für die LDA als auch für die DLDA. Die Anzahl an Beobachtungen erbrachte

unterschiedliche Ergebnisse. In der DLDA sollte bei einer hohen Anzahl an Beob-

achtungen tendenziell eine stärkere Variablenselektion vorgenommen werden. Für

die LDA gilt das Gegenteil. Datensätze mit vielen Beobachtungen sprechen für eine

Berechnung anhand einer gröÿeren Anzahl an Variablen. Die Anzahl der Genex-

pressionen zeigte keine klaren Trends. Bei diesen Aussagen sollte allerdings beachtet

werden, dass nur relativ wenige Ergebnisse auf einem Niveau von 0,05 signi�kant

waren. Von den zehn gerechneten Modellen hatte die Anzahl der Beobachtungen in

vier Fällen einen signi�kanten Ein�uss. Die Art der Krebserkrankung war zweimal

signi�kant, die Anzahl der Genexpressionen nie.

Die Modellannahmen der linearen Regression wurden ebenfalls überprüft. Der Er-

wartungswert der Residuen liegt für alle Modelle sehr nahe an Null. Die Homoske-

dastizität ist aber nicht immer gewährleistet. Betrachtet man die Residuenplots, so

sind für zwei Modelle Verletzungen zu befürchten. Auch die Linearität des Ein�usses

der Kovariablen ist nicht immer unbedingt gegeben. Diese Annahmen sollten also

im Einzelfall überprüft werden.

Ebenfalls anzumerken ist die zum Groÿteil schlechte Anpassung der Modelle an die

Daten. Das R2 lag zwischen 0,01 und 0,37. Die untersuchten Kovariablen erklären

die signi�kanten Unterschiede zwischen den Di�erenzen also nur unzureichend.

Auf die bisherigen Ergebnisse aufbauend wäre es möglich, weitere Ein�ussgröÿen

sowie eventuelle Interaktionen aufzunehmen. Denkbar wären zum Beispiel das Ver-

hältnis von Beobachtungen zu Genexpressionen, die Balance zwischen den Klassen,

die mittlere Fehlerrate oder die bereits vorgegebenen Klassen der Studien. Auch ei-

ne präzisere Einteilung in verschiedene Krebserkrankungen könnte sinnvoll sein. Mit

verschiedenen Methoden, wie zum Beispiel der Vorwärts- oder Rückwärtsselektion,

wäre es möglich, aus einer gröÿeren Anzahl an Kovariablen die relevanten aus�n-

dig zu machen. Dies könnte zu besseren Modellen und damit zu aussagekräftigeren

Ergebnissen führen.
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Anhang A R Code

A R Code

### R Code zu den Berechnungen der Bache l o ra rbe i t bas i e r end auf

### dem R Code von Bou l e s t e i x et a l . (2013)

### Mit setwd ( ) Spe i cherp fad zu Ordner mit Datensaetzen se t z en

l i b r a r y (CMA)

### 1 . E in l e s en der 50 verwendeten Datensaetze

datasetnames<−c ( " adrena l_dahia " , " bladder_b l a v e r i " , " b r ea s t_desmedt" ,

" brea s t_gruvberger " , " b rea s t_kr e i k e " , " brea s t_ma_2" ,

" brea s t_minn" , " brea s t_sharma" , " brea s t_veer " ,

" brea s t_wang" , " brea s t_west " , " c e r v i c a l_wong" ,

" cns_pomeroy_2" , " co lon_alon " , " co lon_l a i h o " , " co lon_l i n_1" ,

" co lon_watanabe" , " g a s t r i c_hippo" , " gl ioma_f r e i j e " ,

" gl ioma_nutt " , " gl ioma_p h i l l i p s " , " gl ioma_rickman" ,

"head_neck_chung" , "headneck_pyeon_2" ,

" leukemia_bu l l i n g e r_2" , " leukemia_golub" ,

" leukemia_ha s l i n g e r " , " leukemia_wei " , " leukemia_yagi " ,

" l i v e r_chen" , " l i v e r_i i z uka " , " lung_bar r e t " , " lung_b i l d " ,

" lung_wig l e " , "lymphoma_a l i z adeh " , "lymphoma_booman" ,

"lymphoma_shipp " , "medulloblastoma_macdonald" ,

"mixed_chowdary" , "mixed_ramaswamy" , "myeloma_t i an " ,

" o r a l_odonne l l " , " ovar ian_g i l k s " , " ovar ian_j a z a e r i_3" ,

" ovar ian_l i_and_campbel l " , " pancreas_ish ikawa " ,

" p ro s t a t e_s ingh " , " p ro s t a t e_true_2" , " r ena l_wi l l i ams " ,

" sarcoma_d e tw i l l e r " )

f o r ( i in 1 : l ength ( datasetnames ) )

{

p r i n t ( i )

datasetname<−datasetnames [ i ]

da ta se t<−read . t ab l e ( f i l e=paste ( "data_txt / datase t_" , datasetname ,

