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Zusammenfassung

In dieser Arbeit werden verschiedene Bayesianische und frequenti-
stische Regressionsmodelle auf ihre Eignung zur Vorhersage in Züch-
tungsprogrammen untersucht. Die Modelle, die dabei betrachtet wer-
den, sind das Bayesianische Ridge, das Bayesianische Lasso, das Baye-
sianische Elastic Net, die frequentistischen Analoga und das Generali-
sierte Elastic Net. Die Sensibilität des Bayesianischen Elastic Net wird
über verschiedene Szenarien der Wahl der Hyperparameter für die
Priori-Verteilungen untersucht. Die Vorhersagegenauigkeit aller pena-
lisierten Modelle wird über Kreuzvalidierungen geprüft. Angewendet
werden die Regressionsmodelle auf experimentelle Daten zu Arabidop-
sis thaliana und vier quantitativen Merkmalen mit unterschiedlicher
genetischer Architektur. Es zeigt sich, dass das Bayesianische Elastic
Net teilweise sensibel auf die Wahl der Hyperparameter reagiert. Die
Vorhersagegenauigkeit der Methoden unterscheidet sich für die ver-
schiedenen Merkmale im Allgemeinen gering. Die neuesten Modelle,
das Bayesianische Elastic Net und das Generalisierte Elastic Net, sind
bezüglich ihrer Vorhersagegenauigkeit nicht signifikant besser als die
etablierten Methoden.
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1 Einführung

Die Genetik ist ein Gebiet der Wissenschaft, dessen Bedeutung seit Mitte
des 19. Jahrhunderts, ausgelöst durch Gregor Mendel, stark an Bedeutung
gewonnen hat. Durch Fortschritte in der makroskopischen, mikroskopischen
und molekularen Forschung sind viele Fragen über Organismen geklärt und
dennoch befindet sich die Erforschung des Genoms erst im Anfangsstadium.
Klar ist soweit, dass der Genotyp eines Organismus den Phänotyp, also das
Erscheinungsbild des Organismus, bestimmt.
Die Analyse des Erbguts ist insbesondere im Anwendungsgebiet der Pflanzen-
züchtung und Selektion von großer Bedeutung (Jannink et al., 2010). Durch
die Vorhersage der quantitativen Merkmale alleine basierend auf den gene-
tischen Eigenschaften wäre es nicht mehr nötig erst die Ernte abzuwarten,
um die Qualität und den Ertrag von Nutzpflanzen zu beurteilen. Basierend
auf den frühzeitigen Erkenntnissen könnte der Selektionszyklus beschleunigt
werden und damit der genetische Fortschritt schneller ablaufen.
Die genetische Erbinformation ist in der DNA beziehungsweise in den Chro-
mosomen gespeichert. Bei vielen Pflanzen liegt der Chromosomensatz und
somit auch jedes Gen doppelt (diploid) vor. Dies impliziert jedoch nicht, dass
die Nukleotidensequenz, welche das Gen definiert, bei homologen Chromoso-
men identisch ist. Die unterschiedlichen Formen eines Gens werden als Allele
bezeichnet. Das Auftreten genetisch unterschiedlicher Phänotypen in einer
Population, bedingt durch die Allele einer Gens wird als Polymorphismus
bezeichnet. Der häufigste Polymorphismus im Genom ist der Einzelnukleotid-
Polymorphismus (engl.: single nucleotide polymorphism, SNP), also die Va-
riation eines einzelnen Nukleotids. Darunter versteht man zum Beispiel den
einzelnen Basenaustausch von Adenin und Thymin oder den einzelnen Ba-
senaustausch von Cytosin und Guanin. Alle SNPs haben zwei Allele. Eine
detaillierte Beschreibung der allgemeinen Genetik und der Molekulargenetik
wird von Knust und Janning (2008) und Griffiths et al. (2012) gegeben.
Ziel dieser Arbeit ist es, den gemeinsamen Einfluss von vielen SNPs auf die
quantitativen Merkmale zu untersuchen. Die SNPs können drei Ausprägun-
gen aufweisen. Diese sind zum einen die homozygoten Ausprägungen mit
entweder zwei dominanten oder zwei rezessiven Allelen und zum anderen die
heterozygote Ausprägung mit einen dominanten und einem rezessiven Allel.
Die SNPs werden jedoch nicht als kategoriale Einflussgrößen in ein Regressi-
onsmodell aufgenommen, sondern deren Ausprägungen so rekodiert, dass die
Ausprägung einer Einflussgröße die Anzahl der seltenen Allele in dem SNP
ist. Die Einflussgrößen sind somit metrisch.
In dieser Arbeit werden die öffentlich verfügbaren Daten zu dem Modell-
organismus Arabidopsis thaliana (L.) untersucht. Als Merkmale werden die
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Pflanzenhöhe, die Wachstumsrate, die Zeit bis zum Schossbeginn und die
Zeit zwischen Schossbeginn und Blütezeit betrachtet. Diese Merkmale wer-
den stetig gemessen und gehen dementsprechend als metrisch Zielvariablen
in das Modell ein.
Für die Untersuchung des Einflusses von SNPs auf die quantitativen Merkma-
le wird, auf Grund der metrischen Zielvariablen, ein lineares Regressionsmo-
dell unterstellt. Die unbekannten Regressionskoeffizenten lassen sich im Allge-
meinen durch Kleinste-Quadrate (KQ) Schätzung oder Maximum-Likelihood
(ML) Schätzung bestimmen (Fahrmeir et al., 2007). Der KQ Schätzer ist er-
wartungstreu und unter allen linearen erwartungstreuen Schätzern, jener mit
der kleinsten Varianz (Gauß Markov Theorem). Je kleiner die Varianz eines
Schätzers ist, desto genauer ist meist die Schätzung und desto besser ist die
Vorhersagegenauigkeit (Hastie et al., 2009). Bei der Schätzung durch die KQ
Methode bleiben alle Variablen in dem Modell. Es findet keine Variablense-
lektion statt. Bei vielen Variablen im Modell ist die Interpretation schwierig,
da die Interpretation von einzelnen Koeffizienten immer unter der Bedingung
’festhalten der anderen Variable’ erfolgt. Ein weiterer Nachteil der KQ Me-
thode ist, dass der Schätzer nur existiert, falls in der Schätzgleichung keine
singulären Matrizen vorkommen. Damit keine Singularitätsprobleme auftre-
ten müssen mehr Beobachtungen als Variablen vorliegen und es darf keine
exakte lineare Abhängigkeit zwischen den Variablen bestehen. Sind die Va-
riablen nicht exakt linear abhängig, sondern hoch korreliert, kann die Varianz
der Schätzung extrem groß werden.
Die erhobenen molekulargenetischen Daten der Arabidopsis umfassen n =
426 Individuen und p = 1260 SNPs. Somit ist die Anzahl der Prädiktoren
wesentlich größer als die Anzahl der Beobachtungen. Es resultiert das so-
genannte p � n-Problem, welches unter anderem von Fan und Lv (2008)
erläutert wird. Die Spaltendimension der Designmatrix ist im Vergleich zur
Zeilendimension sehr groß. Dadurch treten bei der KQ Schätzung Singula-
ritätsprobleme auf und eine Schätzung der Parameter ist nicht mehr möglich.
Die Prädiktoren weisen, allein schon auf Grund der hohen Anzahl an Ein-
flussgrößen, eine Korrelation auf. Aber nicht nur die Dimension von SNP Da-
ten verursacht eine Korrelation, sondern auch die inhaltliche Beschaffenheit
der genetischen Kopplung. Mit Kopplung wird die Assoziation von Genen
auf dem gleichen Chromosom bezeichnet, welche zur gemeinsamen Verer-
bung der entsprechenden Merkmale führt (Knust und Janning, 2008). Bei
Genen, deren gemeinsame Allelverteilung nicht zufällig ist, spricht man von
einem Kopplungsungleichgewicht (engl.: linkage disequilibrium, LD) (Grif-
fiths et al., 2012). Das Kopplungsungleichgewicht führt zu Kollinearität. Da-
durch werden einflussreiche und nicht einflussreiche Pädiktoren nicht immer
als solche erkannt.
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Für die Schätzung eines Regressionsmodells bei Daten mit einem p � n-
Problem existieren diverse Ansätze. Allgemeine Ziele dieser Ansätze sind
Vorhersagegenauigkeit und gute Interpretierbarkeit des Modells. Die Vorher-
sagegenauigkeit kann durch Schätzer mit einer geringen Varianz und die gute
Interpretierbarkeit durch Variablenselektion erreicht werden (Hastie et al.,
2009).
Hoerl und Kennard (1970a,b) führten die Ridge Regression ein. Dies ist
ein Penalisierungsverfahren, bei dem die resultierenden Schätzer eine ge-
ringe Varianz aufweisen. Die Schrumpfung der Regressionskoeffizienten er-
folgt über einen Penalisierungsterm. Die Stärke der Penalisierung wird über
den Penalisierungsparameter des Penalisierungsterms gesteuert. Der Ridge
Schätzer weist den sogenannten Gruppierungseffekt (engl.: grouping effect)
auf. Als Gruppierungseffekt wird der Effekt bezeichnet, dass korrelierte Ein-
flussgrößen ähnliche Schätzer erhalten. Jedoch findet bei diesem Verfahren
keine Variablenselektion statt. Eine Methode, bei der neben der Schrump-
fung von Parametern zusätzlich Variablen selektiert werden, wurde von Tibs-
hirani (1996) vorgeschlagen und wird als Kleinster Absoluter Schrumpfungs-
und Selektionsoperator (engl.: Least absolute shrinkage und selection ope-
rator, Lasso) bezeichnet. Der Lasso Schätzer weist im Vergleich zum Ridge
Schätzer keinen Gruppierungseffekt auf. Eine Kombination des Ridge und
Lasso Verfahrens ist das Elastic Net (Zou und Hastie, 2005). Dieses soll die
Vorteile von Variablenselektion und Gruppierungseffekt vereinen. In diesen
frequentistischen Methoden werden die Penalisierungsparameter über eine
Kreuzvalidierung bestimmt.
Diese Penalisierungsverfahren können ebenfalls Bayesianisch formuliert wer-
den. So beschreiben Fahrmeir et al. (2010) das Bayesianische Ridge, Park und
Casella (2008) das Bayesianisches Lasso und Li und Lin (2010) das Bayesia-
nische Elastic Net. Die Bayesianischen Methoden weisen alle Vorteile der
frequentistischen Methoden auf und erlauben zusätzlich Vorwissen über die
Parameter und Penalisierungsparameter in das Modell aufzunehmen.
Ishwaran und Rao (2011) erweiterten das Elastic Net zu dem sogenannten
Generalisierten Elastic Net.
Weitere Modelle für die Inferenz in p� n-Situationen, welche in dieser Arbeit
nicht näher betrachtet werden, jedoch in der Literatur viel Anwendung fin-
den, sind die Modelle BayesA und BayesB (Meuwissen et al., 2001). Deswei-
teren resultiert, basierend auf einem linearen gemischten Modell, der BLUP
(best linear unbiased predictor) Schätzer (Henderson, 1984). Dieser Schätzer
wird unter anderem in den Studien von Fernando und Grossman (1989) und
Meuwissen und Goddard (1996) verwendet.
In dieser Arbeit wird untersucht, ob die Elastic Net Methoden bessere Er-
gebnisse liefern als die Lasso und Ridge Methoden und ob die Bayesianischen
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Methoden den frequentistischen Methoden überlegen sind. Für die Beurtei-
lung werden verschiedene Gütekriterien herangezogen. Die Gütekriterien sind
die Korrelation zwischen den wahren und angepassten Werten, die Anzahl
der effektiven Parameter, das Devianz Informationskriterium (engl.: deviance
information criterion, DIC) und Kreuzvalidierungen mit verschiedenen Kri-
terien. Desweiteren werden die Unterschiede für Merkmale mit verschiedener
genetischer Architektur untersucht.
Die weitere Arbeit gliedert sich wie folgt. Die statistischen Methoden werden
in Kapitel 2 vorgestellt. Das Kapitel 2 ist unterteilt in vier Teilkapitel. In
dem ersten Teilkapitel wird das Ridge, das Lasso und das Elastic Net Modell
geschildert. In dem zweiten Teilkapitel wird die Bayes Inferenz eingeführt
und in dem dritten Teilkapitel das Bayesianische Ridge, das Bayesianische
Lasso und das Bayesianische Elastic Net beschrieben. Die Erläuterung des
Generalisierten Elastic Net erfolgt in dem vierten Teilkapitel. In Kapitel 3
werden die Daten der Arabidopsis deskriptiv und explorativ analysiert. Die
Anwendung aller vorgestellten Modelle auf diese Daten erfolgt in Kapitel 4.
In Kapitel 5 werden die Ergebnisse dieser Arbeit zusammengefasst und dis-
kutiert.
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2 Penalisierte lineare Modelle

In diesem Kapitel werden verschiedene penalisierte lineare Modelle vorge-
stellt. Alle diese Verfahren sind Erweiterungen des multiplen linearen Regres-
sionsmodells. Die Daten liegen in der Form (xxxi, yi), i = 1, . . . , n vor. Dabei
ist yi, i = 1, . . . , n der Phänotyp des Individuums i und xij, j = 1, . . . , p die
Anzahl des seltenen Allels in SNP j. Das multiple lineare Regressionsmodell
ist definiert durch (Fahrmeir et al., 2007): y1

...
yn

 =

 1 x11 . . . x1p
...

. . .

1 xn1 . . . xnp


 β0

...
βp

+

 ε1
...
εn

 ,

wobei die Störgrößen homoskedastisch sind und einer Normalverteilung mit
Erwartungswert 000 und Varianz σ2 folgen: εεε ∼ N(000, σ2I).
Die unbekannten Regressionskoeffizenten βββ> = (β0, . . . , βp) lassen sich im
Allgemeinen durch Kleinste-Quadrate Schätzung oder Maximum-Likelihood
Schätzung bestimmen (Fahrmeir et al., 2007):

β̂ββ
ML

= argmax
β

l(βββ, σ2) = argmax
β

{
−log((2πσ2)n/2)− 1

2σ2
(yyy −Xβββ)>(yyy −Xβββ)

}
= (X>X)−1X>yyy

= argmin
β

(yyy −Xβββ)>(yyy −Xβββ)︸ ︷︷ ︸
Residuenquadratsumme

= β̂ββ
KQ
.

Der KQ Schätzer ist zwar unverzerrt, hat aber bei Kollinearität der Variablen
eine große Varianz und ist in einer p > n-Situation auf Grund der Nichtin-
vertierbarkeit von X>X nicht schätzbar. Verzerrte Schätzer, welche auch in
p > n-Situationen berechnet werden können, sind penalisierte Likelihood
Schätzer. Diese lassen sich allgemein wie folgt darstellen:

β̂ββ = argmax
β
{l(βββ)− pen(βββ)}

= argmin
β
{−l(βββ) + pen(βββ)},

wobei mit l(βββ) die logarithmierte Likelihood und mit pen(βββ) der Penali-
sierungsterm bezeichnet wird. Um die Stärke der Penalisierung zu regulieren
beinhaltet der Penalisierungsterm den sogenannten Penalisierungsparameter.
Der Penalisierungsparameter kann über Kreuzvalidierung oder bayesianisch
über eine Priori-Verteilung geschätzt werden.
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2.1 Aufbau des Elastic Net

In diesem Teilkapitel wird in Abschnitt 2.1.1 die Methode der Ridge Schätz-
ung erklärt. In dem Abschnitt 2.1.2 wird das Verfahren Lasso vorgestellt.
Der Naive Elastic Net Schätzer und dessen Verbesserung, der Elastic Net
Schätzer, werden in den Abschnitten 2.1.3 und 2.1.4 erläutert. Die Schätz-
ungen für das Lasso und Elastic Net erfolgen iterativ. Nur im orthogonalen
Design lassen sich alle Schätzer konkret formulieren. Die Betrachtung der
Schätzer im orthogonalen Design erfolgt in Abschnitt 2.1.5.

2.1.1 Ridge

Hoerl und Kennard (1970a,b) führten die Ridge Regression ein. Die Ridge
Regression liefert einen Schätzer, welcher die Residuenquadratsumme mini-
miert und dessen Länge beschränkt ist (L2 Penalisierung):

β̂ββ
R

= argmin
β

{
(yyy −Xβββ)>(yyy −Xβββ)

}
u.d.B.

p∑
j=1

β2
j ≤ t.

Bei der Ridge Regression werden die KQ Koeffizienten kontinuierlich gegen
Null geschrumpft. Je kleiner der Anpassungsparameter (engl.: tuning pa-
ramter) t, desto stärker ist die Schrumpfung. Die Schätzer werden jedoch nie
exakt gleich Null. Äquivalent ist die penalisierte Schreibweise in Matrixform:

β̂ββ
R

= argmin
β

{
(yyy −Xβββ)>(yyy −Xβββ) + λβββ>βββ

}
,

mit dem Penalisierungsterm pen(βββ) = λβββ>βββ. Je größer der Parameter λ, de-
sto stärker ist die Schrumpfung der Koeffizienten gegen Null. Die Parameter
λ und t haben eine eineindeutige Beziehung, sind jedoch nicht gleich. Die
Lösung der Ridge Regression ist einfach darstellbar durch:

β̂ββ
R

= (X>X + λI)−1X>yyy. (2.1)

Die Motivation zur Einführung des Ridge Schätzers war die Problematik
der Kollinearität zu lösen. Sind Variablen hoch korreliert, so ist die Vari-
anz der durch die KQ Methode geschätzten Koeffizienten extrem hoch. Die
Vorhersagegenauigkeit des resultieren Modells kann dann schlecht sein. Der
Ridge Schätzer reduziert die Varianz der Regressionskoeffizienten, ist jedoch
nicht mehr unverzerrt (Batah und Gore, 2009). Die Reduktion der Varianz
führt in der Regel zu einer Verbesserung der Vorhersagegenauigkeit. Um ei-
ne hohe Varianz durch Kollinearität zu vermeiden, werden bei dem Ridge
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Schätzer zu der Diagonalen von X>X Konstanten λ (Gleichung (2.1)) ad-
diert. Durch die Addition wird sicher gestellt, dass X>X selbst bei einer
p � n-Datengrundlage immer invertierbar ist, die Varianz nicht zu groß
wird und der Ridge Schätzer existiert. Die Varianz bei der Ridge Regression
ist immer kleiner als die Varianz bei der KQ Schätzung (Miller, 2002). Wird
λ so gewählt, dass die Verzerrung klein ist, dann hat der Ridge Schätzer einen
kleineren Mittleren Quadratischen Fehler (engl.: mean squared error, MSE)
als der KQ Schätzer (Hoerl und Kennard, 1970b).
Da bei der Ridge Regression die Koeffizienten nie exakt auf Null geschätzt
werden, findet keine Variablenselektion statt. Dadurch gibt es keine Verbes-
serung in der Interpretierbarkeit. Ein Charakteristikum der Ridge Regression
ist der Gruppierungseffekt. Der Gruppierungseffekt quantifiziert den Unter-
schied zwischen zwei Regressionskoeffizienten über eine Funktion des Korre-
lationskoeffizienten der zugehörigen Variablen. Für gleiche Kovariablen, also
Kovariablen mit einer Korrelation von Eins, werden dieselben Regressions-
koeffizienten geschätzt (Zou und Hastie, 2005).

2.1.2 Lasso

In diesem Abschnitt wird ein Schätzverfahren eingeführt, das den Vorteil
der Koeffizientenschrumpfung der Ridge Regression beibehält und zusätzlich
eine Variablenselektion beinhaltet. Die Koeffizienten sollen geschrumpft wer-
den und auch Schumpfungen auf exakt Null stattfinden. Auf diesem Weg soll
Vorhersagegenauigkeit und gute Interpretierbarkeit erreicht werden.
Der Schätzer für den dies zutrifft ist der Lasso Schätzer, welcher von Tibshi-
rani (1996) definiert wurde. Das Lasso minimiert die Residuenquadratsumme
unter einer Nebenbedingung (L1 Penalisierung):

β̂ββ
L

= argmin
β

{
(yyy −Xβββ)>(yyy −Xβββ)

}
u.d.B.

p∑
j=1

|βj| ≤ t.

