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Abstract

With the increase of availability of text corpora on the internet and specif-
ically bilingual text corpora, the objective of this thesis is to develop an
extension to the movMF model by Banerjee et al. (2005). This model was
implemented using two algorithms, the EM algorithm and an annealing vari-
ant called the DAEM algorithm, which often yielded better results.

With the aim of analyzing the corpus of abstracts of the Austrian Journal
of Statistics (AJS), the automated retrieval, extracting and processing the
abstracts from the journal website was developed and explained. Also simu-
lation studies were conducted that showed that the DAEM algorithm usually
outperforms the EM algorithm except for simple cases where both algorithms
showed similar performance. Further they showed that problems with the
same number of observations and amount of dimensions as the AJS corpus
were generally very difficult for both algorithms. Simulation also showed that
the model estimates deteriorate if less than half the documents are available
in both languages.

For the analysis of the AJS corpus two different schemes to reduce the
dimensions were employed as well as a reweighting of the data-sets. However
in neither case the models produced a descriptive result, in contrast to the
equivalent unilingual model.



Chapter 1

Introduction

Document clustering describes the process of grouping a set of documents,
commonly referred to as a text corpus, into clusters such that similar docu-
ments are assigned to the same cluster and dissimilar documents are assigned
to different clusters. One type of models addressing this task are “bag of
words” models, where each document is described by the number of occur-
rences of each word alone while disregarding the order in which they occured.
A notable example is the spherical k-means algorithm (Dhillon and Modha,
2001). In this model documents are encoded as Lo-normalized vectors of
their term-frequencies and thus each document is represented as a point on
the d-dimensional unit hypersphere, where d is the number of different terms
in a corpus. Term frequencies being positive in nature, these documents then
lie in the upper orthant of R?. The spherical k-means algorithm is then a,
variation of the “euclidean” k-means algorithm (Duda and Hart, 1973) using
the cosine similarity as similarity measure.

Another general approach to clustering are finite mixture models where
each observation is said to be generated from any of the mixture components.
Banerjee et al. (2005) propose a mixture model where each component is said
to follow a von Mises-Fisher (vMF) distribution. This distribution is often
parameterized by a mean direction p and a concentration parameter k, the
latter corresponding to the inverse of the variance. This mixture model
(movMF) is related to spherical k-means in such a way that if x is assumed
to approach infinity in each component, the movMF model can be shown to
maximise the cosine similarity of each observation to a cluster representative
(Banerjee et al., 2005, section 5.1) and thus being in essence equivalent to
the spherical k-means algorithm (for x;, — 00).

Both the spherical k-means algorithm and the movMF model assume
that the documents in a corpus stem from the same language. Corpora
containing documents in different translations are not uncommon however.



Bilingual corpora considered in the following consist of documents in two
different languages and are parallel at the document-level, meaning that one
pair of documents in different languages correspond to one another. Ex-
amples for such corpora could be constructed from the online encyclopedia
Wikipedia, where articles are often translated into different languages. Other
bilingual corpora can be constructed from the proceedings of the European
Parliament, which are published on the Internet (Koehn, 2005). The OPUS
project (Tiedemann, 2012) lists more examples of parallel corpora includ-
ing the website and documentation of the European Central Bank and the
documentation of the PHP programming language (Tiedemann, 2009).

The aim of this thesis is to develop an extension of the movMF model
called the bilingual mixture of von Mises-Fisher [distributions] model (bi-
movMF) to accomodate bilingual text corpora. Chapter 2 gives a brief intro-
duction to von Mises-Fisher distributions and mixtures thereof as described
by Banerjee et al. (2005). Chapter 3 goes on to describe the bilingual mix-
ture model detailing parameter estimation and the estimation algorithms as
well as some implementation details. As an application of this model chap-
ter 6 examines the corpus of abstracts of the Austrian Journal of Statistics
(AJS) including a description of all data acquisition and pre-processing steps
involved for better reproducibility. Chapter 5 then shows several simulation
studies trying to experimentally derive properties of the bimovMF model
where artificial data sets of similar size and dimensions are used as in the ap-
plication data set. Chapter 7 then contains concluding remarks and pointers
for further research.



Chapter 2

Preliminaries

2.1 von Mises—Fisher distribution (vMF)

A d-dimensional random unit vector z is said to follow a von Mises-Fisher
(vMF) distribution if its density can be written as (Dhillon and Sra, 2003):

(@) = ca(r) exp(rp’ ) (2.1)
with ||z|]| = 1, ||p|| = 1, & > 0 and the normalizing constant c4(x) being
od/2-1

calk) = (2m)42 11 () (22)

with Jg/2-1(-) being the modified Bessel function of the first kind of order
d/2 — 1.

Any obversation x is a vector of fixed length (||z|| = 1), so any two random
vectors from a vMF distribution only differ in their directions. As such the
vMF distribution is commonly referred to as a directional distribution.

The parameter p denotes the mean direction, while x is called the con-
centration parameter. The latter is roughly equivalent to the inverse of the
variance of a normal distribution. The vMF distribution can even be moti-
vated by deriving the conditional distribution of a normal distribution given
all points lie on the unit hypersphere: let

2 N(p,&71),  with [|p]] =1 (2.3)
where [, denotes the identity matrix, then

2l = 1~ WMF (s, ) (2.4)



2.2 Mixtures of vIMF distributions

For the purpose of clustering text documents Banerjee et al. (2005) propose
a mixture of vMF distributions. Generally, a mixture model has the form

.CE|@ Zahfh .T’Qh (25)

with © = {ay, ..., b4,...,0;} being the parameter vector. «y, are a priori
weights for each component and f,(x|6,,) is the density of the h-th component
with corresponding parameters 0, = (up, k). An observation from such a
mixture is usually generated by first drawing from a multinomial distribution
with probabilities (a, ..., ay), thus determining class membership. The final
observation is then drawn from the distribution of this component.

The likelihood of a mixture model is, in general, rather difficult to opti-
mize unless the true class assignments of each observation is known. Banerjee
et al. (2005) use the Expectation Maximization (EM) algorithm (Dempster
et al., 1977) to circumvent this problem. The EM algorithm iteratively im-
proves the current likelihood estimate and can be shown to converge to a
stationary fixed point if the likelihood is bounded (Dempster et al., 1977,
Theorem 2). Each iteration consists of two steps called E-step and M-step re-
spectively. During the E-step the expected log-likelihood is computed which
is then maximised at the M-step with respect to the parameters © (see also
Fraley and Raftery (2000, p. 10)). These two steps are repeated until a con-
vergence criterion is met, such as that the absolute log-likelihood difference
of two succeeding iterations falls below a pre-defined threshold.

Let z = (71, ...,2,) € R™?be the observed data with n observations and
let z = (z1,...,2,) € {1,...,k}" be a hidden random variable determining
class membership, such that observation ¢ is drawn from f.,(-|0.,), assuming
a total of k classes. Then (z,2) € R™ @D form the complete data and
assuming z is known the complete data log-likelihood is written as

In P(z,2|0) = Zln a, [ (x4]0,,)) (2.6)

Computing the expected value of (2.6) mostly entails estimating the condi-
tional distribution of the class labels given the observed data and current
parameter estimates, which Banerjee et al. (2005) derive as follows:

o fu(:]0n)

h i7@ -
p( |:c ) Eleazfz(m@l)

(2.7)
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Maximizing the expected value of (2.6) under the constraints ]y, = 1 and
K, > 0 Banerjee et al. (2005) then determine the following update equations:

1 n
o = EZp(Mxi,@) (2.8)
=1
Th = inp(h‘xia@> (2.9)
=1
. Th
— 2.10
= (2.10)
Id/Q('%h) . Hth (211)

]d/Qfl(/%h) - Z?zl p(h|z;, ©)

Note also that the estimates for x; can only be expressed as fraction of two
Bessel-functions and in practice the value of x; will have to be determined
by a numerically suitable method.



Chapter 3
Model

3.1 Specification

In the following an adaptation of the movMF model of Banerjee et al. (2005)
described in section 2.2 is presented in order to model mixtures on bilingual
text corpora. Here, a bilingual corpus is considered as a set of documents in
two languages. For a subset of these documents the respective translation is
contained in the corpus as well.

Let * = (21,...,2,) € R™% and y = (y1,...,yn) € R™% be two
row-normalised (||x;|| = ||y;|| = 1 for all i) document-term-matrices, each
containing documents of one language. Note that row x; and y; correspond
to the same document in different languages. For documents which are only
available in one language x; or y; is assumed to be (0,...,0). Then let
cz = (Cz1y. -y Con) € {0,1}" and ¢, = (¢y1,-..,¢yn) € {0,1}" be indicators
whether document ¢ is available in language x or y respectively. For document
1 the mixture density with &£ components is written as

k
H (@i, 5i©) = > an- ful@il0n)™= - falyilton)™ (3.1)
h=1

with fj,(:|-) being the density of the von Mises-Fisher distribution, 6, =
(Hzh, Keon) and ¥y = (fiyn, kyn) the respective parameters in component h and
O = (ag,...,ak,01,...,0k,101,... 1) being the vector of all parameters.
When there are documents of both languages available equation (3.1) can
also be viewed as a mixture density where each component follows the joint
distribution of two vMF distributions®.

IThis is equivalent to the “combined approach” in (Andrews and Currim, 2003).



