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ABSTRACT

Abstract

Fiir die Diagnose und Behandlung von Krebs ist eine exakte Klassifikation von Tu-
moren essentiell. Die verhéltnisméfig neue Technologie der Microarrays ermdglicht
die simultane Messung tausender Genexpressionen. Mit ihrer Hilfe ist es moglich,
komplexe Fragestellungen préziser zu beantworten. Microarrays fithren zu umfang-
reichen Datensatzen mit p >> n. Klassische statistische Methoden sind fiir die
Analyse solcher Daten meist ungeeignet. Es wurde eine Vielzahl an Methoden zur
Klassifikation von Microarrays entwickelt, ein eindeutiger Favorit konnte allerdings
noch nicht ausgemacht werden. Ziel dieser Arbeit ist es, in einem geeigneten Frame-
work ein lineares Regressionsmodell zu formulieren, mit dem der Einfluss verschie-
dener Datensatzcharakteristiken auf die relative Giite von Pradiktionsalgorithmen
untersucht werden kann. Nach der theoretischen Formulierung folgt eine praktische
Anwendung des formulierten Regressionsmodells. Dafiir liegen die Daten von 50
Microarray-Studien vor. Als Klassifikationsverfahren werden die lineare, die diago-

nale lineare sowie die quadratische Diskriminanzanalyse betrachtet.
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Kapitel 1 Einleitung

1 Einleitung

Die verhaltnisméfig neue Technologie der Microarrays ermdoglicht die simultane Mes-
sung tausender Genexpressionen. Durch diese Technik gewonnene, hochdimensiona-
le Daten erlangen eine immer grofere Bedeutung in der medizinischen Forschung.
Mit ihrer Hilfe ist es mdoglich, komplexe Fragestellungen priziser zu beantworten.
Microarray-Daten fiihren allerdings zu statistischen Herausforderungen. Die Daten-
sitze sind mit einer immer grofser werdenden Anzahl an Variablen sehr umfangreich.
Aufgrund des hohen finanziellen Aufwandes stehen dieser nur relativ wenige Beob-
achtungen gegeniiber. Dieses Problem wird mit p >> n bezeichnet, wobei p fiir
die Anzahl der Variablen und n fiir die Anzahl an Beobachtungen steht. Klassische
statistische Methoden sind fiir die Analyse solcher Daten meist ungeeignet. Somit
sind Microarrays nicht nur in der medizinischen, sondern auch in der statistischen

Forschung ein aktuelles Thema.

Insbesondere in der Analyse von Tumordaten werden Microarrays verwendet. An-
hand des Genexpressionsniveaus eines Patienten lassen sich Riickschliisse auf einen
Krankheitsbefall oder bosartige Verdnderungen von Zellen ziehen. Dafiir wurden
verschiedene Préadiktionsalgorithmen entwickelt. Die Aufgabe von Pradiktionsalgo-
rithmen besteht darin, das (Genexpressionsniveau von Patienten, fiir die bereits eine
Diagnose vorliegt, zu untersuchen und Entscheidungskriterien fiir die Klassifikation

zukiinftiger Patienten zu ermitteln.

Fiir die Diagnose und Behandlung von Krebs ist eine prizise Klassifikation von
Tumoren essentiell. Aus diesem Grund ist es wichtig, verldssliche Pradiktionsalgo-
rithmen zu identifizieren. Es wurde eine Vielzahl an Methoden zur Klassifikation
von Microarrays entwickelt. In der heutigen Forschung hat sich allerdings noch kein
eindeutiger Favorit fiir alle Arten von Datensétzen herauskristallisiert. Manche Me-
thoden schneiden bei einer bestimmten Art von Datensétzen besser ab, manche
bei einer anderen. Nun stellt sich die Frage, welche Datensatzcharakteristiken einen

Einfluss auf die relative Giite von Pradiktionsalgorithmen haben.

Zur Beantwortung dieser Frage werden in der vorliegenden Arbeit 50 Microarray-
Studien untersucht. Zunédchst werden alle Individuen mit Hilfe des R Package CMA
klassifiziert. Als Klassifikationsmethoden werden die lineare, die diagonale linea-
re sowie die quadratische Diskriminanzanalyse verwendet. In jeder Studie existieren
zwei mogliche Gruppen. Diese Gruppen sind je nach Studie unterschiedlich definiert.
Einige Studien beschéftigen sich mit dem momentanen Zustand des Patienten, an-

dere mit langerfristigen Prognosen. Die wahre Klassenzugehorigkeit aller Patienten
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Kapitel 1 Einleitung

ist bereits bekannt. Somit kann anschliefend die Pradiktionsgenauigkeit der linea-
ren, der diagonalen linearen und der quadratischen Diskriminanzanalyse fiir die 50
Microarray-Studien untersucht werden. Ist die Pradiktionsgenauigkeit bekannt, kann
die eigentliche Fragestellung dieser Arbeit untersucht werden. Ziel ist es, in einem
geeignetem Framework ein lineares Regressionsmodell zu formulieren, mit dem der
Einfluss verschiedener Datensatzcharakteristiken auf die relative Giite von Pradik-
tionsalgorithmen untersucht werden kann. Als Response wird die jeweilige Differenz
der geschétzten Prédiktionsfehler zweier Klassifikationsmethoden eingesetzt. Inter-
essante Einflussgrofsen sind beispielsweise die Anzahl an Beobachtungen und an

Variablen eines Datensatzes.

Der Aufbau dieser Arbeit ist folgender: Im zweiten Kapitel wird die verwendete
Methodik vorgestellt. Dazu zéhlen die verschiedenen Arten der Diskriminanzanaly-
se, Moglichkeiten der Variablenselektion sowie die Messung der relativen Giite mit
Monte-Carlo-Kreuzvalidierung. Das dritte Kapitel beschéftigt sich mit dem theore-
tischen Hintergrund des Vergleichs zweier Methoden. Dazu werden Hypothesentests
formuliert und die theoretischen Hintergriinde des linearen Regressionsmodells erlau-
tert. Im vierten Kapitel folgt die bereits beschriebene Anwendung auf 50 Microarray-

Studien sowie die qualitative und quantitative Darstellung der Ergebnisse.
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Kapitel 2 Methodik

2 Methodik

Vor der Anwendung auf reale Daten werden alle dazu bendtigten Methoden vor-
gestellt. Dazu gehoren verschiedene Klassifikationsverfahren sowie ihre Pradiktions-

fehler, Variablenselektion und Kreuzvalidierung.

2.1 Diskriminanzanalyse

Die Diskriminanzanalyse ist ein Verfahren aus der multivariaten Statistik. Hier-
bei geht man von einer Grundgesamtheit aus, die in k£ disjunkte Populationen mit
Indikator ¢ € {1,...,k} zerfillt. Ziel ist es, ein Individuum ¢ (i € {1,...,n}) mit

unbekannter Klassenzugehorigkeit einer dieser Gruppen eindeutig zuzuordnen.

Dazu wird fiir jedes Individuum ein Merkmalsvektor x; der Linge p erhoben. Seine
Eintrdge sind die Ausprdgungen von p beobachtbaren Variablen. Mit Hilfe dieses
Merkmalsvektors kann auf das nicht beobachtbare ¢ geschlossen werden. Die gezo-
gene Stichprobe wird mit s = {(z1,¢1), ..., (Tn, ¢n)} bezeichnet. Pradiktor und Re-
sponse folgen einer gemeinsamen Verteilung, die mit f bezeichnet wird. Fiir k£ = 2
(2-Klassen-Fall) spricht man von einer einfachen Diskriminanzanalyse, fiir £ > 2 von
einer multiplen. In der Praxis wird die einfache Diskriminanzanalyse am haufigsten

benstigt.

Die Diskriminanzanalyse wird in unterschiedlichen Forschungsgebieten verwendet.
Das klassische Anwendungsbeispiel ist die Uberpriifung der Kreditwiirdigkeit. An-
hand der Kontodaten werden Kreditnehmer als bedenklich beziehungsweise unbe-
denklich eingestuft. In der Medizin wird die Diskriminanzanalyse zur friihzeitigen
Diagnose und Prognose des Therapieerfolges eingesetzt. Marktforscher nutzen sie

zur Einschitzung des Konsumverhaltens, Meteorologen zur Wettervorhersage.

In einem ersten Schritt wird die Entscheidungsregel 6(x) geschétzt:

d: R — {1,....k}
X — §(x)

Diese Entscheidungsregel klassifiziert Individuen mit unbekannter Gruppenzugeho-
rigkeit. Sinnvoll ist es, die Daten dafiir in einen Lerndatensatz £ und einen Testda-
tensatz T aufzuteilen und 6(x) nur anhand der Lerndaten zu schétzen. Die Giite von
d(z) kann anschliefend mittels der Trainingsdaten evaluiert werden (vgl. Abschnitt
2.3).
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Kapitel 2 Methodik

Fasst man x und c als Zufallsvariablen auf, so sind diese durch folgende relevante

Groken charakterisiert:

e p(r) = P(c = r) a-priori-Wahrscheinlichkeit der Klasse r

e P(r | z) =P(c =r | z) a-posteriori-Wahrscheinlichkeit der Klasse r

o f(x|1),.., f(xz]k) Verteilung der Merkmale, gegeben die Klasse

o f(z)=f(z|p1)+..+ f(x | k)p(k) Mischverteilung der Population

[Fahrmeir et al. (1984), Leisch (2009), Wiesbock (1987)].

2.1.1 Bayes-Zuordnung
Eine mogliche Zuordnungsregel §(x) ist die Bayes-Zuordnung. Sie teilt jedes Indi-
viduum in die Klasse mit der groften a-posteriori-Wahrscheinlichkeit ein und mini-

miert damit die Gesamtfehlerrate . Sie ist definiert als:
z)=r<ePl=rz)= g%akuP’(c = jlx). (1)
Zu jeder Klasse r ist eine Diskriminanzfunktion d,(x) definiert:
d.(z) =P(c = r|z). (2)

Um ein Individuum zu klassifizieren ist nicht die genaue Kenntnis von P(c = r|x)
notig. Es geniigt zu wissen, welche Diskriminanzfunktion fiir x maximal ist. Somit

ist jede monotone Transformation wie

dr(x) = f(xlr) - p(r) (3)

oder
d(x) = log(f(z|r)) + log(p(r)) (4)

dquivalent beziiglich der Zuordnung.

Die Klassifikation erfolgt iiber Differenzen. Sind 7,7 € ¢ und i # 7, so gilt:

() = z'., di(z) —dj(x) >0
jdi(e) - dy(z) < 0

Die a-posteriori-Wahrscheinlichkeiten P(¢ = r|z) konnen iiber den Satz von Bayes
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bestimmt werden, falls p(r) und f(z | r) bekannt sind:

P(zlc=r) -P(c=r) B f(z|r) -P(c=r)
k

Plc=r|z) = = - )
S Blele=j) Ble=3) 3 flels)-Ble =)

(5)

In den meisten Féllen muss man allerdings von unbekanntem p(r) und f(x | r)

ausgehen. Diese miissen im Voraus aus der Lernstichprobe geschétzt werden.

Fiir den Spezialfall p(1) = ... = p(k) entspricht die Bayes-Zuordnung der Maximum-
Likelihood-Zuordnung. Eine alternative Zuordnungsregel ist zum Beispiel die kosten-
optimale Zuordnung. Die Diskriminanzanalyse ist ein (Bayes-)optimales Verfahren,
falls die Merkmale, gegeben die Klasse, normalverteilt sind [Slawski et al. (2008),
Fahrmeir et al. (1984), Volkl (2013)].

2.1.2 Quadratische Diskriminanzanalyse (QDA)

A In der quadratischen Diskriminanzanalyse (QDA) geht
man von multivariat normalverteilten Klassendichten
IR mit Erwartungswert u, und Kovarianzmatrix X, aus.
D - -
o .1 '..,-': zle=r~ N(u, Er)
Y
L= Fiir die Verteilung der Merkmale, gegeben der Klasse

r, ergibt sich somit:

v

1 1 Tl
Abbildung 1: QDA flalr) = W%p{—§($—ur) o (r—p)}
Quelle: Rahnenfiihrer (2009) (6)

In die logarithmierte Form der Bayes-Regel (4) eingesetzt, erhélt man folgende Dis-

kriminanzfunktion:
1 T 1
di(z) = —5(2 = pr) B (2 = pr) = Slog(|Z:]) + log(p(r)). (7)

Der additive Term —glog(%r) wird hier vernachlédssigt. Die Klassen werden somit

von einer quadratischen Trennfunktion geteilt.

Im 2-Klassen-Fall lautet die Entscheidungsregel:

di(z) — dy(z) > 0 & 8(z) = 1. (8)
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Die Trennflache zwischen den beiden Klassen ergibt sich fiir d;(x) — do(z) = 0.

In der Praxis sind die Parameter der Normalverteilung meist unbekannt. Sie miissen
deshalb aus der Lernstichprobe geschitzt werden. Klassischerweise werden folgende

unverzerrte Schitzer verwendet:

e p(r) = I geschétzte a-priori-Wahrscheinlichkeit der Klasse r
n
e /i, = 7, geschitzter Mittelpunkt der Klasse r

° EA,, = S geschitzte Kovarianzmatrix der Klasse r.

Die quadratische Diskriminanzanalyse ist fiir orthogonale Matrizen A invariant ge-
geniiber singuldren Transformationen, d.h. das Klassifikationsergebnis wird nicht
durch Merkmalstransformationen beeinflusst. Die Trennflichen zwischen den Klas-
sen sind Hyperebenen und nehmen eine elliptische, parabolische oder hyperbolische

Form an.

Der Vorteil der quadratischen Diskriminanzanalyse ist, dass weniger Annahmen als
in der linearen oder diagonalen linearen Diskriminanzanalyse vorausgesetzt werden.
Es werden keinerlei Aussagen iiber die Kovarianzmatrizen Y, getroffen. Dies fiihrt
allerdings zu einer grofsen Anzahl zu schitzender Parameter fiir die verschiedenen
Kovarianzmatrizen. Somit ist diese Methode nur fiir Datensitze mit vielen Beob-
achtungen in jeder Klasse geeignet [Fahrmeir et al. (1984), Nothnagel (1971), Tutz
(2013)].

2.1.3 Lineare Diskriminanzanalyse (LDA)

& Die lineare Diskriminanzanalyse (LDA) ergibt sich fiir
o den Spezialfall von klassenweise identischen Kovari-

g = anzmatrizen >, = X mit r =1, ..., k.

=
o _ zle=r ~ N(u,X)
i' Daraus ergibt sich die Diskriminanzfunktion
> 1 Ty -1
d(2) =—5 (&) X (@ —pr) +og(p(r)).