" . txt " , sep="" ) , sk ip=1, header=FALSE)

datase t<−t ( datase t )
datase t<− l i s t (X=datase t [ , −1 ] ,Y=as . f a c t o r ( datase t [ , 1 ] ) )
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save ( dataset , f i l e=paste ( "data_R/" , datasetname , " . RData" , sep="" ) )

}

###

### 2. Berechnung der F e h l k l a s s i f i k a t i o n s r a t e f u e r DLDA mit

### unt e r s ch i e d l i c h en Anzahlen an Var iablen

## Funktion zur Berechnung der F e h l k l a s s i f i k a t i o n s r a t e

MCCV<−f unc t i on ( ra t i o , n i t e r , datasetnames , methodnames )

{

MCCV<−matrix (NA, l ength ( datasetnames ) , l ength (methodnames ) )

f o r ( i in 1 : l ength ( datasetnames ) )

{

p r i n t ( i )

datasetname<−datasetnames [ i ]

load ( paste ( "data_R/" , datasetname , " . RData" , sep="" ) )

X<−datase t $X
Y<−datase t $Y
i f ( n l e v e l s (Y)==2)

{ s e t . seed (1011)

l e a rn<− GenerateLearn ingset s ( y=Y, method="MCCV" , n i t e r=n i t e r ,

n t ra in=round ( l ength (Y)∗ r a t i o ) )

v a r s e l<−GeneSe lect ion (X=X, y=Y, l e a r n i n g s e t s=learn ,

method=" t . t e s t " )

dlda<−eva lua t i on ( c l a s s i f i c a t i o n (X=X, y=Y, l e a r n i n g s e t s=learn ,

c l a s s i f i e r=dldaCMA))

dldanbgene500<−eva lua t i on ( c l a s s i f i c a t i o n (X=X, y=Y,

l e a r n i n g s e t s=learn , g en e s e l=var s e l , nbgene=500 ,

c l a s s i f i e r=dldaCMA))

dldanbgene20<−eva lua t i on ( c l a s s i f i c a t i o n (X=X, y=Y,

l e a r n i n g s e t s=learn , g en e s e l=var s e l , nbgene=20,

c l a s s i f i e r=dldaCMA))

dldanbgene10<−eva lua t i on ( c l a s s i f i c a t i o n (X=X, y=Y,

l e a r n i n g s e t s=learn , g en e s e l=var s e l , nbgene=10,

c l a s s i f i e r=dldaCMA))

dldanbgene5<−eva lua t i on ( c l a s s i f i c a t i o n (X=X, y=Y,
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l e a r n i n g s e t s=learn , g en e s e l=var s e l , nbgene=5,

c l a s s i f i e r=dldaCMA))

MCCV[ i , ]<−c (mean( dlda@score ) ,mean( dldanbgene500@score ) ,

mean( dldanbgene20@score ) ,mean( dldanbgene10@score ) ,

mean( dldanbgene5@score ) )

}

}

MCCV. matrix <− data . frame (MCCV)

row . names (MCCV. matrix ) <− datasetnames

colnames (MCCV. matrix ) <− methodnames

MCCV_data <− s tack (MCCV. matrix )

MCCV_data <− data . frame ( datasetnames ,MCCV_data )

colnames (MCCV_data ) <− c ( "data" , "mc" , " a lgo " )

save (MCCV, f i l e="MCCV_matrix . RData" )

save (MCCV_data , f i l e = "MCCV_data . RData" )

}

methodnames<−c ( " dlda " , "dldanbgene500" , "dldanbgene20" ,

"dldanbgene10" , "dldanbgene5" )

## Berechnung der F e h l k l a s s i f i k a t i o n s r a t e mit MCCV

## (300 I t e r a t i onen , Ve rhae l tn i s von Test− zu Tra in ingsdaten : 4/ 5)

MCCV( n i t e r =300 , r a t i o=4/ 5 , datasetnames , methodnames )

load ( "MCCV_matrix . RData" )

MCCV_matrix <− MCCV

resu l tmat <−MCCV_matrix

load ( "MCCV_data . RData" )

colnames (MCCV_data ) <− c ( "data" , "mc" , " a lgo " )

colnames ( resu l tmat ) <− unique (MCCV_data [ , 3 ] )

rownames ( re su l tmat ) <− unique (MCCV_data [ , 1 ] )

Seite III



Anhang A R Code

## Berechnung der D i f f e r en z en

de l ta2_DLDA_DLDA10<−re su l tmat [ ,1 ]− re su l tmat [ , 4 ]

de l t a2_DLDA_DLDA20<−re su l tmat [ ,1 ]− re su l tmat [ , 3 ]

de l t a2_DLDA_DLDA500<−re su l tmat [ ,1 ]− re su l tmat [ , 2 ]

de l t a2_DLDA10_DLDA20<−re su l tmat [ ,4 ]− re su l tmat [ , 3 ]

de l t a2_DLDA500_DLDA10<−re su l tmat [ ,2 ]− re su l tmat [ , 4 ]

de l t a2_DLDA500_DLDA20<−re su l tmat [ ,2 ]− re su l tmat [ , 3 ]

de l t a2 <− data . frame ( de l t a2_DLDA_DLDA500, de l t a2_DLDA_DLDA20,

de l t a2_DLDA_DLDA10, de l t a2_DLDA500_DLDA20,

de l t a2_DLDA500_DLDA10, de l t a2_DLDA10_DLDA20)