3.2 Estimation

Let z = (z1,...,2,) € {1,...,k}" be the hidden random variable that deter-
mines the class membership of observation ¢. Let further z; be the corre-
sponding indicator variable:

Fih = { 0 otherwise (3:2)

Assuming z is known, the complete data log likelihood of this model is written
as

In P(z,y,2|0) = Zln e Fa@il 0. L (i, ) (3.3)

and its expectation over p is

k

E,[In P(z,y|O)] ZZ [ Inay, + ey In fr(2;]608) +Cyilnfh(yi|1/1h))

i=1 h=1
p(h|xi,yi,@)}
(3.4)
The update equations for the EM algorithm are obtained analogously to
(2.7) and (2.8)-(2.11) in much the same way as outlined in Banerjee et al.
(2005, A.2). First off, for the posterior class probability the joint density is
substituted:

ap - fu(@il0n) - fulyalon)
S0 ar fo(@il0o)eet - fowifihe)e

From (3.3) it is apparent that «, 6 and ¢ can be optimized independently
from one another and one subsequently obtains (see appendix ?7)

p(hlzi,yi, ©) = (3.5)

1 n
= = h|x;, y;, © 3.6
an nzp( |z, yi, ©) (3.6)
ren = > coi- @i - p(hlri,yi, ©) (3.7)

=1

~ T'zh
= 3.8
Hah Hrth ( )
Lajp(Ran) || 72n]| (3.9)

Id/2—1(’%xh) Z?:l Czi * p(h]7s, i, ©)



Parameter estimates for ¢ are analog to the 6 estimators above but are
omitted for brevity. These estimates are the same as for the unilingual case
except that the posterior class probability depends on the joint density over
both data sets (where available). Also another addition to the estimators
are the indicators c,; and ¢,; so that the estimates are only influenced where
there was data observed.

Having all the parts in place, algorithm 1 on page 10 shows the EM al-
gorithm derived from the softmax algorithm in (Banerjee et al., 2005). The
document-term-matrices x and y are considered the input to the algorithm as
well as the indicators ¢, and ¢,. In step 2 initial values for the parameter es-
timates are chosen: firstly, let P be the matrix of posterior class probabilities
for each component h and each observation ¢

p(1|5131,y1,@) p(k"xlayla@)
pP= (p(h\xi,yi,@)>ih = : : . (3.10)
, p(l‘xnaym@) p<k|xnvyn7®)

Since P can be estimated via (6,1, «) and vice-versa, in practice it is sufficient
to initialise the algorithm with either an initial P matrix or a parameter
triple (0,1, a). The algorithm then alternates between the E and the M-
step: first the conditional expectation E,[In P(x,y|©)] is computed using the
initial parameter values (step 3). This expectation is then maximised with
respect to the parameters (0,1, «) (step 4) to form new current parameter
estimates. Those are in turn used to re-compute the conditional expectation
in the next iteration and so on. The algorithm is then considered converged
if the likelihood improvement between two consecutive iterations falls under
a pre-defined threshold.

As noted earlier the EM algorithm converges towards a local maximum or
stationary fixed-point if the likelihood is bounded, meaning that the estima-
tion usually depends on the choice of the initial parameter values. In some
cases, such as some outlined in section 5, the estimates rely heavily on the
initialisation step and are often of poor quality. To alleviate this problem,
a modification to the EM algorithm (Ueda and Nakano, 1998) is shown in
algorithm 2: the Deterministic Annealing EM (DAEM) algorithm further in-
troduces parameters 5 € (0, 1) and 6. Instead of computing and maximising
the conditional expectation E,[In P(x,y|©)] an objective function depending
on [ is computed and maximised:

n k
Uﬁ(ﬂf, ?J|@) - Z Z [(hl ap + €y In fh(l"iwh) + Cyi In fh(inh))
i=1 h=1 (3.11)
_ p(hlwiyi,©)° ]
i1 P(Uzi,yi,0)P
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which is mostly the same as E,[ln P(z,y|©)] with the exception that the
term p(hl|x;,y;, ©) is raised to the power of 5 and divided by a normalizing
term. [ can be seen here as a smoothing parameter applied to Uz(z,y|O)
while 0 represents a constant proportional to the rate of change of 5. The
concrete choice of 3, 64 and a mapping (f;,00) — Biy1 is somewhat arbi-
trary; Sy should be small enough so that only one global maximum is visible.
According to Ueda and Nakano (1998) B of 0.1 is usually good enough?.
They also suggest a multiplicative increase of 3 per iteration, thus the value
of B in the t + 1-th iteration is computed as B;;1 = Bo(65)".

The DAEM algorithm can informally be motivated as follows: at first
a small value of 3 is chosen resulting in a high degree of smoothing of the
objective function. Being highly smoothed the local maxima would almost
disappear making the parameter estimates move close to the global maxi-
mum. Then at each iteration step one reduces the smoothing (increase [3) by
a small amount and determines new parameter estimates in order to refine
the estimates until finally the parameters are estimated using the original
objective function.

2For the datasets considered here 3y = 0.01 seemed to produce better results.



Algorithm 1 (EM).
1. Input data matrix (z,y) and indicators (¢, ¢,)
2. Initialize Choose initial P or (6,1, «)

3. E-step Compute the conditional expectation E,[ln P(z,y|©)] using
(3.5)

4. M-step maximise E,[In P(z,y|O)]:
@ = (67 ¢7 Oé) —arg I;lj}iXEp[hl P(IE, y|@>]
using (3.6)—(3.9).

5. Repeat steps 3 and 4 until convergence

Algorithm 2 (DAEM).
1. Input data matrix (z,y) and indicators (¢, ¢,)
2. Initialize Choose initial P or (6,1, ) and initial 5y, 65
3. E-step Compute Us(z,y|O) using (3.11)
4. M-step Maximise Ug(x,y|O):

(6, .0) < arg maxUs(s, y1©)

using (3.6)-(3.9).
5. Increase

6. Repeat steps 3 and 5 while § < 1

10



Chapter 4

Implementation

4.1 Kk estimation

Recall that the ML-estimator for k., in the bilingual model is written as
(equation 3.9)

Lops(far) [
Id/2—1(f%mh) 2?:1 Czi * p(h]7s, yi, ©)

A small user-supplied correction factor v > 0 was added to avoid numerical
overflows (Hornik and Griin, 2012):

[d/2(’%fl3h) — ||rl‘h|| (4 1)

Lijo—1(Ren) v+ >0 Cai - D(h|Ti, yi, ©)

Throughout this thesis a value of ¥ = 0.01 was used. Instead, an absolute
upper bound as in Banerjee et al. (2005) could have been used. Defining
the left-hand side of (4.1) as A4(k) and the right-hand side as 7, solving for
Ken can be written as a one dimensional root finding problem which is not
specific to this particular model:

Ad(li) =T (42)

Since A4(k) is the fraction of two bessel functions, an expression for  can not
be found in closed form and numeric methods have to be employed. Banerjee
et al. (2005) present the following estimator, derived by the continued frac-
tion representation of A4(x) and with an added correction term “determined
empirically”:

IFor brevity kg is instead written as »

11



rd — 7

1—72
Hornik and Griin (2012) show that x can be estimated using standard root
finding algorithms, for example uniroot in R, given that good starting values
are supplied. They further show that the approxmiation used by Banerjee
et al. (2005) has the same maximum estimation error but is biased. The
default estimator in Hornik and Griin (2012), which is also used in this

thesis’ implementation, however uses the Newton algorithm to find the root
of Ad(li) —T.

R~

(4.3)

4.2 Empty components

A common problem in mixture models is that single components might be-
come empty. This could happen if the estimated prior class probability ay,
is estimated to be very small for one component. This can be problematic
for variance estimates for example. For very few observations in this compo-
nent the variance would be estimated to be extremely high, which can cause
numeric difficulties later on. More so, if only a single observation is assigned
to a cluster, the variance would often be estimated as infinite. To avoid this,
such components are often dropped when they fall below a minimal allowed
value for ay,. The choice of this lower threshold is often arbitrary and while
this was also implemented during this thesis, there is an alternative. When
a component gets empty and with no assigned observations, then k; is esti-
mated as 0, and therefore the distribution in this component would be equal
to the uniform distribution on the unit hypersphere. This is facilitated by
the fact that the x estimator in Hornik and Griin (2012) allows the precision
parameter to become 0.

12



Chapter 5

Simulation

This chapter shows the result of a number of simulation studies performed.
These simulations were run with similar number of observations and dimen-
sionality as the AJS data set from section 6. Generally, in each simulation run
a dataset (z,y) was drawn from the bilingual mixture model with n = 220
observations and d, = 2000 and d,, = 3000 dimensions. Per simulation there
were 100 data sets simulated, with 5 components each. Here, the concentra-
tion parameters kj were kept equal for all components, while the estimation
algorithm however did not assume these parameters to be the same. The
mean direction p, was drawn from a uniform distribution and then nor-
malised such that ||us|| = 1 holds. In simulations where two or more models
were to be compared, the models were estimated with the same initial values;
as initialization the matrix of posterior probabilities P (3.10) was randomly
drawn from a uniform distribution and rescaled for all row-sums to be equal
to 1 (Z?Zl P =1, Vi). Also, since the model estimates depend on the
starting values, in each simulation run, every model was estimated with 25
different initial P matrices, for both the EM and DAEM algorithms. From
these, the model exhibiting the highest log-likelihood value was chosen. The
DAEM algorithm still depends on the starting values and can benefit from
choosing different initializations, however the effect is less pronounced as with
the EM algorithm. The EM algorithm was considered converged, when the
absolute difference of the log-likelihood in subsequent iterations fell below
107%; a maximum number of iterations was not set. The DAEM algorithm
was computed with 5y = 0.01 and 8 = 1.1, the convergence criterion for this
algorithm is > 1 and hence all DAEM estimates went through 49 iterations
until this criterion is met.

