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Abstract

In method comparison experiments with replications, two measurement procedures (test method

and comparative method) are compared using regression analysis. The ordinary linear regression

approach often yields biased estimates of regression coefficients because the predictor (measure-

ments of comparative method) contains random error. Instead, a linear error-in-variables regression

model should be used. This work focuses on the approaches based on linear structural error-in-

variables model, called averaged Deming regression, and Linnet’s weighted Deming regression as

they are recommended by CLSI (Clinical and Laboratory Standards Institute) for the analysis of

method comparison data. Theoretical foundations of these approaches are analyzed and compared

with ML estimations for linear structural error-in-variables model and the performance of both

methods is investigated using Monte-Carlo simulations. The performance of different methods

of calculation of confidence intervals for the estimates of regression coefficients is also examined

using Monte-Carlo simulations. Simulation studies show that the averaged Deming regression and

Linnet’s weighted Deming regression approaches combined with jackknife or bootstrap quantile

confidence intervals yield reasonable estimations of regression coefficients, even if the model as-

sumptions are considerably violated. The case of matrix effect in the test measurement procedure

is also considered. Simulation studies suggest biased estimates of regression parameters calculated

via averaged Deming regression or Linnet’s weighted Deming regression, if there is a strong matrix

effect in the test method. In that case, another approach based on the linear structural ME model

with error in equation may be used for the estimation of regression coefficients. The simulation

studies show proper results of this method if there is a strong matrix effect in the test method.



Chapter 1

Introduction

1.1 Method comparison study

The present master thesis deals with the problem of method comparison studies in cases when

there are replicated measurements. This is one of the most common techniques used by both man-

ufacturers and clinical laboratory users to measure the performance of in vitro diagnostic (IVD)

measurement procedures. The aim of a method comparison study is to analyze bias between two

measurement procedures using paired results from patient samples.

The main guideline document regulating measurement comparison study is called EP9: ”Mea-

surement Procedure Comparison and Average Bias Estimation Using Patient Samples” [18]. It

was developed by CLSI (Clinical and Laboratory Standards Institute). Realization and analysis

of method comparison studies should adhere to recommendations of this document as strictly as

possible.

The CLSI EP9 [18] lists the following primary purposes for measurement procedure comparisons:

1. Establishing the relationship between measurement procedures by the manu-

facturer. Manufacturers must establish the relationship of any candidate measurement

procedure quantification with a comparative measurement procedure. The primary goal of

such study is to analyze average bias between two methods.

2. Claim Verification by Manufacturer. The goal of such study is to show that the candi-

date measurement procedure meets the claims already established in an in-use situation.

3. Measurement Procedure introduction to the clinical laboratory. Clinical laborato-

ries typically perform measurement procedure comparison studies when introducing an IVD

product in their menu. The candidate measurement procedure typically replaces one that is

currently used in the laboratory.
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In following we consider only the first purpose of a measurement comparison study.

1.2 Scopes

The main purposes of this work are

• to find theoretical foundations of methods for analysis of method comparison data, which are

proposed by CLSI EP9 [18].

• to implement the methods in the statistical programming language R.

• to evaluate the reliability of these methods using simulations.

• to evaluate performance of different methods for calculation of confidence intervals for the

estimated parameters of interest.

• to develop methodical recommendations for the analysis of method comparison data in case

model assumptions of methods suggested by CLSI EP9 are violated.

1.3 Outline

The master thesis is organized as follows. Chapter 2 deals with requirements concerning design

and analysis of measurement comparison studies. In chapter 3 theoretical foundations for analysis

of method comparison data are investigated and different methods of analysis are described. Great

attention has been focused on the modifications of Deming and weighted Deming regression in case

of data with replications. In chapter 4 reliability and performance of the considered methods of

analysis are investigated using Monte-Carlo simulations. In chapter 5, two examples of method

comparison data are considered. The real world data are used to illustrate the analysis methods

from the previous chapters.
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Chapter 2

Design of measurement

comparison studies

In this section we consider briefly the recommendations of CLSI EP9 for design and analysis of

method comparison studies.

2.1 Requirements concerning the comparative measurement

procedure

Ideally, the comparative measurement procedure should be a reference measurement procedure.

In this case the desired result of the comparison is no significant average bias between the two

procedures. However, often a new (candidate) measurement procedure is developed as an improve-

ment over a comparative measurement procedure. In such situation the primary goal is to analyze

average bias between them. Generally an establishment study is successful, if the estimated bias is

within a predetermined acceptance criterion. The measurements of the comparative measurement

procedure should ideally have the following characteristics:

• lower uncertainty than the measurements of the candidate measurement procedure.

• be free of interferences (matrix effect) if possible.

• use the same units as a candidate measurement procedure,

• have known bias relative to standards or reference measurement procedures, if possible.

Note: More about matrix effect can be found in section 3.4.
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2.2 Requirements concerning samples

According to CLSI EP9, it is recommended that at least 100 patient samples with measurand values

spanning the common measuring interval of the two measuring procedures are used and that as

many influential factors as possible are included in the experimental design. Such factors may

include replicate, calibration, run, day, reagent, lot etc. It is generally expected that such factors

will not create a systematic shift in bias but only affect the variability of the bias estimate. An

experimental design that increases the replication over such factors will decrease the bias estimate

uncertainty and thus the confidence interval for the estimate of bias. It is not necessary, that the

study design provides enough measurements to truly measure the contribution of each factor to

the variability of results. That is not the purpose of the measurement comparison study. Instead,

its aim is to provide a robust estimate of bias by sampling all significant sources of variability.

2.3 Requirements concerning measurement replicates

Where possible, two or more replicates of both candidate and comparative measurement proce-

dure should be obtained. CLSI EP9 recommends to use the matched sample-to-sample averaged

replications for estimation of average bias performance. The underlying assumption behind of

this averaging of replications is the attempt to measure the same unchanging quantity. Then the

averaging of replications will reduce the uncertainty of the measurements. So we can conclude that

the measurement replications should be exchangeable.

2.4 Recommendations for the analysis of the outcome of

measurement comparison study.

CLSI EP9 requires manufacturers to conduct establishment or validation studies via regression

analysis. The initial goal of regression analysis in a measurement comparison study is to fit a

straight line through the data presented as an X-Y plot with the comparative procedure on the

x-axis and the candidate measurement procedure on the y-axis: y = a+ b · x. The slope b models

systematical proportional bias and the intercept gives the systematical additive bias between two

methods. We observe a = 0 and b = 1 if there is no systematical bias between measurement

procedures. If a and b are known, the systematical bias between two methods at some medical

decision point Xc can be calculated as

bias(Xc) = a+ b ·Xc −Xc = a+ (b− 1) ·Xc. (2.1)

The ordinary linear regression approach (OLS) is not suitable for estimation of regression co-

efficients a and b because the predictor X (comparative procedure measurement) is subject to

4



measurement error. In such situation one can use errors-in-variables models to estimate slope and

intercept.

Figure 2.1 shows an example of simulated data with a true slope of 1 and a true intercept of 0.

We can see that the OLS regression fit with intercept of 17.91 and slope of 0.91 is considerably

biased compared to the Deming regression fit (intercept of -2.91, slope of 1.01), which allows for

measurement error in the predictor variable (Method 1).

Note: We can use OLS regression for the analysis of method comparison data if the measurement

error of the comparative method is negligible. In this case, the measurements can be considered

to be error free. Such a method is called ”gold standard” [3, p. 203].
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Figure 2.1: Example of simulated data with errors in both variables. The ”true” concentrations are

normally distributed with mean 200 and standard deviation 25. The both simulated measurements

have normally distributed errors with mean of 0 and standard deviation of 5. The true values of

the data are slope of 1 and intercept of 0. The Deming regression fit (blue line) is close to the

identity line (red dotted line), the OLS regression fit (orange line) is strongly biased.

The choice of an appropriate error-in-variables regression method depends on the sample data.

Generally three situations are possible:

1. Constant standard deviation. In this case the variation of differences between the two

methods does not change along the whole measurement range. An equivalent statement: the

variance of the measurement errors of both measurement procedures stays constant within the

whole measurement range. For such data the CLSI EP9 [18] suggests the Deming regression
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approach (look at section 3.2.2).

2. Constant coefficient of variation (CV). In this case, the variability of measurement

errors of both measurement procedures is proportional to the measurement level. The method

recommended for the analysis of this situation is Linnet’s weighted Deming regression (look

at section 3.3.4.

3. An other form of heteroscedasticity or presence of outliers. In this case, the CLSI EP9 [18]

suggests a nonparametric approach: Passing-Bablok regression (which is not subject of this

work).

For regression coefficients and estimates of systematical bias at some medical decision point Xc,

confidence intervals (typically 95%) should be computed. The analytical formulas to compute CIs

are given only for unweighted Deming regression. For other regression types, resampling techniques

such as jackknife or bootstrap should be used.
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Chapter 3

Theoretical part

Measurement error models (ME) are a generalization of standard regression models. For the sim-

plest ME model, the goal is to estimate a straight line fit between the two variables, both of which

are measured with error. One can find several solutions for this problem: method of grouping,

using of instrumental variables, using of variance components in replicated cases, Berkson model,

estimation via cumulants, etc. (an overview of these methods can be found for example at Madan-

sky [18]).

Following the recommendations of CLSI EP9, we concentrate on structural error-in-variables mod-

els and corresponding maximum likelihood estimation of regression coefficients under the assump-

tion that the ratio of variances of measurement errors of both variables is known. It is the most

common approach used for regression analysis of bivariate data in biometry, known as ”Deming

regression” [7]. Then, analogously linear structural error-in-variables model with replications and

corresponding ML estimations are considered. Connection between ML-estimations and estima-

tions of averaged- and Linnet’s weighted Deming regression are assessed. The last two methods

are recommended by the CLSI EP9 document for the analysis of method comparison data with

replications.

The theoretical part is organized as follows:

1. First, general methods of parameter estimation, mentioned in this work (maximum likelihood

method and method of moments) are described (section 3.1). The description of the method

of moments is based on the book of Lagutin [12], for the description of the maximum likelihood

method the book of Held [4] is used.

2. In the second section (3.2), we consider linear structural models without replications and

concentrate on the Deming regression approach. The main source of information used here

is the book of Cheng and Ness [1] and the book of Miller [3].

(a) In subsection 3.2.1, the linear structural ME model is introduced.

7



(b) In subsection 3.2.2, the Deming regression approach is described. ML estimations, their

important properties and analytical formulas for calculation of variances of estimations

(derived by Strike, cited by Looney, [13] and Kelly [11]) are given.

3. The third section (3.3) deals with the linear structural models with replications, which are

closely connected to the same models without replications described in the previous section.

(a) In subsection 3.3.1, the general model formulation is introduced and ML estimations of

parameters of this model are given, derived from Chan and Mak [6].

(b) In subsection 3.3.2, averaged Deming regression is described. This method can be

deduced from the linear structural model with replications. The sources used for the

description are papers of Chan and Mak [6] and the book of Miller [3].

(c) The subsection (3.3.3) deals with the weighted version of averaged Deming regression,

which is recommended for the analysis of heteroscedastic data with constant CV. In the

following, we call this approach Linnet’s weighted Deming regression, because it was

developed by Linnet and introduced in his papers [7] and [8].

(d) The last subsection (3.3.4) describes the approach of Barnett [15]. He derived ML

estimation for the linear functional model with replications, assuming that measurement

errors for each item can have different variances. This approach is not mentioned in

CLSI EP9.

4. The forth section (3.4) deals with modeling of matrix effects in test method with the help of

linear structural ME model with error in equation.

(a) First (subsection 3.4.1), the term of matrix effect is briefly explained.

(b) In subsection 3.4.2, the linear structural ME model with error in equation is formulated,

based on paper of Dunn et.al. [10] and book of Fuller [2].

(c) In subsection 3.4.3, MM estimations of parameters of the linear structural ME model

with error in equation for the replicated case are given, which were derived from Oman

et.al. [9].

5. In section 3.5 different diagnostic plots are described, which can support correct model choice.

In this section ideas of Bland and Altman [14], Linnet [7], Oman et.al. [9], Carstensen [16]

and Fahrmeir [15] are introduced.

6. In section 3.6 some relevant nonparametric and semiparametric methods of calculation of

confidence intervals of parameter estimations are considered. The sources which were used

here, are the book of Efron and Tibshirany [5] and papers of Linnet [7] and Oman et.al. [9].
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(a) In subsection 3.6.1, calculation of variance of estimations via jackknife method and

parametric and nonparametric bootstrap are discussed.

(b) In subsection 3.6.2, bootstrap quantile and BCa methods are described.

7. In the last section (3.7), conclusions are formulated.
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3.1 Methods of estimation

In this section, we consider briefly the methods which are used for derivation of parameter estima-

tions. They are

1. method of moments,

2. maximum likelihood estimation.

The description of the method of moments can be found at Lagutin [12]. For the description of

the maximum likelihood method the book of Held [4] was used.

3.1.1 Method of moments

The k-th moment of a distribution of any random variable X is a quantity

αk = E(Xk).

Not all distributions have finite moments. It is easy to show that if E(|X|m) <∞ then all moments

{αk | k = 1, 2, ...,m} of the distribution of X exist.

We consider a random sample of independent and identically distributed variables {X1, X2, ..., Xn}.

Assume that Ak = 1
n

∑n
i=1X

k
i . If the moment αk exists then, according to the law of large numbers

n→∞ ⇒ Ak
P→ αk.

Suppose that we observe a realization {x1, x2, ..., xn} of {X1, X2, ..., Xn}. If n is large enough we

can assume that

ak =
1

n

n∑
i=1

xki ≈ αk,

which means that each k-th empirical moment ak, k = 1, 2, ...m is close to the corresponding k-th

theoretical moment αk. This reason is the foundation of the method of moments.

Assume that the distribution of X has m unknown parameters θ1, θ2, ...θm, where θ = (θ1, θ2, ...θm) ∈

Θ ⊆ Rm and

∀θ ∈ Θ Eθ(|X|m) <∞.

Then, all theoretical moments {αk | k = 1, 2, ...,m} of the distribution of X exist. Thus we get a

system of m equations

αk(θ) = Ak, k = 1, 2, ...m. (3.1)

If this system has a unique solution θ̂ = (θ̂1, θ̂2, ...θ̂m) continuously dependent of {αk | k = 1, 2, ...m},

then the components θ̂i of θ̂ are called estimations of method of moments (MM estimations).

MM estimations have the following properties [12, p.112]:

• they are consistent,
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• if the dependence between θ̂ and {αk | k = 1, 2, ...m} is smooth, then the MM estimations are

asymptotically normal distributed.

In particular

√
n(Ak − αk)

d→ ξ ∼ N(0, α2k − α2
k).

The MM estimations are easy to derive analytically in most cases but their asymptotic variance

is rather high, that is why the maximum likelihood method, which yields estimations with the

smallest possible asymptotic variance, is often preferred.

3.1.2 Maximum likelihood method

Suppose we observe a realization x = {x1, x2, ..., xn} of a random sample X = {X1, X2, ..., Xn}

with all random variables X1, X2, ..., Xn independently and identically distributed. The density

function f(·; θ∗) of Xi belongs to a certain family of distributions {f(·, θ), θ ∈ Θ ⊂ Rm}. The

values of the components of vector θ∗ = {θ∗1 , θ∗2 , ..., θ∗m} are unknown. We would like to estimate

them. The idea of the maximum likelihood method is to find such θ̂∗ for which the probability to

observe data x = {x1, x2, ..., xn} is maximal.

The sample X1, X2, ..., Xn have the following joint distribution:

f(X, θ) =

n∏
i=1

f(Xi; θ).

Replacing Xi with observations xi we get a function of θ:

L(θ) =

n∏
i=1

f(xi; θ) (3.2)

which is called likelihood function. The corresponding log-likelihood function is defined as

l(θ) =

n∑
i=1

log f(xi; θ). (3.3)

The maximum likelihood estimation θ̂∗ML of parameter vector θ∗ can be derived via maximization

of the likelihood or the log-likelihood function:

θ̂∗ML = argmax θ∈Θ L(θ) = argmax θ∈Θ l(θ). (3.4)

Therefore we should find a solution of a system of m equations:

∂l(θ)

∂θi
= 0, i = 1, ...,m. (3.5)

Given some regularity conditions (see, for example [4]) the system 3.5 has a solution with proba-

bility 1. This solution has the following properties [4, p. 81].
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1. The ML estimation is strong consistent:

P
(

lim
n→∞

θ̂∗ML(X1, X2, ..., Xn) = θ∗
)

= 1.

2. The ML estimation is asymptotically normal distributed [Held, s. 81]:

θ̂∗ML∼approxN(θ∗,
[
J(θ̂∗ML)

]−1

), (3.6)

where J(θ) is expected Fisher information

J(θ) = E(I(θ)),

I(θ) = −∂
2 l(θ)

∂ θ
.

Often it is very difficult or even impossible to solve 3.5 analytically. In this case, some iterative pro-

cedure, for example the Newton-Raphson-algorithm or the expectation-maximization algorithm,

can be used to obtain the solution.
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3.2 Linear structural model without replications

In this section, we first introduce the linear structural model. Then, the Deming regression ap-

proach is described, the derivation of the corresponding ML-estimations is given and the most

important properties of this estimations are discussed. Further, some analytical formulas for cal-

culation of confidence intervals for estimations are given.

3.2.1 Model formulation

The standard regression model with one explanatory variable, is given by

y = β0 + β1 · x+ ε, (3.7)

where the independent variable x is fixed and the error ε is normally distributed with mean zero

and is uncorrelated with ξ. Given a set of independent observations,

(x1, y1) , . . . (xn, yn)

the unknown intercept β0, and slope β1 are estimated using least squares techniques.

The corresponding standard linear ME model assumes that the variables x and y are observed with

measurement errors and the true measurements ξ and η of x and y are unobservable. Formally, we

can express this as follows:

x = ξ + δ and y = η + ε, (3.8)

where the measurement errors δ and ε are uncorrelated with each other and with the true mea-

surements.

The true measurements ξ and η are related by

η = β0 + β1 · ξ. (3.9)

The unknown intercept β0, and slope β1 should be estimated using observable data

(x1, y1) , . . . (xn, yn) .

The intercept β0 is modeling the additive systematic bias between two measurement procedures

and the slope β1 is modeling the proportional systematic bias. The assumption about linear

relationship between the true measurements should be verified using a special linearity test, which

we do not consider here.