## Standardabweichungen der paarweisen D i f f e r enz en

## zwischen DLDA−Methoden

sd ( de l t a2_DLDA_DLDA10)

sd ( de l t a2_DLDA_DLDA20)

sd ( de l t a2_DLDA_DLDA500)

sd ( de l t a2_DLDA10_DLDA20)

sd ( de l t a2_DLDA500_DLDA10)

sd ( de l t a2_DLDA500_DLDA20)

### 3 . Berechnung der F e h l k l a s s i f i k a t i o n s r a t e f u e r LDA mit

### unt e r s ch i e d l i c h en Anzahlen an Var iablen

## Funktion zur Berechnung der F e h l k l a s s i f i k a t i o n s r a t e

MCCVlda<−f unc t i on ( ra t i o , n i t e r , datasetnames , methodnames )

{

MCCVlda<−matrix (NA, l ength ( datasetnames ) , l ength (methodnames ) )

f o r ( i in 1 : l ength ( datasetnames ) )

{

p r i n t ( i )

datasetname<−datasetnames [ i ]

load ( paste ( "data_R/" , datasetname , " . RData" , sep="" ) )

X<−datase t $X
Y<−datase t $Y
i f ( n l e v e l s (Y)==2)

{ s e t . seed (1011)

l e a rn<− GenerateLearn ingset s ( y=Y, method="MCCV" , n i t e r=n i t e r ,
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nt ra in=round ( l ength (Y)∗ r a t i o ) )

v a r s e l<−GeneSe lect ion (X=X, y=Y, l e a r n i n g s e t s=learn ,

method=" t . t e s t " )

a <− c l a s s i f i c a t i o n (X=X, y=Y, l e a r n i n g s e t s=learn ,

g en e s e l=var s e l , nbgene=20, c l a s s i f i e r=ldaCMA)

b <− c l a s s i f i c a t i o n (X=X, y=Y, l e a r n i n g s e t s=learn ,

g en e s e l=var s e l , nbgene=10, c l a s s i f i e r=ldaCMA)

c <− c l a s s i f i c a t i o n (X=X, y=Y, l e a r n i n g s e t s=learn ,

g en e s e l=var s e l , nbgene=5, c l a s s i f i e r=ldaCMA)

ldanbgene20<−eva lua t i on ( a )

ldanbgene10<−eva lua t i on (b)

ldanbgene5<−eva lua t i on ( c )

MCCVlda [ i , ]<−c (mean( ldanbgene20@score ) ,

mean( ldanbgene10@score ) ,mean( ldanbgene5@score ) )

}

}

MCCVlda . matrix <− data . frame (MCCVlda)

row . names (MCCVlda . matrix ) <− datasetnames

colnames (MCCVlda . matrix ) <− methodnames

MCCVlda_data <− s tack (MCCVlda . matrix )

MCCVlda_data <− data . frame ( datasetnames ,MCCVlda_data )

colnames (MCCVlda_data ) <− c ( "data" , "mc" , " a lgo " )

save (MCCVlda, f i l e="MCCVlda_matrix . RData" )

save (MCCVlda_data , f i l e = "MCCVlda_data . RData" )

}

methodnameslda<−c ( " ldanbgene20 " , " ldanbgene10 " , " ldanbgene5 " )

## Berechnung der F e h l k l a s s i f i k a t i o n s r a t e mit MCCV

## (300 I t e r a t i onen , Ve rhae l tn i s von Test− zu Tra in ingsdaten : 4/ 5)

MCCVlda( n i t e r =300 , r a t i o=4/ 5 , datasetnames , methodnameslda )

load ( "MCCVlda_matrix . RData" )
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MCCVlda_matrix <− MCCVlda

re su l tmat lda <−MCCVlda_matrix

load ( "MCCVlda_data . RData" )

colnames ( r e su l tmat lda )<− unique (MCCVlda_data [ , 3 ] )

rownames ( r e su l tmat lda )<− unique (MCCVlda_data [ , 1 ] )

## Di f f e r enz en der Feh l e r ra t en der ver sch i edenen Methoden

de l t a l d a_LDA10_LDA20<−r e su l tmat lda [ ,2 ]− r e su l tmat lda [ , 1 ]

d e l t a l d a_LDA10_LDA5<−r e su l tmat lda [ ,1 ]− r e su l tmat lda [ , 3 ]

d e l t a l d a_LDA20_LDA5<−r e su l tmat lda [ ,2 ]− r e su l tmat lda [ , 3 ]

d e l t a l d a <− data . frame ( d e l t a l d a_LDA10_LDA20,

d e l t a l d a_LDA10_LDA5, d e l t a l d a_LDA20_LDA5)