Dies ist äquivalent zur penalisierten Maximum-Likelihood Schätzung:

β̂ββ
L

= argmin
β

{
(yyy −Xβββ)>(yyy −Xβββ) + λ

p∑
j=1

|βj|

}
,

mit dem Penalisierungsterm pen(βββ) = λ
∑p

j=1 |βj|. Durch die Bestrafung ist
die Lösung nicht linear in yyy. Eine geschlossene Lösung ist im Allgemeinen
nicht möglich. Die iterative Lösung durch den LARS Algorithmus wird von
Efron et al. (2004) beschrieben.
Der Lasso Parameter t ≥ 0 kontrolliert die Stärke der Schrumpfung. Je klei-
ner t, desto stärker ist die Schrumpfung. Ist t <

∑
|β̂KQj |, so werden die KQ
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Regressoren gegen und gleich Null geschrumpft. Ist jedoch t ≥
∑
|β̂KQj |, so

ist der Lasso Schätzer gleich dem KQ Schätzer. Der Lasso Parameter t ist
folglich sinnvoll gewählt mit t ∈ [0,

∑
|β̂KQj |]. Oft wird der standardisierte

Lasso Parameter s = t/
∑
|β̂KQj | ∈ [0, 1] betrachtet. Der Parameter λ, der in

eineindeutiger Beziehung zu t steht, hat die umgekehrte Wirkung wie t. Je
größer λ, desto stärker ist die Schrumpfung. Bei λ = 0 ist der Lasso Schätzer
gleich dem KQ Schätzer.
Auf Grund der Schrumpfung der KQ Regressoren mittels eines Parameters,
λ oder t, hat der Lasso Schätzer eine kleinere Varianz als der KQ Schätzer.
Folglich verbessert sich, wie bei der Ridge Regression, bei einer sinnvollen
Wahl des Penalisierungsparameters die Vorhersagegenauigkeit. Da die Koef-
fizienten auf exakt gleich Null geschrumpft werden können, findet eine Va-
riablenselektion statt (Abschnitt 2.1.5). Trotz der vielen Vorteile des Las-
so sollten auch die Nachteile nicht unerwähnt bleiben. Ist die Anzahl der
Prädiktoren größer als die Anzahl der Beobachtungen, p > n, werden maxi-
mal n Koeffizienten selektiert. Die Variablenselektion ist daher eingeschränkt.
Bei gruppierten Variablen beziehungsweise stark korrelierten Variablen ten-
diert das Lasso dazu, aus einer Gruppe eine beliebige Variable zu wählen und
ignoriert die anderen Variablen der Gruppe (Zou und Hastie, 2005). Im Ver-
gleich zu dem Ridge Schätzer existiert kein Gruppierungseffekt. Dies hat zum
einen den Vorteil eines sparsameren Modells aber zum anderen den Nachteil,
dass die Selektion bei korrelierten Variablen mit einer gewissen Beliebigkeit
verbunden sein kann.

2.1.3 Naiver Elastic Net Schätzer

Sowohl der Lasso Schätzer als auch der Ridge Schätzer weisen Vor- und Nach-
teile auf. Basierend auf den Vorteilen dieser Schätzer entsteht die Idee eines
Schätzverfahrens mit einer kleinen Varianz der Schätzer, uneingeschränkter
Variablenselektion und einem Gruppierungseffekt. Ein Verfahren, welches
dies realisiert, ist das Naive Elastic Net von Zou und Hastie (2005).
Das Naive Elastic Net verwendet sowohl die L1 Penalisierung des Lasso als
auch die L2 Penalisierung des Ridge. Das Naive Elastic Net minimiert die
Residuenquadratsumme unter Nebenbedingung:

β̂ββ
NEN

= argmin
β

{
(yyy −Xβββ)>(yyy −Xβββ)

}
u.d.B. (1−α)

p∑
j=1

|βj|+α
p∑
j=1

β2
j ≤ t.

Bei α = 1 entspricht der Naive Elastic Net Schätzer dem Ridge Schätzer und
bei α = 0 dem Lasso Schätzer. Die Minimierung der Residuenquadratsumme
unter Nebenbedingung ist äquivalent zur penalisierten Maximum-Likelihood
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Schätzung mit dem Penalisierungsterm pen(βββββββββ) = λ1
∑p

j=1 |βj|+ λ2
∑p

j=1 β
2
j :

β̂ββ
NEN

= argmin
β

{
(yyy −Xβββ)>(yyy −Xβββ) + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j

}
,

wobei α = λ2/(λ1 + λ2).
Zou und Hastie (2005) zeigen durch eine Umformulierung des Naiven Elastic
Net, dass die positiven Eigenschaften des Lasso erhalten bleiben und die
Selektion von mehr als p Variablen möglich ist. Dafür wird basierend auf
(yyy,X) ein künstlicher Datensatz (yyy∗,X∗) erzeugt:

X∗ = (1 + λ2)
−1/2

(
X√
λ2I

)
, yyy∗ =

(
yyy
000

)
,

wobei dim(X∗) = (n+p)×p und dim(yyy∗) = (n+p)×1. Mit γ = λ1/
√

1 + λ2
und βββ∗ =

√
1 + λ2βββ lässt sich der Naive Elastic Net Schätzer die folgt be-

rechnen:

β̂ββ
∗

= argmin
β∗

{
(yyy∗ −X∗βββ∗)>(yyy∗ −X∗βββ∗) + γ

p∑
j=1

|β∗j |

}
,

β̂ββ
NEN

=
1√

1 + λ2
β̂ββ
∗
.

Die Berechnung von β̂ββ
∗

weist genau dieselbe Struktur wie die Berechnung

von β̂ββ
L

auf. In der Lasso Schätzung ist der Rang des Designmatrix X gleich
n und daher maximal die Selektion von n Prädiktoren möglich. Bei dem Nai-
ven Elastic Net Schätzer weist die Designmatrix X∗ den Rang rg(X∗) = p auf
und daher können bei der Naiven Elastic Net Schätzung bis zu p Variablen
selektiert werden.
Der Gruppierungseffekt des Ridge Schätzers existiert ebenfalls für den Nai-
ven Elastic Net Schätzer. Dies wird von Zou und Hastie (2005) gezeigt. Ein
Gruppierungseffekt liegt immer bei streng konvexen Penalisierungsfunktio-
nen vor. Die Penalisierungsfunktion des Lasso ist konvex, aber nicht streng
konvex. Die Penalisierungsfunktionen des Ridge und des Naiven Elastic Net
sind streng konvex (Abschnitt 2.1.5). Bei Lasso existiert somit kein Gruppie-
rungseffekt und bei Ridge und dem Naiven Elastic Net schon.
Der Nachteil der Inferenz des Naiven Elastic Net ist der Effekt der Doppel-
Schrumpfung. Die Schätzung der Parameter erfolgt in zwei Stufen. Zuerst
werden für feste Werte von λ2, die Koeffizienten der Ridge Regression ge-
schätzt und anschließend die Lasso Schätzung ausgeführt. Es werden somit
zwei Schrumpfungsmethoden angewandt und dies führt zu einer zusätzlichen
Verzerrung. Ein verbesserter Schätzer, welcher dieses Problem nicht aufweist,
ist der Elastic Net Schätzer.
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2.1.4 Elastic Net Schätzer

Der Elastic Net Schätzer wird von Zou und Hastie (2005) definiert und stellt
eine verbesserte Form des Naiven Elastic Net dar. Der Naive Elastic Net
basiert auf der bereits erläuterten Schätzung von:

β̂ββ
∗

= argmin
β∗

{
(yyy∗ −X∗βββ∗)>(yyy∗ −X∗βββ∗) +

λ1√
1 + λ2

p∑
j=1

|β∗j |

}
.

Daraus resultiert der Elastic Net Schätzer:

β̂ββ
EN

=
√

1 + λ2β̂ββ
∗
,

welcher eine Reskalierung des Naiven Elastic Net Schätzers ist:

β̂ββ
EN

= (1 + λ2)β̂ββ
NEN

.

Diese Reskalierung impliziert, dass die positiven Charakteristika des Naiven
Elastic Net für das Elastic Net erhalten bleiben. Für den Elastic Net Schätzer
existiert der Effekt der Doppel-Schrumpfung nicht.
Eine iterative Schätzung des Elastic Net ist über den LARS-EN Algorithmus
(Zou und Hastie, 2005) möglich.

2.1.5 Orthogonales Design und Geometrie im R2

Ein orthogonales Design liegt vor, falls X>X = I. Bei diesem Design las-
sen sich die Lösungen der Methoden Ridge, Lasso und Naives Elastic Net
explizit darstellen. Tabelle 1 zeigt, dass jede Methode eine einfache Trans-
formation des KQ Schätzers ist (Zou und Hastie, 2005). Dabei ist z+ = z für
z > 0 und z+ = 0 für z < 0. Die entsprechenden Schätzer sind in der Ab-

Tabelle 1: Ridge, Lasso und Elastic Net Schätzer im Orthogonalen Design
Verfahren Schätzer pen(βj)

Ridge β̂Rj = 1
1+λ2

β̂j
KQ

λβ2
j

Lasso β̂Lj = (|β̂KQj | − λ1/2)+ · sign(β̂KQj ) λ|βj|

Naives Elastic Net β̂NENj =
(|β̂KQ

j |−λ1/2)+

1+λ2
sign(β̂KQj ) λ1|βj|+ λ2β

2
j

bildung 1 eingezeichnet. Bei der Ridge Regression findet eine proportionale
Schrumpfung mittels des konstanten Faktors 1

1+λ2
statt. Bei Lasso wird der
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β̂

Ridge
Lasso
Elastic Net
KQ

Abbildung 1: Ridge, Lasso und Elastic Net Schätzer mit λ1 = 2, λ2 = 1 (Zou
und Hastie, 2005)
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KQ Schätzer um den konstanten Faktor λ1/2 verschoben und das Vorzeichen
des KQ Schätzers beibehalten. Die Verschiebung endet sobald der Betrag des
KQ Schätzers kleiner λ1/2 ist. Dann ist β̂Lj = 0. Bei der Naiven Elastic Net
Schätzung wird der KQ Schätzer mit dem Faktor 1

1+λ2
geschrumpft und um

λ1/2
1+λ2

verschoben. Für |β̂KQj | < λ1/2 ist der Schätzer gleich Null.

Der Ridge, Lasso und Naiver Elastic Net Schätzer können im R2 auch ganz
allgemein grafisch dargestellt werden. Alle diese Schätzer minimieren die Re-
siduenquadratsumme

∑
i(yi −

∑
j βjxij)

2 unter einer Nebenbedingung. Die
Residuenquadratsumme lässt sich umformen zu (Tibshirani, 1996):

(βββ − β̂ββ
KQ

)>X>X(βββ − β̂ββ
KQ

) + const. (2.2)

Diese Funktion hat elliptische Konturen um β̂ββ
KQ

. Für verschiedene Werte
der Konstante ergeben sich verschiedene Ellipsen.
Die Nebenbedingungen der Verfahren im R2 sind in der Abbildung 2 auf-
geführt. Die Penalisierungsfunktion des Ridge ist ein Kreis und streng konvex.
Bei Lasso ist die Penalisierungsfunktion quadratisch und konvex, jedoch nicht
streng konvex. Die Funktion ist in den Achsenschnittpunkten nicht differen-
zierbar. Die Penalisierungsfunktion des Naiven Elastic Net liegt erwartungs-
gemäß zwischen der Ridge und Lasso Penalisierung. Die Funktion ist streng
konvex und in den Achsenschnittpunkten nicht differenzierbar. Aus der stren-
gen Konvexität der Ridge und Elastic Net Penalisierungsfunktion folgt der
Gruppierungseffekt dieser Schätzverfahren. Aus der Nicht-Differenzierbarkeit
in den Achsenschnittpunkten folgt die Variablenselektion des Lasso und Ela-
stic Net. Grafisch ist der Koeffizientenschätzer der Punkt, an dem die Ellipse
der Residuenquadratsumme (2.2) die Penalisierungsfunktion berührt.

2.2 Bayesianische Inferenz

In dem Teilkapitel 2.1 wurden die Methoden Ridge, Lasso und Elastic Net
frequentistisch eingeführt. Diese Modelle können auch mittels Bayes Infe-
renz geschätzt werden. Die Bayes Inferenz wird in diesem Teilkapitel be-
schrieben. In Abschnitt 2.2.1 werden die Bayesianischen Punktschätzer und
deren Vertrauensintervalle vorgestellt. Die Annahmen, welche a priori für
die Schätzung eines Bayesianischen Modells benötigt werden, werden in Ab-
schnitt 2.2.2 erklärt. Die Beschreibung des Bayesianischen linearen Modells
erfolgt in Abschnitt 2.2.3. Die Schätzung der Parameter von Bayesianischen
Modellen erfolgt über Markov Chain Monte Carlo (MCMC) Methoden (Ab-
schnitt 2.2.4). Die Beurteilung der Modellgüte kann über die in Abschnitt 2.2.5
beschriebenen Methoden erfolgen.
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ββ2

Ridge
Lasso
Elastic Net

Abbildung 2: Penalisierungsfunktion des Ridge, Lasso und Elastic Net im R2

(Zou und Hastie, 2005)
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Rüger (1999) und Fahrmeir et al. (2007) geben eine Einführung in die Bayes
Inferenz. Die Bayes Inferenz stützt sich auf ein Theorem ihres Namensgebers
Thomas Bayes, dem Satz von Bayes:

p(θθθ|yyy) =
p(yyy,θθθ)

p(yyy)

=
p(yyy|θθθ)p(θθθ)
p(yyy)

=
p(yyy|θθθ)p(θθθ)∫
p(yyy|θθθ)p(θθθ)dθθθ

.

Dabei werden sowohl die unbekannten Parameter θθθ = (θ1, . . . , θp)
> als auch

die Beobachtungen yyy = (y1, . . . , yn)> bedingt auf die Parameter als Zufalls-
zahlen betrachtet und dementsprechend Verteilungen für diese angenommen.
Dabei steht p(yyy|θθθ) für die Datenverteilung, p(θθθ) für die Priori-Verteilung
und p(θθθ|yyy) für die Posteriori-Verteilung. Der Term 1/p(yyy) ist eine Konstante
bezüglich θθθ und die Datenverteilung ist proportional zur Likelihood L(θθθ). Es
gilt entsprechend die folgende Proportionalität:

p(θθθ|yyy) ∝ p(yyy|θθθ)p(θθθ)
∝ L(θθθ)p(θθθ).

In der Bayes Inferenz kann die Möglichkeit eine Priori-Verteilung zu spezi-
fizieren sowohl Vorteil als auch Nachteil sein. Bei einer realitätsnahen Wahl
der Priori-Verteilung verbessert sich die Aussagekraft des Modells. Bei einer
Fehlspezifikation der Priori-Verteilung hingegen kann das resultierende Mo-
dell die wahren zugrundeliegenden Sachverhalte eventuell nur unzureichend
beschreiben. Die Berechnungszeit ist in der Bayes Inferenz für den Fall, dass
die Posteriori-Verteilung unbekannt ist, langsamer als die Berechnungszeit in
der frequentistischen Inferenz.

2.2.1 Punktschätzer und Vertrauensintervalle

Die Parameterschätzung in der Bayesianischen Inferenz beruht auf der Pos-
teriori-Verteilung. Es existieren drei mögliche Punktschätzer. Diese sind der
Posteriori-Erwartungswert, der Posteriori-Modus und der Posteriori-Median.
Der Posteriori-Erwartungswert ist definiert durch:

θ̂θθ = E(θθθ|yyy) =

∫
θθθ p(θθθ|yyy) dθθθ = c ·

∫
θθθ p(yyy|θθθ) p(θθθ) dθθθ

und der Posteriori-Modus wird bestimmt über:

θ̂θθ = argmax
θ

p(θθθ|yyy) = argmax
θ

p(yyy|θθθ) p(θθθ).
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Diese Schätzer geben aber keine Auskunft über die Schätzgenauigkeit. Die
Genauigkeit der Schätzungen kann über die Vertrauensintervalle erfasst wer-
den. Das (1− α)-Vertrauensintervall ist wie folgt definiert:

P(θθθ ∈ C|yyy) ≥ 1− α,

beziehungsweise: ∫
C(yyy)

p(θθθ|yyy) dθθθ = 1− α ,

wobei der Vertrauensbereich C eine Teilmenge des Parameterraums ΘΘΘ ist.
Der Vertrauensbereich für θθθ ist also so definiert, dass 1 − α die Posteriori
Wahrscheinlichkeit ist, dass θθθ ∈ C(yyy). Es kann folglich bei der Bayes Inferenz
eine direkte Wahrscheinlichkeitsaussage über die Parameter getroffen werden.
Der Zusammenhang zwischen dem Bayesianischen Posteriori-Modus Schätzer
und dem frequentistischen Maximum-Likelihood Schätzer kann wie folgt er-
läutert werden:

θ̂θθ = argmax
θ
{p(yyy|θθθ)p(θθθ)} = argmax

β
{l(θθθ)− pen(θθθ)},

mit l(θθθ) = log p(yyy|θθθ) und pen(θθθ) = −log p(θθθ).

2.2.2 Priori Annahmen

Zur Berechnung der Posteriori-Verteilung und somit der Parameterschätzer
muss das Beobachtungsmodell und die Priori-Verteilung für die unbekann-
ten Parameter spezifiziert werden. In der Priori-Verteilung soll das Vorwissen
über die Parameter abgebildet werden. Häufig gewählte Priori-Verteilungen
sind die flache Priori und die konjugierte Priori.
Die flache Priori entspricht einer Gleichverteilung des Parameters auf dem
Parameterraum ΘΘΘ und ist konstant bezüglich des Parameters. Je nach vor-
liegendem Parameterraum können dies impropere Verteilungen sein, wel-
che keine echten Wahrscheinlichkeitsverteilungen darstellen. Flache Priori-
Verteilungen drücken ein a priori Nichtwissen (Rüger, 1999) aus. Es exi-
stieren neben der Gleichverteilung auch noch andere Verteilungen, die ein a
priori Nichtwissen signalisieren. Genaueres Vorgehen und Beispiele für nicht-
informative Priori-Verteilungen werden von Rüger (1999) beschrieben.
Eine Alternative sind die konjugierten Priori-Verteilungen. Eine Priori-Ver-
teilung wird als zu einer Datenverteilung konjugiert bezeichnet, falls die dar-
aus folgende Posteriori-Verteilung zum selben Verteilungstyp gehört wie die
Priori-Verteilung. Durch die Annahme einer konjugierten Priori ist die Ver-
teilungsfamilie der Posteriori-Verteilung bekannt. Die Parameterschätzung

15



ist bei einem bekannten Posteriori-Verteilungstyp einfacher, da die Integrati-
on und das Ziehen von Zufallszahlen aus einer bekannten Verteilung für die
MCMC-Methoden (Abschnitt 2.2.4) zumeist implementiert sind.
Die hierarchischen Modelle des Bayesianischen Ridge, des Bayesianischen
Lasso und des Bayesianischen Elastic Net sind sowohl über konjugierte als
auch über nichtinformative Priori-Verteilungen definiert.

2.2.3 Bayesianisches lineares Modell

Das multiple lineare Regressionsmodell kann nicht nur frequentistisch son-
dern auch analog Bayesianisch formuliert werden. Im Bayesianischen Ansatz
wird die Zielgröße als bedingte Verteilung der Parameter formuliert:

yyy|βββ, σ2 ∼ N(Xβββ, σ2I)

und somit folgt für die bedingte Verteilung der Zielvariablen:

p(yyy|βββ, σ2) ∝ (σ2)−n/2exp(− 1

2σ2
(yyy −Xβββ)>(yyy −Xβββ)).

Die unbekannten Parameter βββ und σ2 wurden in den frequentistischen Mo-
dellen als fest angenommen. Im Bayesianischen Ansatz werden die Parameter
als Zufallsvariablen angesehen auf Grund dessen auch Verteilungen für diese
angenommen. Die gemeinsame Priori-Verteilung der unbekannten Parameter
wird berechnet über:

p(βββ, σ2) = p(βββ|σ2)p(σ2).

Bei einer Normalverteilungsannahme für das Beobachtungsmodell ist eine
konjugierte Priori-Verteilung für θθθ = (βββ, σ2) die Normal-Inverse Chi-Quadrat-
Verteilung (Fahrmeir et al., 2007). Für die gemeinsame Posteriori-Verteilung:

p(βββ, σ2|yyy) ∝ p(yyy|βββ, σ2) · p(βββ, σ2) = p(yyy|βββ, σ2)p(βββ|σ2)p(σ2)

erhält man die Dichte einer Normal-Inverse Chi-Quadrat-Verteilung.

2.2.4 Markov Chain Monte Carlo Methoden

Die Posteriori-Verteilung kann analytisch und numerisch unzugänglich sein,
sodass direkt keine Statistik der Posteriori-Verteilung berechnet werden kann.
Eine iterative Lösung dieses Problems bieten die MCMC-Methoden. Eine Be-
schreibung der MCMC-Methoden wird von Robert und Casella (2004) und
Fahrmeir et al. (2007) gegeben. Diese Methoden beruhen auf der Simulation
von Zufallszahlen aus der Posteriori-Verteilung. Basierend auf der Verteilung
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der Zufallszahlen können die Statistiken berechnet werden. Die Berechnung
der Zufallszahlen aus der Posteriori-Verteilung erfolgt jedoch ohne direk-
tes Ziehen aus der Posteriori-Verteilung. Stattdessen wird eine ergodische
Markov Kette erzeugt, deren stationäre Verteilung die Posteriori-Verteilung
ist. Die Markov-Kette konvergiert dann in Verteilung gegen die Posteriori-
Verteilung. Um sicher zu stellen, Zufallszahlen aus einer akzeptabel approxi-
mierten Posteriori-Verteilung zu erhalten, sollte eine gewisse Konvergenzpha-
se (engl.: burn in) gewährt werden. Die Glieder einer Markov Kette sind per
Definition voneinander abhängig. Um möglichst unabhängige Stichproben
aus der Markov Kette zu analysieren, kann die Markov Kette ausgedünnt wer-
den, indem beispielsweise nur jede zwanzigste Ziehung berücksichtigt wird.
Die bekanntesten MCMC-Methoden sind der Metropolis-Hastings-Algorith-
mus von Metropolis et al. (1953) und Hastings (1970) und der Gibbs-Sampler
von Geman und Geman (1984). Diese werden im Folgenden näher beschrie-
ben.