For the sample size n, the linear univariate ME model can be formulated as follows [1, p.14].

ηi = β0 + β1 · ξi, i = 1, 2, . . . n.

xi = ξi + δi and yi = ηi + εi, i = 1, 2, . . . n.

13



The measurement errors are assumed to be uncorrelated and have a mean of zero:

∀i E(δi) = E(εi) = 0,

∀i var(δi) = σ2
δ , var(εi) = σ2

ε ,

∀i 6= j cov(δi, δj) = cov(εi, εj) = 0,

∀i, j cov(δi, εj) = 0.

The measurement errors are assumed to be normally distributed in most cases.

There are three separate models depending on the assumption about ξ:

• the functional model considers ξi as unknown fixed value,

• the structural model considers ξis as identically distributed random variables with E(ξi) =

µ and var(ξi) = σ2,

• the ultrastructural model assumes that ξi are independent random but not identically

distributed variables, having possibly different means µi and variance σ2. Obviously, the

ultrastructural model is a generalization of the functional and structural models.

Model 3.7 differs substantially from 3.8-3.9. Trying to write 3.8-3.9 in terms of an ordinary regres-

sion model one obtains

y = β0 + β1 · x+ (ε− β1δ) ≡ β0 + β1 · x+ ζ. (3.10)

In the ME model the predictor x is a random variable which is correlated with the error term ζ:

cov(x, ζ) = −β1σ
2
δ . This covariance is zero only if σ2

δ = 0 which is equal to model 3.7. Using an

ordinary regression model if σ2
δ is considerably higher than zero yields biased estimation of the

regression parameters.

An important problem which arises in ME models is identifiability. Formally, if Z is a random

vector whose distribution is from some family = = {Fθ; θ ∈ Θ}, then the parameter θi, the ith

component of the vector θ, is identifiable if and only if all its components are identifiable. The

model is said to be identifiable if θ is identifiable [1, p.5].

It is common to assume that all the random variables in the ME model are jointly normal. In this

case, the structural model 3.9-3.8 is not identifiable. [1, p.5]

To make ME identifiable one should formulate some additional assumption about model param-

eters. It will often be assumed that the ratio of the error variances λ ≡ σ2
ε /σ

2
δ , is known. This

model is normally called Deming regression.
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3.2.2 Deming regression approach

Deriving ML estimations of parameters of Deming regression

Equations 3.8-3.9 and the assumption that ξi ∼ N
(
µ, σ2

)
give :

E(x) = E(ξ) = µ,

E(y) = E(η) = β0 + β1µ,

var(x) = σ2
x = var(ξ) + σ2

δ = σ2 + σ2
δ ,

var(y) = σ2
y = var(η) + σ2

ε = β2
1σ

2 + σ2
ε ,

cov(x, y) = σxy = cov(ξ, η) = β1σ
2

The ML estimates for the corresponding parameters in the bivariate normal distribution are [1,

p.15]:

µ̂ = x̄,

µ̂x = ȳ,

σ̂2
x = sxx =

1

n

∑
(xi − x̄)

2
,

σ̂2
y = sxx =

1

n

∑
(yi − ȳ)

2
,

σ̂xy = sxy =
1

n

∑
(xi − x̄) (yi − ȳ) .

Using the invariance properties of ML estimates gives us

x̄ = µ̂, (3.11)

ȳ = β̂0 + β̂1µ̂, (3.12)

sxx = σ̂2 + σ̂2
δ , (3.13)

syy = β̂2
1 σ̂

2 + σ̂2
ε , (3.14)

sxy = β̂2
1 σ̂

2 (3.15)

From σ̂2
δ ≥ 0, σ̂2

ε ≥ 0 and σ2 > 0 we obtain the following set of five restrictions [1, p.15]:

sxx ≥ sxy/β̂1, (3.16)

syy ≥ β̂1sxy, (3.17)

sxx ≥ σ̂2
δ , (3.18)

syy ≥ σ̂2
ε , (3.19)

sign (sxy) = sign
(
β̂1

)
(3.20)

Assuming that λ is known from 3.11-3.15 we get the quadratic equation [1, p.16]

β̂2
1sxy + β̂1 (λsxx − syy)− λsxy = 0. (3.21)
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with two roots

β̂1 =
syy − λsxx ±

√
(syy − λsxx)

2
+ 4λs2

xy

2sxy
≡ U

2sxy
.

From 3.20 follows U > 0. Then the ML estimation for β̂1 is

β̂1 =
syy − λsxx +

√
(syy − λsxx)

2
+ 4λs2

xy

2sxy
(3.22)

The ML solutions for the remaining parameters can now be derived from 3.11-3.15:

β̂0 = ȳ − β̂1x̄, (3.23)

σ̂2
δ =

syy − 2β̂1sxy + β̂2
1sxx

λ+ β̂2
1

, (3.24)

σ̂2 = sxy/β̂1. (3.25)

Some important properties of the ML-estimations of Deming regression:

• the ML estimations of β0 and β1 for the functional model when λ is known are the same as

those of the corresponding linear structural relationship [1, p.23],

• the estimation of regression coefficients via method of moments yields solutions which are

equivalent to the ML-estimations. That is why the estimation 3.22 is rather robust against

violations of the assumption of normal distribution of measurement errors. However, the

estimation can be biased by outliers [3, p.212-213].

• Maximum likelihood solution for Deming regression with λ = 1 is equal to the orthogonal

regression estimation. Orthogonal regression minimizes the sum of squares of the orthogonal

distances from the data points to the regression line instead of the sum of squares of the

vertical distances, as in standard regression. If λ 6= 1 we can rescale the data such that we

get λ = 1 using the transformation ẋ =
√
λx [1, p.9]. The squared distances r2

i between data

points and their predictions can be calculated using Pythagoras’ theorem:

r2
i = δ̂2

i + ε̂2i =
(
ẋi − ˆ̇

ξi

)2

+ (yi − η̂i)2
= λ

(
xi − ξ̂i

)2

+ (yi − η̂i)2
. (3.26)

Estimation of variance of the estimations

Different formulas for estimation of variance of the estimations of regression coefficients can be

found in literature. Strike proposes following formulas (given in Looney [13]):

se
(
β̂1

)
=

√
β̂1

2
[1− r2]

(n− 2)r2
(3.27)

se
(
β̂0

)
=

√√√√[se(β̂1

)]2∑
x2
i

n
(3.28)

cov
(
β̂1, β̂0

)
= −x̄

[
se
(
β̂1

)]2
(3.29)
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where

r2 =

∑
(xi − x̄)√∑

(xi − x̄)
2∑

(yi − ȳ)
2

Other formulas can be found at Kelly [11]. He calculates estimations of variances using the influence

functions:

se
(
β̂1

)
=

√
β̂1

2
[1− r2]

nr2
(3.30)

se
(
β̂0

)
=

1

n

[
syy − 2β̂1sxy + β̂2

1sxx +

∑
x2
i β̂

2
1

ns2
xy

(
sxxsyy − s2

xy

)]
(3.31)

cov
(
β̂1, β̂0

)
= −x̄

[
se
(
β̂1

)]2
(3.32)

In this work we evaluate performance of the both versions of formulas. The both analytical methods

of estimation of variances assume normal distributed measurement errors and should not be used

if this assumption is violated. In case of violated normality assumptions, resampling methods,

discussed in section 3.6, yield more reliable results.

The confidence intervals for the estimations of the regression coefficients and of the bias at some

medical decision point Xc can be calculated as follows:

β̂0 ± t1−α2 ;n−2 se
(
β̂0

)
(3.33)

β̂1 ± t1−α2 ;n−2 se
(
β̂1

)
(3.34)

[β0 + (β1 − 1) · xc] ± t1−α2 ;n−2 ·
√
se
(
β̂0

)2

+ se
(
β̂1

)2

xc (xc − 2x̄) (3.35)

Alternatively one can use nonparametric or semiparametric methods of calculation of CIs (see

section 3.6).

3.3 Linear structural model with replications

In this section, the linear structural model with replications is formulated and derivation of the

corresponding ML estimations is briefly described. Then, averaged and Linnet’s weighted Deming

regression approaches are introduced. The last part of this section deals with Barnett’s method of

estimation of regression parameters in case the measurement errors can vary among items.

3.3.1 Model formulation

The proper design of a measurement comparison study should provide the following characteristics

of the data, which are important for model formulation:
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1. The variance of the true measurements of the reference method should be much higher than

the variance of the measurement error.

2. The measurand stays unchanged within every replication of measurement procedure.

3. The measurement errors of a measurement procedure are independent and identically dis-

tributed for all replications at the same item.

4. The measurement errors of a measurement procedure at the different items are independent.

5. The measurement errors of the test- and comparative method are independent.

6. The comparative method should be free of matrix effect.

First we consider the situation of constant standard deviation of measurement errors. It is equiva-

lent to say, that the variances of the measurement errors of both, test- and comparative methods,

do not change within the whole measurement range. As usually we assume the measurement errors

to be normally distributed and that neither the comparative method nor the test method contain

random matrix effect. The last assumption should be made about the true measurements of the

comparative method. We choose the structural model, which treats the true values as independent

identically normal distributed random variables. The structural model is advantageous for the

calculation of ML estimation for regression coefficients.

The suitable model formulation and derivation of the corresponding ML estimations can be found

in Chan and Mak [6]. Assume that ξ and η are true comparative- and test measurement procedures

which cannot be obtained without error, δ is the measurement error of the comparative method

and ε is the measurement error of the test method. Then, the observed measurements are x = ξ+δ

and y = η+ ε. For each (ξi, ηi) r repeated observations xij and yij , j = 1, . . . r are obtained. Then,

the model can be formulated as follows:

ηi = β0 + β1ξi (3.36)

xij = ξi + δij , yij = ηi + εij (3.37)

ξi ∼ N
(
µ, σ2

)
(3.38)

δij ∼ N
(
0, σ2

δ

)
, εij ∼ N

(
0, σ2

ε

)
(3.39)

∀i ∀l 6= k cov(δil, δik) = cov(εil, εik) = 0, (3.40)

∀i 6= j ∀l, k cov(δil, δjk) = cov(εil, εjk) = cov(δil, εjk) = 0. (3.41)

Now we can build a likelihood function for this model.

Let

xi = (xi1, xi2, . . . xir)
T
,

yi = (yi1, yi2, . . . yir)
T
,
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zi
T =

(
xi
T ,yi

T
)
.

Then zi ∼ N (m,V), where

mT =
(
µ1Tr1, (β0 + β1µ) 1Tr1

)
V = Σ + σ2bbT , Σ =

 σ2
δIr 0

0 σ2
ε Ir

 , b =
(
1Tr1, β11

T
r1

)
,

1r1 denotes the r × s matrix with all entries 1, and Ir denotes the r × r identity matrix. The log

likelihood of model 3.36-3.41 is

lnL = const− 1

2
n ln |V| − 1

2

∑
n

dTi V−1di, (3.42)

where di = zi −m. Chan and Mak [6] have shown that

lnL = const− 1

2
n lnσ2 − 1

2
rn ln σ2

δ −
1

2
rn ln σ2

ε −
1

2
n ln a− 1

2

∑
n

(
hi − c2i a−1

)
, (3.43)

with

hi = σ−2
δ

∑
r

(xij − µ)
2

+ σ−2
ε

∑
r

(yij − β0 − β1µ)
2
,

ci = σ−2
δ

∑
r

(xij − µ) + β1σ
−2
ε

∑
r

(yij − β0 − β1µ) ,

a = bTΣ−1b + σ−2 = rσ−2
δ + rβ2

1σ
−2
ε + σ−2.

3.3.2 The maximum likelihood solution

Chan and Mak [6] have proved the following lemma.

Lemma 1. The maximum likelihood estimate β̂0 and µ̂ for β0 and µ when β1, σ2, σ2
δ and σ2

ε are

fixed, satisfy

µ̂ = x̄.., β̂0 + β1µ̂ = ȳ..,

where

x̄.. =
∑
n

∑
r

xij/(nr) ȳ.. =
∑
n

∑
r

yij/(nr).

Thus to maximize ln L, it suffices to maximize 3.43 with µ and β0 + β1µ replaced by x̄.. and ȳ..,

respectively.

Let L1 denote the likelihood function L of 3.43 when µ and β0 + β1µ are replaced by x̄.. and ȳ..,

respectively. By differentiating lnL1 with respect to the parameters β1, σ2, σ2
δ and σ2

ε and equating

to zero, we get

β2
1sxy + β1 (λsxx − syy)− λsxy = 0, (3.44)

σ2
ε + β2

1σ
2 = tyy, (3.45)

σ2
δ + σ2 = txx, (3.46)

(2r − 1)σ2
ε = r (txxλ+ tyy)− r (β1sxy + λsxx) , (3.47)
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where λ = σ2
ε /σ

2
δ . We are using following notation:

txx =

n∑
i=1

r∑
j=1

(xij − x̄..)2

nr
, tyy =

n∑
i=1

r∑
j=1

(yij − ȳ..)2

nr
(3.48)

wxx =

n∑
i=1

r∑
j=1

(xij − x̄i.)2

rn
, wyy =

n∑
i=1

r∑
j=1

(yij − ȳi.)2

rn
(3.49)

sxx =

n∑
i=1

(x̄i. − x̄..)2

n
, syy =

n∑
i=1

(ȳi. − ȳ..)2

n
sxy =

n∑
i=1

(x̄i. − x̄..) (ȳi. − ȳ..)
n

. (3.50)

Chan and Mak [6] have shown the following theorem.

Theorem 1. The maximum likelihood estimate β̂ is a solution of

pnr(β) = r−1
(
k0β

4 + k1β
3 + k2β

2 + k4

)
= 0, (3.51)

where

k0 = (r − 1)sxxsxytxx, (3.52)

k1 = rs2
xxwyy − (r − 1)s2

xytxx − (r − 1)sxxsyytxx − rs2
xywxx, (3.53)

k2 = (3r − 1)(sxysyywxx − sxysxxwyy), (3.54)

k3 = rs2
xywyy + (r − 1)s2

xytyy + (r − 1)sxxsyytyy − rs2
yywxx, (3.55)

k4 = −(r − 1)sxysyytyy (3.56)

if a real solution exists [6].

Other parameters can be calculated using equations 3.44 - 3.47.

Note. The polynomial pnr can have 0, 2 or 4 real roots. The exact real roots can be calculated

using the method of Ludovico Ferrari and formulas of Geralomo Cardano. The ML-estimation

(β̂1, σ̂
2, σ̂2

δ , σ̂
2
ε ) should belong to the parameter space of the model. The parameter space is specified

with the help of several inequalities. The full specification of the parameter space of the error-in-

variables model with replications cannot be found in literature to our knowledge. Quite important

are the following inequalities:

sign(β̂) = sign(sxy); (3.57)

σ2 > 0; σ2
ε > 0; σ2

δ > 0 (3.58)

Our experience with this method of estimation have shown that if the data suits to the model

assumptions, the polynomial has two real roots with different signs in most cases. Using the condi-

tion sign(β̂) = sign(sxy), we can get a unique solution. If the model assumptions are considerably

violated (for example there is a strong matrix effect in the test method), the polynomial can have

4 roots. If there is more than one root which satisfies inequalities 3.57-3.58, we can choose the

solution which yields the highest likelihood.
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Calculations of CIs for estimations

Analytical formulas for calculation of variance of estimations can be found in Chan and Mak [6].

The corresponding confidence intervals (CIs) should be calculated using formulas 3.33-3.35. We

use nonparametric methods for calculation of CIs, described in section 3.6.

3.3.3 Averaged Deming regression

The equation 3.44, which was derived directly from ∂lnL1/∂β1 and ∂lnL1/∂σ
2 is the familiar

equation in the linear structural relationship model when λ is known (see 3.21). Instead of using

the full maximum likelihood procedure, one can first estimate λ by wyy/wxx, and finally obtain the

estimate β∗ of β by 3.44. However, since the variance estimates r(r − 1)−1wxx and r(r − 1)−1wyy

are independent while the maximum likelihood estimates σ̂ε and σ̂δ are related through 3.45-3.47,

the values of β̂ML and β∗ are not identical [6].

Simply formulated, this means that we can take averaged replications for each item and calculate

the Deming regression fit using formulas 3.22-3.23 with λ estimated by wyy/wxx. This approach

was proposed by Miller [3, p.210] for the analysis of replicated measurements with errors in both

variables. The CLSI EP9 recommends his suggestion as a standard method for the analysis of

method comparison studies. In case of normal distributed measurement errors, one can use formulas

3.27-3.29 or 3.30-3.32 for the estimation of the variance of regression parameters and bias at some

decision point Xc.

In the following, we will call this method averaged Deming regression.

Averaged Deming regression does not yield the true ML estimation but it has several advantages

over the ML estimation:

1. It is very simple to calculate.

2. It yields one solution which always lays in the parameter space of the Deming regression

model.

3. It’s estimations are in most cases very close to the true ML-estimations (see chapter 4).

4. The estimates of the averaged Deming regression are the MM estimates (one can derive

them using the method of moments). That is why they are robust against violation of the

normality assumptions [3, p. 212-213].

5. Taking the means of replications we reduce the variability of the data and gain thereby

additional robustness.
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Calculations of CIs for estimations

For calculation of CIs of estimations of averaged Deming regression, the corresponding formulas

for simple Deming regression can be used (3.27-3.35). If model assumptions are violated, nonpara-

metric methods for calculation of CIs, described in section 3.6, should be used.

3.3.4 Linnet’s weighted Deming regression

Now we consider the situation with constant coefficients of variation (CV) of measurement errors.

Similar to the weighted OLS regression, we can give some weight to each data point and calculate

the ML estimates for the weighted data. A procedure to calculate the weighted Deming regression

was discussed by Linnet ([7], [8]).

Linnet assumes that the variances of the are proportional to the squares of the average of the true

measurement values ξi and ηi. Then

V ar(δi) = f2
x

[
ξi + ηi

2

]2

, (3.59)

V ar(εi) = f2
y

[
ξi + ηi

2

]2

(3.60)

Under this assumption, λ∗ = f2
x/f

2
y is constant.

