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Zusammenfassung

In der Statistik gibt es eine Vielzahl an Tests, welche die Daten

auf interessante Eigenschaften, wie zum Beispiel die Lage oder Mit-

telwerte, untersuchen sollen. Für viele dieser Tests werden bestimmte

Annahmen vorausgesetzt. Es gibt Daten, zum Beispiel in der Medi-

zin, in denen viele sehr kleine und einige große Werte vorherrschen.

Es ist nicht voraussehbar, wie gut die Tests mit diesen Bedingun-

gen umgehen. Will man die Daten auf einen Zusammenhang unter-

suchen, so verlangen viele Tests, zum Beispiel der Fisher-Test, die

Angabe eines oder mehrerer Cutpoints, um die Variable in Kategori-

en zu unterteilen. Dieser ist vor Durchführung des Tests schwierig zu

bestimmen. Ein Lösungsansatz dieses Problems ist eine Methode, die

auf maximal selektierten χ2-Statistiken basiert. In dieser Arbeit soll

diese Methode mit den bereits bekannten Tests verglichen werden.

Diese Tests sind der Fisher-Test, t-Test, Wilcoxon-Test, Kolmogorov-

Smirnov-Test und der Wilcoxon- bzw. t-Test im sogenannten Two-

Part-Model. Vergleichskriterium ist, wie gut die Tests einen Unter-

schied in Daten mit sehr vielen Nullen bzw. kleinen Daten erkennen.

Dazu wurden mehrere Simulationen durchgeführt. Zuletzt wurde an-

hand eines Datensatzes über Krebspatienten untersucht, wie die Tests

entscheiden. Ergebnis des Vergleichs ist, dass die Tests unterschiedlich

gut auf verschiedene Situationen in den Daten reagieren. Die Metho-

de mit den maximal selektierten χ2-Statistiken scheint zusammen mit

dem Wilcoxon-Test am besten für eine Detektierung eines Zusammen-

hangs zwischen einer binären und einer weiteren Variable, wie sie in

den Simulationen gegeben sind, geeignet zu sein.
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1 Einführung

1.1 Einleitung

Inhalt dieser Arbeit ist es, den Zusammenhang zwischen einer binären Größe

und einer metrischen Größe mit vielen kleinen und einigen großen Werten

bestmöglich zu untersuchen. Die der Statistik bereits bekannten Testme-

thoden bieten vielzählige Möglichkeiten vorliegende Daten auf interessieren-

de Eigenschaften zu untersuchen. So gibt es zum Beispiel den t-Test oder

Gaußtest, ”um Hypothesen über den Parameter µ zu überprüfen” [Steland

(2010), S.163], den Wilcoxon-Test (auch bekannt als Mann-Whitney-Test)

oder mehrere χ2-Tests. Zwei weitere Tests, die in dieser Arbeit benutzt wer-

den, sind der Exakte Fisher-Test sowie der Kolmogorov-Smirnov-Test. Hinzu

kommen,nach Lachenbruch (2001) und Lachenbruch (2002), sogenannte Two-

Part-Models, sowie eine Methode, die auf maximal selektierten χ2-Statistiken

basiert (im Weiteren Verlauf teilweise als Maxsel bezeichnet) und von Bou-

lesteix (2006) entwickelt wurde.

Die Durchführung statistischer Tests ist nicht immer problemlos möglich.

Jedem Test liegen dabei unter Umständen bestimmte Annahmen zu Grunde,

die vorausgesetzt werden. Ein Beispiel ist die Annahme, dass die Daten einer

normalverteilten Grundgesamtheit entstammen. Diese greift insbesondere,

beim t- bzw. Gaußtest. Es gibt Anwendungsfelder der Statistik, in denen

gerade diese Annahmen nicht gemacht werden können. Ein Anwendungsfeld

ist zum Beispiel die Medizin. Hier liegen häufig Daten vor, die viele kleine

Werte und vor allem auch Nullen enthalten. Beispielsweise Daten, die den

Effekt der Wirksamkeit eines Medikaments beschreiben (hat das Medika-

ment keine Wirkung, so ist der entsprechende Wert 0) oder Daten, in de-

nen es um interessierende (Blut-)Werte geht, welche bei gesunden Personen

eher hoch sind, bei den kranken jedoch niedrig (oder umgekehrt). Größere

Werte sind eher selten, sind deswegen jedoch nicht weniger wichtig. Die ent-

sprechenden Daten folgen somit keinesfalls einer Normalverteilung. Sie sind

eher stark linkssteil verteilt. Durch diese Verletzung der Annahmen ist nicht

mehr sichergestellt, dass die angewandten Tests, hier speziell der t-Test, das
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vorgegebene Signifikanzniveau α auch tatsächlich einhalten [Steland (2010),

S.181].

Ein weiteres Problem ist die Herangehensweise an die Tests, insbesonde-

re bei Tests, die normalerweise für kategoriale Daten gedacht sind, wie der

Fisher-Test. Sind die Daten statt kategorial jedoch metrisch, so kann man die

Daten vor der Berechnung bei einem Wert größer Null dichotomisieren, um

so Kategorien zu erzeugen. Liegen Daten vor, bei denen alle Ausprägungen

größer als Null sind, es jedoch viele verschiedene kleine Ausprägungen gibt,

wird es schwierig, einen geeigneten Schwellenwert auszuwählen. Es gibt zwar

die Möglichkeit, die Tests mit verschiedenen Schwellenwerten durchzuführen.

Jedoch trifft man seine Entscheidung so aufgrund des kleinsten p-Wertes

(Fishing for Significance), wovon dringend abzuraten ist. Für solche Daten

sind Tests wie der Fisher-Test demnach eher ungeeignet.

Ziel der Arbeit ist es, die Maxsel-Methode mit den anderen, oben ge-

nannten Tests (t-Test, Wilcoxon-Test, Komogorov-Smirnov-Test, χ2+t-Test,

χ2+Wilcoxon-Test) hinsichtlich ihrer Fähigkeit, Unterschiede in den Vertei-

lungen zweier Gruppen zu erkennen, zu vergleichen. Dazu wurden zunächst

verschiedene Daten simuliert, welche sich in den Anteilen der Nullen, den Pa-

rametern und somit auch in den Verteilungen unterscheiden. Danach wurde

genauer betrachtet, wie sich die einzelnen Tests bezüglich der ausgegebe-

nen p-Werte verhalten und dies kritisch bewertet. Weiter wurden die Tests

auf einen realen Datensatz angewandt, welcher Daten über Krebspatienten

enthält.

Die Simulation und die Berechnung der Ergebnisse erfolgte mit dem sta-

tistischen Programmpaket R, Version 3.0.1.

1.2 Übersicht

In Kapitel 2 werden die theoretischen Hintergründe der bereits bekannten

Tests erläutert. Kapitel 3 beschäftigt sich mit der Methode der Maximal

selektierten χ2-Statistik. In Kapitel 4 wird zunächst das Simulationsdesign

beschrieben, um danach in Kapitel 5 die Ergebnisse zu präsentieren. Inhalt

von Kapitel 7 sind die Daten der Krebspatienten, die Durchführung der Tests
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mit diesen und eine Aufstellung der gewonnenen Ergebnisse.

2 Bekannte statistische Tests

In den nachfolgenden Unterabschnitten werden die bereits bekannten Tests

kurz vorgestellt. Dabei handelt es sich um den χ2-Unabhängigkeitstest, den

exakten Fisher-Test, den t-Test, den Wilcoxon-Test und den Kolmogorov-

Smirnov-Test. Außerdem werden die Two-Part-Models vorgestellt.

2.1 Der χ2-Unabhängigkeitstest

Der Test lässt sich auf der Grundlage kategorialer bzw. kategorisierter Daten

X und Y berechnen. (Xi, Yi), i = 1, . . . , n müssen dabei unabhängige Stich-

probenvariablen sein. Diese sind in einer Kontingenztafel mit den Häufigkeiten

hij und den Ausprägungen (X = i, Y = j) darstellbar. Getestet wird, ob X

und Y unabhängig sind. Die Nullhypothese lässt sich deshalb schreiben als

H0 : P (X = i, Y = j) = P (X = i)P (Y = j)

oder vereinfacht ausgedrückt

H0 : πij = πi.π.j ∀ i, j,

P (X = i, Y = j) = πij,

P (X = i) = πi.

und P (Y = j) = π.j.

Die Gegenhypothese lautet entsprechend

H1 : P (X = i, Y = j) 6= P (X = i)P (Y = j),

für mindestens ein Paar (i, j). Wichtig zur Berechnung ist, dass die Randhäu-

figkeiten hi. und h.j gegeben sind. Die entsprechenden Randwahrscheinlich-

keiten lassen sich durch π̂i. = hi.
n

und π̂.j =
h.j
n

schätzen, sowie unter der

Nullhypothese der Unabhängigkeit π̂ij = π̂i.π̂.j. Die letztendlich zu berech-
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nende Teststatistik lautet

χ2 =
k∑
i=1

m∑
j=1

(hij − h̃ij)2

h̃ij
, h̃ij =

hi.h.j
n

mit

χ2 H0∼ χ2((k − 1)(m− 1)).

Der Ablehnungsbereich der Nullhypothese beim χ2-Unabhängigkeitstest ist

χ2 > χ2
1−α((k − 1)(m− 1)),

wobei entsprechende Quantile einer Tabelle zu entnehmen sind [Fahrmeir

et al. (2010), S.467f.].

Im Fall, dass die Anzahl der Freiheitsgrade > 1 beträgt, können kei-

ne gerichteten Hypothesen formuliert werden. Die Voraussetzungen für die

Durchführung des Tests sind

• Weniger als 1
5

aller Zellen der Kreuztabelle haben eine erwartete Häufig-

keit < 5.

• Keine Zelle weist eine erwartete Häufigkeit < 1 auf [Leonhart (2009),

S.207,210].

2.2 Der exakte Fisher-Test

Sind die Voraussetzungen des χ2-Tests nicht erfüllt oder sind die Stichproben-

umfänge n1 und n2 nicht groß genug, um approximierte Verfahren anwenden

zu können, so sollte stattdessen der exakte Fisher-Test durchgeführt werden.

Die Stichproben X = (X1, . . . , Xn1) und Y = (Y1, . . . , Yn2) sind unabhängig.

Auch dieser Test ist für kategoriale Daten vorgesehen. Interessierende Größen

sind die Wahrscheinlichkeiten

p1 = P (Xi = 1),

p2 = P (Yi = 1)
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und die Nullhypothese

H0 : p1 = p2

vs.

H1 : p1 6= p2.

Um eine Testgröße zu konstruieren, wird auf die beiden Zufallsvariablen X =∑n1

i=1Xi und Y =
∑n2

i=1 Yi, sowie die bedingte Verteilung von X gegeben

X + Y , unter H0, gegeben als

P (X = t1|X + Y = t1 + t2 = t) =
P (X = t1)P (Y = t− t1)

P (X + Y = t)

=

(
n1

t1

)(
n2

t− t1

)
(
n1 + n2

t

) ,

zugegriffen. Diese entspricht unter H0 der hypergeometrischen Verteilung

H(n1 + n2, n1, t). Um entscheiden zu können, ob H0 abgelehnt werden kann

oder nicht, wird der kritische Bereich K = {0, . . . , ku − 1} ∪ {ko + 1, . . . , t}
aus

P (X > ko|X + Y = t) ≤ α/2

und

P (X < ku|X + Y = t) ≤ α/2

so bestimmt, dass ku und ko die größte bzw. kleinste Zahl ist, die die je-

weilige Niveaubedingung einhält. H0 wird abgelehnt, falls X = t1 ∈ K gilt

[Toutenburg und Heumann (2008), S.153f.].

2.3 Der Zweistichproben-t-Test

Der t-Test beschäftigt sich mit Hypothesen über den Parameter µ zweier nor-

malverteilten Variablen X ∼ N(µX , σ
2
X) und Y ∼ N(µY , σ

2
Y ). Es wird vor-

ausgesetzt, dass die Stichproben (X1, . . . , Xn1) und (Y1, . . . , Yn2) unabhängig
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sind. Das zu testende Hypothesenpaar ist

H0 : µ1 = µ2

H1 : µ1 6= µ2.

