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Zusammenfassung

In der Statistik gibt es eine Vielzahl an Tests, welche die Daten
auf interessante Eigenschaften, wie zum Beispiel die Lage oder Mit-
telwerte, untersuchen sollen. Fiir viele dieser Tests werden bestimmte
Annahmen vorausgesetzt. Es gibt Daten, zum Beispiel in der Medi-
zin, in denen viele sehr kleine und einige grofle Werte vorherrschen.
Es ist nicht voraussehbar, wie gut die Tests mit diesen Bedingun-
gen umgehen. Will man die Daten auf einen Zusammenhang unter-
suchen, so verlangen viele Tests, zum Beispiel der Fisher-Test, die
Angabe eines oder mehrerer Cutpoints, um die Variable in Kategori-
en zu unterteilen. Dieser ist vor Durchfithrung des Tests schwierig zu
bestimmen. Ein Losungsansatz dieses Problems ist eine Methode, die
auf mazimal selektierten x2-Statistiken basiert. In dieser Arbeit soll
diese Methode mit den bereits bekannten Tests verglichen werden.
Diese Tests sind der Fisher-Test, t-Test, Wilcoxon-Test, Kolmogorov-
Smirnov-Test und der Wilcozon- bzw. t-Test im sogenannten Two-
Part-Model. Vergleichskriterium ist, wie gut die Tests einen Unter-
schied in Daten mit sehr vielen Nullen bzw. kleinen Daten erkennen.
Dazu wurden mehrere Simulationen durchgefiihrt. Zuletzt wurde an-
hand eines Datensatzes iiber Krebspatienten untersucht, wie die Tests
entscheiden. Ergebnis des Vergleichs ist, dass die Tests unterschiedlich
gut auf verschiedene Situationen in den Daten reagieren. Die Metho-
de mit den maximal selektierten y?-Statistiken scheint zusammen mit
dem Wilcoxon-Test am besten fiir eine Detektierung eines Zusammen-
hangs zwischen einer binéren und einer weiteren Variable, wie sie in

den Simulationen gegeben sind, geeignet zu sein.



1 Einfiihrung

1.1 Einleitung

Inhalt dieser Arbeit ist es, den Zusammenhang zwischen einer bindren Grofie
und einer metrischen Gréfle mit vielen kleinen und einigen groflien Werten
bestmdglich zu untersuchen. Die der Statistik bereits bekannten Testme-
thoden bieten vielzdhlige Moglichkeiten vorliegende Daten auf interessieren-
de Eigenschaften zu untersuchen. So gibt es zum Beispiel den t-Test oder
Gauftest, ”um Hypothesen iiber den Parameter p zu iiberpriifen” [Steland
(2010), S.163], den Wilcozon-Test (auch bekannt als Mann-Whitney-Test)
oder mehrere x2-Tests. Zwei weitere Tests, die in dieser Arbeit benutzt wer-
den, sind der Ezakte Fisher-Test sowie der Kolmogorov-Smirnov-Test. Hinzu
kommen,nach |Lachenbruch| (2001)) und |Lachenbruch| (2002), sogenannte Two-
Part-Models, sowie eine Methode, die auf mazimal selektierten x?-Statistiken
basiert (im Weiteren Verlauf teilweise als Mazsel bezeichnet) und von [Bou-
lesteix (2006) entwickelt wurde.

Die Durchfiihrung statistischer Tests ist nicht immer problemlos moglich.
Jedem Test liegen dabei unter Umsténden bestimmte Annahmen zu Grunde,
die vorausgesetzt werden. Ein Beispiel ist die Annahme, dass die Daten einer
normalverteilten Grundgesamtheit entstammen. Diese greift insbesondere,
beim t- bzw. Gaufltest. Es gibt Anwendungsfelder der Statistik, in denen
gerade diese Annahmen nicht gemacht werden kénnen. Ein Anwendungsfeld
ist zum Beispiel die Medizin. Hier liegen héufig Daten vor, die viele kleine
Werte und vor allem auch Nullen enthalten. Beispielsweise Daten, die den
Effekt der Wirksamkeit eines Medikaments beschreiben (hat das Medika-
ment keine Wirkung, so ist der entsprechende Wert 0) oder Daten, in de-
nen es um interessierende (Blut-)Werte geht, welche bei gesunden Personen
eher hoch sind, bei den kranken jedoch niedrig (oder umgekehrt). Grofere
Werte sind eher selten, sind deswegen jedoch nicht weniger wichtig. Die ent-
sprechenden Daten folgen somit keinesfalls einer Normalverteilung. Sie sind
eher stark linkssteil verteilt. Durch diese Verletzung der Annahmen ist nicht

mehr sichergestellt, dass die angewandten Tests, hier speziell der t-Test, das



vorgegebene Signifikanzniveau « auch tatséchlich einhalten [Steland| (2010),
S.181].

Ein weiteres Problem ist die Herangehensweise an die Tests, insbesonde-
re bei Tests, die normalerweise fiir kategoriale Daten gedacht sind, wie der
Fisher-Test. Sind die Daten statt kategorial jedoch metrisch, so kann man die
Daten vor der Berechnung bei einem Wert grofler Null dichotomisieren, um
so Kategorien zu erzeugen. Liegen Daten vor, bei denen alle Auspragungen
grofer als Null sind, es jedoch viele verschiedene kleine Ausprigungen gibt,
wird es schwierig, einen geeigneten Schwellenwert auszuwihlen. Es gibt zwar
die Moglichkeit, die Tests mit verschiedenen Schwellenwerten durchzufiihren.
Jedoch trifft man seine Entscheidung so aufgrund des kleinsten p-Wertes
(Fishing for Significance), wovon dringend abzuraten ist. Fiir solche Daten
sind Tests wie der Fisher-Test demnach eher ungeeignet.

Ziel der Arbeit ist es, die Maxsel-Methode mit den anderen, oben ge-
nannten Tests (t-Test, Wilcoxon-Test, Komogorov-Smirnov-Test, y?+t-Test,
x?+Wilcoxon-Test) hinsichtlich ihrer Fihigkeit, Unterschiede in den Vertei-
lungen zweier Gruppen zu erkennen, zu vergleichen. Dazu wurden zunéchst
verschiedene Daten simuliert, welche sich in den Anteilen der Nullen, den Pa-
rametern und somit auch in den Verteilungen unterscheiden. Danach wurde
genauer betrachtet, wie sich die einzelnen Tests beziiglich der ausgegebe-
nen p-Werte verhalten und dies kritisch bewertet. Weiter wurden die Tests
auf einen realen Datensatz angewandt, welcher Daten iiber Krebspatienten
enthélt.

Die Simulation und die Berechnung der Ergebnisse erfolgte mit dem sta-

tistischen Programmpaket R, Version 3.0.1.

1.2 Ubersicht

In Kapitel [2] werden die theoretischen Hintergriinde der bereits bekannten
Tests erlautert. Kapitel [3| beschéftigt sich mit der Methode der Mazimal
selektierten x*-Statistik. In Kapitel |4 wird zuniichst das Simulationsdesign
beschrieben, um danach in Kapitel |5| die Ergebnisse zu préasentieren. Inhalt
von Kapitel [7]sind die Daten der Krebspatienten, die Durchfithrung der Tests



mit diesen und eine Aufstellung der gewonnenen Ergebnisse.

2 Bekannte statistische Tests

In den nachfolgenden Unterabschnitten werden die bereits bekannten Tests
kurz vorgestellt. Dabei handelt es sich um den y2-Unabhingigkeitstest, den
exakten Fisher-Test, den t-Test, den Wilcoxon-Test und den Kolmogorov-

Smirnov-Test. Aulerdem werden die Two-Part-Models vorgestellt.

2.1 Der y?-Unabhingigkeitstest

Der Test lasst sich auf der Grundlage kategorialer bzw. kategorisierter Daten
X und Y berechnen. (X;,Y;),7 = 1,...,n miissen dabei unabhéngige Stich-
probenvariablen sein. Diese sind in einer Kontingenztafel mit den Haufigkeiten
hi; und den Ausprigungen (X =i,Y = j) darstellbar. Getestet wird, ob X
und Y unabhéngig sind. Die Nullhypothese lésst sich deshalb schreiben als

Hy: P(X =i,Y = j) = P(X = i)P(Y = j)

oder vereinfacht ausgedriickt

Hy:my;=mm; V1,7,
P(X =4,Y =j) =,
P(X =1i)=m
und P(Y = j) =m.

Die Gegenhypothese lautet entsprechend

H :P(X=14Y=j)#P(X=0)PY =j),

fiir mindestens ein Paar (i, ). Wichtig zur Berechnung ist, dass die Randhéu-
figkeiten h; und h; gegeben sind. Die entsprechenden Randwahrscheinlich-
keiten lassen sich durch 7; = % und 7, = % schitzen, sowie unter der

Nullhypothese der Unabhéngigkeit 7;; = m; 7 ;. Die letztendlich zu berech-



nende Teststatistik lautet

mit
2Rk —1)(m - 1)).

Der Ablehnungsbereich der Nullhypothese beim y?-Unabhiingigkeitstest ist

X* > Xi_al((k = 1)(m — 1)),

wobei entsprechende Quantile einer Tabelle zu entnehmen sind [Fahrmeir,
et al. (2010), S.467f.].

Im Fall, dass die Anzahl der Freiheitsgrade > 1 betrdgt, konnen kei-
ne gerichteten Hypothesen formuliert werden. Die Voraussetzungen fiir die

Durchfiithrung des Tests sind

e Weniger als % aller Zellen der Kreuztabelle haben eine erwartete Haufig-
keit < 5.

e Keine Zelle weist eine erwartete Hiufigkeit < 1 auf |[Leonhart (2009),
$.207,210].

2.2 Der exakte Fisher-Test

Sind die Voraussetzungen des y2-Tests nicht erfiillt oder sind die Stichproben-
umfange n; und ny nicht grol genug, um approximierte Verfahren anwenden
zu konnen, so sollte stattdessen der exakte Fisher-Test durchgefiihrt werden.
Die Stichproben X = (X3,...,X,,) und Y = (Y1, ...,Y,,) sind unabhéngig.
Auch dieser Test ist fiir kategoriale Daten vorgesehen. Interessierende Grofien
sind die Wahrscheinlichkeiten



und die Nullhypothese
Hy :p1 = p2

VS.
Hy :py # pa.

Um eine Testgrofle zu konstruieren, wird auf die beiden Zufallsvariablen X =
Yo X;und YV o= Y)Y, sowie die bedingte Verteilung von X gegeben
X +Y, unter Hy, gegeben als

P(X =t)P(Y =t —t;)
P(X+Y =1t)

()
)

zugegriffen. Diese entspricht unter H, der hypergeometrischen Verteilung

H(ni 4 ng,nq,t). Um entscheiden zu kénnen, ob Hy abgelehnt werden kann
oder nicht, wird der kritische Bereich K = {0,... k, — 1} U{k, + 1,...,t}
aus

P(X >k X+Y =t)<a«a/2

und

P(X <kJX+Y =t) < a/2

so bestimmt, dass k, und k, die gréfite bzw. kleinste Zahl ist, die die je-
weilige Niveaubedingung einhélt. Hy wird abgelehnt, falls X = t; € K gilt
[Toutenburg und Heumann| (2008)), S.153f.].

2.3 Der Zweistichproben-t-Test

Der t-Test beschiéftigt sich mit Hypothesen iiber den Parameter p zweier nor-
malverteilten Variablen X ~ N(ux,0%) und Y ~ N(uy,o0%). Es wird vor-

ausgesetzt, dass die Stichproben (X7, ..., X,,,) und (Y1,...,Y,,) unabhingig



sind. Das zu testende Hypothesenpaar ist

Ho :pin = 1o
Hy o # po.

Man unterscheidet bei der Testberechnung drei verschiedene Félle |[Touten-
burg und Heumann (2008)), S.142f.]:

e Die Varianzen sind bekannt: Falls die Varianzen bekannt sind lautet
die Priifgrofie
X-Y
T(X,Y) = _ /iy N N(0,1).

