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Abstract

If covariate and spatial effects are modeled at the same time in order to cover
spatial autocorrelation and unobserved heterogeneity, it will lead to wrong
or attenuated effects in the presence of “concurvity”. This is caused because
spatial autocorrelation cannot separate clearly between spatial and covariate
effect. Flexible modeling of the spatial effect includes that it consists of enough
degrees of freedom for absorbing the covariate effect partially. This falsification
of the estimated covariate effects can be prevented or weakened by modifying
the spatial effect.

The basic idea is the modification of the spatial effect in a way which can
only reproduce the variability it cannot be explained by covariate information
in principle. Technically, it can be done by making basis functions, used for
spatial effect orthogonal to the basis functions, to the covariate effect. This
idea is implemented as a new operator of the mboost package. Simulations are
conducted to investigate the performance of the new %l%-operator and its
strengths and weaknesses. In addition, they identified certain situations where
the %l1%-operator perform well.

Finally, the %11%-operator is used for an ecological application to investigate
the impacts of climate change of the tree population in Bavaria. That is the
cause because there is hardly any other industry except for the forestry which
is so dependent on the natural environment. Successful management of the
forests is inextricably linked to the adaptation to natural climatic conditions.

The model indicates a strong decline of the Spruce (Picea abies) in Bavaria.
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1. Introduction

“Prediction is very difficult, especially about the future.”
Niels Bohr (1885 — 1962)

This well known quotation by the Danish physicist Niels Bohr, who won the
Nobel Prize in 1922, emphasis one important requirement on the modern statis-
tics. However, the modern statistics has further goals besides prediction. The
analysis of the relationship between given variables is equally important. Lin-
ear models and their extensions provide this possibility.

Nowadays, many statisticians have a broad experience of fitting linear models

with uncorrelated errors.

“Everything s related to everything else, but near things are more related

than distant things.”
Waldo R. Tobler (1930 — today)

Tobler [1970]’s first law of geography as well as ecology [Legendre and Fortin,
1989; Fortin and Dale, 2005] violates the assumption of uncorrelated errors.
The first law of geography states that everything in space is related but the
relatedness of things decreases with distance. Thereby, Tobler [1970] forms the
basis for spatial autocorrelation and geo-statistics. Spatial dependence implies

that activities in one region effect activities in another region.

By considering this background, it becomes clear that the “classical” linear
models with the central assumption of independent observations are no longer
an adequate modeling tool. According to He [2004], generalized additive mod-
els [Hastie and Tibshirani, 1990] are mainly used for geo-statistical analysis

because they allow nonparametric relationships between independent variables



1. Introduction

and their response. However, the generalized additive models do not solve the
problem of spatial auto-correlation in the data either. Nevertheless, the models
try an extension in order to solve the problem and also include an additional

spatial effect.

Furthermore, wrong or attenuated effects are caused if covariate and spatial
effects are modeled at the same time in order to cover spatial autocorrelation.
This occurs because spatial autocorrelation cannot separate clearly between
spatial and covariate effects. Thus, the covariate effect is partially absorbed
by the spatial effect. Hastie and Tibshirani [1990] call it “multicollinearity in
non-linear models”. Nowadays, the term “concurvity” [Hastie and Tibshirani,
1990; Guisan et al., 2002; He, 2004] is more common. The impact of con-
curvity, e.g. on the parameter estimates, has not been investigated completely
[He, 2004].

A theoretical overview over generalized additive models and the extension to
geo-additive models is shown in 2. Furthermore, Boosting is presented as a
powerful machine learning technique for model estimation. In addition, this
chapter demonstrates the alternative method pGAM [Gu et al., 2010] to deal
with concurvity.

This thesis gives an idea to solve the dilemma of concurvity. The spatial ef-
fect is modified so that it can only reproduce a variability which cannot be
explained by covariate information in principle. This is done with the help of
the new %l1%-operator. Chapter 3 presents this idea and the %l1%-operator in
detail and shows an implementation for the R-mboost package [Hothorn et al.,
2009].

Chapter 4 investigates with the help of three simulation studies the perfor-
mance of the new %l1%-operator. Furthermore, the %l1%-operator is com-
pared to a “standard” generalized additive boosting-model and the alternative
pGAM-model.

Finally, the new %l11%-operator is used in an ecological application practically.
Chapter 5 analyzes the impact of climate change on the tree population in

Bavaria.




2. Theory

This chapter presents the basic statistical frameworks for flexible specification

and the corresponding models.

2.1. Generalized Additive Models

The basic aim of additive models is the flexible modeling of the relation between
dependent and independent variables. The additive model extends a simple

linear model

vi = filza) + ...+ fo(zig) + Bo+ Bz + ...+ Brrak + &
= filza) + .+ folzig) + 0" + &
= 7%t
where f1(z1), ..., f4(zi) are smooth functions of the covariates z1, .. ., z,. These
functions are estimated in a nonparametric fashion. A generalized additive
model differs from an additive model. Its additive predictor is linked with the

expected value by a known smooth monotonic link-function.

The smooth functions fi(21), ..., fy(2i) are represented by a linear combina-

tion of basic-functions

dj
fi=>_vuBi(z), j=1...q

=1

There are different types of basic-functions for B;, [ = 1...d;. Common ex-

amples are B-Splines or TP-Splines. Section 2.3 focuses on B-Splines.
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A covariate can always be represented by
fi =2y

with the coefficient vector v; = (71...7;) and the design matrix Z;. The

additive model in matrix notation
Yy=2Zin+...+2yy,+XB+e

The estimation occurs either with the penalized least squares criterion for

normal distributed response
PEQ(\) = (y = Z7)"(y — Zv) + M\ K.

Thereby denotes Z a matrix whose entries are the basic-functions evaluated

at the observations
Bi(21> e Bé(zl)
7 = :

Bl(z,) ... Bi(z,)

Simple GAMs are estimated with the penalized least-squares estimator
¥=(Z"Z+ ) \K)'Z"y.

or with the Fisher Scoring algorithm [Fahrmeir et al., 2009]. Generalized addi-
tive models require more complex methods as the backfitting algorithm [Hastie
and Tibshirani, 1990]. For a more detailed overview of generalized additive
models see Hastie and Tibshirani [1990] and Fahrmeir et al. [2009].
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2.2. Geo-Additive Models

Geo-additive models enlarge the predictor of additive models with an addi-
tional spatial effect fgeo(s) [Fahrmeir et al., 2009]. A geo-additive model is
represented by

Y = n?dd+fgeo(5i)+5i
= filzin) + ..+ folzig) + faeol(si) + ] B+ei

with7=1...n and :I:zT,B = By + B1xi1 + Brrik. The given assumptions in the
additive model are also valid for the covariates x;, z; and the error term e&;.

The spatial effect fye,(s) can be used as a surrogate for unobserved and un-
documented covariates consisting of spatial information. Common estimation
techniques are two-dimensional smoothing splines, for example tensorproduct

P-Splines or Markov random-fields.

Especially, for discrete s € {1,...,d} Markov random-fields are used for esti-
mation. Thereby, rewrite the vector faeo(s) = (fgeo(S1),- -, faeo(sn))T of the
spatial effect by

fgeo - deo’)/geo (21)

With Ygeo = (Ygeo.1s - - - » Veeom)® for the spatial effect and a n x d design matrix
Zyeo. The design matrix Zge, (with Zge,[i, s] = 1if s; = s and 0 else) is called
incidence-matrix because of its special design. Further details on Zge, and “geo

are presented in Fahrmeir et al. [2009].

It is possible to rewrite fyeo(s) for continuous s, too. It can also be done
in the way shown in the equation (2.1). Usually, the estimation occurs with
tensorproduct P-Splines. The design of Z,e, and ~ge, is presented in Fahrmeir
et al. [2009] and section 2.3.2.

The final geo-additive model can be written as

Yy = Z1'71 + ... +Zq7q+de07geo+XB+€'
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The estimation of 7, is regularized the same way as the estimation of the co-

efficient vector vy, ..., 7, with a penalty )\geo'ygTeoK geoYgeo OF equivalent Gauss

priors.

2.3. Splines

This section outlines basic statistical methods for nonparametric modeling.

Therefore, their key concepts will be revealed.

2.3.1. B(asic)-Splines Basis functions

B(asic)-Splines are a flexibly modeling strategy to describe the influence of
a continuous variable with good numerical properties [Fahrmeir et al., 2009].
The function f(z) is approximated by piecewise polynomials. There are addi-
tional smoothness requirements at the knots of the function f(z). B-Splines
basis functions are constructed in a way that the polynomial pieces with the
favored degree are sufficiently smooth at a desired knot. A B-Spline basis func-
tion consists of (I + 1) polynomial pieces with degree [, which are composed

of [ — 1 times continuously differentiable. Figure 2.1 illustrates single B-Spline

025 05 %

o

[
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Figure 2.1.: One single B(asic)-Spline basis function of degree [ = 0,1,2,3 at
equidistant knots illustrated by [Fahrmeir et al., 2009].

basis function of degree [ = 0,1,2,3 on equidistant knots as the results from
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these considerations.

All B-Spline basis functions are built for visualization of polynomial splines
based on the underlying knots. The complete B-Spline basis of degree [ =
0,1,2,3 are depicted at equidistant knots in figure 2.2.

B-splines basis of degree 0 B-splines basis of degree 1
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Figure 2.2.: B(asic)-Spline basis function of degree | = 0,1,2,3 at equidistant
knots.

With the help of this basis it is possible to represent f(z) by a linear combi-

nation with d = m + [ — 1 basis functions
d
f(z) =>_7Bj(2)
j=1
A great benefit of the B-Spline basis is based on its local precision. Contrary

to other basis functions, B-Spline basis functions are only over [ + 2 adjacent

knots different from zero. Additionally they are bounded above in order to
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antagonize numerical problems.

For B-Splines of degree | = 0 the definition could be derived directly from
figure 2.1

1 Rj S Kj+1,

0 else,

In the shown case the equivalence to the spline representation with Truncated
Power Series Basis (TP-Basis) is easy to see. Building up successive differences
of the TP-Basis function of degree [ = 0 leads to the B-Spline-Basis which is
constantly over an interval defined by two adjacent knots. B-Splines of degree

[ > 1 are recursively represented by

Z— KR _ Kiriqe1r — % _
= Bl 4 =~ gl 1(z)
e ) — k. J+1

Kj+l — Ry Rj+i+1 — Kj+1

B;(z) =

and means that the basis function consists of two linear pieces on the intervals

[k, fjair1) and [Kjia, Kjp2).

2.3.2. P(enalized)-Splines
Univariate P(enalized)-Splines

The performance of a non-parametrical function estimation based on polyno-
mial splines depends strongly on the number and location of the used knots
[Fahrmeir et al., 2009]. A common solution for this problem is to work with
penalty approaches [Eilers and Marx, 1996]. The fundamental idea of penalty
approaches is to approximate the function f(z) in order to be estimated by

a polynomial spline with an adequate great number of knots. In addition, a
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penalty term is introduced penalizing large estimation variability. The penalty

term is regularly based on first or second differences and is represented by

d
A D (6"y)? = M DiDyy
j=k+1
= MKy

with K the penalty matrix for the first differences

respectively K the penalty matrix for the second differences

1
-1

-1
2

-1

—1

2
—1

1 -2 1
-2 5 -4 1
1 4 6 -4 1
K, =
1 -4 6 -4 1
1 -4 5 =2
1 -2 1

Bivariate P(enalized)-Splines

Fahrmeir et al. [2009] propose to use bivariate P(enalized)-Splines to model
spatial effects. Suppose z; and 25 are coordinates of a two-dimensional surface
f(z1,22) in a spatial model. Firstly, the univariate basis for z; and zy are
built and provide the basis functions Bj(l)(zl),j =1,...,d; and B§2)(ZQ)7j =
1,...,ds. Finally, the tensorproduct-basis is built on all these basis functions

Bji(21,2) = B (21) - B (22),

J

j=1,...,d, k=1,... dy
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It leads to the following representation for f(zq, 2z5):

di da
f(2’1> Zz) = Z Z ’ijBjk(Zb 2’2)
j=1k=1
Tensorproduct-B-Splines consist of good numerical properties. They are dis-
played in figure 2.3 for different spline degrees [ = 0,1,2,3. Figure 2.3 shows

that a greater smoothness causes a higher spline degree. Figure 2.4 focuses on

Bivariate B-Spline basis Bivariate B-Spline basis
with degree of 0 with degree of 1

00000

Bivariate B—Spline basis Bivariate B-Spline basis
with degree of 2 with degree of 3

Figure 2.3.: Tensorproduct basis functions based on univariate B-Splines of degree
1=0,1,2,3.

the contourplots of the Tensorproduct-B-Splines. The level curves differ clearly

10
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from a circle. Therefore, Tensorproduct-B-Splines are not radial. Beyond that,

Bivariate B—-Spline basis Bivariate B-Spline basis
with degree of 0 with degree of 1
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with degree of 2 with degree of 3
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Figure 2.4.: Contourplots to Tensorproduct-B-Splines basis functions of degree
1=0,1,2,3.

the choice of the optimal number and location of knots is as important as in
the univariate case. In the bivariate case admittedly it is often the problem
that there are certain regions without any observations. Consequently, it is
not possible to estimate basis functions lying in this area. These problems are

solved with the help of regularization with a penalty term.

Firstly, there is the introduction of an adequate penalty term. It makes sense
to use the spatial design of the basis functions and the regression coefficients.
In the univariate case the penalty term is based on squared differences. To
assign this concept to the two-dimensional case, the proper spatial neighbors
must be defined first.

11
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Thus figure 2.5 shows possible spatial neighbors for four, eight and twelve
neighbors. Firstly, assume a simple neighborhood with four nearest neighbors.