Metropolis-Hastings-Algorithmus
Der Metropolis-Hastings-Algorithmus erzeugt wie im Folgenden beschrieben
Zufallszahlen aus der Posteriori-Verteilung (Fahrmeir et al., 2007):

1. Wähle einen Startwert θθθ(0) und die Anzahl der Iterationen T . Setze
t = 1.

2. Ziehe eine Zufallszahl θθθ∗ aus der Vorschlagsdichte q(θθθ∗|θθθ(t−1)) und ak-
zeptiere diese als neuen Zustand θθθ(t) mit Wahrscheinlichkeit α(θθθ∗|θθθ(t−1)),
anderenfalls setze θθθ(t) = θθθ(t−1).

3. Falls t = T beende den Algorithmus, ansonsten setze t = t + 1 und
fahre fort mit 2.

Innerhalb des Algorithmus wird nicht unmittelbar aus der Posteriori-Vertei-
lung gezogen, sondern aus einer Vorschlagsdichte q(θθθ∗|θθθ(t−1)). Die Vorschlags-
dichte ist von dem aktuellen Zustand θθθ(t−1) abhängig und sollte so gewählt
werden, dass aus ihr leicht Zufallszahlen gezogen werden können. Die vorge-
schlagenen Ziehungen θθθ∗ werden jeweils mit der Akzeptanzwahrscheinlichkeit
von

α(θθθ∗|θθθ(t−1)) = min

{
p(θθθ∗|yyy) q(θθθ(t−1)|θθθ∗)

p(θθθ(t−1)|yyy) q(θθθ∗|θθθ(t−1))
, 1

}
als neue Ziehungen angenommen. Auf diese Weise wird eine Markov Kette
generiert. Die Zufallszahlen θθθ(t0+1), . . . , θθθ(T ) können nach der Konvergenz-
phase t0 > 0 als Stichprobe aus der Posteriori-Verteilung p(θθθ|yyy) betrach-
tet werden. Die hintereinander gezogenen Zufallszahlen sollten möglichst un-
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abhängig voneinander sein, sodass die benötigte Anzahl an Stichproben zur
genauen Schätzung der Posteriori Eigenschaften gering ist.

Gibbs-Sampler
Der Gibbs-Sampler stellt eine Alternative zum Metropolis-Hastings-Algorith-
mus dar. Dieser Algorithmus ist insbesondere dann dem Metropolis-Hastings-
Algorithmus vorzuziehen, wenn der Parametervektor hochdimensional ist.
Der Gibbs-Sampler setzt voraus, dass die vollständig bedingten Dichten be-
kannt sind. Bei den Gibbs-Sampler geht der Vektor θθθ nicht im Ganzen son-
dern über die S Teilvektoren θθθ1, . . . , θθθS ein.
Der Gibbs-Sampler simuliert auf folgende Weise Zufallszahlen der Posteriori-
Verteilung (Fahrmeir et al., 2007):

1. Wähle Startwerte θθθ
(0)
1 , . . . , θθθ

(0)
S und die Anzahl der Iterationen T . Setze

t = 1.

2. Für s = 1, . . . , S: Ziehe Zufallszahlen θθθ
(t)
s aus der vollständig bedingten

Dichte
p(θθθs|θθθ(t)1 , . . . , θθθ

(t)
s−1, θθθ

(t−1)
s+1 , . . . , θθθ

(t−1)
S , yyy).

Man beachte, dass in der Bedingung jeweils die momentan aktuellen
Zustände verwendet werden.

3. Falls t = T beende den Algorithmus, ansonsten setze t = t + 1 und
fahre fort mit 2.

Innerhalb des Algorithmus wird nicht direkt aus der Posteriori-Verteilung ge-
zogen, sondern aus den vollständig bedingten Dichten p(θθθ1|·), . . . p(θθθS|·). Die

Zufallszahlen θθθ
(t0+1)
s , . . . , θθθ

(T )
s können nach der Konvergenzphase t0 als Stich-

proben aus der Marginalverteilung von θθθs|yyy betrachtet werden. Im Vergleich
zum Metropolis-Hastings-Algorithmus wird keine der Ziehungen verworfen,
beziehungsweise liegt die Akzeptanzwahrscheinlichkeit hier bei Eins.

2.2.5 Modellkomplexität und Modellanpassung

Bayesianische Modelle können über das Devianz Informationskriterium und
die Anzahl effektiver Parameter verglichen und beurteilt werden. Für den
Vergleich Bayesianischer und frequentistischer Modelle eignet sich eine Kreuz-
validierung mit den Kriterien Korrelation und Mittlerer Quadratischer Feh-
ler. Diese Komplexitäts- und Anpassungskriterien werden in dem folgenden
Abschnitt vorgestellt.
Das Devianz Informationskriterium wurde von Spiegelhalter et al. (2002)
zur Beurteilung der Modellgüte von Bayesianischen Modellen eingeführt. Es
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basiert, wie die meisten Informationskriterien, auf der gleichzeitigen Betrach-
tung der Modellanpassung und der Modellkomplexität. Die Komplexität wird
über die Anzahl der effektiven Parameter pD spezifiziert:

pD = Eθ|y[−2log p(yyy|θθθ)] + 2log p(yyy|θ̄θθ)

= Eθ|y

[
−2log

p(θθθ|yyy)

p(θθθ)

]
+ 2log

p(θ̄θθ|yyy)

p(θ̄θθ)
.

Dabei steht θ̄θθ für den Posteriori-Erwartungswert der Parameter E(θθθ|yyy). Al-
ternativ könnte auch der Posteriori-Modus oder Median gewählt werden. Die
Anzahl der effektiven Parameter lässt sich auch über die unstandardisierte
Devianz D(θθθ) = −2log p(yyy|θθθ) als die Differenz zwischen der erwarteten De-
vianz und der Devianz des Erwartungswerts berechnen:

pD = D(θθθ)−D(θ̄θθθθθθθθ).

Die erwartete Posteriori-Devianz kann als Maß für die Bayesianische Mo-
dellanpassung verwendet werden. Zusammen mit der Anzahl der effektiven
Parameter resultiert das Devianz Informationskriterium:

DIC = D(θθθ) + pD

= 2D(θθθ)−D(θ̄θθθθθθθθ)

= D(θ̄θθθθθθθθ) + 2pD.

Bei der Inferenz basierend auf Bayesianischen Modellen mit MCMC-Metho-
den ist das DIC schnell und einfach berechenbar. Es seien θθθ(1), . . . , θθθ(T ) die
Zufallszahlen aus der Posteriori-Verteilung, welche während eines MCMC-
Algorithmus gezogen wurden. Die erwartete Posteriori-Devianz wird über
den Mittelwert der Devianzen der Zufallsstichproben D(θθθ) = 1

T

∑T
t=1D(θθθ(t))

und der Posteriori-Erwartungswert der Parameter über den Mittelwert θ̄θθ =
1
T

∑T
t=1 θθθ

(t) geschätzt. Das Devianz Informationskriterium, basierend auf den
Posteriori Stichproben des MCMC-Algorithmus, errechnet sich dementspre-
chend über:

DIC = 2 · 1

T

T∑
t=1

D(θθθ(t))−D

(
1

T

T∑
t=1

θθθ(t)

)
.

Ein Modell mit einem kleinen DIC-Wert ist einem Modell mit einem größeren
DIC-Wert vorzuziehen (Spiegelhalter et al., 2002).
Das DIC und pD sind nur für den Vergleich Bayesianischer Modelle geeignet
und geben keine Information über die Vorhersagegenauigkeit des Modells.
Um die Vorhersagegüte frequentistischer und Bayesianischer Modelle zu be-
stimmen können die Kriterien Korrelation und Mittlerer Quadratischer Feh-
ler herangezogen werden.
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Im Folgenden wird die Vorhersagegenauigkeit des Modells, gemessen als die
Korrelation zwischen den realen Daten yyy und den durch das Modell progno-
stizierten Werten ŷyy, betrachtet. Der Bravais-Pearson Korrelationskoeffizient
ist wie folgt definiert (Fahrmeir et al., 2003):

ρ =

∑
i(yi − ȳ)(ŷi − ¯̂y)√∑

i(yi − ȳ)2
∑

i(ŷi − ¯̂y)2
.

Da ein Regressionsmodell speziell an die vorliegenden Daten angepasst wird
sollte zur Beurteilung der Vorhersagegüte nicht der volle Datensatz analysiert
werden, sondern die Daten in Trainings- und Validierungsdaten getrennt wer-
den. Auf den Trainingsdaten wird das Regressionsmodell angepasst und mit-
tels dieses Modells eine Vorhersage für die Validierungsdaten durchgeführt.
Anschließend können die realen Werte der Validierungsdaten mit den progno-
stizierten Werten der Validierungsdaten verglichen werden. Um ein valides
Ergebnis zu erhalten sollte dies mehrfach für verschiedene Validierungsda-
tensätze durchgeführt werden. Als systematische Methodik empfiehlt sich
die Kreuzvalidierung (engl.: cross-validation, CV), welche unter anderem von
Fahrmeir et al. (2007) und Hastie et al. (2009) beschrieben wird. Im Weiteren
wird kurz und allgemein die K-fache Kreuzvalidierung beschrieben:

[a ] Zerlegung der Daten in K Teildatensätze circa gleicher Größe.

[b ] 1. Teildatensatz = Validierungsstichprobe, Parameterschätzung basie-
rend auf den 2.-K. Teildatensätzen, Daten der Validierungsstichprobe
prognostizieren, Prognosemaß z.B. Korrelation ρk berechnen.

[c ] Jeweils 2. bis K. Teildatensatz als Validierungsstichprobe verwenden.

[d ] Berechnung der Vorhersagegenauigkeit als ρ̄ = 1
K

∑K
k=1 ρk mit dem

Prognosemaß ρk.

Ein Modell mit einem größeren ρ̄-Wert ist einem Modell mit einem kleineren
ρ̄-Wert vorzuziehen. Alternativ zur Korrelation kann der Mittlere Quadrati-
sche Fehler betrachtet werden. Dieser ist definiert durch:

MSE =
1

n
·

n∑
i=1

(yi − ŷi)2.

Hastie et al. (2009) schlagen vor, die Daten in einen Trainingsdatensatz von
50%, einen Validierungsdatensatz von 25% und einen Testdatensatz von 25%
aufzuteilen. Auf dem Trainingsdatensatz wird das Modell angepasst. Sei das
Maß für die Vorhersagegenauigkeit der Mittlere Quadratische Fehler, so wird
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der Validierungsdatensatz verwendet um den Vorhersagefehler für die Modell-
selektion zu schätzen. Mittels des Testdatensatzes wird der Generalisierungs-
fehler des Endmodells bestimmt.

2.3 Aufbau des Bayesianischen Elastic Net

Das Bayesianische Elastic Net ist eine Kombination des Bayesianischen Ridge
und des Bayesianischen Lasso. Alle drei Ansätze basieren auf dem Bayesia-
nischen linearen Modell, welches in dem Abschnitt 2.2.3 erläutert wurde.
Die Beschreibung des Bayesianischen Ridge erfolgt in dem Abschnitt 2.3.1
und die des Bayesianischen Lasso findet in Abschnitt 2.3.2 statt. Vorschläge
für die Wahl der Hyperparameter werden in Abschnitt 2.3.3 gegeben. Das
Bayesianische Elastic Net wird in Abschnitt 2.3.4 erläutert.

2.3.1 Bayesianisches Ridge

Die Bayesianische Ridge Regression wird von Fahrmeir et al. (2010) und
Pérez et al. (2010) beschrieben. Die Likelihood entspricht einer Normalver-
teilung (Abschnitt 2.2.3):

p(yyy|βββ, σ2
ε ) =

n∏
i=1

N

(
yi|

p∑
j=1

xijβj, σ
2
ε

)
.

Der Penalisierungsterm der frequentistischen Betrachtung pen(βββ) = λ · βββ>βββ
ist äquivalent zur Normalverteilungspriori für βββ mit Erwartungswert 0 und
Varianz σ2

β für jeden Marker:

p(βββ|σ2
β) =

p∏
j=1

N(βj|0, σ2
β).

Die Information dieser Priori-Verteilung steigt an je kleiner die Varianz σ2
β

ist. Die gemeinsame Posteriori-Verteilung der unbekannten Parameter wird
im Allgemeinen errechnet über:

p(βββ, σ2
ε , σ

2
β|yyy) = p(yyy|βββ, σ2

ε ) · p(βββ|σ2
β) · p(σ2

β) · p(σ2
ε ).

Bei der Annahme von Konstanten für die Hyperparameter entspricht der
Posteriori-Modus und Erwartungswert von βββ dem frequentistischen Ridge
Schätzer:

E(βββ|yyy) = β̂ββ
R

= (X>X +
σ2
ε

σ2
β

I)−1X>yyy,
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mit λ = σ2
ε/σ

2
β. Die Bayesianische Betrachtung erlaubt zusätzlich die Spezifi-

zierung von Priori-Verteilungen für die Parameter σ2
ε und σ2

β. Die konjugierte
Verteilung zur Normalverteilung ist die Inverse χ2-Verteilung. A priori wer-
den deshalb die folgenden Priori-Verteilungen spezifiziert:

p(σ2
ε ) = χ−2(σ2

ε |dfε, Sε),
p(σ2

β) = χ−2(σ2
β|dfβ, Sβ),

mit den Freiheitsgraden dfε und dfβ und den Skalierungsparametern Sε und
Sβ.

2.3.2 Bayesianisches Lasso

Park und Casella (2008), de los Campos et al. (2009) und Fahrmeir et al.
(2010) definieren das Bayesianische Lasso. Der Penalisierungsterm der fre-
quentistischen Betrachtung pen(βββ) = λ

∑p
j=1 |βj| ist äquivalent zur Laplace

Priori-Verteilung für βj, j = 1, . . . , p (Fahrmeir et al., 2010):

βj|λ ∼ Laplace(0, λ)

und

p(βββ|λ) =

p∏
j=1

λ

2
exp(−λ|βj|) ∝ exp(−λ

p∑
j=1

|βj|).

Die Laplace Verteilung hat mehr Masse direkt um Null und mehr Masse in
den Enden als die Normalverteilung. Dadurch tendiert das Bayesianische Las-
so dazu kleine Effekte stärker und größe Effekte schwächer zu schrumpfen als
das Bayesianische Ridge. Bei der Annahme von Konstanten für die Hyper-
parameter entspricht die Posteriori-Modus Schätzung der frequentistischen
Lasso Schätzung:

p(βββ, λ|yyy) ∝ exp

(
− 1

2σ2
(yyy −Xβββ)>(yyy −Xβββ) + λ

p∑
j=1

|βj|

)
· const.

Die Laplaceverteilung kann als skalierte Mischung von Normalverteilungen
mit einer Exponentialverteilung als Mischungsdichte formuliert werden (Park
und Casella, 2008):

λ

2
exp(−λ|βj|) =

∫ ∞
0

exp(−(β2
j /2σ

2
j ))√

2πσ2
j

[λ2
2

exp(−λ
2

2
σ2
j )

]
dσ2

j .
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Das hierarchische Modell lautet damit:

p(yyy|βββ, σ2
ε ) =

n∏
i=1

N(yi|xxxTi βββ, σ2
ε ),

p(βββ|σ2
ε , τττ

2) =

p∏
j=1

N(βj|0, τ 2j σ2
ε ),

p(σ2
ε ) = χ−2(σ2

ε |dfε, S),

p(τττ 2|λ) =

p∏
j=1

Exp(τ 2j |λ),

p(λ2) = Ga(λ2|α1, α2).

Durch die markerspezifische Varianz τ 2j σ
2
ε der bedingten Priori-Verteilung

p(βββ|σ2
ε , τττ

2) wird, im Vergleich zum Bayesianischen Ridge, eine markerspezifi-
sche Schrumpfung der Koeffizientenschätzer erlaubt. Je kleiner der τj Para-
meter desto informativer ist die Priori-Verteilung. Für die Priori-Verteilung
von p(λ2) kann anstelle der von Park und Casella (2008) vorgeschlagenen
Gammaverteilung auch eine Betaverteilung verwendet werden (de los Cam-
pos et al., 2009).
Im Bayesianischen Lasso ist, im Vergleich zum frequentistischen Lasso die
Anzahl der selektierbaren Prädiktoren nicht durch die Anzahl der Beobach-
tungen beschränkt (de los Campos et al., 2009).

2.3.3 Wahl der Hyperparameter

Für die Wahl der Hyperparameter des Bayesianischen Lasso und des Bayesia-
nischen Ridge schlagen Pérez et al. (2010) die sogenannten optimalen Para-
meter vor. Die Wahl der optimalen Parameter stützt sich auf die Heritabilität
(Griffiths et al., 2012). Die Heritabilität basiert auf der Annahme, dass die
phänotypische Ausprägung (P) von den genotypischen Ausprägungen (G)
und der Umwelt (ε) abhängt. Die phänotypische Varianz σ2

G ist, falls keine
Genotyp-Umwelt-Interaktion vorliegt, durch die Summe der genotypischen
Varianz und der Umwelt-Varianz definiert: σ2

P = σ2
G + σ2

ε . Die Heritabilität
h2, also der Anteil der genotypischen Varianz an der phänotypischen Varianz,
ist definiert durch:

h2 =
σ2
G

σ2
P

=
σ2
G

σ2
G + σ2

ε

. (2.3)

Durch Umformen der Gleichungen (2.3) ergibt sich für die genotypische Vari-
anz die Schätzung σ2

G = σ2
P · h2 und für die nicht genetische Umwelt-Varianz
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folgt:

σ2
ε = σ2

P (1− h2). (2.4)

Der Skalierungsparameter der inversen χ2-Priori von σ2
ε wird geschätzt durch:

Sε = E(σ2
ε ) · (dfε + 2),

wobei die Schätzung des Erwartungswert von σ2
ε über die nicht genetische

Umwelt-Varianz (2.4) erfolgt und für den Freiheitsgrad dfε = 4.1 angenom-
men wird. Bei der inversen χ2-Priori von σ2

β lautet der Schätzer des Skalie-
rungsparameters:

Sβ =
σ2
G(dfβ + 2)∑

j x̄
2
j

,

wobei für den Freiheitsgrad dfβ = 4.1 angenommen wird. Der optimale Pa-
rameter λ wird wie folgt geschätzt:

λ =

√
2

1− h2
h2

∑
j

x̄2j . (2.5)

2.3.4 Bayesianischer Elastic Net Schätzer

Das Bayesianische Elastic Net kombiniert die Methode des Bayesianischen
Ridge und des Bayesianischen Lasso. Durch die Kombination dieser Metho-
den besitzt das Bayesianische Elastic Net sowohl die positiven Eigenschaften
des Lasso als auch die Vorteile des Ridge. Li und Lin (2010) definieren den
Bayesianischen Elastic Net Schätzer und beschreiben die Inferenz dieser Me-
thode.
Der Penalisierungsterm der frequentistischen Betrachtung:

pen(βββ) = λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j

ist äquivalent zur Kombination der Normalverteilungspriori und Laplacever-
teilungspriori für βββ:

p(βββ|σ2) ∝ exp

{
− 1

2σ2
(λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j )

}
.

Wird eine Konstante für die Priori-Verteilung p(σ2) angenommen, so ent-
spricht der Posteriori-Modus Schätzer dem frequentistischen Elastic Net Schä-
tzer. Li und Lin (2010) spezifizieren die nichtinformative Priori-Verteilung
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Abbildung 3: Vergleich der Priori-Verteilungen des Bayesianischen Elastic
Net für verschiedene Werte von λ1 und λ2

p(σ2) = 1/σ2. In der Abbildung 3 werden Priori-Verteilungen für βββ des
Bayesianischen Elastic Net für verschiedene Werte von λ1 und λ2 gezeigt.
Je größer der λ1 Parameter oder je größer der λ2 Parameter, desto mehr
Masse der Priori-Verteilung konzentriert sich um Null und desto stärker ist
die Penalisierung. Einen Vergleich der Priori-Verteilungen des Bayesianischen
Ridge, des Bayesianischen Lasso und des Bayesianischen Elastic Net zeigt
Abbildung 4. Die Priori-Verteilung der Ridge Schätzung ist in Null diffe-
renzierbar. Bei dem Lasso und dem Elastic Net sind die Priori-Verteilungen
nicht in Null differenzierbar. Dies führt dazu, dass bei der Ridge Schätzung
keine Variablenselektion erfolgt und bei der Lasso beziehungsweise Elastic
Net Schätzung hingegen schon. Die Priori-Verteilung des Elastic Net ist fla-
cher als die Priori-Verteilung des Lasso. Die Variablenselektion ist bei dem
Lasso stärker als bei dem Elastic Net.
Die marginale Posteriori-Verteilung für βββ ist wie folgt definiert:

p(βββ|yyy) =

∞∫
0

p(yyy|βββ, σ2) · p(βββ|σ2) · p(σ2)dσ2 =

∞∫
0

C(λ1, λ2, σ
2)

(2πσ2)n/2
exp

−
(yyy −Xβββ)>(yyy −Xβββ) + λ1

p∑
j=1

|βj|+ λ2
p∑
j=1

β2
j

2σ2

 p(σ2) dσ2,
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Abbildung 4: Vergleich der Priori-Verteilungen des Bayesianischen Ridge, des
Bayesianischen Lasso und des Bayesianischen Elastic Net für λ1 = 1, λ2 = 1

wobei C(λ1, λ2, σ
2) eine Normalisierungskonstante darstellt. Eine geschlosse-

ne Darstellung der Posteriori Schätzer basierend auf deren marginaler Poster-
iori-Verteilung ist nicht immer möglich. Für die Inferenz kann deswegen der
Gibbs-Sampler verwendet werden. Im Gibbs-Sampler werden die vollständig
bedingten Dichten der Parameter verwendet. Auf Grund der |βj| würde aus
dem hier vorgestellten hierarchischen Modell eine unbekannte vollständig be-
dingte Verteilung folgen. Deshalb schlagen Li und Lin (2010) ein anderes
hierarchisches Modell vor, welches auf einem Umformulierung der Priori-
Verteilung p(βββ|σ2) beruht:

C(λ1, λ2, σ
2)

p∏
j=1

∫ ∞
1

√
t

t− 1
exp

{
−
β2
j

2

(
λ2
σ2

t

t− 1

)}
t−1/2exp

(
− 1

2σ2

λ21
4λ2

t

)
dt.