In some instances bilingual and unilingual models were compared. The
unilingual model can be regarded as a special case of the bilingual model
with ¢, = 0. This way, unilingual estimates using the DAEM algorithm were

13



obtained.

5.1 Excursus: Mutual Information

As a quality criterion determining how well a model performed in a simulation
given that the true cluster memberships are known the normalized mutual
information (NMI) is used. This quantity however deserves a more detailed
explanation. As a prerequisite let X be a discrete! random variable which
assumes values from a set (alphabet) Ax = {x1,..., 74, } with probabilities
Px ={P(X =z)|r € Ax}.

Definition 1 (Shannon information content of x).
The Shannon information content of a realisation x of a random variable X
is defined as (MacKay, 2005, eq. 2.34):

hw) = log, (P(X;ﬂ))

Definition 2 (Entropy).
Let X be a (discrete) random variable. The entropy of X is the expected
Shannon information content (MacKay, 2005, eq. 2.35):

H(X) = E[h(z)] = >, P(X =x)ln (P(X;:x))

r€EAx
with 0 X In1/0 = 0 for P(X = x) = 0 since limg_,o+ #1n(1/6) = 0.

The entropy is non-negative and H(X) < log(|Ax]|).

The mutual information (MI) can be used to measure the agreement
between estimated and true cluster labels and is defined as follows (Ghosh
and Banerjee, 2006):

Definition 3 (Mutual Information).
Let X and Y be two discrete random variables; the mutual information is
then defined by (MacKay, 2005, eq. 8.11)

P(X,Y)

IXy)=F {m

] — Dy, (X,YHXY)

In Information Theory one is usually concerned with the encoding of a message from
an information source into a digital message. The latter is encoded as a stream of consec-
utive bits, which are either 0 or 1. For such a digital message the information content is
computed, hence the information content is defined for discrete random variables.

14



The mutual information is the expectation of the fraction of the joint distribu-
tion by the joint distribution under the assumption of independence. Or more
intuitively the mutual information can be written as the Kullback-Leibler
divergence between the joint distribution and the product of the marginal
distributions. This divergence assumes larger values when these two distri-
butions are very dissimilar, that is, when X and Y depend on one another.
While the Kullback-Leibler divergence is not generally symmetric, in this
case the symmetry holds for the mutual information: I(X;Y) = I(Y;X)
(MacKay, 2005, exercise 8.4). Moreover the mutual information satisfies
Gibbs’ inequality, that is 1(X;Y") > 0 with equality iff X and Y are indepen-
dent (MacKay, 2005, eq. 2.46).

The normalized mutual information is then defined as the mutual information
divided by its maximum value in order to lie in the interval [0; 1] (Ghosh and
Banerjee, 2006):

Definition 4 (Normalized Mutual Information).

I(X;Y)
H(X)H(Y)
with H(X) and H(Y') being the entropy of X and Y respectively.

In subsequent sections X and Y correspond to the distributions of the
true and estimated cluster labels respectively. The NMI will usually be com-
puted from the empirical distributions, for example see the contingency ta-
bles in table 5.1 The two contingency tables show the result of a fictional

NMI(X;Y) =

X/Y| 1 2 X/Y| 1 2
18 1624 111 23]24
@ 916 1026 B 9 o1 9|2
24 26 | 50 25 25 | 50

Table 5.1: Example contingency tables

2-dimensional classification problem. In table (a) many observations were
incorrectly classified while in table (b) most of othe observations are cor-
rectly classified. Also the latter shows an example of label switching where
most observations from the first class are assigned to the second. The NMI
is invariant towards changes in cluster labels which is a useful property for
assessing the quality of clusterings in a mixture model.

The NMI values are computed by first computing the expectation of the
mutual information using

(x;v)=Y Y P(X=2Y=y)h (;;(X_Ix;c]f(/;_y;)) (5.1)

xEAX yG.Ay

15



The joint and marginal density are derived from the contingency table (by
dividing by the total number of observations: here 50). For example (a)
equation 5.1 expands to

8 16 16 10

~ 0.040

50 50

For the normalizing constant the entropies of the margins are to be computed:

Y P(X=z)ln (ﬁ)

ziAX 24 26 <26
= ZIn(1/%)+21n(1/2) ~ 0.692
H(Xp) =~ 0.692

H(X(q))

Thus the NMI of example (a) evaluates to approximately 0.058 and analo-
gously the NMI of example (b) to about 0.678.

16



5.2 Comparison by concentration parameter

In the following the effect of the concentration parameter is investigated. The
data sets were simulated with the same value of kj in each component. With
increasing kj, (decreasing variance) one would expect the classification prob-
lem to become easier since the data points would be better separated. For
each simulated data set the NMI was computed given the respective model
estimates and the true cluster assignments. Figure 5.1 shows the resulting
median NMI values. The DAEM algorithm (black) achieved a fairly small
NMI value of around 0.35 for high variance but then quickly increases to
obtain near perfect estimates at x, > 800. The unilingual DAEM estimates
(black dashed) show the same tendency but increase in quality a bit slower
than the bilingual model. The EM algorithm (red) results in poor classifi-
cations at first and slowly improves with smaller variance and also obtains
near-perfect estimates at very small variances (k, > 1200). The unilingual
EM estimates perform somewhat worse and also seem to improve more slowly
than the bilingual variant. As comparison the EM algorithm initialised with
true parameters is shown in green. The model seems to be able to properly
separate the data for good parameter estimates. Arriving at good estimates
however, seems difficult.

1.0

—— bilingual DAEM
————— unilingual DAEM
— bilingual EM

———— unilingual EM

—— bilingual EM (true)
rrrrr unilingual EM (true)

0.8
|

NMI

0.4

N X
<} X/>< «
w— 2 .. x
XTIk X
. X-fggi/%r"'x
S T T T T T
400 600 800 1000 1200

Figure 5.1: Medians of simulated NMI values for different values of x compar-
ing bi- and unilingual models estimated using the DAEM and EM algorithms
and EM initialised with true parameters.
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5.3 Incomplete datasets

Following the effect of having an incomplete y dataset is investigated. The
simulated data sets are of size x € R"*2%0 and y € R™>*30%° meaning that in
the y data set (corresponding to the german corpus from the AJS example)
only n, observations were made. k; was set to 600 for all components, n is
fixed at 220 and the ratio n,/n is then varied in simulations and the result
shown in figure 5.2. Ratio n,/n = 0 would be equivalent to the unilingual
movMF model on the = data set and n,/n = 1 equivalent to the full bilingual
model. For each of the 100 data sets models were computed using different
ratios n,/n € {0,0.1,0.2,...,0.9,1}. On the left hand side of figure 5.2 box-
plots of the NMI values obtained using the DAEM algorithm are displayed.
The bilingual model (ratio = 1) achieves the best classification. For small
ratios the NMI values tend to decline compared to the unilingual model while
for ratios > 0.5 the “partial” bilingual model achieves better results than the
unilingual model. It would appear that having only a small number of extra
observations diverts the model from performing a good classification. On the
other hand, a ratio of 0.1 would mean that y would be a dataset of around 22
observations and 3000 dimensions, which would be very surprising if a good
estimate could be performed on such a data set.

Figure 5.2 on the right side shows boxplots of NMI values obtained by the
EM algorithm initialised with true parameters, resulting in very high NMI
values. The EM algorithm itself performed badly for all ratios (not shown).
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5.4 Comparison by dataset size

Following the effect of the dataset size on the classification accuracy is inves-
tigated. Simulated datasets were of size x € R"*?%0 and y € R™390 with
kp, = 500 for all five components. This simulation was intentionally designed
to be harder so the effect of increasing sample size would be visible. Figure
5.3 shows the result of this simulation. On the left hand side boxplots of the
NMI values for the DAEM algorithim are displayed. For small datasets the
NMI values tend to be very small (< 0.2) showing that the classifications
were of little quality. At 500 observations the quality of the estimates start
to increase while achieving almost perfect results at n > 800. The right hand
side shows the medians of the NMI values for the different algorithms. For
the DAEM algorithm the same trend is visible as in the boxplot, the EM
algorithm seems to perform badly for any n in the range of 100-1000. The
EM algorithm initialised with true parameters always achieves near-perfect
classification, hence the model itself can differentiate between classes very
well but it appears to be very hard to find good parameter estimates. These
models also exhibited a considerably higher log-likelihood value than the
DAEM models with random initializations.
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Figure 5.3: Boxplots for DAEM estimates (left) and Median NMI (right) of
simulations with varying dataset sizes.
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5.5 Comparison by number of dimensions

Here, datasets were simulated with varying dimensions, i.e. z,y € R™*¢ with
d € {500, 1000, ...,4000}. Figure 5.4 shows the resulting median NMI values
per number of dimensions d and per algorithm. The DAEM algorithm (black)
seems to achieve near-perfect classifications for d up to 1500; for larger di-
mensions the clustering quality seems to slowly decrease. The EM algorithm
(red) shows near-perfect estimates as well for d < 1000 and then steeply de-
clines towards very poor estimates. The EM algorithm initialised with true
parameters (green) always achieves near-perfect accuracy indicating that the
clusters are separable and can be correctly classfied by the bilingual movMF
model. For larger dimensions it seems to be increasingly difficult however
to obtain parameter estimates near the global maximum. These models also
exhibited a considerably higher log-likelihood value than the DAEM models
with random initializations.
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Figure 5.4: Median NMI values plotted against the number of dimensions for
DAEM and EM algorithms and EM initialised with true parameters.
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Chapter 6

Application

As an application to the bilingual movMF model the corpus of abstracts
of the Austrian Journal of Statistics (AJS) is analyzed in this section. The
Austrian Journal of Statistics is published by the Austrian Statistical Society.
It is currently edited by Herwig Friedl of the TU Graz. The editions are
usually published online free of charge or may be purchased in printed form.
The remarkable property of this journal however, which gave rise to the
following analyses, is the fact that for many articles the abstract is published
both in english and in a german translation.