This situation is shown in the left part of figure 2.5. It makes sense to use a

o o o 9 © ©°o o0 o 9 °o 0o a o
o ©o o o O o 9o o e 9 o 0 0o O @« 0 a o
o o 8 O O 9 o o @ ° ©°o 0 o 0 @« & @& O O
L=l Clﬁr ’: L] L=I I O,.:r”g L ] (I I Oﬂf g L I
o o o8 9 0 LI e N -'C' [ B ¥ o0 @« & @ O O
o o o 9 ¢ 9 o o @ ° ©°o 0 c o O & 0 9 O

o o 9 © ©o o0 o 9 °o 0o a o

Figure 2.5.: Fahrmeir et al. [2009] illustrate the spatial neighborhood on a regular
grid: Neighbors to coefficient v;;, are marked by a black point.

penalty term based on the squared differences between v, and its neighbors.
D, and D5 are the univariate difference matrices in z; and z, direction. The
row wise first differences can be calculated by applying the difference matrix
I;, ® Dy on the vector «v. Thereby, I; denotes the d-dimensional identity

matrix and ® the Kronecker product. Hence,

da dy

v (Ig, @ D1)" (Ig, @ Di)y = > (vk — Vjm1)’
1 =2

the sum is formed of all row wise squared differences. The column-wise squared

differences are formed analogue
di da
Y (D2 @ 13,) (Do @ L)y = 3 > (v — vin-1)

j=1k=2

Finally, the penalty term consists of the added up and squared column-wise

and row wise differences

MKy =M [(1s, ® D1)" (1, ® Di)y + 7" (Dy @ I,)" (Dy ® I,))y.

12
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Generally, the penalty term can be built with the help of univariate penalty

matrices and the Kronecker product
K=1;,,0 Ki+K,®I,,.
This leads to a quadratic penalty term
MWKy = ML, K+ Ko® Iy

where K| = DT D, and K, = DI D, are univariate penalty matrices.

Optimal choice of the smoothness parameter \

The optimal choice of the smoothness parameter A is an important aspect. The
smoothness parameter A controls the smoothness of estimated functions and
ensures a suitable compromise between bias and variability of an estimator.
For A — oo exists a widely linear estimation of the function f(z). Contrary to

A — 0 exists a quite rough estimation of the function f(z).

The problem occurs that bias and variability of a smoothness method are si-
multaneously depended on the smoothness parameter A and both cannot be

minimized at the same time. Therefore, a suitable equalization must be found.
On the one hand, the Mean Squared Error (MSE) is a good possibility:

MSE(f(z)) = E{(f(Z)—f(Z))Q}
= (E[f(:) - f(2)]) +Var(f(2)).

variability

bias

The MSE is added additively by the squared bias and the variance. Finally,
the X is taken where the MSE is minimal.

On the other hand, there is the Cross-Validation (CV) to find the optimal

smoothness parameter \. Respectively one observation is deleted in cross val-

13



2. Theory

idation. Within the next step the smoothness parameter A is estimated with
the remaining n — 1 observations. Finally, f(z;) is predicted for the deleted
observation. Denoted by f (=) (%) is the estimation which occurs without the

observation (z;,y;) and receives Cross-Validation criterion [Stone, 1974]:
. 2
CV =— c— FED(2)) .
- (vi = £ (2)

The minimization of the CV criterion leads in the sense of prediction error to

an optimal A.

A further alternative method to achieve the optimal smoothness parameter A
is by the Akaikes Information Criterion (AIC) [Akaike, 1974]:

AIC = n -log(6%) + 2(df +1)

where 62 = 3 (y; — f(2))?/n. The AIC has to be minimized concerning the

smoothness parameter.

2.4. Boosting

“A horse-racing gambler, hoping to mazimize his winnings, decides to create a
computer program that will accurately predict the winner of a horse race based
on the usual information (number of races recently won by each horse, betting
odds for each horse, etc.). To create such a program, he asks a highly successful
expert gambler to explain his betting strategy.

Not surprisingly, the expert is unable to articulate a grand set of rules for se-
lecting a horse. On the other hand, when presented with the data for a specific
set of races, the expert has no trouble coming up with a “rule of thumb” for that
set of races (such as, “Bet on the horse that has recently won the most races”
or “Bet on the horse with the most favored odds”).

Although such a rule of thumb, by itself, is obviously very rough and inaccu-
rate, it is not unreasonable to expect it to provide predictions that are at least
a little bit better than random guessing.

Furthermore, by repeatedly asking the expert’s opinion on different collections

14
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of races, the gambler is able to extract many rules of thumb.

In order to use these rules of thumb to maximum advantage, there are two
problems faced by the gambler:

First, how should he choose the collections of races presented to the expert so
as to extract rules of thumb from the expert that will be the most useful?
Second, once he has collected many rules of thumb, how can they be combined
into a single, highly accurate prediction rule?’

An answer to this question is given by Schapire [1990] and Biihlmann and Yu
[2003] with their boosting algorithm. Due to disadvantages in spatial applica-
tion, an extension of this algorithm is presented in section 3.3.3. Firstly, an

important variation of the boosting algorithm is introduced in section 2.4.1.

2.4.1. Boosting Algorithm

The expression “Boosting” signifies a series of algorithms that improve the
power of several “weak” learners (called in the following “base-learner”) by com-
bining them to an ensemble (“to boost”). The benefit of such an ensemble was
shown by Kearns and Valiant [1994] for the first time. The corner stone was
laid by Schapire [1990] with his paper “the strength of weak learnability”. The
first step towards practical application was done by Breiman [1998, 1999] with
his today well known AdaBoost algorithm. These first Boosting-Algorithms
were one of the most powerful machine learning technique used in the last
twenty years for binary outcomes [Schapire, 1990; Freund and Schapire, 1995].
Breiman [1998, 1999] was able to imbed this algorithm in statistical framework
by considering AdaBoost as a steepest descent algorithm in function space.

Friedman et al. [2000] and Bithlmann and Yu [2003] derived the general statis-
tical framework which yields a direct interpretation of boosting as a method
for function estimation. Nowadays, Boosting is a method to optimize predic-
tion accuracy and to obtain statistical model estimates via gradient descent

techniques.

Freund et al. [1999], page 771

15



2. Theory

An optimal prediction of y with the help of the covariates &; = (z;1, ..., 24)7, i =
1,...,n is the major aim. The covariates are linked to response variable y as

described in section 2.1 or 2.2.

p L
9(Ely: | =7 ]) =ni = fila;) = > bi() (2.2)

=1 =1
Thereby, every smooth effect f;(x;) is represented by a base-learner b;(-). The
major boosting challenge is to minimize an expected loss function E [p(-,")]

relating to a real-valued function 7.
7 = argmin By x [p(y, n(2))] (2.3)

A typical assumption to the loss function p(-,-) is to be differentiable and
convex with respect to n(-). Different loss functions are described in detail in
section 2.4.4. Usually, the Lo-loss is used.

In general, the expected mean in equation (2.3) is unknown in practice. Thus,

replace E [p(-, -)] with the empirical risk

n

R =13 plys, (20)
=1

for estimation of ) and apply iterative steepest descent in function space. The
minimization of R as a function of 7(-) maximizes the empirical log-likelihood
corresponds to 7(-) [Bithlmann and Hothorn, 2007]. The minimization is done
step by step in direction towards the steepest descent of the loss function.
Instead of using the original data, the boosting algorithm uses the derivative
of the loss function on the covariates in every iteration m = 1,...mgp. This
results that poorly predicted values get a very high weight in the following
iteration. Reaching the minimum is done by adding up by a step-length factor
v compressed value to the previous value of 7(+) in each iteration. The following
algorithm was developed by Friedman [2001]. The illustration of the algorithm
is based on Hofner [2011].

16



2.4. Boosting

Component-wise Gradient Boosting Algorithm

Initialization:
Set m = 0. Initialize the function estimate f°)(-) with an offset value. Usual

choices are

"7[0] = argmin n”! Z P(yz‘, C)
¢ i=1
or

0 =

n
Iterate:

(1) Negative gradient vector:

First increase m by 1. Then compute the negative gradient of the loss

T

function p(y;,n(x;)) and evaluate the function values of the previous

iteration §™~Y(x!). This leads to the negative gradient vector:

m d ,
UE ] = —afnp(yi,n) |n:ﬁ[m—1](zz’), 1= 1,...,n
(2) Estimation:
Fit the negative gradient vector ul™ = (u[lm], e ,uW) to x1,...,xz, by

regressing the L base-learners b separately on ul™:

n  base procedure 4[m
AR S0
After the evaluation of all base-learner choose those with the highest

goodness of fit. That means, choosing the base-leaner b;- which minimizes

the residual sum of squares:

" A 2
[* = argmin (ugm} — (.Z‘ZT)) .
1<ISL =
(3) Update:

Update the function estimate

17
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and the actual partial effect j*, containing the base-learner [*:
m rlm—1 7lm
O = B0 + v B

where 0 < v < 1 is a step-length factor. The estimates of all other

functions fj, J # 7% remain unchanged.

Stopping rule: Iterate steps (2) to (4) until m = my,, for a given stopping

1teration Myiop.

The algorithm above consists of two important tuning parameters. A detail

description of them is given in section 2.4.3.

2.4.2. Choosing Base-Learners

The structural assumption of the model, especially the types of effects that
are used can be specified in terms of base-learners. Therefore, boosting is
a component-wise iterative process which selects just one base-learner (one
component) in each iteration. However, each base-learner can be selected more
often and results in a related type of effect. The fit of the data is improved
by attempting the vector of the residuals u!™ by the most appropriate base-
learner in every iteration. For example, a base-learner can be either a linear
or a smooth effect. The estimation of the base-learners occurs with penalized

least squares
by = X(XTX + \K) ' XTu

with the design matrix X, the penalty matrix K and the smoothness pa-
rameter A\ for example presented by Fahrmeir et al. [2009]. The smoothing
parameter A and degrees of freedom (df) have a one-to-one relationship and
regulate the amount of penalization. Using the component-wise boosting al-
gorithm naturally leads to variable and model selection. Nevertheless, the
selection of base-learners in each iteration can be biased if the competing base-
learners have different degrees of flexibility [Hofner, 2011; Hofner et al., 2011].
Consequently, boosting (almost) always prefers smooth base-learner over lin-

ear base-learner no matter of the true effect. The smooth base-learner offers
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much more flexibility and typically incorporates a linear effect as a special case
[Hofner et al., 2011]. Hence, Hofner [2011] proposes to specify equal degrees of
freedom for all base-learners if unbiased model and variable selection are the

goal.

Different modeling variations are determined by representing each partial effect

of the equation (2.2) by one or several base-learners [ =1,..., L;:
fcor) _ XA
fj stop :Z an],l
=1 m=1

The additive structure of equation (2.2) is preserved. The appendix of Mal-
oney et al. [2011] presents extensive explanations. As base-learner, linear and
categorical effects, interactions, one-and two-dimensional splines, random ef-
fects and much more can be used. Hofner [2011] gives an overview in general.

Section 3.3.3 shows the relevant base-learner for this thesis.

2.4.3. Tuning Parameter in the Boosting Algorithm

The stopping iteration mgep is the main tuning parameter of boosting algo-
rithm. In order to avoid overfitting, boosting algorithms should not run until
complete convergence [Bithlmann and Hothorn, 2007]. Therefore, an optimal
choice of the stopping iteration mygcp, is very important. The optimal mgeyp, is
usually chosen by an information criterion, for example AIC [Akaike, 1974],
cross-validation [Stone, 1974] or bootstrap [Efron, 1979].

The step-length factor v is of minor importance, as long as it is “small”, for
example v = 0.1. Biithlmann and Hothorn [2007] suppose that a small value of
v typically requires a larger number of boosting iterations and more computing
time. Thus, the step-length factor v and the optimal stopping iteration msp
influence each other. As long as the shrinkage effect of v is used, the overfitting
proceeds relatively slowly [Bithlmann and Hothorn, 2007]. Friedman [2001]
proofed empirically that predictive accuracy is potentially better and almost
never worse when choosing v “sufficiently small” because the estimate of 7(-) are

shrunken towards zero [Friedman, 2001]. Small values ensure that the boosting
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algorithm does not fail the minimum of the empirical risk R. In addition,
shrinkage generally stabilizes the effect estimations and avoids multicollinearity
problems [Hofner, 2011; Friedman, 2001].

2.4.4. Loss Functions and Boosting Algorithm

As mentioned before, the structural component of the boosting models is deter-
mined by the base-learners. The stochastic component of the model is defined
by the loss function. Large numbers of boosting algorithms can be defined by
specifying different loss functions p(+,-). There are different options for the re-
gression setting with response y. Usually, for GAMs the loss function is simply
the negative log-likelihood function of the outcome distribution. Therefore, in

the following section several options are briefly discussed for choosing the loss.

The use of the normal distribution leads to the special case LoBoosting. Most

often the squared error loss, also called Lo-loss

praly (@) = 3 ly = n(@)f

is used. The loss function is scaled by the factor % to confirm a helpful repre-
sentation of its first derivative, namely simply the residuals. By modeling the
residuals, the boosting algorithm focuses on the “difficult” observations which

were previously estimated poorly [Hofner, 2011].

A loss function with some robustness properties is the absolute-error-loss or

L-loss and is represented by

pr (Y, n(x)) = ly —n(x)|.

The Li-loss is not differentiable at the point y = n. However, it is possible to
compute the partial derivatives because the single point y = n has the proba-

bility zero to be realized by the data.
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The Huber-loss function is a compromise between the L; and the Lo loss

ly — ()| /2, if |y —n(z) <6

Huber( ) (IB)):
Pruber (Y, 1) 3y —n(@)| —8/2), if ly—n(®)]>0o

0 is chosen adaptively. A strategy for choosing ¢ is proposed by Friedman
[2001]

)

dm = median ({|yz — fr= @y [i=1,. .. ,n|})

where the previous fit Al™~1(.) is used.

