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Zusammenfassung

In dieser Arbeit werden verschiedene Bayesianische und frequenti-
stische Regressionsmodelle auf ihre Eignung zur Vorhersage in Ziich-
tungsprogrammen untersucht. Die Modelle, die dabei betrachtet wer-
den, sind das Bayesianische Ridge, das Bayesianische Lasso, das Baye-
sianische Elastic Net, die frequentistischen Analoga und das Generali-
sierte Elastic Net. Die Sensibilitdt des Bayesianischen Elastic Net wird
iiber verschiedene Szenarien der Wahl der Hyperparameter fiir die
Priori-Verteilungen untersucht. Die Vorhersagegenauigkeit aller pena-
lisierten Modelle wird iiber Kreuzvalidierungen gepriift. Angewendet
werden die Regressionsmodelle auf experimentelle Daten zu Arabidop-
sis thaliana und vier quantitativen Merkmalen mit unterschiedlicher
genetischer Architektur. Es zeigt sich, dass das Bayesianische Elastic
Net teilweise sensibel auf die Wahl der Hyperparameter reagiert. Die
Vorhersagegenauigkeit der Methoden unterscheidet sich fiir die ver-
schiedenen Merkmale im Allgemeinen gering. Die neuesten Modelle,
das Bayesianische Elastic Net und das Generalisierte Elastic Net, sind
beziiglich ihrer Vorhersagegenauigkeit nicht signifikant besser als die
etablierten Methoden.
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1 Einfiihrung

Die Genetik ist ein Gebiet der Wissenschaft, dessen Bedeutung seit Mitte
des 19. Jahrhunderts, ausgelost durch Gregor Mendel, stark an Bedeutung
gewonnen hat. Durch Fortschritte in der makroskopischen, mikroskopischen
und molekularen Forschung sind viele Fragen iiber Organismen gekléirt und
dennoch befindet sich die Erforschung des Genoms erst im Anfangsstadium.
Klar ist soweit, dass der Genotyp eines Organismus den Phénotyp, also das
Erscheinungsbild des Organismus, bestimmt.

Die Analyse des Erbguts ist insbesondere im Anwendungsgebiet der Pflanzen-
ziichtung und Selektion von grofler Bedeutung (Jannink et al., 2010). Durch
die Vorhersage der quantitativen Merkmale alleine basierend auf den gene-
tischen Eigenschaften wére es nicht mehr notig erst die Ernte abzuwarten,
um die Qualitdt und den Ertrag von Nutzpflanzen zu beurteilen. Basierend
auf den frithzeitigen Erkenntnissen konnte der Selektionszyklus beschleunigt
werden und damit der genetische Fortschritt schneller ablaufen.

Die genetische Erbinformation ist in der DNA beziehungsweise in den Chro-
mosomen gespeichert. Bei vielen Pflanzen liegt der Chromosomensatz und
somit auch jedes Gen doppelt (diploid) vor. Dies impliziert jedoch nicht, dass
die Nukleotidensequenz, welche das Gen definiert, bei homologen Chromoso-
men identisch ist. Die unterschiedlichen Formen eines Gens werden als Allele
bezeichnet. Das Auftreten genetisch unterschiedlicher Phénotypen in einer
Population, bedingt durch die Allele einer Gens wird als Polymorphismus
bezeichnet. Der haufigste Polymorphismus im Genom ist der Einzelnukleotid-
Polymorphismus (engl.: single nucleotide polymorphism, SNP), also die Va-
riation eines einzelnen Nukleotids. Darunter versteht man zum Beispiel den
einzelnen Basenaustausch von Adenin und Thymin oder den einzelnen Ba-
senaustausch von Cytosin und Guanin. Alle SNPs haben zwei Allele. Eine
detaillierte Beschreibung der allgemeinen Genetik und der Molekulargenetik
wird von Knust und Janning (2008) und Griffiths et al. (2012) gegeben.
Ziel dieser Arbeit ist es, den gemeinsamen Einfluss von vielen SNPs auf die
quantitativen Merkmale zu untersuchen. Die SNPs kénnen drei Auspréagun-
gen aufweisen. Diese sind zum einen die homozygoten Ausprigungen mit
entweder zwei dominanten oder zwei rezessiven Allelen und zum anderen die
heterozygote Auspriagung mit einen dominanten und einem rezessiven Allel.
Die SNPs werden jedoch nicht als kategoriale Einflussgréfien in ein Regressi-
onsmodell aufgenommen, sondern deren Auspragungen so rekodiert, dass die
Ausprigung einer Einflussgroie die Anzahl der seltenen Allele in dem SNP
ist. Die Einflussgrofien sind somit metrisch.

In dieser Arbeit werden die offentlich verfiigharen Daten zu dem Modell-
organismus Arabidopsis thaliana (L.) untersucht. Als Merkmale werden die



Pflanzenhohe, die Wachstumsrate, die Zeit bis zum Schossbeginn und die
Zeit zwischen Schossbeginn und Bliitezeit betrachtet. Diese Merkmale wer-
den stetig gemessen und gehen dementsprechend als metrisch Zielvariablen
in das Modell ein.

Fiir die Untersuchung des Einflusses von SNPs auf die quantitativen Merkma-
le wird, auf Grund der metrischen Zielvariablen, ein lineares Regressionsmo-
dell unterstellt. Die unbekannten Regressionskoeffizenten lassen sich im Allge-
meinen durch Kleinste-Quadrate (KQ) Schétzung oder Maximum-Likelihood
(ML) Schétzung bestimmen (Fahrmeir et al., 2007). Der KQ Schétzer ist er-
wartungstreu und unter allen linearen erwartungstreuen Schétzern, jener mit
der kleinsten Varianz (Gaufl Markov Theorem). Je kleiner die Varianz eines
Schiitzers ist, desto genauer ist meist die Schitzung und desto besser ist die
Vorhersagegenauigkeit (Hastie et al., 2009). Bei der Schétzung durch die KQ
Methode bleiben alle Variablen in dem Modell. Es findet keine Variablense-
lektion statt. Bei vielen Variablen im Modell ist die Interpretation schwierig,
da die Interpretation von einzelnen Koeffizienten immer unter der Bedingung
'festhalten der anderen Variable’ erfolgt. Ein weiterer Nachteil der KQ Me-
thode ist, dass der Schétzer nur existiert, falls in der Schétzgleichung keine
singuldren Matrizen vorkommen. Damit keine Singularitédtsprobleme auftre-
ten miissen mehr Beobachtungen als Variablen vorliegen und es darf keine
exakte lineare Abhéngigkeit zwischen den Variablen bestehen. Sind die Va-
riablen nicht exakt linear abhéngig, sondern hoch korreliert, kann die Varianz
der Schétzung extrem grofl werden.

Die erhobenen molekulargenetischen Daten der Arabidopsis umfassen n =
426 Individuen und p = 1260 SNPs. Somit ist die Anzahl der Prédiktoren
wesentlich grofler als die Anzahl der Beobachtungen. Es resultiert das so-
genannte p > n-Problem, welches unter anderem von Fan und Lv (2008)
erlautert wird. Die Spaltendimension der Designmatrix ist im Vergleich zur
Zeilendimension sehr grofS. Dadurch treten bei der KQ Schitzung Singula-
ritdtsprobleme auf und eine Schétzung der Parameter ist nicht mehr moglich.
Die Pradiktoren weisen, allein schon auf Grund der hohen Anzahl an Ein-
flussgroflen, eine Korrelation auf. Aber nicht nur die Dimension von SNP Da-
ten verursacht eine Korrelation, sondern auch die inhaltliche Beschaffenheit
der genetischen Kopplung. Mit Kopplung wird die Assoziation von Genen
auf dem gleichen Chromosom bezeichnet, welche zur gemeinsamen Verer-
bung der entsprechenden Merkmale fiihrt (Knust und Janning, 2008). Bei
Genen, deren gemeinsame Allelverteilung nicht zufillig ist, spricht man von
einem Kopplungsungleichgewicht (engl.: linkage disequilibrium, LD) (Grif-
fiths et al., 2012). Das Kopplungsungleichgewicht fiihrt zu Kollinearitit. Da-
durch werden einflussreiche und nicht einflussreiche Péadiktoren nicht immer
als solche erkannt.



Fiir die Schéitzung eines Regressionsmodells bei Daten mit einem p > n-
Problem existieren diverse Ansétze. Allgemeine Ziele dieser Ansétze sind
Vorhersagegenauigkeit und gute Interpretierbarkeit des Modells. Die Vorher-
sagegenauigkeit kann durch Schétzer mit einer geringen Varianz und die gute
Interpretierbarkeit durch Variablenselektion erreicht werden (Hastie et al.,
2009).

Hoerl und Kennard (1970a,b) fiihrten die Ridge Regression ein. Dies ist
ein Penalisierungsverfahren, bei dem die resultierenden Schitzer eine ge-
ringe Varianz aufweisen. Die Schrumpfung der Regressionskoeffizienten er-
folgt {iber einen Penalisierungsterm. Die Starke der Penalisierung wird iiber
den Penalisierungsparameter des Penalisierungsterms gesteuert. Der Ridge
Schitzer weist den sogenannten Gruppierungseffekt (engl.: grouping effect)
auf. Als Gruppierungseffekt wird der Effekt bezeichnet, dass korrelierte Ein-
flussgroBlen dhnliche Schétzer erhalten. Jedoch findet bei diesem Verfahren
keine Variablenselektion statt. Eine Methode, bei der neben der Schrump-
fung von Parametern zusétzlich Variablen selektiert werden, wurde von Tibs-
hirani (1996) vorgeschlagen und wird als Kleinster Absoluter Schrumpfungs-
und Selektionsoperator (engl.: Least absolute shrinkage und selection ope-
rator, Lasso) bezeichnet. Der Lasso Schitzer weist im Vergleich zum Ridge
Schétzer keinen Gruppierungseffekt auf. Fine Kombination des Ridge und
Lasso Verfahrens ist das Elastic Net (Zou und Hastie, 2005). Dieses soll die
Vorteile von Variablenselektion und Gruppierungseffekt vereinen. In diesen
frequentistischen Methoden werden die Penalisierungsparameter iiber eine
Kreuzvalidierung bestimmt.

Diese Penalisierungsverfahren konnen ebenfalls Bayesianisch formuliert wer-
den. So beschreiben Fahrmeir et al. (2010) das Bayesianische Ridge, Park und
Casella (2008) das Bayesianisches Lasso und Li und Lin (2010) das Bayesia-
nische Elastic Net. Die Bayesianischen Methoden weisen alle Vorteile der
frequentistischen Methoden auf und erlauben zusétzlich Vorwissen iiber die
Parameter und Penalisierungsparameter in das Modell aufzunehmen.
Ishwaran und Rao (2011) erweiterten das Elastic Net zu dem sogenannten
Generalisierten Elastic Net.

Weitere Modelle fiir die Inferenz in p > n-Situationen, welche in dieser Arbeit
nicht ndher betrachtet werden, jedoch in der Literatur viel Anwendung fin-
den, sind die Modelle BayesA und BayesB (Meuwissen et al., 2001). Deswei-
teren resultiert, basierend auf einem linearen gemischten Modell, der BLUP
(best linear unbiased predictor) Schétzer (Henderson, 1984). Dieser Schétzer
wird unter anderem in den Studien von Fernando und Grossman (1989) und
Meuwissen und Goddard (1996) verwendet.

In dieser Arbeit wird untersucht, ob die Elastic Net Methoden bessere Er-
gebnisse liefern als die Lasso und Ridge Methoden und ob die Bayesianischen
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Methoden den frequentistischen Methoden iiberlegen sind. Fiir die Beurtei-
lung werden verschiedene Giitekriterien herangezogen. Die Giitekriterien sind
die Korrelation zwischen den wahren und angepassten Werten, die Anzahl
der effektiven Parameter, das Devianz Informationskriterium (engl.: deviance
information criterion, DIC) und Kreuzvalidierungen mit verschiedenen Kri-
terien. Desweiteren werden die Unterschiede fiir Merkmale mit verschiedener
genetischer Architektur untersucht.

Die weitere Arbeit gliedert sich wie folgt. Die statistischen Methoden werden
in Kapitel 2 vorgestellt. Das Kapitel 2 ist unterteilt in vier Teilkapitel. In
dem ersten Teilkapitel wird das Ridge, das Lasso und das Elastic Net Modell
geschildert. In dem zweiten Teilkapitel wird die Bayes Inferenz eingefiihrt
und in dem dritten Teilkapitel das Bayesianische Ridge, das Bayesianische
Lasso und das Bayesianische Elastic Net beschrieben. Die Erlauterung des
Generalisierten Elastic Net erfolgt in dem vierten Teilkapitel. In Kapitel 3
werden die Daten der Arabidopsis deskriptiv und explorativ analysiert. Die
Anwendung aller vorgestellten Modelle auf diese Daten erfolgt in Kapitel 4.
In Kapitel 5 werden die Ergebnisse dieser Arbeit zusammengefasst und dis-
kutiert.



2 Penalisierte lineare Modelle

In diesem Kapitel werden verschiedene penalisierte lineare Modelle vorge-
stellt. Alle diese Verfahren sind Erweiterungen des multiplen linearen Regres-
sionsmodells. Die Daten liegen in der Form (z;,v;),i = 1,...,n vor. Dabei
ist y;,¢ = 1,...,n der Phénotyp des Individuums 7 und z;5,5 = 1,...,p die
Anzahl des seltenen Allels in SNP j. Das multiple lineare Regressionsmodell
ist definiert durch (Fahrmeir et al., 2007):

Y1 1 21 ... 2y 5o €1
: : : =+ : )

Yn S Bp €n

wobei die Storgroflen homoskedastisch sind und einer Normalverteilung mit
Erwartungswert 0 und Varianz o2 folgen: € ~ N(0, o°I).

Die unbekannten Regressionskoeffizenten 87 = (8, ..., 3,) lassen sich im
Allgemeinen durch Kleinste-Quadrate Schétzung oder Maximum-Likelihood
Schétzung bestimmen (Fahrmeir et al., 2007):

B = argmax 1(8, 0%) = axgmas {—log<<2m2>”/2> - XB) (- Xﬂ)}
— (XTX)fley
= argmin (y — XB) "y — XB) = g

Residuenquadratsumme

Der KQ Schétzer ist zwar unverzerrt, hat aber bei Kollinearitdat der Variablen
eine grofle Varianz und ist in einer p > n-Situation auf Grund der Nichtin-
vertierbarkeit von XX nicht schitzbar. Verzerrte Schitzer, welche auch in
p > n-Situationen berechnet werden konnen, sind penalisierte Likelihood
Schétzer. Diese lassen sich allgemein wie folgt darstellen:

B= arggnaX{l(ﬁ) — pen(B)}

= arg;nin{—KlB) + pen(,B)},

wobei mit 1(8) die logarithmierte Likelihood und mit pen(8) der Penali-
sierungsterm bezeichnet wird. Um die Stédrke der Penalisierung zu regulieren
beinhaltet der Penalisierungsterm den sogenannten Penalisierungsparameter.
Der Penalisierungsparameter kann iiber Kreuzvalidierung oder bayesianisch
iiber eine Priori-Verteilung geschitzt werden.



2.1 Aufbau des Elastic Net

In diesem Teilkapitel wird in Abschnitt 2.1.1 die Methode der Ridge Schétz-
ung erklart. In dem Abschnitt 2.1.2 wird das Verfahren Lasso vorgestellt.
Der Naive Elastic Net Schéitzer und dessen Verbesserung, der Elastic Net
Schéatzer, werden in den Abschnitten 2.1.3 und 2.1.4 erldutert. Die Schéitz-
ungen fiir das Lasso und Elastic Net erfolgen iterativ. Nur im orthogonalen
Design lassen sich alle Schétzer konkret formulieren. Die Betrachtung der
Schéitzer im orthogonalen Design erfolgt in Abschnitt 2.1.5.