Dies zeigt, dass die Verteilung von βj|σ2 als eine Mischung von Normalvertei-
lungen N(0, σ2(t−1)/(λ2t)) darstellt werden kann, wobei die Mischverteilung
eine auf (1,∞)-trunkierte Gammaverteilung mit Gestaltparameter 0.5 und
Skalierungsparameter 8λ2σ

2/λ1 ist. Daraus resultiert folgendes hierarchisches
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Modell:

p(yyy|βββ, σ2) = N(Xβββ, σ2I),

p(βββ|τττ , σ2) =

p∏
j=1

N

(
0,

(
λ2
σ2

τj
τj − 1

)−1)
,

p(τττ |σ2) =

p∏
j=1

TG

(
1

2
,
8λ2σ

2

λ21
, (1,∞)

)
,

p(σ2) =
1

σ2
.

Die vollständig bedingten Dichten sind folgende:

p(βββ|yyy, σ2, τττ) = N(A−1X>yyy, σ2A−1) , mit

A = X>X + λ2diag

(
τ1

τ1 − 1
, . . . ,

τp
τp − 1

)
,

p((τττ − 111)|yyy, σ2,βββ) =

p∏
j=1

GIG

(
λ =

1

2
, ψ =

λ1
4λ2σ2

, χ =
λ2β

2
j

σ2

)
,

p(σ2|yyy,βββ,τττ) =

(
1

σ2

)n
2
+p+1{

ΓU

(
1

2
,

λ21
8σ2λ2

)}−p
·

exp

[
− 1

2σ2

{
(yyy −Xβββ)>(yyy −Xβββ) + λ2

p∑
j=1

τj
τj − 1

β2
j +

λ21
4λ2

p∑
j=1

τj

}]
,

wobei Γu(α, x) =
∫∞
x
tα−1e−tdt und GIG(λ, ψ, χ) die generalisierte inverse

Gammaverteilung mit der Dichte:

p(x|λ, χ, ψ) =
(ψ/χ)λ/2

2Kλ(
√
ψχ)

xλ−1exp

{
−1

2
(χx−1 + ψx)

}
und Kλ(·) die modifizierte Bessel Funktion mit Ordnung λ.

Hofmarcher et al. (2011) schlagen vor für das Bayesianische Elastic Net eine
βββ Priori-Verteilung zu wählen, welche einer spike & slab Mischung entspricht.
Für jedes βj wird eine Mischverteilung aus einer Punktmasse auf Null I0 und
der üblichen βj Priori-Verteilung angenommen:

p(βj|γj, τj, σ2) ∼ (1− γj) · I0 + γj · p(βj|τj, σ2)

und für γj wird eine Bernoulli Priori-Verteilung gewählt: p(γj) = Be(γ),
wobei γ = p̄/p. Dabei kann p̄ als die a priori erwartete Anzahl der Parameter
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ungleich Null interpretiert werden. Auf diese Weise ist es möglich, dass ein
a priori Wissen über die Modellgröße in die Inferenz eingeht. Sollte kein a
priori Wissen über die Modellgröße vorliegen, so resultiert mit p̄ = p das
klassische Bayesianische Elastic Net. Bei der Inferenz der Arabidopsis liegt
kein Vorwissen über die Modellgröße vor.

Wahl der Penalisierungsparameter
Die Wahl der Penalisierungsparamter entscheidet über die Form der Priori-
Verteilung von βββ und ist somit sehr wichtig für die Inferenz. Die Wahl der
Penalisierungsparameter wird empirisch und iterativ über den Monte Car-
lo EM Algorithmus (Casella, 2001) getroffen. Dieser Algorithmus maximiert
approximativ die marginale Likelihood. Grundidee in der Penalisierungspa-
rameterschätzung durch den Monte Carlo EM Algorithmus ist es βββ,τττ , σ2 als
fehlende Daten und (λ1, λ2) als feste Parameter zu behandeln. Die Likelihood,
ohne Konstanten bezüglich der festen Parameter, ist folgende (Li und Lin,
2010):

λp1

(
1

σ2

)n
2
+p+1{

ΓU

(
1

2
,

λ21
8σ2λ2

)}−p p∏
j=1

(
1

τj − 1

)1/2

·

exp

[
− 1

2σ2

{
(yyy −Xβββ)>(yyy −Xβββ) + λ2

p∑
j=1

τj
τj − 1

β2
j +

λ1
4λ2

p∑
j=1

τj

}]

und die logarithmierte Likelihood entsprechend:

p log (λ1)− p log ΓU

(
1

2
,

λ21
8σ2λ2

)
− λ2

2σ2

p∑
j=1

τj
τj − 1

β2
j −

1

2σ2

λ21
4λ2

p∑
j=1

τj.

Die auf λ(k−1) = (λ
(k−1)
1 , λ

(k−1)
2 ) und Y bedingte logarithmierte Likelihood im

k-ten Schritt des Monte Carlo EM Algorithmus lautet wie folgt:

Q(λ|λ(k−1)) = p log (λ1)− pE
[
logΓU

(
1

2
,

λ21
8σ2λ2

)
|λ(k−1), Y

]
−

λ2
2

p∑
j=1

E

[
τj

τj − 1

β2
j

σ2
|λ(k−1), Y

]
− λ21

8λ2

p∑
j=1

E
[ τj
σ2
|λ(k−1), Y

]
+ const =

= R(λ|λ(k−1)) + const.
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Dies ist der E-Schritt des EM-Algorithmus. In dem M-Schritt wirdR(λ|λ(k−1))
maximiert:

dR

dλ1
=

p

λ1
+
pλ1
4λ2

E

[{
ΓU

(
1

2
,

λ21
8σ2λ2

)}−1
φ

(
λ21

8σ2λ2

)
1

σ2
|λ(k−1), Y

]
−

λ1
4λ2

p∑
j=1

E
[ τj
σ2
|λ(k−1), Y

]
,

dR

dλ2
= −pλ

2
1

8λ22
E

[{
1

2
,

λ21
8σ2λ2

}−1
φ

(
λ21

8σ2λ2

)
1

σ2
|λ(k−1), Y

]
−

1

2

p∑
j=1

E

[
τj

τj − 1

β2
j

σ2
|λ(k−1), Y

]
+

λ21
8λ22

p∑
j=1

E
[ τj
σ2
|λ(k−1), Y

]
.

mit φ(t) = t−1/2e−t.
Eine andere Möglichkeit die Penalisierungsparameter zu spezifizieren ist es,
Priori-Verteilungen für diese zu wählen. Folgende Priori-Verteilungen könnten
hierfür gewählt werden (Li und Lin, 2010):

p(λ21) = Ga(a, b),

p(λ2) = GIG(1, c, d).

Hofmarcher et al. (2011) verwenden in ihrer Datenauswertung ebenfalls Priori-
Verteilungen für die Penalisierungsparameter, welche jedoch so gewählt wer-
den, dass der Lasso und Ridge Parameter in einem gewissen Zusammenhang
stehen. Hierfür werden die Penalisierungsparameter λ1 und λ2 so repara-
metrisiert, dass λ1 = α · λ und λ2 = (1 − α)λ. Für α wird a priori eine
auf (0, 1)-trunkierte Normalverteilung mit Erwartungswert 0.5 und Varianz
0.000001 angenommen. Dies scheint vorerst eine strenge Annahme zu sein.
Ob dies tatsächlich eine strenge Einschränkung ist wird in der Inferenz (Kapi-
tel 4) über verschiedene Annahmen für den Erwartungswert und die Varianz
überprüft. Für λ2 wird a priori die Gamma-Priori p(λ2) = Ga(0.1, 0.1) spe-
zifiziert. Desweiteren wird a priori für den Intercept die Priori-Verteilung
p(µ) = N(0, 0.000001) angenommen. Diese Normalverteilungspriori hat fast
die gesamte Masse auf Null. Diese Modellierung ist adäquat für standardisier-
te Größen. Desweiteren wird folgende Priori-Verteilung der Varianz definiert:
p(σ2) = Ga(0.001, 0.001).
Durch die simultane Schätzung von λ1 und λ2 im Bayesianischen Ansatz
tritt, im Vergleich zur frequentistischen Schätzung, kein Effekt der Doppel-
Schrumpfung auf.
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2.4 Generalisiertes Elastic Net

Das Generalisierte Elastic Net wurde von Ishwaran und Rao (2011) eingeführt
und ist eine geeignete Inferenzmethode bei hochdimensionalen Problemen.
Zur Definition und Implementierung des Generalisierten Elastic Net wer-
den Bayesianische Modell Mittelwert (engl.: bayesian model average, BMA)
Schätzer genutzt.
In Abschnitt 2.1.1 wurde der Ridge Schätzer erläutert. Dieser Schätzer kann
auch allgemeiner mittels individueller Penalisierungsparamter für jeden Ko-
effizientenschätzer wie folgt formuliert werden:

β̂ββGR = argmin
β∈Rp

{(yyy −Xβββ)>(yyy −Xβββ) +

p∑
j=1

λjβ
2
j }

= (X>X + Λ)−1X>yyy. (2.6)

Dabei wird mit Λ = diag{λj}pj=1, λj > 0 die Ridge Matrix der Penalisie-
rungsparameter bezeichnet. Diese verallgemeinerte Form der Ridge Methode
wird als Generalisierte Ridge Regression (engl.: generalized ridge regressi-
on, GRR) bezeichnet. Ishwaran und Rao (2011) zeigen, dass der Genera-
lisierte Ridge Schätzer eine Schrumpfung der Regressionskoeffizienten auf
exakt Null zulässt. Dies könnte den Generalisierten Ridge Schätzer zu einer
adäquaten Methode in p� n-Situationen machen. Der Generalisierte Ridge
Schätzer (2.6) kann auch über X∗ = XΛ als reskalierter Ridge Schätzer
dargestellt werden:

β̂ββGR = Λ−1/2(Λ−1/2X>XΛ−1/2 + Ip)
−1Λ−1/2X>yyy

= Λ−1/2(X>∗X∗ + Ip)
−1X>∗ yyy

= Λ−1/2β̂̂β̂β∗R,

wobei β̂̂β̂β∗R = (X>∗X∗ + Ip)
−1X>∗ yyy der Ridge Schätzer mit der Design-Matrix

X∗ und λ = 1. Anhand der Geometrie des Generalisierten Ridge Schätzers
zeigen Ishwaran und Rao (2011), dass der Schätzer β̂ββGR effektiv bei der Va-
riablenselektion in p� n-Situationen ist.
Ideale Variablenselektion, also die korrekte Identifikation aller wahren Null-
koeffizienten in den Steigungsparametern, kann für den Generalisierten Ridge
Schätzer nur garantiert werden, falls die wahre Anzahl an nicht-Nullkoeffi-
zienten deutlich kleiner als die Anzahl der Beobachtungen ist (Ishwaran und
Rao, 2011). Gesetz des Falles, dass das wahre Modell mehr wahre nicht-
Nullkoeffizienten als Beobachtungen enthält, sollte eine Linearkombination
von Generalisierten Ridge Schätzer verwendet werden. Diese Linearkombina-
tion der Schätzer wird als gewichteter Generalisierter Ridge Schätzer (engl.:
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weighted generalized Ridge estimator, WGRR) bezeichnet. Bei dem von Is-
hwaran und Rao (2011) geschilderten Bayesianischen Modell zur Berechnung
des WGRR Schätzers resultiert der Spezialfall von BMA Schätzern.

In die Schätzung des Generalisierten Elastic Net gehen, zur Verkürzung
der Rechenzeit, nur die größten Effekte des BMA Schätzers ein. Die Va-
riablen werden nach ihren Absolutwerten des BMA Schätzers geordnet und
es wird eine Designmatrix X∗ definiert, welche nur jene geordneten Varia-
blen beinhaltet, für welche die BMA Effekte streng positiv sind. Die Spal-
tendimension von X∗ sei K. Bayesianische Schätzer, wie der BMA Schätzer,
benötigen Ad-hoc Methoden zur Variablenselektion. Diese sind beispielswei-
se das Vertrauensintervall-Kriterium und das skalierte Umgebungs-Kriterium
(Li und Lin, 2010). Für die Inferenz der Arabidopsis (Kapitel 4) werden an-
stelle der Ad-hoc Methoden einfach nur die größten K Effekte des BMA
Schätzers selektiert. Für K wird in Kapitel 4 die Anzahl der Individuen n
gewählt. Die Designmatrix und die Zielgröße seien standardisiert.
Das Generalisierte Elastic Net stellt eine Verallgemeinerung des Elastic Net
dar. Wie für das Generalisierte Ridge werden individuelle Parameter für die
L2 Penalisierung spezifiziert. Der Generalisierte Elastic Net Schätzer ist wie
folgt definiert:

β̂ββ
∗
GEN = argmin

β∈RK

{
(yyy −X∗βββ)>(yyy −X∗βββ) +

K∑
k=1

λkβ
2
k + λ0

K∑
k=1

|βk|

}
, (2.7)

wobei (λk)
K
k=1 und λ0 feste, positive Parameter sind. Analog zum Elastic

Net (Abschnitt 2.1.3) kann gezeigt werden, dass es sich bei der Berechnung
des Generalisierten Elastic Net Schätzers um ein L1 Optimierungsproblem
handelt:

β̂ββ
∗
GEN = argmin

β∈RK

{
(yyyA −X∗Aβββ)>(yyyA −X∗Aβββ) + λ0

K∑
k=1

|βk|

}
,

mit

X∗A =

(
X∗

Λ1/2

)
(n+K)×K

, yyyA =

(
yyy
000

)
n+K

,

und Λ = diag{λk}Kk=1. Grafisch entspricht dies der Minimierung des Ellipso-

ids um den Generalisierten Ridge Schätzer β̂ββ
∗
GR = (X∗>X + Λ)−1X∗>yyy unter

der Nebenbedingung
∑K

k=1 |βk| < L für ein L > 0.
Die Berechnung des Generalisierten Elastic Net Schätzers in der praktischen
Anwendung erfolgt in drei Schritten:
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1. Berechnung der (λk)
K
k=1 Penalisierungsparameter durch:

λk =
|ak|

K−1
∑K

k=1 |ak|
·
√
n

|β̂ββ
∗
BMA,k|

, k = 1, . . . , K

wobei ak =
√
n(X∗>yyy)k−(X∗>X∗β̂ββ

∗
BMA)k und β̂ββ

∗
BMA der BMA Schätzer.

2. (λk)
K
k=1 Parameter als fest annehmen und Erstellung des λ0-Lösungs-

pfades der Schätzgleichung (2.7) durch den LARS Algorithmus (Efron
et al., 2004).

3. Finales Modell mit der Pfadlösung wählen, welches das Modell mit dem
kleinsten Akaike Informationskriterium liefert.

Ishwaran und Rao (2011) beweisen, dass für den Generalisierten Elastic Net
Schätzer die Fan-Li Oracle Property (Fan und Li, 2001) gilt. Die Oracle Pro-
perty besagt, dass ein sparsamer und asymptotisch normalverteilter Schätzer
dieselbe Grenzverteilung besitzt wie der KQ Schätzer beschränkt auf die
wahren nicht-Nullkoeffizienten. Das bedeutet, dass die Methodik genauso gut
funktioniert, als wenn das wahre Modell schon zuvor bekannt gewesen wäre.
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3 Beschreibung der Arabidopsis thaliana Da-

ten

In diesem Kapitel werden die Genotypen und Phänotypen des Datensatzes
zu Arabidopsis deskriptiv und explorativ analysiert. Die Daten sind Teil der
MAGIC (Multiparent Advanced Generation Inter-Cross)-Population (Kover
et al., 2009). Basierend auf 19 Arabidopsis Stämmen wurden diverse Kreu-
zungen durchgeführt um ein weites genetisches Spektrum zu erhalten. Wei-
tere Details der Datenerhebung werden von Kover et al. (2009) gegeben. Die
resultierenden Daten sind öffentlich erhältlich auf http://spud.well.ox.-

ac.uk/arabidopsis/.
Die phänotypischen Merkmale, welche im Weiteren betrachtet werden, sind
die Anzahl an Tagen zwischen dem Schossbeginn und der Blütezeit, die An-
zahl an Tagen bis zum Schossbeginn, die absolute Höhe der Pflanzen in Zen-
timetern und die Wachstumsrate. Die Wachstumsrate wird errechnet als das
Residuum einer einfachen linearen Regression, wobei die Einflussgröße die
Anzahl an Blättern am Tag 28 nach Säen der Saat und die Zielgröße die An-
zahl der Tage bis zur Keimung ist. Die Verteilungen der Anzahl der Tage zwi-
schen Schossbeginn und Blütezeit und der Anzahl der Tage bis zum Schossbe-
ginn sind linkssteil. Um symmetrischere Verteilungen zu erhalten werden
diese Variablen zukünftig ausschließlich logarithmiert betrachtet. Die Vertei-
lungen der Merkmale der 426 phänotypisierten Individuen werden über uni-
variate Histogramme und der Zusammenhang der Merkmale über bivariate
Streudiagramme und über bivariate Korrelationen in Abbildung 5 dargestellt.
Die Merkmale sind paarweise signifikant positiv korreliert. Die Zeit zwischen
dem Schossbeginn und der Blütezeit, die Pflanzenhöhe und die Wachstums-
rate gleichen visuell einer Normalverteilung. Der Kolmogorov-Smirnov-Test
auf Normalverteilung lehnt die Normalverteilung jedoch für alle Phänotypen
ab. Der Grund ist aus den QQ-Plots in Abbildung 6 ersichtlich. Im Zen-
trum der Daten stimmen die theoretischen Quantile der Normalverteilung
mit den empirischen Quantilen überein. An den Rändern der Verteilungen
treten jedoch Abweichungen auf.
Genotypisiert wurden die Arabidopsis Individuen mit 1260 SNPs auf fünf
Chromosomen. Der Anteil fehlender Werte in der Marker-Matrix beläuft sich
auf 2.93%. Für die weitere Auswertung werden nur jene SNPs betrachtet, de-
ren Anteil an fehlenden Werten kleiner als 10% ist und deren Häufigkeit des
seltenen Allels (engl.: minor allele frequency, MAF) größer als 5% ist. Da-
mit reduziert sich der Anteil der fehlenden Werte auf 1.64%. Auf Grund des
geringen Anteils werden die fehlenden Werte gemäß der Randverteilung der
SNP Ausprägungen ersetzt. Für die Analyse verbleiben 1073 SNPs. Es sind
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Abbildung 5: Histogramme, Streudiagramme, Korrelationen und Konfiden-
zintervalle der Korrelationen für die Merkmale: Log. Anzahl an Tagen zwi-
schen Schossbeginn und Blütezeit, Log. Anzahl an Tagen bis Schossbeginn,
Pflanzenhöhe in Zentimetern und Wachstumsrate
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Abbildung 6: Normal-QQ-Plot für die Merkmale: Log. Anzahl an Tagen zwi-
schen Schossbeginn und Blütezeit, Log. Anzahl an Tagen bis Schossbeginn,
Pflanzenhöhe in Zentimetern und Wachstumsrate

35



Anzahl SNPs 
 innerhalb 1 Mb

se
q(

fr
om

 =
 s

hi
ft,

 to
 =

 m
ax

D
en

s,
 le

ng
th

 =
 6

)

0

4

8

12

17

21

25

30

25

20

15

10

5

0

Chromosom

P
os

iti
on

 d
er

 M
ar

ke
r

1 2 3 4 5

233 187 209 194 250

Abbildung 7: Markerdichte auf den fünf Chromosomen

nur homozygote Genotypen vertreten, da es sich bei den MAGIC-Individuen
um Inzuchtlinien handelt. Die relative Häufigkeit des seltenen Allels beträgt
gemittelt über alle Marker 23.8%. Die kleinste relative Häufigkeit des sel-
tenen Allels ist 5.1% und die größte Häufigkeit des seltenen Alles beträgt
49.9%.
In der Abbildung 7 ist die Dichte der Marker über der Anzahl der SNP-
Marker pro 1 Mb abgetragen. Die durchschnittliche Distanz der Marker be-
trägt 0.11 Mb. Die kleinste Distanz liegt bei 66 bp und die maximale Distanz
liegt bei 1.81 Mb.
Die Abhängigkeitsstruktur der SNPs kann über das Kopplungsungleichge-
wicht untersucht werden. Ein Kopplungsungleichgewicht liegt vor, falls die
Allele auf verschiedenen Loci voneinander abhängig sind. Bei der Betrach-
tung von zwei Allelen und zwei Loci seien die relativen Häufigkeiten der
Allele pA, pa, pB und pb. Die entsprechenden möglichen Haplotypen sind
folglich AB, Ab, aB und ab. Diese treten mit den relativen Häufigkeiten pAB,
pAb, paB und pab auf. Bei einem Kopplungsgleichgewicht und den relativen
Häufigkeiten pA = pa = pB = pb = 0.5 würden die Haplotypen je mit einer
Wahrscheinlichkeit von 0.25 auftreten. Das Kopplungsungleichgewicht wird
gemessen über die Differenz der tatsächlichen Häufigkeit und der erwarte-
ten Häufigkeit unter der Unabhängigkeitshypothese (Lewontin und Kojima,
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Abbildung 8: Kopplungsungleichgewicht

1960): D = pAB−pApB. Eine Skalierung des Kopplungsungleichgewicht wird
von Hill und Robertson (1968) vorgeschlagen:

r2 =
D2

pApBpapb
∈ [0, 1].