TllO'g( + N20y

Unter der Nullhypothese ist diese standardnormalverteilt. n; ist der
Umfang der i-ten Stichprobe mit i = 1,2. ¢? entspricht der Varianz
der jeweiligen Stichprobe (X oder Y). X steht fiir die Schitzung des
unbekannten Erwartungswertes anhand des arithmetischen Mittels der
Stichprobenwerte und es gilt X = n% >t X;. Die Schitzung von Y
folgt analog. Hy wird abgelehnt, falls |T| > z,_, /> gilt [Toutenburg und
Heumann (2008]), S.132f.; S.143].

e Die Varianzen sind unbekannt, aber gleich: In diesem Fall lautet

die Priifgrofie

X_Y nl'nQ Ho
T(X,Y) = 1/ ~ t —2
( ’ ) S ni + No (n1+n2 )

- \/(m — 1S5 + (n2 — 1)}

n1+n2—2

mit

S? ist die gemeinsame Varianz der Stichproben X und Y, welche durch
die gepoolte Stichprobenvarianz geschitzt wird. S% entspricht der ge-
schiitzten Varianz von X. SZ entsprechend der von Y. X und Y werden
berechnet wie im Fall der bekannten Varianzen. Die Priifgrofie besitzt

unter der Nullhypothese eine Student’sche ¢t-Verteilung mit ny +ny — 2

10



Freiheitsgraden. Falls |T'| > t,_1.1_q/2 gilt, wird H, abgelehnt [Touten-
burg und Heumann, (2008)), S.135, S.143].

e Die Varianzen sind unbekannt und ungleich: Falls o3 # 0% gilt,

gibt es keine exakt bestimmbare Testgrofle, sondern nur die Naherungs-

l6sung o
X-Y
T(X,Y) = X =Y t(v)
mit

- (22 e

ganzzahlig gerundet. Die Nullhypothese wird abgelehnt, falls |T'| >
tn—11—-a/2 gilt [Toutenburg und Heumann (2008), S.135, S.145].

2.4 Der Wilcoxon-Rangsummen-Test

Dieser nonparametrische Test wird angewandt, falls die Daten nicht-normal-
verteilt sind und ist somit eine Alternative zum t- Test. Die Idee des Tests ist,
dass die Werte beider zu vergleichenden Stichproben gut durchmischt sein
sollten, falls die Nullhypothese

HO * Tmed = Ymed

gilt. xneq steht fiir den Median der Stichprobe X, 4,,,.4 analog fiir den Median
der Stichprobe Y. Voraussetzung des Tests ist, dass die Verteilungsfunktionen
beider Stichproben dieselbe Form besitzen. Um die Teststatistik aufzustellen,
miissen zunéchst die Rénge aller Beobachtungen der gepoolten Stichprobe,
d.h. X und Y zusammen, bestimmt werden. Bei Bindungen, d.h. wenn ein
Rang doppelt vorkommt, wird der Durchschnittsrang berechnet. Die Hypo-

thesenpaare sind
a HO * Tmed = Ymed VS- Hl * Ted 7& Ymed
b HO * Ted 2 Ymed VS. Hl P Tmed < Ymed

C HO * Ted S Ymed VS. Hl P Tmed = Ymed-

11



In dieser Arbeit ist das Hypothesenpaar (a) wichtig. Die letztendliche Test-
statistik lautet

Ng

i=1
n, ist die Anzahl der Werte in Stichprobe X. Es werden die Rénge der Beo-
bachtungen, die urspriinglich aus X stammen, aufsummiert. Die zugehorigen

Ablehnungsbereiche lauten:
a Tw > wi_q/2(n,m)
b Ty < wy(n,m)
¢ Tw > wi—a(n,m)
mit wg ist &-Quantil der tabellierten Verteilung [Fahrmeir et al| (2010),

S.459f].

2.5 Der Kolmogorov-Smirnov-Test fiir Zweistichpro-

benprobleme

Fiir den Kolmogorov-Smirnov-Test sind die zwei unabhéngigen Stichproben
Xi,..., Xy, und Yy, ..., Y, gegeben. Die zugehorigen Zufallsvariablen sind
X~ Fund Y ~ G. F ist die empirische Verteilungsfunktion von X, G die
von Y. Es soll gepriift werden, ob sich die Verteilungen beider Zufallsvaria-

blen signifikant unterscheiden. Dazu wird die Nullhypothese

gegen die Alternativhypothese
Hy: F(t) # G(t)

getestet. Um eine Entscheidung zu treffen, werden die Differenzen zwischen

beiden empirischen Verteilungsfunktionen gebildet. Die zugehorige Teststa-
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tistik ergibt sich somit als

K = max|F(t) - G(1)].

Fiir die Praxis geniigt es jedoch, nur den Abstand fiir ¢ € S zu bestimmen.
S ist die (gepoolte) Stichprobe S = X UY und es gilt die Teststatistik

K = max |F(t) — G(1)].

tesS

Der Ablehnbereich fiir die Nullhypothese ist
K > knl,ng;l—OH

wobei ki, n,1—a aus entsprechenden Tabellen entnommen werden kann [Tou-
tenburg und Heumann| (2008), S.172].

2.6 Two-Part-Models

Wie in der Einfithrung bereits kurz erwahnt, gibt es ”Two-Part-Models”,
welche vor allem benutzt werden, um die Klumpung der Daten bei der Null
zu beriicksichtigen. Folgende Erkldrung dieser Modelle wurde sinngeméfl aus
[Lachenbruch! (2002))] und |Lachenbruch| (2001)] iibernommen.

Wie der Name sagt, bestehen sie aus zwei Modellen. Die Responsevariable
hat bei dieser Art von Modell die Form y = (x, d) mit d = 1, falls y beobachtet
wurde oder positiv ist, und d = 0, falls y entsprechend fehlt oder y = 0.
Daraus folgt, dass der Response den Wert x annimmt, also y = z, falls
d = 1 und ansonsten nicht definiert ist. Die Wahrscheinlichkeitsfunktion

dieser ” Two-Part-Models” der i-ten Gruppe lautet

fila.d) = [Pl {0 = pon(@)}].

Fiir d = 1 (y wurde beobachtet, y > 0) folgt

filw, 1) = [P {1 = p)hi(2)}'] = hi(w) — pils(x)

13



und fiir d = 0 (y fehlt oder y = 0) entsprechend

fi(2,0) = [p} {(1 = pi)hi(2)}°] = hi(x) — ps.

Diese Wahrscheinlichkeitsfunktion entspricht der bedingten Verteilung von x,
dem stetigen Response, multipliziert mit der (binomialen) Wahrscheinlichkeit
von d in der i-ten Population. p; ist dabei der Anteil der Nullen und h;(x)
die Verteilung von z in der i-ten Gruppe

Fiir die Nullhypothese gilt

Ho : (pr = p2) N (1 = p2).

p entspricht dem Lageparameter von h;(z), p dem jeweiligen Nullanteil der
Gruppen. Somit basiert der Test wiederum auf zwei weiteren Tests: einem
Test auf Gleichheit der Anteile der Nullen, (p; = ps), und einem Test auf die
Gleichheit der Verteilungen der Werte, welche ungleich Null sind (p; = p2).
Falls der Anteil der Nullen und die Mittelwerte der Auspragungen, wel-
che grofler Null sind, in den Untergruppen verschieden sind, besteht die
Moglichkeit, dass die Mittelwerte der Ubergruppen dennoch gleich sind. Der
Grund dafiir ist, dass ein grolerer Anteil Nullen einen hohen Mittelwert stark
verringert (im Folgenden als dissonant bezeichnet) und umgekehrt (konso-
nant). Fiir den stetigen Teil wird eine spezielle Verteilung angenommen, wie
zum Beispiel die Log-Normalverteilung oder die log-Gammaverteilung.

In dieser Arbeit werden die Two-Part-Models mit den bekannten Zwei-

Stichproben-Tests gemacht und es folgt
X?=B*+T% X~ x*2)

B ist dabei der Wert der Teststatistik des Binomialtests, T" entweder der
Wert der Teststatistik des t-Tests oder des Wilcoxon-Tests. Fiir B und T'
gilt, dass sie unter der Annahme unabhéngiger Fehler der binomialen und
stetigen Teile der Verteilung selbst auch unabhéngig sind. Diese Tests mit
zwei Freiheitsgraden sind besser geeignet als die einfachen Tests, wie nur

der t-Test oder nur der Wilcoxon-Test, falls der groBlere Anteil an Nullen

14



in der Gruppe mit dem gréferen Mittelwert ist. Ist dies nicht der Fall, so
beeinflusst der Unterschied des Nullenanteils den Unterschied zwischen den
Mittelwerten und vor allem der Wilcoxon-Test ist besser geeignet. Der cut-
off Wert innerhalb des dichotomen Anteils basiert auf a priori Uberlegungen

und wird nicht aus den Daten generiert.

3 Maximal selektierte y?-Statistiken fiir ordi-

nale Variablen

Die Beschreibung folgender Methode basiert auf [Boulesteix| (2006))]. Vor al-
lem in der Medizin steht héufig die Problemstellung im Vordergrund, dass
man eine Abhéngigkeit zwischen einer binédren Variable Y und einer min-
destens ordinal skalierten Variable X untersuchen mochte. Bei nominal ska-
liertem X koénnte man den exakten Test nach Fisher rechnen oder, falls der
Stichprobenumfang grofi genug ist, auch einen asymptotischen x2-Test. Bei
stetigem X eignen sich Tests wie der t-Test oder der Wilcoxon-Rangsummen-
Test. Bei einem mindestens ordinal skalierten, aber nicht stetigem X, ist dies
komplizierter. Die Verteilung der maximal selektierten y2-Statistik ist un-
ter der Nullhypothese, dass X und Y unabhéngig sind, verschieden von der
bekannten y2-Verteilung. Die Abhingigkeit wird mit Hilfe eines Cutpoints
getestet. Die maximal selektierte y2-Statistik entspricht der maximalen y>2-
Statistik iiber alle diese Cutpoints. Diese im Folgenden resultierende, unter
der Nullhypothese geltende Verteilung der maximal selektierten y2-Statistik,
kann ebenfalls als Messmethode der Abhéngigkeit zwischen X und Y benutzt
werden.

Datengrundlage ist die Stichprobe (x;,v;);=1,.. n mit N unabhéngig und
identisch verteilten Realisationen von X und Y. X nimmt dabei K verschie-
dene Level, ai,...,a; € R, an. Es gilt 2 < K < N,a; < ... < ag. Y besitzt
die Level Y = 1 und Y = 2. Eine Moglichkeit, die Abhéngigkeit zwischen

X und Y zu messen, ist X in bindre Variablen 2™, k = 1,..., K — 1, zu

15



transformieren, wobei gilt:

%) =0, X <ag

) = 1, sonst

Die resultierende Verteilung der maximal selektierten y2-Statistik ist ab-

héngig von Ny und Ny und my, ..., myg, mit
my=Y Iwi=a), k=1 K
i=1

wobei I(x) die Indikatorfunktion ist. Man betrachte folgende 2 x 2 Kontin-
genztafel fir k =1,..., K — 1:

X <ay X > ay X

Y =1 Ni,<ay n1,>ay Nl
Y =2 N2 <a, N2 >a; Ny
2 N, <ap = Z?:l my | M. >ay, = Z]I‘{:k-i-l m; N

N; und N, bezeichnen die Anzahl der Realisationen mit y; = 1 und y; = 2.
Die entsprechende y2-Statistik ist

2
N (11 <a,N2,50, = M1,>0,M2,<a;,)
N1N2n.,§akn.,>ak

Xp =

Weiter ist die maximal selektierte y?-Statistik definiert als

2

— 2
Xmaz = ,_MAX X

k=1,..,K

Bestimmt man ein frei wihlbares d, so gilt, dass x2,,, < d g.d.w. alle Punkte
mit den Koordinaten (ny <4, ,n2<q,) fir k =1,..., K — 1 auf oder iiber der

Funktion

Nz NiNoVd | T 1 1
lowery(z) = N TN \/N (1 — N) <F1 + E)
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oder auf oder unter der Funktion

Noz  NiNoVd |z x 1 1
— el (5 I N (.
uppery(r) = 5=+ =y \/N ( N) (N1 * N2>

liegen. Mit Hilfe von Kombinatorik kommt man zu dem Ergebnis, dass

—1
N g N —i
PH (X%na:r > d) = S bsv
’ N2 SZ:; N2 _js

1
bh={ |,
J1
i — [ iy
bs: .S - .S ‘T bra 5:27"'7Qa
Js r=1 Js = Jr

wobei by der Anzahl der Pfade in P, entspricht und Py der Menge der Pfade
von (0,0) bis By, die nicht durch By, ..., Bs_y gehen. By, ..., B, haben die
Koordinaten (i1, j1), ..., (i, Jq) und i = n_<4,, upperq(i) < j < min(Na,1)

oder maz(0,i— Ny) < j < lowery(i). Daraus ergibt sich die Verteilungsfunk-

N\ K N,
F(d):1—<N2> ;(m-x)bg'