2.1.1 Ridge

Hoerl und Kennard (1970a,b) fiihrten die Ridge Regression ein. Die Ridge
Regression liefert einen Schétzer, welcher die Residuenquadratsumme mini-
miert und dessen Lénge beschrinkt ist (L, Penalisierung):

~R

B = arg;nin {y—XB)"(y—XB)} udB. Z B3 <t

Bei der Ridge Regression werden die KQ Koeffizienten kontinuierlich gegen

Null geschrumpft. Je kleiner der Anpassungsparameter (engl.: tuning pa-

ramter) ¢, desto starker ist die Schrumpfung. Die Schitzer werden jedoch nie

exakt gleich Null. Aquivalent ist die penalisierte Schreibweise in Matrixform:
~R

B = argmin {(y—XB) (y —XB) + 8T8},

mit dem Penalisierungsterm pen(8) = \3'B. Je grofer der Parameter A, de-
sto stérker ist die Schrumpfung der Koeffizienten gegen Null. Die Parameter
A und t haben eine eineindeutige Beziehung, sind jedoch nicht gleich. Die
Losung der Ridge Regression ist einfach darstellbar durch:

B" = (XTX + A1) X Ty. (2.1)

Die Motivation zur Einfithrung des Ridge Schétzers war die Problematik
der Kollinearitdt zu losen. Sind Variablen hoch korreliert, so ist die Vari-
anz der durch die KQ Methode geschitzten Koeffizienten extrem hoch. Die
Vorhersagegenauigkeit des resultieren Modells kann dann schlecht sein. Der
Ridge Schitzer reduziert die Varianz der Regressionskoeffizienten, ist jedoch
nicht mehr unverzerrt (Batah und Gore, 2009). Die Reduktion der Varianz
fithrt in der Regel zu einer Verbesserung der Vorhersagegenauigkeit. Um ei-
ne hohe Varianz durch Kollinearitdt zu vermeiden, werden bei dem Ridge



Schiitzer zu der Diagonalen von XX Konstanten A (Gleichung (2.1)) ad-
diert. Durch die Addition wird sicher gestellt, dass XX selbst bei einer
p > n-Datengrundlage immer invertierbar ist, die Varianz nicht zu grof3
wird und der Ridge Schétzer existiert. Die Varianz bei der Ridge Regression
ist immer kleiner als die Varianz bei der KQ Schétzung (Miller, 2002). Wird
A so gewidhlt, dass die Verzerrung klein ist, dann hat der Ridge Schétzer einen
kleineren Mittleren Quadratischen Fehler (engl.: mean squared error, MSE)
als der KQ Schétzer (Hoerl und Kennard, 1970b).

Da bei der Ridge Regression die Koeffizienten nie exakt auf Null geschétzt
werden, findet keine Variablenselektion statt. Dadurch gibt es keine Verbes-
serung in der Interpretierbarkeit. Ein Charakteristikum der Ridge Regression
ist der Gruppierungseffekt. Der Gruppierungseffekt quantifiziert den Unter-
schied zwischen zwei Regressionskoeffizienten iiber eine Funktion des Korre-
lationskoeffizienten der zugehorigen Variablen. Fiir gleiche Kovariablen, also
Kovariablen mit einer Korrelation von Eins, werden dieselben Regressions-
koeffizienten geschéitzt (Zou und Hastie, 2005).

2.1.2 Lasso

In diesem Abschnitt wird ein Schétzverfahren eingefiihrt, das den Vorteil
der Koeffizientenschrumpfung der Ridge Regression beibehélt und zusétzlich
eine Variablenselektion beinhaltet. Die Koeffizienten sollen geschrumpft wer-
den und auch Schumpfungen auf exakt Null stattfinden. Auf diesem Weg soll
Vorhersagegenauigkeit und gute Interpretierbarkeit erreicht werden.

Der Schiitzer fiir den dies zutrifft ist der Lasso Schétzer, welcher von Tibshi-
rani (1996) definiert wurde. Das Lasso minimiert die Residuenquadratsumme
unter einer Nebenbedingung (L; Penalisierung):

B = sxgmin {(y — XB) (y ~ XB)} wdB. Y0 |fy| <t

j=1
Dies ist dquivalent zur penalisierten Maximum-Likelihood Schétzung:

~L

B = argmin {(y ~XB)"(y — XB) + AZ Iﬁjl} ,

mit dem Penalisierungsterm pen(8) = A3""_, |5;]. Durch die Bestrafung ist
die Losung nicht linear in y. Eine geschlossene Losung ist im Allgemeinen
nicht moglich. Die iterative Losung durch den LARS Algorithmus wird von
Efron et al. (2004) beschrieben.

Der Lasso Parameter ¢ > 0 kontrolliert die Starke der Schrumpfung. Je klei-
ner ¢, desto stérker ist die Schrumpfung. Ist ¢ < ) \BJKQL so werden die KQ
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Regressoren gegen und gleich Null geschrumpft. Ist jedoch ¢t > > | BJK ?|, so

ist der Lasso Schétzer gleich dem KQ Schétzer. Der Lasso Parameter ¢ ist
folglich sinnvoll gewihlt mit ¢t € [0, |6]KQ|] Oft wird der standardisierte

Lasso Parameter s =t/ |BJKQ| € [0, 1] betrachtet. Der Parameter A, der in
eineindeutiger Beziehung zu t steht, hat die umgekehrte Wirkung wie ¢. Je
grofler A, desto stérker ist die Schrumpfung. Bei A = 0 ist der Lasso Schétzer
gleich dem KQ Schétzer.

Auf Grund der Schrumpfung der KQ Regressoren mittels eines Parameters,
A oder ¢, hat der Lasso Schétzer eine kleinere Varianz als der K(Q Schétzer.
Folglich verbessert sich, wie bei der Ridge Regression, bei einer sinnvollen
Wahl des Penalisierungsparameters die Vorhersagegenauigkeit. Da die Koef-
fizienten auf exakt gleich Null geschrumpft werden koénnen, findet eine Va-
riablenselektion statt (Abschnitt 2.1.5). Trotz der vielen Vorteile des Las-
so sollten auch die Nachteile nicht unerwéhnt bleiben. Ist die Anzahl der
Pradiktoren grofler als die Anzahl der Beobachtungen, p > n, werden maxi-
mal n Koeffizienten selektiert. Die Variablenselektion ist daher eingeschrankt.
Bei gruppierten Variablen beziehungsweise stark korrelierten Variablen ten-
diert das Lasso dazu, aus einer Gruppe eine beliebige Variable zu wahlen und
ignoriert die anderen Variablen der Gruppe (Zou und Hastie, 2005). Im Ver-
gleich zu dem Ridge Schétzer existiert kein Gruppierungseffekt. Dies hat zum
einen den Vorteil eines sparsameren Modells aber zum anderen den Nachteil,
dass die Selektion bei korrelierten Variablen mit einer gewissen Beliebigkeit
verbunden sein kann.

2.1.3 Naiver Elastic Net Schitzer

Sowohl der Lasso Schétzer als auch der Ridge Schétzer weisen Vor- und Nach-
teile auf. Basierend auf den Vorteilen dieser Schétzer entsteht die Idee eines
Schétzverfahrens mit einer kleinen Varianz der Schétzer, uneingeschrénkter
Variablenselektion und einem Gruppierungseffekt. FEin Verfahren, welches
dies realisiert, ist das Naive Elastic Net von Zou und Hastie (2005).

Das Naive Elastic Net verwendet sowohl die L; Penalisierung des Lasso als
auch die Ly Penalisierung des Ridge. Das Naive Elastic Net minimiert die
Residuenquadratsumme unter Nebenbedingung:

g = arg;nin {y—XB)"(y—XB)} uwdB. (1-a) Z || +a Zﬁf <t.

Jj=1 J=1

Bei o = 1 entspricht der Naive Elastic Net Schéatzer dem Ridge Schétzer und
bei a = 0 dem Lasso Schétzer. Die Minimierung der Residuenquadratsumme
unter Nebenbedingung ist dquivalent zur penalisierten Maximum-Likelihood



Schitzung mit dem Penalisierungsterm pen(B) = A 320 [8;] + Ao 320_, B7:

p p

NEN arg;ﬂin {(y —XB) Ty — XB) + M Z 185 + Az ZBJZ} ,

=1 j=1
wobel a = Ay /(A1 + A2).
Zou und Hastie (2005) zeigen durch eine Umformulierung des Naiven Elastic
Net, dass die positiven Eigenschaften des Lasso erhalten bleiben und die
Selektion von mehr als p Variablen méglich ist. Dafiir wird basierend auf
(y, X) ein kiinstlicher Datensatz (y*, X*) erzeugt:

() r-(0)

wobei dim(X*) = (n+p) x p und dim(y*) = (n+p) x 1. Mit v = A1 /v 1+ Ao
und B* = /1 + \yf ldsst sich der Naive Elastic Net Schétzer die folgt be-
rechnen:

P
B = arggglin {(y* — X*ﬂ*)T(y* - X*B*) + v Z |ﬁ]*’} ;
j=1
SNEN 1 ok

R

Die Berechnung von ,B* weist genau dieselbe Struktur wie die Berechnung

von BL auf. In der Lasso Schitzung ist der Rang des Designmatrix X gleich
n und daher maximal die Selektion von n Pradiktoren méglich. Bei dem Nai-
ven Elastic Net Schitzer weist die Designmatrix X* den Rang rg(X*) = p auf
und daher konnen bei der Naiven Elastic Net Schiatzung bis zu p Variablen
selektiert werden.

Der Gruppierungseffekt des Ridge Schétzers existiert ebenfalls fiir den Nai-
ven Elastic Net Schétzer. Dies wird von Zou und Hastie (2005) gezeigt. Ein
Gruppierungseffekt liegt immer bei streng konvexen Penalisierungsfunktio-
nen vor. Die Penalisierungsfunktion des Lasso ist konvex, aber nicht streng
konvex. Die Penalisierungsfunktionen des Ridge und des Naiven Elastic Net
sind streng konvex (Abschnitt 2.1.5). Bei Lasso existiert somit kein Gruppie-
rungseffekt und bei Ridge und dem Naiven Elastic Net schon.

Der Nachteil der Inferenz des Naiven Elastic Net ist der Effekt der Doppel-
Schrumpfung. Die Schatzung der Parameter erfolgt in zwei Stufen. Zuerst
werden fiir feste Werte von Ay, die Koeffizienten der Ridge Regression ge-
schéitzt und anschliefend die Lasso Schétzung ausgefiihrt. Es werden somit
zwei Schrumpfungsmethoden angewandt und dies fiithrt zu einer zusétzlichen
Verzerrung. Ein verbesserter Schétzer, welcher dieses Problem nicht aufweist,
ist der Elastic Net Schétzer.



2.1.4 Elastic Net Schitzer

Der Elastic Net Schétzer wird von Zou und Hastie (2005) definiert und stellt
eine verbesserte Form des Naiven Elastic Net dar. Der Naive Elastic Net
basiert auf der bereits erlauterten Schéatzung von:

A*_ - * * k) 1 * * Q% )\1 . *
B —arg;pm{@ X8y Xﬂ>+—m;|ﬁj|}.

Daraus resultiert der Elastic Net Schatzer:

B = VT f

welcher eine Reskalierung des Naiven Elastic Net Schétzers ist:

~EN ~NEN

B =(1+X)B

Diese Reskalierung impliziert, dass die positiven Charakteristika des Naiven
Elastic Net fiir das Elastic Net erhalten bleiben. Fiir den Elastic Net Schétzer
existiert der Effekt der Doppel-Schrumpfung nicht.

Eine iterative Schatzung des Elastic Net ist iiber den LARS-EN Algorithmus
(Zou und Hastie, 2005) mdoglich.

2.1.5 Orthogonales Design und Geometrie im R?

Ein orthogonales Design liegt vor, falls XX = I. Bei diesem Design las-
sen sich die Losungen der Methoden Ridge, Lasso und Naives Elastic Net
explizit darstellen. Tabelle 1 zeigt, dass jede Methode eine einfache Trans-
formation des KQ Schétzers ist (Zou und Hastie, 2005). Dabei ist z* = z fiir
z > 0 und 2" = 0 fiir 2 < 0. Die entsprechenden Schitzer sind in der Ab-

Tabelle 1: Ridge, Lasso und Elastic Net Schétzer im Orthogonalen Design

Verfahren Schéatzer pen(;)
. 5 5 KQ
Ridge Bl = 550 AB;
Lasso BE = (1879 = A1 /2)* - sign(B]9) | AlB)]
~ FKQ | _ + ~
Naives Elastic Net BJNEN = Wsign(ﬂf@) M |G| + Azﬁ?

bildung 1 eingezeichnet. Bei der Ridge Regression findet eine proportionale

Schrumpfung mittels des konstanten Faktors ﬁ statt. Bei Lasso wird der
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—— Elastic Net
....... KQ

Abbildung 1: Ridge, Lasso und Elastic Net Schétzer mit A\; = 2, Ay = 1 (Zou
und Hastie, 2005)
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KQ Schétzer um den konstanten Faktor A;/2 verschoben und das Vorzeichen
des KQ Schétzers beibehalten. Die Verschiebung endet sobald der Betrag des
KQ Schétzers kleiner A;/2 ist. Dann ist BJL = 0. Bei der Naiven Elastic Net

Schatzung wird der KQ Schétzer mit dem Faktor ﬁ geschrumpft und um

fi{\i verschoben. Fiir | Bf( ©| < Ay /2 ist der Schiitzer gleich Null.

Der Ridge, Lasso und Naiver Elastic Net Schitzer kénnen im R? auch ganz
allgemein grafisch dargestellt werden. Alle diese Schéitzer minimieren die Re-
siduenquadratsumme ), (y; — > Bj2;;)? unter einer Nebenbedingung. Die
Residuenquadratsumme lésst sich umformen zu (Tibshirani, 1996):

B-B"TXTX(B - 8" + const. (2.2)

Diese Funktion hat elliptische Konturen um B Q. Fiir verschiedene Werte
der Konstante ergeben sich verschiedene Ellipsen.

Die Nebenbedingungen der Verfahren im R? sind in der Abbildung 2 auf-
gefiihrt. Die Penalisierungsfunktion des Ridge ist ein Kreis und streng konvex.
Bei Lasso ist die Penalisierungsfunktion quadratisch und konvex, jedoch nicht
streng konvex. Die Funktion ist in den Achsenschnittpunkten nicht differen-
zierbar. Die Penalisierungsfunktion des Naiven Elastic Net liegt erwartungs-
geméfl zwischen der Ridge und Lasso Penalisierung. Die Funktion ist streng
konvex und in den Achsenschnittpunkten nicht differenzierbar. Aus der stren-
gen Konvexitit der Ridge und Elastic Net Penalisierungsfunktion folgt der
Gruppierungseffekt dieser Schatzverfahren. Aus der Nicht-Differenzierbarkeit
in den Achsenschnittpunkten folgt die Variablenselektion des Lasso und Ela-
stic Net. Grafisch ist der Koeffizientenschéitzer der Punkt, an dem die Ellipse
der Residuenquadratsumme (2.2) die Penalisierungsfunktion beriihrt.

2.2 Bayesianische Inferenz

In dem Teilkapitel 2.1 wurden die Methoden Ridge, Lasso und Elastic Net
frequentistisch eingefiihrt. Diese Modelle kénnen auch mittels Bayes Infe-
renz geschétzt werden. Die Bayes Inferenz wird in diesem Teilkapitel be-
schrieben. In Abschnitt 2.2.1 werden die Bayesianischen Punktschétzer und
deren Vertrauensintervalle vorgestellt. Die Annahmen, welche a priori fiir
die Schatzung eines Bayesianischen Modells benotigt werden, werden in Ab-
schnitt 2.2.2 erklart. Die Beschreibung des Bayesianischen linearen Modells
erfolgt in Abschnitt 2.2.3. Die Schétzung der Parameter von Bayesianischen
Modellen erfolgt iiber Markov Chain Monte Carlo (MCMC) Methoden (Ab-
schnitt 2.2.4). Die Beurteilung der Modellgiite kann iiber die in Abschnitt 2.2.5
beschriebenen Methoden erfolgen.
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---- Ridge
--- Lasso
—— Elastic Net

Abbildung 2: Penalisierungsfunktion des Ridge, Lasso und Elastic Net im R?
(Zou und Hastie, 2005)
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Riiger (1999) und Fahrmeir et al. (2007) geben eine Einfiihrung in die Bayes
Inferenz. Die Bayes Inferenz stiitzt sich auf ein Theorem ihres Namensgebers
Thomas Bayes, dem Satz von Bayes:

~—

_ ply,0

 plo)p®)
p(y)
 plon®)
[ p(yl0)p(6)do’

Dabei werden sowohl die unbekannten Parameter 8 = (y,...,0,)" als auch
die Beobachtungen y = (y1,...,%,)" bedingt auf die Parameter als Zufalls-
zahlen betrachtet und dementsprechend Verteilungen fiir diese angenommen.
Dabei steht p(y|@) fiir die Datenverteilung, p(6) fiir die Priori-Verteilung
und p(@y) fiir die Posteriori-Verteilung. Der Term 1/p(y) ist eine Konstante
beziiglich § und die Datenverteilung ist proportional zur Likelihood L(). Es
gilt entsprechend die folgende Proportionalitét:

p(Bly) < p(y|0)p(6)
x L(0)p(9).