This section will also describe the steps involved in pre-processing the text
documents. Many articles contain a german abstract alongside an english
one. Assuming the german abstracts are translations of the english abstract
one can treat the set of english and german abstracts as a parallel corpus. In
some cases only an english abstract is present. The bilingual movMF model
is then used to model all uni- and bilingual abstracts simultaneously.

The articles published via the AJS are accessible as PDF! files from the
official website http://www.stat.tugraz.at/AJS. This task can easily be
accomplished by a website download utility, such as HTTrack? or GNU wget®.
The AJS website also includes editorials, obituaries and Festschriften which
are however excluded from the following analysis and only “regular” articles
will be considered.

'Portable Document Format
2HTTrack Website Copier, http://www.httrack.com
3http://www.gnu.org/software/wget/
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6.1 Pre-processing

The first step in pre-processing is to convert the PDF files into the HTML
format, which is easier to parse than PDF. Most programming languages
contain libraries for parsing HTML, such as the XML library in R (Lang,
2012). In this case, the text from the PDF files was extracted using Apache
PDFBox*. PDFBox outputs the result in an HTML format, for which the
structure is most conveniently explained using an example. Listing 6.1 shows
the output of PDFBox for one article mildly adjusted for readability and
some uninteresting parts left out. Firstly the whole document is enclosed in
<html> and <body> tags. Each page of the article is contained in a <div>
tag, which then contains a number of paragraphs (<p>). In this example the
first paragraph contains a header line denoting the name of the journal, the
volume and page number (omitted) (line 4). The following paragraphs then
contain the title and the authors of this article (lines 5-7). The numbers
behind the authors’ names used to be footnotes and are displayed without
formatting now. The next paragraph in lines 8-16 contains information about
the institutions of the authors as well as the abstracts and the keywords. One
thing visible already is that the umlaut i was encoded as &#776; and the
beginnings of the abstracts and key words are indicated by strings in the form
of “Abstract:”. Line 17 denotes the end of the first page; the second page
(lines 18-22) first contains a header line again (line 19) and then continues
with the normal text (lines 20-21).

Listing 6.1: PDFBox example output

<html>
<body>
<div>
<p>AUSTRIAN JOURNAL OF STATISTICS Volume [...]l</p>
<p>Domain-Based Benchmark Experiments [...]</p>
<p>Manuel J. A. Eugsterl, Torsten Hothornil,
and Friedrich Leisch2</p>
<p>1Institut fu&#776;r Statistik, LMU Mu&#776;nchen,
Germany 2Institut fu&#776;r Angewandte Statistik
und EDV, BOKU Wien, Austria
Abstract: Benchmark experiments are the method of
choice to compare [...]
Zusammenfassung: Benchmark-Experimente sind die
Methodik der Wahl [...]
Keywords: Benchmark Experiment [...].
</p>

“http://pdfbox.apache.org
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</div>

<div>

<p>6 Austrian Jourmnal of Statistics [...]</p>
<p>1 Introduction</p>

<p>In statistical learning [...]</p>

</div>

</body>

</html>

As a precursor to subsequent processing steps certain characters were either
omitted or replaced in order to facilitate electronic processing:

e Umlaute: German umlaute can be represented in three different ways
in the obtained HTML output. Many articles were apparently created
by I¥TEX, where umlaute are often written as the composite of the
letter and a pair of dots above it, e.g. & is written as "a. This structure
is retained in the PDF file where a pair of dots is placed above the
character by use of absolute or relative positioning. The other ways
to encode umlaute are either special glyphs contained in the PDF file
saying for example “this character is an a umlaut” or directly encoding
the umlaut as unicode character®. Here the last method is chosen so
that there is only one way in which umlaute can be represented.

e Punctuation is removed since the model described earlier in section
3 models word frequencies only and punctuation adds no additional
information in this regard.

e Ligatures: certain pairs of characters are often joined as one glyph,
most notably, ff and fl are written as ff and fl. These ligatures are
removed so that the resulting word consists only of regular letters.

e Hyphens: some words are divided at the line-ending and separated by
hyphens. In such instances the hyphens were removed and the word
parts joined back together.

e Numbers are removed as well.

The next important step is to identify which parts of the article consi-
tute the abstracts in either language. The PDF format contains little to no
information about the logical structure of a document but mostly consists
of layout primitives used to position text on paper. Common problems are

5Unicode also allows encoding umlaute as composite character, this case was however
not encountered in this corpus.
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that abstracts may be interspersed with header lines or footnotes, which are
not considered to be part of the abstract and are sought to be omitted. As
such a set of heuristics were developed by trial-and-error:

e Abstracts are usually contained in the first two pages of an article (the
HTML output of PDFBox encloses each page in a <div> tag).

e The first paragraph in the output is usually a header line and is thus
omitted.

e Footnotes start with a superscript digit. In the HT'ML output however
footnotes begin with a digit and thus the last paragraphs of a page
beginning with digits are omitted.

e Abstracts start with the string “Abstract:” or “Zusammenfassung:”.
The end of an abstract is denoted by either the beginning of the other
language’s abstract or by the string “Keywords:” or “Schliisselworter:”.
Should the article contain no keywords, another criterion is needed to
determine how many paragraphs should be counted towards the ab-
stracts. Assuming that the first text after the abstracts is the first sec-
tion headline which is usually written as “1 Section Title”, the abstract
is considered to range up until this headline (footnotes and headers are
already removed at this point).

Next, all words were stemmed using Porter’s english or german stemmer
so that the same words in different flections are reduced to a common word
stem (usually not equal to the grammatical word stem). For example the ger-
man occurences “Parametern”, “Parameters” and “Parameter” are reduced
to “paramet”.

From the set of stemmed words two document-term-matrices for either
language are constructed containing the frequencies of stemmed words on a
per-document basis. Let there be n articles, d, english stemmed words and
d, german stemmed words. Let further hg;; and h,;;» be the absolute word
frequencies of term j (or j’ respectively) in document i. The document-term-
matrices are then defined as

h;tll s ha;ld,c hyll s hyldy
DTM, = o : , DTM, := S : (6.1)

hemt - hana, hymt - hyna,
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6.2 Excursus: tf-idf

Following a weighting scheme is used which is called by the shorthand of
tf-idf and was previously used in other text mining applications like Blei and
Lafferty (2009) and Griin and Hornik (2011). tf-idf stems originally from the
field of information retrieval (IR)®. A common problem in IR is to retrieve
a (small) set of relevant documents from a large collection” of documents by
the use of a search query. Consider an internet search engine as an example:
a user inputs a set of keywords (the search query) expecting to obtain a list of
relevant web sites. The search engine has a collection of text documents (i.e.
web sites) from which an index was constructed counting for each document
the number of occurrences of each term.

Definition 5 (term frequency). Let ¢ be a term and d refer to a document
in a collection, then
tf; 4

is the number of occurrences of term ¢ in document d and is called the term
frequency.

Naively one might try to answer the query above by retrieving documents
which exhibit a high term frequency for the search terms. This would not
account however for terms that occur very frequently but have little discrim-
inative power. Most notably stop words are examples of such terms. Also,
for a collection of documents about a specific domain there might be very
frequent domain-specific words (e.g. “model” for a corpus about statistics).
Therefore, in the tf-idf weighting scheme words that are contained in many
documents are assigned a lower weight.

Definition 6 (inverse document frequency). Let ¢ be a term, then

N
ldft = lOgQ (E)
t

is the tnverse document frequency of that term in a collection, with N be-
ing the total number of documents in the collection and df; the number of
documents containing term t.

The tf-idf score is simply the product of both the term frequency and the
inverse document frequency (Manning et al., 2009) or the product of term
frequency and inverse document frequency with the term frequencies nor-
malised by document length (Feinerer et al., 2008). The latter definition is
used here.

6This section is largely based on Manning et al. (2009)
TA collection is a set of text documents and is used interchangably with “corpus” here.
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Definition 7 (tf-idf). For a term ¢ and a document d tf-idf is defined as

ﬁ ) tfia
df; ZteT tf a

with 7 being the set of all terms in the collection. The tf-idf score for a term
t is defined as the mean tf-idf; 4 score over the documents that contain ¢:

N >aen (tea/ Der thia)
df; df,

tf-idf; g = log, (

tf-idf; = log, (

Consider the term “model” from our application data set for an example. It
occurs 284 times in 95 documents. The data set consists of 220 documents
in total, hence the tf-idf score for model is computed as
. 4.7 220

tf—ldfmodel = 95 10g2 ( 95 ) =~ 0.059 (62)
Whilst being the term with the highest term frequency, the tf-idf score puts
it only into the 0.026 quantile, meaning only 60 of 2326 terms are ranked
lower than “model” according to tf-idf.