Man unterscheidet bei der Testberechnung drei verschiedene Fälle [Touten-

burg und Heumann (2008), S.142f.]:

• Die Varianzen sind bekannt: Falls die Varianzen bekannt sind lautet

die Prüfgröße

T (X,Y) =
X̄ − Ȳ√

n1σ2
X + n2σ2

Y

·
√
n1 · n2

H0∼ N(0, 1).

Unter der Nullhypothese ist diese standardnormalverteilt. ni ist der

Umfang der i-ten Stichprobe mit i = 1, 2. σ2 entspricht der Varianz

der jeweiligen Stichprobe (X oder Y). X̄ steht für die Schätzung des

unbekannten Erwartungswertes anhand des arithmetischen Mittels der

Stichprobenwerte und es gilt X̄ = 1
n1

∑n1

i=1Xi. Die Schätzung von Ȳ

folgt analog. H0 wird abgelehnt, falls |T | > z1−α/2 gilt [Toutenburg und

Heumann (2008), S.132f., S.143].

• Die Varianzen sind unbekannt, aber gleich: In diesem Fall lautet

die Prüfgröße

T (X,Y) =
X̄ − Ȳ
S

√
n1 · n2

n1 + n2

H0∼ t(n1 + n2 − 2)

mit

S =

√
(n1 − 1)S2

X + (n2 − 1)S2
Y

n1 + n2 − 2
.

S2 ist die gemeinsame Varianz der Stichproben X und Y , welche durch

die gepoolte Stichprobenvarianz geschätzt wird. S2
X entspricht der ge-

schätzten Varianz von X. S2
Y entsprechend der von Y . X̄ und Ȳ werden

berechnet wie im Fall der bekannten Varianzen. Die Prüfgröße besitzt

unter der Nullhypothese eine Student’sche t-Verteilung mit n1 +n2− 2
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Freiheitsgraden. Falls |T | > tn−1;1−α/2 gilt, wird H0 abgelehnt [Touten-

burg und Heumann (2008), S.135, S.143].

• Die Varianzen sind unbekannt und ungleich: Falls σ2
X 6= σ2

Y gilt,

gibt es keine exakt bestimmbare Testgröße, sondern nur die Näherungs-

lösung

T (X,Y) =
|X̄ − Ȳ |√
S2
X

n1
+

S2
Y

n2

H0∼ t(ν)

mit

ν =

(
s2x
n1

+
s2y
n2

)2

/

(
(s2x/n1)

2

n1 − 1
+

(s2y/n2)
2

n2 − 1

)
ganzzahlig gerundet. Die Nullhypothese wird abgelehnt, falls |T | >
tn−1;1−α/2 gilt [Toutenburg und Heumann (2008), S.135, S.145].

2.4 Der Wilcoxon-Rangsummen-Test

Dieser nonparametrische Test wird angewandt, falls die Daten nicht-normal-

verteilt sind und ist somit eine Alternative zum t-Test. Die Idee des Tests ist,

dass die Werte beider zu vergleichenden Stichproben gut durchmischt sein

sollten, falls die Nullhypothese

H0 : xmed = ymed

gilt. xmed steht für den Median der Stichprobe X, ymed analog für den Median

der Stichprobe Y . Voraussetzung des Tests ist, dass die Verteilungsfunktionen

beider Stichproben dieselbe Form besitzen. Um die Teststatistik aufzustellen,

müssen zunächst die Ränge aller Beobachtungen der gepoolten Stichprobe,

d.h. X und Y zusammen, bestimmt werden. Bei Bindungen, d.h. wenn ein

Rang doppelt vorkommt, wird der Durchschnittsrang berechnet. Die Hypo-

thesenpaare sind

a H0 : xmed = ymed vs. H1 : xmed 6= ymed

b H0 : xmed ≥ ymed vs. H1 : xmed < ymed

c H0 : xmed ≤ ymed vs. H1 : xmed > ymed.
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In dieser Arbeit ist das Hypothesenpaar (a) wichtig. Die letztendliche Test-

statistik lautet

TW =
nx∑
i=1

rg(Xi).

nx ist die Anzahl der Werte in Stichprobe X. Es werden die Ränge der Beo-

bachtungen, die ursprünglich aus X stammen, aufsummiert. Die zugehörigen

Ablehnungsbereiche lauten:

a TW > w1−α/2(n,m)

b TW < wα(n,m)

c TW > w1−α(n,m)

mit wα̃ ist α̃-Quantil der tabellierten Verteilung [Fahrmeir et al. (2010),

S.459f.].

2.5 Der Kolmogorov-Smirnov-Test für Zweistichpro-

benprobleme

Für den Kolmogorov-Smirnov-Test sind die zwei unabhängigen Stichproben

X1, . . . , Xn1 und Y1, . . . , Yn2 gegeben. Die zugehörigen Zufallsvariablen sind

X ∼ F und Y ∼ G. F ist die empirische Verteilungsfunktion von X, G die

von Y. Es soll geprüft werden, ob sich die Verteilungen beider Zufallsvaria-

blen signifikant unterscheiden. Dazu wird die Nullhypothese

H0 : F (t) = G(t)

gegen die Alternativhypothese

H1 : F (t) 6= G(t)

getestet. Um eine Entscheidung zu treffen, werden die Differenzen zwischen

beiden empirischen Verteilungsfunktionen gebildet. Die zugehörige Teststa-
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tistik ergibt sich somit als

K = max
t∈R
|F̂ (t)− Ĝ(t)|.

Für die Praxis genügt es jedoch, nur den Abstand für t ∈ S zu bestimmen.

S ist die (gepoolte) Stichprobe S = X ∪Y und es gilt die Teststatistik

K = max
t∈S
|F̂ (t)− Ĝ(t)|.

Der Ablehnbereich für die Nullhypothese ist

K > kn1,n2;1−α,

wobei kn1,n2;1−α aus entsprechenden Tabellen entnommen werden kann [Tou-

tenburg und Heumann (2008), S.172].

2.6 Two-Part-Models

Wie in der Einführung bereits kurz erwähnt, gibt es ”Two-Part-Models”,

welche vor allem benutzt werden, um die Klumpung der Daten bei der Null

zu berücksichtigen. Folgende Erklärung dieser Modelle wurde sinngemäß aus

[Lachenbruch (2002)] und [Lachenbruch (2001)] übernommen.

Wie der Name sagt, bestehen sie aus zwei Modellen. Die Responsevariable

hat bei dieser Art von Modell die Form y = (x, d) mit d = 1, falls y beobachtet

wurde oder positiv ist, und d = 0, falls y entsprechend fehlt oder y = 0.

Daraus folgt, dass der Response den Wert x annimmt, also y = x, falls

d = 1 und ansonsten nicht definiert ist. Die Wahrscheinlichkeitsfunktion

dieser ”Two-Part-Models” der i-ten Gruppe lautet

fi(x, d) =
[
p1−di {(1− pi)hi(x)}d

]
.

Für d = 1 (y wurde beobachtet, y > 0) folgt

fi(x, 1) =
[
p0i {(1− pi)hi(x)}1

]
= hi(x)− pihi(x)
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und für d = 0 (y fehlt oder y = 0) entsprechend

fi(x, 0) =
[
p1i {(1− pi)hi(x)}0

]
= hi(x)− pi.

Diese Wahrscheinlichkeitsfunktion entspricht der bedingten Verteilung von x,

dem stetigen Response, multipliziert mit der (binomialen) Wahrscheinlichkeit

von d in der i-ten Population. pi ist dabei der Anteil der Nullen und hi(x)

die Verteilung von x in der i-ten Gruppe

Für die Nullhypothese gilt

H0 : (p1 = p2) ∩ (µ1 = µ2).

µ entspricht dem Lageparameter von hi(x), p dem jeweiligen Nullanteil der

Gruppen. Somit basiert der Test wiederum auf zwei weiteren Tests: einem

Test auf Gleichheit der Anteile der Nullen, (p1 = p2), und einem Test auf die

Gleichheit der Verteilungen der Werte, welche ungleich Null sind (µ1 = µ2).

Falls der Anteil der Nullen und die Mittelwerte der Ausprägungen, wel-

che größer Null sind, in den Untergruppen verschieden sind, besteht die

Möglichkeit, dass die Mittelwerte der Übergruppen dennoch gleich sind. Der

Grund dafür ist, dass ein größerer Anteil Nullen einen hohen Mittelwert stark

verringert (im Folgenden als dissonant bezeichnet) und umgekehrt (konso-

nant). Für den stetigen Teil wird eine spezielle Verteilung angenommen, wie

zum Beispiel die Log-Normalverteilung oder die log-Gammaverteilung.

In dieser Arbeit werden die Two-Part-Models mit den bekannten Zwei-

Stichproben-Tests gemacht und es folgt

X2 = B2 + T 2, X2 ∼ χ2(2).

B ist dabei der Wert der Teststatistik des Binomialtests, T entweder der

Wert der Teststatistik des t-Tests oder des Wilcoxon-Tests. Für B und T

gilt, dass sie unter der Annahme unabhängiger Fehler der binomialen und

stetigen Teile der Verteilung selbst auch unabhängig sind. Diese Tests mit

zwei Freiheitsgraden sind besser geeignet als die einfachen Tests, wie nur

der t-Test oder nur der Wilcoxon-Test, falls der größere Anteil an Nullen
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in der Gruppe mit dem größeren Mittelwert ist. Ist dies nicht der Fall, so

beeinflusst der Unterschied des Nullenanteils den Unterschied zwischen den

Mittelwerten und vor allem der Wilcoxon-Test ist besser geeignet. Der cut-

off Wert innerhalb des dichotomen Anteils basiert auf a priori Überlegungen

und wird nicht aus den Daten generiert.

3 Maximal selektierte χ2-Statistiken für ordi-

nale Variablen

Die Beschreibung folgender Methode basiert auf [Boulesteix (2006)]. Vor al-

lem in der Medizin steht häufig die Problemstellung im Vordergrund, dass

man eine Abhängigkeit zwischen einer binären Variable Y und einer min-

destens ordinal skalierten Variable X untersuchen möchte. Bei nominal ska-

liertem X könnte man den exakten Test nach Fisher rechnen oder, falls der

Stichprobenumfang groß genug ist, auch einen asymptotischen χ2-Test. Bei

stetigem X eignen sich Tests wie der t-Test oder der Wilcoxon-Rangsummen-

Test. Bei einem mindestens ordinal skalierten, aber nicht stetigem X, ist dies

komplizierter. Die Verteilung der maximal selektierten χ2-Statistik ist un-

ter der Nullhypothese, dass X und Y unabhängig sind, verschieden von der

bekannten χ2-Verteilung. Die Abhängigkeit wird mit Hilfe eines Cutpoints

getestet. Die maximal selektierte χ2-Statistik entspricht der maximalen χ2-

Statistik über alle diese Cutpoints. Diese im Folgenden resultierende, unter

der Nullhypothese geltende Verteilung der maximal selektierten χ2-Statistik,

kann ebenfalls als Messmethode der Abhängigkeit zwischen X und Y benutzt

werden.

Datengrundlage ist die Stichprobe (xi, yi)i=1,...,N mit N unabhängig und

identisch verteilten Realisationen von X und Y . X nimmt dabei K verschie-

dene Level, a1, . . . , ak ∈ R, an. Es gilt 2 ≤ K ≤ N, a1 < . . . < ak. Y besitzt

die Level Y = 1 und Y = 2. Eine Möglichkeit, die Abhängigkeit zwischen

X und Y zu messen, ist X in binäre Variablen x(k), k = 1, . . . , K − 1, zu
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transformieren, wobei gilt:

x(k) = 0, X ≤ ak

x(k) = 1, sonst

Die resultierende Verteilung der maximal selektierten χ2-Statistik ist ab-

hängig von N1 und N2 und m1, . . . ,mk, mit

mk =
n∑
i=1

I(xi = ak), k = 1, . . . , K,

wobei I(x) die Indikatorfunktion ist. Man betrachte folgende 2 x 2 Kontin-

genztafel für k = 1, . . . , K − 1:

X ≤ ak X > ak Σ

Y = 1 n1,≤ak n1,>ak N1

Y = 2 n2,≤ak n2,>ak N2

Σ n.,≤ak =
∑k

j=1mj n.,>ak =
∑K

j=k+1mj N

N1 und N2 bezeichnen die Anzahl der Realisationen mit yi = 1 und yi = 2.