Vv
quadratische Mahalanobis Distanz

Abbildung 2: LDA

Quelle: Rahnenfiihrer (2009)
Da das quadratische Glied aus (7) nun nicht mehr von r abhéngt, kann es vernachlis-
sigt werden. Somit ist die Trennfunktion fiir klassenweise identische Kovarianzmatri-

zen linear. Aus diesem Grund spricht man von einer linearen Diskriminanzanalyse.
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Fiir gleiche a-priori-Wahrscheinlichkeiten p(1) = ... = p(k) wird das Individuum ¢

derjenigen Klasse zugeordnet, deren quadratische Mahalanobis Distanz minimal ist.

Unter Verwendung der obigen Parameterschitzer ergibt sich folgende geschitzte

Diskriminanzfunktion:

~

d () =778 ' — %Efslﬂ +log(p(r)) 9)

mit

Ne

k Z | (mCi - EC)($ci - fc)T- (1())

c=1 i=1

1
n_

S:

Die Entscheidungsregel im 2-Klassen-Fall (8) kann man somit umformen zu:

~—

(x — %(fl +Zo)) ST T — To) > log(g(—i) < i(z) = 1.

~—

Die Klassengrenzen der LDA bestehen abschnittsweise aus Hyperebenen. Sie ist
invariant gegeniiber singuldren Transformationen. Thr Vorteil liegt in der einfachen
Struktur und Interpretierbarkeit. Im Gegensatz zur QDA miissen nur wechselseitige
Differenzen zwischen den Diskriminanzfunktionen der Klassen geschitzt werden.
Das heifit, die Anzahl der zu schitzenden Parameter ist deutlich niedriger |[Fahrmeir
et al. (1984), Nothnagel (1971), Tutz (2013)].

2.1.4 Diagonale Lineare Diskriminanzanalyse (DLDA)

'y Bei der zusétzlichen Annahme von unkorrelierten Ko-
= variablen wird die diagonale lineare Diskriminanzana-
DEI o) lyse (DLDA) verwendet. Die gemeinsame Kovarianz-
| . matrix der Klassen ist diagonal.
0 @]
| . 2
CAWA zle =1~ N(u.,o°I)
Die Klassen werden von einer linearen Funktion ge-
i trennt:
Abbildung 3: DLDA 1 T
Quelle: Rahnenfiihrer (2009) d,»(!lf) - _T‘Q(ZE o Nr) (ZE o ,UT) + log(p(r)) (11)

Im Gegensatz zur LDA miissen die Variablen in der DLDA nicht dieselbe Varianz

haben. Die Eintrige auf der diagonalen Kovarianzmatrix sind unterschiedlich.

Die DLDA ist in der Umsetzung am simpelsten und kann viele Variablen aufnehmen.
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Man kann in praktischen Anwendungen mit guten Ergebnissen rechnen, solange die
Variablen nicht zu stark korreliert sind. In der Analyse von Microarray-Studien, in
denen typischerweise p >> n gilt, findet sie eine hiufige Anwendung. QDA und LDA
haben Probleme bei Datensdtzen mit mehr Beobachtungen als Variablen. M&chte
man diese Methoden verwenden, ist eine vorherige Variablenselektion nétig (vgl.
Abschnitt 2.2) [Pang et al. (2009), Tutz (2013)].

2.2 Dimensionsproblematik

Microarray-Studien fithren zu sehr umfangreichen Datenmengen. Bei den meisten
Klassifikationsmethoden ist eine zu hohe Anzahl an Variablen allerdings problema-
tisch. Manche Préadiktionsregeln lassen sich gar nicht berechnen, wenn alle Varia-
blen aufgenommen werden. Und selbst wenn es moglich ist, so fiihrt die Aufnahme
von Variablen mit niedrigem oder gar keinem Beitrag zur Klassifikation zu einer
Verschlechterung der Performance. Die statistische Schwierigkeit besteht darin, die
Menge an Informationen auf die wichtigsten zu reduzieren. Dabei konnen drei ver-

schiedene Ansitze unterschieden werden:

e (explizite) Variablenselektion
e Dimensionsreduktion

e integrierte Variablenselektion.

Auch Kombinationen dieser Ansédtze sind moglich. Beispielsweise konnte zunéchst
eine Variablenselektion und im Anschluss eine Dimensionsreduktion durchgefiihrt
werden. Da die Variablenselektion Teil der Konstruktion der Pradiktionsregel ist,

sollte sie nur auf Basis des Lerndatensatzes durchgefiihrt werden.

2.2.1 (Explizite) Variablenselektion

Ziel der expliziten Variablenselektion ist es, im Voraus eine Auswahl der aussage-
kraftigsten Variablen zu treffen. Basierend auf dieser Vorauswahl, kann dann ein tra-
ditionelles Klassifikationsverfahren (z.B. QDA, LDA, k-Nearest-Neighbors) durch-
gefiihrt werden. Hierbei unterscheidet man zwischen univariaten und multivariaten

Ansatzen.

Im univariaten Verfahren werden die einzelnen Variablen getrennt voneinander be-
trachtet. Es wird, beispielsweise mit Hilfe einer Teststatistik, ein Ranking erstellt.
Der Rang einer Variablen hingt von ihrem Nutzen zur Ermittlung der Klassen-
zugehorigkeit ab. Anhand dieses Rankings kénnen nun die relevanten Einflussgro-

fsen ausgewdhlt und zur Klassifikation verwendet werden. Fiir die Ermittlung der
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Rangfolge sind verschiedene Kriterien wie der t-Test, der AUC-Wert oder der nicht

parametrische Wilcoxon Rangsummentest denkbar.

Ein grofer Vorteil des univariaten Ansatzes ist die schnelle und einfache Durch-
fiihrung. Allerdings werden weder Korrelationen noch Interaktionen zwischen den
Variablen beachtet. Sind die laut Ranking besten Variablen stark korreliert, so ist

der Informationsgehalt gering.

Im multivariaten Ansatz hingegen werden nicht die einzelnen Variablen, sondern
Variablenkombinationen betrachtet. Er wird durch das Kriterium zum Ranking der
Variablenkombinationen sowie durch den Algorithmus, der eine Auswahl aus allen
2P~! moglichen Kombinationen trifft, charakterisiert. Das Ranking kann anhand von
SWrapper-* oder von , Filter-“ Kriterien erstellt werden. Das erste basiert auf der Pré-
diktionsgenauigkeit und damit auf der Pradiktionsregel. Das zweite misst die Stirke
der Abgrenzung der Variablenkombination (zum Beispiel mit der Mahalanobis Di-

stanz) und ist somit unabhéngig von der Pridiktionsregel.

Nachteile dieses Ansatzes sind der rechnerisch hohe Aufwand, die Anfilligkeit ge-
geniiber kleinen Anderungen in den Daten und die Tendenz zum Overfitting. Hinzu
kommt, dass zwar meist die Korrelationen zwischen den Variablen beachtet werden,
nicht aber die Interaktionen. Eine Ausnahme ist die auf Random Forest basierende
Methode von Diaz-Uriarte und de Andrés.

Einen Mittelweg stellen die ,semi-multivariaten Methoden dar. Hierbei wird zu-
néchst ein univariates Ranking durchgefiihrt. Aus der Gruppe der univariat hochst-
rangigsten Variablen werden die paarweise niedrig korrelierten ausgewéhlt [Ambroise
and McLachlan (2002), Boulesteix et al. (2008)].

2.2.2 Dimensionsreduktion

Ein Nachteil der Variablenselektion besteht in dem relativ starken Informationsver-
lust aufgrund der Auswahl einiger weniger Einflussgrofen. Die Dimensionsreduktion
verfolgt deshalb einen anderen Amnsatz: Eine grofe Menge an Variablen wird zu
wenigen neuen Variablen zusammengefasst. Dies geschieht oftmals mit Hilfe von
Linearkombinationen. Daraufhin konnen klassische Klassifikationsverfahren mit den
neuen Einflussgrofen durchgefiihrt werden. Allerdings sind die einzelnen Komponen-
ten nun nicht mehr interpretierbar. Methoden zur Dimensionsreduktion sind unter

anderem Principal Component Analysis oder Partial Least Squares [Boulesteix et al.
(2008)].
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2.2.3 Integrierte Variablenselektion

Die dritte mogliche Losung des Dimensionsproblems ist die Anwendung einer Klas-
sifikationsmethode, die mit einer grofen Anzahl an Variablen umgehen kann. Dies
kann als integrierte Variablenselektion angesehen werden, da direkt zwischen re-
levanten und irrelevanten Variablen unterschieden wird. Dafiir gibt es zum einen
statistische Modelle, die auf Penalisierung oder Shrinkage basieren (z.B. Penalized
Logistic Regression). Diese beinhalten normalerweise einen oder mehrere Penalty-
beziehungsweise Shrinkage-Parameter, je nach dem Grad der Regularisierung. Zum
anderen existieren Methoden aus dem Bereich des Machine Learnings (z.B. Ran-
dom Forests). Diese Methoden kénnen problemlos fiir Daten mit n < p angewandt
werden. Microarrays konnten sie allerdings tiberfordern, weshalb eine Kombinati-
on mit vorhergehender Variablenselektion oder Dimensionsreduktion oft sinnvoll ist
[Boulesteix et al. (2008)].

In dieser Arbeit wird eine explizite Variablenselektion durchgefiihrt. Im Voraus wer-
den mit einem klassischem t-Test die Mittelwerte der beiden Gruppen auf Gleichheit

getestet. Ausgewdhlt werden die Variablen mit den kleinsten p-Werten.

2.3 Messung der relativen Giite

Eine genaue Schatzung der Fehlklassifikationsrate ist ein wichtiger Bestandteil der
Diskriminanzanalyse. Dabei wird der Anteil der falsch klassifizierten Individuen fiir
die gegebenen Daten ermittelt. Der Pradiktionsfehler ist auch fiir den Vergleich

verschiedener Priadiktionsalgorithmen ein wichtiges Hilfsmittel.

2.3.1 Pradiktionsfehler
Die Wahrscheinlichkeit einer Fehlklassifikation, gegeben der feste Merkmalsvektor

x, ist definiert als:
e(z) =P00(z)#c|x)=1-P0(z) =c|x). (12)

Die Gesamtfehlerrate ist der Anteil der falsch klassifizierten Individuen an der Grund-

gesamtheit. Sie ist definiert als:

e = B(3(x) # ¢) = E(L(3(x) # ©)), (13)
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wobei L eine Verlustfunktion, zum Beispiel die Indikatorfunktion

0, Individuum wurde der richtigen Klasse zugeordnet

1, Individuum wurde der falschen Klasse zugeordnet

darstellt.

Es gilt:

e =P(() 2 0) = [PO(@) £e|0)- f@)dn = [ (@) flo)de

Diese Definitionen der Fehlerrate gelten allerdings nur fiir ungeordnete Klassen. Fiir
ordinal skalierte ¢ wire es sinnvoller eine Verlustfunktion zu wéahlen, die Fehlklas-
sifikationen in weiter entfernte Klassen stirker bestraft als Fehlklassifikationen in

benachbarte Klassen.

Die Bayes-Zuordnung - basierend auf der wahren Verteilung f(x | r) - minimiert die
theoretische Gesamtfehlerrate € und ist somit eine optimale Zuordnung fiir bekannte
Verteilungen in den Klassen. In Kapitel 3 wird die Fehlerrate fiir unbekannte Ver-
teilungen ndher betrachtet [Boulesteix et al. (2008), Fahrmeir et al. (1984), Leisch
(2009)].

2.3.2 Monte-Carlo-Kreuzvalidierung (MCCV)

Evaluiert man die relative Giite eines Modells mit denselben Daten, die zur Aufstel-
lung der Klassifikationsregel benutzt wurden, erhdlt man einen verzerrten Schétzer.
Um dieses Problem zu umgehen, wird typischerweise eine Form der Kreuzvalidierung
verwendet. Die Kreuzvalidierung ist eine Methode zur Evaluierung der Performance
eines Modells. Hier wird die Monte-Carlo-Kreuzvalidierung betrachtet. Dabei wer-
den die Daten mehrmals gesplittet, um den Prédiktionsfehler eines Klassifikations-
modells unverzerrt zu schitzen. Somit kann das Modell mit der besten Anpassung

an die Daten identifiziert werden.

Man geht von einem Datensatz S mit n Beobachtungen aus. Um fiir diesen Daten-
satz ein Priadiktionsmodell aufzustellen, wird er in einen Lerndatensatz £ und einen
Testdatensatz T aufgeteilt. Der Lerndatensatz mit n; Beobachtungen wird verwen-
det, um ein Modell zu fitten. Die Pradiktionsgenauigkeit dieses Modells wird am

Testdatensatz mit n, = n — n; Beobachtungen evaluiert.

Fiir die MCCV werden n, Beobachtungen zuféllig und ohne Zuriicklegen aus dem
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Datensatz gezogen. Dieser Vorgang wird Hunderte oder sogar Tausende Mal wie-
derholt, bis b Test- und Lerndatenséitze entstehen. Die Anzahl der Iterationen kann
vom Anwender beliebig hoch gewihlt werden, solange die Leistung des Computers
ausreicht. Je mehr Iterationen, desto robuster ist die Schiatzung des Pradiktionsfeh-

lers.

Das Verhéltnis von £ zum gesamten Datensatz [ ist laut Smyth (1996) mit Werten
von 0,5 und hoher {iblicherweise relativ grok. Shao (1993) zeigte, dass ein relativ
grokes  die Varianz in den Testdaten im Vergleich zur CV(n,) reduziert. Allerdings
gibt es keine weit verbreiteten Richtlinien dafiir, welcher genaue Wert fiir 5 gewahlt
werden sollte. Nach Boulesteix et al. (2008) sind typische Verhéltnisse von Lern- zu
Testdaten 2:1, 4:1 oder 9:1. Dies hingt auch vom Ziel der Studie ab. Geht es nur um
den Vergleich zweier Methoden, ist ein relativ kleiner Lerndatensatz angemessen.
Ist auch der genaue Pradiktionsfehler von Interesse, sollte der Lerndatensatz grofer

gewihlt werden.

Nach dem wiederholten Splitting wird fiir jedes Modell der durchschnittliche Pra-
diktionsfehler berechnet. Anhand dieses unverzerrten Schitzers fiir den wahren Pra-

diktionsfehler kann das am besten angepasste Modell ausgewahlt werden [Dudoit
et al. (2002), Shao (1993), Slawski et al. (2008), Smyth (1996)].