Note: Linnet considers λ as the ratio of the variance of the measurement error of the comparative

method X to the variance of the measurement error of the test method Y. Most books and papers

designate λ as the ratio of variance of measurement error of Y to the variance of the measurement

error of X. That is why we denote Linnet’s version as λ∗. Then:

λ∗ = λ−1 (3.61)

A weighted modification of the slope estimation procedure is to minimize the sum of squares

Sw =

n∑
i=1

[
wi

(
xi − ξ̂i

)2

+ λ∗wi (yi − η̂i)2

]
,

where the weights

wi =

[
ξi + ηi

2

]−2

and

η̂i = ȳw + β1

(
ξ̂i − x̄w

)
.

The estimation of the regression coefficients can be carried out using the following formulas:

β̂1 =
(λ∗qw − uw) +

√
(uw − λ∗qw)

2
+ 4λ∗p2

w

2λ∗pw
(3.62)

β̂0 = ȳw − β̂1xw. (3.63)
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Here

x̄w =
∑
i

wixi/
∑
i

wi, ȳw =
∑
i

wiyi/
∑
i

wi,

uw =
∑
i

wi (xi − x̄w)
2
, qw =

∑
i

wi (yi − ȳw)
2
,

pw =
∑
i

wi (xi − x̄w) (yi − ȳw) .

In order to estimate λ∗, Linnet suggests to use duplicate measurements. Let the data contain n pairs

of duplicated measurements ((xi1, xi2) , (yi1, yi2)). For the calculation of regression coefficients, the

means of duplicates (xi·, yi·) should be used. Then λ∗ should be estimated as follows:

f̂2
x =

1

2n

∑
i

(xi1 − xi2)
2

w2
i

, (3.64)

f̂2
y =

1

2n

∑
i

(yi1 − yi2)
2

w2
i

, (3.65)

λ̂∗ = f̂2
x/f̂

2
y . (3.66)

In case of more than two measurement replicates we can generalize formulas 3.64-3.65. Assume

that we have r replications (r ≥ 2) of each measurement method. Then:

f̂2
x =

1

n r (r − 1)

n∑
i=1

r∑
k=1

∑
l:k<l

(xik − xil)2

w2
i

. (3.67)

with a similar expression for f̂2
y .

Note that from 3.59:

σ2
δi = f2

x w
2
i ⇐⇒ f2

x =
σ2
δi

w2
i

.

Assume that wi are the true weights of the data points. Then

E

(
1

nr(r − 1)

n∑
i=1

r∑
k=1

∑
l:k<l

(xik − xil)2

w2
i

)
=

1

nr(r − 1)

n∑
i=1

r∑
k=1

∑
l:k<l

E

(
(δik − δil)2

w2
i

)
=

1

nr(r − 1)

r(r − 1)

2

n∑
i=1

E

(
2σ2

δi

w2
i

)
=

1

n

n∑
i=1

E

(
σ2
δi

w2
i

)
= f2

x .

In order to get unbiased estimations of regression coefficients, we should know the true weights of

the data points wi. We can use

ŵi = (0.5 (xi· + yi·))
2

(3.68)

as estimations for the weights. Linnet has shown that if we use such weights, the estimation of the

slope is biased [7]. He has suggested an iterative procedure for calculation of regression coefficients.

This procedure estimates weights using estimations ξ̂i and η̂i of the true error free measurements

for the i-th data point. The procedure should be carried out as follows:
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1. Take as initial weights ŵi = (0.5 (xi· + yi·))
2
. Calculate λ̂∗ using formulas 3.64, 3.65, 3.66

and regression coefficients β̂1 and β̂0 using formulas 3.62-3.63.

2. Update the estimations of the weights:

ŵ
(1)
i =

[
ξ̂i + η̂i

2

]−2

,

where

ξ̂i = xi· + λ̂∗β̂1 di

(
1 + λ̂∗β2

1

)−1

,

η̂i = yi· − di
(

1 + λ̂∗β2
1

)−1

,

di = yi· −
(
β̂0 + β̂1xi·

)

3. Update estimations λ̂∗ using new weights and estimate regression coefficients.

4. Iterate the procedure to estimate better values of weights to improve the weights in each iteration

Note: Later, Linnet gives better estimations for the weights [8]:

ŵ
(1)
i =

[
ξ̂i + λ̂∗η̂i

1 + λ̂∗

]−2

,

We will use these estimations for the calculation of weighted Deming regression fit.

Note: Linnets algorithm converges correctly only if all measurements of the both measurement

procedures are positive.

calculation of CIs for estimates

For the estimation of variances of regression coefficients, Linnet suggests jackknife method [7],[8]

(look at section 3.6). In order to prove performance of this method for estimation of variances of

regression coefficients he has conducted a series of simulations which confirmed good performance

of jackknife estimations. Another nonprametric methods, described in section 3.6, can also be used

for calculation of CIs of the parameter estimates.

3.3.5 Barnett’s approach for inhomogeneous error variances

This approach was developed for the investigation of the relationship between protein content of

the urine and the administered dose of a particular drug [14]. The corresponding data contained

replicated measurements with inhomogeneous variances. The model Barnett uses for his approach

suits to the method comparison data with heteroscedastic errors where the CV is not constant.

Barnett considers the following model:
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Assume that we have two variables X and Y. Both of them are measured with error. There are

n items, for each item ni replicated measurements of X and Y are available. Denote ξi the true

measurement of X and ηi the true measurement of Y. Let δij be a measurement error of X for item

i by j-th replication and εij be a measurement error of Y for item i by j-th replication. Then the

observed measurements xij and yij can be written in the following form:

xij = ξi + δij ,

yij = ηi + εij ,

ηi = β0 + β1ξi.

Measurement errors are assumed to be uncorrelated and normal distributed:

δij ∼ N
(
0, σ2

i

)
,

εij ∼ N
(
0, λσ2

i

)
Thus it is a functional model (the true measurements of X are fixed constants). The variances are

different for each item. The ratio between variances of the measurement errors of X and Y (λ) are

constant.

The log-likelihood is

L (x, y|β0, β1, λ, σ, ξ) = const−
n∑
i=1

nilog
(
σ2
i

√
λ
)
−

− 1

2

n∑
i=1

ni∑
j=1

{
(xij − ξi)2

σ−2
i

}
− 1

2

n∑
i=1

ni∑
j=1

{
(yij − β0 − β1ξi)

2 (
λσ2

i

)−1
}

(3.69)

Barnett derives the following formulas for calculation of ML estimates:

σ̂2
i =

∑
j (xij − xi·)2

+ λ̂−1
∑
j (yij − yi·)2

2ni
+

(
yi· − β̂0 − β̂1xi·

)2

2λ̂∆̂
, i = 1, ...p, (3.70)

λ̂ = n−1
∑
i

(σ̂2
i )−1

∑
j

(yij − yi·)2
+
ni

∆̂2

(
yi· − β̂0 − β̂1xi·

)2

 (3.71)

∆̂ = 1 +
β̂2

1

λ̂
. (3.72)

Then, denoting

N̂ =

p∑
i=1

ni
σ̂2
i

; ξi =
xi·
σ̂2
i

ηi =
yi·
σ̂2
i

(3.73)

ξ·· =
∑
i

ξi; η·· =
∑
i

ηi (3.74)

one gets ML estimators for regression coefficients:

β̂0 =
η·· − β̂1ξ··

N̂
(3.75)

β̂1 = Θ±
√

Θ2 + λ̂, Θ =
sηη − λ̂sξξ

2sηξ
, (3.76)
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The formula 3.75 gives two roots. The root with the same sign as sηξ should be chosen.

Here

sηξ =
∑
i

σ̂2
i

ni
ξiηi −

ξ··η··

N̂
, (3.77)

sξξ =
∑
i

σ̂2
i

ni
ξ2
i −

ξ2
··

N̂
, (3.78)

sηη =
∑
i

σ̂2
i

ni
η2 − η··2

N̂
. (3.79)

Barnett notes, that the solution is analogous to the solution of the problem for the unreplicated

case. In fact, the ML estimates of the regression coefficients are calculated using averaged replica-

tions of X and Y which are weighted with σ̂i. The quantities ni
σ̂i

can be considered as sample size

for the different groups of observations.

It is not feasible to obtain closed-form expressions for the ML estimations β̂0, β̂1, λ̂, σ̂2
i by the

observations (xij , yij) alone. That is why Barnett suggests an iterative procedure for the compu-

tation of ML estimates:

1. First, the starting values for the estimates σ̂0
i and k̂0 should be calculated:

σ̂0
i = n−1

i

∑
i

(xij − xi·)2
, λ̂0 = n−1

∑
i

∑
j

(yij − yi·)2

σ̂0
i

(3.80)

2. Then the starting estimates β̂0 and β̂1 can be obtained directly from 3.75 and 3.76.

3. These can be developed iteratively by using equations 3.70, 3.71, 3.76, 3.75 in that order until

the estimates become stable in value.

Barnett admits that his algorithm is not ideal. Often it converges quite slowly.

Our experience with Barnett’s algorithm have shown that the algorithm sometimes needs more than

100 iterations until it converges, especially in cases of data with only 2 measurement replications.

Simulation studies (see chapter IV, simulation 1.2 ) have shown that the algorithm gives biased

estimates. The variance of estimates is relatively high. Centering of data reduces the bias of

Barnett’s approach considerably, but the variance of estimates stays much higher than the variances

of the other methods described in this work.

Unfortunately, no more information about this approach was found in the literature. So there are

no references which could help to validate our implementation of Barnett’s algorithm or support

the results of our simulations.

calculation of CIs for estimates

In his paper [15] Barnett gives calculation of the inverse Fisher matrix of estimates. Thus, it

is possible to calculate analytical CIs for the estimates. All nonparametric methods described
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in section 3.6 may be also used for calculation of CIs. The performance of different methods of

calculation of CIs has not been analyzed for Barnett’s method.

3.4 Modeling matrix effect in test method

This section deals with modeling of the matrix effect in the test method. First, the idea of the

matrix effect is briefly explained. Then, the linear structural ME model with error in equation

is described, which can be used for modeling of a matrix effect in test method. After this, MM

parameter estimates for this model are given.

3.4.1 Matrix effect

In chemical analysis, matrix refers to the components of a sample other than the analyte of interest.

The matrix can have a considerable effect on the measurement results; such effect is called matrix

effect.

Roughly speaking, absolute matrix effect is the difference between the response of equally concen-

trated analytes in solvent and in matrix extracts (urine or blood, for example). The matrix may

cause signal enhancement or signal suppression that negatively affect the measurement quality.

A relative matrix effect is the variation of absolute matrix effects between several lots of the same

matrix.

3.4.2 Model formulation

Discussion about modeling of the matrix effect in method comparison studies can be found at

Carstensen [16] and Dunn et.al. [10]. In both sources, the matrix effect is considered a random

effect which affects the true measurements. We consider the model from the paper of Dunn and

Roberts:

xij = ξi +mi + δij ,

yij = β0 + β1ξi + ci + εij .

Here

i = 1, 2, ..., n - denote the items,

j = 1, ...ni - denote the measurement replications.

δij and εij are normal distributed and uncorrelated measurement errors,

mi ∼ N(0, σ2
m) is the matrix effect of method X,

ci ∼ N(0, σ2
c ) is the matrix effect of method Y.

Matrix effects are independent of measurement errors and of each other. Dunn et.al. mention that
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this model is under-identified. That is why we need any assumption about the variances of matrix

effects. There are two possibilities:

1. σ2
m = σ2

c ,

2. σ2
m = 0.

One should take the restriction which better suits to the data. Since CLSI EP9 requires that the

comparative method should not contain any matrix effect in the following we consider the second

restriction.

Dunn et. al. use SEM (structural equation models) for estimation of this model. Our experience

have shown that the computations using SEM were rather slow. That is why we use more simple

methods of estimation.

The estimates of the regression coefficients for the model with matrix effect only in the test method

were derived by Fuller [2, p.106-110]. He considers the following model:

xij = ξi + δij , (3.81)

yij = ηi + εij (3.82)

ηi = β0 + β1ξi + ci. (3.83)

This model is called the model with an error in the equation. Fuller gives ML estimates of the

regression coefficients of this model assuming that the variances of the measurement errors σ2
δ and

σ2
ε are known. He recommends this model specially for laboratory experiments with replicated

measurements, where variables x and y do not have the perfect linear relation to each other.

He suggests to use the replications for the estimation of variances of measurement errors. The

calculation of regression coefficients should be conducted using means of replications. Then

xi· = ξi + δ̄i, (3.84)

yi· = ηi + ε̄i, (3.85)

ηi = β0 + β1ξi + ci . (3.86)

The estimates of β = (β0, β1) in case the measurement errors are uncorrelated can be calculated

using following formula [2, p. 110]:

β̃ = (Mxx − Sδδ)−1
Mxy, (3.87)

where

Mxx =

n∑
i=1

(1, xi)
T

(1, xi) =

1 x̄

x̄ x̄2

 , Mxy =

n∑
i=1

(1, xi)
T
yi =

 ȳ

x̄y

 , Sδδ =

0 0

0 σ̂2
δ

 .

σ̂2
δ is an unbiased estimate of the variance of measurement error of X.

Note: As in case of the averaged Deming regression, the β̃ is not a full ML estimation.
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Oman et.al [9] use Fuller’s results for the analysis of the relationship between the two methods

of measurement of glomerular filtration MCC and ECC. They extend his result for unbalanced

design (the number of replications mi for each item can be different) with correlated errors using

the method of moments. It is easy to adapt their formulas for the case with uncorrelated errors.

Denoting

Sxxw =

n∑
i=1

mi∑
j=1

(xij − xi·)2
, Syyw =

n∑
i=1

mi∑
j=1

(yij − yi·)2
,

Sxxb =

n∑
i=1

mi (xi· − x··)2
, Syyb =

n∑
i=1

mi (yi· − y··)2
,

Sxyb =

n∑
i=1

mi (xi· − x··) (yi· − y··)

N =

n∑
i=1

mi, t = N−2
n∑
i=1

m2
i , f = (n− 1)/(N − 1),

we can use following MM estimates for the model with matrix effect in the test method [9]:

σ̂2
δ =

1

N − n
Sxxw, σ̂2

ε =
1

N − n
Syyw, (3.88)

σ̂2 =
1

N(1− t)
{Sxxb − fSxxw} (3.89)

β̂1 =
Sxyb

Sxxb − fSxxw
, (3.90)

σ̂2
c =

1

N(1− t)

{
Syyb − fSyyw −

S2
xyb

Sxxb − fSxxw

}
(3.91)

µ̂ = x··, β̂0 = y·· − β̂1x·· (3.92)

Equations 3.89, 3.91 may give negative variances, indicating that the model is not appropriate for

the data at hand. Oman et.al. interpret negative variance estimates as diagnostics. In particular,

σ̂2 ≤ 0 suggests that ξi ≡ 0 and thus that β0 and β1 are not identified.

Calculation of CIs for estimates

Deriving asymptotic standard errors using the delta method was shown to be very complicated,

that is why Oman et.al. [9] suggest using parametric or nonparametric bootstrap, described in

section 3.6. One may also use other nonparametric methods of calculation if CIs for estimates

considered in section 3.6.

3.5 Diagnostic plots for checking the model assumptions

It is important to choose the correct model for the data. In this section we consider some diagnostic

plots which can support this decision. Examples of diagnostic plots can be found in the practical

part of the master thesis, where they are applied to the example data (see chapter 5).
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3.5.1 Checking exchangeability of replications

Replicate measurements by a method on a given item are exchangeable if the distribution of data

is invariant under permutation of replicate numbers within method and item [16, p. 50]. This

is typically the case if the replicate measurements are made independently. Exchangeability of

replications cannot be determined on the data alone; it is a function of study design [16, p. 64].

The design of method comparison data should provide exchangeable replications.

If there are doubts about the exchangeability of measurement replications we can make a random

permutation of the replicates within method and item and see if the plot of the two methods

against each other look the same [16, p. 51]. Results of regression analysis for original data and

data with permuted replications should be similar.

If the replications were conducted during a particular period of time, the following recommendation

of Oman et. al.[9] can be useful. In order to check whether the assumption about exchangeability

of replications is violated they suggest to plot within-individual paired differences di(jk) = xij−xik
for the points in time of the measurements tij > tik vs. ti(jk) = tij − tik. If the measurements are

exchangeable, the graph should pick up a monotone trend.

3.5.2 Checking assumption about normality and homoscedasticity

of measurement errors before model was fitted

To check this assumptions we can plot

1. absolute differences of averaged replications (xi· − yi·) by two methods against the average

levels (xi· + yi·) /2,

2. relative differences of averaged replications (xi·−yi·)
(xi·+yi·)/2

by two methods against the average

levels (xi· + yi·) /2.

These are the Bland-Altman plots, which belong to the standard empirical analysis of the method

comparison data [14]. If the first scatter plot has trumpet shape and the points of the second plot

disperse randomly around zero, then the measurement errors are heteroscedastic with constant

CV.

Additionally, we can use the differences between replications within each item to check the model

assumptions about variances of measurement errors. If the data contain duplicated measurements,

the following plots, suggested by Linnet [7] can be useful:

3. differences between replicates (xi1 − xi2) vs. (xi1 + xi2) /2,

4. differences between replicates (yi1 − yi2) vs. (yi1 + yi2) /2.

If the data contain more than two replications for each item, we can use plots suggested by Oman

et.al. [9]:

5. absolute values of the within-individual deviations xij − xi· vs. individual means xi·,
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6. absolute values of the within-individual deviations yij − yi· vs. individual means yi·.

If the differences get larger with increasing values of the measurements, then the data have pro-

portional errors.

3.5.3 Residual plots

After the regression model was fitted, we can check the model assumptions using residual plots.

Generally, in regression analysis residual plots can help to prove the following model assumptions

[see 17, pp. 64-71]:

• assumption about normality and homoscedasticity of error terms,

• assumptions about independence of error terms,

• linearity assumption.

In case of OLS regression, the residual plot is a scatter plot with model residuals on the y-axis

and (in most cases) fitted values of the response variable on the x-axis. A residual is defined as

yi − ŷi = yi − (β̂0 + β̂0xi).

Linear regression models with errors in both variables yield three kinds of residuals:

1. horizontal residuals xi − x̂i,

2. vertical residuals yi − ŷi,

3. optimized residuals (the distances between data points and their predictions which were

minimized by estimation of regression parameters).