Die entsprechende χ2-Statistik ist

χ2
k =

N(n1,≤akn2,>ak − n1,>akn2,≤ak)2

N1N2n.,≤akn.,>ak
.

Weiter ist die maximal selektierte χ2-Statistik definiert als

χ2
max = max

k=1,...,K−1
χ2
k.

Bestimmt man ein frei wählbares d, so gilt, dass χ2
max ≤ d g.d.w. alle Punkte

mit den Koordinaten (n1,≤ak , n2,≤ak) für k = 1, . . . , K − 1 auf oder über der

Funktion

lowerd(x) =
N2x

N
− N1N2

√
d

N

√
x

N

(
1− x

N

)( 1

N1

+
1

N2

)
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oder auf oder unter der Funktion

upperd(x) =
N2x

N
+
N1N2

√
d

N

√
x

N

(
1− x

N

)( 1

N1

+
1

N2

)
liegen. Mit Hilfe von Kombinatorik kommt man zu dem Ergebnis, dass

PH0(χ
2
max > d) =

(
N

N2

)−1 q∑
s=1

(
N − is
N2 − js

)
bs,

b1 =

(
i1

j1

)
,

bs =

(
is

js

)
−

s−1∑
r=1

(
is − ir
js − jr

)
br, s = 2, . . . , q,

wobei bs der Anzahl der Pfade in Ps entspricht und Ps der Menge der Pfade

von (0, 0) bis Bs, die nicht durch B1, . . . , Bs−1 gehen. B1, . . . , Bq haben die

Koordinaten (i1, j1), . . . , (iq, jq) und i = n.,≤ak , upperd(i) < j ≤ min(N2, i)

oder max(0, i−N1) ≤ j < lowerd(i). Daraus ergibt sich die Verteilungsfunk-

tion

F (d) = 1−

(
N

N2

)−1 q∑
s=1

(
N − is
N2 − js

)
bs.

Will man nun die Abhängigkeit zwischen X und Y messen, so nutzt man

F (χ2
max). Hier testet man die Nullhypothese, dass X und Y unabhängig

sind. Die Verteilungsfunktion nimmt Werte im Intervall [0, 1] an. Je größer

der Wert von F (χ2
max), desto höher ist auch der Zusammenhang zwischen X

und Y , und desto kleiner ist der p-Wert. Die Verteilungsfunktion ist ein gutes

Maß für den Zusammenhang, da man den p-Wert anhand von 1 − F (χ2
max)

berechnen kann.
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4 Simulationsdesign

Wie in der Einleitung bereits erwähnt, soll das Verhalten der verschiedenen

Tests in unterschiedlichen Situationen miteinander verglichen werden. Dazu

wurden sechs verschiedene Simulationen durchgeführt. Aus jeder Simulation

resultiert eine andere Verteilung der Variable X. X besteht aus zwei Stich-

proben, n0 und n1, deren Anteil an Nullen p0 bzw. p1 entspricht. Die zweite

Variable, Y , ist binär und besteht aus den Werten 0 und 1. Der Wert 0 ist der

ersten Gruppe zugeordnet, kommt somit n0-mal vor, der Wert 1 gehört zur

zweiten Gruppe und hat eine Häufigkeit von n1. Die verwendeten Testbefehle

innerhalb der Simulationen sind t.test(), wilcox.test(), ks.test(),

chisq.test() und maxsel.test(). Für letzteren wird auf Funktionen aus

dem Paket exactmaxsel, welches mit dem Paket combinat läuft, zurückge-

griffen. Weiter wurde die Funktion pchisq() benutzt, um den p-Wert, der

sich aus der Summe der Teststatistiken von t- und χ2- und Wilcoxon- und

χ2-Test ergibt, zu erhalten. Um ein verlässliches Ergebnis zu erhalten, betrug

die Anzahl der Iterationen 5000. Das bedeutet, dass 5000 mal Daten gene-

riert wurden, auf dessen Grundlage die Tests gerechnet wurden. Für jede

Iteration wurde der entsprechende Seed gesetzt. Die Unterschiede zwischen

den Simulationen werden in den nächsten Unterkapiteln aufgeführt.

4.1 Simulation 1

Die erste Simulation generiert X bestehend aus Realisationen einer expo-

nentialverteilten Zufallsvariablen und Nullen. Die ersten n0 Werte sind un-

ter dem Parameter λ0 verteilt, die zweite Stichprobe, aus n1 Werten be-

stehend, unter λ1. Die Simulation wurde mit 15 verschiedenen Einstellun-

gen wiederholt. Dabei wurden jeweils alle oben genannten Tests gerechnet.

Die Settings pro Durchgang sind Tabelle 1 zu entnehmen. Die Simulation

wurde pro Durchgang dreimal durchgeführt. Die Stichprobenumfänge waren

n0 = n1 = 50, n = 100, n0 = n1 = 20, n = 40 und n0 = n1 = 10, n = 20.
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Durchgang p0 p1 λ0 λ1
1 0.5 0.5 1 1 Nullhypothese!
2 0.5 0.5 1 2
3 0.5 0.5 1 3
4 0.5 0.5 1 5
5 0.5 0.7 1 1
6 0.5 0.8 1 1
7 0.5 0.9 1 1
8 0.5 0.7 1 2
9 0.5 0.8 1 2
10 0.5 0.7 1 3
11 0.5 0.8 1 3
12 0.5 0.7 2 1
13 0.5 0.8 2 1
14 0.5 0.7 3 1
15 0.5 0.8 3 1

Tabelle 1: Settings pro Durchgang für Simulation 1,3,4,5,6.

4.2 Simulation 2

Mit Hilfe von Simulation 2 sollen gleichverteilte Werte für X erzeugt werden.

Diese sind in der ersten Teilgruppe unter dem Parameter µ0 und in der zwei-

ten Teilgruppe unter dem Parameter µ1 verteilt. Hinzu kommt der Anteil

der Nullen, p0 und p1, und zusätzlich kleine Werte in Form von Einsen und

Zweien. Dies wurde erreicht, indem zufällig ausgewählte Werte, entsprechend

p0 und p1, der beiden Stichproben durch Werte einer poissonverteilten Zu-

fallsvariable mit Parameter λ = 1 ersetzt wurden. Y ist binär. Die Settings

pro Durchgang sind Tabelle 2 zu entnehmen. Diese Simulation wurde für

n0 = n1 = 20 durchgeführt und es wurden die Tests Wilcoxon-Rangsummen-

Test, t-Test, Kolmogorov-Smirnov-Test und die Maxsel-Methode angewandt.

4.3 Simulation 3, 4, 5 und 6

Alle Simulationen wurden für n0 = n1 = 50 (n = 100) und n0 = n1 = 25

(n = 50) gerechnet. Der Anteil der Nullen liegt auch hier bei p0 und p1 und die

Settings sind in Tabelle 1 abzulesen. Y ist immer binär. Das X in Simulation
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Durchgang p0 p1 µ0 µ1

1 0.5 0.5 50 50 Nullhypothese!
2 0.5 0.5 50 30
3 0.5 0.5 50 20
4 0.5 0.5 50 10
5 0.5 0.7 50 50
6 0.5 0.8 50 50
7 0.5 0.9 50 50
8 0.5 0.7 50 30
9 0.5 0.8 50 30
10 0.5 0.7 50 20
11 0.5 0.8 50 20
12 0.5 0.7 30 50
13 0.5 0.8 30 50
14 0.5 0.7 20 50
15 0.5 0.8 20 50

Tabelle 2: Settings pro Durchgang für Simulation 2.

3 besteht aus logarithmisch normalverteilten Werten und Nullen, die echt

positiven Werte in Simulation 4 sind normalverteilt. Simulation 5 entspricht

Simulation 3 und Simulation 6 entspricht Simulation 4 mit dem Unterschied,

dass es in X nicht nur die Nullen als kleine Werte gibt, sondern auch Einsen

und Zweien. Diese wurden wie in Simulation 2 erzeugt. Hier wurde nur für

n0 = n1 = 50 simuliert. Bei allen vier Simulationen gilt Var(X)=1.

5 Simulationsergebnisse

Um die Ergebnisse der im vorangegangen Abschnitt beschriebenen Simu-

lationen besser beurteilen zu können, wurden unter anderem Boxplots der

p-Werte erstellt. So ist schnell erkennbar, ob sich die p-Werte eher im Be-

reich der 0 ansammeln oder hoch sind. So kann man erste (grobe) Schlüsse

über die Power der Tests unter den verschiedenen Bedingungen ziehen. Die

Ergebnisse hierzu befinden sich im Anhang. Im weiteren Verlauf der Analyse

wurden die Ablehnungsanteile samt Konfidenzintervall je Test und Durchlauf

berechnet. Dazu wurden p-Werte < 0.05 als signifikant eingestuft. Mit die-
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sen Berechnungen erhält man gleichzeitig einen Überblick über die Power der

Tests, vorausgesetzt die Alternativhypothese (ein Unterschied in den Vertei-

lungen) liegt vor. Da ein Vergleich der Ergebnisse anhand des Mittelwertes

bei p-Werten nicht geeignet ist, sind die Mediane in Betracht gezogen worden.

Um diese auf signifikante Unterschiede unter den einzelnen Tests zu prüfen,

wurde der Wilcoxon-Rangsummen-Test gerechnet.

5.1 Simulation 1

Wie bereits erwähnt, wurde Simulation 1 für drei verschiedene Gruppen-

größen durchgeführt. In den Durchgängen 2-15 lag ein Unterschied in den

Anteilen der Nullen, der Mittelwerte oder beidem vor. Bei Betrachtung und

Vergleichen, welcher Test am häufigsten den höchsten Ablehnungsanteil und

somit auch die höchste Power besitzt, stellt sich heraus, dass sich die Ergeb-

nisse mit den Gruppengrößen verändern (vgl. Abb. 1). Hier wird der erste

Durchlauf außer Acht gelassen, da in diesem die Nullhypothese, d.h. iden-

tische Verteilungen, vorliegt, und somit das Ergebnis des Ablehnungsanteils

nicht der Power entspricht und weiter auch nicht mit denen der übrigen

Durchläufe vergleichbar ist.

Für n0 = n1 = 50 erreichen der Wilcoxon-Test und der t-Test im Two-

Part-Modell (BT) am häufigsten den höchsten Ablehnungsanteil (jeweils 8

von 14), gefolgt von der Maxsel-Methode, welche in 7 von 14 Durchgängen

eine der Methoden mit dem größten Ablehnungsanteil ist. Platz 3 teilen sich

der Fisher -, Kolmogorov-Smirnov- und Wilcoxon-Test im Two-Part-Modell

(BW) mit der höchsten Power in 6 von 14 Durchgängen. Schwächster Test

ist der t-Test, welcher nur in 3 von 14 Fällen den höchsten Ablehnungsanteil

im Vergleich mit den anderen Tests erreicht.

Geht man in der Betrachtung weiter ins Detail und überprüft, welche

Voraussetzungen jeweils vorliegen und wie hoch der tatsächliche Ablehnungs-

anteil ist, so erkennt man, dass der des Fisher-Tests entweder 0 (95% KI, 0-0)

oder 1 (95%KI, 1-1) annimmt. Die gleiche Situation liegt beim Wilcoxon-Test

im Two-Part-Modell (BW) vor. Auch die anderen Tests erreichen, abgesehen

vom t-Test, teilweise einen Ablehnungsanteil von 1. Auffällig ist, dass, so-
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Abbildung 1: Häufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird (Durchgang 2-15) für n=100 (a), n=40 (b), n=10 (c), (Si-
mulation 1), falls mehreren Tests der maximale Anteil zugeteilt wird, erhöht
sich die Häufigkeit bei jedem entsprechend um 1.

bald nur einer dieser Tests diesen höchstmöglichen Anteil erreicht, auch alle

anderen Tests (bis auf den t-Test) die Nullhypothese in jeder der 5000 Ite-

rationen ablehnen und sich somit für die Alternativhypothese entscheiden.