Will man nun die Abhéngigkeit zwischen X und Y messen, so nutzt man

tion

F(x2,,.). Hier testet man die Nullhypothese, dass X und Y unabhingig
sind. Die Verteilungsfunktion nimmt Werte im Intervall [0, 1] an. Je groer
der Wert von F(x?,,.), desto hoher ist auch der Zusammenhang zwischen X
und Y, und desto kleiner ist der p-Wert. Die Verteilungsfunktion ist ein gutes
Ma$ fiir den Zusammenhang, da man den p-Wert anhand von 1 — F(x2, )

berechnen kann.
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4 Simulationsdesign

Wie in der Einleitung bereits erwdhnt, soll das Verhalten der verschiedenen
Tests in unterschiedlichen Situationen miteinander verglichen werden. Dazu
wurden sechs verschiedene Simulationen durchgefiihrt. Aus jeder Simulation
resultiert eine andere Verteilung der Variable X. X besteht aus zwei Stich-
proben, ng und ny, deren Anteil an Nullen py bzw. p; entspricht. Die zweite
Variable, Y, ist binér und besteht aus den Werten 0 und 1. Der Wert 0 ist der
ersten Gruppe zugeordnet, kommt somit ng-mal vor, der Wert 1 gehort zur
zweiten Gruppe und hat eine Héufigkeit von n;. Die verwendeten Testbefehle
innerhalb der Simulationen sind t.test(), wilcox.test(), ks.test(),
chisq.test() und maxsel.test(). Fiir letzteren wird auf Funktionen aus
dem Paket exactmaxsel, welches mit dem Paket combinat lduft, zuriickge-
griffen. Weiter wurde die Funktion pchisq() benutzt, um den p-Wert, der
sich aus der Summe der Teststatistiken von t- und x?- und Wilcoxon- und
x2-Test ergibt, zu erhalten. Um ein verlissliches Ergebnis zu erhalten, betrug
die Anzahl der Iterationen 5000. Das bedeutet, dass 5000 mal Daten gene-
riert wurden, auf dessen Grundlage die Tests gerechnet wurden. Fiir jede
[teration wurde der entsprechende Seed gesetzt. Die Unterschiede zwischen

den Simulationen werden in den néchsten Unterkapiteln aufgefiihrt.

4.1 Simulation 1

Die erste Simulation generiert X bestehend aus Realisationen einer expo-
nentialverteilten Zufallsvariablen und Nullen. Die ersten ny Werte sind un-
ter dem Parameter )\, verteilt, die zweite Stichprobe, aus n; Werten be-
stehend, unter \;. Die Simulation wurde mit 15 verschiedenen Einstellun-
gen wiederholt. Dabei wurden jeweils alle oben genannten Tests gerechnet.
Die Settings pro Durchgang sind Tabelle [1| zu entnehmen. Die Simulation
wurde pro Durchgang dreimal durchgefiihrt. Die Stichprobenumfénge waren

no = ny = 50,n = 100, ng = ny = 20,n = 40 und ny = ny = 10, n = 20.

18



Durchgang || po | p1 | Ao | M1
1 05105 1 | 1 Nullhypothese!
2 05105 1] 2
3 05105113
4 05105 1|5
5 05107 1|1
6 05108 1|1
7 0510911
8 051071 2
9 05108 1] 2
10 05107113
11 0508|113
12 051072 |1
13 05108 2 |1
14 05107 3 |1
15 05108] 3 |1

Tabelle 1: Settings pro Durchgang fiir Simulation 1,3,4,5,6.

4.2 Simulation 2

Mit Hilfe von Simulation 2 sollen gleichverteilte Werte fiir X erzeugt werden.
Diese sind in der ersten Teilgruppe unter dem Parameter po und in der zwei-
ten Teilgruppe unter dem Parameter p; verteilt. Hinzu kommt der Anteil
der Nullen, py und p;, und zusétzlich kleine Werte in Form von Einsen und
Zweien. Dies wurde erreicht, indem zuféllig ausgewéhlte Werte, entsprechend
po und pq, der beiden Stichproben durch Werte einer poissonverteilten Zu-
fallsvariable mit Parameter A = 1 ersetzt wurden. Y ist bindr. Die Settings
pro Durchgang sind Tabelle [2] zu entnehmen. Diese Simulation wurde fiir
no = nyp = 20 durchgefithrt und es wurden die Tests Wilcoxon-Rangsummen-

Test, t-Test, Kolmogorov-Smirnov-Test und die Maxsel-Methode angewandt.

4.3 Simulation 3, 4, 5 und 6

Alle Simulationen wurden fiir ng = ny = 50 (n = 100) und ny = ny; = 25
(n = 50) gerechnet. Der Anteil der Nullen liegt auch hier bei pg und p; und die

Settings sind in Tabelle [l]abzulesen. Y ist immer binér. Das X in Simulation

19



Durchgang | po | p1 | po | pa
1 0.5 ] 0.5 |50 | 50 Nullhypothese!
2 0.510.5 |50 30
3 0.5]0.5 |50 |20
4 0.5]0.5 |50 | 10
5 0.510.7 |50 | 50
6 0.5 108 |50 |50
7 0.510.9 |50 |50
8 0.510.7 |50 |30
9 0.5 108 |50 30
10 0.5 0.7 | 50 | 20
11 0.510.8 |50 20
12 0.510.7 |30 |50
13 0.510.8 3050
14 0.5 0.7 | 20 | 50
15 0.5]0.8 |20 |50

Tabelle 2: Settings pro Durchgang fiir Simulation 2.

3 besteht aus logarithmisch normalverteilten Werten und Nullen, die echt
positiven Werte in Simulation 4 sind normalverteilt. Simulation 5 entspricht
Simulation 3 und Simulation 6 entspricht Simulation 4 mit dem Unterschied,
dass es in X nicht nur die Nullen als kleine Werte gibt, sondern auch Einsen
und Zweien. Diese wurden wie in Simulation 2 erzeugt. Hier wurde nur fiir

ny = ny = 50 simuliert. Bei allen vier Simulationen gilt Var(X)=1.

5 Simulationsergebnisse

Um die Ergebnisse der im vorangegangen Abschnitt beschriebenen Simu-
lationen besser beurteilen zu kénnen, wurden unter anderem Boxplots der
p-Werte erstellt. So ist schnell erkennbar, ob sich die p-Werte eher im Be-
reich der 0 ansammeln oder hoch sind. So kann man erste (grobe) Schliisse
iiber die Power der Tests unter den verschiedenen Bedingungen ziehen. Die
Ergebnisse hierzu befinden sich im Anhang. Im weiteren Verlauf der Analyse
wurden die Ablehnungsanteile samt Konfidenzintervall je Test und Durchlauf

berechnet. Dazu wurden p-Werte < 0.05 als signifikant eingestuft. Mit die-
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sen Berechnungen erhilt man gleichzeitig einen Uberblick iiber die Power der
Tests, vorausgesetzt die Alternativhypothese (ein Unterschied in den Vertei-
lungen) liegt vor. Da ein Vergleich der Ergebnisse anhand des Mittelwertes
bei p-Werten nicht geeignet ist, sind die Mediane in Betracht gezogen worden.
Um diese auf signifikante Unterschiede unter den einzelnen Tests zu priifen,

wurde der Wilcoxon-Rangsummen-Test gerechnet.

5.1 Simulation 1

Wie bereits erwdhnt, wurde Simulation 1 fiir drei verschiedene Gruppen-
groffen durchgefiihrt. In den Durchgéngen 2-15 lag ein Unterschied in den
Anteilen der Nullen, der Mittelwerte oder beidem vor. Bei Betrachtung und
Vergleichen, welcher Test am héufigsten den hochsten Ablehnungsanteil und
somit auch die héchste Power besitzt, stellt sich heraus, dass sich die Ergeb-
nisse mit den Gruppengréfien verdndern (vgl. Abb. . Hier wird der erste
Durchlauf auler Acht gelassen, da in diesem die Nullhypothese, d.h. iden-
tische Verteilungen, vorliegt, und somit das Ergebnis des Ablehnungsanteils
nicht der Power entspricht und weiter auch nicht mit denen der iibrigen
Durchlédufe vergleichbar ist.

Fiir ng = ny = 50 erreichen der Wilcoxon-Test und der t-Test im Two-
Part-Modell (BT) am héufigsten den hochsten Ablehnungsanteil (jeweils 8
von 14), gefolgt von der Maxsel-Methode, welche in 7 von 14 Durchgéingen
eine der Methoden mit dem grofiten Ablehnungsanteil ist. Platz 3 teilen sich
der Fisher -, Kolmogorov-Smirnov- und Wilcoxon-Test im Two-Part-Modell
(BW) mit der hochsten Power in 6 von 14 Durchgéngen. Schwéchster Test
ist der t-Test, welcher nur in 3 von 14 Féllen den hochsten Ablehnungsanteil
im Vergleich mit den anderen Tests erreicht.

Geht man in der Betrachtung weiter ins Detail und iiberpriift, welche
Voraussetzungen jeweils vorliegen und wie hoch der tatséchliche Ablehnungs-
anteil ist, so erkennt man, dass der des Fisher-Tests entweder 0 (95% KI, 0-0)
oder 1 (95%KI, 1-1) annimmt. Die gleiche Situation liegt beim Wilcoxon-Test
im Two-Part-Modell (BW) vor. Auch die anderen Tests erreichen, abgesehen

vom t-Test, teilweise einen Ablehnungsanteil von 1. Auffillig ist, dass, so-
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Abbildung 1: Haufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird (Durchgang 2-15) fiir n=100 (a), n=40 (b), n=10 (c), (Si-
mulation 1), falls mehreren Tests der maximale Anteil zugeteilt wird, erhoht
sich die Haufigkeit bei jedem entsprechend um 1.

bald nur einer dieser Tests diesen hochstmoglichen Anteil erreicht, auch alle
anderen Tests (bis auf den t-Test) die Nullhypothese in jeder der 5000 Ite-
rationen ablehnen und sich somit fiir die Alternativhypothese entscheiden.
In diesen Fillen betrédgt die Differenz der Anteile der Nullen mindestens
0.3. Der t-Test, welcher die Mittelwerte untersucht, lehnt die Nullhypothe-
se besonders oft ab, falls sich die Mittelwerte unterscheiden, die Anteile der
Nullen in den beiden Gruppen jedoch identisch sind (hier py = p; = 0.5).
Der Ablehnungsanteil erhoht sich mit zunehmender Differenz zwischen den
Mittelwerten (0.416, 95% KI, 0.402-0.429; 0.864, 95% KI, 0.855-0.874; 0.994,
95% KI, 0.991-0.996). Dass die Daten nicht normalverteilt sind scheint kein
groferes Problem darzustellen, da die Approximation einer solchen durch
n > 30 gegeben ist. Mit Blick auf die letzte Spalte der Tabelle |3| erkennt man
jedoch schnell, dass der t-Test, abgesehen von den eben beschriebenen drei

Durchgéngen, meist weit hinter den anderen liegt. Der grofite Unterschied
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zu den iibrigen Tests liegt in den dissonanten Féllen vor, d.h. wenn in der
Gruppe mit groflerem Mittelwert auch der hohere Nullanteil vorhanden ist,
was dazu fithrt, dass der Gesamtmittelwert geringer wird.

Der Kolmogorov-Smirnov-Test lehnt die Nullhypothese am 6ftesten in
Situationen ab, in denen die Differenz der Nullanteile grofier ist. Diese Diffe-
renz hat groBeren Einfluss auf den Ablehnungsanteil als Unterschiede in den
Mittelwerten innerhalb der Gruppen ohne die Nullen. Die Ursache ist darin
zu vermuten, dass grofle Unterschiede in den Nullanteilen auch groie Unter-
schiede in den Verteilungen bedeuten, welche der Kolmogorov-Smirnov-Test
urspriinglich untersucht.