Residual plot for the ML-approach, averaged- and weighted Deming regression

For averaged and weighted Deming regression, we can use Linnet’s suggestion [7] and plot the

optimized residuals vs. the mean of predicted values of the test- and comparative method. Assume,

ξ̂i is the predicted value of xi. and η̂i is the predicted value of yi.. We can calculate the predicted

values using the following formulas [9]:

ξ̂i = xi· + λ̂∗β̂1 di

(
1 + λ̂∗β2

1

)−1

,

η̂i = yi· − di
(

1 + λ̂∗β2
1

)−1

,

di = yi· −
(
β̂0 + β̂1xi·

)
Here λ∗ = λ−1. The x-axis of the residual plot contains the mean of the predicted values(
ξ̂i + η̂i

)
/2.

The y-axis contains the optimized residuals. For Deming regression with λ̂ = 1 we consider as
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optimized residuals the square roots of euclidean distances between data points and their predic-

tions. The sign of the residual indicates if the data point lays above or below the regression line.

If λ̂ 6= 1 the distance should be slightly changed (see 3.26):

ri = sign ·
[(
xi· − ξ̂i

)2

+ λ̂∗ (yi· − η̂i)2

]1/2

. (3.93)

For the weighted Deming regression the residuals should be additionally weighted [7]:

rwi = sign ·
[
ŵi

(
xi· − ξ̂i

)2

+ ŵiλ̂
∗ (yi· − η̂i)2

]1/2

(3.94)

(3.95)

The sign of ri is identical with the sign of the vertical distance di from the regression line.

If the residuals disperse randomly around the zero line we can conclude that the model assumptions

hold.

Residual plot for the model with matrix effect in the test method

Oman et.al. [9] suggest to plot the predicted values ξ̂i vs. r̂i = yi. − β̂0 − β̂1yi.. They have shown

that if the model assumptions hold, ξi and ri should be independent. ξ̂i can be calculated using

the following formulas:

ξ̂i = θ̂T Ŵ−1
i zi

(
θ̂T Ŵiθ̂

)−1

, (3.96)

where

zi =

 xi·

yi· − β̂0

 , θ̂ =

 1

β̂1

 , Ŵi =

m−1
i σ̂2

δ 0

0 σ̂2
c +m−1

i σ̂2
ε

 .
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3.6 Nonparametric and semiparametric approaches for the

calculation of confidence intervals

In section 2.3.1 we have considered analytical intervals for regression parameters for the averaged

Deming regression. This confidence intervals should only be used if model assumptions about

homogeneous variances of the measurement errors hold. Otherwise one should use nonparametric

methods of estimates. For other regression methods which are considered in this master thesis

(Linnet’s weighted Deming regression, Barnett’s method and MM-estimation for the model with

matrix effect in test method) we will use only nonparametric methods for calculation of confidence

intervals.

Now we consider some methods of nonparametric and semiparametric estimation of the confidence

intervals (CIs). For general description of this methods we use recommendations of Efron and

Tibshirani [5]. Specific recommendations for method comparison data were found at Linnet [7],

[8] and Oman et.al. [9]. It is interesting to consider suggestions of Oman et.al.[9] in more detail,

because to our knowledge it is the only source talking about the bootstrap for bivariate regression

model with errors in both variables. Additionally, R.Tibshirani has discussed the paper with the

authors, that is why the suggested bootstrap methods should agree with his opinion about it.

There are some possibilities to calculate CIs for estimates of regression parameters. First, we can

use the fact, that if we have only one predictor, the regression coefficients have t distribution with

n-2 degrees of freedom [17, p.]. So the (1-α)%-confidence interval can be calculated using formula

θ̂ ± tn−2;1−α2 se(θ̂), (3.97)

where tn−2;1−α2 denotes 1− α
2 quantile of t distribution with n-2 degrees of freedom.

For the estimation of se(θ) we can use resampling methods (jackknife or bootstrap).

3.6.1 Estimation of variances of regression parameters

The idea of resampling estimation of the variance of some statistic is as follows. Suppose that

z is a data vector with assumed joint distribution H, let θ̂ = t(z) be some statistic and consider

the functional H, σ(H) = varH(θ̂). The resampling estimator of σ(H) is σ(Ĥ), where Ĥ is an

appropriate estimator of H. We can approximate σ(Ĥ) by generating B samples {z∗1 , z∗2 , ... z∗B}

from Ĥ and computing the sample variance of estimates θ∗b = t(z∗b ) [9].

Jackknife method

Suppose, we have data z = {z1, z2, ... zn}, where zi = (xi1, xi2, ... xir, yi1, yi2, ... , yir). The jack-

knife focuses on the samples that leave out one observation at a time:

z(i) = (z1, z2, ..., zi−1, zi+1, ..., zn). (3.98)
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We consider the version of variance estimation in terms of pseudo-values ([7]; [5, p. 149]):

θ̃i = nθ̂ − (n− 1)θ̂(i), (3.99)

were θ̂ is the global estimation of θ and θ̂(i) is estimation of θ using sample z(i). Then

ŝejack =


∑n
i=1

(
θ̃i − θ̃

)2

(n− 1)n


1/2

, (3.100)

where θ̃ = n−1
∑n
i=1 θ̃i.

Note: Jackknife approach may fail if the statistic θ̂ is not smooth. The idea of smoothness is

that small changes in the data set cause only small changes in the statistic. A simple example of

a non-smooth statistic is the median [5, p. 148].

The jackknife approach is recommended for the estimation of the variance of regression coefficients

and bias at some medical decision point Xc for the averaged Deming regression (if the normality

assumption is violated) and Linnet’s weighted Deming regression [7], [3].

Bootstrap methods

In this case σ(Ĥ) is approximated by using Monte Carlo sampling, generating a large number B

of bootstrap samples {z∗1 , z∗2 , ... z∗B} from Ĥ. Each z∗b is a vector of n drawings (with replacement)

either from the empirical distribution of z (the nonparametric bootstrap) or from a parametric

estimate of distribution of z based on the learning sample z. We consider three possibilities to

draw bootstrap samples in case of replicated data of the method comparison study. The main

source of information about this problem is the paper of Oman et.al [9] (see section 3.4).

First nonparametric approach In the first nonparametric approach each bootstrap sample

is computed by sampling n items with replacement and using all observations of each sampled

individual. In case of an unbalanced design (different number of replications for each item) this

method can overestimate σ(Ĥ) because the number of observations of the learning sample is not

preserved.

Second nonparametric approach the second nonparametric approach is called bootstrapping

the residuals. This method is described for the case of OLS regression by Efron and Tibshirani

[5, p. 113]. After fitting the linear model we get estimates of regression coefficients β̂0 and β̂1 and

residuals r̂i = yi − β̂0 − β̂1xi. We can generate new samples using the following data:

(x∗i , y
∗
i ) = (xi, β̂0 + β̂1xi + r̂∗i ),

where r̂∗i is randomly sampled from the set {r̂1, ... , r̂n}. The advantage of this method is that

the study design stays unchanged by resampling. The downside is the sensitivity to the model

assumptions. We did not find a reference how to conduct this kind of bootstrap in case of Dem-

ing regression, with errors in both variables. In case of unreplicated measurements it could be
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conducted as following:

(x∗i , y
∗
i ) = (ξ̂i, η̂i) + (δ̂∗i , ε̂

∗
i ),

where ξ̂i and η̂i are the predictions of the true measurements of methods X and Y for the i-th item.

The δ̂∗i and ε̂∗i are randomly sampled from the sets
{
xi − ξ̂i | i = 1, 2, ... , n

}
and

{yi − η̂i | i = 1, 2, ... , n} respectively. However it is still unclear how should be drawn the samples

in replicated case.

Oman et.al. [9] also abolish the idea of residual resampling for the structural model with error in

equation.

Parametric bootstap In this case samples are drawn from the estimated distribution of the

data. This approach is used by Oman et.al. [9] for estimation of variances of the regression

coefficients. It is relatively unproblematic to conduct parametric bootstrap for the averaged Dem-

ing regression or for the model with matrix effect in the test method. For the averaged Deming

regression we can draw every bootstrap sample as follows:

1. Generate {ξ1, ..., ξn} from the normal distribution with mean µ̂ and variance σ̂2.

2. Generate measurement errors {(δij , εij) | i = 1, ... n, j = 1, .. r}, whereδij
εij

 ∼ N

0

0

 ,

σ̂2
δ , 0

0, σ̂2
ε

 .

Then the bootstrap sample contains pairs

(x∗ij , y
∗
ij) =

(
ξi, β̂0 + β̂1ξi

)
+ (δij , εij). (3.101)

Analogously one can conduct parametric bootstrap in case of the structural model with error in

equation (see [9]).

The sampling for Linnet’s weighted Deming regression is problematic, because Linnet’s model

definition is somewhat unclear.

The only bootstrap method, which can be applied to all models considered in this master thesis,

is the nonparametric bootstrap. Thus in the following we take a closer look only at this approach.

3.6.2 Calculation of bootstrap confidence intervals

The confidence interval 3.97 assumes an equal-tailed distribution of θ̂. Sometimes the distribution

of θ̂ is skewed. Then the quantile or BCa method could be more appropriate for estimation of the

confidence intervals.
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The quantile (percentile) CI

Assume that we generate B independent bootstrap data sets {z∗1 , z∗2 , ... z∗B} and compute the

bootstrap replications θ∗b = t(z∗b ), b = 1, 2, ... , B. The approximate (1− α)-% quantile interval is

given by [5, p. 170] [
θ̂lo, θ̂up

]
≈
[
θ
∗(α/2)
b , θ

∗(1−α/2)
b

]
, (3.102)

were θ
∗(α/2)
b and θ

∗(1−α/2)
b denote 100 · α/2 % and 100 · (1 − α/2) % percentiles of the empirical

distribution of θ∗b = t(z∗b ). Quantile intervals achieve better balance in the left and right sides

than the simple CIs (3.97). But they can still undercover overall. This is the consequence of non-

parametric inference: the quantile interval has no knowledge of the underlying normal distribution

and uses the empirical distribution in its place [5, p. 175]. The BCa CIs should achieve better

coverage than the percentile CI.

The BCa method

The BCa CIs are a substantial improved version of the percentile method. The abbreviation is

standing for ”bias-corrected and accelerated”. Efron and Tibshirani have shown that BCa CIs are

more accurate than percentile CIs (5, p.187).

Let θ∗(α) indicate the 100 · αth percentile of B bootstrap replications {θ∗1 , θ∗2 , ... , θ∗B}. The BCa

interval is then: [
θ̂lo, θ̂up

]
≈
[
θ
∗(α1)
b , θ

∗(1−α2)
b

]
, (3.103)

where

α1 = Φ

(
ẑ0 +

ẑ0 + z(α/2)

1− â(ẑ0 + z(α/2))

)
, (3.104)

α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α/2)

1− â(ẑ0 + z(1−α/2))

)
(3.105)

Here Φ(·) is the standard normal cumulative distribution function and z(α) is the 100αth percentile

point of a standard normal distribution. The parameter ẑ0 can be estimated as follows [5, p.186]:

ẑ0 = Φ−1

#
{
θ∗b < θ̂

}
B

 . (3.106)

ẑ0 measures the median bias of θ∗, that is the discrepancy between the median θ∗ and θ̂ in normal

units.

There are various ways to compute acceleration â. The easiest is given in terms of the jackknife

values of a statistic θ̂ = t(z). Let θ̂(i) = t(z(i)), and define θ̂(·) =
∑n
i=1 θ̂(i)/n [5, p.186]. Then

â =

∑n
i=1

(
θ̂(·) − θ̂(i)

)3

6

{∑n
i=1

(
θ̂(·) − θ̂(i)

)2
}3/2

. (3.107)
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The quantity â is called the acceleration because it refers to the rate of change of the standard

error θ̂ with respect to the true parameter θ, measured on the normalized scale.

3.7 Conclusions

In this part of the master thesis we have considered theoretical foundations and properties of the

following methods of estimation, which can be used for analysis of method comparison data with

replicated measurements:

1. ML estimation,

2. averaged Deming regression,

3. Linnet’s weighted Deming regression,

4. Barnett’s approach,

5. MM-estimation in case the test method contains matrix effect.

ML-estimates and estimates of the averaged Deming regression can be applied to data with con-

stant standard deviations of measurement errors (look at section 2.4). Such data are also called

”homoscedastic data”. These two approaches yield very similar results in most cases, but the

estimates of averaged Deming regression are not full ML estimates. Another difference is the order

of estimation of slope β1 and ratio of variances of measurement errors λ. Using the ML-method we

first estimate the slope. Then, we use this estimation for calculation of λ. Using averaged Deming

regression, first λ is estimated. Calculation of the estimate of slope is based on the value of the

estimated λ.

Linnet’s weighted Deming regression is a weighted version of averaged Deming regression. This

approach is developed for the analysis of data with constant coefficient of variation of measure-

ment errors (look at section 2.4). Such data we call ”heteroscedastic data with constant CV”. The

estimates of Linnet’s weighted Deming regression are calculated using an iterative procedure.

Barnett’s method is developed for data with heteroscedastic measurement errors when CVs are

not necessarily constant. For calculation of corresponding estimates an iterative procedure is sug-

gested.

MM-estimation in case test test method contains matrix effect will the following be called ”MM-

method”. This approach may also be used for the analysis of data without matrix effect. In this

case the estimation of the variance of the matrix effect can be negative, but the estimates of re-

gression coefficients should be close to the ML-estimates.

Averaged- and Linnet’s weighted Deming regressions are recommended by CLSI EP9 for the anal-

ysis of method comparison data. That is why it is especially important to investigate reliability of
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these methods. This analysis is conducted via Monte-Carlo simulation studies in chapter 5 of the

master thesis.

The next important problem is the calculation of confidence intervals (CIs) for regression coeffi-

cients and systematical bias between two measurement procedures at some medical decision points

(MDP). For averaged Deming regression, analytical formulas for calculation of the CIs are given.

This formulas should only be used if model assumptions (normality and homoscedasticity of mea-

surement errors) hold. If the assumptions are violated, resampling methods are recommended,

especially the jackknife method. For the other regression methods we will only use resampling

methods to estimate the variance. It is interesting to investigate the performance of the different

methods of calculation of CIs of parameter estimates. This analysis is conducted via Monte-Carlo

simulation studies in chapter 5 of the master thesis.

In the theoretical part some diagnostic plots are considered, which could be used to choose the

appropriate regression model for the data. Examples of such plots are shown in chapter V of the

master thesis.
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Chapter 4

Simulation studies

In the theoretical part we have considered five methods for the estimation of regression coefficients

for linear ME models (in brackets the short names are given, which are used in plots and tables

for the identification of the methods):

1. maximum likelihood estimation (ML);

2. estimation via. averaged Deming Regression (ave.Deming, ADEM);

3. estimation via. Linnet’s weighted Deming Regression (WDeming, WDEM);

4. estimation of method of moments (MM);

5. estimation via. Barnett’s approach (Barnett).

Each of these methods has particular model assumptions:

• ML-estimation and averaged Deming regression assume homoscedastic measurement errors.

• Method of moments (MM) assumes homoscedastic measurement errors and allows for a

matrix effect in the test method.

• Linnet’s weighted Deming regression assumes heteroscedastic measurement errors with con-

stant CV.

• Barnett’s method allows for different variance of measurement errors within each item.

All methods assume the ratio of variances of measurement errors λ to be constant over the whole

measurement range. In the following we will evaluate method performance

• in case data are consistent with all model assumptions,

• in case model assumptions are violated.
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The first group of simulation studies, which are described in this part of the master thesis, were

conducted to investigate the performance of estimates of regression coefficients for different data

situations (simulations 1.1 - 1.8 [??]). The main attention was focused on the averaged Deming

regression and Linnet’s weighted Deming regression, which are recommended by CLSI EP-9, for

the analysis of method comparison data. For example, it is interesting to see how close the esti-

mates of the averaged Deming regression are to the full ML estimates. These simulations are also

a good validation tool for the algorithms.

Furthermore we have considered different methods for calculation of confidence intervals for es-

timates of regression coefficients and bias at some medical decision point (in brackets the short

names are given, which are used in plots and tables for the identification of the methods):

• analytical confidence intervals based on normal distribution assumption (availably only for

averaged Deming regression) (an.1),

• analytical confidence intervals based on influence function theory combined with normal

distribution assumption (availably only for averaged Deming regression) (an.2),

• Jackknife confidence intervals (jack),

• nonparametric bootstrap quantile confidence intervals (boot.q),

• nonparametric bootstrap BCa confidence intervals (boot.BCa).

The second group of simulation studies has explored the coverage of these confidence intervals

combined with different methods of estimates of regression coefficients (simulations 2.1-2.3 [4.2]).

The most important question to be answered by these simulations, is the coverage of the analyti-

cal confidence intervals of the second type (an.2) in case of homoscedastic data and the coverage

of jackknife intervals for the averaged and Linnet’s weighted Deming regression within different

simulation scenarios. These methods are suggested by CLSI EP9 [18] for the analysis of method

comparison data, that is why it has a high practical relevance.
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4.1 Simulation of data

In this master thesis, 11 simulation studies were conducted. Table 4.1 contains the overview of the

simulations 1.1 - 1.8. The parameters of the simulations are described in section 4.2. Table 4.2

contains parameters of simulations 2.1 - 2.3.

For each simulation study, the data sets were simulated using the following algorithm:

1. First, the true measurements of the comparative method were simulated for n = 100 items

{ξi | ∀ i = 1, 2, ..., 100 ξi ∼ N(µ = 200(300), σ = 25)}.

2. Matrix effects in the comparative method (simulation 1.5) and in the test method (simulation

1.4, simulation 1.5) were simulated as follows:

ξ̃i = ξi +mi,mi ∼ N(0, σm = smx),

η̃i = a+ bξi + ci, ci ∼ N(0, σc = smy).

3. For data without matrix effect

ξ̃i = ξi

η̃i = a+ bξi

4. For each item i, r measurement replications of the methods X and Y were simulated as

follows:

assume m = min {ξi | i = 1, 2, ..., 100} then

Xij = ξ̃i + δij

Yij = η̃i + εij , i = 1, 2, ... 100; j = 1, 2...r.

For simulations 1.1-1.5 and 2.1, homoscedastic errors were simulated as random values from the

following distributions:

δij ∼ N(0, σδ = s0x), εij ∼ N(0, σδ = s0y)

For simulations 1.6-1.8 and 2.2, heteroscedastic errors with constant CV were simulated as follows::

δij ∼ N(0, σδ = s0x + CVx |ξi −m|), εij ∼ (0, σε = s0y + CVy |ξi −m|)

For simulation 2.3, errors with outliers were simulated as follows:

δij = δij1 + δij2, δij1 ∼ N(0, σδ = s0x), δij2 ∼ Laplace(location = 0, scale = sx)

sx =
1√
2

(c0x + c1x |ξi −m|);
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εij = εij1 + εij2, εij1 ∼ N(0, σε = s0y), εij2 ∼ Laplace(location = 0, scale = sy)

sy =
1√
2

(c0y + c1y |ξi −m|);

Note: Laplace or double-exponential distribution has heavier tails than the normal distribution.