1{213141|5
S
1(213 4(5
L1 71
114(2 315
Lo 1>
51412 311
Ly b

Abblldung 4: MCCV Quelle: Boulesteix et al. (2008)

Abbildung 4 zeigt eine schematische Darstellung der Monte-Carlo-Kreuzvalidierung
fiir einen Datensatz S mit n =5 und g = 2/5.
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3 Benchmarking

Im Benchmarking ist in erster Linie nicht die Beurteilung der Performance verschie-
dener Algorithmen das Ziel, sondern die Identifikation des besten unter ihnen. Ein
Vergleich der Leistung verschiedener Methoden - meist mit Hilfe des Pradiktionsfeh-
lers - findet sich in vielen Artikeln iiber Machine Learning oder computationale Sta-
tistik. Dabei werden Unterschiede zwischen neuen oder bereits bekannten Methoden
anhand von realen Daten ermittelt. Im Folgenden wird der statistische Hintergrund

zu der Frage, welcher Algorithmus den besseren Klassifikator produziert, erldutert.

3.1 Hypothesentests

Um die Giite verschiedener Verfahren zu vergleichen, werden normalerweise Hy-
pothesentests verwendet. Hypothesentests dienen der Uberpriifung von Annahmen
iiber einen Parameter oder auch eine Verteilung in der Grundgesamtheit. Zur Be-
antwortung solcher Fragestellungen muss das statistische Testproblem formuliert
werden. Im Benchmarking ist der Anteil der falsch klassifizierten Individuen das in-
teressierende Merkmal. Um Alternativ- und Nullhypothese aufzustellen, muss man
also zunéchst die Pradiktionsfehler der zu priifenden Methoden kennen (vgl. Ab-
schnitt 2.3.1).

Die Entscheidungsregel §, basierend auf der Stichprobe sg, ist definiert als:

0:RP — ¢
X — 0%(z).

Die moglichen Methoden zur Aufstellung der Entscheidungsregel werden als M
(k € {1, ..., K}) bezeichnet. Der wahre Fehler ¢ der Methode My, basierend auf der
Stichprobe sg, wird mit 5(5%, f) bezeichnet, wobei f nun als unbekannt angesehen

wird.
e(03, ) = Ef[L(03, () # c)]

E; steht fiir den Erwartungswert der gemeinsamen Verteilung f und L fiir eine
Verlustfunktion (vgl. (13)). Die Notation betont die Abhéngigkeit des Fehlers von
der Verteilung f, der Methode M) sowie von der Stichprobe sg, die zur Aufstel-
lung der Klassifikationsregel verwendet wurde. £(dy; , f) wird als abhéngiger Fehler

bezeichnet, da er auf der Wahl der Stichprobe sq basiert.

Der Fehler (63, , f) kann als Zufallsvariable angesehen werden, wobei s fiir eine
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zufillige i.i.d. Stichprobe, die der Verteilung f™ folgt, steht.

8(71, Mkv f) - Efn[g(élswkv f)]

wird als unabhéngiger Fehler der Methode M), bezeichnet, da er von My, dem Stich-
probenumfang n und der gemeinsamen Verteilung f, nicht aber von einer bestimm-

ten Stichprobe s, abhéngt.

Im Benchmarking geht es um die Frage: Hat die mit der Methode M, gefittete
Entscheidungsregel 03}, auf zukiinftige Datensitze angewendet eine niedrigere Feh-
lerrate als die mit M; gefittete Entscheidungsregel §35,7 Dazu lassen sich folgende

Null- und Alternativhypothese aufstellen:

H§ : e (03, f) — €03, /) = 0
vs. H{ 2 (839, f) —e(037,, f) <O.

Der Exponent ,cond® steht fiir conditional. Fr soll die Abhédngigkeit der Hypothesen

von der Stichprobe sy verdeutlichen.

Anwender sind allerdings in erster Linie nicht an der Anpassung der Methoden an
so interessiert, sondern an der mittleren Giite des Klassifikators iiber verschiedene

Stichproben. Dafiir stehen folgende Hypothesen:

Hyreond (Mo, f) — (. Mo, ) > 0
vs. Him : e(n, My, f) — e(n, My, f) < 0.

Ist der unabhéngige Fehler fiir M, kleiner als fiir M7, so kann die Nullhypothese ver-
worfen werden. Somit kann man sagen, dass die Methode M, besser als die Methode
Ml ist.

Problematisch dabei ist, dass in realen Daten die Verteilung f meist unbekannt ist.
Somit ist es schwierig Hy"" zu testen. Man bendtigt einen Schitzer fiir e(n, My, f)—
g(n, My, f). Dafiir kann man mehrere Stichproben ziehen und die Differenzen zwi-
schen den Fehlern mitteln. Eine mdogliche Methode ist die Kreuzvalidierung (vgl.
Abschnitt 2.3.2). Allerdings bleibt die wahre unabhéngige Varianz der Differenz un-
ter H"""? ynbekannt. Schitzer basieren immer auf der Stichprobe sg, sollen aber
die Varianz iiber verschiedene Stichproben schétzen. Somit sind diese Schétzer wie-
derum abhéngig [Boulesteix et al. (2013)].
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3.2 Framework zum Testen realer Daten

Das ,,no free lunch“-Theorem besagt, dass fiir die Klasse aller Probleme alle Algorith-
men durchschnittlich gleich gut sind. Man kann also nicht erwarten, dass eine neue
Methode M, fiir alle Stichprobengréfen und Verteilungen besser als die Standard-
methode M ist. Laut Webb (2000) ist es fraglich, ob das Messen von Fehlerraten
zwischen unterschiedlichen Gebieten (hier im Sinne von Verteilungen) iiberhaupt
sinnvoll ist. Durchschnittlich niedrige Fehlerraten weisen aber auf eine Tendenz zu

niedrigen Fehlerraten auf diesem bestimmten Gebiet hin.

Aus diesem Grund werden im von Boulesteix et al. (2013) vorgestellten Framework
zum Testen der Differenzen der Fehler von M; und M, mehrere Datensétze eines
bestimmten Forschungsfeldes betrachtet. Es werden J Datensétze unabhidngig und
zufillig gezogen. In der Praxis ist dies eher ungewiss. Forscher kdnnten sich auf
Daten beschrinken, die in Bezug auf Grofe oder Verteilung nicht reprisentativ fiir
das ganze Gebiet sind. Dennoch wird der Einfachheit halber eine zufillige Auswahl

angenomien.

Die Datensatze Dy, ..., D; haben unterschiedliche Verteilungen f; und einen Umfang
nj, (j =1,...,J). f; kann als das Outcome einer Zufallsvariable ®; : 2 — V angese-
hen werden, wobei V' die Menge aller moglichen Verteilungen auf diesem Forschungs-
feld ist. n; ist das Outcome der Zufallsvariable N; : Q@ — N. (®1, Ny), ..., (P, Ny)
sind unabhéngig und identisch verteilt, dabei ist nur N; = n; beobachtbar. N und

® sind nicht zwangsldufig voneinander unabhéngig.

Es konnen folgende Hypothesen aufgestellt werden:

Hped : B(e(N, My, ®)) — E(e(N, My, ®)) >0
vs. Hje : E(e(N, My, ®)) — E(e(N, My, ®)) < 0.

e(N, My, ®) steht fiir eine Zufallsvariable mit Realisationen e(n, My, f), k € {1, 2}.
Der unbekannte Fehler fiir jeden Datensatz wird normalerweise durch ein Resampling-
Verfahren geschétzt, zum Beispiel wiederholtes Splitting in Test- und Trainingsda-
ten. Der geschéitzte Fehler wird mit e(n, My, D) bezeichnet. Er kann als Schétzer fiir
den unbekannten Parameter ¢(n, My, f) angesehen werden. Da der Lerndatensatz
immer weniger Beobachtungen als der gesamte Datensatz enthilt, ist e(n, My, D)
im Schnitt groker als e(n, My, f). Geht man von einem gleichen Bias fiir die Metho-

den M; und M, aus, fiihrt das zu folgenden Hypothesen:

Hieel . E(e(N, My, D)) — E(e(N, My, D)) > 0
vs. Hredl . E(e(N, My, D)) — E(e(N, My, D)) < 0.
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Da man Zugang zu Realisationen von e(N, My, D) — e(N, M, D) hat, ist diese
Formulierung verglichen mit der vorherigen von Vorteil. Seien nun Ae(n;, D;) =
e(nj, My, D;) — e(nj, My, D;) unabhéngig und identisch verteilte Realisationen von
e(N, My, D)—e(N, My, D). Unter der Normalverteilungsannahme oder fiir sehr grofses
J kann man H;*" mit einem t-Test fiir verbundene Stichproben testen. Die Teststa-
tistik 7" lautet:

Ae

L 1 & rofn,, D) — B
JT-125 e(n;, D; e

T =

Sie folgt einer Student-Verteilung mit J —1 Freiheitsgraden. Gilt T' < ¢, ;_1, so kann
die Nullhypothese auf einem Signifikanzniveau o abgelehnt werden. ¢, ;1 bezeich-
net das a-Quantil der Student-Verteilung mit J — 1 Freiheitsgraden. Neben dem t-
Test werden auch hiufig nonparametrische Tests wie der Wilcoxon-Rangsummentest
durchgefiihrt [Boulesteix et al. (2013), Fahrmeir et al. (2011), Kruse and Moewes
(2011)].

3.3 Lineare Regression

Ist fiir einen bestimmten Datensatz Methode 1 besser als Methode 2, so trifft das
auf einen anderen Datensatz nicht unbedingt zu, selbst wenn beide aus demselben
Forschungsgebiet stammen. Interessant ist nun, ob bestimmte Datensatzcharakteris-
tiken einen Einfluss auf die Performance verschiedener Methoden haben. Um einen
solchen Einfluss qualitativ und quantitativ zu untersuchen, ist es moglich ein Re-

gressionsmodell aufzustellen.

Ziel eines Regressionsmodells ist es, Eigenschaften einer Zielvariable y in Abhéngig-
keit von p Kovariablen z1, ..., z, zu erkliren. Dieser Zusammenhang lasst sich nicht
exakt als Funktion f(xy,...,x,) angeben, da er von zufilligen Stérungen iiberlagert
wird. Demnach ist die Zielgrofe y eine Zufallsvariable. Thre Verteilung hingt von
der Verteilung der Kovariablen ab. y kann nicht exakt bestimmt werden. Stattdes-
sen wird der durchschnittliche Wert fiir y, gegeben die unabhéngigen Variablen,

ermittelt.

E(y | 1,...,xp) = f(x1, ..., Tp)

Fiir die Zielgrofe gilt:

y=E(y |z, ...,zp) + €= f(z1,...,x,) T €
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€ bezeichnet die zuféllige, nicht durch Kovariablen erkldrte Abweichung vom FEr-
wartungswert. Sie wird als stochastische Komponente oder Fehlerterm bezeichnet.
f(z1,...,x,) wird als systematische Komponente charakterisiert. Diese systematische
Komponente wird aus den Daten geschitzt. Ist f eine lineare Funktion, so spricht

man von einem linearen Regressionsmodell der Form
y= 0o+ frr1+ ... + By, + € (14)

Das lineare Regressionsmodell wird fiir eine stetige und wenn moglich approxima-
tiv normalverteilte Zielgrofe sowie lineare Effekte der Kovariablen eingesetzt. Fiir
den Spezialfall p = 1 spricht man von einem einfachen linearen Regressionsmodell.
Die Regressionskoeffizienten Sy, ..., 8, sind unbekannt und miissen aus den Daten
geschitzt werden. Dafiir wird iiblicherweise die Methode der kleinsten Quadrate
verwendet. Die geschitzten Parameter werden mit 50, e Bp bezeichnet, um sie von

den wahren Regressionskoeffizienten zu unterscheiden.

Setzt man die Daten jeder Beobachtung ¢ ein, so erhélt man n Gleichungen
Yi = Bo + frzia + ... + Bprip + €. (15)
Diese n Gleichungen lassen sich kompakt in Matrixnotation schreiben:
y=Xp+e.

Dabei sind y, § und € als Vektoren

Y1 Bo €1
y= | |, 6= : | und e =
Yn By €n
sowie X als Designmatrix

T

1 T11 - Tip xq

X=1: : : =1 :

T

1 xp oy T,

definiert. Die Spalten von X miissen linear unabhéngig sein, das heiftt keine Ko-
variable darf eine lineare Transformation einer anderen sein. Ist zum Beispiel x;
das Gewicht einer Person in kg und z5 das Gewicht in g, so ergeben sich durch x,

keinerlei neue Informationen.
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Im linearen Modell werden zwei grundséitzliche Annahmen getroffen. Zum einen ist

die Funktion f(xy,...,z,) eine Linearkombination der Kovariablen, d.h.

f(l'l, "'7‘1.17) = ﬁo + 511'1 4+ ...+ ﬁpxp = l’lﬁ,

zum anderen die Additivitdt des Fehlerterms e. Diese Annahme ist in den vielen

praktischen Anwendungen zumindest annéhernd erfiillt.

Im klassischen linearen Modell werden zusétzliche Anforderungen an die stochasti-

sche Komponente gestellt:

1. Die Storgrofen sind im Mittel Null : E(e;)= 0.
2. Die Storgrofen sind homoskedastisch: Var(e;) = o

(€
3. Die Storungen sind unkorreliert: Cov(e;, €;) = 0, fiir ¢ # j.

Aus den Annahmen 2. und 3. ergibt sich die Kovarianzmatrix Cov(e) = E(ee?) =
o?I. Gilt aukerdem ¢ ~ N(0,0%I), so spricht man von einer klassischen linearen

Normalregression.

Ein Maf fiir die Anpassung des Modells an die Daten ist das Bestimmtheitsmak. Es
wird mit R? bezeichnet und nimmt Werte zwischen 0 und 1 an. Das Bestimmtheits-
maf gibt den Anteil der Streuung an, der durch das Modell erklirt wird. R? = 1
bedeutet also eine perfekte Anpassung an die Daten. Dies kann in realen Daten

allerdings nie erreicht werden [Fahrmeir et al. (2009)].

3.4 Formulierung eines Regressionsmodells

Nach der allgemeinen Einfiihrung in die lineare Regression soll in diesem Abschnitt
ein eigenes Modell formuliert werden, um den Einfluss von Datensatzcharakteristi-
ken auf die Performance verschiedener Diskriminanzanalysen zu untersuchen. Die
interessierende Variable ist in diesem Fall der Vergleich zweier Methoden. Es geht
also nicht um den Einfluss verschiedener Variablen auf die Giite einer einzelnen
Methoden, sondern darum, wie sich das Verhéltnis der Giite zweier Methoden dn-
dert. Schneidet zum Beispiel die LDA mit wachsender Anzahl an Beobachtungen
besser ab als die DLDA? Oder kommt eine Methode besser mit Datensitzen zu
bestimmten Krebsarten zurecht als eine andere? Aus diesem Grund wird als Ziel-
groke die Differenz der gemittelten Priadiktionsfehler zweier Methoden Ae(N, D) =
e(N, My, D)—e(N, My, D) verwendet. Diese Differenzen sowie p Einflussgrofen wer-
den fiir jeden Datensatz D ermittelt. In das Regressionsmodell fliefsen also J Beob-

achtungen ein. Im Matrixnotation lisst sich das Regressionsmodell folgendermafen
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formulieren:

Ae(nth) I oz - Ty Bo €1

AG(HJ,DJ) 1 Tj1 - ZIZ'Q]p ﬁp €7

Insgesamt wurden drei verschiedene Einflussgréften ausgewihlt, die an allen Daten-
sitzen erhoben wurden. Es handelt sich dabei um die Anzahl an Beobachtungen,
die Anzahl der gemessenen Variablen (in diesem Fall die Anzahl der beobachteten

Gene) sowie den Fokus der Studie (hier: Art der untersuchten Krebserkankungen).