Loss functions

15+

104

lossFunction
=== absoluteError

Loss

=== squaredError

=== HuberLoss

0
y=f(x)

Figure 2.6.: Comparison of three different loss functions: Lj-loss function (red),
Lo-loss function (green), Huber-loss function (blue).

Figure 2.6 compares the three different presented loss-functions. The Lo-
loss function (green line) penalizes observations with large absolute residuals

stronger than the two other loss functions. Contrary, the L;-loss function (red
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line) penalizes extreme margins linearly. The Huber-loss function (blue line)

can be seen as a compromise between the L;- and Lo-loss function.

2.5. Partial Generalized Additive Models

Gu et al. [2010] developed an information-theoretical approach for dealing with
concurvity and selecting variables. This new procedure is based on the mu-

tual information (MI) and is called partial generalized additive model (pGAM).

The partial generalized additive model is able to make not only predictions
but also to identify which covariates are important and how these covariates
affect the response variable.

Despite of concurvity, the partial generalized additive model is able to produce
stable and correct estimates of the covariates’ functional effects. This happens
by building a GAM (chapter 2.1) on a selected set of transformed variables. It

is explained how the transformation works in detail.
Consider the standard GAM model

E(y | =) = g(n(x)) = g(fo + fi(z1) + ... + fo(zp) (2.4)

where g is a monotonic link function and f;(x); j = 1,...,p are unspecified
smooth functions which allows a simple interpretation of the covariates’ func-
tional effects. If a strong functional relationship among the covariates exist,
which is also known as concurvity, problems will arise [Gu et al., 2010]. The

problem of concurvity is introduced in detail in chapter 3.

To solute the problem of concurvity, the new pGAM-procedure goes back to
the modified backfitting algorithm given by Hastie and Tibshirani [1990] which
partially deals with concurvity. The basic idea is to separate each smoothing
operator into a projection part and a shrinking part. Afterwards all projection
parts are combined into one large projection part and only to use backfitting
for the shrinkage part. Hastie and Tibshirani [1990] proved that concurvity
occurs only in the projection part. Thus, the modified backfitting algorithm
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2.5. Partial Generalized Additive Models

allows to deal alone with concurvity in the projection step [Gu et al., 2010].

2.5.1. Methodology

Brief Review of Mutual Information

Mutual information (MI) is an important component of the pGAM algorithm
and was first introduced by Shannon et al. [1948]. It is used to measure the

dependence between two random variables  and y. The MI is defined as

f(z,y)
MI(z,y)=E (log fm(w)fy(y)> (2.5)
where f, f, and f, are their joint and marginal probability function. It is
easy to prove that there is a close relationship between MI and the notion of
entropy, H(x) = —Elog(p(x1,...,x,)). The MI can be seen as the relative
entropy between the joint distribution and the product distribution. If
H(y|x)=—E(logp(y | z1,...,x,)) is the conditional entropy, then

MI(y,x) = H(y) = H(y | z) = H(x) — H(x | y)

is valid. Mutual information can be seen as the amount of information in x

that can be used to reduce the uncertainty of y.

GAM and Maximization of Mutual Information

This section provides the link between GAM and the mutual information. The
prerequisite that GAM chooses 7(-) to maximize the expected log-likelihood
was proofed by Hastie and Tibshirani [1990].

Ell((z),y)] = maxE [[(n(z), y)]
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where [(n(x),y) is the log-likelihood of y given n(x). Another requirement is

that the mutual information between y and n(x) is equal to

Mitgae) = Bl 2
|-

= E[i(n(x ) y)] — Elog f,(y). (2.6)

Therefore, GAM chooses 1 in a way that MI(y;n(x)) is maximal. At the

same time, Cover and Thomas [1991] showed for any function 7(x)

MI(y;n(x)) < MI(y; ) (2.7)

is valid. Thus, it is not possible to increase information about y by transform-
ing the original predictors & [Cover and Thomas, 1991]. This results in the
purpose to find a suitable n(x) to maximize M (y;n(x)) and come as close as
possible to the upper bound MI(y; x4, ..., x,).

With the help of the chain rule, a possible solution for this maximization

problem is given by

MI(y,xy,...,x,)
= MI(y;z:) + M(y;z2 | 21) + ...+ M(y; 2, | Tp_1,...,21) (2.8)
= MI(y;xzi1,...,zp1) + MI(y; 2, | p1,...,21). (2.9)

Cover and Thomas [1991] point out that one possible method to maximize
MI(y;n(x)) is to construct n(x) term by term. Each term shall come as close
as possible to the equation in (2.8). The smooth term fi(x) is received by
fitting a GAM of y onto ;. Thus, the approximation of MI(y, fi(x1)) by
MI(y,x)) is achieved.
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2.5. Partial Generalized Additive Models

Consider the model y = fi(@1) + z where z is independent from x; and also

conditionally independent from ;. Hence,

M](y§332 | 331) =
= H

T

y| @) — H(y |z, 1) (2.10)

(fi(@1) + 2) [ @1) — H((f1(21) + 2) | @2, 21)
z | @) — H(z | 22, 21)

= H(z) — H(z | z) (2.11)

= MI(z, x). (2.12)

Il
=

(
(
(
(2

The equations (2.10) and (2.12) result straightforwardly from the definition of
mutual information. Equation (2.11) follows directly from the premise. The
next term fo(x5) is constructed by taking the partial residual z = y — fi(x;)
and then fit a GAM of z onto x».

How can further terms f3(x3), ..., fr(@) be constructed? Generalize the idea
above and consider the model y = n(xy, ..., xx) + z. The terms (x4, ..., xx)
and z are assumed to be independent. Additionally, the terms are given con-

ditionally independent of ;1. This leads to
MI(y; Tpy1 | T1, ..., 2) = MI(2;2p41). (2.13)

The aim is to approximate the terms in equation (2.8). This is done by using

fi(x1), ..., fe(xk) as an approximation for ny(xy, ..., xx). Thus, the approxi-
mation only works if @, ..., x; are independent.

Assume that there is concurvity between x, and @q,...,x;_1. How will this
affect the procedure? The approximation results to ng_i(@1,...,xg,). The

consequence after adding fi (@) is that the partial residuals are still not inde-
pendent of (1, ..., &y, ). Thereby, it applies z = y—mn,_1(x1, ..., &) — fr(xr)
and this leads to the fact that equation (2.13) is false. For this reason, Gu
et al. [2010] point out that the backfitting algorithm requires multiple passes
and each function must be re-fitted iteratively. The re-fitting is possible and
correct because the chain rule in equation (2.8) and (2.9) does not depend on
the order of the x;’s.
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2.5.2. Partial Generalized Additive Models

Covariates are not independent in the presence of concurvity. Accordingly, ap-
proaching the terms in equation (2.8) in the backfitting algorithm does not lead
to the optimal result. Therefore, an alternative to approximate the equation
(2.8) is necessary. Partial generalized additive models provide this alternative

way by using the recursive application of the following:
MI(y,zi,...,z,) = MI(y;x1) + MI(y; 22, ..., x, | 1) (2.14)

instead of using the recursive application of equation (2.9). Consider the model
y = fi(x1) + z where z is independent of x; again. In this case assume
z; = gj(x1)+xV); j=2,... p where z; and (2, ..., £®) are independent
from z. Instead of equation (2.10) — (2.12) this leads to

MI(y;xzs,...,z, | 1)
= H(xy,...,z, |x1) — H(Z2, ..., 2 | Y, T1)
= H((gn(x) + &)z | 21) = H((gj1(®1) + 29) 0 | fi(@1) + 2,21)
= H?,. .. z® | 2W) - Hx?, . . =P |z z)
= H?,. .., z?) - H@x?,. . .  z?|2)
= MI(z;a:(Q),...,a:(p)). (2.15)

Thus, in this case another procedure is necessary. In a first step, estimate
fi(x1) by fitting a GAM of y onto x;. The estimation of the “partial effects”
921, - - -, gp1 1s done by smoothing x»,...,x, onto ;. Finally, fit z onto the

adjusted variables ® ... &® which are independent from ;.

Variable Selection

When regression models are fitted, the variable selection plays a very impor-
tant role. Particularly the order in which the variables enter a model make a
difference to the space of possible models. Also, the final model depends on
this chosen order. pGAM chooses the variables in order of decreasing mutual
information of y. Thus, the variable with the highest MI is chosen first. pGAM
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2.5. Partial Generalized Additive Models

is only able to do a forward variable selection. Variables are only included in

the final model if they improve the model significantly.

Indirect Estimation of MI

As mentioned in section 2.5.1, the mutual information is an important com-
ponent in the pGAM procedure. Unfortunately, the direct estimation of the
MI is not a trivial problem. Thus, the estimation of MI must be effected in an
alternative way.

This can be realized by using a “proxy” of M I(y;x) which is based on equation
(2.6) and (2.7)

—

MI(y; ) = maxMI(y;n(z)) = maxE[l(n(z), y)] — Elog f,(y).  (2.16)

This procedure is justified because n(x) is a sufficient statistic for y and this
leads to MI(y;n(x)) = MI(y;x) [Cover and Thomas, 1991]. Gu et al. [2010]
propose to consider only the maximum value of the conditional log-likelihood.
Practically, this is realized by fitting a GAM of y onto each remaining covari-
ate and choose the covariate with the largest log-likelihood (or the smallest

deviance).

The pGAM Algorithm

The basic structure of the pGAM procedure is as followed. pGAM sequen-
tially maximizes the mutual information [Shannon et al., 1948] between the
response variable and the covariates. pGAM starts with a null model. Firstly,
pGAM chooses to add the covariate whose mutual information with y is the
largest. Secondly, it removes any functional effects of this covariate from all
remaining covariates before searching for the next covariate to add. Finally,
this leads to a model based on a sequence of adjusted predictor variables. The
removal of the functional dependencies at each step, eliminates problems in-
duced by concurvity and gives much more precise and reliable interpretations
of the covariate effects. Consider that after the first covariate all covariates are
transformed during the fitting process. The entire pGAM algorithm from Gu
et al. [2010] is presented in the following:
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pPGAM Algorithm

(1) Initialization:

(a) Starting with a null model my by fitting a GAM of y onto a constant;
let Dy be the deviance of my.

(b) Center all z;’s to have mean zero; let

Xw = {w(j) :m_ﬂj = 177p}

be the initial set of “working variables”.

(¢) Set D = Dy and m = my.

(2) Iterate Main Procedure:

(a) For each working variable ) in x,,, fit a GAM of y onto =¥,
Record the deviance d;, and the degree of freedom df; for V),
Collect d; into a vector d.

(b) Choose i such that d; is the smallest element of d. Remove d; from
d and ) from x,.
Form a new model my,., by adding &® into m. Let D,., be the
deviance of My,ey.

(c) Test whether D, is a significant improvement over D:

e Improvement is not significant:
If x., is not empty, then go back to step 2(b).

e Improvement is significant:

o For every V) € x,,(j # 1), fit
2l — gﬂ(w(i)) +€;

by smoothing ) onto ). Record the fitted functions g;;
and replace each

20 = 2 _ g, ()

n .

o Let D = D0, and m = myyeq-
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o If x, is not empty, then go back to step 2(a).

(3) Output:
Run until all variables are tried out and the model m and the g;;’s are
put out.
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3. Concurvity

3.1. Introduction

What are predictive maps of species distributions [Franklin, 2009]?7 What are
the short-term or long-term effects of air pollution on the population of a coun-
try [He, 2004]7

These and similar questions increase on importance nowadays. With the help
of reliable statistical data and models these questions should be answered.
Species distribution modeling (SDM) is just one example of this. However, it
is an increasingly important one [Franklin, 2009] which helps to assess changes
of landscapes [Miller et al., 2004; Peters and Herrick, 2004]. One further ex-
ample can be regression approaches to model the rent level or epidemiological

models for cancer atlases.

These applications with their particular data structure provide other require-
ments to the statistical models. The first standard assumption in linear models
is that the observations are independent [Yee and Mitchell, 1991]. This as-
sumption violates the “first law of geography” [Tobler, 1979] as well as ecology
[Legendre and Fortin, 1989; Fortin and Dale, 2005]. It states that near things
are similar which concludes that nearby locations have similar values because
they are likely to influence each other. Thus, the data in these applications

are spatially correlated.

Thereby, a special modeling is necessary for this special data structure. Gen-
erally, the predictor variables in such models show a strong spatial correlation.
The modeling and its related problems are briefly explained with an example.

At this point, the application, later presented in chapter 5, is already antici-
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pated.

The aim is to estimate a model for the occurrence of certain tree species in
Bavaria. This leads to a binary response variable y;. As predictor variables
precipitation and temperature are available and as well the spatial coordinates
at which these variables were measured. Thereby, the predictor variables show

a spatial correlation.

The generalized additive model (chapter 2), a flexible modeling technique, shall
be used to model the relationship between dependent and independent vari-
ables. With the help of a stepwise modeling strategy, the problem “concurvity”

is introduced. Firstly, assume the following model

E(y:) = Plyi=1)
= [y + Pi(precipitation) + S>(temperature). (3.1)

This model (3.1) ignores completely the special data structure. That means

concretely the spatial autocorrelation of data. This situation is illustrated

covariate(s) effect

B , covariate-part” of the covariate(s) effect

»Spatial-part” of the covariate(s) effect

Figure 3.1.: Decomposition of the spatial correlated covariate(s): “covariate part”
of the covariate(s) effect (green); “spatial-part” of the covariate(s) effect (yellow).

schematically in figure 3.1. The red bar represents the covariate effect. Due to
the spatial correlation of the covariates, it is possible to imagine that the co-
variates effect can be decomposed into two parts: the “covariate-part” (green)

and the “spatial-part” (yellow). As mentioned before, the model (3.1) ignores
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completely the yellow “spatial-part”.

What are the consequences of this?