The Laplace density function is

f(x) =
1

2b
exp

(
−|x− a|

b

)
,

where a is a location parameter and b a scale parameter. If the random variable Y has Laplace

distribution, then E(Y) = a and Var(Y) = 2b2.
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4.2 Investigation of performance of estimates

In order to explore performance of estimates of regression coefficients we conduct the following

simulations:

Simulation Model assumptions Scope: to investigate the

dependence between performance

of estimates and

Simulation 1.1 homoscedastic data number of replications

without matrix effect and variance of measurement errors

Simulation 1.2 homoscedastic data true slope b and

without matrix effect intercept a

Simulation 1.3 homoscedastic data true error ratio

without matrix effect λ

Simulation 1.4 homoscedastic data strength of matrix

with matrix effect effect

in test method

Simulation 1.5 homoscedastic data strength of matrix

with equal matrix effect effect

in both methods

Simulation 1.6 heteroscedastic data strength of heteroscedasticity

without matrix effect

Simulation 1.7 heteroscedastic data true slope b and

without matrix effect intercept a

Simulation 1.8 heteroscedastic data true error ratio

without matrix effect λ

Table 4.1: Scopes and model assumptions of the simulations studies 1.1-1.8.

The performance of estimates was measured using mean squared error MSE. Let θ̂ be an

estimation of parameter θ. Then

MSE(θ̂) = E [(θ̂ − θ)2].

In order to estimate the MSE we simulate 2000 data sets with the same simulation parameters.

Based on each data set we calculate estimates of regression parameters. Let θ̂i be an estimation

of the parameter θ using the i-th data set. Then

ˆMSE(θ̂) = 2000−1 Σ2000
i=1 (θ̂i − θ)2.

Furthermore we consider plots which show the median and the 2.5%- and 97.5%-quantile of the
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distribution of estimates. Using these plots we can get a picture of bias and variance of the

estimators.

If the median of the distribution of the estimators is at the true value of the simulated data,

we assume the estimation is unbiased, if the distribution is symmetric, because the mean of a

symmetric distribution is equal to the median. If the distribution is skewed the median and mean

can lead to the different conclusions.

Simulation 1.1

Scope: Investigation of the dependence between the number of replications and the strength of

variability of measurement errors and the performance of the estimates.

Model assumptions: Data with homoscedastic measurement errors without matrix effect.

Parameters of simulation

Parameter fixed varying

number of replications (nrepl) 2, 3, 5, 10

intercept a 0

slope b 1

λ 1

k = sd(measurement error of X )
sd( true measurements of X ) 0.02, 0.05, 0.1, 0.2, 0.3, 0.4

m.x = sd(Matrix effect of X )
sd(Measurement error of X ) 0

m.y = sd(Matrix effect of Y )
sd(Measurement error of Y ) 0

CV.x 0

CV.y 0

Note. The strength of the variability of the measurement errors is controled via

k = sd(measurement error of X)/sd(true measurements of X).

Expectations

1. We expect higher variance of the estimates with rising variance of the measurement errors.

2. We assume that the variance of estimates decreases with increasing number of measurement

replications.

3. The homoscedastic data suit perfectly to the model assumptions of the averaged Deming

regression and ML-method. That is why we expect these methods to have the best perfor-

mance. The MM method should have higher variance. It is not clear whether this method

yields biased estimates in case of no matrix effect in test method. The model assumptions

of the Linnet’s weighted Deming regression are violated here. We expect poorer results from

this method. The model assumptions of Barnett’s approach include the case with constant
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errors. Yet this algorithm does not use this information. That is why we expect less efficient

estimates than the estimates of ML-Method and averaged Deming regression.

Simulation results

1. As expected, the variances of the estimates tend to get smaller with increasing number of

replications (see pictures 4.1-4.2).

2. As expected, the variances of the estimates tend to get bigger with increasing variance of the

measurement errors (see figures 4.3-4.4).

3. Estimates of all methods except Barnett’s approach are unbiased and have nearly the same

variance.

4. Linnet’s algorithm needs no more than 3 iterations until convergence, if the treshhold is fixed

by 10−7 (look at the fig. 4.5).

5. The distribution of the estimates of the variance of the matrix effect using the MM-Method

is symmetrical around zero (fig. 4.6). Thus, if we apply the MM-Method to the data without

matrix effect in the test method, we can get reasonable estimates of regression coefficients

and very small estimation of the variance of the matrix effect, which sometimes is negative.

We can consider it as an indicator of absence of a matrix effect.
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Figure 4.1: Simulation 1.1. Estimation of slope vs. number of measurement replications: MSE

(left) and plot with median, 2.5% and 97.5%-quantiles of the distribution of estimates. k is fixed

at 0.2.
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Figure 4.2: Simulation 1.1. Estimation of intercept vs. number of measurement replications:

MSE (left) and plot with median, 2.5% and 97.5%-quantiles of the distribution of estimates. k is

fixed at 0.2.
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Figure 4.3: Simulation 1.1. Estimation of slope vs. strength of the variance of measurement

errors: MSE (left) and plot with median, 2.5% and 97.5%-quantiles of the distribution of estimates.

Number of replications is fixed at 3.
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Figure 4.4: Simulation 1.1. Estimation of intercept vs. strength of the variance of measurement

errors: MSE (left) and plot with median, 2.5% and 97.5%-quantiles of the distribution of estimates.

Number of replications is fixed at 3.
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Simulation 1.2

Scope: Investigation of the dependence between the true slope or true intercept of the data and

the performance of the estimates.

Model assumptions: Homoscedastic data without matrix effect.

Parameters of simulation

Parameter fixed varying

number of replications (nrepl) 2

intercept a 0, 0.25,2.5, 5, 25

slope b 0.5, 0.8, 1, 1.2, 2

λ 1

k = sd(measurement error of X )
sd( true measurements of X ) 0.2

m.x = sd(Matrix effect of X )
sd(Measurement error of X ) 0

m.y = sd(Matrix effect of Y )
sd(Measurement error of Y ) 0

CV.x 0

CV.y 0

Expectations

1. The true slope and the true intercept should not affect the bias of estimates of regression

parameters.

2. The variance of estimates is probably dependent on the value of the slope (for example,

we can see a functional dependency between the slope and the variance of the estimates in

formulas for analytical calculation of variances 2.27-2.28).

3. The homoscedastic data suit perfectly to the model assumptions of the averaged Deming

regression and ML-method. That is why we expect that the estimates of this methods will

have the lowest variances. MM estimates may have higher variances. The model assumptions

of the Linnet’s weighted Deming regression are violated here. We expect poorer results of

this method. The model assumptions of Barnett’s approach include the case with constant

errors. Yet this algorithm does not use this information. That is why we expect less efficient

estimates than the estimates of ML-Method and averaged Deming regression.

Simulation results

1. Estimates of all methods except Barnett’s approach are unbiased independent of the values

of the true slope or/and intercept (fig. 4.7, top).

2. Estimates of Barnett’s approach are biased. The bias depends on the value of the true

intercept: the bigger the true intercept the bigger the bias (fig. 1.7, top). The bias is
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negative. This drawback of the actual implementation of Barnett’s approach makes it useless

for the analysis of method comparison data. That is why we do not consider this method in

following simulations.

3. As expected, the variance of the estimates of the regression coefficients is affected by the true

slope and is not affected by the true intercept (fig. 4.7).

4. The averaged Deming regression and the ML-estimates have the same variance.

5. The variances of the estimates of the MM-Method and of Linnet’s weighted Deming regression

are slightly higher than the variances of the ML estimates and the estimates of the averaged

Deming regression.

Note. The estimates of Barnett’s method can be improved by centering the data as following (see

fig. 4.8):

1. First center all measurements as

xcij ≡ xij − xi., ycij ≡ yij − xi.,

i = 1,2, ... , n , j = 1,2, ... ,r.

2. Calculate the estimate of the slope β̂1 for the centered data.

3. Estimate the intercept using the original data as following: β̂0 = ȳ − β̂1x̄.

The variance of the estimates of the improved Barnett’s method is still considerably higher than

the variance of the other estimates, but the bias becomes smaller.
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Figure 4.7: Simulation 1.2. Distribution of estimates of slope (top) and intercept (bottom)

depending on the true values of slope (left) and intercept (right). Dotted horizontal lines show

true values of parameters.
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Figure 4.8: Simulation 1.2a. Results of simulation by using improved Barnett’s procedure.

Distribution of estimates of slope (top) and intercept (bottom) depending on the true values of

slope (left) and intercept (right). Dotted horizontal lines depict true values of parameters.
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Simulation 1.3

Scope: Investigation of the dependence between the true error ratio λ of the data and the perfor-

mance of the estimates.

Model assumptions: Homoscedastic data without matrix effect.

Parameters of simulation

Parameter fixed varying

number of replications (nrepl) 2, 3

intercept a 0

slope b 1

λ 0.5, 0.8, 1, 1.2, 1.5, 2

k = sd(measurement error of X )
sd( true measurements of X ) 0.2

m.x = sd(Matrix effect of X )
sd(Measurement error of X ) 0

m.y = sd(Matrix effect of Y )
sd(Measurement error of Y ) 0

CV.x 0

CV.y 0

Expectations

1. The true λ should not affect the bias of estimates of regression parameters.

2. The variance of the estimates of parameters should depend on the value of λ (the estimation

of b is dependent on λ, and the variance of estimates is affected by estimation of b, look at

formulas 2.27-2.28).

3. The homoscedastic data suit perfectly to the model assumptions of the averaged Deming

regression and ML-method. We expect that this methods will have the lowest variances.

The MM method may have higher variance. The model assumptions of the Linnet’s weighted

Deming regression are violated here. We expect poorer results of this method.

Simulation results

1. The results for 2 and 3 replications are similar (not shown).

2. The results of all methods are rather similar. The variances of the estimates of the MM-

method and of Linnet’s weighted Deming regression are slightly larger than the variances of

ML-estimates and the estimates of the averaged Deming regression.

3. The true does not affect the bias of estimates of all methods: they stay unbiased (fig.

4.9-4.10).

4. The variances of the estimates tend to get higher if λ grows. The closeness to λ = 1 is

irrelevant (fig. 4.9-4.10).

53



5. The distribution of the estimates of λ is slightly skewed with median at the true value (fig.

4.11).
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Figure 4.9: Simulation 1.3. Estimation of slope vs. true values of λ. MSE (left) and distribution

of the estimates (median, 2.5%-quantile and 97.5%-quantile).
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Figure 4.10: Simulation 1.3. Estimation of intercept vs. true values of λ. MSE (left) and

distribution of the estimates (median, 2.5%-quantile and 97.5%-quantile).
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Simulation 1.4.

Scope: Investigation of the influence of a matrix effect in the test method on the performance of

estimates.

Model assumptions: Homoscedastic data with matrix effect in the test method Y.

Parameters of simulation

Parameter fixed varying

number of replications (nrepl) 2, 3, 5, 10

intercept a 0

slope b 1

λ 1

k = sd(measurement error of X )
sd( true measurements of X ) 0.1

m.x = sd(Matrix effect of X )
sd(Measurement error of X ) 0

m.y = sd(Matrix effect of Y )
sd(Measurement error of Y ) 0.5, 1, 2, 5, 10

CV.x 0

CV.y 0

Note. The strength of matrix effect is controlled via

m.y = sd(Matrix effect of Y ) / sd( Measurement error of Y ).

Figure 4.12 shows examples of the corresponding simulated data. We can speak about strong

matrix effect if m.y = 5 and m.y = 10. The corresponding scatter plots contain clear clusters of

replications.

Expectations

1. The homoscedastic data with a matrix effect in the test method Y suit perfectly to the model

assumptions of the MM-method. That is why we expect the best results from this method.

2. A weak matrix effect should not considerably affect the estimates of the ML-method, averaged

Deming regression or weighted Deming Regression. We expect biased estimates of these

methods if the matrix effect is strong.

3. The matrix effect introduces additional variability to the data. That is why we expect a

higher variance of the estimates if the matrix effect gets larger.
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Simulation results

1. The simulation shows that the MM-Method is the only method which yields unbiased esti-

mates in case of a strong matrix effect in the test method (fig. 4.13-4.16).

2. The number of replications seem does not to affect the variance of estimates (fig. 4.15-4.16).

3. All methods yield proper results if the matrix effect is small (the variance of the matrix effect

is lower or equal to the variance of the measurement errors).

4. If the matrix effect is strong, the ML-estimates and the estimates of the averaged and Linnet’s

weighted Deming Regression are considerably biased. The bias of the estimates of slope is

negative, the bias of the estimates of intercept is positive. The larger the matrix effect the

larger the bias (fig. 1.13-1.14).

5. This is the first simulation scenario which produces very different results of the ML- and

averaged Deming regression estimates. The difference increases with the strength of the

matrix effect. In case of a strong matrix effect (m.y = 10), the ML estimates are less biased

and have smaller variance than the estimates of the averaged Deming regression(fig. 4.16).

6. The MM-Method yields reasonable estimates of the variance of the matrix effect. The dis-

tribution of estimates is slightly skewed. The median of the estimates is close to the true

parameters.
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Figure 4.12: Simulation 1.4. Examples of simulated data with a matrix effect in the test method.

Number of replications nrepl = 3.
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Figure 4.13: Simulation 1.4. Estimation of slope vs. strength of matrix effect in test method:

MSE (left) and plot with median, 2.5% and 97.5%-quantiles of the distribution of estimates. k is

fixed at 0.1, number of replications nrepl = 2.
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Figure 4.14: Simulation 1.4. Estimation of intercept vs. strength of matrix effect in test method:

MSE (left) and plot with median, 2.5% and 97.5%-quantiles of the distribution of estimates. k is

fixed at 0.1, number of replications nrepl = 2.
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Figure 4.15: Simulation 1.4. Estimation of slope vs. number of replications: MSE (left) and plot

with median, 2.5% and 97.5%-quantiles of the distribution of estimates. k is fixed at 0.1, m.y = 2.
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Figure 4.16: Simulation 1.4. Estimation of slope vs. number of replications: MSE (left) and plot

with median, 2.5% and 97.5%-quantiles of the distribution of estimates. K is fixed at 0.1, m.y =

10.
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Simulation 1.5.

Scope: Investigation of the influence of the matrix effect in both methods on performance of the

estimates.

Model assumptions: Homoscedastic data with a matrix effect in both methods X and Y.

Parameter fixed varying

number of replications (nrepl) 2, 3, 5, 10

intercept a 0

slope b 1

λ 1

k = sd(measurement error of X )
sd( true measurements of X ) 0.1

m.x = sd(Matrix effect of X )
sd(Measurement error of X ) 0.5, 1, 2, 5, 10

m.y = sd(Matrix effect of Y )
sd(Measurement error of Y ) 0.5, 1, 2, 5, 10, m.y = m.x

CV.x 0

CV.y 0

Note. Fig. 4.17 shows example data with equal matrix effect in both methods.

Expectations

In case of a matrix effect in both methods the model assumptions of all methods are violated. It

is not clear, which method will yield better results.

Simulation results

1. In case of a strong matrix effect in both methods the estimates of the MM-Method are

considerably biased (fig. 4.20).

2. The MM-estimation of the variance of the matrix effect in test method is overestimated (fig.

4.22).

3. The estimates of the ML-method, averaged Deming regression and weighted Deming regres-

sion are unbiased (fig. 4.19-4.20).

4. The variance of the estimates does not seem to be affected by the number of replications (fig.

4.19).

5. The variances of estimates tend to increase if the matrix effect gets stronger. The variances

of the estimates of averaged and weighted Deming regressions grow much faster than the the

variances of the ML-estimates. Hence for m.y = m.x = 10 the difference is rather high (fig.

4.20).
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6. The ML-estimates of λ are unstable and have considerably larger variance than the esti-

mates of other methods in case the variance of the matrix effect is close to the variance of

measurement errors (fig. 4.21).
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Figure 4.18: Simulation 1.5. Examples of simulated data with matrix effect in both methods.

Number of replications nrepl = 3.

67



●
● ●

●

0.
00

10
0.

00
15

0.
00

20

nrepl

M
S

E

●
● ●

●
●

● ●

●

●
●

●

●

●
● ●

●

2 3 5 10

method

ave.Deming
ML
MM
WDeming

Estimation of b: MSE (m.y=2)

● ● ● ●

0.
90

0.
95

1.
00

1.
05

nrepl

b

● ● ● ●● ● ● ●

● ● ● ●

● ● ● ●

2 3 5 10

m.y = 2   m.x = 2

Figure 4.19: Simulation 1.5. Estimation of slope vs. number of replications: MSE (left) and

plot with median, 2.5% and 97.5%-quantiles of the distribution of estimates. k is fixed at 0.1, m.x

= m.y = 2.
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Figure 4.20: Simulation 1.5. Estimation of slope vs. strength of matrix effect in both methods:

MSE (left) and plot with median, 2.5% and 97.5%-quantiles of the distribution of estimates. k is

fixed at 0.1, number of replications nrepl = 2.
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Figure 4.21: Simulation 1.5. Estimation of lambda vs. strength of matrix effect in both methods:

MSE (left) and plot with median, 2.5% and 97.5%-quantiles of the distribution of estimates. k is

fixed at 0.1, number of replications nrepl = 2.
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Figure 4.22: Simulation 1.5. MM-estimates of the variance of matrix effect in the test method
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value is (25 · k ·m.y)2. k is fixed at 0.1.
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Simulation 1.6

Scope: Investigation of the dependence between the strength of heteroscedasticity and the per-

formance of the estimates.

Model assumptions: Heteroscedastic data with constant CV without matrix effect.

Fixed parameters of simulation: Intercept a = 0, slope b = 1. Error ratio λ = 1.

Parameter fixed varying

number of replications (nrepl) 2, 3, 5

intercept a 0

slope b 1

λ 1

k = sd(measurement error of X )
sd( true measurements of X ) 0.1

m.x = sd(Matrix effect of X )
sd(Measurement error of X ) 0

m.y = sd(Matrix effect of Y )
sd(Measurement error of Y ) 0

CV.x 0.05, 0.1, 0.15

CV.y 0.05, 0.1, 0.15; CV.y = CV.x

Note. Fig. 4.23 shows example data with equal matrix effect in both methods.