In der Bayes Inferenz kann die Moglichkeit eine Priori-Verteilung zu spezi-
fizieren sowohl Vorteil als auch Nachteil sein. Bei einer realitdtsnahen Wahl
der Priori-Verteilung verbessert sich die Aussagekraft des Modells. Bei einer
Fehlspezifikation der Priori-Verteilung hingegen kann das resultierende Mo-
dell die wahren zugrundeliegenden Sachverhalte eventuell nur unzureichend
beschreiben. Die Berechnungszeit ist in der Bayes Inferenz fiir den Fall, dass
die Posteriori-Verteilung unbekannt ist, langsamer als die Berechnungszeit in
der frequentistischen Inferenz.

2.2.1 Punktschitzer und Vertrauensintervalle

Die Parameterschétzung in der Bayesianischen Inferenz beruht auf der Pos-
teriori-Verteilung. Es existieren drei mogliche Punktschétzer. Diese sind der
Posteriori-Erwartungswert, der Posteriori-Modus und der Posteriori-Median.
Der Posteriori-Erwartungswert ist definiert durch:

b= E(0ly) = / 0p(Oly) b = c - / 0.0(y16) p(6) b

und der Posteriori-Modus wird bestimmt iiber:

~

6 = arggnaxp(ﬂy) = argznaxp(yl9)p(9)~
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Diese Schitzer geben aber keine Auskunft iiber die Schéitzgenauigkeit. Die
Genauigkeit der Schiatzungen kann iiber die Vertrauensintervalle erfasst wer-
den. Das (1 — «a)-Vertrauensintervall ist wie folgt definiert:

POeCly)>1—a,

beziehungsweise:
| vowae=1-a.
Cly)

wobei der Vertrauensbereich C' eine Teilmenge des Parameterraums © ist.
Der Vertrauensbereich fiir 6 ist also so definiert, dass 1 — « die Posteriori
Wahrscheinlichkeit ist, dass @ € C(y). Es kann folglich bei der Bayes Inferenz
eine direkte Wahrscheinlichkeitsaussage {iber die Parameter getroffen werden.
Der Zusammenhang zwischen dem Bayesianischen Posteriori-Modus Schétzer
und dem frequentistischen Maximum-Likelihood Schétzer kann wie folgt er-
lautert werden:

~

0= argmax {p(yl0)p(0)} = argmax {1(6) — pen(6)},
mit 1(8) = log p(y|@) und pen(d) = —log p(8).

2.2.2 Priori Annahmen

Zur Berechnung der Posteriori-Verteilung und somit der Parameterschétzer
muss das Beobachtungsmodell und die Priori-Verteilung fiir die unbekann-
ten Parameter spezifiziert werden. In der Priori-Verteilung soll das Vorwissen
iiber die Parameter abgebildet werden. Haufig gewéhlte Priori-Verteilungen
sind die flache Priori und die konjugierte Priori.

Die flache Priori entspricht einer Gleichverteilung des Parameters auf dem
Parameterraum © und ist konstant beziiglich des Parameters. Je nach vor-
liegendem Parameterraum koénnen dies impropere Verteilungen sein, wel-
che keine echten Wahrscheinlichkeitsverteilungen darstellen. Flache Priori-
Verteilungen driicken ein a priori Nichtwissen (Riger, 1999) aus. Es exi-
stieren neben der Gleichverteilung auch noch andere Verteilungen, die ein a
priori Nichtwissen signalisieren. Genaueres Vorgehen und Beispiele fiir nicht-
informative Priori-Verteilungen werden von Riiger (1999) beschrieben.

Eine Alternative sind die konjugierten Priori-Verteilungen. Eine Priori-Ver-
teilung wird als zu einer Datenverteilung konjugiert bezeichnet, falls die dar-
aus folgende Posteriori-Verteilung zum selben Verteilungstyp gehort wie die
Priori-Verteilung. Durch die Annahme einer konjugierten Priori ist die Ver-
teilungsfamilie der Posteriori-Verteilung bekannt. Die Parameterschéitzung
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ist bei einem bekannten Posteriori-Verteilungstyp einfacher, da die Integrati-
on und das Ziehen von Zufallszahlen aus einer bekannten Verteilung fiir die
MCMC-Methoden (Abschnitt 2.2.4) zumeist implementiert sind.

Die hierarchischen Modelle des Bayesianischen Ridge, des Bayesianischen
Lasso und des Bayesianischen Elastic Net sind sowohl iiber konjugierte als
auch iiber nichtinformative Priori-Verteilungen definiert.

2.2.3 Bayesianisches lineares Modell

Das multiple lineare Regressionsmodell kann nicht nur frequentistisch son-
dern auch analog Bayesianisch formuliert werden. Im Bayesianischen Ansatz
wird die Zielgrofle als bedingte Verteilung der Parameter formuliert:

y|B, 0 ~ N(XB, oI

und somit folgt fiir die bedingte Verteilung der Zielvariablen:

P18, %) o (o) Pexp(—5 5 (y — XB) (y — XB).

Die unbekannten Parameter 8 und o2 wurden in den frequentistischen Mo-
dellen als fest angenommen. Im Bayesianischen Ansatz werden die Parameter
als Zufallsvariablen angesehen auf Grund dessen auch Verteilungen fiir diese
angenommen. Die gemeinsame Priori-Verteilung der unbekannten Parameter
wird berechnet iiber:

p(B,0%) = p(Blo*)p(c?).
Bei einer Normalverteilungsannahme fiir das Beobachtungsmodell ist eine

konjugierte Priori-Verteilung fiir @ = (8, %) die Normal-Inverse Chi-Quadrat-
Verteilung (Fahrmeir et al., 2007). Fiir die gemeinsame Posteriori-Verteilung:

p(B.o°ly) < p(y|B.o?) - p(B, o) = p(y|B. o*)p(Blo*)p(c?)

erhélt man die Dichte einer Normal-Inverse Chi-Quadrat-Verteilung.

2.2.4 Markov Chain Monte Carlo Methoden

Die Posteriori-Verteilung kann analytisch und numerisch unzugénglich sein,
sodass direkt keine Statistik der Posteriori-Verteilung berechnet werden kann.
Eine iterative Losung dieses Problems bieten die MCMC-Methoden. Eine Be-
schreibung der MCMC-Methoden wird von Robert und Casella (2004) und
Fahrmeir et al. (2007) gegeben. Diese Methoden beruhen auf der Simulation
von Zufallszahlen aus der Posteriori-Verteilung. Basierend auf der Verteilung
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der Zufallszahlen kénnen die Statistiken berechnet werden. Die Berechnung
der Zufallszahlen aus der Posteriori-Verteilung erfolgt jedoch ohne direk-
tes Ziehen aus der Posteriori-Verteilung. Stattdessen wird eine ergodische
Markov Kette erzeugt, deren stationdre Verteilung die Posteriori-Verteilung
ist. Die Markov-Kette konvergiert dann in Verteilung gegen die Posteriori-
Verteilung. Um sicher zu stellen, Zufallszahlen aus einer akzeptabel approxi-
mierten Posteriori-Verteilung zu erhalten, sollte eine gewisse Konvergenzpha-
se (engl.: burn in) gewihrt werden. Die Glieder einer Markov Kette sind per
Definition voneinander abhéngig. Um moglichst unabhéngige Stichproben
aus der Markov Kette zu analysieren, kann die Markov Kette ausgediinnt wer-
den, indem beispielsweise nur jede zwanzigste Ziehung beriicksichtigt wird.
Die bekanntesten MCMC-Methoden sind der Metropolis-Hastings-Algorith-
mus von Metropolis et al. (1953) und Hastings (1970) und der Gibbs-Sampler
von Geman und Geman (1984). Diese werden im Folgenden néher beschrie-
ben.

Metropolis-Hastings-Algorithmus
Der Metropolis-Hastings-Algorithmus erzeugt wie im Folgenden beschrieben
Zufallszahlen aus der Posteriori-Verteilung (Fahrmeir et al., 2007):

1. Wihle einen Startwert 8 und die Anzahl der Iterationen 7. Setze
t=1.

2. Ziehe eine Zufallszahl 8* aus der Vorschlagsdichte ¢(8*(0%~") und ak-
zeptiere diese als neuen Zustand ) mit Wahrscheinlichkeit o/(6*6¢~Y),
anderenfalls setze 8¢ = 9(t—1).

3. Falls t = T beende den Algorithmus, ansonsten setze ¢t = t + 1 und
fahre fort mit 2.

Innerhalb des Algorithmus wird nicht unmittelbar aus der Posteriori-Vertei-
lung gezogen, sondern aus einer Vorschlagsdichte ¢(6* |«9(t_1)). Die Vorschlags-
dichte ist von dem aktuellen Zustand ¢~ abhingig und sollte so gewihlt
werden, dass aus ihr leicht Zufallszahlen gezogen werden kénnen. Die vorge-
schlagenen Ziehungen 8* werden jeweils mit der Akzeptanzwahrscheinlichkeit

(0°[y) 46 [6")
Q=1 _ p(0~ly) q(0" 10"
o107 ”““{p<0<t—1>|y>q<e*|0<t—1>>’1}

als neue Ziehungen angenommen. Auf diese Weise wird eine Markov Kette
generiert. Die Zufallszahlen @%+D) ) kénnen nach der Konvergenz-
phase ty > 0 als Stichprobe aus der Posteriori-Verteilung p(@ly) betrach-
tet werden. Die hintereinander gezogenen Zufallszahlen sollten moglichst un-
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abhéngig voneinander sein, sodass die benttigte Anzahl an Stichproben zur
genauen Schitzung der Posteriori Figenschaften gering ist.

Gibbs-Sampler

Der Gibbs-Sampler stellt eine Alternative zum Metropolis-Hastings-Algorith-
mus dar. Dieser Algorithmus ist insbesondere dann dem Metropolis-Hastings-
Algorithmus vorzuziehen, wenn der Parametervektor hochdimensional ist.
Der Gibbs-Sampler setzt voraus, dass die vollstdndig bedingten Dichten be-
kannt sind. Bei den Gibbs-Sampler geht der Vektor € nicht im Ganzen son-
dern iiber die S Teilvektoren 61, ...,0g ein.

Der Gibbs-Sampler simuliert auf folgende Weise Zufallszahlen der Posteriori-
Verteilung (Fahrmeir et al., 2007):

1. Wihle Startwerte 9§°), - ,Og)) und die Anzahl der Iterationen T'. Setze
t=1.

2. Fiirs=1,...,S: Ziehe Zufallszahlen 6 aus der vollstéandig bedingten
Dichte
t t t—1 t—1
p(6.06)", ... 600,005,657 y).

Man beachte, dass in der Bedingung jeweils die momentan aktuellen
Zustande verwendet werden.

3. Falls t = T beende den Algorithmus, ansonsten setze t = ¢t + 1 und
fahre fort mit 2.

Innerhalb des Algorithmus wird nicht direkt aus der Posteriori-Verteilung ge-
zogen, sondern aus den vollstindig bedingten Dichten p(64]-), ... p(@s|-). Die
Zufallszahlen 0?0“’, o ,0§T> konnen nach der Konvergenzphase t( als Stich-
proben aus der Marginalverteilung von 6|y betrachtet werden. Im Vergleich
zum Metropolis-Hastings-Algorithmus wird keine der Ziehungen verworfen,
beziehungsweise liegt die Akzeptanzwahrscheinlichkeit hier bei Eins.

2.2.5 Modellkomplexitit und Modellanpassung

Bayesianische Modelle konnen {iber das Devianz Informationskriterium und
die Anzahl effektiver Parameter verglichen und beurteilt werden. Fiir den
Vergleich Bayesianischer und frequentistischer Modelle eignet sich eine Kreuz-
validierung mit den Kriterien Korrelation und Mittlerer Quadratischer Feh-
ler. Diese Komplexitéts- und Anpassungskriterien werden in dem folgenden
Abschnitt vorgestellt.

Das Devianz Informationskriterium wurde von Spiegelhalter et al. (2002)
zur Beurteilung der Modellgiite von Bayesianischen Modellen eingefiihrt. Es
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basiert, wie die meisten Informationskriterien, auf der gleichzeitigen Betrach-
tung der Modellanpassung und der Modellkomplexitéit. Die Komplexitéat wird
iiber die Anzahl der effektiven Parameter pp spezifiziert:

pp = Eg[—2log p(y|8)] + 2log p(y|6)

B p(@ly) p(@Bly)
= Ly [—QIOg () } + 2log —p(é)

Dabei steht @ fiir den Posteriori-Erwartungswert der Parameter E(fy). Al-
ternativ konnte auch der Posteriori-Modus oder Median gewéhlt werden. Die
Anzahl der effektiven Parameter lidsst sich auch {iber die unstandardisierte
Devianz D(0) = —2log p(y|@) als die Differenz zwischen der erwarteten De-
vianz und der Devianz des Erwartungswerts berechnen:

pp=D(®) — D@).

Die erwartete Posteriori-Devianz kann als Maf3 fiir die Bayesianische Mo-
dellanpassung verwendet werden. Zusammen mit der Anzahl der effektiven
Parameter resultiert das Devianz Informationskriterium:

DIC = D) + pp
=2D(0) — D(#)

Bei der Inferenz basierend auf Bayesianischen Modellen mit MCMC-Metho-
den ist das DIC schnell und einfach berechenbar. Es seien 8, ... 8 die
Zufallszahlen aus der Posteriori-Verteilung, welche wahrend eines MCMC-
Algorithmus gezogen wurden. Die erwartete Posteriori-Devianz wird {iber
den Mittelwert der Devianzen der Zufallsstichproben D(8) = T S D(6W)
und der Posteriori-Erwartungswert der Parameter iiber den Mittelwert 8 =
% Z?zl 0 geschiitzt. Das Devianz Informationskriterium, basierend auf den
Posteriori Stichproben des MCMC-Algorithmus, errechnet sich dementspre-

chend iiber:
1 < 1 <& "
DIC=2-—-Y D@Y)—D| = o .
C T; (6©) thlo

Ein Modell mit einem kleinen DIC-Wert ist einem Modell mit einem gréfleren
DIC-Wert vorzuziehen (Spiegelhalter et al., 2002).

Das DIC und pp sind nur fiir den Vergleich Bayesianischer Modelle geeignet
und geben keine Information iiber die Vorhersagegenauigkeit des Modells.
Um die Vorhersagegiite frequentistischer und Bayesianischer Modelle zu be-
stimmen koénnen die Kriterien Korrelation und Mittlerer Quadratischer Feh-
ler herangezogen werden.
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Im Folgenden wird die Vorhersagegenauigkeit des Modells, gemessen als die
Korrelation zwischen den realen Daten y und den durch das Modell progno-
stizierten Werten g, betrachtet. Der Bravais-Pearson Korrelationskoeffizient
ist wie folgt definiert (Fahrmeir et al., 2003):

P >y —9) (5 — 9) .
Vi = 92— 9)?