Not accounting for spatial autocorrelation, will lead to biased estimation and
too optimistic confidence intervals and increasing first type error [Legendre,
1993; Wagner and Fortin, 2005; Segurado et al., 2006]. Additionally, variable
selection is conceivably predisposed towards more strongly autocorrelated pre-
dictors [Lennon, 2000].

This problem can be solved by adding a spatial term to the model (3.1). This

approach is sketched in figure 3.2 again. The red bar indicates for the covariate

covariate(s) effect spatial effect

B , covariate-part” of the covariate(s) effect

»spatial-part” of the covariate(s) effect

Figure 3.2.: Improve the model with spatial correlated covariate(s) with the help
of an extra spatial effect (blue): “covariate part” of the covariate(s) effect (green);
“spatial-part” of the covariate(s) effect (yellow).

effect. The blue bar represents the new introduced spatial effect.

E(y:) = Plyi=1)
= [o + fi(precipitation) + fy(temperature) + g(Long, Lat) .
—_—

spatial effect

(3.2)

The spatial autocorrelation is considered by the extra spatial effect
g(Long, Lat). This fact is graphically represented by figure 3.3. The blue bar

representing the spatial effect, covers the “spatial effect”part of the covariate
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effect. Thereby, the spatial effect absorbs the spatial autocorrelation of the

covariates/data. Additionally, the spatial effect serves as a surrogate for all

covariate(s) effect spatial effect

B .covariate-part” of the covariate(s) effect

»spatial-part” of the covariate(s) effect

Figure 3.3.: Improve the model with spatial correlated covariate(s) with the help
of an extra spatial effect (blue): “covariate part” of the covariate(s) effect (green);
“spatial-part” of the covariate(s) effect (yellow).

other unobserved [Fahrmeir et al., 2009]. Thereby the estimations are stabi-
lized.

However, introducing a spatial effect creates new problems. The problem arises
because of the fact that the covariates precipitation and temperature are spa-
tially correlated. Adding a spatial effect to the model at the same time, leads
to “multicollinearity in non-linear models”. This problem is better known as
the term “concurvity” [Buja et al., 1989; Hastie and Tibshirani, 1990; Guisan
et al., 2002; He, 2004]. Therefore, concurvity can be seen as the existence
of multiple solutions when a generalized additive model is fitted [Hastie and
Tibshirani, 1990]. Concurvity leads to instability and difficult interpretability
of the estimated covariate effects. To date, the impact of concurvity on the

parameter estimates has not been fully investigated [He, 2004].

What are the possible consequences of concurvity in general?

The presence of concurvity in the data and the use of generalized additive
models is risky, especially, when the association is weak, the model can seri-
ously overestimate parameters and underestimate their variances [He, 2004].

Note, that concurvity is considered in the calculation of standard errors. The
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greater the concurvity is, the greater the standard error will be [He, 2004].

However, the underestimation of standard errors and biased regression coef-
ficients due to concurvity lead to significance tests with inflated type 1 error
[Ramsay et al., 2003b,a]. This can result in declaring erroneously a statisti-

cally significant effect, even when none exists.

Inferential problems when using generalized additive models in the presence
of concurvity are discussed in several recent papers, for example by Ramsay
et al. [20030]; Figueiras et al. [2005] and Lumley and Sheppard [2003].

The reason why concurvity occurs and a possible way to solve this problem is

discussed in the following section.

3.2. The %ll%-Operator

If covariate and spatial effects are modeled at the same time in order to cover
spatial autocorrelation and unobserved heterogeneity, it will lead to wrong or
attenuated effects in the presence of “concurvity” [He, 2004]. That is caused
because spatial autocorrelation cannot clear separate between spatial and co-
variate effect. This situation is schematically illustrated in figure 3.2. Flexible
modeling of the spatial effect includes it consists of enough degrees of freedom
for absorbing the covariate effect partially (figure 3.3). Consider the simple

geo-additive model as presented in section 2.2

Yy = Zv+te
= Z171 +.. Zq’Yq + Zspatial’Vspatial +e (33)
with the design matrix Z. The model (3.3) consists of 1,..., g covariates and

a spatial effect.

For that reason, the question arises if there is another way to model the
“spatial-part” of the covariates effects. One possible option is to modify the
spatial effect. It is hoped that the falsification of the estimated covariate ef-

fects can be prevented or weakened. The %l1%-operator will carry out these
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Covariate(s) effect spatial effect

R

%l1% - operator

B .covariate-part” of the covariate(s) effect

»Spatial-part” of the covariate(s) effect

Figure 3.4.: Idea of the %11%-Operator: separate the spatial autocorrelation of the
spatial and covariate effect.

modifications of the spatial effect.

The basic idea is to modify the spatial effect in a way that can only reproduce
the variability which cannot be explained by covariate information in principle.
Technically, it can be reached by making the basis functions used for spatial

effect orthogonal to the basis functions to the covariate effect.

Consider Xpatial to be the design matrix of a spatial effect and X oyar the design
matrix of the covariates effects. Xpatial and Xeovar are spatially correlated with
each other. To get rid of the “concurvity”-problem, make the spatial effect
Xpatial Orthogonal to the basis functions to the covariate effect Xcoya,. This is
done by

Xmodn = (I — Xeovar (X oyar Xcovar) X eovar) Xspatial - (3.4)

spatial — covar covar

Thus, X;;ggal is the residuals of Xpatia regressed on Xeoyvar. Now Xsmpggal and
Xpatial are orthogonal by construction and their coefficients’ standard errors
are therefore not inflated by concurvity [Hodges and Reich, 2010]. Reich et al.
[2006] extend this idea to non-normal observables. Apply this idea to the

model (3.3). Therefore, modify the design matrix of the spatial effect Zg,atia1
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with the help of equation (3.4). Thereafter, Hodges and Reich [2010] suggest
to replace Zgpaia with the modified Z™o%L | in the model (3.3):

spatia
Yy = Zl7l +...+ Zq7q + Zgggal7spatial + €.

Now, the modified spatial effect is orthogonal to the covariates effect and no

longer be inflated by concurvity [Hodges and Reich, 2010].

Covariate(s) effect spatial effect

B . covariate-part” of the covariate(s) effect

»spatial-part” of the covariate(s) effect

Figure 3.5.: Impact of the %l1%-Operator: separate the spatial autocorrelation of
the spatial and covariate effect.

Figure 3.5 shows the result of the modification of the spatial effect by the
Y11%-operator. The yellow “spatial-part” of the covariate effect only belongs
to the covariate effect. Thus, the spatial effect, represented by the blue bar,

covers only the spatial autocorrelation and unobserved heterogeneity.

3.3. Implementation Details

This section introduces briefly the R [R Development Core Team, 2012] add-on
package mboost [Hothorn et al., 2009]. In addition, the practical implementa-

tion of the %l1%-idea as an extension of the mboost-package in R is presented.

3.3.1. The mboost package

The R add-on package mboost was developed by Hothorn et al. [2009]. Tt

allows modern regression modeling and beyond this provides an interface be-
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tween classical regression models and machine-learning approaches for complex
interaction models [Hothorn et al., 2009]. The models are fitted with the help
of model-based boosting methods as introduced in chapter 2.4 and result in
interpretable models.

As the present thesis only deals with generalized additive models, only the

relevant parts for that are presented.

3.3.2. Fitting Generalized Additive Models: gamboost

For generalized additive models the R package mboost offers a flexible and
powerful interface because of its combination of a distributional and a struc-
tural assumption (see section 2.1 for details).

The distributional assumption is specified by the distribution of the outcome.
In comparison to this, the structural assumption specifies the types of effects
that are used in the model, i.e. it represents the deterministic structure of the
model. The structural assumption defines how the predictors are related to

the conditional mean of the outcome and it is given by using base-learners.

To fit structured additive models, the function gamboost () can be used:

gamboost (formula, data = list(),
baselearner = c("bbs", "bols", "btree", "bss", "bns"),
dfbase = 4, ...)

With the help of this function, it is possible to fit linear or (non-linear) ad-
ditives models via component-wise boosting. The user only has to specify in
the formula-argument which variable should enter the model in which fash-
ion, for example as a linear or a smooth effect. This is done by the different
baselearner. The specification of these different fashions will be briefly dis-

cussed in the following section.

3.3.3. Choosing Base-Learners

As mentioned before, the structural assumption of the model, especially the

types of effects that are used, can be specified in terms of base-learners. Each
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base-learner results in a related type of effect. For example, a base-learner can
be either linear (bols) or a smooth effect (bbs).

However, it should be considered to prevent the single base-learners from over-
shooting. The degrees of freedom of single base-learners should be kept small
enough. Hothorn et al. [2009] propose 4 degrees of freedom or even less. Fur-
thermore, the authors point out that the small initial degrees of freedom, the
final estimate that results from these base-learners, can adopt higher order

degrees of freedom due to the iterative nature of the algorithm.

Linear and Categorial Effects

The function bols() can be used to fit linear or categorial effects of variables.
This function allows the definition of (penalized) ordinary least squares base-

learners.

Smooth Effects

bbs () base-learners allow the definition of smooth effects based on B-Splines
with difference penalty. B-Splines are described in section 2.3 in detail. Usu-

ally, this base-learner is used in the analysis later.

Smooth Surface Estimation

The base-learner bspatial() can be seen as an extension of P-Splines to two
dimensions which is given by bivariate P-Splines. Bivariate P-Splines are in-
troduced in section 2.3.2. With this help, it is possible to fit spatial effects and

smooth interactions surfaces.

The %l1%-Operator

This section presents the implementation details in R of the new %l1%-operator.
The theoretical background of the idea, making the spatial effect orthogonal
to the basis functions to the covariate effect, is presented in section 3.3.3. The

complete code of the operator is given in the Appendix.
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Consider the two base-learner, base-learner 1, named in the following “bl1”
and base-learner 2, named in the following “bl2”. Here, bl1 represents a spatial
effect. The spatial effect is specified with the help of the bspatial(:,-) base-
learner:

bll: bspatial(x.coord, y.coord)

Compared with that, bl2 consists of 1,...,p base-learner for the 1,...,p spa-
tially measured covariates. This covariates for example can be modeled with
the help of the bbs(-) base-learner. As an example and for a better under-

standing, consider one covariate x1, modeled by the bbs(-) base-learner:
bl2: bbs(x1)

In order to get rid of the “concurvity” problematic, the spatial effect needs to
be made orthogonal to the basis functions to the covariate effect. This is done
with the help of the %11%-operator:

bspatial (x.coord, y.coord) %1% bbs(x1)

The centerpiece of the %ll1%-operator is the Xfun-function. In it, the orthogo-

nalization is performed.
### Xfun

Xfun <- function(mf, vary, args){

## create X and K matrices
newXl <- environment (bl1$dpp)$newX
newX2 <- environment (bl2$dpp) $newX

## extract X and K matrices

X1 <- newX1(mf[, bli$get_names(), drop = FALSE])
K1 <- X1$K

if (!is.null(11)) K1 <- 11 = K1

X1 <- X1$X

X2 <- newX2(mf[, bl2$get_names(), drop = FALSE])
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K2 <- X2%K
if (!'is.null(12)) K2 <- 12 * K2
X2 <- X2%X

Firstly, the desgin matrices X and the penalty matrices K of the two base-
learner “bl1” and “bl2” are extracted. Thereafter, the orthogonalization is
performed. The design matrix X1 of base-learner “bl1” should be orthogonal

to design matrix X2 of base-learner “bl2”.

## make X1 orthogonal to X2
## Xlorth <- gqr.resid(qr(X2), X1) = I - (X2 (X2'X2)"-1 X2') X1
Xlorth <- gr.resid(qr(X2), X1)

## new design matrix X
X <- Xlorth

## new penalty matrix K
K <- K1

The orthogonalization is done with the help of qr.resid-function.

The gr.resid(qr(X2), X1)-function is equivalent to

Xorth = I — (Xo( XTI X5) ' XT)X,. Xlorth corresponds to the residuals of
the design matrix X1 of “bl1” regressed on the design matrix X2 of “bl2”. The
new design matrix X only consists of the orthogonalized design matrix Xorth
of base-leaner “bl1”. Afterwards, Xlorth is orthogonal to X2. A new penalty
matrix K is also required. The penalty matrix is not modified. As a new

penalty matrix K, the penalty matrix K1 of base-learner “bl11” is used.

## return
list(X = X, K = K)
}

Last but not least, the new design matrix X and penalty matrix K are re-

turned.

If the model consists of @, ...x, covariates, the spatial effect is to be made

orthogonal to all @i,...x, covariates. One small thing needs to be consid-
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ered when the model is specified. It must be ensured that only one base-
learner stands on the right side of the %ll%-operator. This is achieved by
the %+%-operator [Hothorn et al., 2009]. The %+ %-operator merges several

base-learners to one huge base-learner:
bbs (z1) %+%. .. %+% bbs(z,).
The %11%-operator can be used as usual:
bspatial(x.coord, y.coord) %% |[bbs(z;) %+%... %+% bbs(x,)]

Thus, the “new” spatial effect is orthogonal to the @4, ..., covariates effects.
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This section investigates the performance of the %11%-operator. All data anal-
ysis which are presented in this thesis have been carried out by using the R
system for statistical computing [R Development Core Team, 2012], version
2.14.2.

4.1. Data Generating Process

4.1.1. Model

Before simulation studies can be conducted, there must be a sample of data

with concurvity. Therefore, consider the model

Y = [geo(coords) + EP: filz;) +e

J=1

with optional j = 1,...,p covariates.