Bei r2 = 0 liegt ein Kopplungsgleichgewicht und bei r2 = 1 eine vollständige
Kopplung vor.
Das mittlere Kopplungsungleichgewicht liegt bei allen paarweisen Markerver-
gleichen bei 0.017. Die Standardabweichung des Kopplungsungleichgewicht
beträgt 0.049. Der Abfall des Kopplungsungleichgewicht der SNPs mit stei-
gender Distanz der SNPs ist in Abbildung 8 für Chromosom Eins dargestellt.
Das Auftreten des Kopplungsungleichgewicht in Abhängigkeit der Distanz
auf den Chromosomen Zwei bis Fünf gleicht dem Kopplungsungleichgewicht
auf Chromosom Eins stark. Bei einer Distanz kleiner als 0.5 Mb tritt bei circa
10% der SNP Paare ein skaliertes Kopplungsungleichgewicht größer als 0.2
auf. Bei einer Distanz größer als 5 Mb ist das skalierte Kopplungsungleich-
gewicht fast immer kleiner als 0.2.
Um einen ersten Anhaltspunkt zu erhalten wie stark der Einfluss der SNPs
auf die phänotypischen Merkmale ist, werden jeweils einfache lineare Regres-
sionen eines SNPs auf den Phänotyp berechnet und der negative logarith-
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Abbildung 9: Manhattan-Plot der negativen logarithmierten p-Werte und die
Bonferroni-Schranke: −log10(0.05/1073) = 4.33

mierte p-Wert zur Basis Zehn des Steigungsparameters grafisch gegen die
SNPs abgetragen. Die sogenannten Manhattan-Plots sind in Abbildung 9
zu sehen. Die Struktur der Manhattan-Plots unterscheidet sich zwischen den
Merkmalen. Daher wird vermutet, dass ihnen eine unterschiedliche genetische
Architektur unterliegt. Bei der Wachstumsrate ist der negative logarithmier-
te p-Wert über alle SNPs eher gleichmäßig. Da es sich hier um ein multiples
Testproblem, handelt muss für die Fehlerwahrscheinlichkeit eine Bonferroni-
Korrektur (Fahrmeir et al., 2003) durchgeführt werden. Zum Niveau 0.0046%
sind zwei Effekte signifikant. Bei der Pflanzenhöhe sind einige signifikante li-
neare Effekte auf Chromosom zwei und bei der Zeit zwischen Schossbeginn
und Blütezeit und der Zeit bis zum Schossbeginn sind einige signifikante li-
neare Effekte auf dem vierten und fünften Chromosom zu erkennen.
Bei der Inferenz werden zur Wahl der optimalen Parameter Schätzungen für
die Heritabilität benötigt. Die Schätzwerte für die Heritabilität werden von
Kover et al. (2009) übernommen. Die geschätzte Heritabilität für die Wachs-
tumsrate beträgt 0.22. Für die Anzahl der Tage bis zum Schossbeginn wird
die Heritabilität auf 0.72 und für die Anzahl der Tage zwischen Schossbeginn
und Blütezeit auf 0.40 geschätzt. Von Kover et al. (2009) wird keine Heri-
tabilitätsschätzung der Pflanzenhöhe angegeben. Dieser Schätzer wird über
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ein Gemischtes Modell berechnet (Kover et al., 2009) und beträgt 0.54.
Für die Beschreibung der Datengrundlage wurde die statistische Software
R (R Development Core Team, 2012) und insbesondere das Paket synbreed
(Wimmer et al., 2012) verwendet.
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4 Ergebnisse der Arabidopsis thaliana Infe-

renz

In diesem Kapitel werden die Regressionen der genetischen Marker auf die
Phänotypen mit Hilfe der vorgestellten Methoden durchgeführt. Für alle Re-
gressionen werden die Zielvariablen standardisiert.
Zunächst wird in Abschnitt 4.1 die Sensitivität des Bayesianischen Elastic
Net mit der Parametrisierung nach Hofmarcher et al. (2011) bei verschie-
denen Priori Annahmen überprüft. Die dafür verwendeten Maße sind die
Korrelation zwischen den realen Werten der Zielvariable yyy und den Werten
der Modellanpassung ŷyy, die Anzahl der effektiven Parameter und das Devi-
anz Informationskriterium. Ein direkter Vergleich der Modellanpassung bei
verschiedenen Priori Annahmen erfolgt über die Korrelation der angepassten
Werte. Die Konvergenz der Schätzer wird über die Konvergenzpfade von λ1,
λ2, α, σ, µ, βββ und τττ , welche jeweils im Anhang aufgeführt sind, untersucht.
Da 1073 βββ-Koeffizienten und 1073 τττ -Koeffizienten geschätzt werden, sind für
diese Koeffizienten exemplarisch jeweils nur drei Konvergenzpfade abgebil-
det.
Für alle Bayesianischen Modelle werden 15000 Iterationen durchgeführt und
eine Konvergenzphase von 7500 Iterationen gewählt. Desweiteren wird nur
jede zehnte Beobachtung für die Auswertung berücksichtigt.
Verglichen wird das Bayesianische Elastic Net in dem Abschnitt 4.2 mit
dem Bayesianischen Lasso, dem Bayesianischen Ridge, den entsprechenden
frequentistischen Methoden und dem Generalisierten Elastic Net. Die Mo-
dellgüte des Bayesianischen Lasso, des Bayesianischen Ridge und des Bayesia-
nischen Elastic Net wird über das Devianz Informationskriterium, die Anzahl
der effektiven Parameter und die Korrelation zwischen realen und geschätzten
phänotypischen Ausprägungen beurteilt. Der Vergleich der Bayesianischen
Methoden mit dem Ridge, Lasso, Elastic Net und Generalisierten Elastic
Net erfolgt über die Anzahl der effektiven Parameter und über die Korre-
lation zwischen realen und angepassten Werten. Die Vorhersagegüte dieser
sieben Regressionsverfahren wird anhand einer fünffachen Kreuzvalidierung
mit drei Wiederholungen über den Mittleren Quadratischen Fehler und die
Korrelation zwischen wahren und prognostizierten Werten bestimmt.
Alle Methoden sind in der statistische Software R implementiert. Für das
Ridge, Lasso und Elastic Net wird das Paket glmnet (Friedman et al., 2010)
und für das Bayesianischen Lasso beziehungsweise das Bayesianischen Ridge
das Paket BLR (de los Campos und Rodriguez, 2012) verwendet. Die Berech-
nung des Bayesianischen Elastic Net erfolgt in Kombination der Software R
und der Software JAGS (Version 3.2.0) unter Verwendung des Pakets R2jags
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(Su und Yajima, 2012). In dem Paket spikeslab (Ishwaran et al., 2010a,b) ist
das Generalisierten Elastic Net implementiert.

4.1 Robustheit des Bayesianischen Elastic Net

Im Folgenden wird für das Bayesianische Elastic Net die hierarchische For-
mulierung von Hofmarcher et al. (2011) verwendet. Dabei ist λ1 = αλ und
λ2 = (1−α)λ. Für die Verteilung von α wird a priori eine auf (0, 1)-trunkierte
Normalverteilung angenommen. Um die Stabilität der Schätzung zu unter-
suchen, werden je drei verschiedene Erwartungswerte und Varianzen für die
trunkierte Normalverteilung verwendet. Für den Erwartungswert werden die
Priori Werte 0.1, 0.5, 0.9 und für die Varianz die Priori Werte 0.000001,
0.0001, 0.01 spezifiziert.
Von Hofmarcher et al. (2011) wird für λ2 a priori die Gamma Priori-Verteilung
Ga(0.1, 0.1) gewählt. Diese Wahl der Hyperparameter für die Gammaver-
teilung führt dazu, dass bei der Regression auf die Pflanzenhöhe und die
Wachstumsrate kein Effekt der Schrumpfung vorliegt. Dies spiegelt sich un-
ter anderem in unrealistisch hohen Schätzwerten für die Anzahl der effektiven
Parameter wider. Als Alternative für die von Hofmarcher et al. (2011) vor-
geschlagenen Hyperparameter werden in dieser Arbeit für das Bayesianische
Elastic Net dieselben Gestalt- und Maßparameter (ashape, arate) wie für die
λ2 Priori-Verteilung des Bayesianischen Lasso gewählt. Es wird der optimale
λ Parameter, entsprechend der Gleichung (2.5), berechnet und anschließend
die Gestalt- und Maßparameter so gewählt, dass die Dichte für λ ihr Maxi-
mum im optimalen λ hat. In der Abbildung 10 sind die Priori Dichten für λ
aufgeführt.
Vorweg ist anzumerken, dass vier der 36 betrachteten Regressionsmodelle
auf Grund numerischer Probleme nicht berechnet werden können. Mehrere
Priori-Verteilungen des Bayesianischen Modells sind trunkiert und die Priori-
Verteilung von σ2 konvergiert von rechts bei Null gegen unendlich. Basierend
auf numerischen Ungenauigkeiten können an den Rändern der Verteilungen
nicht zulässige Werte entstehen.
In Tabelle 2 sind die Korrelationen zwischen realen und angepassten Wer-
ten cor(yyy, ŷyy), die Anzahl der effektiven Parameter pD und das Devianz In-
formationskriterium DIC für alle Zielvariablen und für verschiedene Priori
Annahmen aufgeführt. Die Korrelation ist durchwegs für alle Zielgrößen und
Priori Annahmen größer als 0.8. Dies spricht für eine gute Anpassung des
Modells an die Daten. Bei drei der vier Zielgrößen liegt das kleinste DIC und
bei allen Zielgrößen das kleinste pD vor, falls Var(α) = 0.01 gewählt wird,
jedoch immer für unterschiedliche Wahlen von E(α). Eine größere Varianz
könnte mehr Flexibiliät der Schätzung erlauben. Das pD ist ein Schätzwert,
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Abbildung 10: Priori Dichte für λ, wobei für die Priori-Verteilung von λ2 die
optimalen Paramter gewählt wurden; p(λ|ashape, arate) = Ga(λ2|ashape, arate) ·
2λ
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Tabelle 2: Untersuchung der Sensitivität des Bayesianischen Elastic Net bei
verschiedenen Priori-Annahmen für α gemessen an cor(yyy, ŷyy), pD, DIC (-
=nicht berechenbare Modelle)

Log. Anzahl an Tagen zwischen Schossbeginn und Blütezeit
cor(yyy, ŷyy) pD DIC

PPPPPPPPPVar(α)
E(α)

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

0.01 0.8235 0.8164 0.8198 786 594 537 1807 1625 1564
0.0001 0.8116 0.8190 - 564 651 - 1603 1678 -

0.000001 - 0.8164 0.8198 - 594 706 - 1625 1734

Log. Anzahl an Tagen bis Schossbeginn
cor(yyy, ŷyy) pD DIC

PPPPPPPPPVar(α)
E(α)

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

0.01 0.8884 0.8804 0.8821 768 791 887 1647 1688 1781
0.0001 0.8889 0.8809 - 822 763 - 1697 1659 -

0.000001 0.8834 0.8804 - 779 791 - 1667 1688 -

Pflanzenhöhe
cor(yyy, ŷyy) pD DIC

PPPPPPPPPVar(α)
E(α)

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

0.01 0.8590 0.8650 0.8662 631 560 670 1571 1488 1592
0.0001 0.8676 0.8666 0.8647 566 752 617 1485 1673 1544

0.000001 0.8644 0.8666 0.8677 845 752 665 1776 1673 1586

Wachstumsrate
cor(yyy, ŷyy) pD DIC

PPPPPPPPPVar(α)
E(α)

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

0.01 0.8338 0.8379 0.8383 623 708 581 1471 1552 1421
0.0001 0.8440 0.8420 0.8335 595 623 1001 1424 1456 1856

0.000001 0.8471 0.8379 0.8312 697 708 612 1529 1552 1463
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der als die Anzahl der effektiven Parameter interpretiert wird und nur als
Richtwert betrachtet werden sollte. Die Unterschiede der betrachteten Maße
sind innerhalb der Zielgrößen bei verschiedenen Priori Wahlen nicht auffällig
groß.
In Tabelle 3 sind die Korrelationen der angepassten Werte ŷyy der Bayesiani-
schen Elastic Net Modelle mit verschiedenen Priori Annahmen aufgeführt.
Alle berechneten Korrelationen sind signifikant positiv und größer als 0.99.
Folglich sind die prognostizierten Werte bei verschiedenen Priori Annahmen
sehr ähnlich und somit robust. Für weitere Analysen, wie zum Beispiel die
Betrachtung der Vorhersagegenauigkeit, ist es ausreichend nur mit einer Wahl
der Hyperparameter für die Priori-Verteilung von α fortzufahren.
Eine explizite Betrachtung des Posteriori-Mittelwerts, des 2.5%- und 97.5%-
Quantils für α erfolgt anhand Tabelle 4. Je höher der a priori Erwartungswert
für α gewählt wird, desto höher ist auch der Posteriori Schätzer für α. Die Po-
steriori Schätzer für α bei den Priori Annahmen E(α) = 0.1 und E(α) = 0.5
sind zumeist deutlich größer als die gewählten Hyperparameter. Es ist sowohl
der Einfluss der Daten als auch der Einfluss der Priori-Verteilungen ersicht-
lich. Die a priori Wahl der Varianz von α beeinflusst sowohl den Posteriori-
Mittelwert als auch das 95%-Intervall des Schätzers. Ein Systematik des Ein-
flusses ist nicht zu erkennen.
Basierend auf Abbildung 9 würde man, außer für die Wachstumsrate, eine
Dominanz des Lasso Parameters erwarten. Für die Merkmale Zeit zwischen
Schossbeginn und Blütezeit, Zeit bis zum Schossbeginn und Pflanzenhöhe
weisen einige SNPs einen signifikanten Effekt auf. Diese sollten durch eine
Variablenselektion in dem Modell verbleiben. Falls fast alle SNPs, wie bei der
Wachstumsrate, nicht signifikant sind scheint eine gleichmäßige Schrumpfung
der Koeffizienten angemessen. Da α = 1 dem Lasso Modell entspricht wird
für die Zeit zwischen Schossbeginn und Blütezeit, Zeit bis zum Schossbeginn
und der Pflanzenhöhe ein hoher Posteriori Schätzer für α erwartet. Diese Er-
wartungshaltung wird durch die Posteriori Schätzer bestätigt. Für die Wachs-
tumsrate wäre eher ein Gleichgewicht der Parameter oder eine Dominanz des
Ridge Parameters zu erwarten. Bei den Regressionen auf die Wachstumsrate
dominiert auch der Lasso Parameter. Dies könnte darauf schließen lassen,
dass bereits sehr wenige signifikante Effekte in der Einzelmarkerregression,
zu einer Dominanz des Lasso Parameters führen.
Im Anhang dieser Arbeit sind die Konvergenzpfade des Bayesianischen Ela-
stic Net bei verschiedenen Priori Annahmen dargestellt. In den Abbildun-
gen 11 bis 19 sind exemplarisch die Pfade der Zielvariable Pflanzenhöhe bei
15000 Iterationen und Beachtung von nur jedem zehnten Kettenelement dar-
gestellt. In den Abbildungen 20 bis 23 ist exemplarisch für jede Zielgröße
und der Priori-Verteilung α ∼ N(0.5, 0.0001) ein Konvergenzpfad mit 50000
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Tabelle 3: Untersuchung der Sensitivität des Bayesianischen Elastic Net bei
verschiedenen Priori-Annahmen für α gemessen über die Korrelation zwi-
schen den angepassten Werten ŷyy (-=nicht berechenbare Modelle)

Log. Anzahl an Tagen zwischen Schossbeginn und Blütezeit
E(α) 0.1 0.5 0.9

E(α) Var(α) 0.0001 0.01 0.000001 0.0001 0.01 0.000001 0.0001 0.01

0.1
0.000001 - - - - - - - -
0.0001 0.9984 0.9987 0.9987 0.9987 0.9986 - 0.9986
0.01 0.9986 0.9988 0.9986 0.9989 - 0.9988

0.5
0.000001 0.9988 1.0000 0.9987 - 0.9988
0.0001 0.9988 0.9987 - 0.9988
0.01 0.9987 - 0.9988

0.9
0.000001 - 0.9986
0.0001 - -

Log. Anzahl an Tagen bis zum Schossbeginn
E(α) 0.1 0.5 0.9

E(α) Var(α) 0.0001 0.01 0.000001 0.0001 0.01 0.000001 0.0001 0.01

0.1
0.000001 0.9993 0.9992 0.9994 0.9994 0.9994 - - 0.9993
0.0001 0.9993 0.9991 0.9992 0.9991 - - 0.9992
0.01 0.9991 0.9992 0.9991 - - 0.9990

0.5
0.000001 0.9995 1.0000 - - 0.9993
0.0001 0.9995 - - 0.9994
0.01 - - 0.9993

0.9
0.000001 - -
0.0001 -

Pflanzenhöhe
E(α) 0.1 0.5 0.9

E(α) Var(α) 0.0001 0.01 0.000001 0.0001 0.01 0.000001 0.0001 0.01

0.1
0.000001 0.9991 0.9991 0.9991 0.9991 0.9992 0.9991 0.9991 0.9992
0.0001 0.9987 0.9992 0.9992 0.9990 0.9993 0.9991 0.9992
0.01 0.9988 0.9988 0.9989 0.9986 0.9988 0.9987

0.5
0.000001 1.0000 0.9990 0.9993 0.9993 0.9993
0.0001 0.9990 0.9993 0.9993 0.9993
0.01 0.9989 0.9989 0.9991

0.9
0.000001 0.9993 0.9993
0.001 0.9993

Wachstumsrate
E(α) 0.1 0.5 0.9

E(α) Var(α) 0.0001 0.01 0.000001 0.0001 0.01 0.000001 0.0001 0.01

0.1
0.000001 0.9985 0.9979 0.9982 0.9982 0.9982 0.9974 0.9977 0.9982
0.0001 0.9980 0.9982 0.9979 0.9982 0.9977 0.9980 0.9983
0.01 0.9984 0.9979 0.9984 0.9984 0.9982 0.9986

0.5
0.000001 0.9982 1.0000 0.9981 0.9982 0.9982
0.0001 0.9982 0.9976 0.9977 0.9981
0.01 0.9981 0.9982 0.9982

0.9
0.000001 0.9983 0.9980
0.001 0.9981
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Tabelle 4: Posteriori-Mittelwert und 2.5%-, 97.5%-Quantile für den α-
Parameter des Bayesianischen Elastic Net (-=nicht berechenbare Modelle)

Log. Anzahl an Tagen zwischen Schossbeginn und Blütezeit
PPPPPPPPPVar(α)

E(α)
0.1 0.5 0.9

0.01 0.649(0.452,0.812) 0.846(0.789,0.895) 0.995(0.982,1.000)
0.0001 0.733(0.420,0.913) 0.781(0.622,0.951) -
0.000001 - 0.846(0.789,0.895) 0.970(0.913,0.995)

Log. Anzahl an Tagen bis Schossbeginn
PPPPPPPPPVar(α)

E(α)
0.1 0.5 0.9

0.01 0.594(0.400,0.789) 0.892(0.739,0.966) 0.972(0.943,0.989)
0.0001 0.836(0.677,0.917) 0.797(0.615,0.970) -
0.000001 0.821(0.676,0.928) 0.892(0.739,0.966) -

Pflanzenhöhe
PPPPPPPPPVar(α)

E(α)
0.1 0.5 0.9

0.01 0.515(0.322,0.658) 0.661(0.471,0.867) 0.907(0.857,0.938)
0.0001 0.942(0.827,0.990) 0.947(0.881,0.988) 0.963(0.930,0.990)
0.000001 0.700(0.440,0.888) 0.947(0.881,0.988) 0.980(0.962,0.994)

Wachstumsrate
PPPPPPPPPVar(α)

E(α)
0.1 0.5 0.9

0.01 0.518(0.297,0.793) 0.955(0.918,0.988) 0.996(0.991,0.999)
0.0001 0.775(0.564,0.896) 0.723(0.478,0.967) 0.918(0.839,0.974)
0.000001 0.751(0.542,0.920) 0.955(0.918,0.988) 0.987(0.975,0.996)
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Iterationen und Verwendung jedes zehnten Kettenelements dargestellt.
Exemplarisch wurden jeweils die ersten drei βββ-Koeffizienten und die ersten
drei τττ -Koeffizienten ausgewählt. Die nicht aufgeführten Konvergenzpfade
sind von derselben Struktur wie die aufgeführten Pfade. Die Konvergenz ist
augenscheinlich für den Intercept-Parameter µ und die Steigungsparameter
βββ bei allen Zielgrößen und für alle Erwartungswert- und Varianzannahmen
gegeben. Dies stellt eine gute Grundlage zur Vorhersage der phänotypischen
Werte dar. Der λ1- und λ2-Parameter konvergieren nicht. Der Konvergenz-
pfad bewegt sich unstrukturiert und die Parameter sind nicht identifizierbar.
Das Konvergenzverhalten des α-Parameters ist stark von den Priori Annah-
men abhängig.