In diesem Modell sind zwei Punkte zu beachten. Zum einen handelt es sich bei der
Zielgrofse um eine Differenz zweier Klassifikationsfehler. Normalerweise wird eine
Variable als Response gewéhlt. Hier handelt es sich um eine Verkniipfung zweier,
eventuell korrelierter, Variablen. Zum anderen geht man normalerweise von Daten
eines Datensatzes aus. Hier wird aus J verschiedenen Datensitzen ein neuer ge-
bildet. Ob infolgedessen Modellannahmen verletzt werden, muss iiberpriift werden.
Dafiir sind - neben formalen Tests - graphische Modelldiagnosen, die auf Residu-
en basieren, niitzlich. Zur Uberpriifung der Homoskedastizitiit ist zum Beispiel ein
Residualplot hilfreich. In einem Residualplot werden die standardisierten oder stu-
dentisierten Residuen gegen die geschitzten Werte y; abgetragen. Idealerweise, das
heifst bei Erfiillung der Modellannahmen, sollten die Residuen unsystematisch und

mit konstanter Variabilitdt um Null streuen [Fahrmeir et al. (2009)].
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4 Anwendung auf 50 Microarray-Studien

In den Kapiteln 2 und 3 wurden der theoretische Hintergrund verschiedener Klassifi-
kationsmethoden sowie deren Vergleich betrachtet. Mit diesem Wissen folgt nun die
praktische Anwendung anhand von 50 Microarray-Studien. Im ersten Abschnitt wird
die Technologie der Microarrays kurz erlautert. Es folgt der Vergleich der relativen
Giite von linearer, diagonaler linearer und quadratischer Diskriminanzanalyse an-
hand von 50 Datensétzen. Im letzten Teil wird mit Regressionsmodellen der Einfluss
verschiedener Datensatzcharakteristiken auf die relative Giite der Pradiktionsalgo-

rithmen untersucht.

4.1 Microarrays

Fiir die Diagnose und Behandlung von Krebs ist eine verlissliche und prézise Klas-
sifikation von Tumoren essentiell. Die Technologie der Microarrays wurde in den
spaten 90er Jahren entwickelt. Es handelt sich dabei um die simultane Messung des
Expressionsniveaus tausender oder sogar zehntausender Gene. Anhand des Expres-
sionsniveaus konnen Riickschliisse auf einen Krankheitsbefall oder bosartige Veran-

derungen von Zellen gezogen werden.

Ein Microarray, auch Gen-Chip genannt, bezeichnet einen Glas-Objekttriger, auf
dem tausende kurze Gen-Abschnitte angeordnet sind. Die Anzahl entspricht der

Anzahl der zu untersuchenden Gene. Diese Gen-Abschnitte dienen als ,,Andockstel-

Um ein Genexpressionsprofil zu erstellen, muss zunéchst
die mRNA aus dem zu untersuchenden Gewebe isoliert
werden. Aus der mRNA wird mit dem Enzym Reverse
Transkriptase die dazu komplementéire cDNA syntheti-
siert. Anschlieffend wird die cDNA mit einem roten, fluo-
reszierendem Farbstoff markiert und auf den Gen-Chip

aufgetragen. Eine griin markierte Vergleichsstichprobe

wird hinzugefiigt. Es findet eine Hybridisierung statt,

Abbildung 5: Microarray
Quelle: Poirazi (n.d.) das heifft die cDNA-Sequenzen lagern sich am jeweili-

gen komplementiren Gegenpart auf dem Microarray an
(vgl. Abb. 5). Nun kann die Intensitit der roten und griinen fluoreszierenden Lisung
gemessen werden. Sie entspricht der Menge an hybridisierter cDNA an jedem Punkt

des Microarrays. Diese Intensititen werden in Expressionsniveaus umgerechnet. So-
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mit ist ein Genexpressionsprofil entstanden, welches die Aktivitdt von tausenden
Genen enthélt [Amaratunga and Cabrera (2001), Efron et al. (2001)].

Bei der Auswertung der Microarrays ergeben sich mathematische Hindernisse. Da
diese Technologie mit hohen Kosten verbunden ist, werden meist nur wenige Gen-
expressionsprofile angefertigt. Dies fiihrt zu Datensidtzen mit sehr grofsem p - iib-
licherweise zwischen 5.000 und 50.000 - und vergleichsweise kleinem n (<300) .
Klassische statistische Verfahren sind fiir diese Art von Datensédtzen meist ungeeig-
net. Im folgenden Abschnitt wird die Anpassung von linearer, diagonal linearer und
quadratischer Diskriminanzanalyse an 50 Microarray-Studien verglichen [Boulesteix
et al. (2008)].

4.2 Beschreibung der Daten

Bei den vorliegenden Microarray-Datensédtzen handelt es sich um Studien zu ver-
schiedenen Krebsarten, wie Brustkrebs oder Leukidmie, mit bereits bekannter Klas-
senzugehorigkeit ¢ € {0, 1}. Einige Studien beschiftigen sich mit dem momentanen
Zustand des Patienten andere mit ldngerfristigen Prognosen. Die Patienten werden
in Klassen wie ,Metastasen ja / nein ¢, , Gute / schlechte Prognose “ oder ,erneu-

“ unterteilt. Die Anzahl an Beobachtungen n

tes Auftreten des Tumors ja / nein °
liegt zwischen 23 und 286. Je nach Studie wurden an den untersuchten Personen
zwischen 1099 und 54676 Variablen p gemessen. Die Daten einer Studie sind jeweils
in einer n X p + 1-Matrix zusammengefasst. Die Zeileneintrige x; = (21, ..., T;p) be-
zeichnen das Genexpressionsprofil eines Individuums i. Der (p 4 1)-te Zeileneintrag

¢; bezeichnet die Klassenzugehorigkeit des Individuums <.

Die Anzahl an Datenséitzen ist mit J = 50 vergleichsweise hoch gewihlt. Hinter-
grund dazu sind Powerbetrachtungen. Boulesteix et al. (2013) empfehlen, dies bei
der Planung von Benchmark-Experimenten zu beriicksichtigen. Ist die Varianz der
Differenzen der Fehlerraten zwischen den unterschiedlichen Datensdtzen hoch, so
ist eine groke Anzahl an Datensétzen notig, um eine angemessene Power zu errei-
chen. Somit ist in diesem Vergleich eine ausreichende Power gewihrleistet, um auch

niedrige Differenzen A zu entdecken.

4.3 Methodenvergleich
Im Folgenden werden die Pradiktionsfehler verschiedener Klassifikationsverfahren
berechnet und auf signifikante Unterschiede untersucht. Als Klassifikationsverfahren

werden lineare, diagonale lineare und quadratische Diskriminanzanalyse verwendet.
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Dabei wird eine unterschiedlich hohe Anzahl an Kovariablen in die Modelle aufge-
nommen. In der DLDA ist es moglich alle Variablen aufzunehmen, die LDA verlangt
n < p. In der QDA ist eine noch rigorosere Auswahl notwendig. Aus diesem Grund
muss im Voraus eine univariate Variablenselektion durchgefiihrt werden. Dazu wer-
den mit einem klassischem t-Test die Mittelwerte der beiden Gruppen auf Gleichheit

getestet. Ausgewdhlt werden die Variablen mit den kleinsten p-Werten.

Insgesamt wurden neun verschiedene Methoden berechnet:

e DLDA mit allen, 500, 20, 10 und 5 Variablen
e LDA mit 20, 10 und 5 Variablen
e QDA mit 5 Variablen

Fiir alle Analysen wurde das R Paket CMA ("Classification for MicroArrays") von
Slawski et al. (2008) verwendet.

4.3.1 Pradiktionsfehler der Methoden

Zur Schitzung des Prédiktionsfehlers wird die Monte-Carlo-Kreuzvalidierung ver-
wendet (vgl. Abschnitt 2.3.2). Jeder Datensatz wird in einem Verhéltnis von 4:1
in Trainings- und Testdaten aufgeteilt. Dieses Splitting wird 300 Mal durchgefiihrt.
Anhand der Testdatensitze wird der gemittelte Pradiktionsfehler berechnet.

Methode alle Variablen 500 Variablen 20 Variablen 10 Variablen 5 Variablen

DLDA  0.269 0.232 0.225 0.234 0.247
LDA ; ; 0.266 0.240 0.239
QDA* - . . . 0.257

Tabelle 1: Pradiktionsfehlerraten der Methoden DLDA, LDA, QDA fiir eine unter-
schiedliche Anzahl an aufgenommenen Variablen.

(*basierend auf 42 Datensitzen)

Tabelle 1 zeigt die geschitzten Pradiktionsfehler der drei Methoden mit unterschied-
lich starker Variablenselektion. Die DLDA mit allen verfiigharen Variablen liefert
durchschnittlich die schlechteste Performance. Dies bestétigt die These, dass die
Aufnahme nicht relevanter Variablen zu einer Verschlechterung der Modells fiihrt.
In der LDA fiihrt die niedrigste Variablenanzahl zu den besten Ergebnissen. Die qua-
dratische Diskriminanzanalyse kann selbst mit fiinf Variablen nur fiir 42 Datensétze
durchgefiihrt werden, da in acht Studien zu wenig Beobachtungen in einer oder in
beiden Gruppen vorhanden sind. Aus diesem Grund wird die QDA in die weiteren

Analysen nicht mehr aufgenommen. Das insgesamt beste Ergebnis erhilt man mit
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der linearen diagonalen Diskriminanzanalyse bei einer Aufnahme von 20 Variablen.
Eine Fehlerrate von 0,225 bedeutet, dass durchschnittlich 22,5 % der Individuen ei-
ner falschen Klasse zugeordnet werden. Generell liegen die Fehlerraten mit Werten
von 0,225 bis 0,269 relativ hoch. Demnach werden in jedem Modell circa ein Viertel

der Patienten falsch klassifiziert.

4.3.2 Vergleich unterschiedlich starker Variablenselektion

Mit Hypothesentests werden die Unterschiede zwischen den Modellen auf Signifikanz
iiberpriift.

Hped : B(e(N, My, D)) — E(e(N, My, D)) >0
vs. H{® : E(e(N, My, D)) — E(e(N, My, D)) < 0.

Die Realisationen von e(N, My, D) geben den mit MCCV geschéitzten Fehler der
Methode k fiir den Datensatz D; (vgl. Abschnitt 3.2) an. Die jeweiligen Differenzen
werden mit einem einseitigen t-Test fiir verbundene Stichproben sowie dem nonpa-

rametrischen Wilcoxon-Rangsummentest auf Signifikanz {iberpriift.

Zunichst werden nur die Differenzen innerhalb einer Methode mit unterschiedlicher
Variablenanzahl betrachtet.

t-Test Wilcoxon-Test
Vergleich Differenz t p-Wert W p-Wert
DLDA-all vs. DLDA-500 0.038 -4.220  5e-05  210.0  2e-02
DLDA-all vs. DLDA-20  0.045 -3.252  0.00104 349.0 0.00272
DLDA-all vs. DLDA-10  0.036 -2.466  0.0086 409.0 0.01387
DLDA-500 vs. DLDA-20 0.007 -0.875 0.19298 550.0 0.2005
DLDA-10 vs. DLDA-500 0.002 -0.198  0.4221 603.0 0.46433
DLDA-10 vs. DLDA-20  0.009 -3.823 0.00019 276.0 0.00025

Tabelle 2: Ergebnisse des t-Tests und des Wilcoxon-Rangsummentests fiir die Hypo-
thesen Hped vs. H°*. Es werden die paarweisen Differenzen der DLDA
mit unterschiedlicher Variablenanzahl {iber alle Datensétze getestet.

In Tabelle 2 sind die Ergebnisse des t-Tests und des Wilcoxon-Rangsummentests fiir
die Unterschiede innerhalb der diagonalen linearen Diskriminanzanalyse dargestellt.
Es werden die paarweisen Unterschiede bei unterschiedlicher Variablenanzahl iiber
alle Datenséitze getestet. Die erstgenannte Methode steht jeweils fiir My, die zweite
fiir M,. Die iiber alle Datensétze gemittelten Differenzen liegen zwischen 0,002 und

0,045. Beide Tests zeigen fiir vier Differenzen signifikante Unterschiede an (auf einem
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Signifikanzniveau o = 0,05). Lediglich die Unterschiede von 500 zu 20 bzw. 10

aufgenommenen Variablen sind nicht statistisch signifikant.

t-Test Wilcoxon-Test
Vergleich Differenz t p-Wert W p-Wert
LDA-20 vs. LDA-10 0.026 -5.563 0.00000 123.0 0.00000
LDA-20 vs. LDA-5  0.027 -4.689 le-05 2445  8e-05
LDA-10 vs. LDA-5  0.002 -0.646 0.26064 ©556.0 0.21713

Tabelle 3: Ergebnisse des t-Tests und des Wilcoxon-Rangsummentests fiir die Hy-
pothesen Hje vs. Hi*!, Es werden die paarweisen Differenzen der LDA
mit unterschiedlicher Variablenanzahl iiber alle Datensdtze getestet.

Tabelle 3 zeigt die Ergebnisse der gleichen Tests wie in Tabelle 2, diesmal allerdings
fiir die lineare Diskriminanzanalyse. Wieder stimmen die beiden Tests beziiglich der
Signifikanz iiberein. Es gibt signifikante Unterschiede zwischen der Aufnahme von
20 Variablen und der von 10 bzw. 5. Die Differenz der Modelle mit 5 und mit 10
Variablen hingegen ist nicht signifikant.