Expectations

1. The simulated data suits perfectly to the model assumptions of Linnet’s weighted Deming

regression. That is why we expect the best results from this method.

2. The ML- and MM-estimates and the estimates of the averaged Deming regression should not

be biased by heteroscedastic data, but we expect higher variances of their estimates than for

the estimates of the Linnet’s weighted Deming regression.

Simulation results

1. As we have expected, the estimates of Linnet’s weighted Deming regression, have the smallest

variance (fig. 4.24-4.25). The number of iterations of Linnet’s algorithm tends to get smaller

with increasing number of replications and in most cases 3 or 4 iterations are needed (fig.

4.25).

2. The estimates of the ML-Method and averaged Deming regression are very similar. The

estimates of the MM-method have slightly higher variance (fig. 4.24-4.25).
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Figure 4.23: Simulation 1.6. Examples of simulated data with heteroscedastic measurement

errors and constant CV.
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Figure 4.24: Simulation 1.6. Estimation of slope vs. CV of measurement errors. MSE (left) and

distribution of the estimates (median, 2.5%-quantile and 97.5%-quantile). Please note: CV.x =

CV.y.
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Figure 4.25: Simulation 1.6. Estimation of intercept vs. CV of measurement errors. MSE (left)

and distribution of the estimates (median, 2.5%-quantile and 97.5%-quantile). Please note: CV.x

= CV.y.
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Figure 4.26: Simulation 1.6. Left: Number of iterations of Linnet’s algorithm applied to het-

eroscedastic data (CV = 0.15). Right: Number of iterations vs. corresponding estimates of slope.
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Simulation 1.7

Scope: Investigation of the dependence between the true slope and intercept and the performance

of the estimates in case of heteroscedastic data with constant CV.

Model assumptions: Heteroscedastic data with constant CV without matrix effect.

Parameter fixed varying

number of replications (nrepl) 2

slope a 0, 2.5, 5, 25

intercept b 0.5, 0.8, 1, 1.2, 1.2, 2

λ 1

k = sd(measurement error of X )
sd( true measurements of X ) -

m.x = sd(Matrix effect of X )
sd(Measurement error of X ) 0

m.y = sd(Matrix effect of Y )
sd(Measurement error of Y ) 0

CV.x 0.1

CV.y 0.1

Expectations

1. The bias of the estimates should not be affected by the true values of slope and intercept.

2. The variance of estimates may increase with increasing slope. The intercept should not affect

the variation of the estimates.

3. The model assumption of Linnet’s weighted Deming regression suits perfectly to this simula-

tion scenario. That is why we expect estimates of this method to have the smallest variance.

Simulation results

The results agree with expectations (see fig. 4.27.)

75



●

●

●

●

●

0.
5

1.
0

1.
5

2.
0

b.true

b

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 0.8 1 1.2 2

method

ave.Deming
ML
MM
WDeming

a.true = 25   nrepl = 2

●

●

●

●

0
10

20
30

a.true

a

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2.5 5 25

method

ave.Deming
ML
MM
WDeming

b.true = 1   nrepl = 2

Figure 4.27: Simulation 1.7. Estimates of slope and intercept vs. the true values of these

parameters.
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Simulation 1.8

Scope: Investigation of the dependence between λ and the performance of the estimates in case

of heteroscedastic data with constant CV.

Model assumptions: Heteroscedastic data with constant CV without matrix effect.

Parameter fixed varying

number of replications (nrepl) 2

slope a 0

intercept b 1

λ 0.5, 1, 2

k = sd(measurement error of X )
sd( true measurements of X ) -

m.x = sd(Matrix effect of X )
sd(Measurement error of X ) 0

m.y = sd(Matrix effect of Y )
sd(Measurement error of Y ) 0

CV.x 0.1

CV.y
√
λ0.1

Note. We simulate heteroscedatic variances as

σx = σ0x + CVx ξi, where ξi is true measurement of X, σ0 = 1.

σy =
√
λ (σ0x + CVx ξi). Then

σ0y =
√
λσ0x, CVy =

√
λCVx

Thus

λ = 0.5 ⇔ CVy =
√

0.5CVx = 0.7071·, 0.1 = 0.07071,

λ = 1 ⇔ CVy =
√

1CVx = 0.1,

λ = 2 ⇔ CVy =
√

2CVx = 0.14142.

Expectations

1. The true λ of the data should not affect the bias of the estimates of all methods.

2. The variance of estimates is expected to increase with increasing λ.

Simulation results

The results agree with our expectations:

1. The variances of estimates of all methods tend to increase with increasing λ (fig. 4.28-4.29).

2. The distributions of estimates of λ via. ML-method, averaged Deming regression and

weighted Deming regression are slightly skewed with the median at the true value of λ

(fig. 1.30). The estimates of λ calculated using Linnet’s weighted Deming regression have

the best accuracy, but the difference compared to the other methods is very small.
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Figure 4.28: Simulation 1.8. Estimation of slope vs. CV of test method Y (CV of reference

method x is fixed at 0.1. The CV.y values of 0.07071068, 0.1 and 0.1414214 correspond to the

values of trueλ = 0.5, 1, 2 ). MSE (left) and distribution of the estimates (median, 2.5%-quantile

and 97.5%-quantile).
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Figure 4.29: Simulation 1.8. Estimation of the intercept vs. the CV of the test method Y

(CV of reference method x is fixed at 0.1. The CV.y values of 0.07071068, 0.1 and 0.1414214

correspond to the values of trueλ = 0.5, 1, 2 ). MSE (left) and distribution of the estimates

(median, 2.5%-quantile and 97.5%-quantile).
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Figure 4.30: Simulation 1.8. Estimation of λ vs. true values of λ (CV of reference method x is

fixed by 0.1. The CV.y values of 0.07071068, 0.1 and 0.1414214 correspond to the values of trueλ

= 0.5, 1, 2). Distribution of the estimates (median, 2.5%-quantile and 97.5%-quantile).
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4.2.1 Conclusions

ML-estimation

Our simulations show that

• The ML-method yields the best results for data with homoscedastic variances of errors of

both methods X and Y. In this case the results are unbiased independent from the true slope,

intercept and ratio of variances of measurement errors λ.

• in case of a weak matrix effect in the test method (the variance of the matrix effect is less

than or equal to the variance of the measurement errors), this method yields negligible biased

estimates of the slope and intercept.

• in case of a strong matrix effect in the test method, the ML estimates are considerably

biased. The slope is overestimated and the intercept is underestimated. The stronger the

matrix effect, the higher the bias and variance of estimates.

• in case of strong but equal matrix effect in both methods X and Y and λ = 1, the ML-

estimates of regression coefficients are unbiased and have the smallest variance of all methods.

The interaction between matrix effect and λ should be investigated in more detail.

• in case of heteroscedastic data, the ML-estimates of the regression coefficients are unbiased.

The distribution of estimates of λ are slightly skewed with the median at the true value of

λ. The variance of estimates of λ is higher than the variance of estimates of the Linnet’s

weighted Deming regression.

Averaged Deming regression

Our simulations suggest that

• the estimates of the averaged Deming regression are very close to the ML-estimates both in

homoscedastic and heteroscedastic cases.

• in case of data with strong matrix effect, ML-estimation yields better results than the aver-

aged Deming regression.

MM-method

For this method our simulations allow the following conclusions:

• This method yields reasonable estimates of regression parameters in case of homoscedastic

data without matrix effect.
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• In case of homoscedastic data with a matrix effect in the test measurement procedure the

MM-method is the only approach that yields unbiased estimates.

• In case of data without a matrix effect the MM-esimations are rather similar to the ML

estimates. The variance of estimates is slightly higher than the variance of the ML-estimates.

• The distribution of estimates of the variance of the matrix effect is slightly skewed, with

median close to the true parameter. If there is no matrix effect in the test method the

distribution of estimates is symmetric with median close to zero. In that situation the

variance is estimated negative by the MM-method in 50% of the simulations. We can use

this fact as an indicator of the absence of a matrix effect in the test method.

• In case of equal matrix effects in both methods the MM-estimates of regression parameters

are strongly biased. The variance of the matrix effect is strongly overestimated. Please note:

the model that we have used to derive the MM-estimates assumes a matrix effect only in the

test method Y.

Linnet’s weighted Deming regression

Our simulations show that

• the method yields unbiased estimates of regression coefficients in case of homoscedastic and

heteroscedastic (with constant CV) data without matrix effect. For the convergence the

algorithm needs 3-4 iterations in the most cases.

• in case of heteroscedastic data with constant CV, this method yields estimates with smallest

variance.

• in case of homoscedasic data, the variance of estimates of Linnet’s method is slightly higher

than the variance of the ML-estimates and of the estimates of the averaged Deming regression.

• in case of a matrix effect, Linnet’s weighted Deming regression shows almost the same be-

havior as the averaged Deming regression.

• in all simulation scenarios, the estimates of λ are slightly skewed with median close to the

true parameter.

Barnett’s Method

Barnett’s algorithm converges very slowly in our simulations and yields unstable and biased esti-

mates of regression coefficients, depending on the true slope of the data. Barnett’s approach can be

improved by centering of the data, however, the variance of the estimates stays high. The idea to

have a proper solution for the model with such few assumptions is very attractive, but the current

implementation of this method is not appropriate for use in method comparison studies.
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4.3 Investigation of performance of confidence intervals

In order to investigate the performance of confidence intervals we conduct the following simulations:

• Simulation 2.1. Evaluation of performance of CIs in case of homoscedastic data.

• Simulation 2.2. Evaluation of performance of CIs in case of heteroscedastic data

with constant CV.

• Simulation 2.3. Evaluation of performance of CIs in case of heteroscedastic data

with Laplace distributed errors.

Table 4.2 shows the values of simulation parameters that are used in simulations 2.1 - 2.3.

In all simulations we consider data with 2 and 3 measurement replications with slope b = 1,

intercept a = 0 and λ = 1. The errors of both measurement methods X and Y have the same

distribution.

Simulation s0x s0y CVx CVy c0x c0x c1x c1y

Simulation 2.1 5 5 0 0 0 0 0 0

Simulation 2.2 2 2 0.1 0.1 0 0 0 0

Simulation 2.3 2 2 0.05 0.05 10 10 0.01 0.01

Table 4.2: Overview of simulation parameters for the distribution of measurement errors (for the

meaning of parameters see section ”Simulation of data” 4.1).

To compare the performance of the confidence intervals, we estimate their coverage probability

and the mean of their width. We estimate coverage parameters using the following algorithm:

1. Simulate 1000 data sets with the same combination of simulation parameters.

2. For each data set calculate confidence intervals for regression parameters of interest and proof

whether the confidence intervals cover the true parameters.

Assume, Ck is the confidence interval for some parameter θ calculated using the i-th simulated

data set. Then the coverage probability of C is

coverage(C) =
# {θ ∈ Ck k = 1, 2, ...1000}

1000
.

The desired coverage probability should be close to the confidence level, which was fixed at 95%.

If the coverage probability of two CIs is the same, the CI with smaller average width is preferred

for superior.

Note 1:

Simulation 1.2 has shown that the actual implementation of Barnett’s approach yields biased
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estimates of regression coefficients if the true intercept a 6= 0. That is why we do not consider this

method in the following simulations.

Note 2:

We consider CIs for the estimates of

1. slope and intercept (for all methods),

2. λ (for all methods except MM-method),

3. the variance of the matrix effect (only for MM-method),

4. the bias between two measurement methods at different medical decision points. We consider

10%-, 20%-, ... 80%-, 90%-quantiles of the distribution of the simulated true concentrations

ξi as medical decision points of interest.

General expectations of all simulations

Generally, we expect a good performance of jackknife CIs. The coverage of the quantile bootstrap

CIs may be less than 95% (section 2.6.1). The improved bootstrap BCa confidence interval should

perform better than bootstrap quantile CIs (section 2.6.2).

Simulation 2.1

Scope: Investigation of the coverage of confidence intervals in case of homoscedastic data without

matrix effect, with normal distributed errors.

Note. Figure 4.31 shows an example of simulated data, tables 4.32-4.33 contain results of the

simulation.

Expectations

1. The data suit perfectly to the model assumptions of the ML- and averaged Deming regression

approach. That is why we expect the best results of these methods.

2. We expect very similar performance of ML estimates and estimates of the averaged Deming

regression.

3. The CIs of the MM-estimates may be slightly bigger.

4. The model assumptions of the Linnet’s weighted Deming regression are violated. We expect

poorer results of this method.

5. The confidence intervals in case of 3 replications should be narrower than the corresponding

CIs for the data with 2 replications.

Simulation results for data with 2 replications:
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1. The analytical CIs for the averaged Deming regression show a coverage of 0.94-0.96 for

regression coefficients, as well as for bias at all medical decision points.

2. All CIs for regression coefficients have satisfying results.

3. Almost all CIs for the bias have a coverage of 0.94-0.96. The exception are the bootstrap

CIs for the bias at medical decision points in the upper measurement range (80% and 90%

quantiles). They undercover slightly (0.93).

4. The jackknife CIs for the ML- and averaged Deming regression estimates of λ have a coverage

of 0.93, the bootstrap CIs for this parameter show a better performance.

5. The CIs of the ML- and the averaged Deming regression estimates have almost equal coverage

and length. The CIs of MM-estimates are sometimes slightly broader.

6. The length of CIs of the estimates of Linnet’s weighted Deming regression is equal or slightly

broader than the length of CIs of the estimates of the averaged Deming regression.

Simulation results for data with 3 replications:

1. Coverage of all CIs, except of the bootstrap quantile CI for the variance of the matrix effect

is improved.

2. The length of CIs gets smaller. For example, the length of the jackknife CI for the estimation

of the slope via averaged Deming regression is 13 % less than the corresponding CI for the

data with 2 replications.

Simulation 2.2

Scope: Investigation of performance of the confidence intervals in case of heteroscedastic errors

with constant CV.

Note 1: Figure 4.34 shows an example of simulated data, tables 4.35-4.36 contain the results of

the simulation.

Note 2: In this simulation the calculation of BCa confidence intervals for the bias failed because

of a program error.

Expectations:

1. The data suit perfectly to the model assumptions of Linnet’s weighted Deming regression.

That is why we expect good results for this method.

2. The ML- and MM-estimates and the estimates of the averaged Deming regression are unbi-

ased in case of heteroscedastic data with constant CV. That is why we expect satisfactory

results of the nonparametric CIs for their estimates. The length of CIs should be considerably

higher than the length of the corresponding CIs of the Linnet’s weighted Deming regression.
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Figure 4.31: Simulation 2.1. Example of simulated data.

3. The analytical confidence intervals of the estimates of the averaged Deming regression should

have poor coverage, since the model assumptions of this approach are violated.

Simulation results for data with 2 replications

1. As expected, the analytical CIs of the estimates of the averaged Deming regression fail.

2. All CIs of the estimates of the Linnet’s weighted Deming regression have satisfactory coverage

probability (0.94-0.97). An exception is the bootstrap BCa CI for λ.

3. The coverage of jackknife and bootstrap quantile CIs for estimates of regression coefficients

and bias via ML-, MM-method and averaged Deming regression are good (0.94-0.97). The

CIs are considerably longer as the corresponding CIs of the estimates of Linnet’s weighted

Deming regression. For example, the jackknife CI for the estimates of slope using averaged

Deming regression is 37% longer than the corresponding CI of the Linnet’s weighted Deming

regression.
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4. All CIs for estimates of λ via ML-method and averaged Deming regression show a coverage

of 0.93.

5. The bootstrap BCa CI for estimation of λ of Linnet’s weighted Deming regression has a

coverage of 0.93. Against expectations, we do not observe better coverage of the bootstrap

BCa CIs compared to quantile bootstrap CIs.

Simulation results for data with 3 replications:

1. All confidence intervals get smaller. For example the length of the jackknife CI for the

estimates of slope via Linnet’s weighted Deming regression got 18 % smaller than the corre-

sponding CI for the data with 2 measurement replications.

2. The coverage probability of bootstrap BCa CI for the estimation of λ of the Linnet’s weighted

Deming regression is improved (0.94).

3. The coverage probability of jackknife CIs for estimation of λ via ML-estimation and averaged

Deming regression was is improved (0.94).

4. The coverage probability of jackknife CIs for MM-estimation of the variance of matrix effect

is also improved (0.94).

Simulation 2.3

Scope: Investigation of the performance of the CIs in case of slightly heteroscedastic Laplace

distributed measurement errors.

Figure 4.37 shows example of simulated data. Figures 4.38-4.39 contain results of the simulation.

Expectations

These data do not suit to the assumptions of any model considered. Outliers may have a strong

influence on estimates as well as on CIs. It is not clear which method and which type of CI will

yield the best results.

Simulation results for data with 2 replications:

1. The coverage of the jackknife CIs of all methods achieves 0.94-0.95. The CIs of the Linnet’s

weighted Deming regression are approximately 25% narrower than the length of the CIs of

the averaged Deming regression.

2. All bootstrap CIs do not achieve the desired coverage of 0.94-0.96.

3. The coverage of all CIs of all methods for λ are very poor.

4. The bootstrap quantile CI for the variance of matrix effect of MM-method have proper

coverage of 0.95. The bootstrap BCa CI do not achieve the confidence level.
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5. The coverage of CIs of λ is very poor. Figure 4.40 shows an example of simulated data with

distributions of the bootstrap samples of estimates of λ for the ML-method and the Deming

regressions. We see that the estimates of λ are strongly biased.

Simulation results for data with 3 replications:

In this case the simulated data contain more outliers. The estimates of all methods are probably

biased. That is why all results get worse. Now no method archives the coverage of 0.94-0.95.

4.3.1 Conclusions

The second series of simulations have shown the following:

1. Higher number of replications improves in most cases the performance of all CIs.

2. The results of the averaged Deming regression, ML- and MM- methods are very similar in

all scenarios.

3. In case of homoscedastic data the CIs of the averaged Deming regression, and ML-method

are slightly shorter than the CIs of MM-method and of Linnet’s weighted regression.

4. In case of heteroscedastic data with constant CV and in case of data with Laplace distributed

errors, Linnet’s weighted Deming regression is considerably better than the other methods.