4.2 Methodenvergleich

Da sich im vorherigen Abschnitt das Bayesianische Elastic Net als robust
bezüglich der Modellanpassung, gegenüber verschiedenen Priori Annahmen
für α, erwiesen hat, wird im Weiteren dieses Abschnitts nur das Bayesiani-
sche Elastic Net mit der Priori-Verteilung α ∼ N(0.5, 0.001) betrachtet. Für
die Hyperparameter des Bayesianischen Ridge und des Bayesianischen Lasso
werden die optimalen Parameter (Abschnitt 2.3.3) gewählt.
Der Methodenvergleich erfolgt über die Korrelation zwischen realen und an-
gepassten Werten cor(yyy, ŷyy), die Anzahl effektiver Parameter peff , das De-
vianz Informationskriterium und über eine Kreuzvalidierung mit den Krite-
rien Mittlerer Quadratischer Fehler MSECV und Korrelation zwischen wah-
ren und prognostizierten Werten cor(yyy, ŷyy)CV. Die Anzahl der effektiven Pa-
rameter wird in den Bayesianischen Modellen über das pD geschätzt. Bei
dem Lasso, Elastic Net und Generalisierten Elastic Net wird die Anzahl der
nicht-Nullkoeffizienten des geschätzten Modells angegeben. Für das Ridge er-
folgt die Schätzung der effektiven Parameter über die Freiheitsgrade peff =
dfRidge = spur(X(X>X + λI)−1X>) (Hastie et al., 2009). In Tabelle 5 sind
die Resultate für die Gütekriterien der Modellschätzungen aufgeführt. In den
Abbildungen 28 und 29 sind die Ergebnisse der Kreuzvalidierungen grafisch
über Boxplots dargestellt.
Unter den Bayesianschen Methoden resultiert für das Elastic Net bei den
Zielvariablen Pflanzenhöhe und Wachstumsrate die größte mittlere Korrela-
tion und der kleinste Mittlere Quadratische Fehler. Für die Zielgröße Zeit
zwischen Schossbeginn und Blütezeit liefert das Bayesianische Ridge und
für die Zielgröße Zeit bis zum Schossbeginn das Bayesianische Lasso das
beste mittlere Ergebnis unter den Bayesianischen Modellen. Allerdings lie-
fern die frequentistischen Varianten häufig geringfügig bessere Ergebnisse.
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Tabelle 5: Vergleich des Bayesianischen Elastic Net (BEN), Bayesianischen
Lasso (BL), Bayesianischen Ridge (BR), Generalisierten Elastic Net (GEN),
Elastic Net (EN), Lasso (L), Ridge (R); Standardabweichung bei CV in
Klammern

Log. Anzahl an Tagen zwischen Schossbeginn und Blütezeit
cor(yyy, ŷyy) peff DIC cor(yyy, ŷyy)CV MSECV

BEN 0.8190 651 1678 0.325(0.092) 0.907(0.146)
BL 0.8278 115 1131 0.327(0.094) 0.907(0.15)
BR 0.8109 102 1139 0.328(0.096) 0.905(0.146)
GEN 0.6469 47 0.313(0.103) 0.912(0.156)
EN 0.6892 82 0.24 (0.077) 0.950(0.167)
L 0.6776 75 0.219(0.087) 0.957(0.17)
R 0.7935 412 0.322(0.092) 0.906(0.147)

Log. Anzahl an Tagen bis zum Schossbeginn
cor(yyy, ŷyy) peff DIC cor(yyy, ŷyy)CV MSECV

BEN 0.8809 763 1659 0.482(0.077) 0.776(0.108)
BL 0.8928 163 1029 0.486(0.076) 0.774(0.109)
BR 0.8774 148 1055 0.464(0.77) 0.794(0.108)
GEN 0.7917 84 0.510(0.066) 0.746(0.108)
EN 0.8226 121 0.513(0.061) 0.744(0.093)
L 0.8182 104 0.51 (0.058) 0.748(0.094)
R 0.8524 418 0.464(0.076) 0.789(0.102)

Pflanzenhöhe
cor(yyy, ŷyy) peff DIC cor(yyy, ŷyy)CV MSECV

BEN 0.8666 752 1673 0.443(0.099) 0.813(0.127)
BL 0.7499 27 1228 0.401(0.107) 0.951(0.157)
BR 0.9125 210 1439 0.399(0.091) 0.877(0.129)
GEN 0.6484 33 0.458(0.078) 0.785(0.106)
EN 0.7863 110 0.446(0.097) 0.81 (0.132)
L 0.7701 84 0.46 (0.093) 0.796(0.13)
R 0.8487 417 0.416(0.102) 0.837(0.126)

Wachstumsrate
cor(yyy, ŷyy) peff DIC cor(yyy, ŷyy)CV MSECV

BEN 0.8420 623 1456 0.338(0.119) 0.912(0.158)
BL 0.8238 76 942 0.321(0.118) 0.951(0.179)
BR 0.7949 49 955 0.322(0.122) 0.954(0.164)
GEN 0.6328 37 0.249(0.094) 0.951(0.153)
EN 0.5915 34 0.238(0.076) 0.962(0.149)
L 0.5728 28 0.237(0.075) 0.96 (0.147)
R 0.8164 334 0.334(0.122) 0.915(0.157)
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Bei Betrachtung aller Methoden liefert für jede Zielgröße eine andere Me-
thode das beste mittlere Ergebnis bezüglich der Vorhersagequalität. Wird
neben dem arithmetischen Mittel der Korrelation und des Mittleren Quadra-
tischen Fehlers auch die Streuung jener Größen betrachtet, so ist ersichtlich,
dass die Methoden sich zumeist nicht relevant unterscheiden. Die Darstellung
über die Boxplots und der Kolmogorov-Smirnov-Test Test zeigen, dass die
Kreuzvalidierungsergebnisse keiner Normalverteilung folgen. Für den Test
auf Unterschiede wird deshalb der nichtparametrische Kruskal-Wallis Test
gewählt. Die Vorhersagegüte gemessen über die Korrelation unterscheidet
sich für die penalisierten Modelle mit den Zielgrößen Planzenhöhe und Zeit
bis zum Schossbeginn nicht signifikant. Für die Anzahl an Tagen zwischen
Schossbeginn und Blütezeit unterscheiden sich die Methoden Bayesianisches
Elastic Net, Bayesianisches Lasso, Bayesianisches Ridge, Generalisiertes Ela-
stic Net und Ridge bezüglich der Korrelation nicht. Das Elastic Net und
Lasso liefern kleinere Korrelationen und unterscheiden sich signifikant von
den anderen Methoden. Für die Regressionen auf die Wachstumsrate unter-
scheidet sich die Vorhersagegüte gemessen über die Korrelation signifikant.
Gleich gute Modelle zur Vorhersage liefern das Bayesiansiche Elastic Net, das
Bayesianische Lasso, das Bayesianische Ridge und das Ridge. Das Generali-
sierte Elastic Net, Elastic Net und Lasso liefern kleinere Korrelationen und
unterscheiden sich signifikant von den anderen Methoden. Wird die Vorhersa-
gegüte nicht über die Korrelation sondern über den Mittleren Quadratischen
Fehler gemessen, so unterscheiden sich die penalisierten Modelle bei den Ziel-
größen Zeit zwischen Schossbeginn und Blütezeit, Zeit bis zum Schossbeginn
und Wachstumsrate nicht signifikant. Für die Pflanzenhöhe unterscheiden
sich die Methoden, mit Ausnahme des Bayesianischen Lasso nicht signifi-
kant. Das Bayesianische Lasso weist einen höheren Mittleren Quadratischen
Fehler auf. Zusammenfassend wird festgestellt, dass für jede Zielgröße die
Annahme der Gleichheit der Methoden entweder durch das Kriterium der
Korrelation oder das Kriterium MSE beibehalten wird. Für keine der Ziel-
größen wird die Gleichheit durch beide Kriterien abgelehnt.
Die Korrelation zwischen wahren und angepassten Werten cor(yyy, ŷyy) ist zu-
meist bei den Bayesianischen Methoden größer als bei den frequentistischen
Methoden. Übergreifend betrachtet liefert das Bayesianische Elastic Net eine
genauso gute Modellanpassung wie das Bayesianische Ridge oder das Baye-
sianische Lasso. Eine sehr gute Modellanpassung birgt auch immer die Ge-
fahr einer Überanpassung des Modells und somit einer schlechter Vorhersa-
gegenauigkeit. Die Vorhersagegenauigkeit wurde über eine Kreuzvalidierung
überprüft und kann als gut eingestuft werden. Für die untersuchten Modelle
liegt keine Überanpassung vor.
Die Anzahl der nicht-Nullkoeffizienten des Lasso, Elastic Net und Generali-
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sierten Elastic Net unterscheiden sich untereinander und über die verschiede-
nen Zielgrößen stark. Das Generalisierte Elastic Net weist bei drei der Ziel-
variablen die kleinste Anzahl an nicht-Nullkoeffizienten auf und liefert das
sparsamste Modell. Die Anzahl der effektiven Parameter der Ridge Schätzung
liegt höher als die Anzahl der nicht-Nullkoeffizienten der anderen frequenti-
stischen Methoden. Das Devianz Informationskriterium und die Anzahl der
effektiven Parameter sind für das Bayesianische Elastic Net höher als für das
Bayesianische Lasso und Bayesianische Ridge. Da das pD nur Schätzwerte
sind, sollten sie für die Beurteilung der Modellgüte nicht überbewertet wer-
den. Die Ergebnisse der Kreuzvalidierung hingegen haben sehr hohes Ge-
wicht um die Modelle bezüglich der praktischen Anwendung in Züchtungs-
programmen zu beurteilen.
Der Schrumpfungseffekt der penalisierten Modelle ist am besten grafisch zu
erkennen und zu beurteilen. In den Abbildung 24 bis 27 im Anhang sind
in der ersten Spalte Manhattan-Plots mit den SNP Effekten dargestellt. Bei
dem Bayesianischen Ridge werden die Effekte in der Regel gleichmäßiger ge-
schrumpft als bei dem Bayesianischen Lasso oder Bayesianischen Elastic Net.
Die Effektgrößen des Bayesianischen Elastic Net sind bei drei der vier Varia-
blen denen des Bayesianischen Lasso ausgesprochen ähnlich. Die Spannweite
der Effekte der Bayesianischen Modelle ist kleiner als die des Lasso, Ela-
stic Net und Generalisierten Elastic Net. Die Struktur der Manhattanplots
bezüglich der einflussreichen und nicht einflussreichen Effekte ist jeweils für
die quantitativen Merkmale bei allen Methoden ähnlich.
In der zweiten Spalten der Abbildungen 24- 27 sind die Streudiagramme
zwischen den SNP Effekten aus einer nichtsimultanen Schätzung durch ein
lineares Modell und den SNP Effekten der penalisierten Modelle abgebildet.
Der allgemeine Effekt der Schrumpfung der penalisierten Verfahren ist deut-
lich zu erkennen. Die Steigung der Regressionsgerade der SNP Effekte der
Einzelmarkerregression auf die SNP Effekte der penalisierten Schätzung kann
als Maß für die Stärke der Schrumpfung interpretiert werden. Die Schrump-
fung kann durchaus als stark bezeichnet werden. Über alle Pflanzenmerkmale
hinweg kann kein Aussage darüber getroffen werden welches Verfahren im
Allgemeinen zur stärksten Schrumpfung führt.

4.3 Kritik am Bayesianischen Elastic Net

Bei der Berechnung des Bayesianischen Elastic Net können auf Grund nu-
merischer Probleme nicht alle Modelle angepasst werden. Die Konvergenz
des µ-Parameters und der Steigungsparameter ist immer zufriedenstellend.
Die Identifizierbarkeit der Schrumpfungsparameter ist hingegen, sowohl bei
15000 als auch bei 50000 Iterationen, nicht immer gegeben. Eine der Kernide-
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en des Bayesianischen Elastic Net mit der α Parametrisierung ist es flexibel
zu gestalten und zu erkennen, ob der Lasso und der Ridge Parameter domi-
niert. Bei der verwendeten Anzahl an Iterationen und der Konvergenzphase
ist sowohl eine Abhängigkeit des Posteriori Schätzers für α von der Wahl der
Priori-Verteilung als auch der deutliche Einfluss der Daten zu erkennen. Das
ursprüngliche Ziel der flexiblen Modellierung hingehend zum Lasso oder zum
Ridge kann nicht erreicht werden. Bei Verwendung der Kreuzvalidierung zur
Beurteilung der Vorhersagegüte kann keine relevante Verbesserung des Baye-
sianischen Elastic Net gegenüber den anderen Methoden festgestellt werden.
Desweiteren sind die computationalen Berechnungszeiten für das Bayesiani-
sche Elastic sehr hoch. Es gibt keinen relevanten Zusatznutzen des Bayesia-
nischen Elastic Net gegenüber den etablierten Methoden in der genetischen
Vorhersage.
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5 Diskussion

In dieser Arbeit wurden Bayesianische und frequentistische Regressionsmo-
delle auf ihre Eignung zur Vorhersage in Züchtungsprogrammen untersucht.
Die Modelle, die dabei betrachtet wurden, sind das Bayesianische Ridge, Las-
so, Elastic Net, die frequentistischen Analoga und das Generalisierte Elastic
Net. Diese Modelle gehören der Klasse der penalisierten linearen Modelle an
und erlauben die Inferenz auch in p� n-Situationen.
Die Anwendung der Modelle erfolgte auf die genotypischen und vier phäno-
typische Merkmale der Pflanze Arabidopsis. Die betrachteten phänotypischen
Merkmale waren die Wachstumsrate, die Pflanzenhöhe, die Zeit bis zum
Schossbeginn und die Zeit zwischen Schossbeginn und Blütezeit. Die Anzahl
der SNPs (p = 1260) war größer als die Anzahl der untersuchten Individuen
(n = 426).
Über eine Einzelmarkerregression wurde ein erster Eindruck über die Stärke
der SNP Effekte gegeben. Für alle Pflanzenmerkmale lagen signifikante Effek-
te vor. Bei der Variable Wachstumsrate waren die Effektstärken zueinander
ähnlicher als bei den anderen Variablen. Für die Wachstumsrate würde man
eine gleichmäßige Schrumpfung der Effekte erwarten. Dies spricht für die An-
wendung der Ridge Regression. Bei den anderen drei phänotypischen Merk-
malen waren die Unterschiede der Effektstärken groß. Angemessen scheint
auf Grund dessen eine Variablenselektion und somit die Anwendung des Las-
so Verfahrens.
Das Bayesianische Elastic Net kombiniert das Bayesianische Lasso und Baye-
sianische Ridge. Über die spezielle Parametrisierung des Bayesianischen Ela-
stic Net nach Hofmarcher et al. (2011) soll ersichtlich sein, ob das Lasso oder
das Ridge dominiert. Für alle Variablen dominierte der Lasso Parameter.
Bei drei der vier Zielgrößen entspricht dies den Erwartungshaltungen aus
den Einzelmarkerregressionen. Der Grund könnte sein, dass bereits wenige
signifikante Effekte der Einzelmarkerregression zu einer Dominanz des Lasso
führen.
Desweiteren stellt sich die Frage, ob die SNPs mit signifikanten Effekten in
der Einzelmarkerregression auch bei der simultanen Schätzung die größten
Effekte aufweisen. Bei der Untersuchung des Einflusses der genotypischen
Merkmale auf das phänotypische Merkmal Anteil der schwarzen Fellfarbe
bei Rindern über die Methode BayesA (Meuwissen et al., 2001) zeigt sich in
der Studie von Hayes et al. (2010) ein Zusammenhang zwischen der Einzel-
markerregression und den penalisierten Effekten. Die SNPs mit signifikanten
Effekten in der Einzelmarkerregression weisen auch große Effekte in der Re-
gression mit BayesA auf. Dieser Zusammenhang zeigte sich ebenfalls bei den
in dieser Arbeit vorgestellten Methoden und deren Anwendung auf die Daten
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der Arabidopsis. Allgemein wird bei großen beziehungsweise kleinen Effek-
ten in der Einzelregression davon ausgegangen, dass diese Effekte auch bei
einer simultanen Schätzung groß bezeihungsweise klein sind. Auf Grund von
Kollinearität ist dies jedoch nicht immer zutreffen. Ein solcher Effekt von
Kollinearität ist in den vorliegenden Regressionen nicht zu erkennen.
Der Ort des Genoms auf dem ein Gen liegt, welches auf ein quantitatives
Merkmal wirkt, wird als quantitativ trait locus (QTL) bezeichnet (Griffiths
et al., 2012). Kover et al. (2009) geben für Arabidopsis die Positionen auf den
Chromosomen an bei denen ein QTL identifiziert wurde. Diese entsprechen
auch den Positionen auf denen die Effekte der vorgestellten penalisierten Re-
gressionen groß waren.
Für Bayesianische Modelle werden im Vergleich zu frequentistischen Model-
len a priori Annahmen über die Parameter getroffen. Um die Sensitivität
des Bayesianischen Elastic Net gegenüber der Wahl der Hyperparameter zu
untersuchen wurden verschiedene Hyperparameter gewählt und die resul-
tierenden Modelle anhand der Kriterien Anzahl der effektiven Parameter,
Devianz Informationskriterium und Korrelation zwischen realen und ange-
passten Werten miteinander verglichen. Die Wahl der Parameter der Priori-
Verteilung von λ2 ist sehr bedeutend für sinnvolle Regressionsergebnisse, da
das Bayesianische Elastic Net sensibel auf die Hyperparameterwahl für λ2

reagierte. Eine angemessene Wahl stellen die optimalen Parameter entspre-
chend Pérez et al. (2010) dar. Die Wahl der Hyperparameter der Anteilsva-
riable α für den Lasso und Ridge Parameter führte nur zu kleineren Unter-
schieden in den Inferezergebnissen. Die Anpassung des Modells an die Daten
war durchwegs gut und die angepassten Werte bei verschiedenen Wahlen der
Hyperparameter waren sehr ähnlich. Der Konvergenz des Intercept und der
Steigungsparameter war immer gegeben. Bezüglich dieser Parameter ist das
Bayesianische Elastic Net robust bei den verschiedenen Wahlen der Hyper-
parameter für die Priori-Verteilung von α. Für den Lasso Parameter und den
Ridge Parameter war die Konvergenz nicht gewährleistet. Der Lasso Parame-
ter hatte für alle Zielgrößen eine Dominanz gegenüber den Ridge Parameter.
Zukünftig könnte untersucht werden, ob die Konvergenzprobleme der Pena-
lisierungsparameter durch die Wahl anderer Priori-Verteilungen lösbar sind.
Die Vorhersagegenauigkeit aller Methoden wurde über eine Kreuzvalidie-
rung mit den Gütekriterien Korrelation und Mittlerer Quadratischer Fehler
überprüft. Für keine Zielgröße wurde die Methodengleichheit sowohl über die
Korrelation als auch über den Mittleren Quadratischen Fehler abgelehnt. Es
kann nicht eindeutig gezeigt werden, dass es einen Unterschied der Methoden
gibt.
Penalisierte Regressionsmodelle bewirken eine Schrumpfung der Parameter.
Zur visuellen Darstellung des Schrumpfungseffekts wurden die Effekte der
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Einzelmarkerregression gegen die Effekte der penalisierten Regressionsmo-
delle abgetragen. Diese Schrumpfung war über alle Modelle und Phänotypen
deutlich zu erkennen. Es ist übergreifend keine Aussage darüber zu treffen,
welches Modell im Allgemeinen am stärksten schrumpft.
Riedelsheimer et al. (2012b) analysieren den Einfluss des Genom der Mais-
pflanze, bei dem ein sehr hohes Kopplungsungleichgewicht vorliegt, auf die
Metaboliten der Maispflanze mit den Methoden Lasso, Ridge und Elastic
Net. Bei Arabidopsis lag, insbesondere ab einer Distanz von 5 Mb, ein schwa-
ches Kopplungsungleichgewicht vor. Das Kopplungsungleichgewicht des Mais
(Riedelsheimer et al., 2012a) ist stärker als das Kopplungsungleichgewicht
der Arabidopsis. Ein Vergleich der Effektstärken zeigt, dass der Gruppie-
rungseffekt des Ridge bei Mais deutlich stärker ist als bei Arabidopsis. Dies
bestätigt, dass ein hohes Kopplungsungleichgewicht zu einer hohen Korrela-
tion der Kovariablen und somit zu einem starken Gruppierungseffekt bei der
Ridge Regression führt (Zou und Hastie, 2005).
Die Anzahl der nicht-Nullparameter lag bei dem Generalisierten Elastic Net
vergleichsweise niedrig. Das Generalisierte Elastic Net besitzt für n→∞, im
Vergleich zu den anderen vorgestellten Modellen, die Eigenschaft der Fan-Li
oracle property (Ishwaran und Rao, 2011). Dementsprechend könnte die Mo-
dellgröße des Generalisierten Elastic Net die unbekannte Wahrheit am besten
widerspiegeln. Ob die Modellgröße des Generalisierten Elastic Net der An-
zahl der wahren nicht-Nullkoeffizienten entspricht kann auf Grund dessen,
dass es sich um eine experimentelle Datengrundlage handelt nicht nachge-
wiesen werden.
Resende Jr et al. (2012) vergleichen die Methoden Ridge, BayesA, BayesB
und das Bayesianische Lasso nach Legarra et al. (2011) bezüglich der Vorher-
sagegenauigkeit zur genomischen Vorhersage und kommen zu dem Ergebnis,
dass sich die Methoden nur geringfügig unterscheiden. Ein weiterer Metho-
denvergleich wird von Heslot et al. (2012) durchgeführt. Dabei werden neun
Datensätze und elf Methoden bezüglich der genomischen Vorhersage analy-
siert. Die betrachteten Methoden sind unter anderem das Ridge, Elastic Net,
Bayesianische Lasso, BayesA, BayesB, Gewichtete Bayesianische Schrump-
fung (Hayashi und Iwata, 2010), E-Bayes (XU und HU, 2011) und Machine-
learning Methoden (Breiman, 2001, Drucker et al., 1997, Gardner und Dor-
ling, 1998). Die mittlere Vorhersagegüte der Methoden ist sehr ähnlich. Auch
die lineare Kombination verschiedener Modelle führt zu keiner Verbesserung
der Genauigkeit.
Zusammenfassend wird festgestellt, dass die Elastic Net Methoden keine si-
gnifikant besseren Ergebnisse liefern als die Ridge und Lasso Methoden und
dass die Bayesianischen Methoden den frequentistischen Methoden nicht im-
mer überlegen sind.
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Möglicherweise liefern nicht-lineare Modelle oder Interaktionen eine Verbes-
serung der Vorhersagegenauigkeit. Dies gilt es in Zukunft zu untersuchen.
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Anhang
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Abbildung 11: Pflanzenhöhe, E(α)=0.1,Var(α)=0.000001
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Abbildung 12: Pflanzenhöhe, E(α)=0.1,Var(α)=0.0001
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Abbildung 13: Pflanzenhöhe, E(α)=0.1,Var(α)=0.01
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Abbildung 14: Pflanzenhöhe, E(α)=0.5,Var(α)=0.000001
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Abbildung 15: Pflanzenhöhe, E(α)=0.5,Var(α)=0.0001
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Abbildung 16: Pflanzenhöhe, E(α)=0.5,Var(α)=0.01