4.3.3 Vergleich LDA, DLDA

Nun interessieren nicht nur die Unterschiede innerhalb einer Methode, sondern auch
die zwischen DLDA und LDA. Welches Modell besser ist, hingt von der Verteilung
f ab. Ist die Kovarianzmatrix ¥ tatséchlich diagonal, so kann man von der DLDA
gute Ergebnisse erwarten. Existieren Korrelationen zwischen den Variablen und ist n
grok genug, so ist die LDA eine gute Wahl. Generell gilt: je ndher das Modell an die
echte Verteilung f kommt, desto bessere Ergebnisse liefert es. Um einen Vergleich der
Performance zu erhalten, werden aus den DLDA- und den LDA-Modellen diejenigen
mit der niedrigsten Fehlerrate ausgewéhlt. Es werden also die Differenzen von LDA
mit 5 und von DLDA mit 20 Variablen untersucht.

t-Test Wilcoxon-Test
Vergleich Differenz t p-Wert W p-Wert
LDA-5 vs. DLDA-20 0.014 -2.894  0.00284 359.5 0.00369

Tabelle 4: Ergebnisse des t-Tests und des Wilcoxon-Rangsummentests fiir die Hy-
pothesen Hj ! vs. Hi°? Es werden die paarweisen Differenzen von LDA
(5 Variablen) und DLDA (20 Variablen) getestet.

Tabelle 4 zeigt, dass sich die Pradiktionsfehler der Methoden LDA und DLDA si-
gnifikant voneinander unterschieden. Im Schnitt schneidet die DLDA mit 20 aufge-
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nommenen Variablen besser ab. Die Differenz liegt bei 0,014. Dies gilt allerdings nur
iiber alle 50 Datensitze gemittelt. Betrachtet man die Datensétze getrennt vonein-
ander, kann durchaus die LDA die bessere Wahl sein. Insgesamt liefert die DLDA
fiir 32 Studien die niedrigere Fehlerrate, die LDA fiir 18. Um den Grund fiir die-
se Unterschiede zu untersuchen, werden im néchsten Abschnitt Regressionsmodelle
gerechnet. Dabei werden verschiedene Datensatzcharakteristiken als Einflussgréfen

aufgenommen, die Differenzen der Pradiktionsfehler dienen als Response.

4.4 Regressionsmodelle

Beispielhaft werden fiir drei verschiedene Differenzen des Préidiktionsfehlers Ae(N, D)
lineare Modelle aufgestellt. Als Kovariablen werden fiir jeden Datensatz die beiden
stetigen Variablen ,Anzahl an Beobachtungen“ und ,Anzahl an Genexpressionen®
erhoben. Zusétzlich wird die dummy-kodierte Variable ,Art der Krebserkrankung*
aufgenommen. Es existieren hunderte verschiedene maligne Tumorerkrankungen.
Diese lassen sich je nach Gewebe- und Zellart, in der sie ihren Ursprung nehmen,
in drei Hauptgruppen untergliedern: Karzinome, Sarkome und Lymphone / Leuk-
amien. Karzinome machen etwa 80% aller bosartigen Tumore aus. Sie haben ihren
Ursprung in Ephitelgeweben. Sarkome entstehen im Stiitzgewebe wie Muskeln oder
Fettgewebe, Leukdmie oder Lymphone in blutbildenden Organen |Das Lebenshaus
e.V. (2011)]. Da zu Sarkomen nur ein Datensatz existiert, wird dieser als NA kodiert.
Demnach wird nur in Karzinome und Lymphone / Leukdmien unterteilt, wobei die

Gruppe der Karzinome als Referenzkategorie dient.

In das Regressionsmodell werden also drei Einflussgrofsen aufgenommen. Allgemein

kann die Modellformel folgendermafsen formuliert werden:

Bo

Ae(”l; Dl) 1 xl,gen L'1,beob L1, tumor 5 €1
. gen .
5 + . 9
beob
Ae(n50> D5O> 1 T50,gen  L50,beob  L50 tumor €50
Btumor

mit Ae(n;, D;) = e(n;, M2, D;) — e(n;, My, D;).

4.4.1 DLDA-20 vs. DLDA-10
Zum Vergleich unterschiedlich starker Variablenselektion in der DLDA wird beispiel-
haft die Differenz von 10 und 20 aufgenommenen Variablen betrachtet. Der Einfluss

der Kovariablen wird zunéchst anhand von Scatterplots graphisch dargestellt. Auf
der y-Achse wird die Zielvariable - hier die Differenz der Fehlerraten von DLDA-10
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DLDA-20 vs. DLDA-10
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Abbildung 6: Scatterplot zu DLDA mit Kovariable ,,Anzahl Beobachtungen®

und DLDA-20 - angetragen. Auf der x-Achse die jeweils interessierende Kovaria-
ble. Die dummy-kodierte Einflussgrofe ,Art der Krebserkrankung* wird zusétzlich
durch Farbung der einzelnen Punkte dargestellt. Die griin gefarbten Punkte markie-
ren Datenséitze zu Karzinomen, die roten Punkte Datenséitze zu Lymphonen oder
Leuk&dmien. Die drei grauen Punkte stehen fiir den Datensatz zu Sarkomen sowie

fiir zwei Datensétze ohne weitere Angabe.

In Abbildung 6 ist die Anzahl der Beobachtungen gegen die Differenzen abgetragen.
Es fillt auf, dass der Betrag der Differenzen mit steigender Anzahl an Beobachtungen
niedriger wird. Das heiftt, der Unterschied zwischen den beiden Methoden ist fiir
grofsere Datensétze geringer als fiir kleine. Achtet man auf die Farbgebung, sieht
man, dass alle roten Punkte iiber einer gedachten horizontalen Linie bei y = 0
liegen. Fiir Lymphone und Leukidmien ist die Aufnahme von 10 Variablen also mit

einer hoheren Fehlerrate verbunden als die Aufnahme von 20 Variablen.

Abbildung 7 stellt Ae(N, D) der Anzahl an Genexpressionen gegeniiber. Anhand des
Scatterplot lisst sich kein klarer Trend entdecken. Man sieht, dass der Grofsteil der
Datenséitze hochstens 25.000 Variablen enthélt. Drei Datenpunkte liegen mit einer

Anzahl von etwa 55.000 Genexpressionen weit abseits.
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DLDA-20 vs. DLDA-10
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Abbildung 7: Scatterplot zu DLDA mit Kovariable , Anzahl Genexpressionen*

Nach dieser qualitativen Interpretation der Einflussgrofen folgt nun eine quantita-

tive. Die Modellformel dazu lautet:

Q(N, DLDA107 D) - €(N7 DLDA2U> D) = 60 + Bgenxgen + Bbeobxbeob + ﬁtumov‘xtumor +€

Variable Koeffizient Standardabweichung t p-Wert
Intercept 9.054e-03 4.547e-03 1.991 0.052810
Beobachtungen — -1.191e-04 4.156e-05 -2.866  0.006413  **
Genexpressionen  1.448e-07 1.613e-07 0.897 0.374511
Tumor 1.908e-02 4.469e-03 4.269 0.000106 ***

Tabelle 5: Ergebnisse des Regressionsmodells mit den Differenzen der Fehlerraten

von DLDA-20 und DLDA-10 als Zielvariable

Die Ergebnisse des Regressionsmodells sind in Tabelle 5 dargestellt. Sowohl die An-

zahl der Beobachtungen als auch die Art des Tumors haben einen signifikanten

Einfluss auf die Zielvariable. Der geschétzte Regressionskoeffizient der Kovariable

,<Anzahl an Beobachtungen® ist negativ, mit steigender Anzahl an Beobachtungen

werden die Werte der Zielgrofe also niedriger. Enthélt ein Datensatz j 150 Beobach-
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tungen, so nimmt Ae(n;, D;) durchschnittlich um 100 % (—1.191e — 04) = —0.01191
niedrigere Werte an als fiir einen Datensatz ¢ mit 50 Beobachtungen. Fiir kleinere
Datensétze liefert die DLDA mit 20 Variablen die besseren Ergebnisse. Ab einer
Groke von n = (9.054e — 03)/(1.191e — 04) ~ 77 ist die DLDA mit 10 Variablen
durchschnittlich besser. Der Schétzer Btumor sagt aus, dass die Werte der Zielva-
riable in der Kategorie ,Lymphone / Leukdmie* durchschnittlich um 0.01908 hoher
liegen als in der Referenzkategorie ,Karzinome®. Die Anzahl an Genexpressionen hat
keinen statistisch signifikanten Einfluss. Die Anpassung an die Daten ist fiir dieses

Regressionsmodell mit R? = 0, 368 vergleichsweise gut.

Betrachtet man alle Differenzen innerhalb der DLDA, so fallt auf, dass eine hohe
Anzahl an Beobachtungen tendenziell fiir eine stérkere Variablenselektion spricht.
Ein méglicher Grund dafiir ist, dass fiir sehr kleine Datensétze die Rangfolge der
Variablen nicht prizise berechenbar ist. So ist die Aufnahme einer grofseren Menge
an Variablen sinnvoll. Generell fiihren zu viele Variablen aber zu einer schlechteren
Performance. Ist fiir grofere Datensétze also die Erstellung einer exakten Rangfolge
moglich, so fiihrt eine konsequentere Auswahl zu besseren Ergebnissen. Uber die
Anzahl der Genexpressionen lasst sich keine klare Aussage treffen. Datensétze zu
Leukimien oder Lymphonen schneiden im Verhiltnis zu Karzinom-Studien tenden-
ziell mit einer hheren Anzahl an aufgenommenen Variablen besser ab. Zu beachten
ist, dass der Grofteil der Ergebnisse keinen signifikanten Einfluss hat. Die Anzahl
der Beobachtungen ist nur in einem Modell signifikant, die Art des Tumors fiir zwei

Modelle. Die Ergebnisse sollten also nicht iiberinterpretiert werden.

Nach der Schitzung miissen die Modellannahmen Homoskedastizitdt, Unkorreliert-
heit der Storgroken sowie die Linearitdt des Pradiktors iiberpriift werden. Diese
Annahmen sollten zumindest approximativ erfiillt sein, um Fehlschliisse zu vermei-
den. Eine Korreliertheit zwischen den Residuen ist in erster Linie bei Daten mit
zeitlicher Struktur, wie Zeitreihen oder Longitudinaldaten, ein Problem. Da dies
hier nicht der Fall ist, wird die Uberpriifung dieser Annahme vernachlissigt. Ob
eine Linearitiat der Einflussgrofen gegeben ist, sieht man an den Scatterplots (vgl.
Abb. 6 / 7). Zumindest fiir Abbildung 6 scheint ein linearer Einfluss plausibel.

Die Homoskedastizitit wird anhand von Residuenplots {iberpriift. In Abbildung 8
wurden die standardisierten Residuen gegen die geschitzten Werte g; abgetragen.
Die Residuen streuen mit konstanter Variabilitdt um die Null. Es lassen sich keine
Regelméfigkeiten entdecken. Man kann also von homoskedastischen Fehlern ausge-

hen. Insgesamt sind zumindest keine schweren Verletzungen der Modellannahmen
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zu erkennen |Fahrmeir et al. (2009)].

Residuenplot DLDA-20 vs. DLDA-10
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Abbildung 8: DLDA: Standardisierte Residuen gegen die geschitzten Werte v;

4.4.2 LDA-20 vs. LDA-10

In diesem Regressionsmodell wird die Differenz der Fehlerraten der LDA mit 10
und mit 20 aufgenommenen Variablen untersucht. Dabei werden dieselben Daten-
satzcharakteristiken wie im obigen Modell - zundchst mit Scatterplots - auf ihren

Einfluss untersucht.

In Abbildung 9 sind die Differenzen von LDA-10 und LDA-20 gegen die Anzahl der
Beobachtungen abgetragen. Es ist ein deutlich positiver Trend zu erkennen. Fiir eine
steigende Anzahl an Beobachtungen streben die Differenzen zwischen den Fehlerra-
ten gegen Null. Insgesamt liegt Ae(N, D) fiir die meisten Datensétze sehr nahe an
der Null. Das bedeutet, es existieren keine grofsen Unterschiede in der Performance
von LDA mit 20 oder 10 aufgenommenen Variablen. Die meisten Datenpunkte liegen
unter der Horizontalen durch y = 0. Die Differenzen von LDA-20 und LDA-10 sind
also haufig kleiner Null. Tendenziell scheint die Aufnahme von nur 10 Variablen also
etwas bessere Ergebnisse zu liefern. Im Unterschied zu Abbildung 6 und 7 ist hier

kein Trend fiir verschiedene Krebsarten zu erkennen. Anhand des Scatterplots ist
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LDA-20 vs. LDA-10
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Abbildung 9: Scatterplot zu LDA mit Kovariable ,Anzahl Beobachtungen*

LDA-20 vs. LDA-10

W Karzinome
B Lymphone
*
o . ., .
S o * *
o * * ¢ N
* *
* ‘ ¢
c * ‘
15}
g ** *
3 . .t .
@ 8 | LR .
3 9 4
o -
o
£ ¢ .
(a)] e
*
S .
g
T
*
T T T T T 1
0 10000 20000 30000 40000 50000

Anzahl Genexpressionen

Abbildung 10: Scatterplot zu LDA mit Kovariable ,,Anzahl Genexpressionen*
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nicht klar zu erkennen, ob es sich hier um einen linearen Einfluss handelt. Die Anzahl
der Beobachtungen kénnte auch einen quadratischen Einfluss haben. Anhand von
Abbildung 10 lasst sich weder ein negativer noch ein positiver Einfluss der Anzahl

der Gene feststellen.

Geht man von einem linearen Einfluss der Beobachtungen aus, so lautet die Modell-

gleichung fiir die beschriebene Regression:

€(N, LDA107 D) - 6<N7 LDAZOa D) = ﬁO + 5genxgen + 5beobxbeob + ﬁtumormtumor + €.

Die zugehorigen Ergebnisse sind in Tabelle 6 dargestellt. Die Anzahl der Beob-
achtungen hat einen signifikanten Einfluss auf die Differenzen. Dieser Einfluss ist
positiv, das heift mit steigender Anzahl an Beobachtungen steigt Ae(N, D). Fiir
den Grofteil der Datensitze ist die Aufnahme von nur 10 Kovariablen sinnvoller.
Erst ab 170 Beobachtungen liefert die LDA mit 20 Kovariablen im Schnitt die besse-
ren Werte. Diese Beobachtung steht im Gegensatz zur DLDA. Dort schnitt fiir viele
Beobachtungen die Auswahl von 10 Variablen besser ab, fiir wenige die Wahl von
nur 20 Variablen. Das Bestimmtheitsmals liegt bei 0,229. Das Modell erklért also nur
22,9% der Streuung. Die Anpassung an die Daten ist demnach weniger gut als im
vorherigen Modell. Eine Transformation der Variable ,Anzahl an Beobachtungen®,

um ihren quadratischen Einfluss zu iiberpriifen, bringt keine Verbesserung.