Die Maxsel-Methode hat zwar nicht immer den héchsten Ablehnungsan-
teil, ist jedoch, bis auf ein paar Ausnahmen, konstant gut auf die verschiede-
nen Gegebenheiten eingegangen. Am meisten Probleme, einen Unterschied
zwischen den Gruppen zu erkennen, gab es bei geringem Unterschied in den
Mittelwerten und entgegengesetztem geringen Unterschied in den Nullantei-
len (0.063, 95% KI, 0.056-0.069) oder wenn es nur einen geringen Unterschied
in den Nullanteilen gibt, jedoch keinen zwischen den Mittelwerten (0.192,
95% KI, 0.181-0.203). Hier ist jedoch dringend anzumerken, dass bei diesen
Gegebenheiten alle anderen Tests einen noch geringeren Ablehnungsanteil
aufweisen. Besonders der Kolmogorov-Smirnov-Test hat hier aufgrund des
zuvor angemerkten Zusammenhangs zwischen Nullanteil und Verteilung eine
schwache Power.

Ein Vergleich zwischen den Two-Part-Modellen liefert als Ergebnis, dass
der BT genau so gut geeignet zu sein scheint wie der BW, héaufig sogar
besser. Bei einem Unterschied der Nullanteile von 0.2 und einem Unterschied
zwischen Ao und \; von 2, sowohl im konsonantischen als auch im dissonanten
Fall, fithrt der BT das Feld an. Im konsonantischen ist der Ablehnungsanteil
des Tests, wie auch bei allen anderen, jedoch wesentlich hoher (0.998, 95% KI
0.997-0.993) als im dissonanten (0.249, 95% KI 0.237-0.261). Der Wilcoxon-
Test scheint am besten geeignet, um einen Unterschied aufzudecken, falls der
Unterschied in den Nullanteilen zwar vorhanden aber gering ist, und auch
der Unterschied zwischen den Mittelwerten der echt positiven Werte eher
klein ist (0.961, 95% KI, 0.956-0.967) oder es keinen gibt (0.997, 95% KI,
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0.996-0.999).

Als néchstes wird die Situation im Fall nyg = n; = 20, und somit n = 40,
betrachtet. Die sich ergebenden Ablehnungsanteile der einzelnen Tests sind
in Tabelle 4] abzulesen. Wie auch zuvor, liegt der Ablehnungsanteil beim
Fisher-Test entweder bei genau 0 oder genau 1. Letzteres kommt nur ein-
mal vor. Hier ist ein Unterschied von 0.4 zwischen den Nullanteilen bei glei-
chen Gruppenmittelwerten notig. Der Wilcoxon-Test erreicht nur dreimal
einen Ablehnungsanteil > 0.5. Die Situation ist jedes Mal konsonantisch,
mit pg — p1 = —0.3 bzw. —0.4 und \g — A\; = —1 bzw. 0 (0.744, 95% KI,
0.732,0.756; 0.903, 95% KI, 0.895-0.911 und 1, 95% KI 1-1). In diesen Fillen
ist der Ablehnungsanteil des Wilcoxon-Tests im Vergleich mit denen der an-
deren der hochste. Er ist hauptséichlich am geringsten, wenn die Nullanteile
gleich sind, unabhéngig von der Differenz zwischen den Mittelwerten. Der
Grund hierfiir liegt bei den urspriinglichen Absichten des Tests. Der Wilcoxon
soll testen, ob ein Unterschied in den Medianen der beiden Gruppen vorliegt.
Da die Nullen in beiden Gruppen bereits jeweils 50% ausmachen, und der
Median den Wert angibt, unterhalb welchem 50% der Daten liegen, wird die-
ser, da die Anzahl der Werte je Gruppe eine gerade ist, aus dem Mittel der 0
und dem Minimum der jeweiligen Gruppe gebildet. Diese beiden Minima un-
terscheiden sich ohnehin nicht grof§ voneinander. Durch die Hinzunahme der
0 und Bilden des Mittelwerts gleichen sie sich weiter aneinander an. Auch die
anderen Tests haben in diesen Féllen eine eher geringe Power. Den hochsten
Ablehnungsanteil hat noch die Maxsel-Methode bei A\g—A; = —4 (0.629, 95%
KI 0.615-0.642). Der Kolmogorov-Smirnov-Test lehnt die Nullhypothese bei
diesen Gruppengroflen nur sehr selten ab. Der maximale Ablehnungsanteil
liegt hier bei 0.172 (95% KI, 0.162-0.182). Der BW erkennt zu keiner Zeit,
dass die Alternativhypothese vorliegt. Auch die Power des t-Tests und des
BTs nimmt deutlich ab, was wohl an der nicht mehr gegebenen Approxi-
mation der Normalverteilung liegt. Einen wirklich hohen Ablehnungsanteil
hat bei diesen Gruppengrofien keiner der Tests mehr. Am ehesten scheint in
den meisten Situationen noch die Maxsel-Methode zu empfehlen zu sein, die,
im Vergleich mit den anderen Tests, den hochsten Ablehnungsanteil besitzt,

falls die Nullanteile identisch sind oder sich, in dissonanten Féllen, nur gering
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F|W T KS BW | BT M

00 0.0138 | 6e-04 | 0 | 0.0014 | 0.0188 | Nullhypothese!

010 0.4158 | 0.0544 | 0 | 0.1806 | 0.359 | (F W BW) KS BT M T
0 | 0.0016 | 0.8644 | 0.278 | 0 | 0.6338 | 0.7964 | (F BW) W KS BT M T
0 | 0.0422 | 0.9936 | 0.7528 [ 0 | 0.9596 | 0.9876 | (F BW) W KS BT M T
0 | 04724 | 0.1976 | 0.0618 | 0 | 0.3472 | 0.1916 | (F BW) KSM T BT W
11 0.5766 | 1 1 1 1 T (F W KS BW BT M)
11 0914 |1 1 1 1 T (F W KS BW BT M)
0 | 0.9614 | 0.871 | 0.3766 | 0 | 0.957 | 0.766 | (F BW)KS M T BT W
11 0.9744 | 1 1 1 1 T (F W KS BW BT M)
0 | 0.9974 | 0.9898 | 0.6874 [ 0 | 0.9982 | 0.9602 | (F BW) KS M T W BT
11 0.9986 | 1 1 1 1 T (F W KS BW BT M)
0004 ]0.008 |0.005 [0 | 0.0384 | 0.0626 | (FBW)KS T BT W M
11 0.0626 | 1 1 1 1 T (F W KS BW BT M)
0 | 0.0034 | 0.0746 | 0.0022 | 0 | 0.2486 | 0.2384 | (F BW) KS W T M BT
11 0.0084 | 1 1 1 1 T (F W KS BW BT M)

Tabelle 3: Ablehnungsanteile fiir Simulation 1 je Durchlauf (1-15) fir ng =
ny = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stéarke
an, (...): gleicher Wert.

F|W T KS BW | BT M

010 0.0138 | 6e-04 | O 0.0014 | 0.0188 | Nullhypothese!

010 0.0668 | 0.0038 | 0 0.0156 | 0.104 | (F W BW)KSBT TM
010 0.2228 | 0.0194 | 0 0.061 | 0.2936 | (F W BW) KSBT T M
010 0.5426 | 0.0944 | 0 0.2348 | 0.6288 | (F W BW) KSBT T M
0 | 0.0032 | 0.051 | 0.0022 | O 0.0272 | 0.0452 | (F BW) KSW BT M T
0 | 0.36564 | 0.177 | 0.0136 | O 0.3002 | 0.222 | (FBW)KSTM BT W
1|1 0.4942 | 0.172 | O 0.9786 | 1 BW KS T BT (F W M)
0 | 0.0298 | 0.281 | 0.0212 | O 0.1844 | 0.2472 | FBW)KSWBT M T
0 | 0.7438 | 0.503 | 0.064 | O 0.6914 | 0.5216 | (F BW) KST M BT W
0 ]0.091 |0515 |0.061 |0 0.3666 | 0.4714 | (FBW) KSW BT M T
0 | 09028 | 0.697 | 0.137 | O 0.8646 | 0.714 | (FBW)KSTM BT W
0 | 4e-04 | 0.0026 | O 0 0.0012 | 0.006 | (F KSBW) W BT T M
0 | 0.102 | 0.0294 | 0.0014 | O 0.0612 | 0.0706 | (F BW) KSTBT M W
010 0.0014 | 0 0 2¢-04 | 0.0114 | (FWKSBW)BTTM
0 | 0.0376 | 0.0108 | 6e-04 | O 0.0194 | 0.0338 | (F BW) KST BT M W

Tabelle 4: Ablehnungsanteile fiir Simulation 1 je Durchlauf (1-15) fir ng =
ny = 20, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stéirke
an, (...): gleicher Wert.
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unterscheiden.

Im letzten Teil der Simulation wurden die Gruppengréfien noch einmal
auf ng = n; = 10 reduziert. Die Ablehnungsanteile sind in Tabelle [5] zu
finden. Hier fallen sofort die sehr geringen Ablehnungsanteile auf, welche nur
in wenigen Féllen > 0.1 sind. Die Anteile, welche grofer als 0.1 sind, stammen
von der Maxsel-Methode, mit einer Ausnahme. Der Wilcoxon-Test, welcher
ansonsten zu keiner Zeit einen Unterschied erkennt und der Ablehnungsanteil
somit bei 0 liegt, erreicht fir pg — p; = —0.4 einen Anteil von 0.162 (95%
KI, 0.152-0.173). Auch die anderen Tests sind in diesem Fall, verglichen mit
ihren anderen Ergebnissen, am stéarksten. Fiir sich genommen sind jedoch
auch diese Ergebnisse sehr schwach. Fiir den Fall, dass die Nullhypothese
vorliegt, erkennen die Tests dies zu sehr niedrigen Signifikanzniveaus. Der
hochste p-Wert stammt hier von der Maxsel-Methode und liegt bei 0.009.
Diese Werte sind im Vergleich mit den Ergebnissen der Simulationen mit

groferen Stichproben ziemlich klein.

F|W T KS | BW | BT M

0|0 8e-04 |0 0 4e-04 | 0.0092 | Nullhypothese!

010 0.004 | O 0 0.0016 | 0.0292 | (F WKSBW) BT T M
010 0.012 |0 0 0.0034 | 0.068 | (FWKSBW)BTTM
010 0.0334 | 0 0 0.0118 | 0.1654 | (F WKS BW) BT T M
010 0.0048 | 0 0 0.0018 | 0.0194 | (F WKS BW) BT T M
010 0.0178 | 0 0 0.016 | 0.0468 | (F W KS BW) BT T M
0 | 0.1624 | 0.0738 | O 0 0.2072 | 0.3234 | (FKSBW) TW BT M
010 0.0208 | 0 0 0.0064 | 0.068 | (FW KSBW)BTTM
010 0.046 | O 0 0.042 | 0.1202 | (F WKSBW) BT TM
010 0042 | O 0 0.0144 | 0.1274 | (F WKS BW) BT T M
010 0.0788 | 0 0 0.0734 | 0.196 | (F W KSBW)BT TM
010 0.001 |0 0 2e-04 | 0.0044 | (F WKSBW) BT T M
010 0.0054 | 0 0 0.0044 | 0.0172 | (F WKSBW) BT T M
010 4e-04 | O 0 0 8e-04 | (FWKSBWBT)TM
010 0.0022 | O 0 0.002 | 0.0078 | (F WKSBW) BT TM

Tabelle 5: Ablehnungsanteile fiir Simulation 1 je Durchlauf (1-15) fir ng =
ny = 10, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stérke
an, (...): gleicher Wert.
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5.2 Simulation 2

Wie schon bei Simulation 1 wurde zunichst fiir einen ersten Uberblick ein
Balkendiagramm beziiglich der Héufigkeiten der maximalen Ablehnungsan-
teile je Durchgang der einzelnen Tests erstellt (vgl. Abb. . Wichtig ist, sich
bei der Betrachtung der Ergebnisse in Erinnerung zu rufen, dass hier nicht
nur Nullen den angegebenen Anteil ausmachen, sondern auch kleine Zahlen
wie 1,2 u.s.w. Einfachheitshalber wird dieser Anteil dennoch als Nullanteil
bezeichnet! Auch hier wurden, aus demselben Grund wie bei vorheriger Simu-
lation, nur die Durchlaufe 2-15 betrachtet. Diese Simulation wurde mit dem
Wilcoxon-, dem t-, dem Kolmogorov-Smirnov-Test und der Maxsel-Methode

gemacht und fiir ng = ny = 20 durchgefiihrt.