Da ein Regressionsmodell speziell an die vorliegenden Daten angepasst wird
sollte zur Beurteilung der Vorhersagegiite nicht der volle Datensatz analysiert
werden, sondern die Daten in Trainings- und Validierungsdaten getrennt wer-
den. Auf den Trainingsdaten wird das Regressionsmodell angepasst und mit-
tels dieses Modells eine Vorhersage fiir die Validierungsdaten durchgefiihrt.
Anschliefend konnen die realen Werte der Validierungsdaten mit den progno-
stizierten Werten der Validierungsdaten verglichen werden. Um ein valides
Ergebnis zu erhalten sollte dies mehrfach fiir verschiedene Validierungsda-
tensédtze durchgefithrt werden. Als systematische Methodik empfiehlt sich
die Kreuzvalidierung (engl.: cross-validation, CV), welche unter anderem von
Fahrmeir et al. (2007) und Hastie et al. (2009) beschrieben wird. Im Weiteren
wird kurz und allgemein die K-fache Kreuzvalidierung beschrieben:

[a ] Zerlegung der Daten in K Teildatensétze circa gleicher GroSe.

[b ] 1. Teildatensatz = Validierungsstichprobe, Parameterschitzung basie-
rend auf den 2.-K. Teildatensétzen, Daten der Validierungsstichprobe
prognostizieren, Prognosemaf} z.B. Korrelation p; berechnen.

[c | Jeweils 2. bis K. Teildatensatz als Validierungsstichprobe verwenden.

[d ] Berechnung der Vorhersagegenauigkeit als p = Zle pr mit dem
Prognosemaf py.

Ein Modell mit einem grofleren p-Wert ist einem Modell mit einem kleineren
p-Wert vorzuziehen. Alternativ zur Korrelation kann der Mittlere Quadrati-
sche Fehler betrachtet werden. Dieser ist definiert durch:

n

1 X

n <
=1

Hastie et al. (2009) schlagen vor, die Daten in einen Trainingsdatensatz von
50%, einen Validierungsdatensatz von 25% und einen Testdatensatz von 25%
aufzuteilen. Auf dem Trainingsdatensatz wird das Modell angepasst. Sei das
Maf fiir die Vorhersagegenauigkeit der Mittlere Quadratische Fehler, so wird
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der Validierungsdatensatz verwendet um den Vorhersagefehler fiir die Modell-
selektion zu schétzen. Mittels des Testdatensatzes wird der Generalisierungs-
fehler des Endmodells bestimmt.

2.3 Aufbau des Bayesianischen Elastic Net

Das Bayesianische Elastic Net ist eine Kombination des Bayesianischen Ridge
und des Bayesianischen Lasso. Alle drei Ansétze basieren auf dem Bayesia-
nischen linearen Modell, welches in dem Abschnitt 2.2.3 erldutert wurde.
Die Beschreibung des Bayesianischen Ridge erfolgt in dem Abschnitt 2.3.1
und die des Bayesianischen Lasso findet in Abschnitt 2.3.2 statt. Vorschliage
fiir die Wahl der Hyperparameter werden in Abschnitt 2.3.3 gegeben. Das
Bayesianische Elastic Net wird in Abschnitt 2.3.4 erlautert.

2.3.1 Bayesianisches Ridge

Die Bayesianische Ridge Regression wird von Fahrmeir et al. (2010) und
Pérez et al. (2010) beschrieben. Die Likelihood entspricht einer Normalver-
teilung (Abschnitt 2.2.3):

n

p(y|B, o?) HN<yz|ZxUBJ7 >

Der Penalisierungsterm der frequentistischen Betrachtung pen(8) = \- 8"
ist éiquivalent zur Normalverteilungspriori fiir 8 mit Erwartungswert 0 und
Varianz aﬁ fiir jeden Marker:

P
|05 HN 5510, 0'5
7j=1

Die Information dieser Priori-Verteilung steigt an je kleiner die Varianz a/%
ist. Die gemeinsame Posteriori-Verteilung der unbekannten Parameter wird
im Allgemeinen errechnet iiber:

p(B, 02, a3ly) = p(ylB,0?) - p(Blog) - p(a3) - p(a?).

Bei der Annahme von Konstanten fiir die Hyperparameter entspricht der
Posteriori-Modus und Erwartungswert von 8 dem frequentistischen Ridge
Schéatzer:
R o2
E@Bly) =8 = (X'X+ U—%I)ley,
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mit A = o2/ ag. Die Bayesianische Betrachtung erlaubt zusétzlich die Spezifi-
zierung von Priori-Verteilungen fiir die Parameter o7 und o3. Die konjugierte
Verteilung zur Normalverteilung ist die Inverse x2-Verteilung. A priori wer-
den deshalb die folgenden Priori-Verteilungen spezifiziert:

p(a?) = X_2(062|df6786)7
p(og) = x *(o3ldfs, Sp),

mit den Freiheitsgraden df. und dfs und den Skalierungsparametern S, und
Sp.

2.3.2 Bayesianisches Lasso

Park und Casella (2008), de los Campos et al. (2009) und Fahrmeir et al.
(2010) definieren das Bayesianische Lasso. Der Penalisierungsterm der fre-
quentistischen Betrachtung pen(8) = A Z§:1 |5;] ist dquivalent zur Laplace
Priori-Verteilung fiir §;,j = 1,...,p (Fahrmeir et al., 2010):

B;|A ~ Laplace(0, \)

und
p

p(BIA) = H (=AlBj]) o< exp( )\ZWJ

wly

Die Laplace Verteilung hat mehr Masse direkt um Null und mehr Masse in
den Enden als die Normalverteilung. Dadurch tendiert das Bayesianische Las-
so dazu kleine Effekte stéirker und grofie Effekte schwécher zu schrumpfen als
das Bayesianische Ridge. Bei der Annahme von Konstanten fiir die Hyper-
parameter entspricht die Posteriori-Modus Schitzung der frequentistischen
Lasso Schétzung:

p(B; Aly) oceXp< 557

L w-x8"w Xﬂ)+AZ|ﬁjl)-const-

Die Laplaceverteilung kann als skalierte Mischung von Normalverteilungen

mit einer Exponentialverteilung als Mischungsdichte formuliert werden (Park
und Casella, 2008):

exp(—(ﬁ?/Qa?)) {/\2 )\_2 9

2
27mj

A o0
2exp(—\B:]) =
2exp( 1851) /0
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Das hierarchische Modell lautet damit:

p(y|ﬂ7062) N(Z/i|$?,3a03)’

I

i=1

p(Blo?, T?) N(B;10,7}0?),

I
zhs

plo?) = x"*(olldf., S),

Exp(77|)),

<
Il
—

p(*[A) =

T

P
o

p(>\2) = ()\2’%,@2)-

Durch die markerspezifische Varianz 7']-203 der bedingten Priori-Verteilung
p(B|o?,7%) wird, im Vergleich zum Bayesianischen Ridge, eine markerspezifi-
sche Schrumpfung der Koeffizientenschétzer erlaubt. Je kleiner der 7; Para-
meter desto informativer ist die Priori-Verteilung. Fiir die Priori-Verteilung
von p(A?) kann anstelle der von Park und Casella (2008) vorgeschlagenen
Gammaverteilung auch eine Betaverteilung verwendet werden (de los Cam-
pos et al., 2009).

Im Bayesianischen Lasso ist, im Vergleich zum frequentistischen Lasso die
Anzahl der selektierbaren Pridiktoren nicht durch die Anzahl der Beobach-
tungen beschriankt (de los Campos et al., 2009).

2.3.3 Wahl der Hyperparameter

Fiir die Wahl der Hyperparameter des Bayesianischen Lasso und des Bayesia-
nischen Ridge schlagen Pérez et al. (2010) die sogenannten optimalen Para-
meter vor. Die Wahl der optimalen Parameter stiitzt sich auf die Heritabilitét
(Griffiths et al., 2012). Die Heritabilitéit basiert auf der Annahme, dass die
phénotypische Auspragung (P) von den genotypischen Ausprigungen (G)
und der Umwelt (€) abhiingt. Die phénotypische Varianz o2 ist, falls keine
Genotyp-Umwelt-Interaktion vorliegt, durch die Summe der genotypischen
Varianz und der Umwelt-Varianz definiert: 0% = 02 + o2. Die Heritabilitét
h?, also der Anteil der genotypischen Varianz an der phinotypischen Varianz,
ist definiert durch:

oG _ _ 0%

2 T 2 2°
op 05+ o0;

h? = (2.3)

Durch Umformen der Gleichungen (2.3) ergibt sich fiir die genotypische Vari-
anz die Schiitzung 02 = 0% - h? und fiir die nicht genetische Umwelt-Varianz
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folgt:
o2 = op(1 —h?). (2.4)
Der Skalierungsparameter der inversen x2-Priori von o wird geschiitzt durch:
Se = E(0?) - (df. +2),

wobei die Schitzung des Erwartungswert von o2 iiber die nicht genetische

Umwelt-Varianz (2.4) erfolgt und fiir den Freiheitsgrad df. = 4.1 angenom-

men wird. Bei der inversen y*-Priori von o3 lautet der Schiitzer des Skalie-

rungsparameters:

0% (dfs +2)
;%5

Sg =

?

wobei fiir den Freiheitsgrad dfs = 4.1 angenommen wird. Der optimale Pa-
rameter \ wird wie folgt geschétzt:

1- 1 — ,
A= 2D 5 (2.5)
J

2.3.4 Bayesianischer Elastic Net Schitzer

Das Bayesianische Elastic Net kombiniert die Methode des Bayesianischen
Ridge und des Bayesianischen Lasso. Durch die Kombination dieser Metho-
den besitzt das Bayesianische Elastic Net sowohl die positiven Eigenschaften
des Lasso als auch die Vorteile des Ridge. Li und Lin (2010) definieren den
Bayesianischen Elastic Net Schétzer und beschreiben die Inferenz dieser Me-
thode.

Der Penalisierungsterm der frequentistischen Betrachtung:

pen(B) =\ Y (B + X >
j=1 =1

ist dquivalent zur Kombination der Normalverteilungspriori und Laplacever-
teilungspriori fiir B:

p

p(Blo) o exp {—T;w D181+ Zﬁ?)} .

j=1

Wird eine Konstante fiir die Priori-Verteilung p(c?) angenommen, so ent-
spricht der Posteriori-Modus Schétzer dem frequentistischen Elastic Net Scha-
tzer. 1i und Lin (2010) spezifizieren die nichtinformative Priori-Verteilung
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Elastic Net Priori-Verteilungen

)\1=O.25 )\1=1.5
107 A2=0.1 107 A=0.1
---- A=05 ---- A\=05
)\2:1 )\2:]_
0.8 —- Ay=5 0.8 B
0.6 - 0.6

0.4 04

0.2 + v 0.2 4

004 o 004 —— D

Abbildung 3: Vergleich der Priori-Verteilungen des Bayesianischen Elastic
Net fiir verschiedene Werte von A\; und A,

p(0?) = 1/0?. In der Abbildung 3 werden Priori-Verteilungen fiir 8 des
Bayesianischen Elastic Net fiir verschiedene Werte von A\; und Ay gezeigt.
Je grofler der \; Parameter oder je grofler der A\, Parameter, desto mehr
Masse der Priori-Verteilung konzentriert sich um Null und desto stérker ist
die Penalisierung. Finen Vergleich der Priori-Verteilungen des Bayesianischen
Ridge, des Bayesianischen Lasso und des Bayesianischen Elastic Net zeigt
Abbildung 4. Die Priori-Verteilung der Ridge Schéitzung ist in Null diffe-
renzierbar. Bei dem Lasso und dem FElastic Net sind die Priori-Verteilungen
nicht in Null differenzierbar. Dies fithrt dazu, dass bei der Ridge Schétzung
keine Variablenselektion erfolgt und bei der Lasso beziehungsweise Elastic
Net Schitzung hingegen schon. Die Priori-Verteilung des Elastic Net ist fla-
cher als die Priori-Verteilung des Lasso. Die Variablenselektion ist bei dem
Lasso stéarker als bei dem Elastic Net.

Die marginale Posteriori-Verteilung fiir 8 ist wie folgt definiert:

e}

p(80) = [ 0lB.%) (BI0") - pioio =
o0 . T . p ' p 2
COA A, %) (y —XB) (y — XB) + Alj; 16;] + AQJ; 8 o
/ “@rerrr P T 25? p(o®) do?,
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Priori-Verteilungen

05
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0.3 -
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0.2 -
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0.0 -

Abbildung 4: Vergleich der Priori-Verteilungen des Bayesianischen Ridge, des
Bayesianischen Lasso und des Bayesianischen Elastic Net fir Ay =1, Ay =1

wobei C(\q, Ag, 02) eine Normalisierungskonstante darstellt. Eine geschlosse-
ne Darstellung der Posteriori Schétzer basierend auf deren marginaler Poster-
iori-Verteilung ist nicht immer moglich. Fiir die Inferenz kann deswegen der
Gibbs-Sampler verwendet werden. Im Gibbs-Sampler werden die vollsténdig
bedingten Dichten der Parameter verwendet. Auf Grund der |5;| wiirde aus
dem hier vorgestellten hierarchischen Modell eine unbekannte vollstédndig be-
dingte Verteilung folgen. Deshalb schlagen Li und Lin (2010) ein anderes
hierarchisches Modell vor, welches auf einem Umformulierung der Priori-
Verteilung p(B|o?) beruht:

p o9 2 2
t B5 (Aa ¢ _ 1 A

C(Ar, Mg, 02 N e o) A
(A, Q’U)E/l t—1eXp{ 2 (02t—1>} PN\ 202 1),

Dies zeigt, dass die Verteilung von ;|0 als eine Mischung von Normalvertei-
lungen N(0, 0%(t—1)/(Aat)) darstellt werden kann, wobei die Mischverteilung
eine auf (1, co)-trunkierte Gammaverteilung mit Gestaltparameter 0.5 und
Skalierungsparameter 8\y0% /A1 ist. Daraus resultiert folgendes hierarchisches
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Modell:

j=1
1 8)y02
pirle?) =TT 76 (5. 255 (19))
j=1 1
1
p(02):;-

Die vollsténdig bedingten Dichten sind folgende:
p(Bly, o 7) = N(A™'X"y,0*A™") , mit

A = XX + \ydiag

j=1

p 2
plr=1ln.o?8) = T[G16 (A= o= 2= 22,
1 FHp+1
setwsn = () o (

exp [—% {(y ~XB) (y—XB)+ A2 TT—ilﬁf +

20

A

4Ny

p

>

J=1

wobei Ty (a,z) = [t*'e~!dt und GIG(\, v, x) die generalisierte inverse

Gammaverteilung mit der Dichte:

A2
plol ) = e Ot { - St v}

und K, (-) die modifizierte Bessel Funktion mit Ordnung .

Hofmarcher et al. (2011) schlagen vor fiir das Bayesianische Elastic Net eine

B Priori-Verteilung zu wihlen, welche einer spike & slab Mischung entspricht.

Fiir jedes 8; wird eine Mischverteilung aus einer Punktmasse auf Null I und

der iiblichen (3; Priori-Verteilung angenommen:

p(Bilj,m5,0%) ~ (1 =) - To + 75 - p(Bj]75, %)

und fiir v; wird eine Bernoulli Priori-Verteilung gewdhlt: p(v;) = Be(v),
wobei v = p/p. Dabei kann p als die a priori erwartete Anzahl der Parameter
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ungleich Null interpretiert werden. Auf diese Weise ist es moglich, dass ein
a priori Wissen iiber die Modellgrole in die Inferenz eingeht. Sollte kein a
priori Wissen iiber die Modellgrole vorliegen, so resultiert mit p = p das
klassische Bayesianische Elastic Net. Bei der Inferenz der Arabidopsis liegt
kein Vorwissen iiber die Modellgroie vor.

Wahl der Penalisierungsparameter

Die Wahl der Penalisierungsparamter entscheidet iiber die Form der Priori-
Verteilung von B und ist somit sehr wichtig fiir die Inferenz. Die Wahl der
Penalisierungsparameter wird empirisch und iterativ {iber den Monte Car-
lo EM Algorithmus (Casella, 2001) getroffen. Dieser Algorithmus maximiert
approximativ die marginale Likelihood. Grundidee in der Penalisierungspa-
rameterschitzung durch den Monte Carlo EM Algorithmus ist es 8,7, 02 als
fehlende Daten und (A, A\2) als feste Parameter zu behandeln. Die Likelihood,
ohne Konstanten beziiglich der festen Parameter, ist folgende (Li und Lin,
2010):

v i 24p+l - 1 2 —pH 1 1/2.
T\ o2 v 27 802 \s ey 7, — 1

und die logarithmierte Likelihood entsprechend:

1 2 b ) 1 2 P
plog (A1) — plog Ty A A2 Z g2 AL T
Tj — 1 J 2 1

2802\, ) 202 <
7j=1

Die auf A*~D = (A% A%y und ¥ bedingte logarithmierte Likelihood im
k-ten Schritt des Monte Carlo EM Algorithmus lautet wie folgt:

27 80'2)\2
)\2 P 75 ﬁ2 )\2 b T5
2= E|—L DI \Gk-1) y| - 2L E [_J A\k=1) y] t =
2 Z:; |:,7_]_10_2| ’ 8)\2; 0_2| ) + cons

= ROANFY) 4 const.