In text mining applications the tf-idf score can be used to remove terms
in order to reduce complexity. As Manning et al. (2009) put it, tf-idf weighs
terms lower that have little “discriminative power”. In clustering applica-
tions one would be most interested in keeping terms that discriminate well
between clusters, therefore terms with low tf-idf scores are prime candidates
for removal.

Document-term-matrices described in chapter 6 contain the term frequen-
cies (note that the super-script 7" is a transposed sign, since tf; 4 indexes by
terms first):

T
DTM = (tft,d)

teT, deD

By default, one would run the models on the term-frequencies. Another ap-
proach would be to rescale the document-term-matrix by tf-idf scores and use
this as data matrix, as was done in Hornik and Griin (2012). The document-
term-matrix would then read as follows

T

DTM = (tf—idfnd)

teT, deD'
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6.3 Descriptives

The dataset considered here consists of 220 abstracts taken from the arti-
cles published in the Austrian Journal of Statistics over a timespan of eight
years (2004-2012). From these articles, in 134 a german abstract could be
automatically extracted as well.

Table 6.1 shows the 10 most frequently used stemmed words for english
and german abstracts respectively.

word count word count
model 284 modell 111
estim 274 dat 79
data 183 statist 70
distribut 159 schatzer 63
statist 136 method 54
method 111 verteil 48
paper 110 verwendet 37
test 100 vorgeschlag 33
paramet 97 neu 31

sampl 97 schatzung 31

Table 6.1: Word frequencies
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6.3.1 Abstract lengths

Figure 6.1 shows the density of the length of abstracts. Unit of measurement
is the number of stemmed words per abstract. Note also, that stop-words
have been removed. The length of english and german abstracts seem to
be similar with the germans being a bit longer. Mean abstract length is 55
(english) and 58.1 (german) words. The shortest english abstract on record
amounted to 13 different terms while the shortest german abstract counts 17
terms. Not from a loss of words suffered the longest abstracts with 192 and
191 terms.

Density of length of abstracts

— Kernel density english
fffff Kernel density german

0.015
\

Density
0.010

0.005

0.000

0 50 100 150 200

Length in words

Figure 6.1: Kernel density estimates of the length of abstracts (in words) for
english (solid) and german (dashed) abstracts.
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6.3.2 Year of publication

Figure 6.2 shows the number of articles per year. With a total of 44 papers
the year 2006 counts the most articles. In 2006 the AJS featured a normal
issue as well as a double-issue containing proceedings of the third interna-
tional workshop on Perspectives on Modern Statistical Inference. In 2010 the
least amount (10) of papers were published, one of the three editions “only”
consisting of a Festschrift. On average the AJS publishes 24.4 papers per
year.
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Figure 6.2: Number of articles per year
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6.3.3 Articles per author

Figure 6.3 shows a barplot of how many authors published how many articles
in the AJS. The author data was extracted from the web pages and were as-
sembled assuming they were always spelt identically for multiple occurrences
of author names. One likely typo was corrected by hand.

A total of 355 distinct authors’ names were retrieved, of which the vast
majority (300) published exactly one article in the AJS. 44 authors published
two articles each, 5 authors wrote 3 or 4 papers respectively. Only one person
did publish a total of 6 papers through the AJS.

Number of authors
100 150 200 250 300
| | | | |

50

Number of articles

Figure 6.3: Number of articles per authors
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6.4 Bilingual clustering

In the following the results of applying the bilingual mixture model are dis-
cussed. A few different kinds of models were computed. As the simulations
in section 5.5 indicate it might be beneficial to reduce to complexity of the
clustering problem. In this case the complexity was reduced by removing
terms from the document-term-matrices. One approach is to remove terms
with very small tf-idf values. Alternatively one could simply remove terms
whose absolute term frequencies were either very small or very big. After
the removal of these terms by either method one could still choose to weight
the document-term-frequencies by tf-idf as outlined in section 6.2. Table 6.2
gives an overview of the models computed and the choices made as to the
selection criteria for terms and shows the resulting number of dimensions in
columns d, and d,. Models (a) and (b) only retained terms with tf-idf of at
least 0.12 which is approximately the median of all tf-idf values, thus keeping
about half the terms. Models (c¢) and (d) only selected terms that appeared
at least 3 times in the complete corpus and at most 100 times.

model selection weighting | d, dy
(a) tf-idf > 0.12 tf 1173 | 1096
(b) tf-idf > 0.12 tf-idf 1173 | 1096
(¢) |tf>3& tf <100 tf 902 | 714
(d) | tf>3& tf <100 tf-idf 902 | 714

Table 6.2: Overview of different types of models computed.

Firstly however one needs to choose the number of clusters k. A popular
approach with mixture models is to calculate models with different values
of k chosen from a predefined range, e.g. k € {1,...,30}, and then choose
the model which exhibits the lowest BIC value (Fraley and Raftery, 2000).
This seemed not feasible in this application however, because the number of
dimensions is much larger than the number of observations. The BIC penal-
izes extra parameters and for an extra component over 1000 extra parameters
have to be estimated, thus the BIC criterion did always favor the model with
exactly 1 component even on simulated data where the true number of com-
ponents was known to be larger than 1.

An alternative is to regard k as a hyper-parameter to be chosen by cross-
validation (Griin and Hornik, 2011). In 10-fold cross-validation the dataset
is divided into 10 parts, where in each cross-validation iteration a test data
set is chosen as one of those 10 parts and a training set is comprised of
the remaining 9 parts. Then one estimates the model on the training data
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and with the resulting parameter estimates a function assessing the model
fit is evaluated on the test data. A model with hyper-parameter k£ would
generalise well over the training data if the model also “fits well” to the test
data. How good a model describes the test data is in this case determined
by the perplexity (Newman et al., 2009) on one hand and on the other hand
by the median of the individual log-likelihood values for each observation in
the test data set.

Definition 8 (Perplexity). Let ¢(x,y|0,1, «) be the log-likelihood function
of a model evaluated for a data set (z,y) and parameters (6,1, «) then the
perplexity is defined as:

1
Perplexity := exp (—ﬁf(x,yw, 1), oz)>

The perplexity is a monotonous transformation of the log-likelihood. Then in
essence the perplexity assumes lower values when the log-likelihood is large.
Low values of the perplexity are considered “good”.

The results of the cross-validation for model (c) are shown in figure 6.4.
For each k € {1,...,30} there were 10 perplexity values and 10 median log-
likelihood values obtained. These values are plotted as one solid line for each
fold. One fold refers to one combination of training and test data sets. The
prediction on a test data set usually depends on the fold, that is, certain com-
binations of training and test data sets perform better than others, therefore
the perplexity and median log-likelihood values were centered around 0 to
correct for this “fold-effect” (the 0 is indicated by a dashed horizontal line).
The second row of graphics shows the same values in form of boxplots. A
LOESS curve was added to these plots to visualize the trend of the perplex-
ity and median log-likelihood values. For small values of k the perplexity
tends to decline and then starts to increase again for k£ > 10 thus indicating
that models with around 8-10 components perform the best. The median
log-likelihood values seem to mirror the trend of the perplexities, however
reaching the maximum for smaller values of k around 5 components. While
perplexities and median log-likelihoods do not seem to be in perfect agree-
ment in the following a model with £k = 9 components is described. The third
row of figure 6.4 shows AIC and BIC values for models with & components.
The AIC values reach their minimum at & = 7 while the BIC values only
tend to increase with increasing number of components.

Tables 6.3 and 6.4 list the (stemmed) terms with the highest rankings
for model (c¢) and 9 components. The weighting shown next to the words is
determined by summing over all row-normalised documents in the respective
clusters. From the tabulation of highest ranked word one would expect to see
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Figure 6.4: Perplexity, median log-likelihood and AIC/BIC for model (c)
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a clear division of certain topics among the clusters. So that for example one
might conclude that a certain cluster contains documents primarily concerned
with spatial statistics. This is not the case however. Even though a lot of
the terms were removed there are still terms ranked high such as “test”,
“samplfe]” and “stud[y]”, which occur in multiple clusters and thus do not
seem to discriminate well between clusters. Also the english and german
clusters should “match”, that is, from the highest ranking english and german
terms it should be discernible that the respective documents share the same
topics. Again, this does not seem to be the case.

Table 6.5 shows a few statistics for each component of the model under
consideration. Each component was roughly assigned the same number of
documents as seen from the estimated prior class probabilities &, and the
number of assigned docments to cluster n,. Only cluster 7 seems to deviate
from this and contains a lot fewer documents. Consequently cluster 7 exhibits
the lowest estimated variance (highest estimated concentration parameters)
in both english and german documents. Apart from that, most s values lie
in the range of 200-400 which is rather low.

The EM and DAEM algorithms are technically soft classification meth-
ods, from which the cluster assignment was determined by assigning the
cluster for each observation which exhibited the highest estimated posterior
class probability p(h|z,y,©). Then one should examine how ambiguous this
assignment was. In this case, the highest posterior probabilities per observa-
tion were very close to 1, in fact, the lowest such observation was estimated
to be 0.997. This means the observations were separable, which is not sur-
prising, given the high-dimensional nature of the parameter space.