In diesen Fällen beträgt die Differenz der Anteile der Nullen mindestens

0.3. Der t-Test, welcher die Mittelwerte untersucht, lehnt die Nullhypothe-

se besonders oft ab, falls sich die Mittelwerte unterscheiden, die Anteile der

Nullen in den beiden Gruppen jedoch identisch sind (hier p0 = p1 = 0.5).

Der Ablehnungsanteil erhöht sich mit zunehmender Differenz zwischen den

Mittelwerten (0.416, 95% KI, 0.402-0.429; 0.864, 95% KI, 0.855-0.874; 0.994,

95% KI, 0.991-0.996). Dass die Daten nicht normalverteilt sind scheint kein

größeres Problem darzustellen, da die Approximation einer solchen durch

n > 30 gegeben ist. Mit Blick auf die letzte Spalte der Tabelle 3 erkennt man

jedoch schnell, dass der t-Test, abgesehen von den eben beschriebenen drei

Durchgängen, meist weit hinter den anderen liegt. Der größte Unterschied
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zu den übrigen Tests liegt in den dissonanten Fällen vor, d.h. wenn in der

Gruppe mit größerem Mittelwert auch der höhere Nullanteil vorhanden ist,

was dazu führt, dass der Gesamtmittelwert geringer wird.

Der Kolmogorov-Smirnov-Test lehnt die Nullhypothese am öftesten in

Situationen ab, in denen die Differenz der Nullanteile größer ist. Diese Diffe-

renz hat größeren Einfluss auf den Ablehnungsanteil als Unterschiede in den

Mittelwerten innerhalb der Gruppen ohne die Nullen. Die Ursache ist darin

zu vermuten, dass große Unterschiede in den Nullanteilen auch große Unter-

schiede in den Verteilungen bedeuten, welche der Kolmogorov-Smirnov-Test

ursprünglich untersucht.

Die Maxsel-Methode hat zwar nicht immer den höchsten Ablehnungsan-

teil, ist jedoch, bis auf ein paar Ausnahmen, konstant gut auf die verschiede-

nen Gegebenheiten eingegangen. Am meisten Probleme, einen Unterschied

zwischen den Gruppen zu erkennen, gab es bei geringem Unterschied in den

Mittelwerten und entgegengesetztem geringen Unterschied in den Nullantei-

len (0.063, 95% KI, 0.056-0.069) oder wenn es nur einen geringen Unterschied

in den Nullanteilen gibt, jedoch keinen zwischen den Mittelwerten (0.192,

95% KI, 0.181-0.203). Hier ist jedoch dringend anzumerken, dass bei diesen

Gegebenheiten alle anderen Tests einen noch geringeren Ablehnungsanteil

aufweisen. Besonders der Kolmogorov-Smirnov-Test hat hier aufgrund des

zuvor angemerkten Zusammenhangs zwischen Nullanteil und Verteilung eine

schwache Power.

Ein Vergleich zwischen den Two-Part-Modellen liefert als Ergebnis, dass

der BT genau so gut geeignet zu sein scheint wie der BW, häufig sogar

besser. Bei einem Unterschied der Nullanteile von 0.2 und einem Unterschied

zwischen λ0 und λ1 von 2, sowohl im konsonantischen als auch im dissonanten

Fall, führt der BT das Feld an. Im konsonantischen ist der Ablehnungsanteil

des Tests, wie auch bei allen anderen, jedoch wesentlich höher (0.998, 95% KI

0.997-0.993) als im dissonanten (0.249, 95% KI 0.237-0.261). Der Wilcoxon-

Test scheint am besten geeignet, um einen Unterschied aufzudecken, falls der

Unterschied in den Nullanteilen zwar vorhanden aber gering ist, und auch

der Unterschied zwischen den Mittelwerten der echt positiven Werte eher

klein ist (0.961, 95% KI, 0.956-0.967) oder es keinen gibt (0.997, 95% KI,
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0.996-0.999).

Als nächstes wird die Situation im Fall n0 = n1 = 20, und somit n = 40,

betrachtet. Die sich ergebenden Ablehnungsanteile der einzelnen Tests sind

in Tabelle 4 abzulesen. Wie auch zuvor, liegt der Ablehnungsanteil beim

Fisher-Test entweder bei genau 0 oder genau 1. Letzteres kommt nur ein-

mal vor. Hier ist ein Unterschied von 0.4 zwischen den Nullanteilen bei glei-

chen Gruppenmittelwerten nötig. Der Wilcoxon-Test erreicht nur dreimal

einen Ablehnungsanteil > 0.5. Die Situation ist jedes Mal konsonantisch,

mit p0 − p1 = −0.3 bzw. −0.4 und λ0 − λ1 = −1 bzw. 0 (0.744, 95% KI,

0.732,0.756; 0.903, 95% KI, 0.895-0.911 und 1, 95% KI 1-1). In diesen Fällen

ist der Ablehnungsanteil des Wilcoxon-Tests im Vergleich mit denen der an-

deren der höchste. Er ist hauptsächlich am geringsten, wenn die Nullanteile

gleich sind, unabhängig von der Differenz zwischen den Mittelwerten. Der

Grund hierfür liegt bei den ursprünglichen Absichten des Tests. Der Wilcoxon

soll testen, ob ein Unterschied in den Medianen der beiden Gruppen vorliegt.

Da die Nullen in beiden Gruppen bereits jeweils 50% ausmachen, und der

Median den Wert angibt, unterhalb welchem 50% der Daten liegen, wird die-

ser, da die Anzahl der Werte je Gruppe eine gerade ist, aus dem Mittel der 0

und dem Minimum der jeweiligen Gruppe gebildet. Diese beiden Minima un-

terscheiden sich ohnehin nicht groß voneinander. Durch die Hinzunahme der

0 und Bilden des Mittelwerts gleichen sie sich weiter aneinander an. Auch die

anderen Tests haben in diesen Fällen eine eher geringe Power. Den höchsten

Ablehnungsanteil hat noch die Maxsel-Methode bei λ0−λ1 = −4 (0.629, 95%

KI 0.615-0.642). Der Kolmogorov-Smirnov-Test lehnt die Nullhypothese bei

diesen Gruppengrößen nur sehr selten ab. Der maximale Ablehnungsanteil

liegt hier bei 0.172 (95% KI, 0.162-0.182). Der BW erkennt zu keiner Zeit,

dass die Alternativhypothese vorliegt. Auch die Power des t-Tests und des

BTs nimmt deutlich ab, was wohl an der nicht mehr gegebenen Approxi-

mation der Normalverteilung liegt. Einen wirklich hohen Ablehnungsanteil

hat bei diesen Gruppengrößen keiner der Tests mehr. Am ehesten scheint in

den meisten Situationen noch die Maxsel-Methode zu empfehlen zu sein, die,

im Vergleich mit den anderen Tests, den höchsten Ablehnungsanteil besitzt,

falls die Nullanteile identisch sind oder sich, in dissonanten Fällen, nur gering
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F W T KS BW BT M
0 0 0.0138 6e-04 0 0.0014 0.0188 Nullhypothese!
0 0 0.4158 0.0544 0 0.1806 0.359 (F W BW) KS BT M T
0 0.0016 0.8644 0.278 0 0.6338 0.7964 (F BW) W KS BT M T
0 0.0422 0.9936 0.7528 0 0.9596 0.9876 (F BW) W KS BT M T
0 0.4724 0.1976 0.0618 0 0.3472 0.1916 (F BW) KS M T BT W
1 1 0.5766 1 1 1 1 T (F W KS BW BT M)
1 1 0.914 1 1 1 1 T (F W KS BW BT M)
0 0.9614 0.871 0.3766 0 0.957 0.766 (F BW) KS M T BT W
1 1 0.9744 1 1 1 1 T (F W KS BW BT M)
0 0.9974 0.9898 0.6874 0 0.9982 0.9602 (F BW) KS M T W BT
1 1 0.9986 1 1 1 1 T (F W KS BW BT M)
0 0.04 0.008 0.0056 0 0.0384 0.0626 (F BW) KS T BT W M
1 1 0.0626 1 1 1 1 T (F W KS BW BT M)
0 0.0034 0.0746 0.0022 0 0.2486 0.2384 (F BW) KS W T M BT
1 1 0.0084 1 1 1 1 T (F W KS BW BT M)

Tabelle 3: Ablehnungsanteile für Simulation 1 je Durchlauf (1-15) für n0 =
n1 = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.

F W T KS BW BT M
0 0 0.0138 6e-04 0 0.0014 0.0188 Nullhypothese!
0 0 0.0668 0.0038 0 0.0156 0.104 (F W BW) KS BT T M
0 0 0.2228 0.0194 0 0.061 0.2936 (F W BW) KS BT T M
0 0 0.5426 0.0944 0 0.2348 0.6288 (F W BW) KS BT T M
0 0.0032 0.051 0.0022 0 0.0272 0.0452 (F BW) KS W BT M T
0 0.3654 0.177 0.0136 0 0.3002 0.222 (F BW) KS T M BT W
1 1 0.4942 0.172 0 0.9786 1 BW KS T BT (F W M)
0 0.0298 0.281 0.0212 0 0.1844 0.2472 (F BW) KS W BT M T
0 0.7438 0.503 0.064 0 0.6914 0.5216 (F BW) KS T M BT W
0 0.091 0.515 0.061 0 0.3666 0.4714 (F BW) KS W BT M T
0 0.9028 0.697 0.137 0 0.8646 0.714 (F BW) KS T M BT W
0 4e-04 0.0026 0 0 0.0012 0.006 (F KS BW) W BT T M
0 0.102 0.0294 0.0014 0 0.0612 0.0706 (F BW) KS T BT M W
0 0 0.0014 0 0 2e-04 0.0114 (F W KS BW) BT T M
0 0.0376 0.0108 6e-04 0 0.0194 0.0338 (F BW) KS T BT M W

Tabelle 4: Ablehnungsanteile für Simulation 1 je Durchlauf (1-15) für n0 =
n1 = 20, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.
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unterscheiden.

Im letzten Teil der Simulation wurden die Gruppengrößen noch einmal

auf n0 = n1 = 10 reduziert. Die Ablehnungsanteile sind in Tabelle 5 zu

finden. Hier fallen sofort die sehr geringen Ablehnungsanteile auf, welche nur

in wenigen Fällen > 0.1 sind. Die Anteile, welche größer als 0.1 sind, stammen

von der Maxsel-Methode, mit einer Ausnahme. Der Wilcoxon-Test, welcher

ansonsten zu keiner Zeit einen Unterschied erkennt und der Ablehnungsanteil

somit bei 0 liegt, erreicht für p0 − p1 = −0.4 einen Anteil von 0.162 (95%

KI, 0.152-0.173). Auch die anderen Tests sind in diesem Fall, verglichen mit

ihren anderen Ergebnissen, am stärksten. Für sich genommen sind jedoch

auch diese Ergebnisse sehr schwach. Für den Fall, dass die Nullhypothese

vorliegt, erkennen die Tests dies zu sehr niedrigen Signifikanzniveaus. Der

höchste p-Wert stammt hier von der Maxsel-Methode und liegt bei 0.009.

Diese Werte sind im Vergleich mit den Ergebnissen der Simulationen mit

größeren Stichproben ziemlich klein.