1 X2
QAINEDY = plog (\;) — pE {logFU (— 1 ) \A(kl),Y} -
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Dies ist der E-Schritt des EM-Algorithmus. In dem M-Schritt wird R(A|JA*~Y)
maximiert:

AR p  p\ 1 22 - A2
g A AT e . A=D1y
M a Dy [{ U<2’802)\2 ?\ 8o2n, | ’
S [Zne]
4)\2 ) ) )
-1
ﬁ = _p_A%E 1 A_% b A i AE-D) y
d)\g 8)\% 2’ 80'2)\2 80’2)\2 0'2 ’
1¢ 7j (k—1) AT - Tj 1y (k—1)
el ] g e ]

mit ¢(t) = t~/2e~t,

Eine andere Moglichkeit die Penalisierungsparameter zu spezifizieren ist es,
Priori-Verteilungen fiir diese zu wéhlen. Folgende Priori-Verteilungen kénnten
hierfiir gewéhlt werden (Li und Lin, 2010):

p()‘%) = Ga(a’ b)>
p(A2) = GIG(1, ¢, d).

Hofmarcher et al. (2011) verwenden in ihrer Datenauswertung ebenfalls Priori-
Verteilungen fiir die Penalisierungsparameter, welche jedoch so gewihlt wer-
den, dass der Lasso und Ridge Parameter in einem gewissen Zusammenhang
stehen. Hierfiir werden die Penalisierungsparameter A\; und \; so repara-
metrisiert, dass Ay = a - A und Ay = (1 — a)A. Fir a wird a priori eine
auf (0, 1)-trunkierte Normalverteilung mit Erwartungswert 0.5 und Varianz
0.000001 angenommen. Dies scheint vorerst eine strenge Annahme zu sein.
ODb dies tatséchlich eine strenge Einschrinkung ist wird in der Inferenz (Kapi-
tel 4) iiber verschiedene Annahmen fiir den Erwartungswert und die Varianz
iiberpriift. Fiir A? wird a priori die Gamma-Priori p(A\?) = Ga(0.1,0.1) spe-
zifiziert. Desweiteren wird a priori fiir den Intercept die Priori-Verteilung
p(p) = N(0,0.000001) angenommen. Diese Normalverteilungspriori hat fast
die gesamte Masse auf Null. Diese Modellierung ist addquat fiir standardisier-
te Groflen. Desweiteren wird folgende Priori-Verteilung der Varianz definiert:
p(0?) = Ga(0.001,0.001).

Durch die simultane Schéitzung von A; und Ay im Bayesianischen Ansatz
tritt, im Vergleich zur frequentistischen Schitzung, kein Effekt der Doppel-
Schrumpfung auf.
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2.4 Generalisiertes Elastic Net

Das Generalisierte Elastic Net wurde von Ishwaran und Rao (2011) eingefiihrt
und ist eine geeignete Inferenzmethode bei hochdimensionalen Problemen.
Zur Definition und Implementierung des Generalisierten Elastic Net wer-
den Bayesianische Modell Mittelwert (engl.: bayesian model average, BMA)
Schéitzer genutzt.

In Abschnitt 2.1.1 wurde der Ridge Schétzer erlautert. Dieser Schétzer kann
auch allgemeiner mittels individueller Penalisierungsparamter fiir jeden Ko-
effizientenschétzer wie folgt formuliert werden:

BGR = argmin{(y — XB) " (y — XB) + Z )‘Jﬂ;}

BERP
= (XTX+A)'XTy. (2.6)

Dabei wird mit A = diag{)\;}\_;, A; > 0 die Ridge Matrix der Penalisie-
rungsparameter bezeichnet. Diese verallgemeinerte Form der Ridge Methode
wird als Generalisierte Ridge Regression (engl.: generalized ridge regressi-
on, GRR) bezeichnet. Ishwaran und Rao (2011) zeigen, dass der Genera-
lisierte Ridge Schétzer eine Schrumpfung der Regressionskoeffizienten auf
exakt Null zuldsst. Dies konnte den Generalisierten Ridge Schétzer zu einer
addquaten Methode in p > n-Situationen machen. Der Generalisierte Ridge
Schiitzer (2.6) kann auch tiber X, = XA als reskalierter Ridge Schétzer
dargestellt werden:

ﬁGR _ A—1/2(A—1/2XTXA—1/2 + Ip)—1A—1/2XTy
= AV2XIX, +1,) X ]y
= AV,

wobei BE = (XX, + I,) !Xy der Ridge Schitzer mit der Design-Matrix
X, und A = 1. Anhand der Geometrie des Generalisierten Ridge Schétzers
zeigen Ishwaran und Rao (2011), dass der Schétzer By effektiv bei der Va-
riablenselektion in p > n-Situationen ist.

Ideale Variablenselektion, also die korrekte Identifikation aller wahren Null-
koeffizienten in den Steigungsparametern, kann fiir den Generalisierten Ridge
Schéatzer nur garantiert werden, falls die wahre Anzahl an nicht-Nullkoeffi-
zienten deutlich kleiner als die Anzahl der Beobachtungen ist (Ishwaran und
Rao, 2011). Gesetz des Falles, dass das wahre Modell mehr wahre nicht-
Nullkoeffizienten als Beobachtungen enthélt, sollte eine Linearkombination
von Generalisierten Ridge Schétzer verwendet werden. Diese Linearkombina-
tion der Schétzer wird als gewichteter Generalisierter Ridge Schétzer (engl.:
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weighted generalized Ridge estimator, WGRR) bezeichnet. Bei dem von Is-
hwaran und Rao (2011) geschilderten Bayesianischen Modell zur Berechnung
des WGRR Schétzers resultiert der Spezialfall von BMA Schétzern.

In die Schitzung des Generalisierten Elastic Net gehen, zur Verkiirzung
der Rechenzeit, nur die groBiten Effekte des BMA Schétzers ein. Die Va-
riablen werden nach ihren Absolutwerten des BMA Schétzers geordnet und
es wird eine Designmatrix X* definiert, welche nur jene geordneten Varia-
blen beinhaltet, fiir welche die BMA Effekte streng positiv sind. Die Spal-
tendimension von X* sei K. Bayesianische Schétzer, wie der BMA Schétzer,
benotigen Ad-hoc Methoden zur Variablenselektion. Diese sind beispielswei-
se das Vertrauensintervall-Kriterium und das skalierte Umgebungs-Kriterium
(Li und Lin, 2010). Fiir die Inferenz der Arabidopsis (Kapitel 4) werden an-
stelle der Ad-hoc Methoden einfach nur die grofiten K Effekte des BMA
Schéatzers selektiert. Fiir K wird in Kapitel 4 die Anzahl der Individuen n
gewihlt. Die Designmatrix und die Zielgrofe seien standardisiert.

Das Generalisierte Elastic Net stellt eine Verallgemeinerung des Elastic Net
dar. Wie fiir das Generalisierte Ridge werden individuelle Parameter fiir die
Ly Penalisierung spezifiziert. Der Generalisierte Elastic Net Schétzer ist wie
folgt definiert:

Bepy = argmin {(y —X*B) " (y - X*B) + Z MGy + Ao Z Wk‘} , (2.7)
k=1 k=1

BERK

wobei (Az)E_, und )\g feste, positive Parameter sind. Analog zum Elastic
Net (Abschnitt 2.1.3) kann gezeigt werden, dass es sich bei der Berechnung
des Generalisierten Elastic Net Schétzers um ein L; Optimierungsproblem
handelt:

Bepy = argmin {(yA —X4B8) (ya — XiB) + Ao Z |Bk|} ;

BERK k=1

X* Y
AY (n+K)x K 0 n+K

und A = diag{\ }2_,. Grafisch entspricht dies der Minimierung des Ellipso-
ids um den Generalisierten Ridge Schitzer B¢, = (X*TX + A)~'X*Ty unter
der Nebenbedingung S, 84| < L fiir ein L > 0.

Die Berechnung des Generalisierten Elastic Net Schétzers in der praktischen
Anwendung erfolgt in drei Schritten:

mit
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1. Berechnung der (A\;)X_, Penalisierungsparameter durch:

o dwl m
- - K Ak 9
K157 fax] |,BBMA,k|

=1,... K

wobei ay, = \/H(X*Ty)k—(X*TX*,B;MA)k und B*BMA der BMA Schitzer.

2. (\)E_ | Parameter als fest annehmen und Erstellung des \o-Losungs-
pfades der Schétzgleichung (2.7) durch den LARS Algorithmus (Efron
et al., 2004).

3. Finales Modell mit der Pfadlosung wéhlen, welches das Modell mit dem
kleinsten Akaike Informationskriterium liefert.

Ishwaran und Rao (2011) beweisen, dass fiir den Generalisierten Elastic Net
Schétzer die Fan-Li Oracle Property (Fan und Li, 2001) gilt. Die Oracle Pro-
perty besagt, dass ein sparsamer und asymptotisch normalverteilter Schatzer
dieselbe Grenzverteilung besitzt wie der KQ Schétzer beschrinkt auf die
wahren nicht-Nullkoeffizienten. Das bedeutet, dass die Methodik genauso gut
funktioniert, als wenn das wahre Modell schon zuvor bekannt gewesen wire.
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3 Beschreibung der Arabidopsis thaliana Da-
ten

In diesem Kapitel werden die Genotypen und Phéanotypen des Datensatzes
zu Arabidopsis deskriptiv und explorativ analysiert. Die Daten sind Teil der
MAGIC (Multiparent Advanced Generation Inter-Cross)-Population (Kover
et al., 2009). Basierend auf 19 Arabidopsis Stdmmen wurden diverse Kreu-
zungen durchgefithrt um ein weites genetisches Spektrum zu erhalten. Wei-
tere Details der Datenerhebung werden von Kover et al. (2009) gegeben. Die
resultierenden Daten sind offentlich erhéltlich auf http://spud.well.ox.-
ac.uk/arabidopsis/.

Die phénotypischen Merkmale, welche im Weiteren betrachtet werden, sind
die Anzahl an Tagen zwischen dem Schossbeginn und der Bliitezeit, die An-
zahl an Tagen bis zum Schossbeginn, die absolute Hohe der Pflanzen in Zen-
timetern und die Wachstumsrate. Die Wachstumsrate wird errechnet als das
Residuum einer einfachen linearen Regression, wobei die Einflussgrofie die
Anzahl an Blédttern am Tag 28 nach Séen der Saat und die Zielgrofe die An-
zahl der Tage bis zur Keimung ist. Die Verteilungen der Anzahl der Tage zwi-
schen Schossbeginn und Bliitezeit und der Anzahl der Tage bis zum Schossbe-
ginn sind linkssteil. Um symmetrischere Verteilungen zu erhalten werden
diese Variablen zukiinftig ausschliefllich logarithmiert betrachtet. Die Vertei-
lungen der Merkmale der 426 phinotypisierten Individuen werden iiber uni-
variate Histogramme und der Zusammenhang der Merkmale {iber bivariate
Streudiagramme und iiber bivariate Korrelationen in Abbildung 5 dargestellt.
Die Merkmale sind paarweise signifikant positiv korreliert. Die Zeit zwischen
dem Schossbeginn und der Bliitezeit, die Pflanzenh6he und die Wachstums-
rate gleichen visuell einer Normalverteilung. Der Kolmogorov-Smirnov-Test
auf Normalverteilung lehnt die Normalverteilung jedoch fiir alle Phanotypen
ab. Der Grund ist aus den QQ-Plots in Abbildung 6 ersichtlich. Im Zen-
trum der Daten stimmen die theoretischen Quantile der Normalverteilung
mit den empirischen Quantilen iiberein. An den Réndern der Verteilungen
treten jedoch Abweichungen auf.

Genotypisiert wurden die Arabidopsis Individuen mit 1260 SNPs auf fiinf
Chromosomen. Der Anteil fehlender Werte in der Marker-Matrix belduft sich
auf 2.93%. Fiir die weitere Auswertung werden nur jene SNPs betrachtet, de-
ren Anteil an fehlenden Werten kleiner als 10% ist und deren Haufigkeit des
seltenen Allels (engl.: minor allele frequency, MAF) grofler als 5% ist. Da-
mit reduziert sich der Anteil der fehlenden Werte auf 1.64%. Auf Grund des
geringen Anteils werden die fehlenden Werte geméafl der Randverteilung der
SNP Auspriagungen ersetzt. Fiir die Analyse verbleiben 1073 SNPs. Es sind
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Abbildung 5: Histogramme, Streudiagramme, Korrelationen und Konfiden-
zintervalle der Korrelationen fiir die Merkmale: Log. Anzahl an Tagen zwi-
schen Schossbeginn und Bliitezeit, Log. Anzahl an Tagen bis Schossbeginn,

Pflanzenhohe in Zentimetern und Wachstumsrate
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Abbildung 6: Normal-QQ-Plot fiir die Merkmale: Log. Anzahl an Tagen zwi-
schen Schossbeginn und Bliitezeit, Log. Anzahl an Tagen bis Schossbeginn,
Pflanzenhohe in Zentimetern und Wachstumsrate
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Abbildung 7: Markerdichte auf den fiinf Chromosomen

nur homozygote Genotypen vertreten, da es sich bei den MAGIC-Individuen
um Inzuchtlinien handelt. Die relative Haufigkeit des seltenen Allels betragt
gemittelt iiber alle Marker 23.8%. Die kleinste relative Héaufigkeit des sel-
tenen Allels ist 5.1% und die groBte Haufigkeit des seltenen Alles betragt
49.9%.

In der Abbildung 7 ist die Dichte der Marker {iber der Anzahl der SNP-
Marker pro 1 Mb abgetragen. Die durchschnittliche Distanz der Marker be-
tragt 0.11 Mb. Die kleinste Distanz liegt bei 66 bp und die maximale Distanz
liegt bei 1.81 Mb.

Die Abhéngigkeitsstruktur der SNPs kann iiber das Kopplungsungleichge-
wicht untersucht werden. Ein Kopplungsungleichgewicht liegt vor, falls die
Allele auf verschiedenen Loci voneinander abhéngig sind. Bei der Betrach-
tung von zwei Allelen und zwei Loci seien die relativen H&ufigkeiten der
Allele pa, pa, pp und p,. Die entsprechenden moglichen Haplotypen sind
folglich AB, Ab, aB und ab. Diese treten mit den relativen Haufigkeiten pap,
Pab, Pap Und py, auf. Bei einem Kopplungsgleichgewicht und den relativen
Héufigkeiten py = p, = pp = pp» = 0.5 wiirden die Haplotypen je mit einer
Wahrscheinlichkeit von 0.25 auftreten. Das Kopplungsungleichgewicht wird
gemessen iiber die Differenz der tatsdchlichen H&ufigkeit und der erwarte-
ten Haufigkeit unter der Unabhéngigkeitshypothese (Lewontin und Kojima,
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Abbildung 8: Kopplungsungleichgewicht

1960): D = pap —papp- Eine Skalierung des Kopplungsungleichgewicht wird
von Hill und Robertson (1968) vorgeschlagen:

2 D2

’]" = -
PAPBPaPb

€ [0, 1].

Bei r2 = 0 liegt ein Kopplungsgleichgewicht und bei r? = 1 eine vollstindige
Kopplung vor.