Variable Koeffizient Standardabweichung t p-Wert
Intercept -5.304e-02 9.991e-03 5.309 3.66e-06 ***
Beobachtungen  3.120e-04 9.132e-05 -3.417  0.00139  **
Genexpressionen  7.433e-08 3.545e-07 -0.210  0.83489
Tumor 7.118e-03 9.821e-03 -0.725  0.47254

Tabelle 6: Ergebnisse des Regressionsmodells mit den Differenzen der Fehlerraten
von LDA-20 und LDA-10 als Zielvariable

Fiir alle drei LDA-Vergleiche ergeben sich zwei Trends. Zum einen sprechen Daten-
sitze mit vielen Beobachtungen fiir eine Berechnung anhand einer grofferen Anzahl
an Variablen. Dies ist in zwei von drei Modellen signifikant und entgegengesetzt zu
den Ergebnissen aus dem DLDA-Vergleich. Allerdings muss man dazu bemerken,
dass die mogliche Aufnahme von Variablen in der LDA ohnehin auf 20 begrenzt ist.
Bei der Analyse von Leukdmie- / Lymphon-Studien wirkt sich wie in der DLDA die
Aufnahme mehrerer Variablen positiv aus. Dieser Einfluss ist allerdings in keinem

Modell signifikant. Fiir die Anzahl der Gene lédsst sich keine eindeutige Tendenz
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erkennen.

Zur Uberpriifung der Modellannahmen wurde wieder ein Residuenplot erstellt (Ab-
bildung 11). In diesem Residuenplot ldsst sich eine klare Verletzung der Modell-
annahmen feststellen. Der trichterférmige Verlauf ist typisch fiir heteroskedastische
Varianzen. Die Storgrofen schwanken zwar um Null, doch die Varianz ist offensicht-
lich nicht gleichbleibend.

Residuenplot LDA-20 vs. LDA-10
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Abbildung 11: LDA: Standardisierte Residuen gegen die geschitzten Werte ;

Heteroskedastische Varianzen der Storgrofen wirken sich insbesondere auf die Schét-
zung der Varianz der Regressionskoeffizienten 3; aus. Sind diese Varianzen falsch
geschitzt, hat das auch eine Einfluss auf Hypothesentests iiber Regressionspara-
meter sowie deren Konfidenzintervalle. Um dies zu vermeiden, wére es moglich ein
allgemeines lineares Regressionsmodell aufzustellen. Im allgemeinen Modell sind ho-
moskedastische Storgrofen keine Voraussetzung. Die Regressionsparameter werden
dabei mit der gewichteten Methode der kleinsten Quadrate geschitzt [Fahrmeir et al.
(2009)].
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4.4.3 DLDA-20 vs. LDA-5

Das dritte Regressionsmodell hat einen Vergleich von LDA und DLDA als Zielgrofe.

Dafiir wurde fiir beide Methoden jeweils die Variablenanzahl gewahlt, die die besten

Ergebnisse lieferte. Es werden also die Differenzen der Fehlerraten zwischen LDA

mit 5 Variablen und DLDA mit 20 Variablen als Response verwendet.

DLDA-20 vs. LDA-5
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Abbildung 12: Scatterplot zu LDA-DLDA mit Kovariable ,,Anzahl Beobachtungen

Abbildung 12 zeigt einen Scatterplot mit der Anzahl an Beobachtungen auf der x-

Achse. Mit steigender Anzahl an Beobachtungen scheinen die Differenzen gegen Null

zu streben. Es liegen mehr Werte iiber der Horizontalen y = 0. Die Ausdehnung ist

von y = 0 aus betrachtet nach oben weiter als nach unten. Insgesamt schneidet die
DLDA-20 also besser ab. Die Leukdmie- / Lymphon-Daten liegen tendenziell hoher

als die der Karzinome.

Im Scatterplot zur Anzahl der Genexpressionen (Abb. 13) lassen sich keine Trends

ausmachen. Die Datenpunkte sind relativ gleichméfig verteilt.

Im Regressionsmodell

6(N7 LDA57 D) - G(Na DLDAZOa D) = BO + ﬁgenxgen + 6beobxbeob + Btumorxtumor + €.

werden diese Vermutungen bestétigt (vgl. Tabelle 7).
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DLDA-20 vs. LDA-5
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Abbildung 13: Scatterplot zu LDA-DLDA mit Kovariable ,Anzahl Genexpressionen®

Variable Koeffizient Standardabweichung t p-Wert
Intercept 1.079e-02 1.121e-02 0.962 0.3414
Beobachtungen  -1.381e-04 1.025e-04 -1.348  0.1848
Genexpressionen  4.962e-07 3.979e-07 1.247  0.2191
Tumor 2.320e-02 1.102e-02 2.105 0.0412 *

Tabelle 7: Ergebnisse des Regressionsmodells mit den Differenzen der Fehlerraten
von LDA-5 und DLDA-20 als Zielvariable

Den einzigen signifikanten Einfluss hat die Art der Krebserkrankung mit Btumor =
2.320e—02. Die Differenzen liegen also fiir Datensétze zu Lymphonen und Leukdmien
durchschnittlich um 2.320e-02 hoher als fiir Studien zu Karzinomen. Im Verhéltnis
zur DLDA-20 schneidet die LDA-5 demnach fiir Lymphone und Leukdmien schlech-
ter ab. Allerdings hat dieses Regressionmodell mit R? = 0,128 die mit Abstand

schlechteste Anpassung an die Daten.

Die Residuen im Plot 14 streuen gleichmifig und regellos um die Null. Man kann

in diesem Modell also von homoskedastischen Varianzen der Stérgréfen ausgehen.
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Residuen

Residuenplot DLDA-20 vs. LDA-5
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Abbildung 14: LDA-DLDA: Standardisierte Residuen gegen die geschitzten Werte
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5 Fazit

In einem ersten Schritt wurde in dieser Arbeit ein Benchmarking durchgefiihrt. Da-
bei wurden verschiedene Formen der Diskriminanzanalyse anhand von 50 Microarray-
Studien miteinander verglichen. Fiir die jeweiligen Methoden war im Voraus eine
unterschiedlich starke Variablenselektion notwendig. Die diagonale lineare Diskrimi-
nanzanalyse ist in der Lage alle Variablen zur Schitzung einer Priadiktionsregel auf-
zunehmen. Die Aufnahme aller Variablen brachte allerdings die insgesamt schlech-
testen Ergebnisse. Mit 20 aufgenommen Variablen ergaben sich fiir die DLDA der
kleinste durchschnittliche Pradiktionsfehler. Die lineare und die quadratische Diskri-
minanzanalyse liefen sich ohne vorherige Variablenselektion nicht durchfiihren. Fiir
die LDA durften bis zu 20 Variablen aufgenommen werden. Die besten Ergebnisse
lieferte sie fiir 5 Variablen. Die QDA lief sich mit 5 Variablen nur fiir 42 Datensétze
berechnen. Selbst mit 3 Variablen war sie nicht auf alle Daten anwendbar. Deshalb
wurde sie von weiteren Analysen ausgeschlossen. Insgesamt war die DLDA mit 20
Variablen die Methode mit der hochsten Pradiktionsgenauigkeit. Welche Methode
fiir einen Datensatz wirklich die beste ist, hdngt jedoch vom Einzelfall ab. Es las-
sen sich also keine pauschalen Aussagen fiir Krebsstudien treffen. Insgesamt lag der
durchschnittliche Pradiktionsfehler mit Werten zwischen 0,225 und 0,269 fiir alle
Methoden relativ hoch.

Nach der individuellen Betrachtung wurden die Differenzen der Pradiktionsfehler
zweier Methoden analysiert. Diese wurden mit einem einseitigen t-Test fiir verbunde-
ne Stichproben sowie dem nonparametrischen Wilcoxon-Rangsummentest auf Signi-
fikanz iiberpriift. Die zugehorigen Hypothesentests wurden in Kapitel 3 ausfiihrlich
dargestellt. Es erwiesen sich iibereinstimmend 7 von 10 Differenzen als signifikant

von Null verschieden.

Im zweiten Schritt wurde die eigentliche Fragestellung der Arbeit untersucht: In-
wiefern beeinflussen Datensatzcharakteristiken die relative Giite verschiedener Pra-
diktionsalgorithmen? Um dies zu ermitteln, wurde ein lineares Regressionsmodell
formuliert. Dabei dient die Differenz der Pradiktionsfehler zweier Methoden als Re-
sponse. Als Einflussgrofsen wurden die Anzahl der Beobachtungen, die Anzahl der
gemessenen Genexpressionen sowie die Art der in der jeweiligen Studie untersuch-
ten Krebserkrankung gewéhlt. Basierend auf dieser Formulierung wurden insgesamt

zehn verschiedene Regressionsmodelle gerechnet.

Anhand dieser verschiedenen Regressionsmodelle lassen sich unterschiedliche Schliis-

se ziehen. Die Art der Krebserkrankung zeigte in fast allen Modellen eine &hnliche
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Tendenz. Bei der Analyse von Leukdmie- / Lymphon-Studien wirkt sich im Ver-
gleich zu Karzinom-Studien die Aufnahme mehrerer Variablen positiv aus. Dies gilt
sowohl fiir die LDA als auch fiir die DLDA. Die Anzahl an Beobachtungen erbrachte
unterschiedliche Ergebnisse. In der DLDA sollte bei einer hohen Anzahl an Beob-
achtungen tendenziell eine stirkere Variablenselektion vorgenommen werden. Fiir
die LDA gilt das Gegenteil. Datensétze mit vielen Beobachtungen sprechen fiir eine
Berechnung anhand einer grofferen Anzahl an Variablen. Die Anzahl der Genex-
pressionen zeigte keine klaren Trends. Bei diesen Aussagen sollte allerdings beachtet
werden, dass nur relativ wenige Ergebnisse auf einem Niveau von 0,05 signifikant
waren. Von den zehn gerechneten Modellen hatte die Anzahl der Beobachtungen in
vier Féllen einen signifikanten Einfluss. Die Art der Krebserkrankung war zweimal

signifikant, die Anzahl der Genexpressionen nie.

Die Modellannahmen der linearen Regression wurden ebenfalls iiberpriift. Der Er-
wartungswert der Residuen liegt fiir alle Modelle sehr nahe an Null. Die Homoske-
dastizitat ist aber nicht immer gewéhrleistet. Betrachtet man die Residuenplots, so
sind fiir zwei Modelle Verletzungen zu befiirchten. Auch die Linearitit des Einflusses
der Kovariablen ist nicht immer unbedingt gegeben. Diese Annahmen sollten also

im Einzelfall iiberpriift werden.

Ebenfalls anzumerken ist die zum Grofteil schlechte Anpassung der Modelle an die
Daten. Das R? lag zwischen 0,01 und 0,37. Die untersuchten Kovariablen erkliren

die signifikanten Unterschiede zwischen den Differenzen also nur unzureichend.

Auf die bisherigen Ergebnisse aufbauend wire es moglich, weitere Einflussgrofen
sowie eventuelle Interaktionen aufzunehmen. Denkbar wiren zum Beispiel das Ver-
héltnis von Beobachtungen zu Genexpressionen, die Balance zwischen den Klassen,
die mittlere Fehlerrate oder die bereits vorgegebenen Klassen der Studien. Auch ei-
ne prazisere Einteilung in verschiedene Krebserkrankungen konnte sinnvoll sein. Mit
verschiedenen Methoden, wie zum Beispiel der Vorwirts- oder Riickwértsselektion,
wire es moglich, aus einer grofseren Anzahl an Kovariablen die relevanten ausfin-
dig zu machen. Dies kénnte zu besseren Modellen und damit zu aussagekriftigeren

Ergebnissen fiihren.
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A R Code

##4# R Code zu den Berechnungen der Bachelorarbeit basierend auf
##4# dem R Code von Boulesteix et al. (2013)

##+##+ Mit setwd () Speicherpfad zu Ordner mit Datensaetzen setzen
library (CMA)

###+ 1. Einlesen der 50 verwendeten Datensaetze

datasetnames<—c ("adrenal dahia" "bladder blaveri" "breast desmedt"
"breast gruvberger" "breast kreike" "breast ma 2",
"breast minn" "breast sharma" "breast veer",
"breast wang" ,"breast west" ,"cervical wong",
"ens_pomeroy 2" ,"colon_alon" ,"colon laiho","colon lin 1",
"colon watanabe" " gastric_hippo","glioma freije",
"glioma nutt","glioma phillips","glioma rickman",

"head neck chung" "headneck pyeon 2",

"leukemia_ bullinger 2" "leukemia golub"

"leukemia_ haslinger" ,"leukemia wei" ,"leukemia yagi",
"liver chen" ,"liver iizuka","lung barret" "lung bild",
"lung wigle" ,"lymphoma alizadeh"  "lymphoma booman"
"lymphoma_shipp","medulloblastoma macdonald",

"mixed chowdary" ,"mixed ramaswamy",h"myeloma tian",
"oral odonnell" "ovarian gilks" "ovarian_ jazaeri_ 3",
"ovarian_ li_and campbell" ,"pancreas ishikawa",
"prostate singh" ,"prostate true 2" "renal williams",

"sarcoma detwiller")

for (i in 1:length(datasetnames))
{
print (i)
datasetname<—datasetnames|i|
dataset<—read.table (file=paste("data_txt/dataset_" datasetname,
"otxt",sep=""),skip=1,header=FALSE)
dataset<—t(dataset)
dataset<—list (X=dataset|,—1]|,Y=as.factor (dataset|,1]))
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save (dataset , file=paste("data R/", 6 datasetname ,".RData" sep=""))

}

Ciziaia
##4# 2. Berechnung der Fehlklassifikationsrate fuer DLDA mit
HHHE unterschiedlichen Anzahlen an Variablen

## Funktion zur Berechnung der Fehlklassifikationsrate
MOCV<—function (ratio ,niter ,datasetnames , methodnames)
{
MOCV=—matrix (NA, length (datasetnames) ,length (methodnames))
for (i in 1:length (datasetnames))
{
print (i)
datasetname<—datasetnames|1i |
load (paste ("data R/" datasetname " .RData" sep=""))
X<—dataset $X
Y<—dataset$Y
if (nlevels(Y)==2)
{ set.seed (1011)
learn<— GenerateLearningsets (y=Y, method="MCCV" niter=niter ,
ntrain=round (length (Y)*ratio))
varsel<—GeneSelection (X=X,y=Y, learningsets=learn ,
method="t . test")

dlda<—evaluation (classification (X=X,y=Y,learningsets=learn ,
classifier=dldaCMA))

dldanbgene500<—evaluation (classification (X=X, y=Y,
learningsets=learn , genesel=varsel ,nbgene=500,
classifier=dldaCMA))

dldanbgene20<—evaluation (classification (X=X, y=Y,
learningsets=learn , genesel=varsel ,nbgene=20,
classifier=dldaCMA))

dldanbgenelO<—evaluation (classification (X=X, y=Y,
learningsets=learn , genesel=varsel ,nbgene=10,
classifier=dldaCMA))

dldanbgenebs<—evaluation (classification (X=X, y=Y,
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learningsets=learn , genesel=varsel ,nbgene=5,
classifier=dldaCMA))