The model consists of the following single components:

e fyo(coords) is a spatial effect. Thus, the spatial effect is the realization

of a spatial random field.
faeo(coords) ~ MV N(0, X;)

Accordingly, coords represents the spatial coordinates (e.g. Longitude,
Latitude).

e fi(x;) stand for the j-th covariate effect. A single x; is generated by

wj ~ MVN(0,257J‘+O']‘I)
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Hence, ; can be interpreted as the sum of the realization g;(coords)
of a spatial random field and of an identical and independent normally
distributed random variable €; ~ N(0,0%I). The concurvity of the x;
is controlled by

x; = g;(coords) + ¢

Primarily, the strength of “concurvity” is regulated by the covariance
function of the spatial random field g;(coords) and a specific Signal-to-
Noise-Ratio. Details are examined in the following passages “Correlation

function”, “Signal-to-Noise-Ratio” and “SNRconcurvity” in section 4.1.2.

e The model variance € is independent and identical distributed. The

variance is subjected to the following distribution

e~ N(0,07).

4.1.2. Settings of the Data Generating Process

There are some settings in the data generating process (DGP). These settings
will be presented in the following section and briefly discussed. The dgp()-
function allows the generation of data with concurvity. The DGP is based on

the model presented in section 4.1. The function is called as shown:

> dgp <- function(N, gridType = c("irreg", "reg"),
coord = list(xmin = 1, xmax = 10, ymin = 13, ymax = 19),
covType = c("exp", "matern"), myTheta = 1, mySmoothness = 1,
covariates = 5, dFxj = c("1", "2", "3", ngqnr_ ngh),
SNRconcurvity = 1, SNRspatial = 1, SNRepsilon = 1,
setSeed = 12012)

e Sample size:

N allows regulating the sample size.

e Grid type:
This setting allows choosing between two grid types. ‘irreg’ produces

an irregular grid. In contrast ‘reg’ simulates a regular grid. In addi-
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tion, with the help of the argument coord it is possible to specify the

coordinates of the grid exactly.

Correlation function:

Firstly, covType allows to define which covariance type should be used.
The exponential (‘exp’) and the Matérn (‘matern’) covariance func-
tions are implemented. myTheta and mySmoothness are additional pa-
rameters of the covariance function. Thus, myTheta is a range parameter.
mySmoothness is the Matern smoothness parameter which controls the
number of derivatives in the process. Figure 4.1 illustrates several visu-

alizations of either Matern or exponential covariance functions.

Number and effect of the covariates:

The argument covariates allows to specify how many covariates should
be generated. Thus, dFxj determines the smooth effect of the single
covariate. For the smooth effect it is possible to choose between five

different parametric functions:

(1) f(x)=0.25-sin(3 - z)

(2) f(z)=0.25-(z%)

(3) flz) =24

(4) f(x)=—0.75-cos(0.75 - 7 - x)
(5) flz) ==

To make the estimation of the functions much more easier and more
comparable, each covariate is scaled to an interval from —4 to 4. A
visualization of the five different smooth functions can be seen in figure
4.2.

Signal-to-noise-ratios:
There are three different signal-to-noise-ratios implemented to inspect

the strengths and weakness of the methods:

1. SNRconcurvity:

sd(g;(coords))

SNRconcurvity = d(e))
SA(&;
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Comparison Covariance Functions
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Figure 4.1.: Comparison of different exponential (left) and Matern (right) covari-
ance functions for several myTheta parameters.

SNRconcurvity regulates the variance ratio between g;(coords) and
;. Therefore, it corresponds to the strength of the spatial correla-

tion of the covariates.

2. SNRspatial:
sd( feeo(coords))

SNRspatial =
P (T f(w))
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SNRspatial regulates the variance ratio between fge,(coords) and
>_; fi(z;). This variance ratio controls which ratio of the explain-

able variance corresponds to the spatial effect.

3. SNRepsilon:

sd( fgeo(coords) + > fi(x;5))
sd(e)

SNRepsilon =

SNRepsilon regulates the variance ratio between f,e,(coords) +
>_; fj(x;) and e. This “classical signal-to-noise-ratio” controls which

ratio of data variance can be explained by the model.

e Reproducibility:

This setting allows to set a seed for reproducible results.

4.2. Simulation Framework

The simulation design to investigate the performance of the %l1%-operator and
its comparison to other methods are presented in detail in the following section.
Three different simulations with different settings shall be considered to inves-
tigate the performance of %l1%-operator. Furthermore, the %l1%-operator is

compared to two other models.

Simulation 1:

In the first simulation the following model shall be considered:
Y= fgeO(COOI‘dS) + f (CC) + €.

This first simple simulation only consists of one covariate and an additional
spatial effect. The smooth effect of the covariate is generated by the paramet-

ric function (1).
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Simulation 2:

The second simulation is based on the following model:

3
Y = feeo(coords) + > fi(x;) + €.
j=1
This simulation consists of a spatial effect and additional of three covariates.
The covariates are generated by using three different parametric functions (1),
(2) and (3).

Simulation 3:

Simulation 3 considers the model:

5
Y = fgeo(coords) + Z fi(xz;) +e.
j=1
Simulation 3 differs from simulation 2 because it consists of two additional co-
variates. The five covariates are generated by five different available parametric

functions. Each function is only used once.

4.2.1. Methods

The gamboost-model with the %l1%-operator modification shall be compared
to the “basis”™gamboost-model and the pGAM-model. Each of the three meth-

ods will be calculated in every simulation.

Firstly, the “basis”-gamboost-model is fitted:

m <- gamboost(y ~ bbs("x1") + ... + bbs(x5) +
bspatial(x.coord, y.coord),

data = dat,

control = boost_control(mstop = 200, nu = 0.2))

Depending on the simulation, each of the one to five covariates is modeled
non-parametrically. This is done with the help of the P-Splines base-learner
bbs(:). The “default”-settings for this base-learner are applied. This means

that P-Splines of degree 3 with 20 knots and a penalty matrix based on the

47



4. Simulation Studies

second differences are used.

The spatial effect is fitted with the help of the bspatial(-) base-learner. The
“default™settings are used again. Concretely, this means that bspatial(:)
base-learner relies on bivariate Tensorproduct-P-Splines for the estimation of
the spatial effect. Note that the bspatial(-) base-learner is equivalent to the
bbs(-) base-learner with degree 6. The penalty term is constructed by using
the bivariate extensions of the univariate penalties in z and y directions.
Pre-simulations have shown that an adjustment of the hyperparameter is nec-
essary. For this reason, the number of initial boosting iterations mstop and
step size or shrinkage parameter nu are changed. The optimal mg,, iteration
is calculated with the help of a 25-k-fold bootstrap. Concretely, the mstop-
parameter is increased to 200. The step-length-parameter nu is also increased
to 0.2.

Afterwards, a gamboost-model with the %l1%-operator modification is fitted.
This model is called %11%-model in the following.

mll <- gamboost(y ~ bspatial(x.coord, y.coord) +

bbs("x1") + ... + bbs(xb) +
bspatial(x.coord, y.coord) %11% (bbs(xl) %+% ... %+% bbs(x5)),
data = dat,

control = boost_control(mstop = 200, nu = 0.2))

The covariates are fitted as in the “basis”gamboost-model. In the gamboost-
model with the %l11%-operator modification, the specification of the spatial ef-
fect differs from the “basis”™gamboost-model. The new %11%-Operator is used.
Concretely, the covariate effects are removed from the spatial effect. Details
of the %11%-Operator are shown in section 3.3.3. For each single base-learner
of the new %l1%-operator-base-learner

bspatial () %11%[bbs() %+%...%+% bbs()] the “default”-setting is used. This
is used for a better comparison with the “basis”-gamboost-model.

Like in the “basis”-gamboost-model, pre-simulations have proved that an ad-
justment of the hyperparameter is necessary. For this reason, the number of
initial boosting iterations mstop and step-length-parameter nu is changed. The

initial mstop-parameter is increased to 200 and additionally the optimal 14,
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iteration is calculated with the help of a 25-k-fold bootstrap. The step-length-

parameter nu is as well increased to 0.2.

Concluding, the pGAM-model is fitted.
obj <- pGAM(y, X, thresh = 0.95, thresh.type = "Ftest")

The pGAM-method works different than the previous two. It relies internally on
the gam-algorithm which is provided by the mgcv-package in order to fit each

of five covariates. Thus, the “default”-settings for the gam-algorithm are used.

4.2.2. Settings

As mentioned in section 4.1.2, there are many settings in the DGP to investi-
gate the performance of the %l1%-operator and the strengths and weaknesses
of the methods. After that, for a certain combination of these settings, the
term “SET” will be used. The following SETs are passed:

e N: The sample size is set to 500 for each SET.
e gridType: Only an irregular grid (“irreg”) is considered.

e covType: Both implemented covariance functions, exponential and Matern,
are considered:
In the case of a exponential covariance function, myTheta’s value is 1.
In contrast, with a Matern covariance function, myTheta’s value is 4.
Thus, the exponential covariance decreases quickly whereas the Matern

covariance function decreases slowly.

e SNRconcurvity: Three different degrees of concurvity shall be consid-
ered. SNRconcurvity = 0.3 stands for “large” concurvity. SNRconcurvity
= 1 represents “medium” concurvity. Compared with that, SNRcon-

curvity = 10 means “small” concurvity.

e SNRspatial: Three different degrees of SNRspatial shall be considered.
SNRspatial = 0.1 means that a large part of the explainable variance
corresponds to the covariate effect (“covariate >> spatial”). Contrary,

SNRspatial = 10 means that the explainable variance corresponds to
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the spatial effect (“covariate << spatial”). SNRspatial = 1 means that
the explainable variance corresponds equally to the covariate and spatial

effect (“covariate = spatial”).

e SNRepsilon: Three different degrees of SNRepsilon shall be considered.
SNRepsilon = 0.2 means that there is a lot of extra noise. This setting is
named “noisy”. In contrary, SNRepsilon = 10 means that there is almost
no noise and the data variance can be explained by the model. This
setting is named “clear”. SNRepsilon = 1 stands for no extra noise and

is named “normal”.

Thus, in total 54 SETs must be passed in each simulation. Moreover, each
SET is repeated 10 times for each of the three simulations. This is done in

order to calculate several performance measurements.

4.3. Results

In the following section the results from the three different simulation studies
are presented. Firstly, a general descriptive analysis of the the data generating

process is carried out. Additionally, the complete results and graphics can be
found on the included CD-ROM.

4.3.1. Descriptive Analysis

Figure 4.2 visualizes one exemplary realization of a data generating process
consisting of five covariates and 500 observations based on an irregular grid.
The different “signal-to-noise”-ratios are equal to 1. The five available para-
metric functions for the smooth effect of the covariates are used. The left part
of figure 4.2 shows the smooth function for the certain covariate. The selected
parametric functions consists of different complexities. Although, the smooth
function (1) and (4) are almost similar. The right part of the figure presents
the relationship between a single covariate and the predictor variable y. It is
noticeable that the data center is located at the 0 in z-direction. Generally,

less data are located at the edges.
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Figure 4.2.: Parametric Smooth Functions of the DGP

Figure 4.3 displays two actually realized spatial effects of the data generating

process. The upper part of figure 4.3 presents a realization of a spatial random

field with exponential covariance function. In this case, the myTheta parameter

is chosen equal to 1. This covariance function corresponds to the gold curve
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Figure 4.3.: Spatial Effect of the DGP: A realization of a spatial random field with
exponential covariance function in the upper part. In contrary, a realization with
Matern covariance function in the lower part.

in the left part of figure 4.1. This chosen covariance function decreases very
rapidly. This is reflected in the visualization. The colors are not very smooth
and change fastly. Thus, there is not a very high autocorrelation within the

coordinates.

In contrary, the lower part of figure 4.3 presents the realization of a spatial ran-
dom field with Matern covariance function. For this spatial effect the myTheta
parameter is equal to the blue curve in the right part of figure 4.1. The chosen

Matern covariance function decreases very slowly. Consequently, there is a
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very large autocorrelation within the coordinates. This can be recognized by

the fact that the colors are smooth and change slowly in the visualization.

4.3.2. Simulation 1: One covariate

This first simple simulation study only consists of one covariate and an addi-
tional spatial effect to investigate whether the %I11%-method works at all or
cases in which the %11%-model works better than other methods. That is done
before complicated models are studied once. The spatial effect is modeled with
an exponential covariance function and once with a Matern covariance func-

tion. The two different spatial effects are visualized in figure 4.3.

The following plots are all constructed in the same way. Every plot is di-
vided into six parts. The three different concurvity-levels (SNRc) are found
in vertical direction and the two different covariance functions are located in
horizontal direction. On the x-axis of the respective part, the associated and
analyzed “signal-to-noise”-levels are ablated. On the logarithmic y-axis of the
respective part, the corresponding Root Mean Squared Error (RMSE) is plot-
ted. The RMSE is a measure for the deviation between the estimated and the
true values.

The “basis”-model is represented by the red color. With the green color the
%11%-model is depicted and the blue color stands for the pGAM-model.

The points in the plot represent the median of the RMSE of the 10 replications.

The inter-quartile range is indicated by the point range.

Figure 4.4 illustrates the result of the model fit of y by the three different meth-
ods. At first glance, two settings can be identified. In case of the exponential
covariance function the overall fit with the %11%-model is clearly better than
with the other two models. This happens when SNRs is equal to 0.1 (“covariate
>> spatial”). That means that a large part of the explainable variance corre-
sponds to the covariate effect. The %11%-model is able to recognize this much
better than the other two models. This is also supported by figure 4.5 which
shows the adaptation of the first covariate. This adaptation is the best one.

The median of the %11%-model is clearly below the median of the other models.
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Figure 4.4.: Simulation 1: Comparison RMSE (median & inter-quartile range) of
y; “Basis”-Model (red), %11%-Model (green) and pGAM-Model (blue).