Haufigkeit

Test

Abbildung 2: Haufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird fiir n=40, (Simulation 2), falls mehreren Tests der maximale
Anteil zugeteilt wird, erhoht sich die Haufigkeit bei jedem entsprechend um
1.

Die Maxsel-Methode hat hier eindeutig am haufigsten, in 50% der Fille,
die hochste Power. Es folgt der t-Test in 4 und der Wilcoxon-Test in 3 von
14 Durchlaufen. Der Kolmogorov-Smirnov-Test hingegen ist kein Mal der
stiarkste Test.

27



Einen detaillierteren Uberblick schafft Tabelle @ Liegt die Nullhypothese
vor, d.h. sind die Verteilungen in den beiden Gruppen identisch, so erken-
nen der Wilcoxon- und der Kolmogorov-Smirnov-Test dies am haufigsten.
Sie behalten die Nullhypothese immer bei. Auch der t-Test lehnt Hy nur in
den wenigsten Féllen ab. Die Maxsel-Methode lehnt die Nullhypothese in
etwas mehr als 1% der Félle ab. Dieser Wert liegt jedoch ebenso weit unter
dem vorgegebenen Signifikanzniveau von 0.05. Somit scheinen alle vier Tests
verladsslich zu sein, sollten sie fiir eine identische Verteilung entscheiden.

Fiir die weiteren Durchlaufe fillt auf, dass, bis auf die vier letzten und den
sechsten, Maxsel-Methode und t-Test aufeinander folgen. In den Durchlaufen,
bei denen sich die Gruppen nur in den Mittelwerten unterscheiden, ist die
Maxsel-Methode stérker in der Detektierung eines Unterschieds zwischen den
Verteilungen. Die Differenz in der Power beider Tests nimmt jedoch ab, je
grofler der Unterschied zwischen den Mittelwerten des echt positiven Teils
der Gruppen wird. So betrégt sie bei der Maxsel-Methode in Durchlauf 3 bei
einem Nullanteil von je 0.5 und einer Differenz zwischen den Mittelwerten
von 50 — 20 = 30 bereits 0.712 (95% KI, 0.67-0.725), beim t-Test jedoch
erst 0.389 (95% KI, 0.376-0.403). In Durchgang 4 jedoch verbessert sich die
Maxsel-Methode um ca. 38% auf 0.980 (95% KI, 0.976-0.984), der t-Test
hingegen verbessert sich um ganze 142% auf 0.941 (95% KI, 0.935-0.948).
Kolmogorov-Smirnov und Wilcoxon haben in diesen Fillen eine Power < 0.1,
werden jedoch auch mit Zunahme der Mittelwertdifferenz stérker. Dies ist
allerdings nur relativ zu sehen, denn der Wilcoxon erreicht in Durchlauf 4
nur eine Power von 0.048 (95% KI, 0.042-0.054), der Kolmogorov-Smirnov
kommt immerhin auf 0.439 (95% KI, 0.425-0452). In den Féillen, in denen
sich die Gruppen in den Nullanteilen unterscheiden und die Mittelwerte der
echt positiven Werte der Stichproben identisch sind, haben alle vier Tests ei-
ne sehr geringe Power. Davon ausgenommen ist Durchlauf 7, bei welchem die
Differenz zwischen dem Nullanteil in der ersten und dem Nullanteil der zwei-
ten Gruppe —0.4 betrdagt. Hier haben ein weiteres Mal die Maxsel-Methode
mit 0.896 (95% KI, 0.887-0.904) und der t-Test mit 0.732 (95% KI, 0.72-
0.744) die hochste Power. Nicht viel schlechter ist der Wilcoxon mit 0.626
(95% KI, 0.613-0.64). Nur der Kolmogorov-Smirnov liegt mit 0.409 (95% KI,
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0.395-0.423) unterhalb einer Power von 0.5. Die Stirke der drei erstgenann-
ten Tests lasst sich wie folgt begriinden: Die Maxsel-Methode findet den
Cutpoint mit der maximalen y2-Statistik, so dass der héchstmogliche Zu-
sammenhang zwischen den Daten besteht. Somit sind die metrischen Daten
optimal in kategorisiert. Da der Unterschied zwischen den einzelnen Grup-
pen sehr hoch ist, gibt es keinen Grund, dass dieser von der Methode unter
den gegebenen Umstédnden nicht erkannt wird. Auch der t-Test, welcher auf
Unterschiede in den Mittelwerten der zwei Gruppen testet, deckt den Un-
terschied, welcher durch den konsonantischen Effekt noch verstarkt wird, in
den Verteilungen auf. Fiir den Wilcoxon ist der Unterschied in den Media-
nen nun grofer und somit ersichtlicher als in zuvor genannter Situation, da
der Median der zweiten Gruppe hier bei einem Anteil der Nullen von 90%
definitiv einen der kleinen Werte annimmt. Der Median der ersten Gruppe
dagegen bildet sich als Mittel aus dem Maximum der kleinen Werte und dem
Minimum der grofen Werte (welche entscheidend hoher sind als die kleinen).

Bei Durchlauf 8 bis 11, den konsonantischen Féllen, dominiert der t-
Test. Die Reihenfolge in der Power der Tests ist bei jedem der Durchgéinge
identisch, der Kolmogorov-Smirnov-Test liegt, hinter dem Wilcoxon und der
Maxsel-Methode, immer an letzter Stelle. Maxsel, Kolmogorov-Smirnov und
t-Test werden mit jedem Durchgang stérker, hdngen somit nur von dem ab-
soluten Unterschied zwischen den Gruppen ab. Die Power des Wilcoxon da-
gegen wird mit zunehmendem Unterschied der Mittelwerte des echt-positiven
Teils hoher, ist dabei jedoch jeweils minimal kleiner fiir die Durchlaufe, in de-
nen die Differenz zwischen den Nullanteilen (nur) —0.2 betréagt. Den hochsten
Ablehnungsanteil hat jede Methode bei Durchlauf 11 (Differenz in Nullantei-
len: —0.3, Differenz in Mittelwerten des echt-positiven Teils: 30). Der t-Test
ist hier mit einer Power von 0.946 (95% KI, 0.94-0.953) ganze 92% besser als
der Wilcoxon mit 0.493 (95% KI, 0.479-0.507) und sogar mehr als dreimal so
stark wie der Kolmogorov-Smirnov mit nur 0.235 (95% KI, 0.223-0.247).

In den dissonanten Féllen (Durchlauf 12 bis 15), ist im Grunde genom-
men die Power jedes Tests ziemlich niedrig. Selten wird ein Wert von 0.1
iiberschritten. Der Grund dafiir ist der geringe Unterschied zwischen den

Gruppen. Trotz groflerer Unterschiede in den Mittelwerten des echt-positiven
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Teils sind die absoluten Unterschiede der Mittelwerte aufgrund des gegensétz-
lichen Nullanteils nur gering. So gesehen ist es unter Umsténden gar nicht so
falsch, dass die Tests diesen Unterschied nicht (als signifikant) detektieren,

da er einfach zu gering ist.

W T KS M
0 8e-04 |0 0.0124 | Nullhypothese!
0.0014 | 0.063 | 0.0076 | 0.2838 | W KS T M
0.01 0.3894 | 0.0834 | 0.7124 | WKS T M
0.0478 | 0.9418 | 0.4386 | 0.9798 | W KS T M
0.0442 | 0.0506 | 0.0076 | 0.0526 | KS W T M
0.2618 | 0.2544 | 0.0582 | 0.213 | KSM T W
0.6264 | 0.732 | 0.409 | 0.8956 | KS W T M
0.1378 | 0.4158 | 0.0316 | 0.381 | KSW M T

9 || 0.4106 | 0.7404 | 0.1136 | 0.5472 | KSW M T
10 || 0.2334 | 0.8062 | 0.1292 | 0.7642 | KS W M T
11 | 0.4928 | 0.9464 | 0.235 | 0.8372 | KSW M T
12 | 0.0094 | 0.0032 | 0.006 | 0.0292 | T KS W M
13 || 0.1428 | 0.0364 | 0.0456 | 0.114 | TKS M W
14 || 0.003 | 2e-04 | 0.0052 | 0.0848 | T W KS M
15 | 0.0912 | 0.0084 | 0.0392 | 0.0844 | T KS M W

O 1 O UL i W N =

Tabelle 6: Ablehnungsanteile fiir Simulation 2 je Durchlauf (1-15) fiir ny =
ny = 20, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stérke
an, (...): gleicher Wert.

5.3 Simulation 3

Fiir einen ersten Uberblick iiber die Ergebnissituation zunichst die Abbil-
dung der Balkendiagramme zu den jeweiligen Durchléufen fiir ng = n; = 50
und ng = ny = 25 (vgl. Abb. [3)).

Es ist zu erkennen, dass die Maxsel-Methode am héaufigsten die hochste
Power hat. Die anderen Tests unterscheiden sich, ungeachtet der tatsichli-
chen Power, in diesem Kriterium nicht besonders. Der t-Test zdhlt immer
(sowohl fiir die groferen, als auch die kleineren Gruppengréfien) zu den Tests
mit einem geringeren Ablehnungsanteil. Bei Gruppengrofien mit ny = ny =

25 liegen die Tests nidher beieinander.
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Abbildung 3: Haufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird fir n=100 (a) und n=50 (b), (Simulation 3), falls mehreren
Tests der maximale Anteil zugeteilt wird, erhoht sich die Hiaufigkeit bei jedem
entsprechend um 1.

Fiir die Details betrachte man Tabelle [7] und [8] Liegt kein Unterschied
in der Verteilung beider Gruppen vor, so erkennen die Tests dies sowohl bei
einem Gruppenumfang von 50 als auch von 25 richtig. Gibt es den Unter-
schied aufgrund verschiedener Mittelwerte des echt-positiven Teils wahrend
die Nullanteile in beiden Gruppen identisch sind, so haben fast alle Tests,
bei einer Gruppengrdéfie von 50, eine Power > 0.9. Der Fisher-Test und der
BW jedoch erkennen diesen Unterschied zu keiner Zeit. Ihre Power betragt
konstant 0. Einzig fiir den Fall, dass die Differenz zwischen den Mittelwerten
1 — 0.5 = 0.5 betrégt, erreichen die iibrigen Tests das Niveau von 0.9 nicht.
Hier ist die Maxsel-Methode mit einem Ablehnungsanteil von 0.642 (95%
KI, 0.629-0.655) am stérksten. Auch in den anderen beiden Fillen liegt sie
vor den anderen Tests und lehnt die Nullhypothese (fast) immer korrekt ab.
Thre Power steigt iiber 0.999 (95% KI, 0.999-1) bis hin zu 1. Unterscheiden
sich die Gruppen aufgrund der Nullanteile, jedoch nicht in den Mittelwerten
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des echt-positiven Teils, so betragt die Power jedes Tests, abgesehen vom
t-Test, 1. Diese Aussage gilt fiir einen Unterschied in den Nullanteilen von
mindestens —0.3. Bei einem Unterschied von nur —0.2 ist der Wilcoxon-Test
mit einer Power von 0.498 (95% KI, 0.485-0.512) der Stérkste. Den groften
Unterschied macht es fiir den Kolmogorov-Smirnov-Test, ob die Differenz
der Nullanteile nur —0.2 oder schon —0.3 betrdgt. Im ersten Fall betrigt die
Power gerade einmal 0.059 (95% KI, 0.052-0.066), wohingegen sie im zweiten
direkt auf 1 ansteigt. In konsonantischen Féllen sind die Tests nahezu gleich
gut. Ausnahmen sind hier der Fisher-Test und BW fiir den Fall, dass die Dif-
ferenz zwischen den Nullanteilen 0.2 betrédgt und die der Mittelwerte —0.5.
Hier erkennen sie zu keiner Zeit, dass ein Unterschied existiert, wohingegen
die anderen Tests eine Power von (nahe) 1 erreichen. In den beiden letzten
Durchlaufen, in denen der Unterschied in den Mittelwerten des echt-positiven
Teils —2/3 betrigt, ist der t-Test den anderen Tests weit unterlegen. Hier er-
reicht dieser nur eine Power von 0.073 (95% KI, 0.069-0.08).