## Standardabweichungen der paarweisen D i f f e r enz en

## zwischen LDA−Methoden

sd ( d e l t a l d a_LDA10_LDA20)

sd ( d e l t a l d a_LDA10_LDA5)

sd ( d e l t a l d a_LDA20_LDA5)

## Standardabweichungen der paarweisen D i f f e r enz en

## zwischen be s t e r LDA− und DLDA−Methode

sd ( r e su l tmat lda [ ,3 ]− re su l tmat [ , 3 ] )

### 4 . Berechnung der F e h l k l a s s i f i k a t i o n s r a t e f u e r

### QDA mit 5 Var iablen

## Funktion zur Berechnung der F e h l k l a s s i f i k a t i o n s r a t e

## mit 42 Datensaetzen

datasetnamesqda <− datasetnames [−c (12 , 15 , 18 , 32 , 36 , 38 , 42 , 43 ) ]

MCCVqda<−f unc t i on ( ra t i o , n i t e r , datasetnamesqda , methodnames )

{

MCCVqda<−matrix (NA, l ength ( datasetnamesqda ) , l ength (methodnames ) )

f o r ( i in 1 : l ength ( datasetnamesqda ) )

{

p r i n t ( i )

datasetname<−datasetnamesqda [ i ]
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load ( paste ( "data_R/" , datasetname , " . RData" , sep="" ) )

X<−datase t $X
Y<−datase t $Y
i f ( n l e v e l s (Y)==2)

{ s e t . seed (1011)

l e a rn<− GenerateLearn ingset s ( y=Y, method="MCCV" , n i t e r=n i t e r ,

n t ra in=round ( l ength (Y)∗ r a t i o ) )

v a r s e l<−GeneSe lect ion (X=X, y=Y, l e a r n i n g s e t s=learn ,

method=" t . t e s t " )

a <− c l a s s i f i c a t i o n (X=X, y=Y, l e a r n i n g s e t s=learn ,

g en e s e l=var s e l , nbgene=5, c l a s s i f i e r=qdaCMA)

qdanbgene5<−eva lua t i on ( a )

MCCVqda[ i , ]<−c (mean( qdanbgene5@score ) )

}

}

MCCVqda. matrix <− data . frame (MCCVqda)

row . names (MCCVqda. matrix ) <− datasetnamesqda

colnames (MCCVqda. matrix ) <− methodnames

MCCVqda_data <− s tack (MCCVqda. matrix )

MCCVqda_data <− data . frame ( datasetnamesqda ,MCCVqda_data )

colnames (MCCVqda_data ) <− c ( "data" , "mc" , " a lgo " )

save (MCCVqda, f i l e="MCCVqda_matrix . RData" )

save (MCCVqda_data , f i l e = "MCCVqda_data . RData" )

}

methodnamesqda <− c ( "qdanbgene5" )

## Berechnung der F e h l k l a s s i f i k a t i o n s r a t e mit MCCV

## (300 I t e r a t i onen , Ve rhae l tn i s von Test− zu Tra in ingsdaten : 4/ 5)

MCCVqda( n i t e r =300 , r a t i o=4/ 5 , datasetnamesqda , methodnamesqda )

load ( "MCCVqda_matrix . RData" )

MCCVqda_matrix <− MCCVqda
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resultmatqda <−MCCVqda_matrix

load ( "MCCVqda_data . RData" )

colnames ( resultmatqda )<− unique (MCCVqda_data [ , 3 ] )

rownames ( resultmatqda )<− unique (MCCVqda_data [ , 1 ] )

#########################################################

### 5. Verschiedene Tabel len und Tests

## Tabe l l e zu mi t t l e r en Feh l e r ra t en a l l e r Methoden

## mit un t e r s c h i e d l i c h v i e l e n Var iablen

dlda1_a l l <− mean( resu l tmat [ , 1 ] )

dlda1_500 <− mean( resu l tmat [ , 2 ] )

dlda1_20 <− mean( resu l tmat [ , 3 ] )

dlda1_10 <− mean( resu l tmat [ , 4 ] )

dlda1_5 <− mean( resu l tmat [ , 5 ] )

dlda1 <− c ( dlda1_a l l , dlda1_500 , dlda1_20 , dlda1_10 , dlda1_5)

lda1_20 <− mean( re su l tmat lda [ , 1 ] )

lda1_10 <− mean( re su l tmat lda [ , 2 ] )

lda1_5 <− mean( re su l tmat lda [ , 3 ] )

lda1 <− c ( "−" , "−" , lda1_20 , lda1_10 , lda1_5)

qda1_5 <− mean( resultmatqda [ , 1 ] )

qda1 <− c ( "−" , "−" , "−" , "−" , qda1_5)

va r i a b l e s 1 <− c ( " a l l " , "500" , "20" , "10" , "5" )

tab l e1 <− data . frame ( row . names=var i ab l e s 1 , dlda1 , lda1 ,

qda1 , s t r i ng sAsFac to r s = FALSE)