Another point worth of investigation would be, if document assignment
to clusters depends on the availability of said documents in both languages.
A possible scenario would have been, that all documents only available in en-
glish would have been assigned to certain clusters while documents available
in both languages would have been assigned to another set of clusters.

The (contingency) table 6.6 shows for each cluster the amount of docu-
ments either available in only one language or in both languages. Intuitively
documents are distributed independent from language availability over clus-
ters, This suspicion is confirmed by the x? test for indepence, which yields a
p-value of 0.63.

As for the models (b) and (d) in tf-idf weighting, figures B.2 and B.4
in appendix B show that the models only deteriorate with higher number
of components, and are thus discarded since no reasonable choice on the
amount of clusters could be made. In other terms, these plots indicate that
there were no “good” clustering solutions found for those models. For model
(a) the perplexity and median log-likelihood values obtained from the cross-
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validation as shown in figure B.1 are not in agreement, the median log-
likelihood values are non-increasing and are thus not favoring any number
of components. The results for this model are not shown as well for being
equally undeclarative as in the other models.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

test (3.5) qualiti (2.1) paramet (2.3) develop (1.5) base (1.4)
studi (2.4) base (1.9) process (1.9) studi (1.5) sampl (1.3)
consid (2.2) sampl (1.6) base (1.6) test (1.2) random (1.1)
paramet (2.0) applic (1.5) robust (1.3) process (1.2) studi (1.0)
approach (2.0) paramet (1.5) random (1.2) result (1.1) bay (1.0)
base (1.9) test (1.4) observ (1.2) popul (1.1) wuse (1.0)
propos (1.8) wuse (1.3) consid (1.2) paramet (1.0) function (1.0)
function (1.8) result (1.1) function (1.1) wuse (0.9) provid (1.0)
procedur (1.8) assess (1.1) propos (1.1) analysi (0.9) design (1.0)
independ (1.7) studi (1.1) variabl (1.0) Dase (0.9) margin (1.0)
gleichzeit (1.8) charakterist (1.2) emh (1.0) gestalt (1.4) geschloss (1.0)
univariat (1.7) datenintegration (1.1) steu (0.8) anfang (1.2)  kerndichteschétz (1.0)
spezialfall (1.6) lernalgorithm  (0.9) model (0.7) hypothes (1.0) hauptséchlich ~ (1.0)
erzielt (1.1) shrinkag (0.9) approximativ (0.7) version (1.0) schachspiel (0.9)
null (1.0) abgleich (0.8) dispersion  (0.7) lernalgorithmus (0.9) interaktiv (0.9)
amtlich (1.0) excel (0.8) folgend (0.7) moran (0.9) konstrui (0.9)
selektiv (0.9) leicht (0.8) geograph (0.7) republ (0.9) =zahlung (0.8)
beeinfluss (0.9) bangladesh (0.8) schrittweis  (0.7) balakrishnan  (0.9) kumulativ (0.8)
inklusionswahrschein (0.8) geschloss (0.7) schwierig (0.7) erlaub (0.8) median (0.8)
modellbasier (0.8) reflektiert (0.7) shrinkag (0.7) dispersion (0.8) beeinfluss (0.7)

Table 6.3: Top words for model (c)
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or clusters 1-5
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Cluster 6 Cluster 7 Cluster 8 Cluster 9

sampl (2.2) sampl (1.1) propos (1.9) test (1.8)
propos  (1.7) regist (0.5) test (1.9) paramet (1.7)
time (1.4)  cell (0.5) function (1.1) studi (1.7)
develop (1.3) base (0.5) observ (1.1) sampl (1.5)
studi (1.3) test (0.5) studi (1.1)  measur (1.5)
random (1.2) popul (0.5) consid (1.1) probabl (1.4)
survey  (1.2) type (0.4) use (1.0) result (1.3)
result (1.1) studi (0.4) sampl (1.0) error (1.3)
popul (1.1) fuzzi (0.4) approach (1.0) mean (1.3)
function (1.1) minimum (0.4) process (1.0) class (1.2)
darstell  (1.3) weibull (0.9) entwickeln (1.2) design (1.5)
kind (1.0) einschitzung (0.8) jénner (1.2) aufbau (1.0)
likelihood (1.0)  entwickeln (0.4) fixiert (1.0) weist (1.0)
verdnder (0.9) erfass (0.4) erkenn (0.8) umfangreich (0.9)
zeil (0.9) erweiter (0.4) existenz (0.7) endlich (0.8)
loglinear (0.9) hazardfunktion (0.4) populationsmittel (0.7) caussinus  (0.8)
metadat (0.8) liegt (0.4) changepoint (0.7) variiert (0.8)
wien (0.8) zeitpunkt (0.4) gaussverteil (0.7) coxaal (0.8)
anpass  (0.7) fihrt (0.3) ausreifl (0.6) gewicht (0.7)
bleib (0.7) mafinahm (0.3) beding (0.6) doubl (0.7)

Table 6.4: Top words for model (c) for clusters 6-9



Cluster &, ny,  Rgh Ryh

0.16 36 254.6 135.1
0.14 31 372.3 1425
0.12 26 341.2 130.5
0.10 23 4122 333.2
0.10 21 681.5 122.2
0.11 25 466.5 121.5
0.03 6 1102.1 789.9
0.12 26 332.2 2382
0.12 26 478.7 336.3

© 00 1O Ui Wi

Table 6.5: Estimated prior class probabilities «ay,, number of documents as-
signed to each cluster n,, and estimated concentration parameters k,;, and
Kyp for each component in model (c).

Cluster only english english and german

1 14 22
2 13 18
3 12 14
4 11 12
) 7 14
6 ) 20
7 2 4
8 10 16
9 12 14

Table 6.6: Contingency table of documents assigned to clusters versus the
availability of german abstracts.
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6.5 Unilingual clustering

For a comparison with the bilingual model (c), a unilingual model with 9
components was estimated. This model was computed using the bilingual
framework and the DAEM algorithm by marking the german corpus as miss-
ing (¢, = 0). Thus on the german corpus all components are modeled as
uniform on the unit hypersphere, making it equivalent to a unilingual model®.

The cluster assignments between the uni- and bilingual models do not
seem to be in agreement of one another (NMI=0.072). Tables 6.7 and 6.8
show the highest ranked words by cluster in the unilingual model. These
results appear to be a bit more interpretable, and the words displayed from
one cluster seem to focus more on a common topic. Example terms that seem
to fit together are “componfent]” and “mixture” (from mixture models) in
cluster 1, “effect”, “regress[ion]” and “predict” in cluster 5 and “test” and
“hypotheslis]” in cluster 7. On the other hand, cluster 6 e.g. still seems hard
to interpret. Overall the unilingual model appears to be performing better
than the bilingual model.

Certain statistics of this model are shown in table 6.9. In this model the
documents are fairly well distributed over all clusters as the estimated prior
class probabilities ay, and number of documents per cluster n;, show. Notably
there is no single class which is very sparsely populated in contrast to the
bilingual model. The estimated concentration parameters x; are higher on
average, for clusters 5 and 9 assuming values of close under 300 and over 400
for the reminaing clusters. Lower variance means also that observations are
more homogenous within each cluster. Also, the highest estimated posterior
class probabilities per observation was at least 1, hence the classifications
were unambiguous in this case as well.

The result may be a bit surprising that the unilingual model achieved
better results than the bilingual one, even though the latter was able to utilize
more data. As the simulation in section 5.3 indicate a low ratio of german vs
english documents might deteriorate the estimations. In this application for
about 61% of documents there was a german abstract available, which might
be too low, or at least on the low end of what is helpful for the model. As all
simulations also indicate is, that there was always a near-optimal partition of
the data, which could not always be approached by the estimation procedure,
due to getting trapped in local maxima or stationary fixed points. Such
effects might also get emphasized by the fact that the bilingual model has
to find a solution in a much larger parameter space induced by the existence

8This was also empirically verified against the movMF package (Hornik and Griin,
2012) using the EM (“softmax”) algorithm and same initialization values.
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of the german docment-term-matrix. Another possibility might be that the
assumption of conditional independence between english and german texts
is violated. However at this point no conclusive evidence either supporting
or refuting this hypothesis was found.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

random (23.0) sampl (43.0) propos (27.0) function (44.0) effect (22.0)
independ (17.0) probabl (21.0) margin (16.0) base (19.0) use (20.0)
process (17.0) wvarianc (17.0) tabl  (14.0) densiti (18.0) incom  (17.0)
compon (10.0) studi  (14.0) mean (12.0) general (14.0) regress (17.0)
mixtur  (9.0) properti (10.0) base  (11.0) skew  (14.0) wvariabl (17.0)
function (8.0) simul  (10.0) consid (10.0) applic (13.0) approach (15.0)
price (8.0) design  (9.0) measur (10.0) compar (13.0) design (15.0)
prove (8.0) random (9.0) edit (9.0) observ (13.0) predict (15.0)
variabl ~ (8.0) compar (8.0) equal (9.0) paramet (12.0) base (14.0)
deriv (7.0) rate (8.0) categori (8.0) propos (12.0) seri (14.0)