Das mittlere Kopplungsungleichgewicht liegt bei allen paarweisen Markerver-
gleichen bei 0.017. Die Standardabweichung des Kopplungsungleichgewicht
betréigt 0.049. Der Abfall des Kopplungsungleichgewicht der SNPs mit stei-
gender Distanz der SNPs ist in Abbildung 8 fiir Chromosom Eins dargestellt.
Das Auftreten des Kopplungsungleichgewicht in Abhéngigkeit der Distanz
auf den Chromosomen Zwei bis Fiinf gleicht dem Kopplungsungleichgewicht
auf Chromosom Eins stark. Bei einer Distanz kleiner als 0.5 Mb tritt bei circa
10% der SNP Paare ein skaliertes Kopplungsungleichgewicht grofler als 0.2
auf. Bei einer Distanz grofler als 5 Mb ist das skalierte Kopplungsungleich-
gewicht fast immer kleiner als 0.2.

Um einen ersten Anhaltspunkt zu erhalten wie stark der Einfluss der SNPs
auf die phianotypischen Merkmale ist, werden jeweils einfache lineare Regres-
sionen eines SNPs auf den Phénotyp berechnet und der negative logarith-
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Log. Anzahl an Tagen zwischen Log. Anzahl an Tagen bis
Schossbeginn und Blitezeit Schossbeginn
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Abbildung 9: Manhattan-Plot der negativen logarithmierten p-Werte und die
Bonferroni-Schranke: —log;0(0.05/1073) = 4.33

mierte p-Wert zur Basis Zehn des Steigungsparameters grafisch gegen die
SNPs abgetragen. Die sogenannten Manhattan-Plots sind in Abbildung 9
zu sehen. Die Struktur der Manhattan-Plots unterscheidet sich zwischen den
Merkmalen. Daher wird vermutet, dass ihnen eine unterschiedliche genetische
Architektur unterliegt. Bei der Wachstumsrate ist der negative logarithmier-
te p-Wert iiber alle SNPs eher gleichméfig. Da es sich hier um ein multiples
Testproblem, handelt muss fiir die Fehlerwahrscheinlichkeit eine Bonferroni-
Korrektur (Fahrmeir et al., 2003) durchgefithrt werden. Zum Niveau 0.0046%
sind zwei Effekte signifikant. Bei der Pflanzenhohe sind einige signifikante li-
neare Effekte auf Chromosom zwei und bei der Zeit zwischen Schossbeginn
und Bliitezeit und der Zeit bis zum Schossbeginn sind einige signifikante li-
neare Effekte auf dem vierten und fiinften Chromosom zu erkennen.

Bei der Inferenz werden zur Wahl der optimalen Parameter Schéatzungen fiir
die Heritabilitdt bendtigt. Die Schiatzwerte fiir die Heritabilitdt werden von
Kover et al. (2009) iibernommen. Die geschétzte Heritabilitét fiir die Wachs-
tumsrate betragt 0.22. Fiir die Anzahl der Tage bis zum Schossbeginn wird
die Heritabilitat auf 0.72 und fiir die Anzahl der Tage zwischen Schossbeginn
und Bliitezeit auf 0.40 geschitzt. Von Kover et al. (2009) wird keine Heri-
tabilitdtsschatzung der Pflanzenhohe angegeben. Dieser Schétzer wird {iber
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ein Gemischtes Modell berechnet (Kover et al., 2009) und betragt 0.54.

Fiir die Beschreibung der Datengrundlage wurde die statistische Software
R (R Development Core Team, 2012) und insbesondere das Paket synbreed
(Wimmer et al., 2012) verwendet.
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4 FErgebnisse der Arabidopsis thaliana Infe-
renz

In diesem Kapitel werden die Regressionen der genetischen Marker auf die
Phénotypen mit Hilfe der vorgestellten Methoden durchgefiihrt. Fiir alle Re-
gressionen werden die Zielvariablen standardisiert.

Zunichst wird in Abschnitt 4.1 die Sensitivitdt des Bayesianischen Elastic
Net mit der Parametrisierung nach Hofmarcher et al. (2011) bei verschie-
denen Priori Annahmen iiberpriift. Die dafiir verwendeten Mafle sind die
Korrelation zwischen den realen Werten der Zielvariable y und den Werten
der Modellanpassung g, die Anzahl der effektiven Parameter und das Devi-
anz Informationskriterium. Ein direkter Vergleich der Modellanpassung bei
verschiedenen Priori Annahmen erfolgt iiber die Korrelation der angepassten
Werte. Die Konvergenz der Schétzer wird iiber die Konvergenzpfade von Ay,
A2, @, 0, i, B und T, welche jeweils im Anhang aufgefiihrt sind, untersucht.
Da 1073 B-Koeffizienten und 1073 7-Koeffizienten geschétzt werden, sind fiir
diese Koeffizienten exemplarisch jeweils nur drei Konvergenzpfade abgebil-
det.

Fiir alle Bayesianischen Modelle werden 15000 Iterationen durchgefiihrt und
eine Konvergenzphase von 7500 Iterationen gewéhlt. Desweiteren wird nur
jede zehnte Beobachtung fiir die Auswertung berticksichtigt.

Verglichen wird das Bayesianische Elastic Net in dem Abschnitt 4.2 mit
dem Bayesianischen Lasso, dem Bayesianischen Ridge, den entsprechenden
frequentistischen Methoden und dem Generalisierten Elastic Net. Die Mo-
dellgiite des Bayesianischen Lasso, des Bayesianischen Ridge und des Bayesia-
nischen Elastic Net wird iiber das Devianz Informationskriterium, die Anzahl
der effektiven Parameter und die Korrelation zwischen realen und geschéatzten
phéanotypischen Auspragungen beurteilt. Der Vergleich der Bayesianischen
Methoden mit dem Ridge, Lasso, Elastic Net und Generalisierten Elastic
Net erfolgt iiber die Anzahl der effektiven Parameter und iiber die Korre-
lation zwischen realen und angepassten Werten. Die Vorhersagegiite dieser
sieben Regressionsverfahren wird anhand einer fiinffachen Kreuzvalidierung
mit drei Wiederholungen iiber den Mittleren Quadratischen Fehler und die
Korrelation zwischen wahren und prognostizierten Werten bestimmt.

Alle Methoden sind in der statistische Software R implementiert. Fiir das
Ridge, Lasso und Elastic Net wird das Paket glmnet (Friedman et al., 2010)
und fiir das Bayesianischen Lasso beziehungsweise das Bayesianischen Ridge
das Paket BLR (de los Campos und Rodriguez, 2012) verwendet. Die Berech-
nung des Bayesianischen Elastic Net erfolgt in Kombination der Software R
und der Software JAGS (Version 3.2.0) unter Verwendung des Pakets R2jags
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(Su und Yajima, 2012). In dem Paket spikeslab (Ishwaran et al., 2010a,b) ist
das Generalisierten Elastic Net implementiert.

4.1 Robustheit des Bayesianischen Elastic Net

Im Folgenden wird fiir das Bayesianische Elastic Net die hierarchische For-
mulierung von Hofmarcher et al. (2011) verwendet. Dabei ist A\; = aA und
Ay = (1—a)A. Fiir die Verteilung von « wird a priori eine auf (0, 1)-trunkierte
Normalverteilung angenommen. Um die Stabilitdt der Schitzung zu unter-
suchen, werden je drei verschiedene Erwartungswerte und Varianzen fiir die
trunkierte Normalverteilung verwendet. Fiir den Erwartungswert werden die
Priori Werte 0.1, 0.5, 0.9 und fiir die Varianz die Priori Werte 0.000001,
0.0001, 0.01 spezifiziert.

Von Hofmarcher et al. (2011) wird fiir A? a priori die Gamma Priori-Verteilung
Ga(0.1,0.1) gewahlt. Diese Wahl der Hyperparameter fiir die Gammaver-
teilung fithrt dazu, dass bei der Regression auf die Pflanzenhche und die
Wachstumsrate kein Effekt der Schrumpfung vorliegt. Dies spiegelt sich un-
ter anderem in unrealistisch hohen Schétzwerten fiir die Anzahl der effektiven
Parameter wider. Als Alternative fiir die von Hofmarcher et al. (2011) vor-
geschlagenen Hyperparameter werden in dieser Arbeit fiir das Bayesianische
Elastic Net dieselben Gestalt- und MaBparameter (aspape, Grate) Wie fiir die
A2 Priori-Verteilung des Bayesianischen Lasso gewiihlt. Es wird der optimale
A Parameter, entsprechend der Gleichung (2.5), berechnet und anschlieBend
die Gestalt- und Maflparameter so gewéhlt, dass die Dichte fiir A ihr Maxi-
mum im optimalen A hat. In der Abbildung 10 sind die Priori Dichten fiir A
aufgefiihrt.

Vorweg ist anzumerken, dass vier der 36 betrachteten Regressionsmodelle
auf Grund numerischer Probleme nicht berechnet werden kénnen. Mehrere
Priori-Verteilungen des Bayesianischen Modells sind trunkiert und die Priori-
Verteilung von o2 konvergiert von rechts bei Null gegen unendlich. Basierend
auf numerischen Ungenauigkeiten konnen an den Réndern der Verteilungen
nicht zuléssige Werte entstehen.

In Tabelle 2 sind die Korrelationen zwischen realen und angepassten Wer-
ten cor(y,y), die Anzahl der effektiven Parameter pp und das Devianz In-
formationskriterium DIC fiir alle Zielvariablen und fiir verschiedene Priori
Annahmen aufgefiihrt. Die Korrelation ist durchwegs fiir alle Zielgrofien und
Priori Annahmen grofler als 0.8. Dies spricht fiir eine gute Anpassung des
Modells an die Daten. Bei drei der vier Zielgrofen liegt das kleinste DIC und
bei allen ZielgroBen das kleinste pp vor, falls Var(a) = 0.01 gewéhlt wird,
jedoch immer fiir unterschiedliche Wahlen von E(«). Eine grofiere Varianz
konnte mehr Flexibilidt der Schétzung erlauben. Das pp ist ein Schatzwert,
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Tabelle 2: Untersuchung der Sensitivitdt des Bayesianischen Elastic Net bei
verschiedenen Priori-Annahmen fiir « gemessen an cor(y,y), pp, DIC (-
=nicht berechenbare Modelle)

Log. Anzahl an Tagen zwischen Schossbeginn und Bliitezeit

cor(y,9) PD DIC
E(a) 0.1 0.5 0.9 0.1]05| 09 | 0.1 0.5 | 0.9
Var(a)
0.01 0.8235 | 0.8164 | 0.8198 | 786 | 594 | 537 | 1807 | 1625 | 1564
0.0001 0.8116 | 0.8190 - 564 | 651 - 1603 | 1678 -
0.000001 - 0.8164 | 0.8198 | - | 594 | 706 - 1625 | 1734
Log. Anzahl an Tagen bis Schossbeginn
cor(y, ) P DIC
E(a) 0.1 0.5 0.9 0105 09 | 0.1 0.5 | 0.9
Var(a)
0.01 0.8884 | 0.8804 | 0.8821 | 768 | 791 | 887 | 1647 | 1688 | 1781
0.0001 0.8889 | 0.8809 - 822 | 763 - 1697 | 1659 -
0.000001 0.8834 | 0.8804 - 779 | 791 - 1667 | 1688 -
Pflanzenhohe
cor(y,9) DD DIC
E(a) 0.1 0.5 0.9 0.1]05| 09 | 0.1 0.5 | 0.9
Var(a)
0.01 0.8590 | 0.8650 | 0.8662 | 631 | 560 | 670 | 1571 | 1488 | 1592
0.0001 0.8676 | 0.8666 | 0.8647 | 566 | 752 | 617 | 1485 | 1673 | 1544
0.000001 0.8644 | 0.8666 | 0.8677 | 845 | 752 | 665 | 1776 | 1673 | 1586
Wachstumsrate
cor(y,y) PD DIC
E(a) 0.1 0.5 0.9 0.1]05| 09 | 0.1 0.5 | 0.9
Var(«)
0.01 0.8338 | 0.8379 | 0.8383 | 623 | 708 | 581 | 1471 | 1552 | 1421
0.0001 0.8440 | 0.8420 | 0.8335 | 595 | 623 | 1001 | 1424 | 1456 | 1856
0.000001 0.8471 | 0.8379 | 0.8312 | 697 | 708 | 612 | 1529 | 1552 | 1463
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der als die Anzahl der effektiven Parameter interpretiert wird und nur als
Richtwert betrachtet werden sollte. Die Unterschiede der betrachteten Mafle
sind innerhalb der Zielgréfen bei verschiedenen Priori Wahlen nicht auffillig
grof.

In Tabelle 3 sind die Korrelationen der angepassten Werte y der Bayesiani-
schen Elastic Net Modelle mit verschiedenen Priori Annahmen aufgefiihrt.
Alle berechneten Korrelationen sind signifikant positiv und grofer als 0.99.
Folglich sind die prognostizierten Werte bei verschiedenen Priori Annahmen
sehr #hnlich und somit robust. Fiir weitere Analysen, wie zum Beispiel die
Betrachtung der Vorhersagegenauigkeit, ist es ausreichend nur mit einer Wahl
der Hyperparameter fiir die Priori-Verteilung von « fortzufahren.

Eine explizite Betrachtung des Posteriori-Mittelwerts, des 2.5%- und 97.5%-
Quantils fiir v erfolgt anhand Tabelle 4. Je hoher der a priori Erwartungswert
fiir o gewéahlt wird, desto hoher ist auch der Posteriori Schétzer fiir . Die Po-
steriori Schétzer fiir o bei den Priori Annahmen E(«) = 0.1 und E(a) = 0.5
sind zumeist deutlich grofler als die gewéhlten Hyperparameter. Es ist sowohl
der Einfluss der Daten als auch der Einfluss der Priori-Verteilungen ersicht-
lich. Die a priori Wahl der Varianz von « beeinflusst sowohl den Posteriori-
Mittelwert als auch das 95%-Intervall des Schitzers. Ein Systematik des Ein-
flusses ist nicht zu erkennen.

Basierend auf Abbildung 9 wiirde man, aufler fiir die Wachstumsrate, eine
Dominanz des Lasso Parameters erwarten. Fiir die Merkmale Zeit zwischen
Schossbeginn und Bliitezeit, Zeit bis zum Schossbeginn und Pflanzenhohe
weisen einige SNPs einen signifikanten Effekt auf. Diese sollten durch eine
Variablenselektion in dem Modell verbleiben. Falls fast alle SNPs, wie bei der
Wachstumsrate, nicht signifikant sind scheint eine gleichméfiige Schrumpfung
der Koeffizienten angemessen. Da o = 1 dem Lasso Modell entspricht wird
fiir die Zeit zwischen Schossbeginn und Bliitezeit, Zeit bis zum Schossbeginn
und der Pflanzenhohe ein hoher Posteriori Schétzer fiir o erwartet. Diese Er-
wartungshaltung wird durch die Posteriori Schétzer bestétigt. Fiir die Wachs-
tumsrate wére eher ein Gleichgewicht der Parameter oder eine Dominanz des
Ridge Parameters zu erwarten. Bei den Regressionen auf die Wachstumsrate
dominiert auch der Lasso Parameter. Dies konnte darauf schlieffen lassen,
dass bereits sehr wenige signifikante Effekte in der Einzelmarkerregression,
zu einer Dominanz des Lasso Parameters fiithren.