Fiir eine Gruppengroflie von jeweils 25 sind die Tests im Allgemeinen
alle schwécher. Eine Ausnahme bilden hier die dissonanten Félle, in denen
alle Tests (bis auf Fisher und BW in 2 Durchléufen) eine Power nahe der 1

erreichen.

5.4 Simulation 4

Ein Blick auf die Balkendiagramme (Abb. [4)) zeigt, dass bei einer Gruppen-
grofle von ng = n; = 50 die Maxsel-Methode am hé&ufigsten die hochste
Power hat. Auch auf den BT ist in 50% der Félle (mit) der meiste Verlass.
Am schwichsten ist der BW, welcher niemals den hochsten Ablehnungsan-
teil hat. Dies gilt auch fiir ng = ny; = 25. Statt der Maxsel-Methode ist hier
jedoch der Fisher-Test am haufigsten der zuverlassigste.

Die Nullhypothese wird zuverléssig fiir beide Gruppengréfien erkannt (vgl.
Tabellen [9 und [10). Bei gleichen Nullanteilen sind alle Tests bis auf Fisher
und BW sehr stark, sobald die absolute Differenz zwischen den Mittelwerten
grofer als 2/3 ist. Bei einer kleineren Differenz von 0.5 liegt die Power bei
allen Tests unter 0.5. Nur die Maxsel-Methode und der t-Test iiberschreiten
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F|W T KS BW | BT M

0]0 0.0086 | 8¢-04 | 0 | 6e-04 | 0.0162 | Nullhypothese!

0 | 0.0014 | 0.6372 | 0.2756 | 0 | 0.3444 | 0.6418 | (F BW) W KS BT T M
0 | 0.482 | 0.9836 | 0.9886 | 0 | 0.9312 | 0.9994 | (F BW) W BT T KS M
01 0.9926 | 1 0 |o09728 |1 (F BW) BT T (W KS M)
0 | 0.4984 | 0.1796 | 0.059 | 0 | 0.3352 | 0.2054 | (F BW) KS T M BT W
11 0.502 | 1 1 1 1 T (F W KS BW BT M)
11 0.8568 | 1 1 1 1 T (F W KS BW BT M)
0 | 8e-04 | 0.0238 | 2¢-04 |0 | 0.1252 | 0.1002 | (F BW) KS W T M BT
11 0.0134 | 1 1 1 1 T (F W KS BW BT M)
010 0.6716 | 0.0328 | 0 | 0.9048 | 0.8072 | (F W BW) KS T M BT
11 0.0704 | 1 1 1 1 T (F W KS BW BT M)
0 | 0.998 | 0.9106 | 0.8294 | 0 | 0.9724 | 0.9668 | (F BW) KS T M BT W
11 0.9658 | 1 1 1 1 T (F W KS BW BT M)
1|1 0.0728 | 1 1 1 1 T (F W KS BW BT M)
11 0.0728 | 1 1 1 1 T (F W KS BW BT M)

Tabelle 7: Ablehnungsanteile fiir Simulation 3 je Durchlauf (1-15) fir ng =
ny = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stéarke
an, (...): gleicher Wert.

F|W T KS BW | BT M

0]0 0.0048 | 8¢-04 | 0 | 2¢-04 | 0.0096 | Nullhypothese!

010 0.2676 | 0.0664 | 0 | 0.0764 | 0.3074 | (F W BW) KS BT T M
010 0.8294 | 0.6634 | 0 | 0.5736 | 0.937 | (F W BW) BT KST M
010 0942 | 1 0 |o08312]1 (F W BW) BT T (KS M)
0 | 0.0168 | 0.057 | 0.0048 | 0 | 0.0374 | 0.067 | (F BW)KS T M BT W
10891 | 025820095 |0 [063 |04432 | BWKSTMBT W F
11 0.5316 | 1 1 1 1 T (F W KS BW BT M)
010 0.0036 | 0 0 |0.001 |0.0494 | (F W KSBW)BT T M
1 | 0.3018 | 0.0118 | 0.0022 | 0 | 0.0984 | 0.0566 | BW KS T M BT W F
010 0.1572 | 0 0 |0095 | 0438 | (FW KSBW)BTTM
1 | 0.5938 | 0.0846 | 0.0046 | 1 1 1 KS T W (F BW BT M)
0 | 0.9716 | 0.6516 | 0.565 | 0 | 0.7794 | 0.9146 | (F BW) KS T BT M W
11 0.8126 | 0.9504 | 1 1 1 T KS (F W BW BT M)
01 0.9102 | 0.9898 | 0 | 0.9588 | 1 (F BW) T BT KS (W M)
11 0.927 | 0.9994 | 1 1 1 T KS (F W BW BT M)

Tabelle 8: Ablehnungsanteile fiir Simulation 3 je Durchlauf (1-15) fir ng =
ny = 25, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stéarke
an, (...): gleicher Wert.

diese Marke mit 0.662 (95% KI, 0.649-0.675) und 0.696 (95% KI, 0.683-0.709).
Unterscheiden sich die Verteilungen aufgrund unterschiedlicher Nullanteile,
so sind die Tests eher schwach, solange die Differenz nicht 0.4 betragt. Fiir

diesen Fall haben alle Tests eine Power > 0.8. Eine Ausnahme bilden der
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Fisher und die Maxsel-Methode, welche auch bei einem Unterschied in den
Nullanteilen von 0.3 eine Power von 0.802 (95% KI, 0.791-0.813) und 0.565
(95% KI, 0.551-0.579) aufweisen.
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Abbildung 4: Haufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird fir n=100 (a) und n=50 (b), (Simulation 4), falls mehreren
Tests der maximale Anteil zugeteilt wird, erhoht sich die Hiaufigkeit bei jedem
entsprechend um 1.

Bei Unterschieden sowohl in Nullanteilen als auch in den Mittelwerten
im konsonantischen Sinne sind die Ergebnisse unterschiedlich. Fiir geringe
Differenzen in Nullanteilen und Mittelwerten ist kein Test besonders gut ge-
eignet. Die Power liegt hier bei sechs von sieben Tests unter 0.01. Nur die
Maxsel-Methode erreicht einen Wert von 0.163 (95% KI, 0.153-0.173). Bis
auf Fisher und Maxsel sind auch bei den iibrigen Durchlaufen entsprechender
Einstellungen die Tests sehr schwach und ihre Power nicht nennenswert. Fis-
her erreicht bei Differenzen von 0.3 in den Nullanteilen immerhin eine Power
von 0.829 (95% KI, 0.819-0.84) und 0.808 (95% KI, 0.797-0.819). Maxsel bei

einem Unterschied in den Nullanteilen von 0.2 und einer Mittelwertdifferenz
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von 2/3 eine Power von 0.835 (95% KI, 0.825-0.846). Bei identischer Mittel-
wertdifferenz und einem Unterschied in den Nullanteilen von 0.3 kommt die
Methode nur auf 0.560 (95% KI, 0.546-0.574), womit sie jedoch einen im-
mer noch deutlich hoheren Ablehnungsanteil als die iibrigen Tests hat (auler
Fisher).

Fiir die dissonanten Félle sticht fiir eine Differenz in den Mittelwerten
von 0.5 nur der BW bei einem Unterschied zwischen den Nullanteilen von 0.2
heraus. Wahrend alle anderen Tests eine Power von 0.8 iiberschreiten, kommt
er nur auf 0.328 (95% KI, 0.315-0.341). Fiir einen Mittelwertunterschied von
2/3 hat vor allem der Fisher mit 0.802 (95% KI, 0.791-0.813) eine hohe Power.
Die Maxsel-Methode hebt sich mit 0.565 (95% KI, 0.551-0.579) jedoch auch
noch deutlich von den iibrigen Tests ab.

Fiir die kleinere Gruppengrofle von 25 Werten je Stichprobe sind die Tests,
im Vergleich mit den vorherigen Simulationen, noch immer stark. Die hochste
Power haben sie in den dissonanten Situationen, die geringste vor allem in den
konsonantischen. Vor allem Fisher und BW erkennen bei gleichen Nullantei-
len einen Unterschied in den Verteilungen aufgrund einer Differenz zwischen
den Mittelwerten zu keiner Zeit, wohingegen die iibrigen Tests ab einem Un-

terschied von 2/3 verlésslich sind.
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F W T KS BW BT M

2¢-04 | 0.0084 | 0.0146 | 8e-04 | 0 0.005 | 0.0236 | Nullhypothese!

4e-04 | 0.396 | 0.6962 | 0.2756 | 0 0.4712 | 0.6622 | BW F KS W BT M T
6e-04 | 0.9602 | 0.9998 | 0.9886 | 0 0.9956 | 0.9994 | BW F W KS BT M T
6e-04 | 1 1 1 0 1 1 BW F (W T KS BT M)

0.202 | 0.2162 | 0.2006 | 0.0476 | 0.034 | 0.327 | 0.2016 | BWKSTM F W BT
0.8024 | 0.0248 | 0.0014 | 0.075 | 0.217 | 0.282 | 0.565 | TWKSBWBTMF
0.9998 | 0.8808 | 0.893 | 0.955 | 0.9984 | 0.9986 | 1 WTKSBWBTFM
0.0078 | 0.0014 | 0.009 | 2e-04 | 2¢e-04 | 0.0018 | 0.1628 | (KSBW) WBTFTM
0.8292 | 0.1546 | 0.0176 | 0.1284 | 0.271 | 0.4186 | 0.4198 | TKS W BW BT M F
2e-04 | 0.0024 | 0.2258 | 0.0328 | O 0.0946 | 0.8354 | BWF W KSBT T M
0.8084 | 0.0268 | 0.0014 | 0.078 | 0.2228 | 0.2778 | 0.56 TWKSBWBTMF
0.8056 | 0.9808 | 0.9916 | 0.8268 | 0.3276 | 0.9974 | 0.9686 | BWF KSM W BT T
1 0.9992 | 0.9998 | 0.9956 | 0.9944 | 1 0.9998 | BW KS W (T M) (F BT)
0.8024 | 0.0248 | 0.0014 | 0.075 | 0.217 | 0.282 | 0.565 | TWKSBWBTMF
0.8024 | 0.0248 | 0.0014 | 0.075 | 0.217 | 0.282 | 0.565 | TWKSBWBTMF

Tabelle 9: Ablehnungsanteile fiir Simulation 4 je Durchlauf (1-15) fir ng =
ny = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stéarke
an, (...): gleicher Wert.

5.5 Simulation 5 und 6

Die letzten beiden Simulationen unterscheiden sich nur insofern von den
Simulationen 3 und 4, als dass sie auch andere kleine Werte abgesehen der
Nullen, sprich 1, 2 u.s.w., beinhalten. Man koénnte vermuten, dass es in den
Teststérken keine gravierenden Unterschiede gibt. Ein Blick auf die Ergeb-
nisse zeigt jedoch ein anderes Bild. Allerdings soll nur auf die gréfiten Un-
terschiede eingegangen werden.

Die Uberlegenheit der Maxsel-Methode ist uniibersehbar. Bei den normal-
verteilten, echt-positiven Werten in Simulation 6 riickt der t-Test als stérkster
Test in 5 von 14 Féllen etwas auf, erreicht den Wert von 10 von 14 jedoch
nicht anndhernd (vgl. Abb. . Bei Betrachtung der Ablehnungsanteile in
Tabelle und erkennt man an erstgenannter, dass auch hier der BW
zusammen mit dem Fisher sehr geringe Ablehnungsanteile hat. Auch eher zu
den schwicheren zdhlt der Kolmogorov-Smirnov-Test. Im Vergleich mit Si-
mulation 4, bei der die kleinen Werte ausschlieilich die Nullen beinhalteten,
sind alle Tests schwécher geworden, was die Detektierung von Unterschieden
betrifft. Sehr gute Ergebnisse erzielen fast alle Tests wieder in den dissonan-

ten Fiéllen. Vor allem in denen, mit dem grofleren Unterschied zwischen den
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F W T KS BW | BT M

0 0.0092 | 0.0156 | 8e-04 | 0 0.0058 | 0.0204 | Nullhypothese!