## t−Tests und Wilcoxon−Tests f r DLDA

tt_1 <− t . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene500" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dlda " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

t t_2 <− t . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene20" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dlda " ] ,
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pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

t t_3 <− t . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene10" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dlda " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

t t_4 <− t . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene20" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene500" ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

t t_5 <− t . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene500" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene10" ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

t t_6 <− t . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene20" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene10" ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

wt_1 <− wi lcox . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene500" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dlda " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

wt_2 <− wi lcox . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene20" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dlda " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

wt_3 <− wi lcox . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene10" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dlda " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

wt_4 <− wi lcox . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene20" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene500" ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

wt_5 <− wi lcox . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene500" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene10" ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

wt_6 <− wi lcox . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene20" ] ,

MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene10" ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

tab . t e s t <− data . frame (

Comparison = c ( "DLDA−a l l  vs .  DLDA−500" , "DLDA−a l l  vs .  DLDA−20" ,
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"DLDA−a l l  vs .  DLDA−10" , "DLDA−500 vs .  DLDA−20" ,

"DLDA−10 vs .  DLDA−500" , "DLDA−10 vs .  DLDA−20" ) ,
D i f f e r e n c e=c ( round ( t t_1$ est imate , 3 ) , round ( t t_2$ est imate , 3 ) ,

round ( t t_3$ est imate , 3 ) , round ( t t_4$ est imate , 3 ) ,

round ( t t_5$ est imate , 3 ) , round ( t t_6$ est imate , 3 ) ) ,

t = c ( round ( t t_1$ s t a t i s t i c , 3 ) , round ( t t_2$ s t a t i s t i c , 3 ) ,

round ( t t_3$ s t a t i s t i c , 3 ) , round ( t t_4$ s t a t i s t i c , 3 ) ,

round ( t t_5$ s t a t i s t i c , 3 ) , round ( t t_6$ s t a t i s t i c , 3 ) ) ,

'p−value ' = c ( round ( t t_1$p . value , 5 ) , round ( t t_2$p . value , 5 ) ,

round ( t t_3$p . value , 5 ) , round ( t t_4$p . value , 5 ) ,

round ( t t_5$p . value , 5 ) , round ( t t_6$p . value , 5 ) ) ,

W = c (wt_1$ s t a t i s t i c , wt_2$ s t a t i s t i c , wt_3$ s t a t i s t i c ,

wt_4$ s t a t i s t i c , wt_5$ s t a t i s t i c , wt_6$ s t a t i s t i c ) ,

'p−value ' = c ( round (wt_1$p . value , 5 ) , round (wt_2$p . value , 5 ) ,

round (wt_3$p . value , 5 ) , round (wt_4$p . value , 5 ) ,

round (wt_5$p . value , 5 ) , round (wt_6$p . value , 5 ) ) )

## t−Tests und Wilcoxon−Tests f u e r LDA

t_1 <− t . t e s t (MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene10 " ] ,

MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene20 " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

t_2 <− t . t e s t (MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene5 " ] ,

MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene20 " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

t_3 <− t . t e s t (MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene5 " ] ,

MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene10 " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

w_1 <− wi lcox . t e s t (MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene10 " ] ,

MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene20 " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

w_2 <− wi lcox . t e s t (MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene5 " ] ,

MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene20 " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

w_3 <− wi lcox . t e s t (MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene5 " ] ,

MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene10 " ] ,
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pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

tab . t e s t l d a <− data . frame (

Comparison = c ( "DLDA−20 vs .  DLDA−10" ,

"DLDA−20 vs .  DLDA−5" , "DLDA−10 vs .  DLDA−5" ) ,
D i f f e r e n c e = c ( round ( t_1$ est imate , 3 ) , round ( t_2$ est imate , 3 ) ,

round ( t_3$ est imate , 3 ) ) ,

t = c ( round ( t_1$ s t a t i s t i c , 3 ) , round ( t_2$ s t a t i s t i c , 3 ) ,

round ( t_3$ s t a t i s t i c , 3 ) ) ,

'p−value ' = c ( round ( t_1$p . value , 5 ) , round ( t_2$p . value , 5 ) ,

round ( t_3$p . value , 5 ) ) ,

W = c (w_1$ s t a t i s t i c , w_2$ s t a t i s t i c , w_3$ s t a t i s t i c ) ,

'p−value ' = c ( round (w_1$p . value , 5 ) , round (w_2$p . value , 5 ) ,

round (w_3$p . value , 5 ) ) )