F W T KS BW BT M
0 0 8e-04 0 0 4e-04 0.0092 Nullhypothese!
0 0 0.004 0 0 0.0016 0.0292 (F W KS BW) BT T M
0 0 0.012 0 0 0.0034 0.068 (F W KS BW) BT T M
0 0 0.0334 0 0 0.0118 0.1654 (F W KS BW) BT T M
0 0 0.0048 0 0 0.0018 0.0194 (F W KS BW) BT T M
0 0 0.0178 0 0 0.016 0.0468 (F W KS BW) BT T M
0 0.1624 0.0738 0 0 0.2072 0.3234 (F KS BW) T W BT M
0 0 0.0208 0 0 0.0064 0.068 (F W KS BW) BT T M
0 0 0.046 0 0 0.042 0.1202 (F W KS BW) BT T M
0 0 0.042 0 0 0.0144 0.1274 (F W KS BW) BT T M
0 0 0.0788 0 0 0.0734 0.196 (F W KS BW) BT T M
0 0 0.001 0 0 2e-04 0.0044 (F W KS BW) BT T M
0 0 0.0054 0 0 0.0044 0.0172 (F W KS BW) BT T M
0 0 4e-04 0 0 0 8e-04 (F W KS BW BT) T M
0 0 0.0022 0 0 0.002 0.0078 (F W KS BW) BT T M

Tabelle 5: Ablehnungsanteile für Simulation 1 je Durchlauf (1-15) für n0 =
n1 = 10, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.
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5.2 Simulation 2

Wie schon bei Simulation 1 wurde zunächst für einen ersten Überblick ein

Balkendiagramm bezüglich der Häufigkeiten der maximalen Ablehnungsan-

teile je Durchgang der einzelnen Tests erstellt (vgl. Abb. 2). Wichtig ist, sich

bei der Betrachtung der Ergebnisse in Erinnerung zu rufen, dass hier nicht

nur Nullen den angegebenen Anteil ausmachen, sondern auch kleine Zahlen

wie 1,2 u.s.w. Einfachheitshalber wird dieser Anteil dennoch als Nullanteil

bezeichnet! Auch hier wurden, aus demselben Grund wie bei vorheriger Simu-

lation, nur die Durchläufe 2-15 betrachtet. Diese Simulation wurde mit dem

Wilcoxon-, dem t-, dem Kolmogorov-Smirnov-Test und der Maxsel-Methode

gemacht und für n0 = n1 = 20 durchgeführt.

Abbildung 2: Häufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird für n=40, (Simulation 2), falls mehreren Tests der maximale
Anteil zugeteilt wird, erhöht sich die Häufigkeit bei jedem entsprechend um
1.

Die Maxsel-Methode hat hier eindeutig am häufigsten, in 50% der Fälle,

die höchste Power. Es folgt der t-Test in 4 und der Wilcoxon-Test in 3 von

14 Durchläufen. Der Kolmogorov-Smirnov-Test hingegen ist kein Mal der

stärkste Test.
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Einen detaillierteren Überblick schafft Tabelle 6. Liegt die Nullhypothese

vor, d.h. sind die Verteilungen in den beiden Gruppen identisch, so erken-

nen der Wilcoxon- und der Kolmogorov-Smirnov-Test dies am häufigsten.

Sie behalten die Nullhypothese immer bei. Auch der t-Test lehnt H0 nur in

den wenigsten Fällen ab. Die Maxsel-Methode lehnt die Nullhypothese in

etwas mehr als 1% der Fälle ab. Dieser Wert liegt jedoch ebenso weit unter

dem vorgegebenen Signifikanzniveau von 0.05. Somit scheinen alle vier Tests

verlässlich zu sein, sollten sie für eine identische Verteilung entscheiden.

Für die weiteren Durchläufe fällt auf, dass, bis auf die vier letzten und den

sechsten, Maxsel-Methode und t-Test aufeinander folgen. In den Durchläufen,

bei denen sich die Gruppen nur in den Mittelwerten unterscheiden, ist die

Maxsel-Methode stärker in der Detektierung eines Unterschieds zwischen den

Verteilungen. Die Differenz in der Power beider Tests nimmt jedoch ab, je

größer der Unterschied zwischen den Mittelwerten des echt positiven Teils

der Gruppen wird. So beträgt sie bei der Maxsel-Methode in Durchlauf 3 bei

einem Nullanteil von je 0.5 und einer Differenz zwischen den Mittelwerten

von 50 − 20 = 30 bereits 0.712 (95% KI, 0.67-0.725), beim t-Test jedoch

erst 0.389 (95% KI, 0.376-0.403). In Durchgang 4 jedoch verbessert sich die

Maxsel-Methode um ca. 38% auf 0.980 (95% KI, 0.976-0.984), der t-Test

hingegen verbessert sich um ganze 142% auf 0.941 (95% KI, 0.935-0.948).

Kolmogorov-Smirnov und Wilcoxon haben in diesen Fällen eine Power < 0.1,

werden jedoch auch mit Zunahme der Mittelwertdifferenz stärker. Dies ist

allerdings nur relativ zu sehen, denn der Wilcoxon erreicht in Durchlauf 4

nur eine Power von 0.048 (95% KI, 0.042-0.054), der Kolmogorov-Smirnov

kommt immerhin auf 0.439 (95% KI, 0.425-0452). In den Fällen, in denen

sich die Gruppen in den Nullanteilen unterscheiden und die Mittelwerte der

echt positiven Werte der Stichproben identisch sind, haben alle vier Tests ei-

ne sehr geringe Power. Davon ausgenommen ist Durchlauf 7, bei welchem die

Differenz zwischen dem Nullanteil in der ersten und dem Nullanteil der zwei-

ten Gruppe −0.4 beträgt. Hier haben ein weiteres Mal die Maxsel-Methode

mit 0.896 (95% KI, 0.887-0.904) und der t-Test mit 0.732 (95% KI, 0.72-

0.744) die höchste Power. Nicht viel schlechter ist der Wilcoxon mit 0.626

(95% KI, 0.613-0.64). Nur der Kolmogorov-Smirnov liegt mit 0.409 (95% KI,
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0.395-0.423) unterhalb einer Power von 0.5. Die Stärke der drei erstgenann-

ten Tests lässt sich wie folgt begründen: Die Maxsel-Methode findet den

Cutpoint mit der maximalen χ2-Statistik, so dass der höchstmögliche Zu-

sammenhang zwischen den Daten besteht. Somit sind die metrischen Daten

optimal in kategorisiert. Da der Unterschied zwischen den einzelnen Grup-

pen sehr hoch ist, gibt es keinen Grund, dass dieser von der Methode unter

den gegebenen Umständen nicht erkannt wird. Auch der t-Test, welcher auf

Unterschiede in den Mittelwerten der zwei Gruppen testet, deckt den Un-

terschied, welcher durch den konsonantischen Effekt noch verstärkt wird, in

den Verteilungen auf. Für den Wilcoxon ist der Unterschied in den Media-

nen nun größer und somit ersichtlicher als in zuvor genannter Situation, da

der Median der zweiten Gruppe hier bei einem Anteil der Nullen von 90%

definitiv einen der kleinen Werte annimmt. Der Median der ersten Gruppe

dagegen bildet sich als Mittel aus dem Maximum der kleinen Werte und dem

Minimum der großen Werte (welche entscheidend höher sind als die kleinen).

Bei Durchlauf 8 bis 11, den konsonantischen Fällen, dominiert der t-

Test. Die Reihenfolge in der Power der Tests ist bei jedem der Durchgänge

identisch, der Kolmogorov-Smirnov-Test liegt, hinter dem Wilcoxon und der

Maxsel-Methode, immer an letzter Stelle. Maxsel, Kolmogorov-Smirnov und

t-Test werden mit jedem Durchgang stärker, hängen somit nur von dem ab-

soluten Unterschied zwischen den Gruppen ab. Die Power des Wilcoxon da-

gegen wird mit zunehmendem Unterschied der Mittelwerte des echt-positiven

Teils höher, ist dabei jedoch jeweils minimal kleiner für die Durchläufe, in de-

nen die Differenz zwischen den Nullanteilen (nur) −0.2 beträgt. Den höchsten

Ablehnungsanteil hat jede Methode bei Durchlauf 11 (Differenz in Nullantei-

len: −0.3, Differenz in Mittelwerten des echt-positiven Teils: 30). Der t-Test

ist hier mit einer Power von 0.946 (95% KI, 0.94-0.953) ganze 92% besser als

der Wilcoxon mit 0.493 (95% KI, 0.479-0.507) und sogar mehr als dreimal so

stark wie der Kolmogorov-Smirnov mit nur 0.235 (95% KI, 0.223-0.247).

In den dissonanten Fällen (Durchlauf 12 bis 15), ist im Grunde genom-

men die Power jedes Tests ziemlich niedrig. Selten wird ein Wert von 0.1

überschritten. Der Grund dafür ist der geringe Unterschied zwischen den

Gruppen. Trotz größerer Unterschiede in den Mittelwerten des echt-positiven
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Teils sind die absoluten Unterschiede der Mittelwerte aufgrund des gegensätz-

lichen Nullanteils nur gering. So gesehen ist es unter Umständen gar nicht so

falsch, dass die Tests diesen Unterschied nicht (als signifikant) detektieren,

da er einfach zu gering ist.

W T KS M
1 0 8e-04 0 0.0124 Nullhypothese!
2 0.0014 0.063 0.0076 0.2838 W KS T M
3 0.01 0.3894 0.0834 0.7124 W KS T M
4 0.0478 0.9418 0.4386 0.9798 W KS T M
5 0.0442 0.0506 0.0076 0.0526 KS W T M
6 0.2618 0.2544 0.0582 0.213 KS M T W
7 0.6264 0.732 0.409 0.8956 KS W T M
8 0.1378 0.4158 0.0316 0.381 KS W M T
9 0.4106 0.7404 0.1136 0.5472 KS W M T

10 0.2334 0.8062 0.1292 0.7642 KS W M T
11 0.4928 0.9464 0.235 0.8372 KS W M T
12 0.0094 0.0032 0.006 0.0292 T KS W M
13 0.1428 0.0364 0.0456 0.114 T KS M W
14 0.003 2e-04 0.0052 0.0848 T W KS M
15 0.0912 0.0084 0.0392 0.0844 T KS M W

Tabelle 6: Ablehnungsanteile für Simulation 2 je Durchlauf (1-15) für n0 =
n1 = 20, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.

5.3 Simulation 3

Für einen ersten Überblick über die Ergebnissituation zunächst die Abbil-

dung der Balkendiagramme zu den jeweiligen Durchläufen für n0 = n1 = 50

und n0 = n1 = 25 (vgl. Abb. 3).

Es ist zu erkennen, dass die Maxsel-Methode am häufigsten die höchste

Power hat. Die anderen Tests unterscheiden sich, ungeachtet der tatsächli-

chen Power, in diesem Kriterium nicht besonders. Der t-Test zählt immer

(sowohl für die größeren, als auch die kleineren Gruppengrößen) zu den Tests

mit einem geringeren Ablehnungsanteil. Bei Gruppengrößen mit n0 = n1 =

25 liegen die Tests näher beieinander.
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Abbildung 3: Häufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird für n=100 (a) und n=50 (b), (Simulation 3), falls mehreren
Tests der maximale Anteil zugeteilt wird, erhöht sich die Häufigkeit bei jedem
entsprechend um 1.

Für die Details betrachte man Tabelle 7 und 8. Liegt kein Unterschied

in der Verteilung beider Gruppen vor, so erkennen die Tests dies sowohl bei

einem Gruppenumfang von 50 als auch von 25 richtig. Gibt es den Unter-

schied aufgrund verschiedener Mittelwerte des echt-positiven Teils während

die Nullanteile in beiden Gruppen identisch sind, so haben fast alle Tests,

bei einer Gruppengröße von 50, eine Power > 0.9. Der Fisher-Test und der

BW jedoch erkennen diesen Unterschied zu keiner Zeit. Ihre Power beträgt

konstant 0. Einzig für den Fall, dass die Differenz zwischen den Mittelwerten

1 − 0.5 = 0.5 beträgt, erreichen die übrigen Tests das Niveau von 0.9 nicht.

Hier ist die Maxsel-Methode mit einem Ablehnungsanteil von 0.642 (95%

KI, 0.629-0.655) am stärksten. Auch in den anderen beiden Fällen liegt sie

vor den anderen Tests und lehnt die Nullhypothese (fast) immer korrekt ab.