57



0

20

40

60

80

lambda1

Iteration

la
m

bd
a1

150 600 1050

0

5

10

15

20

lambda2

Iteration
la

m
bd

a2
150 600 1050

0.0
0.2
0.4
0.6
0.8
1.0

alpha

Iteration

al
ph

a

150 600 1050

1.5
2.0
2.5
3.0
3.5

sigma

Iteration

si
gm

a

150 600 1050

−1.0
−0.5

0.0
0.5
1.0
1.5

mu

Iteration

m
u

150 600 1050

−0.10

−0.05

0.00

0.05

beta[1]

Iteration

be
ta

[1
]

150 600 1050

−0.05

0.00

0.05

beta[2]

Iteration

be
ta

[2
]

150 600 1050

−0.10

−0.05

0.00

0.05

beta[3]

Iteration

be
ta

[3
]

150 600 1050

1.00

1.05

1.10

1.15

tau[1]

Iteration

ta
u[

1]

150 600 1050

1.00

1.02

1.04

1.06

1.08

tau[2]

Iteration

ta
u[

2]
150 600 1050

1.00
1.02
1.04
1.06
1.08

tau[3]

Iteration

ta
u[

3]

150 600 1050

20
30
40
50
60
70
80

lambda1*alpha

Iteration

la
m

bd
a1

*a
lp

ha

150 600 1050

5

10

15

lambda2*alpha

Iteration

la
m

bd
a2

*a
lp

ha

150 600 1050

Abbildung 17: Pflanzenhöhe, E(α)=0.9,Var(α)=0.000001
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Abbildung 18: Pflanzenhöhe, E(α)=0.9,Var(α)=0.0001
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Abbildung 19: Pflanzenhöhe, E(α)=0.9,Var(α)=0.01
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Abbildung 20: Log. Anzahl an Tagen zwischen Schossbeginn und Blütezeit,
E(α)=0.5,Var(α)=0.0001, 50000 Iterationen
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Abbildung 21: Log. Anzahl an Tagen bis zum Schossbeginn,
E(α)=0.5,Var(α)=0.0001, 50000 Iterationen
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Abbildung 22: Pflanzenhöhe, E(α)=0.5,Var(α)=0.0001, 50000 Iterationen
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Abbildung 23: Wachstumsrate, E(α)=0.5,Var(α)=0.0001, 50000 Iterationen
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Log. Anzahl an Tagen von Schossbeginn bis Blütezeit 

Abbildung 24: Logarithmierte Zeit zwischen Schossbeginn und Blütezeit,
Manhattan-Plot der SNP Effekte und Streudiagramm der SNP Effekte der
penalisierten Modelle und der nicht simultanen SNP Effekte eines linearen
Modells
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Log. Anzahl an Tagen bis Schossbeginn

Abbildung 25: Log. Anzahl an Tagen bis zum Schossbeginn, Manhattan-
Plot der SNP Effekte und Streudiagramm der SNP Effekte der penalisierten
Modelle und der nicht simultanen SNP Effekte eines linearen Modells

61



●●●
●●●
●●●
●
●●
●●●
●●

●
●●●

●
●
●
●
●
●
●●●
●

●●●
●
●●●●●
●
●
●
●●

●

●●●●

●●●●●
●

●
●
●
●
●●●●
●
●●

●

●
●
●
●●●●●
●●●●

●

●

●
●

●

●●●●●
●●●

●

●●●●
●
●
●●●
●●●●●●

●

●

●●●
●●

●●●●●
●
●
●
●●● ●●●

●●

●●●
●

●

●●
●
●
●●●●●●●●
●●
●

●
●

●

●
●●●●
●

●
●
●
●●
●●
●●
●●

●●

●●●●●●
●
●
●●
●●●●●
●

●●●
●
●●
●
●
●
●●●
●●●
●
●●●
●
●
●●●●
●
●
●●
●
●●●●
●

●

●●●
●●●
●●●●●●
●●●●
●
●
●●
●

●●●
●
●
●●
●●●●●●●

●●
●
●
●●
●

●

●
●

●

●

●

●
●
●
●●
●
●
●●
●●
●●
●
●●●
●●
●
●●●
●
●
●●
●
●●
●
●●●●

●
●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

●●
●
●●●
●
●
●●●●

●●
●●●●●●

●
●

●

●

●

●

●
●●

●

●

●
●
●

●●
●●
●
●
●●●
●●●●●●
●●●●
●●

●●●●
●●
●●●●●●●
●
●●
●
●●●●●●●●●●●●●●
●

●
●●●
●

●
●●
●
●●●
●
●●●●●
●●●
●●●●●●●●

●
●●
●●
●
●
●●
●●●

●●
●
●
●●●●
●●
●●
●●
●
●

●

●

●

●
●
●
●
●
●●
●●●●

●

●●
●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●

●●●●
●
●
●●
●●●
●
●

●●

●●
●
● ●

●●●●●●
●
●
●●
●●●●●

●●●●●
●
●●

●

●
●
●
●
●
●●
●

●
●●
●

●
●
●●
●●
●●
●●●●●●●●
●●●
●●●
●●●
●●●●●●
●
●
●●
●●
●●●
●

●
●
●
●●●●●

●

●●
●●●●●
●●
●●
●
●●●
●●●●●
●●●●
●●●●●●●
●
●●
●
●●●●
●
●

●
●●
●
●
●●●●●●

●

●

●●
●
●
●
●
●
●●●
●●
●

●●
●

●
●
●●●●

●●●
●●●●
●
●●
●
●
●●
●

●
●

●

●
●●
●
●●●●●
●
●
●●●●●

●●●

●●
●
●
●
●●●●●●●
●●●●
●
●●●●●●
●
●
●
●
●●
●
●●●●●●

●

●●
●
●●
●●●●●●●●
●●

●
●●●
●
●

●
●●
●●
●
●●●●
●
●
●
●
●

●●
●●●●●●

●

●●●
●●
●

●●●
●
●
●

●

●

●●●●●●●●●●
●●●
●
●●
●●
●●●●●●●●
●
●
●
●
●

●●
●●●●
●●●
●●●●●●●

●
●

●●

●

●

●●
●●

●

●●
●●
●●●

●
●
●●
●
●
●●

●
●●
●
●●●●●
●●●
●●
●
●●
●

●
●
●●

●

●
●
●
●●

●
●●●●●●

●
●
●

●

●●●
●●●●●●●●●●●●●

●

●●●
●●
●

●
●●●●
●●●
●
●●●
●
●●

●●
●
●●
●●●
●●
●

●
●●
●
●●
●●
●
●
●
●

●●
●
●
●
●●
●

●
●●●

●●●
●
●
●
●●
●
●●

●

●
●●●●●●●●
●
●

●
●
●
●
●●

●

●

●

●●●
●
●
●
●
●●●
●●
●

●●

●●
●●●●

●

●●

BEN

Chromosom

S
N

P
 E

ffe
kt

e

1 2 3 4 5

−0.15

−0.10

−0.05

0.00

0.05

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●
●
●●
●
●●●
●●●
●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●

BL

Chromosom

S
N

P
 E

ffe
kt

e

1 2 3 4 5

−0.15

−0.10

−0.05

0.00

0.05

●●●

●●
●●●●
●

●
●

●●●

●

●

●

●
●

●

●
●●
●
●
●
●●
●

●

●●●
●

●●●
●●

●
●

●

●●

●

●
●
●
●

●
●●●●
●

●

●

●
●
●●
●

●●

●●

●

●

●
●
●●
●
●
●
●●
●●

●

●

●
●

●

●●●●●

●
●
●

●

●●●●
●

●

●●●

●●●
●●
●

●

●

●
●●●●

●
●

●●
●
●

●

●

●
●● ●●●

●●

●●
●

●

●

●●

●
●
●●●●●●●●
●
●

●

●

●

●

●

●●
●●

●

●
●
●

●●
●●

●●

●

●

●●

●●●
●●●●●

●
●
●●
●
●
●

●

●
●

●

●

●
●

●

●

●
●●●
●●●
●
●●
●
●

●

●
●●
●
●

●
●●
●
●●●●
●

●

●
●●

●
●
●
●●●

●●●
●
●
●
●

●

●

●●

●

●●
●

●

●

●
●

●
●
●
●
●
●
●
●
●

●
●

●●
●

●

●
●

●

●

●

●
●
●

●
●●
●
●●
●
●

●

●

●

●
●
●
●●

●

●
●
●
●

●

●●

●

●
●●

●●

●●

●
●

●

●

●
●

●

●●

●

●●
●

●●

●

●
●

●

●●

●
●
●●

●●

●
●
●●

●●

●
●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●●

●
●

●

●
●●●
●●
●●
●●
●●

●
●
●
●

●●
●●●●
●
●
●
●
●●

●
●●
●
●
●●
●●●●
●
●●
●

●

●
●
●●

●

●

●●

●

●●●
●

●●●●●
●●●
●●●
●
●
●●
●
●
●
●
●
●
●
●
●●
●

●
●

●●

●
●

●
●
●
●
●
●

●●
●●

●

●

●

●

●

●
●

●
●
●
●●

●●●
●

●

●
●
●●●●

●
●
●●

●●

●
●

●●
●
●
●●
●

●●
●●●

●

●●
●

●

●

●
●
●

●●●

●●●
●

●

●
●

●●

●
● ●

●●
●●
●
●

●

●
●
●

●
●

●
●

●

●
●
●●
●
●
●●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●
●●

●
●

●
●
●●
●
●●●●
●

●●●

●
●
●●

●●

●●●
●
●
●
●

●

●●
●●

●
●
●

●

●
●

●

●●●
●
●

●

●●

●
●
●●
●
●
●

●●

●
●●●
●●
●

●
●
●●
●●

●●●
●●●
●

●
●●
●
●
●●●
●

●

●

●●
●

●
●
●
●●●

●●

●

●●

●

●

●

●

●

●
●
●

●●

●

●●●

●

●
●
●
●
●

●●
●
●●
●

●

●●●
●

●

●●

●

●
●

●

●
●●
●
●
●
●

●

●●
●

●
●
●●●

●●
●

●●

●

●
●

●●●●●
●
●
●●●●

●
●●●●
●●●
●
●

●
●
●
●

●●
●
●
●
●

●

●
●●

●●

●
●

●●●
●
●●
●
●

●

●
●●
●

●

●

●
●●
●

●

●
●
●●

●

●
●

●
●

●●
●
●●●●●

●

●
●●

●●

●

●
●
●

●
●

●

●

●

●●●●●●●●
●●
●●●
●
●●

●●
●●
●
●●
●●
●

●

●●
●
●

●●

●●●●
●
●●

●●
●●●●●
●

●

●
●

●

●

●
●
●
●

●

●●
●
●●●
●

●
●
●
●

●
●

●
●

●
●
●●
●●
●●●
●●
●

●●
●

●●

●

●
●

●
●

●

●

●

●
●
●

●

●
●
●
●
●
●

●
●

●

●

●
●●
●
●
●●●●
●
●●

●●●●

●

●
●●
●●

●

●●
●

●●

●●
●

●
●●●

●

●●

●●
●

●●

●
●●
●●

●

●
●●

●
●●

●
●

●
●

●
●

●●

●●

●

●
●
●

●
●●●

●●
●

●
●
●●●

●
●
●

●

●
●●●
●
●●●●
●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●
●

●●
●

●
●

●
●●●●●

●

●●

BR

Chromosom

S
N

P
 E

ffe
kt

e

1 2 3 4 5

−0.15

−0.10

−0.05

0.00

0.05

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●
●●●●●●●●●●●

Pflanzenhöhe (GEN)

Chromosom

S
N

P
 E

ffe
kt

e

1 2 3 4 5

−0.8

−0.6

−0.4

−0.2

0.0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●

●

●●●

●

●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●●●

●
●●
●
●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●●●

●
●●●●●●●

EN

Chromosom

S
N

P
 E

ffe
kt

e

1 2 3 4 5

−0.8

−0.6

−0.4

−0.2

0.0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●● ●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●●●●●●●

L

Chromosom

S
N

P
 E

ffe
kt

e

1 2 3 4 5

−0.8

−0.6

−0.4

−0.2

0.0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●
●
●●
●
●●●
●●●
●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●

R

Chromosom

S
N

P
 E

ffe
kt

e

1 2 3 4 5

−0.8

−0.6

−0.4

−0.2

0.0

●●●
●●● ●●●

●
●●●

●●
●●

●
● ●

●

●
●

●
●

●
●

●●●
●

●●●
●

● ●● ●●
●

●
●

●●

●

●● ●●

● ●●● ●
●

●
●

●
●

●●● ●●
●●

●

●
●

●
●● ●● ● ●●●●

●

●

●
●

●

●● ●●●
● ●●

●

●●● ●
●

●
●● ●

●●● ●● ●
●

●

● ●●●●

●●● ●
●

●
●

●
● ● ●

● ● ●
●●

● ●
●

●

●

●●
●

●
● ●● ●●● ●●●●

●

●
●

●

●
●●●●

●

●
●

●
●●

●●
●●

● ●

●●

● ●●●● ●
●

●
●●

● ●● ●●
●

●●
●

●
● ●

●
●

●
●●●

●● ●
●

●●●
●

●
●●● ● ●

●
●●

●
● ● ●
●

●

●

●●●
●●●

●● ● ●● ● ●●●●
●

●
● ●●

● ●●
●

●
● ●

●●●●● ●
●

● ●
●

●
● ●

●

●

●
●

●

●

●

●
●

●
● ● ●

●
● ●

●●
● ●

●
●●●

●●
●

●● ●●
●

●●
●

●● ●
● ●

●●

●
●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

● ●
●

●● ●
●

●
●●● ●

● ●
●● ●●● ●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●
● ●

●
●

●●
●

●● ●● ●●
● ●●●

● ●

●● ● ●
●●

● ●● ●●
●●
●

● ●
●

● ●●●
● ● ●●● ●●●● ●

●

●
●●●

●

●
● ●

●
● ●●

●
● ●●●●

●●●
●● ● ●

● ●●●
●

●●
● ●

●
●
● ●

● ●●

●●
●

●
● ●

● ●
●●

●●
●●

●
●

●

●

●

●
●

●
●

●
● ●

● ●●●

●

● ●● ●●●● ●
●●

●●
●

●●● ●●● ●●● ●● ●●
●● ●●

● ●
●●

●
●

●●
●● ●

●
●

● ●

●●
●

●●
● ● ●● ●●

●
●

● ●
● ●

● ●
●

●●●● ● ●
●●

●

●
●

●
●

●
●●

●

●
●●

●

●
●

●●
● ●
●●

●●● ●●● ●●
●● ●

●● ● ●●●
●● ●●●

●
●

●
● ●●●

● ●●
●

●
●

●
●●

●● ●

●

●●
●●● ●●

●●
●●

●
●●●

●●●
● ●

●●●●
●● ●●●●●
●

●●
●

●● ●● ●
●

●
● ● ●

●
●●●●●

●
●

●

●●
●

●
●

●
●

●● ●
●●

●

●●
●

●
●

● ●●
●

●● ●
● ● ●

●
●

●●
●

●
● ●

●

●
●

●

●
● ●

●
●● ● ●

●
●

●
● ●●● ●

●●●

● ●
●

●
●

●● ●●● ●● ●●●●
●

●●● ●●●
●

●
●

●
● ●

●
●●● ●●

●

●

●●
●

●●
●●●●● ●

●●
●●

●
● ●●

●
●

●
● ● ● ●

●
●●● ●

●
●

●
●

●

●●
●●●●●●

●

●●●
● ●

●

● ●●
●

●
●

●

●

● ●● ●●
● ●● ●● ●● ●

●
●●

●●
● ● ●●● ● ●

●
●

●
●

●
●

● ●
● ●●● ● ●●

●●●●●●●

●
●

● ●

●

●

●●
●●

●

●●
●● ●● ●

●
●

●●
●

●
●●

●
●●●

●●●●●
●●●

●●
●

●●
●

●
●

●●

●

●
●

●
●●

●
● ●●● ●●

●
●

●

●

●●●
● ● ●●●●● ● ●●● ●
●

●

● ●●● ●
●

●
● ●

●●
●●●

●
●● ●

●
● ●

●●
●

●●
● ●●●●

●

●
● ●

●
●●

● ●
●

●
●

●

●●
●

●
●

●● ●

●
●● ●

●● ●
●

●
●

●●
●

● ●

●

●
●● ●

●●●●●
●

●

●
●
●

●
●●

●

●

●

● ●
●

●
●

●
●

●● ●
● ●

●

●●

●●
●●● ●

●

●●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−0.15

−0.10

−0.05

0.00

0.05

BEN

Einzelmarkerregression

S
N

P
 E

ffe
kt

e 
pe

na
lis

ie
rt

es
 M

od
el

l

y=0+1x
y= 0 + 0.09 x

●●●●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ● ●● ●●● ●● ●● ●●● ●● ● ●●● ● ●●● ●●●●● ●●●●
●● ●● ●● ●● ● ●●●●● ●●● ●●● ●●●● ●● ●●●● ● ● ●●● ● ●●● ●● ● ●● ● ●●●●●●● ●● ● ●● ● ● ●● ● ● ●●● ●● ● ●●●●● ● ●● ●●● ●●●●● ●●●● ●●●● ●● ● ●●●●● ●●● ● ●●● ●●●● ● ●● ●●● ●● ●●● ●● ●● ● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ●●●● ●● ● ●● ●● ●●● ●●● ●● ● ●● ● ●●●● ●●● ●●● ●●●●● ● ●●●●● ●●● ● ●●● ●●●

●●● ●● ●●● ● ● ● ●● ●●● ● ●● ●●● ●●● ●● ●●● ●●●●● ● ● ●●● ● ●●
●

● ●
●

●● ●
● ●●

●●● ●●● ● ●●●● ● ● ●●●● ●
● ●●● ●●● ● ●●

●
● ●●● ●● ●● ●●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ●●● ● ● ●● ● ●● ●●●● ●● ● ●● ●●●● ● ●●● ●●●● ● ●● ●●●● ●● ●● ● ●●● ● ●●●● ●●●●● ● ●● ●●● ●●● ● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●● ●●● ●● ●