## t−Tests und Wilcoxon−Tests f u e r d i e j ew e i l s besten Methoden

## von DLDA und LDA

tt_dlda_lda <−t . t e s t (MCCV_data$mc [MCCV_data$ a lgo=="dldanbgene20" ] ,

MCCVlda_data$mc [MCCVlda_data$ a lgo==" ldanbgene5 " ] ,

pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

wt_dlda_lda <−wi lcox . t e s t (MCCV_data$mc [MCCV_data$ a lgo==

"dldanbgene20" ] , MCCVlda_data$mc [MCCVlda_data$ a lgo==

" ldanbgene5 " ] , pa i r ed=TRUE, a l t e r n a t i v e=" l e s s " )

tab . t e s t a l l <− data . frame (

Comparison = c ( "LDA−5 vs .  DLDA−20" ) ,
D i f f e r e n c e = c ( round ( t t_dlda_lda $ est imate , 3 ) ) ,

t = c ( round ( t t_dlda_lda $ s t a t i s t i c , 3 ) ) ,

'p−value ' = c ( round ( t t_dlda_lda $p . value , 5 ) ) ,

W = c (wt_dlda_lda $ s t a t i s t i c ) ,

'p−value ' = c ( round (wt_dlda_lda $p . value , 5 ) ) )

#########################################

### Eigener R Code
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### 6 . Regre s s i onsmode l l e

## E in f l u s s g r o e s s e n

beobachtungen <− numeric ( l ength ( datasetnames ) )

f o r ( i in 1 : l ength ( datasetnames ) )

{

p r i n t ( i )

datasetname <− datasetnames [ i ]

datasetname <− read . t ab l e ( f i l e=paste ( "data_txt / datase t_" ,

datasetname , " . txt " , sep="" ) , sk ip=1, header=FALSE)

datasetname <− t ( datasetname )

beobachtungen [ i ] <− nrow ( datasetname∗ i )
}

## Vektor mit Anzahl Var iablen j e Datensatz

va r i ab l en <− numeric ( l ength ( datasetnames ) )

f o r ( i in 1 : l ength ( datasetnames ) )

{

p r i n t ( i )

datasetname <− datasetnames [ i ]

datasetname <− read . t ab l e ( f i l e=paste ( "data_txt / datase t_" ,

datasetname , " . txt " , sep="" ) , sk ip=1, header=FALSE)

datasetname <− t ( datasetname )

va r i ab l en [ i ] <− nco l ( datasetname∗ i )
}

## Spa l te f u e r Krebsart : Karzinom=0, Leukaemie&Lymphone=1,

## Sarkom=NA ( nur 1 Fa l l )

tumor <− c (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ,

0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 ,

1 , 1 , 1 , NA, NA, 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , NA)

de l ta2 <− cbind ( de l ta2 , beobachtungen , var iab l en , tumor )

d e l t a l d a <− cbind ( de l ta lda , beobachtungen , var iab l en , tumor )
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lda5_dlda20 <− r e su l tmat lda [ ,3 ]− re su l tmat [ , 3 ]

dlda_lda_10 <− re su l tmat [ ,4 ]− r e su l tmat lda [ , 2 ]

dlda_lda_20 <− re su l tmat [ ,3 ]− r e su l tmat lda [ , 1 ]

dlda_lda <− data . frame ( lda5_dlda20 , dlda_lda_10 ,

dlda_lda_20 , beobachtungen , var iab l en , tumor )

### Di f f e r enz en innerha lb der Methoden mit un t e r s c h i e d l i c h e r

### Anzahl Var iablen

## a ) DLDA

lmdlda1 <− lm( de l t a2 $ de l t a2_DLDA_DLDA500∼
de l ta2 $beobachtungen+de l ta2 $ va r i ab l en+de l ta2 $tumor )

summary( lmdlda1 )

lmdlda2 <− lm( de l t a2 $ de l t a2_DLDA_DLDA20∼
de l ta2 $beobachtungen+de l ta2 $ va r i ab l en+de l ta2 $tumor )

summary( lmdlda2 )

lmdlda3 <− lm( de l t a2 $ de l t a2_DLDA_DLDA10∼
de l ta2 $beobachtungen+de l ta2 $ va r i ab l en+de l ta2 $tumor )

summary( lmdlda3 )

lmdlda4 <− lm( de l t a2 $ de l t a2_DLDA500_DLDA20∼
de l ta2 $beobachtungen+de l ta2 $ va r i ab l en+de l ta2 $tumor )

summary( lmdlda4 )

lmdlda5 <− lm( de l t a2 $ de l t a2_DLDA500_DLDA10∼
de l ta2 $beobachtungen+de l ta2 $ va r i ab l en+de l ta2 $tumor )

summary( lmdlda5 )

lmdlda6 <− lm( de l t a2 $ de l t a2_DLDA10_DLDA20∼
de l ta2 $beobachtungen+de l ta2 $ va r i ab l en+de l ta2 $tumor )

summary( lmdlda6 )