Im Anhang dieser Arbeit sind die Konvergenzpfade des Bayesianischen Ela-
stic Net bei verschiedenen Priori Annahmen dargestellt. In den Abbildun-
gen 11 bis 19 sind exemplarisch die Pfade der Zielvariable Pflanzenhthe bei
15000 Iterationen und Beachtung von nur jedem zehnten Kettenelement dar-
gestellt. In den Abbildungen 20 bis 23 ist exemplarisch fiir jede Zielgrofe
und der Priori-Verteilung oo ~ N(0.5,0.0001) ein Konvergenzpfad mit 50000
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Tabelle 3: Untersuchung der Sensitivitéit des Bayesianischen Elastic Net bei
verschiedenen Priori-Annahmen fiir a gemessen iiber die Korrelation zwi-
schen den angepassten Werten gy (-=nicht berechenbare Modelle)

Log. Anzahl an Tagen zwischen Schossbeginn und Bliitezeit

E(a) 0.1 0.5 0.9

E(a) | Var(a) 0.0001 0.01 0.000001 0.0001 0.01 0.000001 0.0001 0.01
0.000001 | - - - - - - - -

0.1 0.0001 0.9984 | 0.9987 0.9987 0.9987 | 0.9986 - 0.9986
0.01 0.9986 0.9988 0.9986 | 0.9989 - 0.9988
0.000001 0.9988 1.0000 | 0.9987 - 0.9988

0.5 0.0001 0.9988 | 0.9987 - 0.9988
0.01 0.9987 - 0.9988

0.9 0.000001 - 0.9986

’ 0.0001 - -
Log. Anzahl an Tagen bis zum Schossbeginn
E(a) 0.1 0.5 0.9

E(a) | Var(a) 0.0001 0.01 0.000001 0.0001 0.01 0.000001 0.0001 0.01
0.000001 | 0.9993 0.9992 | 0.9994 0.9994 0.9994 | - - 0.9993

0.1 0.0001 0.9993 | 0.9991 0.9992 0.9991 | - - 0.9992
0.01 0.9991 0.9992 0.9991 | - - 0.9990
0.000001 0.9995 1.0000 | - - 0.9993

0.5 0.0001 0.9995 | - - 0.9994
0.01 - - 0.9993
0.000001 - -

0.9 0.0001 -

Pflanzenhohe
E(a) 0.1 0.5 0.9

E(a) | Var(a) 0.0001 0.01 0.000001 0.0001 0.01 0.000001 0.0001 0.01
0.000001 | 0.9991 0.9991 | 0.9991 0.9991 0.9992 | 0.9991 0.9991 0.9992

0.1 0.0001 0.9987 | 0.9992 0.9992 0.9990 | 0.9993 0.9991 0.9992
0.01 0.9988 0.9988 0.9989 | 0.9986 0.9988  0.9987
0.000001 1.0000 0.9990 | 0.9993 0.9993 0.9993

0.5 0.0001 0.9990 | 0.9993 0.9993 0.9993
0.01 0.9989 0.9989 0.9991

0.9 0.000001 0.9993 0.9993
0.001 0.9993

Wachstumsrate
E(a) 0.1 0.5 0.9

E(a) | Var(a) 0.0001 0.01 0.000001 0.0001 0.01 0.000001 0.0001 0.01
0.000001 | 0.9985 0.9979 | 0.9982 0.9982 0.9982 | 0.9974 0.9977 0.9982

0.1 0.0001 0.9980 | 0.9982 0.9979 0.9982 | 0.9977 0.9980 0.9983
0.01 0.9984 0.9979  0.9984 | 0.9984 0.9982  0.9986
0.000001 0.9982 1.0000 | 0.9981 0.9982 0.9982

0.5 0.0001 0.9982 | 0.9976 0.9977 0.9981
0.01 0.9981 0.9982 0.9982

0.9 0.000001 0.9983  0.9980

’ 0.001 0.9981
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Tabelle 4: Posteriori-Mittelwert und 2.5%-, 97.5%-Quantile fiir den o-
Parameter des Bayesianischen Elastic Net (-=nicht berechenbare Modelle)

Log. Anzahl an Tagen zwischen Schossbeginn und Bliitezeit

E(a)
Var(a) 0.1 0.5 0.9
0.01 0.649(0.452,0.812) | 0.846(0.789,0.895) | 0.995(0.982,1.000)
0.0001 0.733(0.420,0.913) | 0.781(0.622,0.951) -
0.000001 - 0.846(0.789,0.895) | 0.970(0.913,0.995)

Log. Anzahl an Tagen bis Schossbeginn

E(a)
Var(a) 0.1 0.5 0.9
0.01 0.594(0.400,0.789) | 0.892(0.739,0.966) | 0.972(0.943,0.989)
0.0001 0.836(0.677,0.917) | 0.797(0.615,0.970) -
0.000001 0.821(0.676,0.928) | 0.892(0.739,0.966) -

Pflanzenhohe

E(a)
Var(a) 0.1 0.5 0.9
0.01 0.515(0.322,0.658) | 0.661(0.471,0.867) | 0.907(0.857,0.938)
0.0001 0.942(0.827,0.990) | 0.947(0.881,0.988) | 0.963(0.930,0.990)
0.000001 0.700(0.440,0.888) | 0.947(0.881,0.988) | 0.980(0.962,0.994)

Wachstumsrate

E(a)
Var(a) 0.1 0.5 0.9
0.01 0.518(0.297,0.793) | 0.955(0.918,0.988) | 0.996(0.991,0.999)
0.0001 0.775(0.564,0.896) | 0.723(0.478,0.967) | 0.918(0.839,0.974)
0.000001 0.751(0.542,0.920) | 0.955(0.918,0.988) | 0.987(0.975,0.996)
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[terationen und Verwendung jedes zehnten Kettenelements dargestellt.
Exemplarisch wurden jeweils die ersten drei B-Koeffizienten und die ersten
drei 7-Koeffizienten ausgewéhlt. Die nicht aufgefithrten Konvergenzpfade
sind von derselben Struktur wie die aufgefiihrten Pfade. Die Konvergenz ist
augenscheinlich fiir den Intercept-Parameter p und die Steigungsparameter
B bei allen ZielgroBlen und fiir alle Erwartungswert- und Varianzannahmen
gegeben. Dies stellt eine gute Grundlage zur Vorhersage der phénotypischen
Werte dar. Der A\;- und Ay-Parameter konvergieren nicht. Der Konvergenz-
pfad bewegt sich unstrukturiert und die Parameter sind nicht identifizierbar.
Das Konvergenzverhalten des a-Parameters ist stark von den Priori Annah-
men abhéngig.

4.2 Methodenvergleich

Da sich im vorherigen Abschnitt das Bayesianische Elastic Net als robust
beziiglich der Modellanpassung, gegeniiber verschiedenen Priori Annahmen
fiir a,, erwiesen hat, wird im Weiteren dieses Abschnitts nur das Bayesiani-
sche Elastic Net mit der Priori-Verteilung o ~ N(0.5,0.001) betrachtet. Fiir
die Hyperparameter des Bayesianischen Ridge und des Bayesianischen Lasso
werden die optimalen Parameter (Abschnitt 2.3.3) gewéhlt.

Der Methodenvergleich erfolgt iiber die Korrelation zwischen realen und an-
gepassten Werten cor(y,y), die Anzahl effektiver Parameter p.ss, das De-
vianz Informationskriterium und iiber eine Kreuzvalidierung mit den Krite-
rien Mittlerer Quadratischer Fehler MSEqy und Korrelation zwischen wah-
ren und prognostizierten Werten cor(y,y)cv. Die Anzahl der effektiven Pa-
rameter wird in den Bayesianischen Modellen iiber das pp geschétzt. Bei
dem Lasso, Elastic Net und Generalisierten Elastic Net wird die Anzahl der
nicht-Nullkoeffizienten des geschitzten Modells angegeben. Fiir das Ridge er-
folgt die Schétzung der effektiven Parameter iiber die Freiheitsgrade p.ss =
dfridgge = spur(X(XTX + AXI)~'XT) (Hastie et al., 2009). In Tabelle 5 sind
die Resultate fiir die Giitekriterien der Modellschatzungen aufgefiihrt. In den
Abbildungen 28 und 29 sind die Ergebnisse der Kreuzvalidierungen grafisch
iiber Boxplots dargestellt.

Unter den Bayesianschen Methoden resultiert fiir das Elastic Net bei den
Zielvariablen Pflanzenhohe und Wachstumsrate die grofite mittlere Korrela-
tion und der kleinste Mittlere Quadratische Fehler. Fiir die Zielgrofle Zeit
zwischen Schossbeginn und Bliitezeit liefert das Bayesianische Ridge und
fiir die ZielgroBle Zeit bis zum Schossbeginn das Bayesianische Lasso das
beste mittlere Ergebnis unter den Bayesianischen Modellen. Allerdings lie-
fern die frequentistischen Varianten héaufig geringfiigig bessere Ergebnisse.
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Tabelle 5: Vergleich des Bayesianischen Elastic Net (BEN), Bayesianischen
Lasso (BL), Bayesianischen Ridge (BR), Generalisierten Elastic Net (GEN),
Elastic Net (EN), Lasso (L), Ridge (R); Standardabweichung bei CV in

Klammern

Log. Anzahl an Tagen zwischen Schossbeginn und Bliitezeit
cor(y,y) | pers DIC | cor(y,y)cv MSEqy

BEN | 0.8190 | 651 1678 | 0.325(0.092) 0.907(0.146)
BL 0.8278 | 115 1131 | 0.327(0.094) 0.907(0.15)
BR 0.8109 | 102 1139 | 0.328(0.096) 0.905(0.146)
GEN | 0.6469 | 47 0.313(0.103) 0.912(0.156)
EN 0.6892 | 82 0.24 (0.077) 0.950(0.167)
L 0.6776 | 75 0.219(0.087) 0.957(0.17)

R 0.7935 | 412 0.322(0.092) 0.906(0.147)
Log. Anzahl an Tagen bis zum Schossbeginn
cor(y,y) | pess  DIC | cor(y,9)cv MSEcy

BEN | 0.8809 | 763 1659 | 0.482(0.077) 0.776(0.108)
BL 0.8928 | 163 1029 | 0.486(0.076) 0.774(0.109)
BR 0.8774 | 148 1055 | 0.464(0.77) 0.794(0.108)
GEN | 0.7917 | 84 0.510(0.066) 0.746(0.108)
EN 0.8226 | 121 0.513(0.061) 0.744(0.093)
L 0.8182 | 104 0.51 (0.058) 0.748(0.094)
R 0.8524 | 418 0.464(0.076) 0.789(0.102)
Pflanzenhohe
cor(y,y) | pess DIC | cor(y,y)cv MSEcyv

BEN | 0.8666 | 752 1673 | 0.443(0.099) 0.813(0.127)
BL 0.7499 | 27 1228 | 0.401(0.107) 0.951(0.157)
BR 0.9125 | 210 1439 | 0.399(0.091) 0.877(0.129)
GEN | 0.6484 | 33 0.458(0.078) 0.785(0.106)
EN 0.7863 | 110 0.446(0.097) 0.81 (0.132)
L 0.7701 84 0.46 (0.093) 0.796(0.13)

R 0.8487 | 417 0.416(0.102) 0.837(0.126)

Wachstumsrate
CO’I"(y, :l)) Defs DIC cor(y, :l))cv MSECV

BEN | 0.8420 | 623 1456 | 0.338(0.119) 0.912(0.158)
BL 0.8238 | 76 942 | 0.321(0.118) 0.951(0.179)
BR 0.7949 | 49 955 | 0.322(0.122) 0.954(0.164)
GEN | 0.6328 | 37 0.249(0.094) 0.951(0.153)
EN 0.5915 | 34 0.238(0.076) 0.962(0.149)
L 0.5728 | 28 0.237(0.075) 0.96 (0.147)
R 0.8164 | 334 0.334(0.122) 0.915(0.157)
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Bei Betrachtung aller Methoden liefert fiir jede Zielgrofle eine andere Me-
thode das beste mittlere Ergebnis beziiglich der Vorhersagequalitiat. Wird
neben dem arithmetischen Mittel der Korrelation und des Mittleren Quadra-
tischen Fehlers auch die Streuung jener Grofien betrachtet, so ist ersichtlich,
dass die Methoden sich zumeist nicht relevant unterscheiden. Die Darstellung
iiber die Boxplots und der Kolmogorov-Smirnov-Test Test zeigen, dass die
Kreuzvalidierungsergebnisse keiner Normalverteilung folgen. Fiir den Test
auf Unterschiede wird deshalb der nichtparametrische Kruskal-Wallis Test
gewdhlt. Die Vorhersagegiite gemessen iiber die Korrelation unterscheidet
sich fiir die penalisierten Modelle mit den ZielgroBlen Planzenhohe und Zeit
bis zum Schossbeginn nicht signifikant. Fiir die Anzahl an Tagen zwischen
Schossbeginn und Bliitezeit unterscheiden sich die Methoden Bayesianisches
Elastic Net, Bayesianisches Lasso, Bayesianisches Ridge, Generalisiertes Ela-
stic Net und Ridge beziiglich der Korrelation nicht. Das Elastic Net und
Lasso liefern kleinere Korrelationen und unterscheiden sich signifikant von
den anderen Methoden. Fiir die Regressionen auf die Wachstumsrate unter-
scheidet sich die Vorhersagegiite gemessen iiber die Korrelation signifikant.
Gleich gute Modelle zur Vorhersage liefern das Bayesiansiche Elastic Net, das
Bayesianische Lasso, das Bayesianische Ridge und das Ridge. Das Generali-
sierte Elastic Net, Elastic Net und Lasso liefern kleinere Korrelationen und
unterscheiden sich signifikant von den anderen Methoden. Wird die Vorhersa-
gegiite nicht {iber die Korrelation sondern iiber den Mittleren Quadratischen
Fehler gemessen, so unterscheiden sich die penalisierten Modelle bei den Ziel-
groflen Zeit zwischen Schossbeginn und Bliitezeit, Zeit bis zum Schossbeginn
und Wachstumsrate nicht signifikant. Fiir die Pflanzenhohe unterscheiden
sich die Methoden, mit Ausnahme des Bayesianischen Lasso nicht signifi-
kant. Das Bayesianische Lasso weist einen hoheren Mittleren Quadratischen
Fehler auf. Zusammenfassend wird festgestellt, dass fiir jede Zielgrofie die
Annahme der Gleichheit der Methoden entweder durch das Kriterium der
Korrelation oder das Kriterium MSE beibehalten wird. Fiir keine der Ziel-
grofen wird die Gleichheit durch beide Kriterien abgelehnt.

Die Korrelation zwischen wahren und angepassten Werten cor(y,y) ist zu-
meist bei den Bayesianischen Methoden grofler als bei den frequentistischen
Methoden. Ubergreifend betrachtet liefert das Bayesianische Elastic Net eine
genauso gute Modellanpassung wie das Bayesianische Ridge oder das Baye-
sianische Lasso. Eine sehr gute Modellanpassung birgt auch immer die Ge-
fahr einer Uberanpassung des Modells und somit einer schlechter Vorhersa-
gegenauigkeit. Die Vorhersagegenauigkeit wurde iiber eine Kreuzvalidierung
iiberpriift und kann als gut eingestuft werden. Fiir die untersuchten Modelle
liegt keine Uberanpassung vor.

Die Anzahl der nicht-Nullkoeffizienten des Lasso, Elastic Net und Generali-
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sierten Elastic Net unterscheiden sich untereinander und iiber die verschiede-
nen Zielgroflen stark. Das Generalisierte Elastic Net weist bei drei der Ziel-
variablen die kleinste Anzahl an nicht-Nullkoeffizienten auf und liefert das
sparsamste Modell. Die Anzahl der effektiven Parameter der Ridge Schétzung
liegt hoher als die Anzahl der nicht-Nullkoeffizienten der anderen frequenti-
stischen Methoden. Das Devianz Informationskriterium und die Anzahl der
effektiven Parameter sind fiir das Bayesianische Elastic Net hoher als fiir das
Bayesianische Lasso und Bayesianische Ridge. Da das pp nur Schitzwerte
sind, sollten sie fiir die Beurteilung der Modellgiite nicht {iberbewertet wer-
den. Die Ergebnisse der Kreuzvalidierung hingegen haben sehr hohes Ge-
wicht um die Modelle beziiglich der praktischen Anwendung in Ziichtungs-
programmen zu beurteilen.

Der Schrumpfungseffekt der penalisierten Modelle ist am besten grafisch zu
erkennen und zu beurteilen. In den Abbildung 24 bis 27 im Anhang sind
in der ersten Spalte Manhattan-Plots mit den SNP Effekten dargestellt. Bei
dem Bayesianischen Ridge werden die Effekte in der Regel gleichméfiger ge-
schrumpft als bei dem Bayesianischen Lasso oder Bayesianischen Elastic Net.
Die EffektgroBlen des Bayesianischen Elastic Net sind bei drei der vier Varia-
blen denen des Bayesianischen Lasso ausgesprochen dhnlich. Die Spannweite
der Effekte der Bayesianischen Modelle ist kleiner als die des Lasso, Ela-
stic Net und Generalisierten Elastic Net. Die Struktur der Manhattanplots
beziiglich der einflussreichen und nicht einflussreichen Effekte ist jeweils fiir
die quantitativen Merkmale bei allen Methoden &dhnlich.