Table 6.7: Top words for the unilingual movMF model clusters 1-5

Cluster 6 Cluster 7 Cluster 8 Cluster 9

regist  (30.0) test (78.0) paramet (56.0) algorithm (21.0)
develop (23.0) studi (14.0) error (26.0) develop (17.0)
popul (22.0) base (12.0) base (18.0) learn (13.0)
qualiti (22.0) hypothes (12.0) sampl (18.0) spatial  (10.0)
match (19.0) consid  (11.0) time (17.0) forecast  (9.0)
busi ~ (18.0) result  (11.0) propos (16.0) process (9.0)
econom (14.0) approach (10.0) compar (13.0) tax (9.0)
link (14.0) propos (10.0) consid  (13.0) analysi (8.0)
process (13.0) time (10.0) measur (13.0) domain  (8.0)
record (13.0) error (9.0) procedur (12.0) wuse (8.0)

Nej

Table 6.8: Top words for the unilingual movMF model clusters 6—
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Cluster ¢ ny Rk

0.09 20 403.4
0.08 17 557.0
0.08 17 463.4
0.13 28 403.8
0.18 39 296.5
0.11 25 395.1
0.10 23 667.7
0.11 24 523.7
0.12 27 274.9

© 00 O Tl Wi+~

Table 6.9: Estimated prior class probabilities «y,, number of documents as-
signed to each cluster n,, and estimated concentration parameters k., and
kyn, for each component in the unilingual model.
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Chapter 7

Conclusions

In this thesis an extension to the movMF model by Banerjee et al. (2005) was
presented, with the goal of being able to model parallel text corpora in two
different languages at the same time. This was accomplished by using the
joint distribution of two von Mises-Fisher distribution as the component dis-
tributions. Thus it is assumed the dependence between the two languages can
be explained by the cluster membership alone, thus the vMF distributions for
one document are conditionally independent given the cluster assignments.
Furthermore a small addition was made so that documents available only
in one language can be modeled simultaneously as well, these documents’
distribution is assumed to be uniform where they were unobserved. The as-
sumption of conditional independence also greatly simplifies the model and
parameter estimators. The latter can be reduced to the unilingual case which
is particularly helpful for the numerically difficult estimation of the concen-
tration parameters.

An implementation was developed for this model using two different es-
timation algorithms, the EM and DAEM algorithms. The EM algorithm
might get stuck in stationary fixed points, which is attempted to be allevi-
ated by the DAEM algorithm which adds an annealing step to the estimation
which can be envisioned to be a smoothing of the objective function which is
successively reduced until the objective function is equal in the final iteration
to that of the EM algorithm.

Testing this implementation a number of simulation studies were con-
ducted, which were designed to be of similar dimensionality and number of
observations as the application data set so that information about the per-
formance of this model, relevant to the application might be revealed. The
simulations showed that the DAEM algorithm consistently outperformed the
EM algorithm except in relatively easy problems, such as large datasets or
small variances, where both algorithms produced results of about equal qual-
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ity. Also for the dataset size of the application the simulations showed a
rather poor performance of both algorithms. Further the simulations indi-
cated that if less than half of the articles were available in both languages the
performance was below that of the unilingual model, meaning that only a
small amount of extra data in a second language is detrimental to the model
estimates.

As an application the corpus of abstracts of the Austrian Journal of Statis-
tics (AJS) was used, which were in many cases published in two languages.
These abstracts first had to be retrieved and extracted from the PDF files
from the journal homepage, for which the processing steps were also ex-
plained. The application was then analyzed using the bilingual movMF
model, where the data set was reduced in dimensionality using two different
schemes, by selecting terms by term frequency or by the tf-idf scores. Ad-
ditionally it was reweighted using the tf-idf score as well as left unweighted
to produce a total of four models. For these models a reasonable number
of components was determined via cross-validation where the tf-idf weighted
models however did not appear to be appropriate. The clustering of one of
the remaining models was then tabulated by highest term scores by clus-
ters, which did not produce a descriptive result. In contrast, the equivalent
unilingual model seemed to produce better results than the bilingual one.

Possible reasons for the nonsuccess of the bilingual model might be that
overall sample size was too low to find reasonable estimates, which was em-
phasized by the bilingual parameter space being larger than the unilingual
one. Possibly the assumption of conditional independence did not hold in this
application. For the future it might be worth an investigation to explicitly
model the dependence between two languages, for which copulas are a very
generic tool. Deriving analytical derivatives of copulas in high dimensions
might prove difficult however, for example the copula package in R (Yan,
2007) only provides derivatives of up to 10 dimensions. Another avenue of
investigation might be to use variants of the von Mises-Fisher distribution
which allow the specification of a covariance structure, which would most
likely mean even more parameters would have to be estimated, which will
be a challenging problem given the already small sample size. Last but not
least the model should be examined on a larger data set in order to find out
whether in this case better results are obtained and if they measure up to,
or even improve upon, the results of unilingual modeling.
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Appendix A

Bilingual parameter estimates

This chapter features the deductions of the parameter estimates in the bilin-
gual model (equation 3.6-3.9). The deduction follows analogously to Baner-
jee et al. (2005, A.2).

A.1 Prior class probabilities «;,

The expected complete data log-likelihood (3.4) is to be optimized with re-
spect to ay, under the constraint that 22:1 ap, = 1. First, the lagrangian is
formed

A=E,[InP(z,y|©)] + A (Z ap — 1)

h=1
Taking the partial derivative with respect to oy, and solving for zero:

OA "1 !
- — o(blz:. us A\ =
e ;1 ahp( |z, i, ©) + 0

1 n
e T— _XE p(hlz;, y;, ©) (A.1)
i=h

Taking the partial derivative with respect to A:

oA b :
— = ) a—1=0
O\ £

ap = 1 <A2)

>
Il =
—
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Summing over equation A.1 for h = {1,...,k} and using eq. A.2:

k k
1
Zah = XZZ h|$z,yl, )
h=1 1 =1
1 n k
1 = Y p(h|zi, yi, ©)
i=1 h=1 P
2
1 = —§Z1
=1
A= —n (A.3)

Substituting A.3 in A.1 one obtains:
1t
ap, = - Zp(hh?i,yi, ©)
h=1

A.2 Mean direction i,

In the following the expected complete data log-likelihood (3.4) is optimized
for p1,5, under the constraints ||u.n|| = 1 for all h = 1,...  k (analogously for
tyn). The lagrangian is formed:

k
A = E, [In P(z,y|©)] + Ay (1 - Zufhum>

h=1

Taking the partial derivate thereof with respect to p,, (note that the density
frn(yiltn) vanishes in the derivation step since it is independent from p,;, and
is thus omitted) and solving for 0:

AA 9 [”

alu’wh a,u:]ch i—1

= ZCm’ Kgn - i - p(hlxs, yi, ©) — 2\pphen =0

Ry -
<:>:u1’h = h Cqi * T4 p(h|xzayla®)
2\ i=1

o1

Z Czi I (Cd(/ixh) exp (Hxhufhlﬂi) )P(h|37i7 Yi, ©) — Anllpanl| + An

(A.4)



Taking the partial derivative with respect to A and solving for 0:

oA !
o L= pioppizn =0 & pilppian =1

Substituting (A.4) into (A.5):

1 = H;;Z Cm' - @i - p(hlag, vi, @)H
>\h - ah ‘ Zczi c &Ly p(h|x7,7 Yi, G)H
i—1

And substituting (A.6) into (A.4) one obtains:

/l B = Z?:l Cai * Ti p(h‘xwyl? @) _. Tzh
szzl Cai l’zp(h|:1:l,yz,@)H ||Tmh||

A.3 Concentration parameter x,,

(A.5)

(A.7)

Firstly, the langrangian is formed. While the constraint x,, > 0 should
be considered, Banerjee et al. (2005, footnote, page 1374) argue that the
multiplier for the KKT conditions would be zero for k., > 0 and for x,, =0

the distribution would be the uniform distribution on the sphere.

A = E, [In P(z,y0)]

Deriving A with respect to k., and setting it zero:

OA
= ZZCW hlfh $z|0h) (h|x27y17®)

Ok 8;@
zh zh —1 h—1

= chm(lncd(fcxh)+/<azhuthcz) (hlzi, yi, ©)

aﬁ;xhzlhl

= Z Cri (Cd(ﬂmh) + ,Ug;hxz)p(h|wza Yis 6) ; 0
i=1

Cd(ﬁzh)
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A few more transformations and substituting (A.7) into (A.8)

c/ K L n n
alrian) Zcm -p(hlzi, yi, ©) = — Zcm gy, - i - p(hla, yi, ©)
i=1 i=1

Cd(/ixh)

Cd("@r:h) Z?zl Cai * p(h|xla Yis @>
a Z?:l Cai p(h’|xzay17®)

C;l('%a:h) Z?zl Coi - th c Ly p(h|$z7 Yis @) (A8)

With (Banerjee et al., 2005, page 1374)

’

~ Cq(Fan) _ Taja(Kan)
Cd(/izh) Id/2—1(/<v:rh)

the ML-estimator for s, is written

Id/2(/%xh) _ H Z?:l Ci * Ti - p(h| i, i, @)H
Id/Z—l("%mh) Z?:l Cxi p<h|xm Yi,s @)
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Appendix B