Generally, it is noticeable that the RMSE is much higher in extreme settings
(“noisy” or “covariate >> spatial”) than in other settings. Tendencially, the fit
is worse in “noisy” settings (SNRe = 0.2). For the boosting models this can also
be explained by the mgop. As mentioned in section 2.4.3, the hyperparameter
Mstop 18 Very important. Figure 4.7 displays the comparison of the mg.,. Note
that mgp is small in “noisy” settings (SNRe = 0.2). Thus, the boosting-models
have almost no chance to capture the complex model structure correctly. Ad-
ditionally, Bithlmann and Hothorn [2007] point out that overfitting is possible
if the boosting algorithm is stopped too early. If there is a “clear” setting and
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the data variance can be explained by the model (SNRe =

performs slightly better than the other two.
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Figure 4.5.: Simulation 1: Comparison RMSE (median & inter-quartile range) of
fi(x); “Basis”™Model (red), %l%-Model (green) and pGAM-Model (blue).

The presence of a Matern covariance function and a myTheta-parameter with

value 4 ensures that there is a very high spatial autocorrelation in the data.

Considering the figure, one setting can be identified to be fitted considerably

worse than the others. It is the case with “large” concurvity (SNRc = 0.1).

Estimating this setting correctly, it is a challenge for all three models. The

pGAM-model performs the worst. The two boosting-models differ little. Gen-

erally, extreme settings tend to higher RMSE. The reason for that is located
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in the early mgp iteration shown by figure 4.7. It is of interest, if there are

differences in the fit of the variables although the overall fit is similar.
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Figure 4.6.: Simulation 1: Comparison RMSE (median & inter-quartile range) of
spatial effect; “Basis”Model (red), %l1%-Model (green) and pGAM-Model (blue).

Figure 4.5 shows the fit of the first covariate x;. In the case of exponential
or Matern covariance function the pGAM-model performs either considerably
worse or at most as good as the other two models in all settings. The pGAM-
models also have much larger range, especially in “noisy” settings (SNRe =
0.2). The pGAM-model works really bad in the setting “covariate >> spatial”
(SNRs = 0.1). With extreme settings (“noisy” or “covariate >> spatial”) the
RMSE for the basis-model is almost equal to 1. Instead of the covariate effect,
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4.3. Results

the spatial effect is chosen by the model in these cases. Generally, in case of
“large” or “medium” concurvity (SNRc = 1 or SNRc = 0.3) the %l1%-model per-
forms better or at least as good as the basis-model. Thus, there are differences

in the fit of the single covariate although the overall fit is very similar.
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“Basis”-Model (red) and %11%-Model (green).

The fit of the spatial effect is presented by figure 4.6. For the exponential
covariance function it is noticeable that settings in which are excellently es-
timated by the %l11%-model, the fit of the spatial effect is considerably worse
than for the other models. This is due to the construction of the spatial effect
in this model. The spatial effect has similarities to the task of a dustbin. The

57



4. Simulation Studies

spatial effect only explains the variance which can not be explained by the
covariates. In the other settings the fit of the spatial effects is quite similar. In
the big range in settings with Matern covariance, it can be seen that these set-
tings are much harder to estimate. Especially, in the case where the covariate
effect dominates the spatial effect, the %11%-model provides the clearly better
fit. The adaptation in the other settings is pretty similar.
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ance.

Figure 4.7 displays the comparison of the my.p, hyperparameter of the two
boosting models. The pattern for both covariances is very similar. As men-

tioned before, the early stopping in the “noisy” settings (SNRe = 0.2) makes it
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4.3. Results

quite difficult for the boosting-models to capture correctly the complex model

structure.
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Figure 4.9.: Simulation 1: Comparison Selection Frequencies; Matern covariance.

The selection frequencies of both boosting models for the exponential covari-

ance function are shown in figure 4.8. For the Matern covariance function the

selection frequencies are presented in figure 4.9. As mentioned previously, the

selection frequencies of the %l1%-model are clearly better than those of basis-

model. Principally, the %11%-model selects the bspatial base-learner only in

settings with a strong spatial effect (SNRs = 10) in contrast to the basic model.
Thus, the %11%-model constitutes the “truth” in a much better way. The %11%-
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operator provides the separation of the spatial autocorrelation between spatial
and covariate effect. It does not matter how strong the concurvity actually is.
In contrary, the basis-model in settings where the covariate effect dominates

(SNRs = 0.1), usually the bspatial base-learner is selected falsely.
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4.3. Results

4.3.3. Simulation 2: Two covariates

With the help of simulation 2 and 3, the performance of the %l1%-operator is
investigated by an increasing number of covariates. Simulation 2 consists of
2 covariates and an additional spatial effect. The result of simulation 2, illus-

trated in figure 4.10, has a similar pattern as simulation 1. In the exponential
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y; “Basis”-Model (red), %11%-Model (green) and pGAM-Model (blue).

covariance case the setting “covariate >> spatial” is particularly striking. This
setting has a higher RMSE than the others. However, this setting is estimated
much better by the %I11%-model than by the other two ones. Generally, the
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4. Simulation Studies

adaptations of “noisy” settings (SNRe = 0.2) are bad and result in higher RMSE.
In the Matern covariance case, there are no clear differences between the two

boosting models. As in the exponential covariance case, the setting “covariate
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Figure 4.11.: Simulation 2: Comparison Selection Frequencies; exponential covari-
ance

>> spatial” is very challenging and therefore results in a higher RMSE. Note
that the adaptation with the help of the pGAM-model is worse in the two
covariance cases than in the boosting models. Although, the overall fit differs
little, it introduces the questions if there are visible differences in the fit of the

individual covariates.
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Figure 4.12.: Simulation 2: Comparison Selection Frequencies; Matérn covariance

To find an answer to this question, use the drawing of figure 4.11 and 4.12.
Figure 4.11 presents the selection frequencies for the exponential covariance
case. However, figure 4.12 shows the selection frequencies for the Matern
covariance case. No great difference can be found when the two figures are
compared. Thus, the type of the covariance function does not affect the %11%-
operator.

However, large differences, concerning the selection frequencies between the
two boosting models, can be found. The first base-learner bbs(x1), it is ten-

dencially preferred by the boosting model. On the other hand, base-learner
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Sim2: Comparison RMSE of f1
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Figure 4.13.: Simulation 2: Comparison RMSE (median & inter-quartile range) of

fi(x); “Basis™Model (red), %l1%-Model (green) and pGAM-Model (blue).

bbs (x2) and bbs(x3) are preferred and base-learner bbs (x3) is selected most

often by the %l1%-model. In contrary, the basis-model identifies the bspatial

base-learner as the most important one. Thus, it can be seen that the %11%-

operator does a great job and provides the separation of the spatial autocorre-

lation between spatial and covariate effect again. The larger the concurvity is,
the less likely the bspatial base-learner is selected in the %I11%-model. On the
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4.3. Results

other hand, the basis-model tries to explain almost all of the variance with the
bspatial base-learner. Thus, the question if the selection frequencies affect

the fit of individual covariate is introduced.
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Figure 4.14.: Simulation 2: Comparison RMSE (median & inter-quartile range) of
fa(z); “Basis™Model (red), %11%-Model (green) and pGAM-Model (blue).

Figure 4.13 presents the fit of the first covariate. Tendencially, concerning
the selection frequencies this covariate is preferred by the basis-model, even
though, the %11%-model performs a bit better than the basis-model and much
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more better than the pGAM-model. Especially, the pGAM-model has great
difficulties with the setting “covariate >> spatial” (SNRs = 0.1) again. In all
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Figure 4.15.: Simulation 2: Comparison RMSE (median & inter-quartile range) of
f3(z); “Basis”™Model (red), %11%-Model (green) and pGAM-Model (blue).

other cases, the pGAM-model is even worse than the boosting models. For
the fit of the first covariate, the kind of the covariance function seems to be
relatively unimportant. The results do not differ between the two covariance

functions.
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Sim2: Comparison RMSE of spatial
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Figure 4.16.: Simulation 2: Comparison RMSE (median & inter-quartile range) of
spatial effect; “Basis”™Model (red), %l1%-Model (green) and pGAM-Model (blue).

Figure 4.14 shows the fit of the second covariate. According to the selection

frequencies, this covariate is clearly preferred by the %11%-model. This can be

seen in the adjustment. The fit of the second covariate is definitely best with

the %11%-model, no matter of the type of the covariance function. Only in

the “noisy” setting (SNRe = 0.2), the two boosting models are about the same
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excellence. In all settings, the pGAM-model provides the worst fit in turn.

The fit of the third covariate is presented in figure 4.15. Mainly, this covariate

was chosen by the %11%-model as shown in figure 4.11 and 4.12. This covariate
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is fitted best by the %11%-model, no matter of the degree of the concurvity and

the type of the covariance function. Again, only in the “noisy” setting (SNRe
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= 0.2), the two boosting models are about the same. Especially, the pGAM-
model has great difficulties with the setting “covariate >> spatial” (SNRs =
0.1).

Considering the fit of the spatial effect, the setting “covariate >> spatial”
(SNRs = 0.1) is particularly striking in figure 4.16. This setting is fitted worse
than the other ones. In the other settings and the exponential covariance func-
tion, there are no clear differences between the models. In contrary, in case
of Matern covariance function, the range of the RMSE of all three models is
much greater. In the challenging setting “covariate >> spatial” (SNRs = 0.1)
the %l1%-model performs clearly better than the other two.

Figure 4.17 displays the comparison of the msop, hyperparameter of the two
boosting models. The pattern for both covariances is similar. Again, the early
stopping in the “noisy” settings (SNRe = 0.2) makes it relatively difficult for the
boosting-models to capture the complex model structure correctly [Biithlmann
and Hothorn, 2007]. This is the reason for no clear differences of both models

in this setting.
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4.3.4. Simulation 3: Five covariates

In simulation 3 the number of covariates increases more than in simulation
2. Thus, that is used an own parametric smooth function with different com-

plexity for every single covariate. As previous simulations have already shown,

Figure 4.18.: Simulation 3: Comparison Selection Frequencies: exponential covari-
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ance; “Basis”Model (red) and %l1%-Model (green).

the selection frequencies of the two boosting models are not affected by the
type of the covariance function.
pattern for the exponential and Matern covariance. However, the high selec-

tion frequency for base-learner bbs (x5) in the %l1%-model is very noticeable,

covar >> spat & clear

covar >> spat & noisy

covar >>spat & normal

Figure 4.18 and 4.19 show a very similar
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Figure 4.19.: Simulation 3: Comparison Selection Frequencies: Matérn covariance;
“Basis”™-Model (red) and %11%-Model (green).

no matter of concurvity level. In contrary, this base-learner is not chosen by
the basis-model at all. Focusing on this, it can be observed that this mainly
affects the totally “noisy” settings (SNRe = 0.2). The mygop provides more
help. Figure 4.20 shows a very small mgp, for the “noisy” setting. Thus, again
the boosting-models have no chance to capture the complex model structure
correctly [Bithlmann and Hothorn, 2007]. Therefore, the strange selection
frequencies for this base-learner are explainable. Compared to that, the basis-
model identifies the bspatial base-learner as most important, no matter of the

concurvity level. The %I11%-model only chooses the base-learner in settings
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Sim3: Comparison MSTOP
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which are dominated by the spatial effect (SNRs = 0.1). Again, it can be seen
that the %l%-operator does a good job. After that, the bbs(x4) base-learner

is the second most important one.

Generally, the mg, pattern does not clearly differ from the previous simula-
tions. Tendencially, the %11%-model has a smaller ms,, than the basis-model.
In the “noisy” settings (SNRe = 0.2) the small my,, affects the results as shown

by the selection frequencies or as later shown by the fit of single covariates.
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With increasing model complexity it is now to be investigated, how well the

models perform overall and how well the single covariates are fitted. As men-
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Figure 4.21.: Simulation 3: Comparison RMSE (median & inter-quartile range) of
y; “Basis”-Model (red), %11%-Model (green) and pGAM-Model (blue).

tioned above, the small mg,,, is responsible for the high RMSE in the “noisy”
settings. Generally, the type of the covariance function plays a secondary part
for the overall fit. Again figure 4.21 shows that the overall fit has a similar
pattern to the previous simulations. The type of the correlation function is
not an important issue. There are only few cases where are clear differences

between the models. The %l1%-model has a slight advantage in settings dom-
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inated by the covariate effect (SNRs = 0.1).

The individual fits of the covariates are analyzed. Figure 4.22 presents the
adaptation of the first covariate. Thus, it can be seen clearly that the pGAM
performs worse than the boosting-models, no matter of the strength of the con-

curvity. Especially, the pGAM model performs worse in settings with a high
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Figure 4.22.: Simulation 3: Comparison RMSE (median & inter-quartile range) of
fi(x); “Basis”™Model (red), %ll%-Model (green) and pGAM-Model (blue).

weight on the covariates (SNRs = 0.1). The adaptation will be even worse if
the covariance type switches from exponential to Matern. There are marginal

differences between the %l1%-model and the basis-model. Tendencially, the
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%11%-model provides the slightly better adaptation independent from the co-
variance type and the strength of concurvity. Only in the setting “covariate
>> spatial” (SNRs = 0.1) in the Matern case, the basis-model has advantages
compared to the %l11%-model.

The fit of the second covariate is presented in figure 4.23. The strength of
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Figure 4.23.: Simulation 3: Comparison RMSE (median & inter-quartile range) of
fa(z); “Basis™Model (red), %11%-Model (green) and pGAM-Model (blue).

the concurvity and the covariance function does not affect the fit at all. The
%11%-model performs always better than the comparable models. Again, the
pGAM model provides the worst adaptation. Thus, the Matern case presents
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even greater challenge for the model.

The fit of covariate three is dominated by the %11%-model. Figure 4.24 shows
that in all settings the %l1%-model is the best, no matter of the type of covari-

ance or the strength of concurvity. Thereby, the advantage is clearer in the
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Figure 4.24.: Simulation 3: Comparison RMSE (median & inter-quartile range) of
f3(x); “Basis™Model (red), %l11%-Model (green) and pGAM-Model (blue).

exponential covariance case than in the Matern covariance case. Again, the
pGAM-model particularly discloses its weakness in the setting “covariate >>
spatial” (SNRs = 0.1).
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4.3. Results

Figure 4.25 focuses on the fit of the fourth covariate. In the exponential covari-

ance case tendencially the %l1%-model is always better than the basis-model.