0 0.1352 | 0.3182 | 0.0664 | 0 0.1502 | 0.3696 | (F BW) KS W BT T M
0 0.485 | 0.9238 | 0.6634 | 0 0.7336 | 0.9512 | (F BW) W KS BT T M
0 0.8472 | 1 1 0 1 1 (F BW) W (T KS BT M)
0.0198 | 0.0786 | 0.075 | 0.0046 | 0.0018 | 0.0898 | 0.0748 | BW KS F M T W BT
0.3128 | 0.2948 | 0.2668 | 0.0672 | 0.0776 | 0.4442 | 0.3758 | KS BW T W F M BT
0.7856 | 0.5254 | 0.504 | 0.289 | 0.5018 | 0.814 | 0.8722 | KS BW T W F BT M
0 0.0016 | 0.0058 | 0 0 8e-04 | 0.0596 | (F KS BW) BT W T M
0.128 | 0.057 | 0.0122 | 0.0018 | 0.0016 | 0.067 | 0.0486 | BW KS T M W BT F
0 0.0028 | 0.0564 | 0 0 0.0064 | 0.4608 | (F KS BW) W BT T M
0.3622 | 0.0716 | 0.0062 | 0.003 | 0.1074 | 0.1248 | 0.251 | KST W BW BT M F
0.5756 | 0.9238 | 0.92 | 0.5646 | 0.0596 | 0.9578 | 0.9182 | BW KS F M T W BT
0.9934 | 0.9916 | 0.9908 | 0.9222 | 0.9352 | 0.9994 | 0.997 | KS BW T W F M BT
0.7084 | 1 1 0.9898 | 0.072 | 1 1 BW F KS (W T BT M)
1 1 1 0.9994 | 0.9962 | 1 1 BW KS (F W T BT M)

Tabelle 10: Ablehnungsanteile fiir Simulation 4 je Durchlauf (1-15) fiir ny =
ny = 25, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stéarke

an, (...): gleicher Wert.

Mittelwerten. Anhand der zweiten Tabelle erkennt man, dass der t-Test ge-

rade in den Durchléufen, in denen konsonantische Situationen vorliegen, und

somit die Differenz der Gesamtmittelwerte eher grof3 ist, diesen Unterschied

nicht detektiert. Seine Power liegt hier gerade einmal bei zum Beispiel 0.067
(95% KI, 0.261-0.286). Auch hier scheinen BW und Fisher nicht in der Lage,

einen Unterschied in den Verteilungen zu erkennen. Thre Power liegt in den

meisten Féllen unter 0.1.
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F

W

T

KS

BW

BT

M

0.0118
0.0118
0.0118
0.0118
0.0808
0.1668
0.297

0.0808
0.1668
0.0808
0.1668
0.0808
0.1668
0.1682
0.1682

0.0128
0.3408
0.8624
0.9758
0.1622
0.3944
0.6554
0.007

0.1146
0.009

0.0364
0.8376
0.9524
0.0362
0.0362

0.0166
0.6666
0.984
0.9926
0.1252
0.3106
0.6344
0.0674
0.0082
0.746
0.1554
0.89
0.9512
0.1554
0.1554

0.0098
0.3466
0.9902
1
0.0796
0.219
0.4632
0.0116
0.087
0.044
0.0716
0.7948
0.9436
0.0714
0.0714

0.002

0.002

0.002

0.002

0.0282
0.0684
0.1396
0.0282
0.0684
0.0282
0.0684
0.0282
0.0684
0.0668
0.0668

0.0098
0.4454
0.9458
0.9768
0.129

0.3366
0.6334
0.078

0.098

0.5494
0.2254
0.7942
0.9102
0.2344
0.2344

0.0226
0.624
0.9996
1
0.1498
0.384
0.7238
0.0908
0.1278
0.7582
0.3486
0.941
0.9908
0.3672
0.3672

Nullhypothese!

BWFWKSBTMT
BWF WBT T KSM
BWF W BT T (KS M)
BWKSFTBTMW
BWFKSTBTMW
BWFKSBTTWM
WKSBWTBTFM
TBWKSBTWMF
WBWKSFBTTM
WBWKSTFBTM
BWFBTKSWTM
BWFBTKSTWM
WBWKSTFBTM
WBWKSTFBTM

Tabelle 11: Ablehnungsanteile fiir Simulation 5 je Durchlauf (1-15) fiir ny =
ny = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stéarke

an, (...): gleicher Wert.

F

W

T

KS

BW

BT

M

0.0238
0.073

0.093

0.0942
0.0454
0.069

0.0994
0.0228
0.0392
0.0226
0.0362
0.173

0.2402
0.0344
0.0344

0.0434
0.6022
0.9794
1
0.0514
0.0534
0.0558
0.2182
0.106
0.5328
0.2248
0.6398
0.6546
0.2324
0.2324

0.0468
0.6476
0.9952
1
0.0496
0.0526
0.053
0.2738
0.1456
0.7308
0.3858
0.657
0.6584
0.3944
0.3944

0.0254
0.4146
0.9702
1
0.0356
0.0472
0.0638
0.1296
0.0826
0.4546
0.1836
0.456
0.5034
0.181
0.181

0.0046
0.0198
0.031

0.0316
0.0146
0.0238
0.038

0.0054
0.0118
0.0052
0.0108
0.0704
0.1086
0.0104
0.0104

0.0482
0.5136
0.9774
1

0.0598
0.0772
0.0964
0.1754
0.0946
0.5602
0.2412
0.5812
0.5984
0.2454
0.2454

0.0448
0.5494
0.9932
1
0.0774
0.108
0.1656
0.2874
0.2134
0.7922
0.4844
0.601
0.6494
0.4992
0.4992

Nullhypothese!

BWFKSBTMWT
BWFKSBTWMT
BWF (W T KS BT M)
BWKSFTW BT M
BWKSTWFBTM
BWTWKSBTFM
BWFKSBTWTM
BWFKSBTWTM
BW F KS W BT T M
BW FKS W BT TM
BWFKSBTMTW
BWFKSBTMWT
BW F KS W BT TM
BW F KS W BT T M

Tabelle 12: Ablehnungsanteile fiir Simulation 6 je Durchlauf (1-15) fiir ny =
ny = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stéirke

an, (...): gleicher Wert.
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Abbildung 5: Haufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird fiir Simulation 5 (a) und Simulation 6 (b) (n=100), falls
mehreren Tests der maximale Anteil zugeteilt wird, erhoht sich die Haufigkeit
bei jedem entsprechend um 1

6 Fazit

Nach der Einzelbetrachtung jeder Simulation soll in einem kurzen Fazit ver-
sucht werden, sich fiir, aber auch gegen bestimmte Methoden auszusprechen.
Da die Tabellen sehr viele Werte enthalten und man leicht den Uberblick
verlieren kann, zeigt Abb. [0 fiir jeden Test, wie oft er eine Power von 0.8
iiberschritten hat. Dieser Wert richtet sich nach Cohen, welcher fiir den (-
Fehler einen viermal so hohen Wert wie fiir den a-Fehler vorschldgt [Cohen
(1988), S.5]. Da das Signifikanzniveau hier jeweils bei a = 0.05 lag, ergibt sich
ein B-Fehler von 0.2 und damit eine Power, 1 — 3, von 0.8. Ergénzend ist die-
ser Wert anteilig an den Simulationsdurchldufen dargestellt, da der Fisher,
BW und BT in Simulation 2 nicht vertreten waren. Die Maxsel-Methode
erreichte 50 mal eine Power > 0.8, was einem Anteil von 33% entspricht.
Der BT iiberschreitet diesen Wert 44 mal, dies bedeutet in 32% der Fille.
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Abbildung 6: Absolute (rechts) und relative (links) Haufigkeiten fiir Power
> 0.8.

Uber sein Verhalten in Simulation 2 ist jedoch nichts bekannt, daher ist die
Maxsel-Methode vorzuziehen.

Basierend auf den Ergebnissen, scheint es, als sei die Maxsel-Methode gut
fiir bestimmte Anwendungen geeignet, da sie konstant sehr stark ist. In den
wenigen Féllen, in denen ein anderer Test besser ist, ist der Unterschied nur
gering und hat die Maxsel-Methode eine geringe Power, so sind die iibrigen
Tests auch nicht (viel) besser. Somit ist man mit Maxsel am ehesten auf der
sicheren Seite, was die Power betrifft. Von BW, Fisher und auch BT Test
ist eher abzuraten. Die beiden zuerst genannten sind die schwéchsten aller
miteinander verglichenen Tests. Beim BT Test ergibt sich dasselbe Problem
wie auch beim Fisher und BW: Es muss ein (bzw. mehrere) Schwellenwert(e)
vor Durchfiihrung des Tests bestimmt werden. Ob diese jedoch geeignet sind,
ist zuvor meist schwierig zu bestimmen. So ist auch bei einer Power von 1
beim Fisher-Test nicht genau zu sagen, ob der erkannte Unterschied in den
Gruppen nur aufgrund des Cutpoints gemacht wurde und ob das Ergebnis

bei einem anderen Cutpoint nicht komplett anders wére.

40



Wilcoxon-, t- und Kolmogorov-Smirnov-Test liegen nicht weit auseinan-
der. Da der Wilcoxon-Test ein Test ist, der damit arbeitet, dass Verteilungen
sich nur bzgl. der Lage unterscheiden [vgl. Toutenburg und Heumann| (2008)),
S. 174], erkennt er die Unterschiede, die aufgrund eines Unterschieds in den
Nullanteilen vorliegen, nur schwer. Liegt jedoch (zusétzlich) auch eine Ver-
schiebung bedingt durch die Mittelwerte vor, so ist er relativ stark. Dasselbe
gilt fiir den t-Test. Der Kolmogorov-Smirnov-Test detektiert Unterschiede
nur, falls sie grof sind, unabhéngig von der Ursache.

Die Maxsel-Methode, die sich fiir jede Situation ihren Cutpoint anhand
der maximalen y?-Statistik neu berechnet (unbeeinflusst durch fishing for
significance [[), scheint somit, wie bereits erwidhnt, am besten geeignet, um
Daten, die hohe Anteile an Nullen oder auch kleinen Werten beinhalten, auf
Unterschiede und somit eine Abhéngigkeit, zu untersuchen. In den Simulatio-
nen erwiesen sich Stichprobengrofien > 20 als geeignet dafiir, dass die Tests
eine hohere Power erreichten. Es ist daher auch in der Praxis in Erwégung zu
ziehen, die Gruppen lieber etwas gréfier zu wihlen um unnétig hohe -Fehler,

und somit eine geringe Power, zu vermeiden.

les wird der Cutpoint ausgewihlt, mit welchem der kleinste p-Wert resultiert
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7 Anwendung in der Praxis

Fiir eine praktische Anwendung der Tests wurde ein Datensatz iiber Krebs-
patienten betrachtet. Es wurden der t-Test, der Wilcoxon-Test, der Kolmogo-
rov-Smirnov-Test und die Maxsel-Methode angewandt und die Ergebnisse
kritisch verglichen. Fisher, BW und BT wurden nicht gerechnet, da eine
Dichotomisierung der Variablen beim Wert 0 nicht geeignet ist. Grund dafiir
ist, dass einige Variablen keine Ausprigung ”0” besitzen und die Tests somit
nicht durchfiihrbar sind.

7.1 Uberblick iiber die Daten

Der Datensatz enthélt Informationen iiber Krebspatienten. Die fiir die Fra-
gestellung dieser Arbeit interessierenden Variablen sind Metastasiert (Waren
Metastasen vorhanden?), TodTUassoziiert (War der Tod des Patienten tu-
morbedingt?) und die Variablen, welche die Methylierungs-Prozentwerte der
einzelnen Cytosin-Guanosin-Basenfolgen (CpGs) der Gene angeben. Meta-
stasiert und TodTUassoziiert sind urspriinglich binér kodiert mit den Fak-
toren Ja und Nein. Um die Tests anwenden zu koénnen, wurde Ja in 1 und
Nein in 0 gedndert. Die Haufigkeiten in den Gruppen sind in folgender Ta-
belle dargestellt:

Tumor =0 Tumor =1
Meta = 0 26 0 26
Meta =1 6 16 22
Summe 32 16 48

Fiir jedes Gen gibt es eine Spalte, die den Methylierungswert bei gesun-
den Menschen angibt. Eine weitere Spalte gibt zusétzlich den Mittelwert der
einzelnen Methylierungs-Prozentwerte fiir jeden Patienten pro Gen an. Die-
se sind bei der Testberechnung jedoch nicht von groflem Interesse, da sie
nicht die kleinen Werte nahe der Null, welche in dieser Arbeit interessieren,
enthalten. Das Beispiel in Abb. [7] welches ausgewahlt wurde, da es fiir die

vorliegende Fragestellung gut passt, da viele kleine Werte enthalten sind, soll
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veranschaulichen, wieso diese Art von Daten hier besonders interessant ist.
Man erkennt sogleich die stark linkssteile Verteilung der Datenwerte, welche

bei den verbleibenden Genen einen dhnlichen Charakter aufweisen.