In der zweiten Spalten der Abbildungen 24- 27 sind die Streudiagramme
zwischen den SNP Effekten aus einer nichtsimultanen Schitzung durch ein
lineares Modell und den SNP Effekten der penalisierten Modelle abgebildet.
Der allgemeine Effekt der Schrumpfung der penalisierten Verfahren ist deut-
lich zu erkennen. Die Steigung der Regressionsgerade der SNP Effekte der
Einzelmarkerregression auf die SNP Effekte der penalisierten Schatzung kann
als MaB fiir die Stérke der Schrumpfung interpretiert werden. Die Schrump-
fung kann durchaus als stark bezeichnet werden. Uber alle Pflanzenmerkmale
hinweg kann kein Aussage dariiber getroffen werden welches Verfahren im
Allgemeinen zur stérksten Schrumpfung fiihrt.

4.3 Kritik am Bayesianischen Elastic Net

Bei der Berechnung des Bayesianischen Elastic Net konnen auf Grund nu-
merischer Probleme nicht alle Modelle angepasst werden. Die Konvergenz
des p-Parameters und der Steigungsparameter ist immer zufriedenstellend.
Die Identifizierbarkeit der Schrumpfungsparameter ist hingegen, sowohl bei
15000 als auch bei 50000 Iterationen, nicht immer gegeben. Eine der Kernide-
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en des Bayesianischen Elastic Net mit der o Parametrisierung ist es flexibel
zu gestalten und zu erkennen, ob der Lasso und der Ridge Parameter domi-
niert. Bei der verwendeten Anzahl an Iterationen und der Konvergenzphase
ist sowohl eine Abhéngigkeit des Posteriori Schétzers fiir a von der Wahl der
Priori-Verteilung als auch der deutliche Einfluss der Daten zu erkennen. Das
urspriingliche Ziel der flexiblen Modellierung hingehend zum Lasso oder zum
Ridge kann nicht erreicht werden. Bei Verwendung der Kreuzvalidierung zur
Beurteilung der Vorhersagegiite kann keine relevante Verbesserung des Baye-
sianischen Elastic Net gegeniiber den anderen Methoden festgestellt werden.
Desweiteren sind die computationalen Berechnungszeiten fiir das Bayesiani-
sche Elastic sehr hoch. Es gibt keinen relevanten Zusatznutzen des Bayesia-
nischen Elastic Net gegeniiber den etablierten Methoden in der genetischen
Vorhersage.
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5 Diskussion

In dieser Arbeit wurden Bayesianische und frequentistische Regressionsmo-
delle auf ihre Eignung zur Vorhersage in Ziichtungsprogrammen untersucht.
Die Modelle, die dabei betrachtet wurden, sind das Bayesianische Ridge, Las-
so, Elastic Net, die frequentistischen Analoga und das Generalisierte Elastic
Net. Diese Modelle gehoren der Klasse der penalisierten linearen Modelle an
und erlauben die Inferenz auch in p > n-Situationen.

Die Anwendung der Modelle erfolgte auf die genotypischen und vier phéano-
typische Merkmale der Pflanze Arabidopsis. Die betrachteten phanotypischen
Merkmale waren die Wachstumsrate, die Pflanzenhohe, die Zeit bis zum
Schossbeginn und die Zeit zwischen Schossbeginn und Bliitezeit. Die Anzahl
der SNPs (p = 1260) war grofler als die Anzahl der untersuchten Individuen
(n = 426).

Uber eine Einzelmarkerregression wurde ein erster Eindruck iiber die Stérke
der SNP Effekte gegeben. Fiir alle Pflanzenmerkmale lagen signifikante Effek-
te vor. Bei der Variable Wachstumsrate waren die Effektstéirken zueinander
dhnlicher als bei den anderen Variablen. Fiir die Wachstumsrate wiirde man
eine gleichméfige Schrumpfung der Effekte erwarten. Dies spricht fiir die An-
wendung der Ridge Regression. Bei den anderen drei phianotypischen Merk-
malen waren die Unterschiede der Effektstirken grofi. Angemessen scheint
auf Grund dessen eine Variablenselektion und somit die Anwendung des Las-
so Verfahrens.

Das Bayesianische Elastic Net kombiniert das Bayesianische Lasso und Baye-
sianische Ridge. Uber die spezielle Parametrisierung des Bayesianischen Ela-
stic Net nach Hofmarcher et al. (2011) soll ersichtlich sein, ob das Lasso oder
das Ridge dominiert. Fiir alle Variablen dominierte der Lasso Parameter.
Bei drei der vier Zielgréflen entspricht dies den Erwartungshaltungen aus
den Einzelmarkerregressionen. Der Grund konnte sein, dass bereits wenige
signifikante Effekte der Einzelmarkerregression zu einer Dominanz des Lasso
fithren.

Desweiteren stellt sich die Frage, ob die SNPs mit signifikanten Effekten in
der Einzelmarkerregression auch bei der simultanen Schitzung die grofiten
Effekte aufweisen. Bei der Untersuchung des Einflusses der genotypischen
Merkmale auf das phénotypische Merkmal Anteil der schwarzen Fellfarbe
bei Rindern iiber die Methode BayesA (Meuwissen et al., 2001) zeigt sich in
der Studie von Hayes et al. (2010) ein Zusammenhang zwischen der Einzel-
markerregression und den penalisierten Effekten. Die SNPs mit signifikanten
Effekten in der Einzelmarkerregression weisen auch grofie Effekte in der Re-
gression mit BayesA auf. Dieser Zusammenhang zeigte sich ebenfalls bei den
in dieser Arbeit vorgestellten Methoden und deren Anwendung auf die Daten
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der Arabidopsis. Allgemein wird bei grofien beziehungsweise kleinen Effek-
ten in der Einzelregression davon ausgegangen, dass diese Effekte auch bei
einer simultanen Schéitzung grof bezeihungsweise klein sind. Auf Grund von
Kollinearitat ist dies jedoch nicht immer zutreffen. Ein solcher Effekt von
Kollinearitét ist in den vorliegenden Regressionen nicht zu erkennen.

Der Ort des Genoms auf dem ein Gen liegt, welches auf ein quantitatives
Merkmal wirkt, wird als quantitativ trait locus (QTL) bezeichnet (Griffiths
et al., 2012). Kover et al. (2009) geben fiir Arabidopsis die Positionen auf den
Chromosomen an bei denen ein QTL identifiziert wurde. Diese entsprechen
auch den Positionen auf denen die Effekte der vorgestellten penalisierten Re-
gressionen grofl waren.

Fiir Bayesianische Modelle werden im Vergleich zu frequentistischen Model-
len a priori Annahmen iiber die Parameter getroffen. Um die Sensitivitéit
des Bayesianischen Elastic Net gegeniiber der Wahl der Hyperparameter zu
untersuchen wurden verschiedene Hyperparameter gewéahlt und die resul-
tierenden Modelle anhand der Kriterien Anzahl der effektiven Parameter,
Devianz Informationskriterium und Korrelation zwischen realen und ange-
passten Werten miteinander verglichen. Die Wahl der Parameter der Priori-
Verteilung von A? ist sehr bedeutend fiir sinnvolle Regressionsergebnisse, da
das Bayesianische Elastic Net sensibel auf die Hyperparameterwahl fiir \2
reagierte. Eine angemessene Wahl stellen die optimalen Parameter entspre-
chend Pérez et al. (2010) dar. Die Wahl der Hyperparameter der Anteilsva-
riable « fiir den Lasso und Ridge Parameter fiithrte nur zu kleineren Unter-
schieden in den Inferezergebnissen. Die Anpassung des Modells an die Daten
war durchwegs gut und die angepassten Werte bei verschiedenen Wahlen der
Hyperparameter waren sehr dhnlich. Der Konvergenz des Intercept und der
Steigungsparameter war immer gegeben. Beziiglich dieser Parameter ist das
Bayesianische Elastic Net robust bei den verschiedenen Wahlen der Hyper-
parameter fiir die Priori-Verteilung von «. Fiir den Lasso Parameter und den
Ridge Parameter war die Konvergenz nicht gewéhrleistet. Der Lasso Parame-
ter hatte fiir alle Zielgrofen eine Dominanz gegeniiber den Ridge Parameter.
Zukiinftig konnte untersucht werden, ob die Konvergenzprobleme der Pena-
lisierungsparameter durch die Wahl anderer Priori-Verteilungen l6sbar sind.
Die Vorhersagegenauigkeit aller Methoden wurde iiber eine Kreuzvalidie-
rung mit den Giitekriterien Korrelation und Mittlerer Quadratischer Fehler
iiberpriift. Fiir keine Zielgrofie wurde die Methodengleichheit sowohl iiber die
Korrelation als auch iiber den Mittleren Quadratischen Fehler abgelehnt. Es
kann nicht eindeutig gezeigt werden, dass es einen Unterschied der Methoden
gibt.

Penalisierte Regressionsmodelle bewirken eine Schrumpfung der Parameter.
Zur visuellen Darstellung des Schrumpfungseffekts wurden die Effekte der
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Einzelmarkerregression gegen die Effekte der penalisierten Regressionsmo-
delle abgetragen. Diese Schrumpfung war iiber alle Modelle und Phé&notypen
deutlich zu erkennen. Es ist iibergreifend keine Aussage dariiber zu treffen,
welches Modell im Allgemeinen am stérksten schrumpft.

Riedelsheimer et al. (2012b) analysieren den Einfluss des Genom der Mais-
pflanze, bei dem ein sehr hohes Kopplungsungleichgewicht vorliegt, auf die
Metaboliten der Maispflanze mit den Methoden Lasso, Ridge und Elastic
Net. Bei Arabidopsis lag, insbesondere ab einer Distanz von 5 Mb, ein schwa-
ches Kopplungsungleichgewicht vor. Das Kopplungsungleichgewicht des Mais
(Riedelsheimer et al., 2012a) ist stdrker als das Kopplungsungleichgewicht
der Arabidopsis. Ein Vergleich der Effektstédrken zeigt, dass der Gruppie-
rungseffekt des Ridge bei Mais deutlich stérker ist als bei Arabidopsis. Dies
bestétigt, dass ein hohes Kopplungsungleichgewicht zu einer hohen Korrela-
tion der Kovariablen und somit zu einem starken Gruppierungseffekt bei der
Ridge Regression fiithrt (Zou und Hastie, 2005).

Die Anzahl der nicht-Nullparameter lag bei dem Generalisierten Elastic Net
vergleichsweise niedrig. Das Generalisierte Elastic Net besitzt fiir n — oo, im
Vergleich zu den anderen vorgestellten Modellen, die Eigenschaft der Fan-Li
oracle property (Ishwaran und Rao, 2011). Dementsprechend kénnte die Mo-
dellgrofle des Generalisierten Elastic Net die unbekannte Wahrheit am besten
widerspiegeln. Ob die Modellgréfle des Generalisierten Elastic Net der An-
zahl der wahren nicht-Nullkoeffizienten entspricht kann auf Grund dessen,
dass es sich um eine experimentelle Datengrundlage handelt nicht nachge-
wiesen werden.

Resende Jr et al. (2012) vergleichen die Methoden Ridge, BayesA, BayesB
und das Bayesianische Lasso nach Legarra et al. (2011) beziiglich der Vorher-
sagegenauigkeit zur genomischen Vorhersage und kommen zu dem Ergebnis,
dass sich die Methoden nur geringfiigig unterscheiden. Ein weiterer Metho-
denvergleich wird von Heslot et al. (2012) durchgefiihrt. Dabei werden neun
Datensétze und elf Methoden beziiglich der genomischen Vorhersage analy-
siert. Die betrachteten Methoden sind unter anderem das Ridge, Elastic Net,
Bayesianische Lasso, BayesA, BayesB, Gewichtete Bayesianische Schrump-
fung (Hayashi und Iwata, 2010), E-Bayes (XU und HU, 2011) und Machine-
learning Methoden (Breiman, 2001, Drucker et al., 1997, Gardner und Dor-
ling, 1998). Die mittlere Vorhersagegiite der Methoden ist sehr d&hnlich. Auch
die lineare Kombination verschiedener Modelle fithrt zu keiner Verbesserung
der Genauigkeit.

Zusammenfassend wird festgestellt, dass die Elastic Net Methoden keine si-
gnifikant besseren Ergebnisse liefern als die Ridge und Lasso Methoden und
dass die Bayesianischen Methoden den frequentistischen Methoden nicht im-
mer iiberlegen sind.
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Moglicherweise liefern nicht-lineare Modelle oder Interaktionen eine Verbes-
serung der Vorhersagegenauigkeit. Dies gilt es in Zukunft zu untersuchen.
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Anhang
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Abbildung 11: Pflanzenhohe, E(a)=0.1,Var(a)=0.000001
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Abbildung 12: Pflanzenhohe, E(a)=0.1,Var(a)=0.0001
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Abbildung 13: Pflanzenhéhe, E(«)=0.1,Var(a)=0.01
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Abbildung 14: Pflanzenhéhe, E(a)=0.5,Var(a)=0.000001
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Abbildung 15: Pflanzenhohe, E(«)=0.5,Var(a)=0.0001
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Abbildung 17: Pflanzenhohe, E(«a)=0.9,Var(a)=0.000001
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Abbildung 18: Pflanzenhohe, E(a)=0.9,Var(«)=0.0001
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Abbildung 19: Pflanzenhéhe, E(«)=0.9,Var(a)=0.01
lambdal lambda2 alpha sigma mu beta[1] beta[2]
80 4T 10 o 35 15 010 4T T
4 g el 08 BRTE 10 _oos _oos
3 El £ o6 g 25 ! 2 0o Zow Fooo
z e S 0ad" $ 20 4w 08 8005 2005
= - . 029 ! 15 i 010 oM
O O e 00 TTTT T TTTT TTTT T TTTTTTTTT TTTT T T
500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000
teration Heration teration eraton eration Heration Heration
beta[3] tau[1] tau[2] tau[3] lambdal*alpha lambda2*alpha
010 16 s 100 s 20
; 167 167 F T z ;
= 005 s I _ 15 _ 154 s g 5 254
2 = M4y g 144 g 144 5 : g M
§om ER ERCER g 1) g w0 g »qf
LR =12 =12 i =12 J E 40 EREUE X
005 11 11 11 5 ol I
010 10 10 10 - TTTT T - O T
50 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000
teration teration Heration eraton eraton Heraton

Abbildung 20: Log. Anzahl an Tagen zwischen Schossbeginn und Bliitezeit,

E(a)=0.5,Var(a)=0.0001, 50000 Iterationen
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Abbildung 22

: Pflanzenhohe, E(a)=0.5,Var(a)=0.0001, 50000 Iterationen
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Abbildung 23: Wachstumsrate, E(«)=0.5,Var(a)=0.0001, 50000 Iterationen
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Log. Anzahl an Tagen von Schossbeginn bis Blitezeit
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Abbildung 24: Logarithmierte Zeit zwischen Schossbeginn und Bliitezeit,
Manhattan-Plot der SNP Effekte und Streudiagramm der SNP Effekte der
penalisierten Modelle und der nicht simultanen SNP Effekte eines linearen
Modells
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Log. Anzahl an Tagen bis Schossbeginn
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Abbildung 25: Log. Anzahl an Tagen bis zum Schossbeginn, Manhattan-
Plot der SNP Effekte und Streudiagramm der SNP Effekte der penalisierten
Modelle und der nicht simultanen SNP Effekte eines linearen Modells
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Abbildung 26: Pflanzenhche, Manhattan-Plot der SNP Effekte und Streudia-
gramm der SNP Effekte der penalisierten Modelle und der nicht simultanen

SNP Effekte eines linearen Modells
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Abbildung 27: Wachstumsrate, Manhattan-Plot der SNP Effekte und Streu-
diagramm der SNP Effekte der penalisierten Modelle und der nicht simulta-
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Log. Anzahl an Tagen von Schossbeginn bis Bliitezeit
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Abbildung 28: Prognosegenauigkeit penalisierter Methoden gemessen iiber
eine fiinffache Kreuzvalidierung mit drei Wiederholungen und dem Kriterium
Korrelation
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Abbildung 29: Prognosegenauigkeit penalisierter Methoden gemessen {iber
eine dreifache Kreuzvalidierung mit drei Wiederholungen und dem Kriterium
Mittlerer Quadratischer Fehler
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