5. The best performance in all simulation scenarios achieve jackknife CIs.

6. The analytical CIs for the averaged Deming regression show proper performance in case of ho-

moscedastic and normal distributed measurement errors. They fail in case of heteroscedastic

or Laplace distributed errors.

7. Despite the expectations, the bootstrap BCa CIs have the poorest performance of all non-

parametric CIs.

8. Higher number of replications improves the estimation of CI for λ. In case of data with

Laplace distributed measurement errors the estimation of λ of all methods is unacceptable.

Note. Despite of the good performance in our simulations of jackknife intervals for estimates of

λ, it is reasonable to use bootstrap methods for calculation of CIs for this parameter. λ should be

positive and jackknife CIs cannot guarantee it.
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Figure 4.32: Simulation 2.1. Coverage (top) and corresponding length (bottom) of CIs. Please

note: Sc denotes the variance of the matrix effect.
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Figure 4.33: Simulation 2.1. Coverage (top) and corresponding length (bottom) of CIs. Please

note: Sc denotes the variance of the matrix effect.
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Figure 4.34: Simulation 2.2. Example of simulated data.
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Figure 4.35: Simulation 2.2. Coverage (top) and corresponding length (bottom) of CIs. Please

note: Sc denotes the variance of the matrix effect.
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Figure 4.36: Simulation 2.2. Coverage (top) and corresponding length (bottom) of CIs. Please

note: Sc denotes the variance of the matrix effect.
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Figure 4.37: Simulation 2.3. Example of simulated data.
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Figure 4.38: Simulation 2.3. Coverage (top) and corresponding length (bottom) of CIs. Please

note: Sc denotes the variance of the matrix effect.
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Figure 4.39: Simulation 2.3. Coverage (top) and corresponding length (bottom) of CIs. Please

note: Sc denotes the variance of the matrix effect.
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Chapter 5

Examples

In the following we consider two examples of method comparison data with replicated measure-

ments. These data enable us to apply the methods described in the theoretical part to real world

problems and use the knowledge about them which we have obtained in simulation studies.

5.1 Example 1: Reagent lot comparison

A novel drug was developed for an inflammatory disease. A clinical study has shown that patients

with high concentrations of biomarker A in blood are better responding to this new drug while

the other patients (the subgroup with low concentrations) do not respond at all. These groups

were separated by a cutoff of 50 ng/ml, which is approximately the median of the distribution of

the concentrations of marker A in blood in the whole patient collective. During the initial study

the blood concentrations were measured with the reagent lot ”Design Reference (DR)” and the

cutoff was established. The reagent lot ”Master Pilot (MP)” is the first commercial lot that is

used for actual patient treatment decisions. The patients with concentrations above 50 ng/ml

should receive the new drug. The method comparison study on this data set should show that bias

between the measurements of these two lots at the cutoff is within acceptable range and thus does

not lead to an incorrect treatment decision.

5.1.1 Data

The data contains measurements of 220 patients. The blood samples were collected during a screen-

ing visit of the patient (screening visit) and on the first day of the study (baseline visit). Thus

both samples of each patient were collected before the treatment with the new drug was started.

The biomarker A was measured twice with the reagent lots Design Reference (DR) and Master

Pilot (MP) in almost all samples. All considered models for method comparison analysis assume,

that the specimen stays unchanged by measurement replications. That is why we cannot pool
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the first two measurement replications (baseline visit) with the next two measurement replications

(screening visit). We consider the measurements for the first and second specimens as different

data sets. The first data set (baseline visit) contains 211 complete observations. The second data

set (screening visit) contains 203 complete observations.

5.1.2 Diagnostic plots

• Figure 5.1 shows scatter plots for measurements of DR lot versus MP lot for the first (left

panel) and second (right panel) sample of patients. The scatter plots are very similar. The

points below 80 mg/ml are close to the bisecting line with slope 1 and intercept 0. The

measurements of the MP lot seem to be slightly higher than the measurements of the DR

lot. In the upper area of the measurement range (> 80 mg/dl) the measurements of the MP

lot are considerably higher than the measurements of the DR lot.

• We do not see any clusters in the scatter plot, therefore we can assume that there is no

strong random matrix effect in the data. Later we check this assumption by estimating of

the matrix effect via the MM method.

• In order to select between the averaged or Linnet’s weighted Deming regression we first use

Bland-Altman plot for the averaged replications (fig. 5.2), which show absolute and relative

differences between the measurements of the two lots against the average levels. We can

see that the absolute differences increase with increasing averaged levels of measurements.

The proportional difference are slightly shifted in the upper direction. Thus we observe

proportional differences between the measurements of the DR and MP reagent lots. The

slope of the data is expected to be larger than 1.0. The variance of the absolute differences

increase with increasing averaged levels of measurements. The Bland-Altman plots suggest

slightly heteroscedastic data.

• Scatter plots of differences between duplicate measurements versus their means confirm this

result. The variance of differences within methods increase with increasing measurement

values (fig. 5.3). In all plots we can observe that the differences between the first replication

and the second replication are shifted. Thus, the assumption about the exchangeability of

the replications is slightly violated. In all cases, the mean difference is appr. -0.5 ng/ml. This

corresponds to appr. 1.0% of the median level. We do not expect that such low bias will not

affect the results of the analysis considerably. The plot with duplicates of the measurement

of MP lot for baseline visit data contains one clear outlier at the averaged measurement level

of 60 ng/ml. The analysis of the data does not shown any reason for such a high difference

between the two replications. That is why we do not delete the corresponding data point
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from the data set. The averaging of replications will reduce the influence of this observation.

The estimate of λ can be more affected by this outlier.

Thus we have heteroscedastic data with some moderate outliers. Linnet’s weighted Deming re-

gression showed to be the preferred in this case. We can expect proper estimates of the regression

coefficients. The estimates of λ may be considerably affected by outliers.
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Figure 5.1: Example 1. Left: Scatter plot for measurements with lot DR and MP for the first day

of study (baseline visit). Right: Scatter plot for measurements with lot DR and MP for the second

screening visit of the study (screening visit). The replications are connected with red lines.
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Figure 5.2: Example 1. Bland-Altman plots for the averaged replications of the first (left panel)

and second (right) samples of the patients. Top scatter plots show absolute differences between

DR and MP, the bottom graphics show the proportional differences.
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Figure 5.3: Example 1. Absolute differences between duplicate measurements by the methods

plotted against the means of the measurements.

102



5.1.3 Regression analysis

Since we have asserted heteroscedastic type of data, Linnet’s weighted Deming regression is sug-

gested to be preferred approach for this data. However, we calculate estimates of all methods,

which were considered in this master thesis, except for Barnett’s approach. So we can compare the

methods using real data. For the calculation of CIs for regression coefficients and matrix effect we

use the jackknife method, as recommended by CLSI EP9 and Linnet [7]. Confidence intervals for

λ are calculated using the bootstrap quantile method, because jackknife CIs may include negative

values.

Table 5.1 contains the results of calculations. The results of comparison of the estimates of different

methods are consistent with those results of the simulation studies. The analysis shows that:

• The estimates of regression coefficients of the averaged Deming regression are rather close to

the ML-and MM-estimates.

• The estimates of slope via Linnet’s Deming regression are closer to 1 than the estimates of

the averaged Deming regression.

• The estimates of the intercept via Linnet’s weighted Deming regression are closer to 0 than

the estimates of the averaged Deming regression.

• The CI of the estimation of matrix effect does not contain zero. Thus there is a slight matrix

effect in the data. The ratio between estimates of the standard deviations of the matrix effect

and of the measurement errors is not larger than 2. That is why we can assume that matrix

effect does not affect the estimates of the regression coefficients considerably.

• The estimates of λ via averaged and weighted Deming regression are similar. The ML method

has much higher variance. This is consistent with results of the simulation 1.5, which has

shown that the ML estimates yield unstable estimates of λ if there is matrix effect in the

data.
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n Intercept Slope Lambda Matrix effect

baseline visit: ave.Deming 210 -2.167 (-3.319; -1.014) 1.049 (1.026; 1.073) 1.644 (1.157; 2.318)
baseline visit: WDeming 210 -1.339 (-2.082; -0.596) 1.033 (1.018; 1.049) 1.703 (1.242; 2.290)
baseline visit: ML 210 -2.108 (-3.259; -0.956) 1.048 (1.025; 1.072) 2.681 (1.218; 4.394)
baseline visit: MM 210 -2.023 (-3.176; -0.870) 1.047 (1.023; 1.070) 1.511 (0.936; 2.087)
screening visit: ave.Deming 203 -1.912 (-3.255; -0.568) 1.055 (1.028; 1.082) 1.225 (0.809; 1.874)
screening visit: WDeming 203 -0.769 (-1.600; 0.062) 1.033 (1.015; 1.050) 1.345 (1.014; 1.809)
screening visit: ML 203 -1.895 (-3.259; -0.532) 1.055 (1.027; 1.082) 1.427 (0.454; 3.133)
screening visit: MM 203 -1.776 (-3.048; -0.504) 1.052 (1.026; 1.078) 1.355 (0.473; 2.237)

Table 5.1: Example 1. Estimated regression parameters.
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Figure 5.4 compares different kinds of CIs for the estimates of slope and intercept. Looking at

figure 5.4 we can conclude that for this data

• All kinds of CIs for the estimates of Linnet’s weighted Deming regression are very similar.

• CIs for the estimates of the other regression methods are less similar. If we consider for

example the CIs for slope which was estimated via ML method, we can see that bootstrap

BCa intervals are more skewed compared with quantile bootstrap confidence intervals.

• The analytical CIs of the estimates of the averaged Deming regression are considerably nar-

rower than the nonparametric CIs. We cannot use them for this data because of heteroscedas-

ticity of measurement errors.

To check the model assumptions of averaged and weighted Deming regression, and MM-method,

we use residual plots ( fig. 5.5). We can see that Linnet’s weighted Deming regression is the

most appropriate for this data, although the difference to the residual plot of the averaged Deming

regression is rather small. In the ”screening visit” data set there are 2 observations which are

relatively far from the 3 standard deviation limits. We consider them to be outliers.
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Figure 5.4: Example 1. Comparison of confidence intervals for regression coefficients.
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Figure 5.5: Example 1. Residual plots for the averaged Deming regression fit and Linnet’s weighted

Deming regression fit. The red dotted line shows the bounds of 3 standard deviations of the

distribution of residuals. The data points above (under) this bounds can be considered to be

outliers.
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Figure 5.6: Example 1. Residual plot for MM method. The red dotted line shows the bounds of

3 standard deviations of the distribution of residuals. The data points above (under) this bounds

can be considered to be outliers.
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Now we consider only the estimates of the averaged- and weighted Deming regressions. Figure 5.7

shows data with the corresponding regression fits. Both lines lie above the identity line, very close

to each other. The weighted Deming regression fit is slightly closer to the identity line than the

averaged Deming regression fit.
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Figure 5.7: Example 1. Scatter plots for measurements with lot DR and MP for the first day of

the study (baseline visit) and the second (screening visit) of the study with averaged Deming and

Linnet’s weighted Deming regression fit.

The absolute bias between the two measurements at some medical decision point Xc can be esti-

mated by â + (b̂ − 1)Xc. An estimate of the proportional bias is â/Xc − (b̂ − 1). For this data

set the medical decision point of interest (MDP) is at 50 ng/ml. A proportional bias of 3% is

desired. The proportional bias of 5 % is considered to be acceptable. We compare estimates of

the proportional bias calculated with averaged Deming regression and Linnet’s weighted Deming

regression. For calculation of confidence intervals we use the jackknife method.

Table 5.2 shows the estimation of bias of averaged Deming regression and Linnet’s weighted Dem-

ing regression. The upper limits of proportional bias at the MDP 50 ng/ml lie below 0.03 in both

data sets. The estimates of bias of the both methods are very similar. The reason is that the value

Xc = 50 ng/ml is very close to the center of data.

Figures 5.8-5.9 show the estimation of the absolute (upper) and proportional (lower) bias using

averaged and Linnet’s weighted Deming regression. The 95% confidence limits (dotted line) were

calculated using the jackknife method. The CIs of proportional bias of both data sets lie within
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the limits ± 3% or contain either +3% or -3% for almost all possible MDPs.

baseline visit screening visit

abs.bias: ave.Deming 0.305 (0.121; 0.489) 0.838 (0.663; 1.012)
abs.bias: WDeming 0.332 (0.150; 0.513) 0.867 (0.695; 1.039)
prop.bias: ave.Deming 0.006 (0.002; 0.010) 0.017 (0.013; 0.020)
prop.bias: WDeming 0.007 (0.003; 0.010) 0.017 (0.014; 0.021)

Table 5.2: Estimation of bias and proportional bias at the MDP of 50 ng/ml with jackknife
confidence intervals.

Conclusions

• The measurements of both instruments: the DR lot and MP lot have acceptable proportional

bias at the medical decision point of 50 ng/ml 0.007 (0.003; 0.010) for baseline visit and 0.017

(0.014; 0.021) for screening visit.

• The method comparison analysis using data set ”baseline visit” yields a slope of 1.033 (1.018;

1.049) and an intercept of -1.339 (-2.082; -0.596).

• The method comparison analysis using the data set ”screening visit” yields a slope of 1.033

(1.015; 1.050) and an intercept of -0.769 (-1.600; 0.062).

• Estimates of λ are larger than 1.0 in both data sets. We can assume that the measurement

error of the MP lot is larger than the measurement error of the DR lot. Simulation 2.3

suggests that estimation of λ can be considerably biased by outliers.
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Figure 5.8: Example 1. baseline visit: Estimation of the absolute (uper) and proportional (lower)
bias using averaged and Linnet’s weighted Deming regression The 95% confidence limits (dotted
lines) were calculated using the jackknife method.
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Figure 5.9: Example 1. Screening visit: Estimation of the absolute (uper) and proportional (lower)
bias using averaged and Linnet’s weighted Deming regression The 95% confidence limits (dotted
lines) were calculated using the jackknife method.
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5.2 Example 2: Instrument comparison

5.2.1 Data

The data contains measurements of biomarker B in blood. The blood samples were produced

artificially for the instrument comparison. For each specimen there are 6 measurements. Three

measurements were conducted using the Elecsys e601 system in combination with 3 instruments:

E, EC, and EE. Another three measurements were conducted using the Elecsys e602 system in

combination with 3 instruments: E, EC, and EE. We would like to compare system 602 with system

601 and estimate proportional bias at a fixed medical decision point of 1.0 (the measurement values

are scaled so that the cutoff of interest equals 1.0).

We assume that the replications which are made with instruments E, EC and EE are exchangeable.

This assumption may be violated. To check it, we generate a new data set with randomly permuted

replications. In the following we compare the results of regression analysis on the basis of original

and permuted data set. If the results are similar, we can conclude that the analysis was correct,

because the assumption about exchangeability of the replications is not violated.
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Figure 5.10: Example 2. Scatter plot for measurements of system e601 vs. system e602. Left:
original data, right: data with randomly permuted replications. The replications are connected
with red lines.
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5.2.2 Diagnostic plots

• Figure 5.10 shows scatter plots of the original data and data with permuted replications.

The scatter plots are quite similar. That is why the assumption about the exchangeablilty

of replications may hold. The distribution of the measurements is strongly skewed: most

observations are in range from 0 till 30.

• In order to choose between the averaged and Linnet’s weighted regression we use Bland-

Altman plots for the averaged replications (fig. 5.11). Comparison of Bland-Altman plots

for absolute and relative differences between two systems yields clear choice of weighted

Deming regression. We can also see that the relative differences lay above zero: there is

positive proportional bias between systems e602 and e601.

• We can confirm the choice of Linnet’s weighted Deming regression plotting absolute devia-

tions between individual and averaged measurement replications vs. averaged measurement

replications. We can see that both of the measurement errors are heteroscedastic (fig 5.12 ).
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Figure 5.11: Example 2. Bland-Altman plots for the averaged replications of original data.Left
scatter plot shows absolute differences between systems e601 and e602, the right figure shows the
proportional differences. Here ”X” means ”e601”, ”Y” means ”e602”. Note: The distribution of
concentrations is extremely skewed. That is why the x-axis contains instead of the averaged means
their indexes.