Ihre Power steigt über 0.999 (95% KI, 0.999-1) bis hin zu 1. Unterscheiden

sich die Gruppen aufgrund der Nullanteile, jedoch nicht in den Mittelwerten
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des echt-positiven Teils, so beträgt die Power jedes Tests, abgesehen vom

t-Test, 1. Diese Aussage gilt für einen Unterschied in den Nullanteilen von

mindestens −0.3. Bei einem Unterschied von nur −0.2 ist der Wilcoxon-Test

mit einer Power von 0.498 (95% KI, 0.485-0.512) der Stärkste. Den größten

Unterschied macht es für den Kolmogorov-Smirnov-Test, ob die Differenz

der Nullanteile nur −0.2 oder schon −0.3 beträgt. Im ersten Fall beträgt die

Power gerade einmal 0.059 (95% KI, 0.052-0.066), wohingegen sie im zweiten

direkt auf 1 ansteigt. In konsonantischen Fällen sind die Tests nahezu gleich

gut. Ausnahmen sind hier der Fisher-Test und BW für den Fall, dass die Dif-

ferenz zwischen den Nullanteilen 0.2 beträgt und die der Mittelwerte −0.5.

Hier erkennen sie zu keiner Zeit, dass ein Unterschied existiert, wohingegen

die anderen Tests eine Power von (nahe) 1 erreichen. In den beiden letzten

Durchläufen, in denen der Unterschied in den Mittelwerten des echt-positiven

Teils −2/3 beträgt, ist der t-Test den anderen Tests weit unterlegen. Hier er-

reicht dieser nur eine Power von 0.073 (95% KI, 0.069-0.08).

Für eine Gruppengröße von jeweils 25 sind die Tests im Allgemeinen

alle schwächer. Eine Ausnahme bilden hier die dissonanten Fälle, in denen

alle Tests (bis auf Fisher und BW in 2 Durchläufen) eine Power nahe der 1

erreichen.

5.4 Simulation 4

Ein Blick auf die Balkendiagramme (Abb. 4) zeigt, dass bei einer Gruppen-

größe von n0 = n1 = 50 die Maxsel-Methode am häufigsten die höchste

Power hat. Auch auf den BT ist in 50% der Fälle (mit) der meiste Verlass.

Am schwächsten ist der BW, welcher niemals den höchsten Ablehnungsan-

teil hat. Dies gilt auch für n0 = n1 = 25. Statt der Maxsel-Methode ist hier

jedoch der Fisher-Test am häufigsten der zuverlässigste.

Die Nullhypothese wird zuverlässig für beide Gruppengrößen erkannt (vgl.

Tabellen 9 und 10). Bei gleichen Nullanteilen sind alle Tests bis auf Fisher

und BW sehr stark, sobald die absolute Differenz zwischen den Mittelwerten

größer als 2/3 ist. Bei einer kleineren Differenz von 0.5 liegt die Power bei

allen Tests unter 0.5. Nur die Maxsel-Methode und der t-Test überschreiten
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F W T KS BW BT M
0 0 0.0086 8e-04 0 6e-04 0.0162 Nullhypothese!
0 0.0014 0.6372 0.2756 0 0.3444 0.6418 (F BW) W KS BT T M
0 0.482 0.9836 0.9886 0 0.9312 0.9994 (F BW) W BT T KS M
0 1 0.9926 1 0 0.9728 1 (F BW) BT T (W KS M)
0 0.4984 0.1796 0.059 0 0.3352 0.2054 (F BW) KS T M BT W
1 1 0.502 1 1 1 1 T (F W KS BW BT M)
1 1 0.8568 1 1 1 1 T (F W KS BW BT M)
0 8e-04 0.0238 2e-04 0 0.1252 0.1002 (F BW) KS W T M BT
1 1 0.0134 1 1 1 1 T (F W KS BW BT M)
0 0 0.6716 0.0328 0 0.9048 0.8072 (F W BW) KS T M BT
1 1 0.0704 1 1 1 1 T (F W KS BW BT M)
0 0.998 0.9106 0.8294 0 0.9724 0.9668 (F BW) KS T M BT W
1 1 0.9658 1 1 1 1 T (F W KS BW BT M)
1 1 0.0728 1 1 1 1 T (F W KS BW BT M)
1 1 0.0728 1 1 1 1 T (F W KS BW BT M)

Tabelle 7: Ablehnungsanteile für Simulation 3 je Durchlauf (1-15) für n0 =
n1 = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.

F W T KS BW BT M
0 0 0.0048 8e-04 0 2e-04 0.0096 Nullhypothese!
0 0 0.2676 0.0664 0 0.0764 0.3074 (F W BW) KS BT T M
0 0 0.8294 0.6634 0 0.5736 0.937 (F W BW) BT KS T M
0 0 0.942 1 0 0.8312 1 (F W BW) BT T (KS M)
0 0.0168 0.057 0.0048 0 0.0374 0.067 (F BW) KS T M BT W
1 0.891 0.2582 0.095 0 0.63 0.4432 BW KS T M BT W F
1 1 0.5316 1 1 1 1 T (F W KS BW BT M)
0 0 0.0036 0 0 0.001 0.0494 (F W KS BW) BT T M
1 0.3018 0.0118 0.0022 0 0.0984 0.0566 BW KS T M BT W F
0 0 0.1572 0 0 0.095 0.4386 (F W KS BW) BT T M
1 0.5938 0.0846 0.0046 1 1 1 KS T W (F BW BT M)
0 0.9716 0.6516 0.565 0 0.7794 0.9146 (F BW) KS T BT M W
1 1 0.8126 0.9504 1 1 1 T KS (F W BW BT M)
0 1 0.9102 0.9898 0 0.9588 1 (F BW) T BT KS (W M)
1 1 0.927 0.9994 1 1 1 T KS (F W BW BT M)

Tabelle 8: Ablehnungsanteile für Simulation 3 je Durchlauf (1-15) für n0 =
n1 = 25, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.

diese Marke mit 0.662 (95% KI, 0.649-0.675) und 0.696 (95% KI, 0.683-0.709).

Unterscheiden sich die Verteilungen aufgrund unterschiedlicher Nullanteile,

so sind die Tests eher schwach, solange die Differenz nicht 0.4 beträgt. Für

diesen Fall haben alle Tests eine Power > 0.8. Eine Ausnahme bilden der

33



Fisher und die Maxsel-Methode, welche auch bei einem Unterschied in den

Nullanteilen von 0.3 eine Power von 0.802 (95% KI, 0.791-0.813) und 0.565

(95% KI, 0.551-0.579) aufweisen.

Abbildung 4: Häufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird für n=100 (a) und n=50 (b), (Simulation 4), falls mehreren
Tests der maximale Anteil zugeteilt wird, erhöht sich die Häufigkeit bei jedem
entsprechend um 1.

Bei Unterschieden sowohl in Nullanteilen als auch in den Mittelwerten

im konsonantischen Sinne sind die Ergebnisse unterschiedlich. Für geringe

Differenzen in Nullanteilen und Mittelwerten ist kein Test besonders gut ge-

eignet. Die Power liegt hier bei sechs von sieben Tests unter 0.01. Nur die

Maxsel-Methode erreicht einen Wert von 0.163 (95% KI, 0.153-0.173). Bis

auf Fisher und Maxsel sind auch bei den übrigen Durchläufen entsprechender

Einstellungen die Tests sehr schwach und ihre Power nicht nennenswert. Fis-

her erreicht bei Differenzen von 0.3 in den Nullanteilen immerhin eine Power

von 0.829 (95% KI, 0.819-0.84) und 0.808 (95% KI, 0.797-0.819). Maxsel bei

einem Unterschied in den Nullanteilen von 0.2 und einer Mittelwertdifferenz
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von 2/3 eine Power von 0.835 (95% KI, 0.825-0.846). Bei identischer Mittel-

wertdifferenz und einem Unterschied in den Nullanteilen von 0.3 kommt die

Methode nur auf 0.560 (95% KI, 0.546-0.574), womit sie jedoch einen im-

mer noch deutlich höheren Ablehnungsanteil als die übrigen Tests hat (außer

Fisher).

Für die dissonanten Fälle sticht für eine Differenz in den Mittelwerten

von 0.5 nur der BW bei einem Unterschied zwischen den Nullanteilen von 0.2

heraus. Während alle anderen Tests eine Power von 0.8 überschreiten, kommt

er nur auf 0.328 (95% KI, 0.315-0.341). Für einen Mittelwertunterschied von

2/3 hat vor allem der Fisher mit 0.802 (95% KI, 0.791-0.813) eine hohe Power.

Die Maxsel-Methode hebt sich mit 0.565 (95% KI, 0.551-0.579) jedoch auch

noch deutlich von den übrigen Tests ab.

Für die kleinere Gruppengröße von 25 Werten je Stichprobe sind die Tests,

im Vergleich mit den vorherigen Simulationen, noch immer stark. Die höchste

Power haben sie in den dissonanten Situationen, die geringste vor allem in den

konsonantischen. Vor allem Fisher und BW erkennen bei gleichen Nullantei-

len einen Unterschied in den Verteilungen aufgrund einer Differenz zwischen

den Mittelwerten zu keiner Zeit, wohingegen die übrigen Tests ab einem Un-

terschied von 2/3 verlässlich sind.
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F W T KS BW BT M
2e-04 0.0084 0.0146 8e-04 0 0.005 0.0236 Nullhypothese!
4e-04 0.396 0.6962 0.2756 0 0.4712 0.6622 BW F KS W BT M T
6e-04 0.9602 0.9998 0.9886 0 0.9956 0.9994 BW F W KS BT M T
6e-04 1 1 1 0 1 1 BW F (W T KS BT M)
0.202 0.2162 0.2006 0.0476 0.034 0.327 0.2016 BW KS T M F W BT
0.8024 0.0248 0.0014 0.075 0.217 0.282 0.565 T W KS BW BT M F
0.9998 0.8808 0.893 0.955 0.9984 0.9986 1 W T KS BW BT F M
0.0078 0.0014 0.009 2e-04 2e-04 0.0018 0.1628 (KS BW) W BT F T M
0.8292 0.1546 0.0176 0.1284 0.271 0.4186 0.4198 T KS W BW BT M F
2e-04 0.0024 0.2258 0.0328 0 0.0946 0.8354 BW F W KS BT T M
0.8084 0.0268 0.0014 0.078 0.2228 0.2778 0.56 T W KS BW BT M F
0.8056 0.9808 0.9916 0.8268 0.3276 0.9974 0.9686 BW F KS M W BT T
1 0.9992 0.9998 0.9956 0.9944 1 0.9998 BW KS W (T M) (F BT)
0.8024 0.0248 0.0014 0.075 0.217 0.282 0.565 T W KS BW BT M F
0.8024 0.0248 0.0014 0.075 0.217 0.282 0.565 T W KS BW BT M F

Tabelle 9: Ablehnungsanteile für Simulation 4 je Durchlauf (1-15) für n0 =
n1 = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.

5.5 Simulation 5 und 6

Die letzten beiden Simulationen unterscheiden sich nur insofern von den

Simulationen 3 und 4, als dass sie auch andere kleine Werte abgesehen der

Nullen, sprich 1, 2 u.s.w., beinhalten. Man könnte vermuten, dass es in den

Teststärken keine gravierenden Unterschiede gibt. Ein Blick auf die Ergeb-

nisse zeigt jedoch ein anderes Bild. Allerdings soll nur auf die größten Un-

terschiede eingegangen werden.