In contrary, in the Matern covariance case the %I11%-model and the basis-model
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Figure 4.25.: Simulation 3: Comparison RMSE (median & inter-quartile range) of
fa(z); “Basis”™Model (red), %11%-Model (green) and pGAM-Model (blue).

have pretty similar results. Again, the pGAM-model performs very badly. In

most cases the pGAM-model does not recognize the covariate as to be impor-

tant and therefore does not choose that one.

The construction of the fifth covariate is based on the simple linear parametric

function f(z) = x. Figure 4.26 presents great differences in the fit of the covari-
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ate between the models. The pGAM model clearly works the worst. Thus, the
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Figure 4.26.: Simulation 3: Comparison RMSE (median & inter-quartile range) of
f5(x); “Basis™Model (red), %l1%-Model (green) and pGAM-Model (blue).

Matern covariance produces a greater range than the exponential covariance.
Although, the selection frequencies of the %l11%-model consider this covariate
of great importance, the fit is clearly worse than in the basis-model in every
setting, no matter which covariance function. It is possible that the chosen
base-learner bbs(-) is too complex for the simple function. The basis-model
is not affected that strong by that. There are further simulations necessary to

answer this question correctly.
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4.3. Results

By considering at figure 4.27 and its fit of the spatial effect, one setting strikes
out. Setting “covariate >> spatial” (SNRs = 0.1) puts a strong weight on the
covariate effect. Thus, the spatial effect is designed to capture only the other-

wise unexplainable variance. In this setting, the %11%-model performs clearly
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Figure 4.27.: Simulation 3: Comparison RMSE (median & inter-quartile range) of
spatial effect; “Basis”-Model (red), %11%-Model (green) and pGAM-Model (blue).

better than the two other models, no matter of the strength of concurvity or the
covariance type. For the other settings in exponential covariance case, there
are no clear differences between the models. Compared to that, the Matern
covariance function causes greater difficulties. This can be seen at the larger
range of RMSE.

79



4. Simulation Studies

4.3.5. Summary

This section summarize briefly the important simulation results. The pre-
sented simulations indicate that if more than one covariate and the spatial
effect modified by the %l1%-operator is included to a possible model, then the

fit of a single covariate is not affected by a certain covariance type.

Additionally, the selections frequencies in models with the %l1%-operator are
totally independent from the covariance type and the strength of concurvity
at all.

The operator has also strengths when a large part of the explainable variances
corresponds to the covariate effect. The simulations show that a model with
the %11%-operator is clearly superior compared to models without this modi-

fication of the spatial effect.

A possible weakness of the methodology could also be revealed. Simulation
3 chooses a too complicated base-learner. The basis-model is still able to
produce a good fit. In contrary, the %l11%-model is not able to recognize this

and perform worse than the basis-model.
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There is hardly any other industry except for the forestry which is so depen-
dent on the natural environment. Successful management of the forest is linked
inextricably to the adaptation to natural climatic conditions. The income of
forestry depends particularly on water safeness and the temperature changes
whom they are confronted. Climate and soil are the main factors of produc-
tion and determine the possibilities and limits of the forestry land use [Koélling,
2008].

However, decisive parameters for the management of forest areas change with
an onset of climate change. In moderate climate change and therefore cli-
mate stabilization at a new level, adaptation measures promise success. In
contrary, this is less probable with rapid and sustained changes [Umweltbun-
desamt, 2006]. It is necessary to minimize economic damages by adapting to
the climate change already today. This requires to detect regional impacts of
the climate change early. Thus, damage can be prevented or at least limited

through active adaptation [Umweltbundesamt, 2006].

The detachment of the increasingly poorly matched and unstable Spruce Forests
is possible via the ecological forest conversion within a reasonable period. The
success of this forest conversion activities depends crucially on knowing the
location of the affected species in future climate [Umweltbundesamt, 2006].
What are the future prospects of the main trees species Beech, Spruce and
Pine? Particularly, the Beech (Fagus sylvatica) was grown increasingly in
the last 20 years. If this trend will continue, it depends on the potential for
adaptation of the Beech. This is controversially discussed for some time now
[Sutmoller et al., 2008].
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One of the most important tree species is the Spruce (Picea abies) in Ger-
many. Regarding the climate change, the Spruce is considered to be a difficult
tree [Kolling et al., 2007]. Originally, the distribution area of the Spruce was
mainly placed in Central- and Eastern-Europe and Scandinavia. Meanwhile,
the Spruce is also found in the lower areas of Central Europe [Schmidt-Vogt,
1989]. The Spruce reacts particularly sensitive to temperature and also has a

low potential for adaptation [Roloff and Grundmann, 2008].

Therefore, the main forestry task is the choice of appropriate tree species [Sut-
moller et al., 2008]. An adaptation to the consequences of climate change is
inevitable. Since the forests of tomorrow must be planted today, this future
question is a today’s issue. The following analysis examines whether the Spruce

is able to win this challenge.

5.1. Data collection

The core of the models builds the National Forest Inventory [Schmitz et al.,
2004] for Bavaria. The data is supplemented with actual values to precipita-
tion and temperature from the global climate database “World Clim” [Hijmans
et al., 2005].

The National Forest Inventory 2001/2002 [Schmitz et al., 2004] was a nation-
wide terrestrial, carried out on a random basis with permanent sample points.
It was acquired in all states and properties consistently. The following anal-
ysis are limited to Bavaria. The sample (cluster) distribution is based on a
nationwide 4 km x 4 km quadrangle grid, determined by the GauB-Kriiger
coordinates system. Partially the quadrangle grid is regionally intensified to
get more accurate or regionally differentiated information. Each cluster covers
a quadrangle with sides of 150 m. The cluster coordinates give the location
of the south-west corner of the cluster. It was noted which tree species occurs
at each cluster corner. Accordingly, for each tree species there is a binary

response variable.

Additionally, the total precipitation consists of the months May till Septem-

ber and the mean temperatures of the months June, July + August as a cli-
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Figure 5.1.: Sketch of the sample design of the National Forest Inventory 2001:
Partition of Bavaria in a uniform grid (left) and an inventory tract on a special grid
point (right).

matic specific variable at each measuring point. “WorldClim”, a global climate
database, provides long-term average of the years 1960 till 1990 with a spatial

resolution of about one square kilometer [Hijmans et al., 2005].

The predictions are based on the results of the regional climatic model “WET-
TREG” of the firm Climate & Environment Consulting Potsdam GmbH, in-
structed by the Umweltbundesamt [Spekat et al., 2007]. The analyses are based

on the moderate climate scenario B1.

Table 5.1 summarizes the used variables. The binary response variables of the
eight different tree species have the value 1 in case of presence and in case
of absence the value 0. Only the variables mean temperatures of the months
June, July + August (T_678WC) and total precipitation of the month May
till September (P_5to9WC) are used. These variables are described in detail in
section 5.2.1. In addition, prediction variables of the moderate climate scenario
B1 are provided in table 5.2.
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type variable name explanation
Apseu Sycamore (1 = presence, 0 = absence)
Fsylv Beech (1 = presence, 0 = absence)
Fexce Ash-Tree (1 = presence, 0 = absence)
response variable Qrobu English Oak (1 = presence, 0 = absence)
Saria Haw (1 = presence, 0 = absence)
Aalba Fir (1 = presence, 0 = absence)
Pabie Spruce (1 = presence, 0 = absence)
Psylv Scotch Pine (1 = presence, 0 = absence)
LONG Longitude
predictor variables LAT Latitude
T_678WC Mean Temperature of months June, July +
August [°C]
P_5t09WC Total Precipitation of months May till

September [mm]

Table 5.1.: variables description

type variable name explanation
prediction variables T_678_21 WETTREG B1 scenario 2071-2100 Mean Tempera-
ture of months June, July + August [°C|
T_678_21 WETTREG B1 scenario 2071-2100 Total Mean Pre-

cipitation of months May till September [mm]

Table 5.2.: additional variables Bavaria

5.2. Analysis

Exemplified by the Spruce (Picea abies) the competing models are presented
and their results are discussed in this section. All data analysis in this sec-
tion have been carried out using the R system for statistical computing [R

Development Core Team, 2012], version 2.14.2.

5.2.1. Descriptive Analysis

The available data cover the entire surface of Bavaria. Figure 5.2 illustrates
that there are (comparatively small) holes in the theoretical sampling grid. A
Spruce at about 82% of the 5992 measuring points could be found, especially
at the Alps and the Czech border. The Spruce population density decreases
rather at Lower Franconia.

The left part of figure 5.3 shows that the total mean precipitation of the months
May — September range between 288 mm and 400 mm. The total mean pre-
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Figure 5.2.: Measuring points of Spruce at Bavaria, colored by the value of the
response variable Spruce.

cipitation is the highest with values about over 600 mm at the Alps and the
Prealps. Going northwest means less precipitation. It is noticeable that when
precipitation is over 400 mm, there is mostly a Spruce observed. The right
part of figure 5.3 shows that the median of precipitation is 350 mm in areas
without Spruce. In contrast, the median is 420 mm in areas with Spruce.

The total mean precipitation does not change on average barely (20 mm) in the
summer months of the years 2071 till 2100. Figure 5.4 displays that there are
regionally differences, especially the margin of deviation is higher. As a peak
1000 mm precipitation is expected at the Alps. Contrary, the expected precip-
itation goes back to values of 230 mm at the lowlands. In the Alps and Prealps

precipitation increases, the precipitation decreases in the low mountains and

85



5. Real data example

Total Precipitation of the month May till September [mm] Presence of Spruce
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Figure 5.3.: Precipitation: interpolated values depend on the location (left) and
distribution of the repsonse variable (right).
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Figure 5.4.: Precipitation: actual values (left) and climate scenario WETTREG
B1 (right).
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along the Czech border. The same can be observed in large parts of Frankonia.

The Spruce prefers cool temperatures besides humid climate. Figure 5.5 shows
that descriptive because a Spruce is found about 15 degrees at nearly every
measuring point. The temperature values have a range between 13 degrees
at the Alpine valleys and 18 degrees at the Main. The temperature increases

Mean Temperature of the month June till August [°C] Presence of Spruce
depending on Mean Temperature
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Figure 5.5.: Average temperature: interpolated values depend on the location (left)
and distribution of the response variable (right).

tendencially from south to north. At higher altitudes (Bavarian Forest, Fichtel-
gebirge) it is much cooler. Most of the observations are between 15 degrees
and 16.5 degrees. It is common knowledge that the temperature will increase
in the coming years. The moderate scenario assumes an average temperature
rise of about 1.4 degrees. Both in the so far coolest regions and warmest it is

getting warmer. The range remains at about 2.5 degrees.
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Figure 5.6.: Average temperature: actual values (left) and climate scenario WET-
TREG B1 (right).
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5.2.2. Model

Based on the results of the descriptive analysis (section 5.2.1), the aim is to

estimate a model for presence of a Spruce in Bavaria.

As predictor variables, precipitation and temperature are included in the model.
The effect of both metrical variables, mean temperature of the months June,
July + August and total precipitation of the months May — September, is mod-
eled in a non-parametrical fashion with the help of P(enalized)-Splines (section
2.3.2).

A spatial component is modeled in order to take account of the spatial corre-
lation of the data. The surface of longitude and latitude is estimated with the

help of Bivariate P(enalized)-Splines (section 2.3.2).

The estimation of the model

e Response variable: y; € {1,0} i =1, ..., 5992
Yilmi ~ B (1,m;)

e Expected Value:

e Predictor:

n; = Bo + f1 (temperature;) + fo (precipitation;) + g (Long;, Lat;)

As in the simulation study (chapter 4), the same three models shall be used
again. The three competing models are presented in detail in the following.
The model comparison of the two mboost-models is of primary interest, espe-
cially, how the %l1%-operator affects the response curves and the spatial effect.

To compare the models better, only the “default”-settings are used.
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e Model 1: “Basis” mboost-model

gamboost (Pabie ~ bbs(T_678WC) + bbs(P_5to9WC) +
bspatial (LONG, LAT), family = Binomial(),
data = bay,
control = boost_control(mstop = 200, trace = TRUE, nu = 0.2))

Both covariates, temperature and precipitation are modeled non-parame-
trically with the help of the bbs-base-learner. The “default”settings
for this base-learner are used. A spatial effect is modeled to absorb
the spatial autocorrelation of the data. Additionally, the spatial effect
also serves as a surrogate for all other unobserved. The spatial effect
is modeled with the help of the bspatial-base-learner. The “default”
settings for this base-learner are also used. The response variable “Pabie”
is binary. This is captured by the family “Binomial”. The initial ms0p-
parameter is increased to 200. The optimal mg,, iteration is calculated
with the help of a 25-k-fold bootstrap. The step-length-parameter v is

also increased to 0.2.

e Model 2: mboost-model with the %l11%-operator

gamboost (Pabie ~ bbs(T_678WC) + bbs(P_5to9WC) +
bspatial (LONG, LAT) %11% [bbs(T_678WC) %+% bbs(P_5to9WC)],
family = Binomial(), data = bay,
control = boost_control(mstop = 200, trace = TRUE, nu = 0.2))

With the help of the bbs-base-learner, the two covariates are also modeled
as in the basis-model non-parametrically. The “default” settings are used
again and a spatial effect is modeled to cover the spatial autocorrelation
of the data as well. The spatial effect is modified with the %11%-operator.
In this model, the spatial effect only covers the otherwise unexplained
variance. As in the basis-model, the binary response is modeled with

the family “Binomial” again. Furthermore, the initial mg,-parameter
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is also increased to 200. The optimal m,, iteration is determined with
the help of a 25-k-fold bootstrap. The step-length-parameter v is also

increased to 0.2.

e Model 3: pGAM-model

pGAM(y, X, thresh = 0.95, family = binomial(link = "logit"))

The pGAM method is used as in the simulation study. Thus, a third
comparable model is calculated. The covariates temperature and precip-
itation and a spatial effect are included again in the model and modeled
non-parametrically. The “default” settings are used. The binary response

is considered with the family “Binomial”.