114



●●

●

●●●●● ●

●

●●●●●●●●●●●●
●●

●

●
●●

●

●
●●●

●●●●●●●

●

●
●●●●●●●●●●●●●●● ●
●●●●●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●
●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●

●

●
●●●●
●

●

●●●●●●●●

●
●

●●●●●●●●●●●●●

●

●●●●●●●●
●
●●

●

●●

●

●●
●
●●●●●
●
●

●●●●●●●●●●●●
●●●●
●
●●●●
●

●●

●

●●

●

●
●●

●
●●
●

●●

●

●●●●
●

●

●
●
●
●●●●●●●
●

●

●
●●

●●●●●●●

●

●●
●●●●

●

●
●

●

●
●
●●●

0 10 20 30 40 50 60 70

0
1

2
3

4

Original data, e601

x

|x i
j−

x i
.|

●●

●

●●●●●

●

●

●
●●●●●●
●

●●●●
●●

●

●

●●

●
●●
●
●●●●●●●●

●

●●●●●
●●●●●●●●
●
●
● ●●●●
●

●
●
●●
●●●●●●●●●●●
●
●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●● ●●
●

●

●●●●●●●●
●

●●●●●●●●

●

●●
●●

●●●●●●●● ●●

●

●●●

●

●●●●●●

●

●

●
●

●
●●●●

●

●

●
●

●●●●●
●●●
●

●
●

●

●●
●
●
●

●●●

●
●●

●●
●

●

●●
●●
●

●
●●
●
●

●●●●●●●●●●●●●●●
●
●●●●●●●
●

●
●

●

●

●●●●●●
●●

● ●●
●●●
● ●●
●
●
●
●
●●●●●
●

●

●

●
●

●●
●

●●●●

●

●●●●●●

●

●●
●

●
●
●●

●●●

●

●●●●●
●

●●●●●●●●●●●●●●●

● ●

●●
●●●●

●
●●●●●●●

●

●●●●●●●●●●●●●
●●

●

●●●●
●

●●
●

●●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●●

●

●
● ●
●●●●●●●●

●

●●●●●●●●
●

●●
●●

●●●●●●●●

●

●

●

●●
●

●

●
●●●

●●

●

●

●●
●

●●●●

●

●

●●
●
●●

●●
●●

●
●●
●

●

●●
●●
●

●●●●
●●

●

●
●

●

●●

●
●
●

●
●
●●●●●●●
●

●●●●
●●●●
●
●
●
●
●
●●●
●

●
● ●

●

●

●

●●●
●

●●
●●

●

●

●
●

●●●

●

●●●●●●●●●●●● ●●●●●●●●●●

●

●●●●●●

●

●
●●●●●
●● ●●

●

●●●●● ●

●

●●●●●
●
●●●●●●●●

● ●

●●

●

●
●

●●●●●●●●●

●

●
●●●●●●●●●●●●

●●●

●

●●●
●●●●●●●●●●

●
●●●●●

●●●●●●
●

●

●●●●●●●
●
●●●●●●●●●
●

●●●●●
●

●●

●

●●
●

●●
●
●
● ●

●●●●
●●●●

●

●●
●●

●
●

●●●●●●

●

●

●

●●●

●

●●●●●●

●

●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●
●

●●●●●●●●●●●●●●●
●
●●●●●●●●

●

●

●

●

●●●
●●●●●●

●

●●●●●

●

●●●●●●●●●●●● ●●●●●
●●●●●

●

●●●●●●

●

●●●●●
●●●

0 20 40 60

0
1

2
3

4
5

6
7

Original data, e602

x

|y i
j−

y i
.|

●●

●

●●●●● ●

●

●●●
●

●●●●●
●

●●●●
●

●
●● ●●

●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●
●●●●●●●

●

●●●●●●●
●●●●●●●●●●
●

●●●●●
●

●●

●

●●●●●
●●●

●

●●
●●●●●●

●

●●
●●●●●●●●●●

●

●

●

●●●

●

●●●
●●●

●

●●●
●

●●●● ● ●●
●

●●●●●●●●●●●

●

●●●●●●●●
●●●

●

●●

●

●●
●●●●●●●

●
●●●●
●

●●●●●●●●●●
●●●●●

●
●

●
●

●

●

●

●

●●●
●

●●
●●

●

●

●●●●
●

●

●●●●●●
●

●●●
●

●
●●●

●●
●

●●●
●

●

●
●●●●●

●

●●
●

●●
●

●●●●

●

●●●●● ● ●●●●●●●●●●●●●●●
●

●

●●

●

●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●
● ●

●●●●●●●●

●

●●●●●●●●●●●●

●

●
●

●●●

●

●●●●
●●

●

●●●
●

●●●● ● ●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●

●

●
●

●

●
●●●●●●●●

●

●
●●●●

●
●●●●●●
●

●●●
●

●
●

●●●●●●●●●

●

●●●●●●

●

●●
●

●●●●●

Figure 5.12: Example 2. Absolute differences between replications and averaged means of replica-
tions plotted against the averaged replications of each item. Here ”X” means ”e601”, ”Y” means
”e602”.
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5.2.3 Regression analysis

Thus the analysis suggests, Linnet’s weighted Deming aproach is the best method to choose for this

data. However we consider estimates of all those methods which were looked at this master thesis.

We would like to compare them using real world data. Table 5.3 shows estimates of regression

coefficients, λ and matrix effect. The CIs for the regression coefficients and matrix effect are

estimated using jackknife method. The CIs for λ are estimated using bootstrap quantile method.

The calculations have shown that:

• We can see that the intercept is very close to zero (-0.007 (-0.008; -0.006)).

• The estimation of slope via Linnet’s weighted Deming regression (1.081 (1.074; 1.087)) is

bigger than the estimation of the averaged Deming regression (1.067 (1.042; 1.091)), ML and

MM estimates.

• The CI for matrix effect (-0.180; 0.004) contains zero. We can assume that there is no matrix

effect in this data. The simulation studies jhave shown that in such case the estimates of

ML and MM estimates and the estimates of Linnet’s weighted Deming regression are very

similar.

• The estimation of λ using weighted Deming regression is 1.864 (1.636; 2.113). The measure-

ment error of e602 is considerably higher than the measurement error of e601.
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n Intercept Slope Lambda Matrix effect

ave.Deming 287 0.001 (-0.033; 0.035) 1.067 (1.042; 1.091) 1.500 (0.880; 2.212)
WDeming 287 -0.007 (-0.008; -0.006) 1.081 (1.074; 1.087) 1.864 (1.636; 2.113)
ML 287 0.001 (-0.033; 0.035) 1.067 (1.042; 1.091) 1.461 (0.884; 2.019)
MM 287 -0.001 (-0.035; 0.034) 1.067 (1.042; 1.092) -0.088 (-0.180; 0.004)

Table 5.3: Example 2. Estimated regression parameters.
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Figure 5.13: Example 2. Scatter plots for measurements of system e601 vs. measurements e602
with averaged Deming and Linnet’s weighted Deming regression fit.

Figure 5.13 shows scatter plot of the measurements of system e601 vs. measurements of system

e602 together with the averaged- and weighted Deming regression fit. We can see that both fits

are very close to each other, but considerably far from the identity line.

Figure 5.15 compares CIs for slope and intercept which were estimated using different methods.

For this data:

• We can see that analytical confidence intervals are too narrow.

• The nonparametrical methods yield very similar CIs.

• The CIs for ML- and MM-estimates and for estimates of the averaged Deming regression are

considerably longer than the CIs of Linnet’s weighted Deming regression.

• Red CIs were calculated using data with randomly permuted replications. We can see that

permutation of replications doesn’t affected considerably the estimates. Thus we can assume

that the assumption about the exangeability of the replications is not violated.

Bias

abs.bias: WDeming 0.074 (0.068; 0.080)
prop.bias: WDeming 0.074 (0.068; 0.080)

Table 5.4: Estimation of bias and proportional bias at the MDP of 1.0 with jackknife confidence
intervals.
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Figure 5.14: Example 2. Residual plots for the averaged- and Linnet’s weighted Deming regres-
sion fit for original data. The red dotted line shows the bounds of 3 standard deviations of the
distribution of residuals. The data points over (under) this bounds we can consider as outliers.

Fig. 5.14 shows residual plots of the averaged- and Linnet’s weighted Deming regression fit. It is

clear that Linnet’s weighted Deming regression fit is the correct model for this data.
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Figure 5.15: Comparison of confidence intervals for regression coefficients for original data (black)
and for data with permuted replications (red).
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Table 5.4 contains estimation of bias at medical decision point of 1.0. Estimation of proportional

bias is considerably high ( 0.074 (0.068; 0.080)). It lays above 5% (look at pict. 5.16).

Conclusions The analysis of data suggests that:

• The measurements of both systems e601 ans e602 have high proportional bias at the medical

decision point Xc = 1.0 ( 0.074 (0.068; 0.080)).

• The Linnet’s weighted Deming regression yields slope of 1.081 (1.074; 1.087), intercept of

-0.007 (-0.008; -0.006) and λ of 1.864 (1.636; 2.113).

• The measurements of both the systems are not exchangeable because of high bias and con-

siderably higher variance of the measurement of the system e602.
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Chapter 6

Conclusions and discussion

The master thesis deals with the analysis of the outcome of method comparison experiments with

replications. The conduction and analysis of such experiments should follow the recommendations

of the Clinical and Laboratory Standards Institute (CLSI), which are described in a special guide-

line ”Method comparison and bias estimation using patient samples; approved guideline” (CLSI

EP9). This document suggests the following approaches for the analysis of method comparison

data:

• Averaged Deming regression (in case of homoscedastic data).

• Linnet’s weighted Deming regression (in case of heteroscedastic data with constant CV).

• Passing-Bablok method (robust nonparametric approach which makes very few assumptions

about the distribution of measurement errors).

The investigation of the theoretical foundation and practical performance of the first two methods

is the main scope of this work.

The averaged Deming regression method is based on the linear structural error-in-variables model

with replications and is closely related to the Deming regression approach for the same model

without replications, which assumes that the ratio of variances of measurement errors λ is known.

A literature search of this topic has revealed that the averaged Deming regression approach is closely

connected to the maximum likelihood approach for linear structural ME model with replications,

described in Chan and Mak [6]. The simulation studies, which are conducted in this work show that

the estimates of both methods are very similar to each other in most situations. The simulations

suggest that in case of homoscedastic data and in case of heteroscedastic data with constant CV,

both the ML-method and the averaged Deming regression yield unbiased estimates independent of

the combination of the true intercept, slope and λ of simulated data. The estimates of regression

coefficients of both methods are relatively robust against violation of normality assumptions. The

results of both methods were acceptable even in case of simulated data with Laplace distributed

measurement errors with 2 replications.
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Linnet’s weighted Deming regression was developed by Linnet [7] for the case of heteroscedastic

data with constant CV. This is a weighted version of the averaged Deming regression. The weights

of the data points are updated iteratively. The algorithm is very fast and converges usually

after 3 or 4 iterations, if all measurements are positive. The simulationsshow that this method

yields unbiased estimates in case of homoscedastic and heteroscedastic data, independent of the

combination of the true slope, intercept and λ of the simulated data. In case of heteroscedastic

data the estimates have considerably smaller variance than the estimates of the averaged Deming

regression. The choice between the averaged and weighted Deming regression can be supported by

diagnostic plots, described in section 3.5.

In subsection 3.3.5, Barnett’s approach [15] for the linear functional ME model with replications

is considered. This method assumes individual variances of measurement errors for each item.

Simulation studies have shown that this method yields biased estimates if the data have an intercept

which differs from zero. The bigger the intercept the bigger the bias of the estimated regression

coefficients. Centering of the data improves the estimates considerably, but the variance of the

results is rather high. Hence we would not recommend to use the current implementation of this

approach for the analysis of method comparison data.

In section 3.4 we deal with the problem of a matrix effect in the test method. A matrix effect

is the difference between the response of equally concentrated analytes in solvent and in matrix

extracts (urine or blood, for example). According to the recommendations of Dunn et.al. [10] and

Carstensen [16] we consider the matrix effect to be a random effect. If the variance of the matrix

effect is considerably larger than the variance of the measurement errors it is considered to be strong

matrix effect. In this case the data are clustered. It may be identified by looking at a scatter plot

of the data. Our simulation studies have shown that the averaged Deming regression, ML-method

and weighted Deming regression yield considerably biased results if there is strong matrix effect

in the test method. In this case the ML estimates of regression coefficients are less biased than

the estimates of the averaged Deming regression and Linnet’s weighted Deming regression. Thus,

ignoring of matrix effect in the test method leads to biased estimates of regression coefficients.

In section 3.4 we consider the linear structural ME model with error in equation, which allows for

a matrix effect in the test method. The performance of MM-estimates of the parameters of this

model, derived at Fuller [2] and Oman et.al. [9] are investigated in simulation studies. They show

that this method yields unbiased estimates in case of data with matrix effect. The simulations

suggest that in case of data without matrix effect in the test method, the estimates of the linear

structural ME model with error in equation are unbiased and close to the ML estimates of the same

model without error in equation. The estimation of the variance of the matrix effect is symmetrical

around zero. That is why we can use it as a kind of indicator: if the CI of matrix effect does not

contain zero, there is matrix effect in the data [9].
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CLSI EP9 requires no matrix effect in the reference method [18]. However we have investigated the

performance of all considered methods in case both measurement procedures contain matrix effect

with the same variance. The simulation studies show that in this case the MM estimates of the

structural model with error in equations are biased while the esimations of the structural model

without error in equation (ML-estimation, the averaged and Linnet’s weighted Deming regression

approaches) yield reasonable results. It is not easy to visually detect, whether only the test method

or both methods contain a matrix effect. This problem may be solved by comparison of the within

variance of each item with between-items variances in X and Y direction. The master thesis does

not investigate this problem.

In Chapter 3 different methods for the calculation of CIs for estimates are considered:

• two analytical methods for the estimates of regression parameters of averaged Deming re-

gression. One of them (formulas 3.30, 3.33) is recommended by CLSI EP9 [18].

• the jackknife method, recommended by Linnet [7] and CLSI EP9 [18].

• the nonparametric bootstrap (quantile abd BCa CIs),

• the parametric bootstrap method.

The analytical approach can be used if the model assumptions of the averaged Deming regression

(normality and homoscedasticity of measurement errors) hold. The nonparametric or semipara-

metric approaches should be used if the model assumptions are violated or if we dont’t have any

analytical method for calculation of variances of estimates.

The performance of all methods mentioned above (except parametric bootstrap) are investigated

via simulated studies. Therefore three scenarios of simulated data (with 2 and 3 measurement

replications) are considered:

• homoscedastic measurement errors,

• heteroscedastic measurement errors with constant CV,

• heteroscedastic data with Laplace distributed errors.

Our simulations show that the analytical CIs for the averaged Deming regression have proper cov-

erage in case of homoscdastic errors. In case of heteroscedastic data the analytical methods yield

poor results.

The jackknife method of calculation of CIs shows the best performance in case of data with ho-

moscedastic errors and in case of data with heteroscdastic errors with constant CV. In case of data

with Laplace distributed errors with two replications the jackknife CIs for regression coefficients

still achieve a coverage of 0.94-0.95.
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The bootstrap quantile CIs are slighty shorter than jackknife CIs, but have mostly similar perfor-

mance. Only in a few simulations the coverage is worse to jackknife CIs. For example in case of

data with Laplace distributed measurement errors the results of the bootstrap CIs are poor. This

had to be expected because the bootstrap CIs may be strongly affected by outliers.

Bootstrap BCa CIs are the improved quantile CIs which theoretically should have better perfor-

mance. Our simulations suggest that, against expectations, the coverage of the bootstrap BCa

CIs is slightly worse than the coverage of the corresponding bootstrap quantile CIs, for example

in case of heteroscedastic data with constant CV with 2 replications.

Our simulations suggest that a higher number of replications can improve performance of all non-

parametric CIs in scenarios with homoscedastic errors and in case of heteroscedastic errors with

constant CV. The coverage gets closer to the desired level of 0.95 and the CIs get smaller.

The choice of the correct model leads to a better performance of the CIs: for example, in case of

heteroscedastic data with constant CV, all CIs of the estimates of the Linnet’s weighted Deming

regression are shorter. The coverage of the bootstrap BCa CIs for the estimates of this method

achieve 0.95, while the same CIs for the estimates of the averaged Deming regression have coverage

of 0.93 in case of data with 2 replications.

The poorest results show the CIs for the estimates of λ. In case of homoscedastic data or het-

eroscedastic data with constant CV, the coverage of the CIs is 0.93 in most cases. In case of data

with Laplace distributed errors our simulation suggests a coverage of zero. The estimates of mea-

surement errors are probably strongly affected by many outliers, that is why the estimates of λ are

biased and the CIs have poor coverage. It is interesting that although λ is incorrectly estimated,

the estimates of the regression coefficients stay reasonable in case of Laplace distributed errors.

The performance of the parametric bootstrap is not considered in the master thesis. This method

has some advantages compared with the nonparametric bootstrap. In case of replicated mea-

surements one item may contain a lot of information. By bootstrapping items (nonparametric

bootstrap), we exclude a large amount of information from the bootstrap data set and thus over-

estimate the variance of estimates. This is especially important if we have unbalanced data (each

item having different number of replications). Using parametric bootstrap we can generate bal-

anced samples from the estimated distribution of the data.

Most of the methods of estimations considered in this work assume balanced data. In this case the

nonparametric bootstrap may have less disadvantages compared with the parametric bootstrap.

Otherwise, use of parametric bootstrap needs clear assumptions about the underlying model. In

case of Linnet’s weighted Deming regression it is not clear, how to generate the sample data. That

is why we have considered only the confidence intervals based on the nonparametric bootstrap in

this master thesis.
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In general, we can assert, that the methods, which are recommended by CLSI EP9 (averaged

Deming regression and Linnet’s weighted Deming regression) in combination with jackknife or

bootstrap quantile confidence intervals yield reasonable estimates of regression coefficients even if

the model assumptions are considerably violated, if there is no strong matrix effect in the test

method.
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Chapter 7

Contents of the attached
CD-ROM

File/object name Folder Description

mcCalcCI.r.r algorithms Contains functions for calculation of the

different kinds of CIs.

calcEP9.r algorithms Calculation of the averaged Deming re-

gression fit.

calcML.r algorithms Calculation of the ML estimation for

the linear structural ME model with

replications.

calcML Barnett old.r algorithms Calculation of the ML estimations for

the linear functional ME model with

replications

calcML Barnett.r algorithms Calculation of the ML estimations for

the linear functional ME model with

replications. Improved version.

calcMM.r algorithms Calculation of MM estimation for the

linear structural ME model with error

in equation (for the case of matrix effect

in test method )

compare.r algorithms Comparison of fits of the difference

methods

diagnostic plots.r algorithms Contains functions for drawing of diag-

nostic plots.

Continued on next page
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File/object name Folder Description

funPolynoms.r algorithms Contains functions for calculation of

roots of the polynomials of 2nd, 3rd,

and 4th degree. This functions are used

to calculation of the ML estimation for

the linear structural ME model with

replications.

jackknife.r algorithms Returns results of the jackknife resam-

pling.

makeWData.r algorithms Creates WData object

rounddigits.r algorithms Returns rounded numbers in string for-

mat.

runall.r algorithms Runs all programs from folder algo-

rithms

show.r algorithms Draws scatter plot of the data, which

contains WData-object.

simData.r algorithms Programs for simulation of data.

unparBoot.r algorithms Returns the results of bootstrap resam-

pling.

wdeming.r algorithms Calculation of Linnets weighted Dem-

ing regression fit.

Demo.r algorithms Demonstration of the most important

algorithms.

functions constSD.r /simulations Different programs for conduction of

simulations 1.1-1.5 and the analysis of

their results.

functions heterosked.r /simulations Different programs for conduction of

the simulations 1.6-1.8, 2.1-2.3 and the

analysis of their results.

functions simulations.r /simulations Functions for the analysis of the simu-

lation results.

simulation2 1-2 3.r /simulations Siulations 2.1-2.3

simulations1 1-1 8.r /simulations Simulations 1.1-1.8

Continued on next page
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File/object name Folder Description

analysis of sim results.r /simulations Analysis of the simulation results

(Chapter 4).

/simulations/ Sim-

ulation results

Folder with results of the simulations

functions.r /data analysis Functions for the analysis of the exam-

ple data sets.

data analysis.r /data analysis Analysis of the example data sets

(Chapter 5).

/data analysis

/data

Data sets and additional objects

example1.rdata /data analysis

/data

Data for the example 1 (Chapter 5)

data01sas.csv /data analysis

/data

Data for the example 2 (Chapter 5)
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