## b) LDA

lmlda1 <− lm( d e l t a l d a $ de l t a l d a_LDA10_LDA20∼
de l t a l d a $beobachtungen+de l t a l d a $ va r i ab l en+de l t a l d a $tumor )
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summary( lmlda1 )

lmlda2 <− lm( d e l t a l d a $ de l t a l d a_LDA10_LDA5∼
de l t a l d a $beobachtungen+de l t a l d a $ va r i ab l en+de l t a l d a $tumor )

summary( lmlda2 )

lmlda3 <− lm( d e l t a l d a $ de l t a l d a_LDA20_LDA5∼
de l t a l d a $beobachtungen+de l t a l d a $ va r i ab l en+de l t a l d a $tumor )

summary( lmlda3 )

### Verg l e i ch DLDA / LDA

## a) Auswahl der Var iab lenanzahl mit n i e d r i g s t e r Feh l e r r a t e

lm_dlda_lda <− lm( dlda_lda $ lda5_dlda20 ∼
dlda_lda $beobachtungen+dlda_lda $ va r i ab l en+dlda_lda $tumor )

summary( lm_dlda_lda )

## b) Verg l e i ch LDA/DLDA mit j e 10/20 Var iablen

lm_10 <− lm( dlda_lda $dlda_lda_10 ∼
dlda_lda $beobachtungen+dlda_lda $ va r i ab l en+dlda_lda $tumor )

summary( lm_10)

lm_20 <− lm( dlda_lda $dlda_lda_20 ∼
dlda_lda $beobachtungen+dlda_lda $ va r i ab l en+dlda_lda $tumor )

summary( lm_20)

### naehere Untersuchung ausgewaeh l ter Modelle

## zu DLDA20 vs . DLDA10

karzinom <− subset ( de l ta2 , de l t a2 $tumor==0)

lymphon <− subset ( de l ta2 , de l t a2 $tumor==1)

r e s t <− subset ( de l ta2 , i s . na ( de l t a2 $tumor ) )

## Sca t t e r p l o t s Response gegen Kovariablen (Tumor e in f a e rben )

p l o t ( karzinom$ de l ta2_DLDA10_DLDA20∼karzinom$beobachtungen ,

c o l=" green4 " , pch=18, xlab="Anzahl Beobachtungen" ,

ylab="D i f f e r e n z  der  Feh l e r ra t en " ,
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main="DLDA−20 vs .  DLDA−10" )
po in t s ( lymphon$ de l t a2_DLDA10_DLDA20 ∼

lymphon$beobachtungen , c o l=" red " , pch=18)

po in t s ( r e s t $ de l t a2_DLDA10_DLDA20 ∼
r e s t $beobachtungen , c o l=" grey " , pch=18)

legend ( " top r i gh t " , c ( "Karzinome" , "Lymphone" ) ,

f i l l =c ( " green4 " , " red " ) )

p l o t ( karzinom$ de l ta2_DLDA10_DLDA20∼karzinom$ var iab l en ,

c o l=" green4 " , pch=18, xlab="Anzahl Genexpress ionen " ,

ylab="D i f f e r e n z  der  Feh l e r ra t en " ,

main="DLDA−20 vs .  DLDA−10" )
po in t s ( lymphon$ de l t a2_DLDA10_DLDA20 ∼

lymphon$ var iab l en , c o l=" red " , pch=18)

po in t s ( r e s t $ de l t a2_DLDA10_DLDA20 ∼
r e s t $ var iab l en , c o l=" grey " , pch=18)

legend ( " top r i gh t " , c ( "Karzinome" , "Lymphone" ) ,

f i l l =c ( " green4 " , " red " ) )

## Res iduenp lot s ; g e f i t t e t e gegen s t a nd a r d i s i e r t e Residuen

p lo t ( f i t t e d ( lmdlda6 ) , r s tandard ( lmdlda6 ) ,

main="Res iduenplot  DLDA−20 vs .  DLDA−10" ,

pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lmdlda6 ) )

## zu LDA20 vs . LDA10

karzinomlda <− subset ( de l ta lda , d e l t a l d a $tumor==0)

lymphonlda <− subset ( de l ta lda , d e l t a l d a $tumor==1)

r e s t l d a <− subset ( de l ta lda , i s . na ( d e l t a l d a $tumor ) )

## Sca t t e r p l o t s Response gegen Kovariablen (Tumor e in f a e rben )

p l o t ( karzinomlda $ de l t a l d a_LDA10_LDA20∼karzinomlda $beobachtungen ,

c o l=" green4 " , pch=18, xlab="Anzahl Beobachtungen" ,

ylab="D i f f e r e n z  der  Feh l e r ra t en " ,
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main="LDA−20 vs .  LDA−10" )
po in t s ( lymphonlda$ de l t a l d a_LDA10_LDA20 ∼

lymphonlda$beobachtungen , c o l=" red " , pch=18)

po in t s ( r e s t l d a $ d e l t a l d a_LDA10_LDA20 ∼
r e s t l d a $beobachtungen , c o l=" grey " , pch=18)

legend ( " top r i gh t " , c ( "Karzinome" , "Lymphone" ) ,

f i l l =c ( " green4 " , " red " ) )

p l o t ( karzinomlda $ de l t a l d a_LDA10_LDA20∼karzinomlda $ var iab l en ,

c o l=" green4 " , pch=18, xlab="Anzahl Genexpress ionen " ,

ylab="D i f f e r e n z  der  Feh l e r ra t en " ,

main="LDA−20 vs .  LDA−10" )
po in t s ( lymphonlda$ de l t a l d a_LDA10_LDA20 ∼

lymphonlda$ var iab l en , c o l=" red " , pch=18)

po in t s ( r e s t l d a $ d e l t a l d a_LDA10_LDA20 ∼
r e s t l d a $ var iab l en , c o l=" grey " , pch=18)

legend ( " top r i gh t " , c ( "Karzinome" , "Lymphone" ) ,

f i l l =c ( " green4 " , " red " ) )