Bilingual model plots

This chapter shows several plots for each type of model from section 6.4. As
a remainder the model types were:

model selection weighting | d, dy
(a) tf-idf > 0.12 tf 1173 | 1096
(b) tf-idf > 0.12 tf-idf 1173 | 1096
(¢) |tf>3&tf <100 tf 902 | 714
(d) | tf>3 & tf <100 tf-idf 902 | 714

On each page plots are shown for one type of model. The first two rows show
the perplexity and median log-likelihood values obtained by cross-validation.
Perplexity and median log-likelihood values were centered around 0 to alle-
viate the “fold”-effect. The third row shows AIC and BIC values for models
with 2 to 20 components.

o4



perplexity
le+10 le+17

1e+03

le-04

le-11

5 10 15 20 25 30

Number of clusters k

perplexity
le+10 le+17
| 1

1e+03
I

le-04

L O A
2 46 8 11 14 17 20 23 26 29

le-11

Number of clusters k

-4000
|

-8000 -6000
|

AIC

-10000

-12000

T T T T
5 10 15 20

Number of clusters k

median loglik

median loglik

BIC

T T T T T T
5 10 15 20 25 30

Number of clusters k

L A
2 46 8 11 14 17 20 23 26 29

Number of clusters k

100000 150000
|

50000
|

0
|

T T T T
5 10 15 20

Number of clusters k

Figure B.1: Perplexity, median log-likelihood and AIC/BIC for model (a)

95



le+02 1e+06 le+10

perplexity

le-02

1e-06

5 10 15 20 25 30

Number of clusters k

le+02 1e+06 le+10
| | |
o

perplexity

1le-02

1le-06

L O A
2 46 8 11 14 17 20 23 26 29

Number of clusters k

AIC
20000 30000 40000
| | |

10000
1

T T T T
5 10 15 20

Number of clusters k

=
=)
o
c
S
el
1]
£
T T T T T T
5 10 15 20 25 30
Number of clusters k
o _|
—
X o
=)
o
=
8
el
[ o
E 77 :
o :
N :
1 :
TT T T T T T T T T I T T T T T T T T T T T T T T T T
2 46 8 11 14 17 20 23 26 29
Number of clusters k
o
o
o _|
o
o
N
o
o
o _|
o
n
-
o 8
o 8 -
o
-
o
o
S |
(=]
n

T T T T
5 10 15 20

Number of clusters k

Figure B.2: Perplexity, median log-likelihood and AIC/BIC for model (b)
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Figure B.3: Perplexity, median log-likelihood and AIC/BIC for model (c)
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Figure B.4: Perplexity, median log-likelihood and AIC/BIC for model (d)
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Appendix C

Electronic Appendix

The program files and simulation results are supplied in form of an electronic
appendix on optical media. The software used was R in version 2.15.2 (R
Development Core Team, 2011). Table C.1 also lists the R packages that
were used.

Package | Version
bimovMF | 0.01

clue 0.3-45
doMC 1.2.5
knitr 0.9

movMF 0.1-0
multicore | 0.1-7
plyr 1.8

Rstem 0.4-1
skmeans | 0.2-3

slam 0.1-26
stringr 0.6.2
tm 0.5-8
XML 3.95-0.1

xtable 1.7-0

Table C.1: Tables of used R packages

Following is a short overview of the contents of the electronic appendix. The
root directory of the accompanying CD contains for one, this thesis in an elec-
tronic and in print version: thesis_electronic.pdf and thesis_paper.pdf.
Also the bimovMF package is contained on the CD as tarball bimovMF_0.01.tar.gz.
The directory track contains the output of GNU httrack containing the the
download of the AJS website, that is, mostly the articles in PDF format,
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and also the HTML conversions of said articles by PDFBox. pkg contains
the source of the bimovMF package, which contains most of R code used
in this thesis. Under thesis are the sources located used to compile this
thesis. Finally data lists the data sets, such as abstracts.RData containing
a data-frame of abstracts, and the simulation and cross-validation results as
well as the model estimates. Most program files also assume that the current
working directory of the R interpreter is set to the thesis directory and
assumes the directory structure is the same as on the electronic appendix
CD. The thesis can be compiled using GNU make in the thesis directory:
make bibref paper.

C.1 The bimovMF package

The bimovMF package includes most of the program code developed during
this thesis. It depends on packages from multiple repositories so the easiest
way to install it is:

setRepositories(addURLs=c(dernst="http://dernst.org/R"))
install.packages ("bimovMF")

and select the CRAN, omegahat and dernst repositories in the first dialog
box. Alternatively the dependencies may be install by hand:

pkgs <- c("multicore", "movMF", "clue", "plyr", "skmeans")
pkgs <- c(pkgs, "slam", "stringr", "tm", "XML")
install.packages (pkgs)

install.packages("Rstem", repos="http://www.omegahat.org/R")
install.packages("bimovMF", repos="http://dernst.org/R")

The main function of the package is bimovMF, which is used to fit a bilin-
gual movMF model to two data sets  and y. Following is a list of options
that can be used:

e x: A document-term-matrix in either dense or sparse matrix format
(for the latter, only slam’s simple triplet matrices are supported).

e y: A document-term-matrix analogous to x, with the same number of
rows, or alternatively NULL. Also, individual rows may be set to NA.

e k: Number of components k to be estimated.

e P: Initial P matrix of posterior class probabilities (used as initializa-
tion). Might be supplied as list of such matrices in order to fit multiple
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models with different initializations from which the one with the high-
est log-likelihood value is chosen. Such a list can be generated with
bimovMF: : :make_start_P(n,k,Nruns).

e maxiter: Maximum amount of iterations for the EM algorithm. May
be NULL.

e nu: Parameter v to avoid numerical overflows in the x estimation.
Should be rather small, for example nu=0.01.

e minalpha: Lower bound for ay,. «y values falling below this value have
their components removed. 0 by default.

e E: Specifies the algorithm to be used, may be either “softmax” for EM
or “DAEM”.

e converge: Boolean, whether the algorithm should run until the con-
vergence criterion is met, independent of the setting of maxiter. Only
applicable to softmax/FEM.

e betal and betarate: Parameters controlling the annealing process of
the DAEM algorithm. beta0 is the initial S value and betarate the
multiplicative rate at which /3 is increased.

e .lapply Animplementation of lapply; a viable option would be mclapply
from the multicore package, which would then compute the model runs
in parallel.

e di: For internal use; tracks certain debug information throughout the
estimation procedure.

The return value of bimovMF is named list containing the following ele-
ments:

e P: Estimated P matrix.

theta and psi: Estimated 6 and 1 matrices for all components.

alpha: Estimated prior class probabilities ay.

e niter: Number of iterations used.

L: A likelihood-object at the final iteration step.
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The bimovMF function tries itself not to modify any global state, such as
the global random number generator state, therefore initial parameter values
are not automatically generated and have to be supplied by the user. It was
found that this design helped with the parallelization and reproducibility of
the estimation function.

The abstracts are extracted using the function load all abstracts_from html
which itself calls parse_abstract_html which are both found in
pkg/bimovMF/R/extract.R.

For documentation purposes the package further includes functions used
to conduct the simulations, those functions are found in pkg/bimovMF/R/sim.R
and are named simulation by kappa, simulation ndim (number of dimen-
sions), simulation nobs (by sample size) and simulation partial (simu-
lation on incomplete data sets). Functions for batch-processing are found in
pkg/bimovMF/R/batch.R, for example batch_sim runs all simulations with
seeds in one go. Analogously batch_cv runs the cross-validation of the mod-
els and batch movmf runs the model estimates for the four kinds of models.
For more details the reader is refered to the source files in question.

A short example to the usage of the bimovMF function:

library(bimovMF)

library(multicore)

set.seed(667)

dta <- rbimovMF_from_kappa(n=100, k=4, kappa=400, dx=100, dy=100)
P <- make_start_P(n=100, k=4, Nruns=25)

mod <- bimovMF(dta$x,dta$y, k=4, E="daem", P=P, .lapply=mclapply)

vV V. V V V V

> NMI(dta$z, apply(mod$P,1,which.max))

[1] 1
> table(dta$z, apply(mod$P,1,which.max))
1 2 3 4
1 0 0 0 19
2 026 0 O
3 0 028 O
427 0 0 O

First, a dataset with 100 observations is generated with k£ = 4 compo-
nents, arbitrary parameters, but fixed x,, = Ky, = 400 and 100 dimensions
per language. Then starting values are generated for 25 iterations, then the
25 models are estimated in parallel using mclapply and the DAEM algo-
rithm. dta$z contains the true cluster assignments; then the NMI of true
and estimated clusters values is computed to be 1. Finally the contingency
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table between true and estimated cluster assignments is printed showing that
all 100 observations are correctly classified, apart from label switching.

63



	Introduction
	Preliminaries
	von Mises--Fisher distribution (vMF)
	Mixtures of vMF distributions

	Model
	Specification
	Estimation

	Implementation
	 estimation
	Empty components

	Simulation
	Excursus: Mutual Information
	Comparison by concentration parameter
	Incomplete datasets
	Comparison by dataset size
	Comparison by number of dimensions

	Application
	Pre-processing
	Excursus: tf-idf
	Descriptives
	Abstract lengths
	Year of publication
	Articles per author

	Bilingual clustering
	Unilingual clustering

	Conclusions
	Bilingual parameter estimates
	Prior class probabilities h
	Mean direction xh
	Concentration parameter xh

	Bilingual model plots
	Electronic Appendix
	The bimovMF package