Die Überlegenheit der Maxsel-Methode ist unübersehbar. Bei den normal-

verteilten, echt-positiven Werten in Simulation 6 rückt der t-Test als stärkster

Test in 5 von 14 Fällen etwas auf, erreicht den Wert von 10 von 14 jedoch

nicht annähernd (vgl. Abb. 5). Bei Betrachtung der Ablehnungsanteile in

Tabelle 11 und 12 erkennt man an erstgenannter, dass auch hier der BW

zusammen mit dem Fisher sehr geringe Ablehnungsanteile hat. Auch eher zu

den schwächeren zählt der Kolmogorov-Smirnov-Test. Im Vergleich mit Si-

mulation 4, bei der die kleinen Werte ausschließlich die Nullen beinhalteten,

sind alle Tests schwächer geworden, was die Detektierung von Unterschieden

betrifft. Sehr gute Ergebnisse erzielen fast alle Tests wieder in den dissonan-

ten Fällen. Vor allem in denen, mit dem größeren Unterschied zwischen den
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F W T KS BW BT M
0 0.0092 0.0156 8e-04 0 0.0058 0.0204 Nullhypothese!
0 0.1352 0.3182 0.0664 0 0.1502 0.3696 (F BW) KS W BT T M
0 0.485 0.9238 0.6634 0 0.7336 0.9512 (F BW) W KS BT T M
0 0.8472 1 1 0 1 1 (F BW) W (T KS BT M)
0.0198 0.0786 0.075 0.0046 0.0018 0.0898 0.0748 BW KS F M T W BT
0.3128 0.2948 0.2668 0.0672 0.0776 0.4442 0.3758 KS BW T W F M BT
0.7856 0.5254 0.504 0.289 0.5018 0.814 0.8722 KS BW T W F BT M
0 0.0016 0.0058 0 0 8e-04 0.0596 (F KS BW) BT W T M
0.128 0.057 0.0122 0.0018 0.0016 0.067 0.0486 BW KS T M W BT F
0 0.0028 0.0564 0 0 0.0064 0.4608 (F KS BW) W BT T M
0.3622 0.0716 0.0062 0.003 0.1074 0.1248 0.251 KS T W BW BT M F
0.5756 0.9238 0.92 0.5646 0.0596 0.9578 0.9182 BW KS F M T W BT
0.9934 0.9916 0.9908 0.9222 0.9352 0.9994 0.997 KS BW T W F M BT
0.7084 1 1 0.9898 0.072 1 1 BW F KS (W T BT M)
1 1 1 0.9994 0.9962 1 1 BW KS (F W T BT M)

Tabelle 10: Ablehnungsanteile für Simulation 4 je Durchlauf (1-15) für n0 =
n1 = 25, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.

Mittelwerten. Anhand der zweiten Tabelle erkennt man, dass der t-Test ge-

rade in den Durchläufen, in denen konsonantische Situationen vorliegen, und

somit die Differenz der Gesamtmittelwerte eher groß ist, diesen Unterschied

nicht detektiert. Seine Power liegt hier gerade einmal bei zum Beispiel 0.067

(95% KI, 0.261-0.286). Auch hier scheinen BW und Fisher nicht in der Lage,

einen Unterschied in den Verteilungen zu erkennen. Ihre Power liegt in den

meisten Fällen unter 0.1.
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F W T KS BW BT M
0.0118 0.0128 0.0166 0.0098 0.002 0.0098 0.0226 Nullhypothese!
0.0118 0.3408 0.6666 0.3466 0.002 0.4454 0.624 BW F W KS BT M T
0.0118 0.8624 0.984 0.9902 0.002 0.9458 0.9996 BW F W BT T KS M
0.0118 0.9758 0.9926 1 0.002 0.9768 1 BW F W BT T (KS M)
0.0808 0.1622 0.1252 0.0796 0.0282 0.129 0.1498 BW KS F T BT M W
0.1668 0.3944 0.3106 0.219 0.0684 0.3366 0.384 BW F KS T BT M W
0.297 0.6554 0.6344 0.4632 0.1396 0.6334 0.7238 BW F KS BT T W M
0.0808 0.007 0.0674 0.0116 0.0282 0.078 0.0908 W KS BW T BT F M
0.1668 0.1146 0.0082 0.087 0.0684 0.098 0.1278 T BW KS BT W M F
0.0808 0.009 0.746 0.044 0.0282 0.5494 0.7582 W BW KS F BT T M
0.1668 0.0364 0.1554 0.0716 0.0684 0.2254 0.3486 W BW KS T F BT M
0.0808 0.8376 0.89 0.7948 0.0282 0.7942 0.941 BW F BT KS W T M
0.1668 0.9524 0.9512 0.9436 0.0684 0.9102 0.9908 BW F BT KS T W M
0.1682 0.0362 0.1554 0.0714 0.0668 0.2344 0.3672 W BW KS T F BT M
0.1682 0.0362 0.1554 0.0714 0.0668 0.2344 0.3672 W BW KS T F BT M

Tabelle 11: Ablehnungsanteile für Simulation 5 je Durchlauf (1-15) für n0 =
n1 = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.

F W T KS BW BT M
0.0238 0.0434 0.0468 0.0254 0.0046 0.0482 0.0448 Nullhypothese!
0.073 0.6022 0.6476 0.4146 0.0198 0.5136 0.5494 BW F KS BT M W T
0.093 0.9794 0.9952 0.9702 0.031 0.9774 0.9932 BW F KS BT W M T
0.0942 1 1 1 0.0316 1 1 BW F (W T KS BT M)
0.0454 0.0514 0.0496 0.0356 0.0146 0.0598 0.0774 BW KS F T W BT M
0.069 0.0534 0.0526 0.0472 0.0238 0.0772 0.108 BW KS T W F BT M
0.0994 0.0558 0.053 0.0638 0.038 0.0964 0.1656 BW T W KS BT F M
0.0228 0.2182 0.2738 0.1296 0.0054 0.1754 0.2874 BW F KS BT W T M
0.0392 0.106 0.1456 0.0826 0.0118 0.0946 0.2134 BW F KS BT W T M
0.0226 0.5328 0.7308 0.4546 0.0052 0.5602 0.7922 BW F KS W BT T M
0.0362 0.2248 0.3858 0.1836 0.0108 0.2412 0.4844 BW F KS W BT T M
0.173 0.6398 0.657 0.456 0.0704 0.5812 0.601 BW F KS BT M T W
0.2402 0.6546 0.6584 0.5034 0.1086 0.5984 0.6494 BW F KS BT M W T
0.0344 0.2324 0.3944 0.181 0.0104 0.2454 0.4992 BW F KS W BT T M
0.0344 0.2324 0.3944 0.181 0.0104 0.2454 0.4992 BW F KS W BT T M

Tabelle 12: Ablehnungsanteile für Simulation 6 je Durchlauf (1-15) für n0 =
n1 = 50, die letzte Spalte gibt die Reihenfolge der Tests bzgl. ihrer Stärke
an, (...): gleicher Wert.
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Abbildung 5: Häufigkeiten, wie oft den Tests der maximale Ablehnungsanteil
zugeordnet wird für Simulation 5 (a) und Simulation 6 (b) (n=100), falls
mehreren Tests der maximale Anteil zugeteilt wird, erhöht sich die Häufigkeit
bei jedem entsprechend um 1

6 Fazit

Nach der Einzelbetrachtung jeder Simulation soll in einem kurzen Fazit ver-

sucht werden, sich für, aber auch gegen bestimmte Methoden auszusprechen.

Da die Tabellen sehr viele Werte enthalten und man leicht den Überblick

verlieren kann, zeigt Abb. 6 für jeden Test, wie oft er eine Power von 0.8

überschritten hat. Dieser Wert richtet sich nach Cohen, welcher für den β-

Fehler einen viermal so hohen Wert wie für den α-Fehler vorschlägt [Cohen

(1988), S.5]. Da das Signifikanzniveau hier jeweils bei α = 0.05 lag, ergibt sich

ein β-Fehler von 0.2 und damit eine Power, 1−β, von 0.8. Ergänzend ist die-

ser Wert anteilig an den Simulationsdurchläufen dargestellt, da der Fisher,

BW und BT in Simulation 2 nicht vertreten waren. Die Maxsel-Methode

erreichte 50 mal eine Power > 0.8, was einem Anteil von 33% entspricht.

Der BT überschreitet diesen Wert 44 mal, dies bedeutet in 32% der Fälle.
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Abbildung 6: Absolute (rechts) und relative (links) Häufigkeiten für Power
> 0.8.

Über sein Verhalten in Simulation 2 ist jedoch nichts bekannt, daher ist die

Maxsel-Methode vorzuziehen.

Basierend auf den Ergebnissen, scheint es, als sei die Maxsel-Methode gut

für bestimmte Anwendungen geeignet, da sie konstant sehr stark ist. In den

wenigen Fällen, in denen ein anderer Test besser ist, ist der Unterschied nur

gering und hat die Maxsel-Methode eine geringe Power, so sind die übrigen

Tests auch nicht (viel) besser. Somit ist man mit Maxsel am ehesten auf der

sicheren Seite, was die Power betrifft. Von BW, Fisher und auch BT Test

ist eher abzuraten. Die beiden zuerst genannten sind die schwächsten aller

miteinander verglichenen Tests. Beim BT Test ergibt sich dasselbe Problem

wie auch beim Fisher und BW: Es muss ein (bzw. mehrere) Schwellenwert(e)

vor Durchführung des Tests bestimmt werden. Ob diese jedoch geeignet sind,

ist zuvor meist schwierig zu bestimmen. So ist auch bei einer Power von 1

beim Fisher-Test nicht genau zu sagen, ob der erkannte Unterschied in den

Gruppen nur aufgrund des Cutpoints gemacht wurde und ob das Ergebnis

bei einem anderen Cutpoint nicht komplett anders wäre.
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Wilcoxon-, t- und Kolmogorov-Smirnov-Test liegen nicht weit auseinan-

der. Da der Wilcoxon-Test ein Test ist, der damit arbeitet, dass Verteilungen

sich nur bzgl. der Lage unterscheiden [vgl. Toutenburg und Heumann (2008),

S. 174], erkennt er die Unterschiede, die aufgrund eines Unterschieds in den

Nullanteilen vorliegen, nur schwer. Liegt jedoch (zusätzlich) auch eine Ver-

schiebung bedingt durch die Mittelwerte vor, so ist er relativ stark. Dasselbe

gilt für den t-Test. Der Kolmogorov-Smirnov-Test detektiert Unterschiede

nur, falls sie groß sind, unabhängig von der Ursache.

Die Maxsel-Methode, die sich für jede Situation ihren Cutpoint anhand

der maximalen χ2-Statistik neu berechnet (unbeeinflusst durch fishing for

significance 1), scheint somit, wie bereits erwähnt, am besten geeignet, um

Daten, die hohe Anteile an Nullen oder auch kleinen Werten beinhalten, auf

Unterschiede und somit eine Abhängigkeit, zu untersuchen. In den Simulatio-

nen erwiesen sich Stichprobengrößen > 20 als geeignet dafür, dass die Tests

eine höhere Power erreichten. Es ist daher auch in der Praxis in Erwägung zu

ziehen, die Gruppen lieber etwas größer zu wählen um unnötig hohe β-Fehler,

und somit eine geringe Power, zu vermeiden.

1es wird der Cutpoint ausgewählt, mit welchem der kleinste p-Wert resultiert
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7 Anwendung in der Praxis

Für eine praktische Anwendung der Tests wurde ein Datensatz über Krebs-

patienten betrachtet. Es wurden der t-Test, der Wilcoxon-Test, der Kolmogo-

rov-Smirnov-Test und die Maxsel-Methode angewandt und die Ergebnisse

kritisch verglichen. Fisher, BW und BT wurden nicht gerechnet, da eine

Dichotomisierung der Variablen beim Wert 0 nicht geeignet ist. Grund dafür

ist, dass einige Variablen keine Ausprägung ”0” besitzen und die Tests somit

nicht durchführbar sind.

7.1 Überblick über die Daten

Der Datensatz enthält Informationen über Krebspatienten. Die für die Fra-

gestellung dieser Arbeit interessierenden Variablen sind Metastasiert (Waren

Metastasen vorhanden?), TodTUassoziiert (War der Tod des Patienten tu-

morbedingt?) und die Variablen, welche die Methylierungs-Prozentwerte der

einzelnen Cytosin-Guanosin-Basenfolgen (CpGs) der Gene angeben. Meta-

stasiert und TodTUassoziiert sind ursprünglich binär kodiert mit den Fak-

toren Ja und Nein. Um die Tests anwenden zu können, wurde Ja in 1 und

Nein in 0 geändert. Die Häufigkeiten in den Gruppen sind in folgender Ta-

belle dargestellt:

Tumor = 0 Tumor = 1

Meta = 0 26 0 26

Meta = 1 6 16 22

Summe 32 16 48

Für jedes Gen gibt es eine Spalte, die den Methylierungswert bei gesun-

den Menschen angibt. Eine weitere Spalte gibt zusätzlich den Mittelwert der

einzelnen Methylierungs-Prozentwerte für jeden Patienten pro Gen an. Die-

se sind bei der Testberechnung jedoch nicht von großem Interesse, da sie

nicht die kleinen Werte nahe der Null, welche in dieser Arbeit interessieren,

enthalten. Das Beispiel in Abb. 7, welches ausgewählt wurde, da es für die

vorliegende Fragestellung gut passt, da viele kleine Werte enthalten sind, soll
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veranschaulichen, wieso diese Art von Daten hier besonders interessant ist.