Histogramm fiir Gen GSTP16

Density

_ [TTT1 | 1 1 [
I 1 1 1 T 1

0 20 40 60 80 100

000 005 010 015 020 025

Methylisierungs-Prozentwert

Abbildung 7: Histogramm der Methylierungs-Prozentwerte des
CpGs GSTP16.

7.2 Ergebnisse

Der Wilcoxon-Test, der t-Test, der Kolmogorov-Smirnov-Test und die Max-
sel-Methode wurden angewandt, um zu iiberpriifen, ob ein Zusammenhang
zwischen einer stattgefundenen Metastasierung bzw. einem durch den Tumor
verursachten Tod und den Methylierungs-Prozentwerten an den verschiede-
nen CpGs der einzelnen Gene vorhanden ist. Das Signifikanzniveau wurde mit
a = 0.05 festgelegt. Als erstes wurden die Tests beziiglich der bindren Va-
riable Metastasiert durchgefiihrt. Abb. [§ zeigt die Haufigkeit eines p-Wertes
< 0.05 je Test. Es fallt sofort der t-Test auf, welcher nur bei einem einzigen
CpG einen Unterschied in den Verteilungen der Methylierungs-Prozentwerte
fiir Patienten mit und ohne Metastasen erkennt. Doch wie oft gibt es ei-

ne Ubereinstimmung zwischen den Tests beziiglich der CpGs, fiir welche sie
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Ablehnungen bei alpha = 0.05
(Metastasiert)

10

Haufigkeit

Wilcoxon T-Test KS Maxsel

Test

Abbildung 8: Anzahl Ablehnungen der Nullhypothese (”Die Verteilungen in
den Gruppen sind identisch”) je Test fiir " Metastasiert”.

einen Zusammenhang ausschlieBen? Eine Antwort gibt Tabelle [13]

Das einzige CpG, bei dem der t-Test einen Zusammenhang verwirft, ist
APC.3. Der p-Wert ist 0.04. Der Wilcoxon ist mit einem nahezu identischen
p-Wert (Werte sind gerundet) der einzige weitere Test, der auch die Null-
hypothese ablehnt. Zieht man Parallelen zu den Simulationsergebnissen der
vorherigen Kapitel, so findet man diese zum Beispiel bei Simulation 1, Durch-
lauf 9 (vgl. Tabelle . Auch die Gruppengroflen stimmen in etwa iiberein.
In diesem Fall ldge hier sowohl ein Unterschied in den Nullanteilen (bzw.
bei den kleinen Werten) als auch in den Mittelwerten der Werte, die groBer
Null sind, vor. Bleibt man beim t-Test, so fallt auf, dass die iibrigen p-Werte
alle sehr hoch sind. Das bedeutet, dass er den Zusammenhang nur zu sehr
hohen (nicht mehr sinnvollen) Signifikanzniveaus ablehnt. Auch, und gera-
de, bei den Variablen, fiir welche die anderen Tests die Nullhypothese sicher
ablehnen. Ein weiterer, auffilliger Punkt ist, dass die Maxsel-Methode den
Unterschied bei der Hélfte aller fiir ohne Zusammenhang befundenen Varia-
blen detektiert. In den Féllen, in denen sie die Nullhypothese nicht ablehnt,

ist der p-Wert nahe der 0.05. Bei diesen Variablen entscheidet ausnahmslos
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wilcox ttest ks maxsel
APC_mean 0.02 0.12 0.03 0.04
APC 0.14 0.23 0.05 0.04
APC.3 0.04 0.04 0.14 0.06
APC.5 0.01 0.13 0.07 0.06
APC.6 0.02 0.82 0.05* 0.05
DAPK.12 0.04 0.10 0.15 0.11
GADD45a.2 0.03 0.62 0.05 0.05
GADD45a.3 0.01 0.30 0.04 0.03
GSTP12 | 0.05* 0.39 0.15 0.18
pl4.16 0.08 0.97 0.04 0.01
p73.1 0.12 0.53 0.02 0.02
Endoglin10 0.35 0.60 0.13 0.05*
Endoglin13 0.21 0.44 0.04 0.03
Endoglin16 0.03 0.11  0.07 0.05

Tabelle 13: p-Werte fiir die CpGs, bei denen mindestens ein Test H, ablehnt
(Metastasiert), * Werte auf 0.05 aufgerundet (korrekter Wert < 0.05)!.

der Wilcoxon gegen H,.

Das Gleiche gilt fiir die Variable Tumorassoziiert. Die Ablehnungshéufig-
keiten sind in Abb. [9] zu finden. Bei den Variablen APC_mean, APC.5,
GSTP2_mean und RAS.1 ist der t-Test der einzige Test, der die Nullhy-
pothese nicht ablehnt. Zieht man Parallelen zu den Simulationsergebnissen
der vorherigen Kapitel, so ist dies mit Durchlauf 7 von Simulation 3 (fiir
n = 50) bzw. mit den Durchldufen 9 und 11, ebenso von Simulation 3, zu
vergleichen (s. Tabelle [7] und [§). Da in dem aktuellen Datensatz Gruppen-
gréflen von n ~ 50 vorliegen, ist erstgenannte Situation besser zum Vergleich
geeignet. So besteht die Moglichkeit, dass der Unterschied in den Verteilun-
gen zwar sehr grof} ist, dies jedoch nur aufgrund der grofien Differenzen in
den Nullanteilen zustande kommt. Da der t-Test die Klumpung bei der Null
(zumindest hier) ignoriert, entscheidet er fiir Gleichheit. Tatséchlich liegt
der Mittelwert fiir z.B. APC.5 in der Gruppe der Patienten mit Metastasen
(Metastasiert=1) bei 11.872, in der Gruppe der Patienten ohne Metastasen
(Metastasiert=0) bei gerade einmal 4.42.

APC.3 ist die einzige Variable, fiir die der t-Test die Hypothese des Zu-
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Ablehnungen bei alpha = 0.05
(Tumorassoziiert)

10

Haufigkeit

Wilcoxon T-Test KS Maxsel

Test

Abbildung 9: Anzahl Ablehnungen je Test fiir ” Tumorassoziiert”.

sammenhangs verwirft und somit einen Unterschied in den Verteilungen de-
tektiert. Die Maxsel-Methode (zuvor als duflerst zuverlédssig befunden) be-
kriftigt diese Entscheidung. Eine Ubereinstimmung kénnte hier mit Durch-
lauf 3 von Simulation 4 (Tabelle gesehen werden. Hier hatten sowohl
t-Test als auch Maxsel einen hohen Ablehnungsanteil und der Kolmogorov-
Smirnov-Test einen hoheren Ablehnungsanteil als der Wilcoxon. Dies spricht
dafiir, dass der p-Wert des Kolmogorov-Smirnov-Tests (0.06) kleiner als der
des Wilcoxon (0.07) ist.
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wilcox ttest ks maxsel
APC_mean 0.02 0.08 0.03 0.02
APC 0.11 0.14 0.02 0.01

APC.3 0.07 0.04 0.06 0.01
APC.5 0.02 0.10 0.03 0.01
APC.7 0.09 0.10 0.10 0.02
GSTP2_mean 0.04 0.65 0.03 0.03
GSTP15 0.03 0.52 0.06 0.08
pl4d.5 0.04 0.21 0.10 0.17

RAS.1 0.02 0.46 0.03 0.02
RAS.2 0.05 0.45 0.03 0.02
RAS.4 0.59 0.29 0.37 0.03

Tabelle 14: p-Werte fiir die Gene, bei denen mindestens ein Test einen Zu-
sammenhang ausschliefit (Tumorassoziiert),* Werte auf 0.05 aufgerundet!.

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde die Maxsel-Methode mit weiteren statistischen Tests
verglichen. Der Vergleich geschah beziiglich ihrer Féahigkeit, Zusammenhénge
zwischen einer binédren Variable und einer Variable, welche viele kleine Werte
und vor allem Nullen enthélt, zu erkennen. Diese Tests waren der Wilcoxon-
Test, der t-Test, der Kolmogorov-Smirnov-Test und die sogenannten Two-
Part-Models bestehend aus Binomial- und Wilcoxon- bzw. t-Test. Dazu wur-
den zunéchst mehrere Simulationen durchgefiihrt. Da hier Vorwissen {iber
die Situation in den Daten vorlag, konnte anhand der Ablehnungsanteile
die Power der Tests in den jeweiligen Féllen bestimmt werden. Diese unter-
schied sich sowohl unter den Tests, als auch fiir die jeweiligen Durchlaufe.
Getestet wurde fiir verschiedene Verteilungen derjenigen Werte der Grup-
pe, welche grofer Null waren (bzw. nicht zu den kleinen Werten zdhlten),
verschiedene Nullanteile und verschiedene Mittelwerte. Es wurde festgestellt,
dass die Maxsel-Methode in 33% der Fille die Nullhypothese mit einer Power
> 0.8 abgelehnt hat. Danach folgte der BT mit 32% und der Wilcoxon mit
27%. Dieses Ergebnis deckt sich mit dem der Tests an dem Datensatz iiber
Krebspatienten. Hier war von Interesse, ob die Tests jeweils einen Zusam-

menhang zwischen den binédren Variablen Metastasiert und Tumorassoziiert
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und den Methylierungs-Prozentwerten verschiedener Gene detektieren oder
ablehnen. Es erzielte jeweils einmal der Wilcoxon und einmal die Maxsel-
Methode die meisten Ablehnungen der Nullhypothese (kein Unterschied in
den Verteilungen der Gruppen). Diese ergénzten sich insofern gut, als dass,
falls die Maxsel-Methode einen Zusammenhang nicht ausschliefen konnte,
der Wilcoxon-Test dies jedoch tat. Folglich scheint die Maxsel-Methode in
Verbindung mit dem Wilcoxon-Test ein geeignetes Mittel zu sein, um Da-
ten, welche viele kleine Werte enthalten, und somit stark linkssteil verteilt
sind, auf Zusammenhéinge zu untersuchen. Da die Situation in den reellen
Daten nicht im Voraus bekannt ist, und die Tests unterschiedlich gut darauf
reagieren, scheint es eher nicht geeignet, sich auf nur eine Methode zu ver-
lassen. Der BT ist, wie auch der BW und Fisher, trotz einer Power > 0.8 in
32% der Fille, nicht immer geeignet, da hier im Voraus ein Cutpoint fiir die
Dichotomisierung der nicht binédren Variable bestimmt werden muss.
Interessant konnte nun noch sein, die Simulationen fiir unterschiedliche
Gruppengroflen (z.B. ng = 30,77 = 70) durchzufithren und weitere Kom-
binationen in Nullanteilen und Mittelwerten zu untersuchen. Da die Grup-
pengréflen in der Praxis haufig nicht gleich grof3 sind, wére es interessant zu
wissen, wie sich die verschiedenen Tests in solchen Situationen verhalten und
ob es auch Tendenzen zu einem bestimmten Verhaltensmuster gibt, anhand
welchem man sich entscheiden kann, welcher Test in entsprechenden Situa-
tionen eher verwendet werden sollte. Denn moglicherweise veréndert sich das
Verhalten der Tests durch diese Verdnderung. Weiter konnte zusétzlich ein
Two-Part-Modell bestehend aus Binomial- und Kolmogorov-Smirnov-Test
mit aufgenommen werden. Es ist jedoch zu erwarten, dass dessen Ergebnisse
bzgl. der Power &hnlich denen von BT und BW sind, da sich der Kolmogorov-
Smirnov-Test nicht sonderlich stark von Wilcoxon- und t-Test unterschieden
hat. Auch das Problem der Cutpoint-Findung ldge hier vor. Da sich die Er-
gebnisse verdndert haben, falls die echt-positiven Werte anders verteilt waren,
konnten hier noch Simulationen mit weiteren Verteilungen, wie zum Beispiel
der log-Gammaverteilung, durchgefiihrt werden. Auch koénnten die Gruppen-
grofen fiir die Simulationen 5 und 6 verkleinert und die Ergebnisse mit denen

der grofleren Gruppen verglichen werden.
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