MCCV[1i ,]|<—c (mean(dlda@score) ,mean(dldanbgene500@score ),
mean (dldanbgene20@score ) ,mean(dldanbgenel0@score ),
mean (dldanbgeneb@score))

MCCV. matrix <— data.frame (MOCV)

row . names (MCCV. matrix) <— datasetnames

colnames (MOCV. matrix) <— methodnames

MCCV_data <— stack (MOCV. matrix )

MCCV_data <— data.frame(datasetnames ,MCCV_data)
colnames (MOCV_data) <— c("data" ,"mc","algo")
save (MCCV, file="MOCV_matrix .RData")

save (MCOCV_data, file = "MCOCV_data.RData")

methodnames<—c ("dlda" ,"dldanbgene500" ,"dldanbgene20" ,
"dldanbgenel(0" ,"dldanbgene5")

## Berechnung der Fehlklassifikationsrate mit MOCV
#4# (300 Iterationen , Verhaeltnis von Test— zu Trainingsdaten: 4/5)

MCOCV(niter=300,ratio=4/5,datasetnames , methodnames)

load ("MCOCV_matrix . RData")

MCCV_matrix <— MOCV

resultmat <-MOCV_matrix

load ("MCOCV_data.RData")

colnames (MCCV_data) <— c("data","mc" "algo")

colnames (resultmat) <— unique (MOCV_data|,3])
rownames (resultmat) <— unique (MOCV_data|,1])
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## Berechnung der Differenzen

delta2 DLDA DLDAlO<—resultmat|,1| —resultmat [, 4]

delta2 DLDA DLDA20<—resultmat|,1| —resultmat|,3]

delta2 DLDA DLDA500<—resultmat|,1] —resultmat|,2]

delta2 DLDA10 DLDA20<—resultmat|,4] —resultmat|,3]

delta2 DLDA500 DLDA10<—resultmat|,2] —resultmat|, 4]

delta2 DLDA500_DLDA20<—resultmat|,2] —resultmat|,3]

delta2 <— data.frame(delta2 DLDA DLDA5’00, delta2 DLDA DLDA20,
delta2 DLDA DLDA10, delta2 DLDA500 DLDA20,
delta2 DLDA500_DLDA10, delta2 DLDA10_DLDA20)

## Standardabweichungen der paarweisen Differenzen
## zwischen DLDA-Methoden

sd(delta2 DLDA DLDAI10)

sd(delta2 DLDA DLDA20)

sd(delta2 DLDA DLDA500)

sd(delta2 DLDA10 DLDA20)

sd(delta2 DLDA500 DLDA10)

sd(delta2 DLDA500 DLDA20)

AN N N N /N /N

### 3. Berechnung der Fehlklassifikationsrate fuer LDA mit
HHHE unterschiedlichen Anzahlen an Variablen
## Funktion zur Berechnung der Fehlklassifikationsrate
MCCVlda<—function (ratio ,niter ,datasetnames , methodnames)
{
MCCVlda<—matrix (NA, length (datasetnames) ,length (methodnames))
for (i in 1:length (datasetnames))
{
print (1)
datasetname<—datasetnames|1i |
load (paste ("data_R/",datasetname ,".RData" ,sep=""))
X<—dataset $X
Y<—dataset$Y
if (nlevels (Y)==2)
{ set.seed (1011)

learn<— GenerateLearningsets (y=Y, method="MCCV" ,niter=niter ,
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ntrain=round (length (Y)*ratio))
varsel<—GeneSelection (X=X,y=Y, learningsets=learn ,
method="t. test")

a <— classification (X=X,y=Y, learningsets=learn ,
genesel=varsel ;nbgene=20,classifier=ldaCMA)

b <— classification (X=X,y=Y,learningsets=learn ,
genesel=varsel ;nbgene=10,classifier=ldaCMA)

¢ <— classification (X=X,y=Y, learningsets=learn ,
genesel=varsel ;nbgene=5,classifier=ldaCMA)

ldanbgene20<—evaluation (a)

ldanbgenelO<—evaluation (b)

ldanbgeneb<—evaluation (¢)

MCCVlda|i ,|<—c (mean(ldanbgene20@score) ,
mean (ldanbgenel0@score ) ,mean(ldanbgene5@score))

MCCVlda. matrix <— data.frame (MCCVlda)

row . names (MCCVlda. matrix) <— datasetnames

colnames (MCCVlda. matrix ) <— methodnames

MCCVlda_data <— stack (MCCVlda. matrix)

MCCVlda_data <— data.frame(datasetnames ,MCCVIda_data)
colnames (MCCVlda_data) <— c("data","mc","algo")

save (MCCVlda, file="MCCVlda matrix.RData")

save (MCCVlda_data, file = "MCCVlda_data.RData")

methodnameslda<—c ("ldanbgene20" ,"ldanbgenel0" ,"ldanbgene5")
## Berechnung der Fehlklassifikationsrate mit MOCV
#4 (300 Iterationen , Verhaeltnis von Test— zu Trainingsdaten: 4/5)

MCCVlda( niter =300,ratio=4/5,datasetnames , methodnameslda)

load ("MCCVlda_matrix . RData")
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MCCVlda_matrix <— MCCVlda
resultmatlda <—MCCVIda matrix
load ("MCCVlda_data .RData")

colnames (resultmatlda)<— unique (MCCVlda_ data|,3])
rownames (resultmatlda )<— unique (MCCVlda_data|,1])

## Differenzen der Fehlerraten der verschiedenen Methoden
deltalda_LDA10 LDA20<—resultmatlda|,2] —resultmatlda|,1]
deltalda_ LDA10 LDA5<—resultmatlda[,1] —resultmatlda|,3]
deltalda LDA20 LDAb<—resultmatldal|,2] —resultmatlda|,3]
deltalda <— data.frame(deltalda LDA10 LDA20,

deltalda LDA10 LDA5, deltalda LDA20 LDA5)

## Standardabweichungen der paarweisen Differenzen
## zwischen LDA—Methoden
sd (deltalda_LDA10_LDA20)
sd(deltalda LDA10 LDA5)
sd(deltalda LDA20 LDA5)

## Standardabweichungen der paarweisen Differenzen
## zwischen bester LDA— und DLDA-Methode
sd (resultmatlda|,3] —resultmat|[,3])

### 4. Berechnung der Fehlklassifikationsrate fuer
##+#+ QDA mit 5 Variablen
## Funktion zur Berechnung der Fehlklassifikationsrate
## mit 42 Datensaetzen
datasetnamesqda <— datasetnames|—c(12,15,18,32,36,38,42,43)]|
MCCVqda<—function (ratio ,niter ,datasetnamesqda , methodnames)
{
MCCVaqda<—matrix (NA, length (datasetnamesqda),length (methodnames))
for (i in 1:length (datasetnamesqda))
{
print (i)

datasetname<—datasetnamesqda|1 |
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load (paste ("data R/" datasetname ,".RData"  sep=""))
X<—dataset $X
Y<—dataset§Y
if (nlevels (Y)==2)
{ set.seed (1011)
learn<— GenerateLearningsets (y=Y, method="MCCV" niter=niter ,
ntrain=round (length (Y)*ratio))
varsel<—GeneSelection (X=X,y=Y, learningsets—learn ,
method="t . test")

a <— classification (X=X,y=Y, learningsets=learn ,
genesel=varsel ,nbgene=5,classifier=qdaCMA)

gdanbgeneb<—evaluation (a)

MCCVqda|i ,|<—c(mean(qdanbgene5@score))

MCCVqda. matrix <— data.frame (MCCVqda)

row . names (MCCVqda. matrix) <— datasetnamesqda

colnames (MCCVqda. matrix) <— methodnames

MCCVqda data <— stack (MCCVqda. matrix)

MCCVqda data <— data.frame (datasetnamesqda ,MCCVqda data)
colnames (MCCVqda_data) <— c¢("data","mc","algo")

save (MCCVqda, file="MCCVqda matrix.RData")

save (MCCVqda_data, file = "MCCVqda data.RData")

methodnamesqda <— c¢("qdanbgene5")

### Berechnung der Fehlklassifikationsrate mit MOCV
## (300 Tterationen , Verhaeltnis von Test— zu Trainingsdaten: 4/5)
MCCVqda( niter =300,ratio=4/5,datasetnamesqda , methodnamesqda)

load ("MCCVqda matrix . RData")
MCCVqda_matrix <— MCCVqda
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resultmatqda <—MCCVqda_matrix
load ("MCCVqda data.RData")

colnames (resultmatqda)<— unique (MCCVqda_data|,3])
rownames (resultmatqda )<— unique (MCCVqda data|,1])

H /1
##+#+ 5. Verschiedene Tabellen und Tests
## Tabelle zu mittleren Fehlerraten aller Methoden

## mit unterschiedlich vielen Variablen

dldal_all <— mean(resultmat|,1])

dldal_500 <— mean(resultmat|,2])

dldal_ 20 <— mean(resultmat|,3])

dldal_ 10 <— mean(resultmat|,4])

dldal 5 <— mean(resultmat]|,5])

dldal <— c(dldal all, dldal 500, dldal 20, dldal 10, dldal 5)

ldal 20 <— mean(resultmatlda|,1])
ldal_ 10 <— mean(resultmatlda|,2])
ldal 5 <— mean(resultmatlda|,3])
ldal <— c("=", "=" ldal 20, Idal 10, ldal 5)

qdal_5 <— mean(resultmatqdal|,1])
qdal <— C(”—" oo on_n n_n qdal 5)

variablesl <— c¢("all" B "500", "20", "10", "5")
tablel <— data.frame(row.names=variablesl , dldal, ldal,
qdal, stringsAsFactors = FALSE)

## t—Tests und Wilcoxon—Tests f r DLDA

tt 1 <— t.test (MOCV_data$mec|[MCCV_data$algo=—"dldanbgene500" |,
MCCV_data$mc[MOCV_data$algo=—"dlda"],
paired=TRUE, alternative="1ess")

tt 2 <— t.test (MOCV_data$mc|[MCCV_data$algo=—"dldanbgene20"|,
MCCV_data$mc[MCOCV_data$algo—"dlda"],
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paired=TRUE, alternative="1ess")

tt 3 <— t.test (MOCV_data$mc|[MCCV_data$algo=—"dldanbgenel0"],
MCOCV_data$mc|MOCV_data$algo=—"dlda"|,
paired=TRUE, alternative="1ess")

tt 4 <— t.test (MOCV_data$mc|[MCCV_data$algo—"dldanbgene20"|,
MOCV_data$mc|[MOCV_data$algo=—"dldanbgene500" |,
paired=TRUE, alternative="1ess")

tt 5 <— t.test (MOCV_data$mc|MCCV_data$algo—"dldanbgene500" |,
MOCV_data$mc|[MOCV_data$algo=—"dldanbgenel0"],
paired=TRUE, alternative="1ess")

tt 6 <— t.test (MOCV_data$mc|[MCCV_data$algo—"dldanbgene20"|,
MOCV_data$mc|[MOCV_data$algo=—"dldanbgenel0"],
paired=TRUE, alternative="1ess")

wt 1 <— wilcox.test (MOCV_data$mc|MOCV _data$algo=—"dldanbgene500" |,
MOCV_data$mc|MOCV_data$algo=—"dlda"|,
paired=TRUE, alternative="1ess")

wt 2 <— wilcox.test (MOCV_data$mc|MOCV_data$algo—"dldanbgene20"]|,
MOCV_data$mc|[MOCV_data$algo=—"dlda"]|,
paired=TRUE, alternative="1ess")

wt 3 <— wilcox . test (MOCV_data$mc|MOCV_data$algo—"dldanbgenel0"],
MOCV_data$mc|[MOCV_data$algo=—="dlda"]|,
paired=TRUE, alternative="1ess")

wt 4 <— wilcox . test (MCCV_data$mc|MOCV_data$algo—"dldanbgene20"]|,
MOCV_data$mc|[MOCV_data$algo=—"dldanbgene500" |,
paired=TRUE, alternative="1less")

wt 5 <— wilcox.test (MCCV_data$mc|MOCV_data$algo=—"dldanbgene500" |,
MOCV_data$mc[MOCV_data$algo—"dldanbgenel0"],
paired=TRUE, alternative="1less")

wt 6 <— wilcox.test (MOCV_data$mc|MOCV_data$algo=—"dldanbgene20"]|,
MCOCV_data$mc|[MOCV_data$algo—"dldanbgenel(0"],
paired=TRUE, alternative="1less")

tab.test <— data.frame(
Comparison = c¢("DLDA-all _vs._DLDA—500" ,"DLDA—all _vs._DLDA-20",
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"DLDA—all _vs._DLDA-10", "DLDA—-500_vs._DLDA—-20",
"DLDA—-10_vs . _.DLDA-500" ,"DLDA—10_vs . _.DLDA—-20") |

Difference=c(round(tt 1$estimate ,3),round(tt 2%estimate ,3),

t

round (tt_3%estimate ,3) ,round (tt_4$estimate ,3),
round (tt_ bH%estimate ,3) ,round (tt 6$estimate ,3)),

c(round (tt_1S$statistic ,3),round(tt 2$statistic ,3),

round (tt_3$statistic ,3),round(tt_4$statistic ,3),
round (tt_b¥statistic ,3),round(tt 6$statistic ,3)),

'p—value’ = c(round(tt 1$p.value,5), round(tt 2S$p.value,5),

round (tt_3%$p.value ,5) ,round (tt_4%p.value ,5),
round (tt_5%p.value ,5) ,round (tt_6$p.value ,5)),

W= c(wt_1$statistic , wt 2$statistic , wt 3$statistic ,

wt_4$statistic ,wt_5$statistic ,wt 6$statistic),

'p—value’ = c¢(round(wt_1$p.value ,5), round(wt 2%p.value 5),

round (wt_3%p.value ,5) ,round (wt_48p.value ,5),
round (wt_5%p.value ,5) ,round (wt_6$p.value ,5)))