## Res iduenp lot s ; g e f i t t e t e gegen s t a nd a r d i s i e r t e Residuen

p lo t ( f i t t e d ( lmlda1 ) , r s tandard ( lmlda1 ) ,

main="Res iduenplot  LDA−20 vs .  LDA−10" ,

pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lmlda1 ) )

## zu DLDA20 vs . LDA5

karzinommix <− subset ( dlda_lda , dlda_lda $tumor==0)

lymphonmix <− subset ( dlda_lda , dlda_lda $tumor==1)

restmix <− subset ( dlda_lda , i s . na ( dlda_lda $tumor ) )

## Sca t t e r p l o t s Response gegen Kovariablen (Tumor e in f a e rben )

p l o t ( karzinommix$ lda5_dlda20∼karzinommix$beobachtungen ,

c o l=" green4 " , pch=18, xlab="Anzahl Beobachtungen" ,

ylab="D i f f e r e n z  der  Feh l e r ra t en " ,
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main="DLDA−20 vs .  LDA−5" )
po in t s ( lymphonmix$ lda5_dlda20 ∼

lymphonmix$beobachtungen , c o l=" red " , pch=18)

po in t s ( restmix $ lda5_dlda20 ∼
restmix $beobachtungen , c o l=" grey " , pch=18)

legend ( " top r i gh t " , c ( "Karzinome" , "Lymphone" ) ,

f i l l =c ( " green4 " , " red " ) )

p l o t ( karzinommix$ lda5_dlda20∼karzinommix$ var iab l en ,

c o l=" green4 " , pch=18, xlab="Anzahl Genexpress ionen " ,

ylab="D i f f e r e n z  der  Feh l e r ra t en " ,

main="DLDA−20 vs .  LDA−5" )
po in t s ( lymphonmix$ lda5_dlda20 ∼

lymphonmix$ var iab l en , c o l=" red " , pch=18)

po in t s ( restmix $ lda5_dlda20 ∼
restmix $ var iab l en , c o l=" grey " , pch=18)

legend ( " top r i gh t " , c ( "Karzinome" , "Lymphone" ) ,

f i l l =c ( " green4 " , " red " ) )

## Res iduenp lot s ; g e f i t t e t e gegen s t a nd a r d i s i e r t e Residuen

p lo t ( f i t t e d ( lm_dlda_lda ) , r s tandard ( lm_dlda_lda ) ,

main="Res iduenplot  DLDA−20 vs .  LDA−5" ,

pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lm_dlda_lda ) )

## Res iduenp lot s f u e r r e s t l i c h e Regre s s i onsmode l l e

p l o t ( f i t t e d ( lmdlda1 ) , r s tandard ( lmdlda1 ) ,

main="Res iduenplot  DLDA−500 vs .  DLDA−a l l " ,

pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lmdlda1 ) )

p l o t ( f i t t e d ( lmdlda2 ) , r s tandard ( lmdlda2 ) ,

main="Res iduenplot  DLDA−20 vs .  DLDA−a l l " ,
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pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lmdlda2 ) )

p l o t ( f i t t e d ( lmdlda3 ) , r s tandard ( lmdlda3 ) ,

main="Res iduenplot  DLDA−10 vs .  DLDA−a l l " ,

pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lmdlda3 ) )

p l o t ( f i t t e d ( lmdlda4 ) , r s tandard ( lmdlda4 ) ,

main="Res iduenplot  DLDA−20 vs .  DLDA−500" ,

pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lmdlda4 ) )

p l o t ( f i t t e d ( lmdlda5 ) , r s tandard ( lmdlda5 ) ,

main="Res iduenplot  DLDA−10 vs .  DLDA−500" ,

pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lmdlda5 ) )

p l o t ( f i t t e d ( lmlda2 ) , r s tandard ( lmlda2 ) ,

main="Res iduenplot  LDA−5 vs .  LDA−10" ,

pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lmlda2 ) )

p l o t ( f i t t e d ( lmlda3 ) , r s tandard ( lmlda3 ) ,

main="Res iduenplot  LDA−5 vs .  LDA−20" ,

pch=18, xlab="Fi t t ed " , ylab="Residuen" )

ab l i n e (h=0, lwd=1, l t y="dashed" )

mean( r e s i d u a l s ( lmlda3 ) )
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