● ● ●● ●●● ●● ●●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●● ● ●●●● ●●● ●● ●● ●● ● ●●● ●●● ● ●● ●●● ●● ● ● ●● ●● ●●●● ● ●●● ●●● ●●● ●●● ●●●● ●● ●● ● ●●●●●● ●●● ●● ●● ●●● ● ●●● ●● ●●●● ●● ● ●●●● ●● ●● ●● ●●●● ● ●
●● ●●● ●● ●●●● ●●●● ●●●● ● ●●●● ●● ●●●●● ●●● ●●● ●● ● ●●● ● ●● ●●●●● ●● ●●● ●● ● ●●●● ●●● ●●● ●● ●● ●●●

●● ●● ● ●●●●● ●● ● ●● ●●
●

●● ● ● ●● ● ●●● ● ● ●●● ● ●●●● ● ●●● ●● ●●● ●● ●●●●●●●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●●●● ●●● ●●●● ●● ●● ●● ● ● ●● ●●● ●● ● ●●● ●● ●●●●●●● ●●●● ● ●● ●● ● ● ●
●

●● ●● ●●● ●● ●● ●● ● ●●●●●● ● ●●● ● ●● ●●● ●●● ●● ●●● ● ●● ●●●●●●● ● ●● ●●● ●●●● ●
●● ●● ●● ● ●● ●●● ●●● ● ●●●●●●●● ●●●●● ●●● ●● ●●● ●● ●●●● ●● ●●● ●● ● ●● ●●●●● ● ●●●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●●●● ●● ● ●● ●●● ● ●●● ●●●●● ●● ●● ●●● ●● ●●● ●●● ● ●●● ●● ●● ● ●● ●●●● ●●●● ●●● ●● ●●●●●● ● ●● ●● ●●● ●

●
●● ●● ●● ● ●●● ●● ● ●●●●●●●● ● ●●●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−0.15

−0.10

−0.05

0.00

0.05

BL

Einzelmarkerregression

S
N

P
 E

ffe
kt

e 
pe

na
lis

ie
rt

es
 M

od
el

l

y=0+1x
y= 0 + 0.017 x

●●●

●●
● ●●●

●

●
●

● ●●

●

●

●

●
●

●

●
● ●

●
●

●
●●

●

●

●●●
●

● ●●
●●

●
●

●

●●

●

●
●

●
●

●
●●● ●

●

●

●

●
●

●●
●

●●

●●

●

●

●
●

●●
●

●
●

●●
●●

●

●

●
●

●

●● ●●●

●
●

●

●

●●●
●

●

●

●● ●

●●●
●●

●

●

●

●
●●●●

●
●

● ●
●

●

●

●

●
● ●● ● ●

●●

● ●
●

●

●

●●

●
●

● ●
● ●●

● ●●●
●

●

●

●

●

●

●●
●●

●

●
●

●

●●
●●

●●

●

●

●●

● ●●
●● ● ●

●

●
●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●
●●●

●● ●
●

●●
●

●

●

●
●● ●

●

●
●●

●
● ● ●●

●

●

●
●●

●
●

●
●● ●

●● ●
●

●
●
●

●

●

● ●

●

● ●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

● ●
●

●

●
●

●

●

●

●
●

●

●
● ●

●
● ●

●
●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●●

●

●
● ●

● ●

●●

●
●

●

●

●
●

●

●●

●

● ●●

●●

●

●
●

●

● ●

●
●

● ●

● ●

●
●
● ●

● ●

●
● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●
● ●●

●● ● ●
●●

● ●

●
●

●
●

●●
● ●● ●●

●
●

●
● ●

●
● ●

●
●

● ● ●●● ●
●

●●
●

●

●
●

●●

●

●

● ●

●

● ●●
●

● ●●●●
●●●

●● ● ●
●

●●
●

●
●
●

●
●

●
●
● ●

●

●
●

●●

●
●

●
●

●
●

●
●

●●
●●

●

●

●

●

●

●
●

●
●

●
● ●

● ●●●

●

●
●
● ●●

●

●
●

●●

●●

●
●

●●
●

●
● ●●

● ●
● ●●

●

● ●
●

●

●

●
●

●

●●
●

●● ●
●

●

●
●

●●

●
●●

● ●
●●

●
●

●

●
●

●

●
●

●
●

●

●
●

●● ●
●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●●

●
●

●
●

●●●
●●● ●
●

●● ●

●
●

● ●

●●

●● ●
●

●
●

●

●

● ●
●●

●
●
●

●

●
●

●

●●
●

●
●

●

●●

●
●

● ●
●

●
●

●●

●
●●●

●●
●

●
●

●●
●●

●● ●
●●●

●

●
●●

●
●

● ●●
●

●

●

● ● ●

●
●

●
●●●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●● ●

●

●
●

●
●
●

●●
●

● ● ●

●

●●●
●

●

● ●

●

●
●

●

●
● ●

●
●

●
●

●

●●
●

●
●

●● ●

●●
●

● ●

●

●
●

●● ●●● ●
●

●●●●

●
●●● ●●● ●

●
●

●
●

●
●

●●
●

●
●

●

●

●
● ●

●●

●
●

●●●
●

●● ●
●

●

●
●●

●

●

●

●
● ●

●

●

●
●

● ●

●

●
●

●
●

●●
●

●●●●●

●

●
●●

● ●

●

●
●

●

●
●

●

●

●

● ●● ●●
● ●

●
●●

●● ●
●

●●

●●
● ●

●
●●

● ●
●

●

●●
●

●

● ●

● ●●●
●

●●

●●
●●●●●

●

●

●
●

●

●

●
●

●
●

●

●●
●

● ●●
●

●
●

●
●

●
●

●
●

●
●

●●
●●●●●

●●
●

●●
●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●●
●

●
●●●●

●
● ●

●● ●
●

●

●
●●

● ●

●

●●
●

●●

●●
●

●
●● ●

●

● ●

●●
●

●●

●
●●

●●

●

●
● ●

●
●●

●
●

●
●

●
●

●●

● ●

●

●
●

●

●
●● ●

●●
●

●
●

● ●●

●
●

●

●

●
●● ●

●
●●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●
●

●
●

●
●●●● ●

●

●●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−0.15

−0.10

−0.05

0.00

0.05

BR

Einzelmarkerregression

S
N

P
 E

ffe
kt

e 
pe

na
lis

ie
rt

es
 M

od
el

l

y=0+1x
y= 0 + 0.103 x

●●●●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ● ●● ●●● ●● ●● ●●● ●● ● ●●● ● ●●● ●●●●● ●●●● ●● ●● ●● ●● ● ●●●●● ●●● ●●● ●●●● ●● ●●●● ● ● ●●● ● ●●● ●● ● ●● ● ●●●●●●● ●● ● ●● ● ● ●● ● ● ●●● ●● ● ●●●●● ● ●● ●●● ●●●●● ●●●● ●●●● ●● ● ●●●●● ●●● ● ●●● ●●●● ● ●● ●●● ●● ●●● ●● ●● ● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ●●●● ●● ● ●● ●● ●●● ●●● ●● ● ●● ● ●●●● ●●● ●●● ●●●●● ● ●●●●● ●●● ● ●●● ●●● ●●● ●

●

●●● ● ● ● ●● ●●● ● ●● ●●● ●●● ●● ●●● ●●●●● ● ● ●●● ● ●●● ● ●

●

●● ●● ●● ●●● ●●● ● ●●●● ● ● ●●●● ● ● ●●● ●●● ● ●●● ● ●●● ●● ●● ●●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ●●● ● ● ●● ● ●● ●●●● ●● ● ●● ●●●● ● ●●● ●●●● ● ●● ●●●● ●● ●● ● ●●● ● ●●●● ●●●●● ● ●● ●●● ●●● ● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●● ●●● ●● ●

●

● ●● ●●● ●● ●●●
●

● ●● ●●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●● ● ●●●● ●●● ●● ●● ●● ● ●●● ●●● ● ●● ●●● ●● ● ● ●● ●● ●●●● ● ●●● ●●● ●●● ●●● ●●●● ●● ●● ● ●●●●●● ●●● ●● ●● ●●● ● ●●● ●● ●●●● ●● ● ●●●● ●● ●● ●● ●●●● ● ●●● ●●● ●● ●●●● ●●●● ●●●● ● ●●●● ●● ●●●●● ●●● ●●● ●● ● ●●● ● ●● ●●●●● ●● ●●● ●● ● ●●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●●●● ●● ● ●● ●●

●

●● ● ● ●● ● ●●● ● ● ●●● ● ●●●● ● ●●● ●● ●●● ●● ●●●●●●●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●●●● ●●● ●●●● ●● ●● ●● ● ● ●● ●●● ●● ● ●●● ●● ●●●●●●
●

●●●● ● ●● ●● ● ●

●

●
●● ●● ●●● ●● ●● ●● ● ●●●●●● ● ●●● ● ●● ●●● ●●● ●● ●●● ● ●● ●●●●●●● ● ●● ●●● ●●●● ●●● ●● ●● ● ●● ●●● ●●● ● ●●●●●●●● ●●●●● ●●● ●● ●●● ●● ●●●● ●● ●●● ●● ● ●● ●●●●● ● ●●●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●●●● ●● ● ●● ●●

●
● ●●● ●●●●● ●● ●● ●●● ●● ●●● ●●● ● ●●● ●● ●● ● ●● ●●●● ●●●● ●●● ●● ●●●●●● ● ●● ●● ●●● ●● ●● ●● ●● ●

●

●● ●● ●
●

●●●●●●● ● ●●●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−0.8

−0.6

−0.4

−0.2

0.0

GEN

Einzelmarkerregression

S
N

P
 E

ffe
kt

e 
pe

na
lis

ie
rt

es
 M

od
el

l

y=0+1x
y= 0 + 0.108 x

●●●●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●
●

●●●● ● ●● ●●● ●● ●● ●●● ●● ● ●●● ● ●●● ●●●●● ●●●●
●

● ●● ●● ●● ● ●●●●● ●●● ●●● ●●●● ●● ●●●● ● ● ●●● ● ●●● ●● ● ●
●

● ●●●●●●● ●● ● ●● ● ● ●● ● ● ●●● ●● ●

●

●●●● ● ●● ●●● ●●●●● ●●●● ●●●● ●● ● ●●●●● ●●● ● ●
●

● ●●●● ● ●● ●●● ●● ●●● ●● ●● ● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ●●●● ●● ● ●● ●● ●●● ●●● ●● ● ●● ● ●●●● ●●● ●●● ●●●●● ● ●●●●● ●●● ● ●●● ●●● ●●● ●
●

●●● ● ● ● ●● ●●● ● ●● ●●● ●●● ●● ●●● ●●●●● ● ● ●●● ●
●

●

●

● ●

●

●● ●

●

●
●

●●●
●

●● ● ●●●● ● ● ●●●● ● ● ●●● ●●● ● ●●
●

● ●●● ●● ●● ●●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ●●● ● ● ●● ● ●● ●●●● ●● ● ●● ●●●● ● ●●● ●●●● ● ●● ●●●● ●● ●● ● ●●● ● ●●●● ●●●●● ● ●● ●●● ●●● ● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●● ●●● ●
●

●
●

● ●● ●●● ●● ●●●

●

● ●● ●●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●● ● ●●●● ●●● ●● ●● ●● ● ●●● ●●● ● ●● ●●● ●● ● ● ●● ●● ●●●● ● ●●● ●●● ●●● ●●● ●●●● ●● ●● ● ●●●●●● ●●● ●● ●● ●●● ● ●●● ●● ●●●● ●● ● ●●●● ●● ●● ●● ●●●● ●

●

●● ●●● ●● ●●●● ●●●● ●●●● ● ●●●● ●● ●●●●● ●●● ●●● ●● ● ●●● ● ●● ●●●●● ●
●

●●● ●● ● ●●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●●●● ●● ● ●● ●●

●

●● ● ● ●● ● ●●● ● ● ●●● ●
●●

●● ● ●●● ●● ●●● ●● ●●●●●●●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●●●● ●●● ●●
●

● ●● ●● ●● ● ● ●● ●●● ●● ● ●●● ●● ●●●●●●
●

●●●● ● ●● ●● ● ●
●

●

●
● ●● ●●● ●● ●● ●● ● ●●●●●● ● ●●● ● ●● ●●

●
●●

●
●● ●●● ● ●● ●●●●●●● ● ●

● ●
●

● ●●●● ●
●

● ●● ●● ●
●

● ●●● ●●● ● ●●●●●●●● ●●●●● ●●● ●● ●●● ●● ●●●● ●● ●●● ●● ● ●●
●

●●●● ● ●●●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●●●● ●● ● ●● ●●
●

● ●●● ●●●●● ●● ●● ●●● ●● ●●
●

●●● ● ●●● ●● ●● ●
●

● ●●●● ●●●● ●●● ●● ●●●●●● ● ●● ●● ●●● ●● ●● ●● ●● ●
●

●● ●● ● ●●●●
●
●●● ● ●●●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−0.8

−0.6

−0.4

−0.2

0.0

EN

Einzelmarkerregression

S
N

P
 E

ffe
kt

e 
pe

na
lis

ie
rt

es
 M

od
el

l

y=0+1x
y= 0 + 0.087 x

●●●●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●
●

●●●● ● ●● ●●● ●● ●● ●●● ●● ● ●●● ● ●●● ●●●●● ●●●●
●

● ●● ●● ●● ● ●●●●● ●●● ●●● ●●●● ●● ●●●● ● ● ●●● ● ●●● ●● ● ●
●

● ●●●●●●● ●● ● ●● ● ● ●● ● ● ●●● ●● ●
●

●●●● ● ●● ●●● ●●●●● ●●●● ●●●● ●● ● ●●●●● ●●● ● ●
●

● ●●●● ● ●● ●●● ●● ●●● ●● ●● ● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ●●●● ●● ● ●● ●● ●●● ●●● ●● ● ●● ● ●●●● ●●● ●●● ●●●●● ● ●●●●● ●●● ● ●●● ●●● ●●● ●
●

●●● ● ● ● ●● ●●● ● ●● ●●● ●●● ●● ●●● ●●●●● ● ● ●●● ● ●●
●

● ●

●

●● ●● ●
●

●●●
●

●● ● ●●●● ● ● ●●●● ● ● ●●● ●●● ● ●●
●

● ●●● ●● ●● ●●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ●●● ● ● ●● ● ●● ●●●● ●● ● ●● ●●●● ● ●●● ●●●● ● ●● ●●●● ●● ●● ● ●●● ● ●●●● ●●●●● ● ●● ●●● ●●● ● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●● ●●● ●
●

●
●

● ●● ●●● ●● ●●●

●

● ●● ●●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●● ● ●●●● ●●● ●● ●● ●● ● ●●● ●●● ● ●● ●●● ●● ● ● ●● ●● ●●●● ● ●●● ●●● ●●● ●●● ●●●● ●● ●● ● ●●●●●● ●●● ●● ●● ●●● ● ●●● ●● ●●●● ●● ● ●●●● ●● ●● ●● ●●●● ●
●

●● ●●● ●● ●●●● ●●●● ●●●● ● ●●●● ●● ●●●●● ●●● ●●● ●● ● ●●● ● ●● ●●●●● ●
●

●●● ●● ● ●●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●●●● ●● ● ●● ●●

●

●● ● ● ●● ● ●●● ● ● ●●● ● ●●●● ● ●●● ●● ●●● ●● ●●●●●●●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●●●● ●●● ●●●● ●● ●● ●● ● ● ●● ●●● ●● ● ●●● ●● ●●●●●●
●

●●●● ● ●● ●● ● ●
●

●

●
● ●● ●●● ●● ●● ●● ● ●●●●●● ● ●●● ● ●● ●●

●
●●

●
●● ●●● ● ●● ●●●●●●● ● ●● ●

●
● ●●●● ●

●
● ●● ●● ● ●● ●●● ●●● ● ●●●●●●●● ●●●●● ●●● ●● ●●● ●● ●●●● ●● ●●● ●● ● ●●

●
●●●● ● ●●●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●●●● ●● ● ●● ●●

●
● ●●● ●●●●● ●● ●● ●●● ●● ●●

●
●●● ● ●●● ●● ●● ●

●
● ●●●● ●●●● ●●● ●● ●●●●●● ● ●● ●● ●●● ●● ●● ●● ●● ●

●

●● ●● ● ●●●●
●
●●● ● ●●●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−0.8

−0.6

−0.4

−0.2

0.0

L

Einzelmarkerregression

S
N

P
 E

ffe
kt

e 
pe

na
lis

ie
rt

es
 M

od
el

l

y=0+1x
y= 0 + 0.095 x

●●●●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ● ●● ●●● ●● ●● ●●● ●● ● ●●● ● ●●● ●●●●● ●●●● ●● ●● ●● ●● ● ●●●●● ●●● ●●● ●●●● ●● ●●●● ● ● ●●● ● ●●● ●● ● ●● ● ●●●●●●● ●● ● ●● ● ● ●● ● ● ●●● ●● ● ●●●●● ● ●● ●●● ●●●●● ●●
●● ●●●● ●● ● ●●●●● ●●● ● ●●● ●●●● ● ●● ●●● ●● ●●● ●● ●● ● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ●●●● ●● ● ●● ●● ●●● ●●● ●● ● ●● ● ●●●● ●●● ●●● ●●●●● ● ●●●●● ●●● ● ●●● ●●●

●●● ●● ●●● ● ● ● ●● ●●● ● ●● ●●● ●●● ●● ●●● ●●●●● ● ● ●●● ● ●●
●

● ●
●

●● ●
● ●●

●●● ●●● ● ●●●● ● ● ●●●● ●
● ●●● ●●● ● ●●

●
● ●●● ●● ●● ●●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ●●● ● ● ●● ● ●● ●●●● ●● ● ●● ●●●● ● ●●● ●●●● ● ●● ●●●● ●● ●● ● ●●● ● ●●●● ●●●●● ● ●● ●●● ●●● ● ●● ●● ●● ●●●● ●● ● ●● ● ●● ●● ●●● ●

●
●

● ● ●● ●●● ●● ●●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●● ● ●●●● ●●● ●● ●● ●● ● ●●● ●●● ● ●● ●●● ●● ● ● ●● ●● ●●●● ● ●●● ●●● ●●● ●●● ●●●● ●● ●● ● ●●●●●● ●●● ●● ●● ●●● ● ●●● ●● ●●●● ●● ● ●●●● ●● ●● ●● ●●●● ● ●
●● ●●● ●● ●●●● ●●●● ●●●● ● ●●●● ●● ●●●●● ●●● ●●● ●● ● ●●● ● ●● ●●●●● ●● ●●● ●● ● ●●●● ●●● ●●● ●● ●● ●●●

●● ●● ● ●●●●● ●● ● ●● ●●
●

●● ● ● ●● ● ●●● ● ● ●●● ● ●●●● ● ●●● ●● ●●● ●● ●●●●●●●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●●●● ●●● ●●●● ●● ●● ●● ● ● ●● ●●● ●● ● ●●● ●● ●●●●●●● ●●●● ● ●● ●● ● ● ●
●

●
● ●● ●●● ●● ●● ●● ● ●●●●●● ● ●●● ● ●● ●●● ●●● ●● ●●● ● ●● ●●●●●●● ● ●● ●●● ●●●● ●●● ●● ●● ● ●● ●●● ●●● ● ●●●●●●●● ●●●●● ●●● ●● ●●● ●● ●●●● ●● ●●● ●● ● ●● ●●●●● ● ●●●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●●●● ●● ● ●● ●●● ● ●●● ●●●●● ●● ●● ●●● ●● ●●● ●●● ● ●●● ●● ●● ● ●● ●●●● ●●●● ●●● ●● ●●●●●● ● ●● ●● ●●● ●

●
●● ●● ●● ● ●●● ●● ● ●●●●●●●● ● ●●●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

−0.8

−0.6

−0.4

−0.2

0.0

R

Einzelmarkerregression

S
N

P
 E

ffe
kt

e 
pe

na
lis

ie
rt

es
 M

od
el

l

y=0+1x
y= 0 + 0.069 x

Pflanzenhöhe

Abbildung 26: Pflanzenhöhe, Manhattan-Plot der SNP Effekte und Streudia-
gramm der SNP Effekte der penalisierten Modelle und der nicht simultanen
SNP Effekte eines linearen Modells
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Abbildung 27: Wachstumsrate, Manhattan-Plot der SNP Effekte und Streu-
diagramm der SNP Effekte der penalisierten Modelle und der nicht simulta-
nen SNP Effekte eines linearen Modells
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Abbildung 28: Prognosegenauigkeit penalisierter Methoden gemessen über
eine fünffache Kreuzvalidierung mit drei Wiederholungen und dem Kriterium
Korrelation

64



BEN BL BR GEN EN L R

0.6

0.8

1.0

1.2

Log. Anzahl an Tagen von Schossbeginn bis Blütezeit

M
S

E

●
●

●

●

●
●

●

●

BEN BL BR GEN EN L R

0.6

0.8

1.0

1.2

Log. Anzahl an Tagen bis Schossbeginn

M
S

E

●

●

●

BEN BL BR GEN EN L R

0.6

0.8

1.0

1.2

Pflanzenhöhe

M
S

E

BEN BL BR GEN EN L R

0.6

0.8

1.0

1.2

Wachstumsrate

M
S

E

Abbildung 29: Prognosegenauigkeit penalisierter Methoden gemessen über
eine dreifache Kreuzvalidierung mit drei Wiederholungen und dem Kriterium
Mittlerer Quadratischer Fehler
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