Man erkennt sogleich die stark linkssteile Verteilung der Datenwerte, welche

bei den verbleibenden Genen einen ähnlichen Charakter aufweisen.

Abbildung 7: Histogramm der Methylierungs-Prozentwerte des
CpGs GSTP16.

7.2 Ergebnisse

Der Wilcoxon-Test, der t-Test, der Kolmogorov-Smirnov-Test und die Max-

sel-Methode wurden angewandt, um zu überprüfen, ob ein Zusammenhang

zwischen einer stattgefundenen Metastasierung bzw. einem durch den Tumor

verursachten Tod und den Methylierungs-Prozentwerten an den verschiede-

nen CpGs der einzelnen Gene vorhanden ist. Das Signifikanzniveau wurde mit

α = 0.05 festgelegt. Als erstes wurden die Tests bezüglich der binären Va-

riable Metastasiert durchgeführt. Abb. 8 zeigt die Häufigkeit eines p-Wertes

< 0.05 je Test. Es fällt sofort der t-Test auf, welcher nur bei einem einzigen

CpG einen Unterschied in den Verteilungen der Methylierungs-Prozentwerte

für Patienten mit und ohne Metastasen erkennt. Doch wie oft gibt es ei-

ne Übereinstimmung zwischen den Tests bezüglich der CpGs, für welche sie
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Abbildung 8: Anzahl Ablehnungen der Nullhypothese (”Die Verteilungen in
den Gruppen sind identisch”) je Test für ”Metastasiert”.

einen Zusammenhang ausschließen? Eine Antwort gibt Tabelle 13.

Das einzige CpG, bei dem der t-Test einen Zusammenhang verwirft, ist

APC.3. Der p-Wert ist 0.04. Der Wilcoxon ist mit einem nahezu identischen

p-Wert (Werte sind gerundet) der einzige weitere Test, der auch die Null-

hypothese ablehnt. Zieht man Parallelen zu den Simulationsergebnissen der

vorherigen Kapitel, so findet man diese zum Beispiel bei Simulation 1, Durch-

lauf 9 (vgl. Tabelle 4). Auch die Gruppengrößen stimmen in etwa überein.

In diesem Fall läge hier sowohl ein Unterschied in den Nullanteilen (bzw.

bei den kleinen Werten) als auch in den Mittelwerten der Werte, die größer

Null sind, vor. Bleibt man beim t-Test, so fällt auf, dass die übrigen p-Werte

alle sehr hoch sind. Das bedeutet, dass er den Zusammenhang nur zu sehr

hohen (nicht mehr sinnvollen) Signifikanzniveaus ablehnt. Auch, und gera-

de, bei den Variablen, für welche die anderen Tests die Nullhypothese sicher

ablehnen. Ein weiterer, auffälliger Punkt ist, dass die Maxsel-Methode den

Unterschied bei der Hälfte aller für ohne Zusammenhang befundenen Varia-

blen detektiert. In den Fällen, in denen sie die Nullhypothese nicht ablehnt,

ist der p-Wert nahe der 0.05. Bei diesen Variablen entscheidet ausnahmslos
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wilcox ttest ks maxsel
APC mean 0.02 0.12 0.03 0.04

APC 0.14 0.23 0.05 0.04
APC.3 0.04 0.04 0.14 0.06
APC.5 0.01 0.13 0.07 0.06
APC.6 0.02 0.82 0.05* 0.05

DAPK.12 0.04 0.10 0.15 0.11
GADD45a.2 0.03 0.62 0.05 0.05
GADD45a.3 0.01 0.30 0.04 0.03

GSTP12 0.05* 0.39 0.15 0.18
p14.16 0.08 0.97 0.04 0.01
p73.1 0.12 0.53 0.02 0.02

Endoglin10 0.35 0.60 0.13 0.05*
Endoglin13 0.21 0.44 0.04 0.03
Endoglin16 0.03 0.11 0.07 0.05

Tabelle 13: p-Werte für die CpGs, bei denen mindestens ein Test H0 ablehnt
(Metastasiert), * Werte auf 0.05 aufgerundet (korrekter Wert < 0.05)!.

der Wilcoxon gegen H0.

Das Gleiche gilt für die Variable Tumorassoziiert. Die Ablehnungshäufig-

keiten sind in Abb. 9 zu finden. Bei den Variablen APC mean, APC.5,

GSTP2 mean und RAS.1 ist der t-Test der einzige Test, der die Nullhy-

pothese nicht ablehnt. Zieht man Parallelen zu den Simulationsergebnissen

der vorherigen Kapitel, so ist dies mit Durchlauf 7 von Simulation 3 (für

n = 50) bzw. mit den Durchläufen 9 und 11, ebenso von Simulation 3, zu

vergleichen (s. Tabelle 7 und 8). Da in dem aktuellen Datensatz Gruppen-

größen von n ≈ 50 vorliegen, ist erstgenannte Situation besser zum Vergleich

geeignet. So besteht die Möglichkeit, dass der Unterschied in den Verteilun-

gen zwar sehr groß ist, dies jedoch nur aufgrund der großen Differenzen in

den Nullanteilen zustande kommt. Da der t-Test die Klumpung bei der Null

(zumindest hier) ignoriert, entscheidet er für Gleichheit. Tatsächlich liegt

der Mittelwert für z.B. APC.5 in der Gruppe der Patienten mit Metastasen

(Metastasiert=1 ) bei 11.872, in der Gruppe der Patienten ohne Metastasen

(Metastasiert=0 ) bei gerade einmal 4.42.

APC.3 ist die einzige Variable, für die der t-Test die Hypothese des Zu-

45



Abbildung 9: Anzahl Ablehnungen je Test für ”Tumorassoziiert”.

sammenhangs verwirft und somit einen Unterschied in den Verteilungen de-

tektiert. Die Maxsel-Methode (zuvor als äußerst zuverlässig befunden) be-

kräftigt diese Entscheidung. Eine Übereinstimmung könnte hier mit Durch-

lauf 3 von Simulation 4 (Tabelle 10) gesehen werden. Hier hatten sowohl

t-Test als auch Maxsel einen hohen Ablehnungsanteil und der Kolmogorov-

Smirnov-Test einen höheren Ablehnungsanteil als der Wilcoxon. Dies spricht

dafür, dass der p-Wert des Kolmogorov-Smirnov-Tests (0.06) kleiner als der

des Wilcoxon (0.07) ist.
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wilcox ttest ks maxsel
APC mean 0.02 0.08 0.03 0.02

APC 0.11 0.14 0.02 0.01
APC.3 0.07 0.04 0.06 0.01
APC.5 0.02 0.10 0.03 0.01
APC.7 0.09 0.10 0.10 0.02

GSTP2 mean 0.04 0.65 0.03 0.03
GSTP15 0.03 0.52 0.06 0.08

p14.5 0.04 0.21 0.10 0.17
RAS.1 0.02 0.46 0.03 0.02
RAS.2 0.05 0.45 0.03 0.02
RAS.4 0.59 0.29 0.37 0.03

Tabelle 14: p-Werte für die Gene, bei denen mindestens ein Test einen Zu-
sammenhang ausschließt (Tumorassoziiert),* Werte auf 0.05 aufgerundet!.

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde die Maxsel-Methode mit weiteren statistischen Tests

verglichen. Der Vergleich geschah bezüglich ihrer Fähigkeit, Zusammenhänge

zwischen einer binären Variable und einer Variable, welche viele kleine Werte

und vor allem Nullen enthält, zu erkennen. Diese Tests waren der Wilcoxon-

Test, der t-Test, der Kolmogorov-Smirnov-Test und die sogenannten Two-

Part-Models bestehend aus Binomial- und Wilcoxon- bzw. t-Test. Dazu wur-

den zunächst mehrere Simulationen durchgeführt. Da hier Vorwissen über

die Situation in den Daten vorlag, konnte anhand der Ablehnungsanteile

die Power der Tests in den jeweiligen Fällen bestimmt werden. Diese unter-

schied sich sowohl unter den Tests, als auch für die jeweiligen Durchläufe.

Getestet wurde für verschiedene Verteilungen derjenigen Werte der Grup-

pe, welche größer Null waren (bzw. nicht zu den kleinen Werten zählten),

verschiedene Nullanteile und verschiedene Mittelwerte. Es wurde festgestellt,

dass die Maxsel-Methode in 33% der Fälle die Nullhypothese mit einer Power

> 0.8 abgelehnt hat. Danach folgte der BT mit 32% und der Wilcoxon mit

27%. Dieses Ergebnis deckt sich mit dem der Tests an dem Datensatz über

Krebspatienten. Hier war von Interesse, ob die Tests jeweils einen Zusam-

menhang zwischen den binären Variablen Metastasiert und Tumorassoziiert
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und den Methylierungs-Prozentwerten verschiedener Gene detektieren oder

ablehnen. Es erzielte jeweils einmal der Wilcoxon und einmal die Maxsel-

Methode die meisten Ablehnungen der Nullhypothese (kein Unterschied in

den Verteilungen der Gruppen). Diese ergänzten sich insofern gut, als dass,

falls die Maxsel-Methode einen Zusammenhang nicht ausschließen konnte,

der Wilcoxon-Test dies jedoch tat. Folglich scheint die Maxsel-Methode in

Verbindung mit dem Wilcoxon-Test ein geeignetes Mittel zu sein, um Da-

ten, welche viele kleine Werte enthalten, und somit stark linkssteil verteilt

sind, auf Zusammenhänge zu untersuchen. Da die Situation in den reellen

Daten nicht im Voraus bekannt ist, und die Tests unterschiedlich gut darauf

reagieren, scheint es eher nicht geeignet, sich auf nur eine Methode zu ver-

lassen. Der BT ist, wie auch der BW und Fisher, trotz einer Power > 0.8 in

32% der Fälle, nicht immer geeignet, da hier im Voraus ein Cutpoint für die

Dichotomisierung der nicht binären Variable bestimmt werden muss.

Interessant könnte nun noch sein, die Simulationen für unterschiedliche

Gruppengrößen (z.B. n0 = 30, n1 = 70) durchzuführen und weitere Kom-

binationen in Nullanteilen und Mittelwerten zu untersuchen. Da die Grup-

pengrößen in der Praxis häufig nicht gleich groß sind, wäre es interessant zu

wissen, wie sich die verschiedenen Tests in solchen Situationen verhalten und

ob es auch Tendenzen zu einem bestimmten Verhaltensmuster gibt, anhand

welchem man sich entscheiden kann, welcher Test in entsprechenden Situa-

tionen eher verwendet werden sollte. Denn möglicherweise verändert sich das

Verhalten der Tests durch diese Veränderung. Weiter könnte zusätzlich ein

Two-Part-Modell bestehend aus Binomial- und Kolmogorov-Smirnov-Test

mit aufgenommen werden. Es ist jedoch zu erwarten, dass dessen Ergebnisse

bzgl. der Power ähnlich denen von BT und BW sind, da sich der Kolmogorov-

Smirnov-Test nicht sonderlich stark von Wilcoxon- und t-Test unterschieden

hat. Auch das Problem der Cutpoint-Findung läge hier vor. Da sich die Er-

gebnisse verändert haben, falls die echt-positiven Werte anders verteilt waren,

könnten hier noch Simulationen mit weiteren Verteilungen, wie zum Beispiel

der log-Gammaverteilung, durchgeführt werden. Auch könnten die Gruppen-

größen für die Simulationen 5 und 6 verkleinert und die Ergebnisse mit denen

der größeren Gruppen verglichen werden.
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