## t—Tests und Wilcoxon—Tests fuer LDA

t 1

t 2

t 3

<_

<_

<_

<_

t.test (MCCVlda data$mc|MCCVlda data$algo=—"I1danbgenel0"]|,
MCCVlda_data$me|MCCVlda_data$algo=—"1danbgene20"|,
paired=TRUE, alternative="1ess")

t.test (MCCVlda data$mc|MCCVlda data$algo=—="I1danbgeneb"]|,
MCCVlda_data$mec|MCCVlda_data$algo=—"1danbgene20" |,
paired=TRUE, alternative="1ess")

t.test (MCCVlda data$mc|MCCVlda data$algo=——"I1danbgene5"]|,
MCCVlda_data$mec|MCCVlda data$algo=—"ldanbgenelO"|,
paired=TRUE, alternative="1ess")

wilcox . test (MCCVIlda data$mec|MCCVIda data$algo=—"I1danbgenel0"]|,
MCCVlda_data$mec|MCCVlda_data$algo=—"1danbgene20"|,
paired=TRUE, alternative="1ess")

wilcox . test (MCCVIlda data$mc|MCCVIda data$algo=—"I1danbgeneb"|,
MCCVlda_data$mec|MCCVlda_data$algo=—"1danbgene20" |,
paired=TRUE, alternative="1ess")

wilcox . test (MCCVIlda data$mc|MCCVlda data$algo=—"I1danbgene5"]|,
MCCVIlda data$mc|MCCVlda data$algo—"ldanbgenel0"]|,
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paired=TRUE, alternative="1ess")

tab.testlda <— data.frame(
Comparison = ¢ ("DLDA-20_vs._DLDA-10"
"DLDA—-20_vs . _DLDA-5" | "DLDA—-10_vs._DLDA-5")
Difference c¢(round (t_lSestimate ,3),round(t_2%estimate ,3),
round (t_3%estimate ,3)),
t = c(round (t_1$statistic ,3), round(t 2$statistic ,3),
round (t_3$statistic ,3)),
'p—value’ = c(round(t_1$p.value,5), round(t 2%p.value,5),
round (t_3%p.value ,5)),
W= c(w_ 18statistic , w 2$statistic , w 3$statistic),
'p—value’ = c¢(round(w_1$p.value ,5), round(w 28%p.value ,5),

round (w_33$p.value ,5)))

## t—Tests und Wilcoxon—Tests fuer die jeweils besten Methoden

## von DLDA und LDA

tt _dlda lda <—t.test (MOCV_data$mc|MOCV _data$algo=—"dldanbgene20"|,
MCCVlda_data$me|MCCVlda_data$algo=—"1danbgene5"|,
paired=TRUE, alternative="1ess")

wt_dlda lda <—wilcox.test (MOCV_data$mec|MOCV_data$algo—
"dldanbgene20"|, MCCVIlda data$mc|[MCCVIlda data$algo—
"ldanbgene5" ]|, paired=TRUE, alternative="1less")

tab.testall <— data.frame(

¢ ("LDA—5_vs . _DLDA—20") ,

c(round (tt_dlda lda$estimate ,3)),
t = c(round(tt_dlda_lda$statistic ,3)),

Comparison

Difference

'p—value’ = c¢(round(tt_dlda lda$p.value ,5)),
W = c(wt_dlda lda$statistic),
‘p—value’ = c¢(round(wt_dlda lda$p.value ,5)))

/] /]
17 17
17 117

#### Eigener R Code
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##4#+ 6. Regressionsmodelle
## Einflussgroessen

beobachtungen <— numeric(length (datasetnames))
for (i in 1:length(datasetnames))

{

print (i)

datasetname <— datasetnames]|i |

datasetname <— read.table(file=paste("data txt/dataset ",

datasetname ,".txt" sep=""),skip=1,header=FALSE)
datasetname <— t(datasetname)

beobachtungen|[i] <— nrow(datasetnamesxi)

}
## Vektor mit Anzahl Variablen je Datensatz

variablen <— numeric(length (datasetnames))
for (i in 1:length(datasetnames))

{

print (i)

datasetname <— datasetnames]|i|

datasetname <— read.table(file=paste("data txt/dataset ",

datasetname ,".txt" sep=""),skip=1,header=FALSE)
datasetname <— t(datasetname)

variablen [i] <— ncol(datasetnamexi)

}

## Spalte fuer Krebsart: Karzinom—=0, Leukaemie&Lymphone—=1,

## Sarkom=NA (nur 1 Fall)

tumor <— ¢(0, 0, 0, 0, 0, 0, O, 0, O, O, O, O, 1, 0, 0, O, O,
0, 1, 1, 1, 1, 0,0, 1,1, 1,1, 1,0, 0, 0,
1, 1, 1, NA, NA, 1, 0, 0, O, O, O, O, 0, O, NA)

delta2 <— cbind(delta2 , beobachtungen, variablen , tumor)
deltalda <— cbind(deltalda, beobachtungen, variablen , tumor)
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ldab5_dlda20 <— resultmatlda|,3] —resultmat|[,3]
dlda lda 10 <— resultmat|,4| —resultmatlda|[,2]
dlda lda 20 <— resultmat|,3| —resultmatlda|, 1]
dlda lda <— data.frame(ldab dlda20, dlda lda 10,

dlda_lda 20, beobachtungen, variablen , tumor)

##+ Differenzen innerhalb der Methoden mit unterschiedlicher
##4# Anzahl Variablen

## a) DLDA

Imdldal <— Im(delta2$delta2 DLDA DLDA500~

delta28beobachtungen+delta2$variablen+delta2$tumor)
summary (lmdldal)

Imdlda2 <— Ilm(delta2$delta2 DLDA DLDA20~
delta2$beobachtungen+delta2$variablen+delta2$tumor)
summary (lmdlda2)

Imdlda3 <— Im(delta2$delta2 DLDA DLDA10~
delta2$beobachtungen+delta2$variablen+delta2$tumor)
summary ( lmdlda3)

Imdlda4 <— Im(delta2$delta2 DLDA500 DLDA20~
delta28beobachtungen+delta2$variablen+delta2$tumor)
summary (lmdlda4)

Imdldab <— lm(delta2$delta2 DLDA500 DLDA10~
delta28beobachtungen+delta2$variablen+delta2$tumor)
summary (lmdldab)

Imdlda6 <— Im(delta2$delta2 DLDA10 DLDA20~

delta2$beobachtungen+tdelta2$variablen+delta2$tumor)
summary (lmdlda6)

44 b) LDA
Imldal <— Im(deltalda$deltalda LDA10 LDA20~

deltalda$beobachtungen+deltalda$variablentdeltalda$tumor)
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summary (lmldal)

Imlda2 <— Im(deltalda$deltalda LDA10 LDA5~
deltalda$beobachtungen+deltalda$variablentdeltalda$tumor)

summary (lmlda2)

Imlda3 <— Im(deltalda$deltalda LDA20 LDA5~
deltalda$beobachtungentdeltalda$variablen+deltalda$tumor)

summary (lmlda3)

### Vergleich DLDA / LDA

## a) Auswahl der Variablenanzahl mit niedrigster Fehlerrate

Im_dlda_lda <—— lm(dlda_lda$ldas dlda20 ~
dlda_lda$beobachtungen+dlda lda$variablen+dlda lda$tumor)

summary (Im_dlda_lda)

## b) Vergleich LDA/DLDA mit je 10/20 Variablen
Im 10 <— Im(dlda_lda$dlda lda 10 ~
dlda_lda$beobachtungen+dlda lda$variablen+dlda lda$tumor)

summary (Im_10)

Im 20 <— Im(dlda_ lda$dlda lda 20 ~
dlda_lda$beobachtungen+dlda lda$variablen+dlda lda$tumor)

summary (lm_20)

##3#+ naehere Untersuchung ausgewaehlter Modelle
4 zu DLDA20 vs. DLDAIO

karzinom <— subset(delta2, delta2$tumor==0)
lymphon <— subset (delta2 , delta2$tumor==1)
rest <— subset(delta2 , is.na(delta2$tumor))

## Scatterplots Response gegen Kovariablen (Tumor einfaerben)

plot (karzinom$delta2 DLDA10 DLDA20~karzinom$beobachtungen ,
col="green4" , pch=18, xlab="Anzahl_Beobachtungen",
ylab="Differenz _der_Fehlerraten",
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main—="DLDA—-20_vs . _DLDA—-10")
points (lymphon$delta2 DLDA10 DLDA20 ~
lymphon$beobachtungen, col="red", pch=18)
points (rest$delta2 DLDA10 DLDA20 ~

rest$beobachtungen, col="

grey", pch=18)
legend ("topright" ¢ ("Karzinome", "Lymphone"),

fill=c("greend", "red"))

plot (karzinom$delta2 DLDAI0 DLDA20~karzinom$variablen ,

col="green4", pch=18, xlab="Anzahl_Genexpressionen",
ylab="Differenz _der_Fehlerraten",
main="DLDA—-20_vs . _DLDA-10")

points (lymphon$delta2 DLDA10 DLDA20 ~
lymphon$variablen , col="red", pch=18)

points (rest$delta2 DLDA10 DLDA20 ~

rest$variablen , col="

grey", pch=18)
legend ("topright" ¢ ("Karzinome", "Lymphone"),

fill=c("greend", "red"))

## Residuenplots; gefittete gegen standardisierte Residuen
plot (fitted (lmdlda6), rstandard(lmdlda6),
main="Residuenplot DLDA—20_vs._DLDA-10",
pch=18, xlab="Fitted", ylab="Residuen")
abline (h=0,lwd=1,1ty="dashed")

mean (residuals (Imdlda6))
4 zu LDA20 vs. LDAIO

karzinomlda <— subset(deltalda, deltalda$tumor==0)
lymphonlda <— subset(deltalda, deltalda$tumor==1)
restlda <— subset(deltalda, is.na(deltalda$tumor))

## Scatterplots Response gegen Kovariablen (Tumor einfaerben)
plot (karzinomlda$deltalda LDA10 LDA20~karzinomlda$beobachtungen ,

_n

col="green4"  pch=18, xlab="Anzahl_Beobachtungen",

ylab="Differenz _der_Fehlerraten",
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main—="LDA—-20_vs._LDA-10")
points (lymphonlda$deltalda LDA10 LDA20 ~
lymphonlda$beobachtungen, col="red", pch=18)
points (restlda$deltalda LDAI0 LDA20 ~

_n

restlda$beobachtungen, col="grey", pch=18)
legend ("topright" ¢ ("Karzinome", "Lymphone"),

fill=c("greend", "red"))

plot (karzinomlda$deltalda LDA10 LDA20~karzinomlda$variablen ,
col="green4", pch=18, xlab="Anzahl_Genexpressionen",
ylab="Differenz _der_Fehlerraten",
main="LDA—-20_vs . _LDA-10")

points (lymphonlda$deltalda LDA10 LDA20 ~
lymphonlda$variablen , col="red", pch=18)

points (restlda$deltalda LDA10 LDA20 ~

_n

restlda$variablen , col="grey", pch=18)
legend ("topright" ¢ ("Karzinome", "Lymphone"),

fill=c("greend", "red"))

## Residuenplots; gefittete gegen standardisierte Residuen
plot (fitted (lmldal), rstandard(lmldal),

main="Residuenplot _LDA—-20_vs. _LDA—-10",

pch=18, xlab="Fitted", ylab="Residuen")
abline (h=0,lwd=1,1ty="dashed")

mean (residuals (lmldal))
## zu DLDA20 vs. LDA5

karzinommix <— subset(dlda_lda, dlda lda$tumor==0)
lymphonmix <— subset (dlda lda, dlda lda$tumor==1)
restmix <— subset (dlda_lda, is.na(dlda_lda$tumor))

## Scatterplots Response gegen Kovariablen (Tumor einfaerben)

plot (karzinommix$ldab dlda20~karzinommix$beobachtungen ,
col="greend4" , pch=18, xlab="Anzahl_Beobachtungen",
ylab="Differenz _der_Fehlerraten",
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main—="DLDA—-20_vs . _LDA-5")
points (lymphonmix$ldab dlda20 ~
lymphonmix$beobachtungen, col="red", pch=18)
points (restmix$ldab_dlda20 ~

restmix$beobachtungen, col="

grey", pch=18)
legend ("topright" ¢ ("Karzinome", "Lymphone"),
fill=c("greend", "red"))

plot (karzinommix$ldab dlda20~karzinommix$variablen ,
col="green4", pch=18, xlab="Anzahl_Genexpressionen",
ylab="Differenz _der_Fehlerraten",
main="DLDA—-20_vs . _LDA-5")

points (lymphonmix$ldab dlda20 ~
lymphonmix$variablen , col="red", pch=18)

points (restmix$ldab dlda20 ~

restmix$variablen, col="

grey", pch=18)
legend ("topright" ¢ ("Karzinome", "Lymphone"),
fill=c("greend", "red"))

## Residuenplots; gefittete gegen standardisierte Residuen
plot (fitted (Im_dlda lda), rstandard (lm_ dlda lda),
main="Residuenplot DLDA—20_vs._LDA-5"
pch=18, xlab="Fitted", ylab="Residuen")
abline (h=0,lwd=1,1ty="dashed")

mean(residuals (Im_dlda lda))
##+ Residuenplots fuer restliche Regressionsmodelle

plot (fitted (lmdldal), rstandard (lmdldal),
main="Residuenplot DLDA—500_vs. _DLDA-all",
pch=18, xlab="Fitted", ylab="Residuen")
abline (h=0,lwd=1,1ty="dashed")

mean (residuals (Imdldal))

plot (fitted (Ilmdlda2), rstandard (lmdlda2),
main="Residuenplot _DLDA—20_vs. _DLDA—all",
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pch=18, xlab="Fitted", ylab="Residuen")
abline (h=0,lwd=1,1ty="dashed")

mean (residuals (lmdlda2))

plot (fitted (Imdlda3), rstandard(lmdlda3),
main="Residuenplot _DLDA—10_vs._DLDA-all"
pch=18, xlab="Fitted", ylab="Residuen")
abline (h=0,lwd=1,1ty="dashed")

mean(residuals (Imdlda3))

plot (fitted (lmdlda4), rstandard (lmdlda4),
main="Residuenplot DLDA—20_vs._DLDA-500",
pch=18, xlab="Fitted", ylab="Residuen")

abline (h=0,lwd=1,lty="dashed")

mean (residuals (Ilmdlda4d))

plot (fitted (lmdldab), rstandard(lmdldab),
main—"Residuenplot DLDA—10_vs._DLDA-500",
pch=18, xlab="Fitted", ylab="Residuen")

abline (h=0,lwd=1,1ty="dashed")

mean (residuals (lmdldab))

plot (fitted (Ilmlda2), rstandard(lmlda2),
main="Residuenplot _LDA-5_vs._LDA—-10",
pch=18, xlab="Fitted", ylab="Residuen")
abline (h=0,lwd=1,1ty="dashed")

mean (residuals (Imlda2))

plot (fitted (Ilmlda3), rstandard(lmlda3),
main="Residuenplot _LDA-5_vs._LDA-20",
pch=18, xlab="Fitted", ylab="Residuen")
abline (h=0,lwd=1,1ty="dashed")

mean (residuals (lmlda3))
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