Linkage to simulation studies

The aim is to link the simulation studies with the application in order to assess
the results in a better way. It is interesting to note, if the application is equal
to certain setting where the newly developed %l1%-operator possibly works
greatly. Thus, there is the purpose to estimate the signal-to-noise with the

help of the application data:

e SNRconcurvity:
sd[g;(coords)]

/].\]—\ pr—
SN Re sd(e)

This signal-to-noise cannot be estimated from the data. It is impossible

to determine sd[g;(coords)| and the corresponding sd(e;).

e SNRspatial:

sd[¢g(Long, Lat)]
[fi(temperature) + f>(precipitation)]

/]-V\:
SNRs d

The estimation of the three models of this signal-to-noise ratio differ

slightly:
— SN Rspasis: 0.68
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- m%”%: 0.47
— SNRspean: 0.19

Thus, all three models estimate a relatively small SNRs. Compared to
the simulation studies, all the estimated SNRs can be located between
the setting “covariate >> spatial” (SNRs = 0.1) and “covariate = spatial”
(SNRs = 1).

e SNRepsilon:

d[¢g(Long, Lat) + f;(temperature) + f»(precipitation)]

_—— s
SN Re = s(e)

This signal-to-noise cannot be estimated from the data. The problem is
that the mboost-package has no implementation to extract the residuals

(e) of a logit-model and therefore to calculate sd(e).

Thus, only SNRs remains to classify the results. The simulation studies show
that in the setting when the explainable variance corresponds to covariate ef-
fects rather than to the spatial effect, the %I11%-model performs clearly better
than the other two models.

Therefore, it is expected that the %11%-model will provide the best result. The
response curves will stabilized and the spatial effect will only reproduce the
variability which cannot be explained by two covariates. Therefore, the spatial

effect allows a small-scale resolution.
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5.3. Results

The following section presents the results of the model introduced in section
5.2.2. Figure 5.7 and figure 5.9 represent the estimated effects of the climate
variables of the three different models. The presences and absences are plot-
ted above and below the response curves. The following interpretations of the

marginal effects are only valid for constant other covariates. At first glance, a
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Figure 5.7.: Comparison Temperature Response Curve: Basis-Model (red), %11%-
Model (green) and pGAM-Model (blue).

very huge effect of the pGAM model can be noticed. The chance for the pres-

ence of a Spruce falls very strong linear down to a temperature of 13 degrees
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in the pGAM model. This chance has another small peak at a temperature of

14 degrees. After that, it falls sharply at higher temperatures.

In this representation, it is difficult to say something about the boosting ef-
fects. For this reason, figure 5.8 focuses on the effect of the boosting-models.
In this case, the basis model provides the chance for the presence of a Spruce
pretty constant up to about 15 degrees. From just 15 degrees, then the chance
falls quite clearly. The estimated effect by the %I11%-model looks a bit different.
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Figure 5.8.: Comparison Temperature Response Curve of the Boosting Models:
Basis-Model (red) and %l1%-Model (blue).

The chance for the presence of a Spruce raises linearly with increasing tem-
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perature. The chance reaches its peak at a temperature of about 15 degrees.

Thereafter, the chance falls nearly linear with increasing temperature.

Figure 5.9 shows the estimated precipitation effect by the three models. A
strange impact of the pGAM model effect can be registered. The pGAM
model is not able to estimate a continuous smooth effect. From the estimated
effect a trend to a rising chance for the presence of a Spruce at higher precip-

itation can be only observed. Now, figure 5.10 focuses on the boosting effects
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Figure 5.9.: Comparison Precipitation Response Curve: Basis-Model (red), %11%-
Model (green) and pGAM-Model (blue).

to compare these much better. The basis model provides the chance for the
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presence of a Spruce, raising linearly with increasing precipitation. At a rain-

fall of 500 mm the chance remains rather constant. The estimated effect by

artial effect precipitation
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Figure 5.10.: Comparison Precipitation Response Curve of the Boosting Models:
Basis-Model (red) and %11%-Model (blue).

the %11%-model looks a bit different again. The chance for the presence of a
Spruce raises noticeably with increasing precipitation. The chance reaches its
peak at a precipitation of about 600 mm degrees. Thereafter, the chance falls

nearly linear with increasing precipitation.

In the following, the spatial effect of the three different models are considered

in more detail. Figure 5.11 shows the spatial effect of the basis boosting model.
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Spatial Effect of Spruce in Bavaria

50.5

I

©

o
|

Latitude [°]

48.5

48.0

47.5

9 10 11 12 13
Longitude [°]

Figure 5.11.: Spatial Effect of the Basis-Boosting Model.

The spatial effect lies in the range from —0.4 to 0.6. The spatial effect deter-
mines that the greatest chance for the presence of a Spruce is in the Alps, the
Bavarian Forest and the Upper Palatinate. Figure 5.12 displays the estimated
spatial effect of the %ll%model. The spatial effect of the %l1%-model looks
slightly different again and lies in the range between —1 and 1. The greatest
chance for the presence of a Spruce is in the Bavarian Forest, Upper Franconia
and the Upper Palatinate. Figure 5.13 presents the estimated spatial effect
of the pGAM-model. The spatial effect of the pGAM-model has the greatest

range and differs clearly from the other two models. The range lies between
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Spatial Effect of Spruce in Bavaria

1.0

S

©

o
|

Latitude [°]

I

0

(6]
|

48.0
- -1.0

47.5

Longitude [°]

Figure 5.12.: Spatial Effect of the%11%-Model.

1.5 and 4. The greatest chance for the presence of a Spruce is at the edge of

the Bavarian Forest.

The estimated effects of pGAM models differ greatly from the others. Actually,
these effects do not correspond to the expectations of ecologists [Ewald, 2009]
at all. Furthermore, the measure of the goodness of fit with the help of the
AIC [Akaike, 1974] advises clearly against the further use of the pGAM-model.
Therefore, with a value of 4295 the AIC of the pGAM-model is the worst. In
contrary, the %l11%-model has the lowest AIC with value of 4055. The AIC of
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Spatial Effect of Spruce in Bavaria
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Figure 5.13.: Spatial Effect of the pGAM-Model.

the basis-model is 4221 and so between them. Hence, the boosting models are

used only in the further analysis.

Lindenlaub and Wickler [2012] made a similar analysis with the help of Bayesian
methods. The same model for Bavaria is used. In addition, Lindenlaub and
Wickler [2012] use prior information from an Europe-model to stabilize the
estimated effects of the Bavaria-model. The estimated effects look similar to

the effects from the %11%-model. Thus, the %I1%-operator and the prior infor-
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mation have seemingly the same effect.

The estimated probability for the growth of a Spruce is shown in figure 5.14.

In addition, the observations are located as a plausibility check. The left part

Comparison of Estimated Probability for a Spruce in Bavaria

51 ] 51
Basis—Model %I1%—Model

47 47

Figure 5.14.: Comparison of Estimated Probability of the Boosting-Models: Basis-
Model (left) and %11%-Model (right).

of figure 5.14 shows the estimated probability for the growth of a Spruce for
the basis model. The highest probability (with values about 90%) can be
found in the Bavarian Forest and Upper Palatinate. The lowest probability is
observed in Lower- and Middle Franconia. The right part of the figure presents
the estimated probability for the %11%-model. Like the basis-model, the %11%-
model registered the same highest and lowest probability areas. The estimated
probabilities by the two boosting models differ only slightly in parts of Upper

Bavaria and Swabia. There, the %11%-model provides a low chance.
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5.4. Climate Scenario 2071 - 2100

5.4. Climate Scenario 2071 - 2100

During the past 100 years, the average annual temperature increased by about
0.8 degree in Germany. All previous years of the 21st Century were warmer
than the long-term average temperature of 8.3 degree [Umweltbundesamt,
2006]. How the climate will develop in the future there are only forecasts.
The tree growth should be projected into the future with the help of the
comparatively “mild” scenario B1. This scenario assumes an increase in tem-
perature of “only” 1.8 degree and a decline in the total precipitation of 20 mm
in average in Bavaria. More details are shown in section 5.2.1. The climate
change confronts the forestry with a great challenge. The models shall serve
as a support for decision of climate-friendly forestry. Especially adapted to

the cold climate, there are visible consequences for the Spruce. Figure 5.15

Estimated Probability for a Spruce in Bavaria
51 51

1971 - 2000 2071 - 2100
50 50 -
49 1 49
48 1 48
a7 + 47 4
o 10 11 12 13 14 o 10 11 12 13 14

Figure 5.15.: Comparison of Estimated Probability and Forecast of the Basis-
Model.

compares the estimated probability of the basis model for the presence of a

Spruce for the present and the future. The left part of the figure provides the
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5. Real data example

estimation as shown above. The right part shows the forecast in the future. At
first glance, great changes can be seen. With the exception of parts of Lower
Franconia, the Spruce is currently available in the entire state of Bavaria with
an occurrence probability of more than 50%. In the north of the Danube the
Spruce is expected only in the high altitudes along the Czech border and the
Alps in the years 2071-2100. The probability decreases to less than 20% na-
tionwide in Lower and Middle Franconia. Merely, Spruce growth can still be

expected in Rhon and Spessart.

Estimated Probability for a Spruce in Bavaria
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Figure 5.16.: Comparison of Estimated Probability and Forecast %11%-Model.

Figure 5.16 also compares the estimated probability of the %I11%-model for the
present and the future. The left part of the figure represents the estimation
as shown above again. The right part presents the forecast for the years 2071-
2100. At first glance, great changes can be seen again. The %l11%-model also
predicts a strong decrease of the Spruce inventory. The greatest chance for
the presence of a Spruce is in the Alps, Prealps and the Bavarian Forest in
the future. The presence of a Spruce with a probability of about 50% can be

expected in Swabia, Oberbayern and parts of Lower Franconia. Figure 5.17
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Comparison of Estimated Forecast for a Spruce in Bavaria
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Figure 5.17.: Comparison of Forecast of the Boosting-Models: Basis-Model (left)
and %11%-Model (right).

compares the forecast of the basis-model and the %l1%-model. Here, slight

differences can be seen between the two forecasts. The forecasts differ mainly

in the foothills of the Alps and Lower Franconia.
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6. Summary and perspectives

If covariate and spatial effects are modeled at the same time in order to cover
spatial autocorrelation and unobserved heterogeneity, it will lead to wrong or
attenuated effects in the presence of “concurvity”. However, the %11%-operator
succeeds to correct these estimates by making the basis functions, used for the
spatial effect, orthogonal to the basis functions of the covariate effect. The sim-
ulations show that the overall model fit does change hardly. Admittedly, the
Y%l1%-operator changes the fit of each included covariate of a model. Therefore,
the %l1%-operator actually manages separation of the spatial autocorrelation

between spatial and covariate effect.

Thus, the result of the simulations indicate that if more than one covariate and
the spatial effect modified by the %l1%-operator is included to a possible model,
then the fit of a single covariate is not affected by a certain covariance type.
Additionally, in models with the %l1%-operator the selections frequencies are
totally independent from the covariance type and the strength of concurvity
at all. The operator has also obvious strengths when a large part of the ex-
plainable variances corresponds to the covariate effect. In this case, a model
with the %ll%-operator is clearly superior compared to models without this
modification of the spatial effect.

A possible weakness of the methodology could also be revealed by the simula-
tions. One simulation chooses a too complicated base-learner. The basis-model
is still able to produce a good fit. In contrary, the %I11%-model is not able to
recognize this. However, the %l1%-model still provides a suitable fit indepen-
dent of the strength of concurvity. This point definitely should be studied with
further researches.

The simulations have also managed to test the limits of the procedure. None

of the presented methods are able to provide good estimations if the settings
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are extreme. If the strength of concurvity (SNRc) increases to 0.1, the results
of the three models are relatively similarly bad. No model can capture the
combination of strong noise (SNRe = 0.1) and strong concurvity (SNRc = 0.1)

well. Especially, the pGAM-model is not able to get a result at all.

Generally, the modeling of a spatial effect to cover spatial autocorrelation is
highly discussed by users [Franklin, 2009].

Returning to the quote from Niels Bohr, statistical models should enable pre-
diction. The main criticism of prediction concerns the spatial effect. The
spatial effect is predicted to stay totally unchanged, while for the other covari-
ates, changes are usually assumed. However, it can be assumed for sure that
not only the covariates will change in the future. There is much more to be
assumed that the spatial effect, as a surrogate for all unobserved will change,
too. For this reason, Franklin [2009] proposes to model only a spatial effect, if
there is an explicit focus on the appearance of the response curves. In contrary,
the focus is primary on the prediction that the spatial effect should rather not
be included in the model [Franklin, 2009]. Unfortunately, this problem cannot
be solved directly with the help of the %l1%-operator.

A further generalization of the idea, making one variable orthogonal to another
variable, leads to the general case of two random correlated variables A and
B. In the models, presented in this thesis, it is obvious that the basis func-
tions, used for the spatial effect needs to be orthogonal to the basis functions
to the covariate effect. Admittedly, in the case with two variables A and B it
is not clear at all if A should be orthogonal to B or B should be orthogonal
to A. More than that, it makes a great difference for the result. This question

requires further research.

The previous chapter 5 shows that the onset of climate change has large im-
pacts on tree population and their future distribution areas, especially for the
Spruce which has really adapted to cold climate. Based on the climate scenario
“WETTREG B1” [Spekat et al., 2007] the models predict visible consequences.
According to the forecasts the distribution of spruce will shrink sharply in many
parts of Bavaria (figure 5.17). If the climate scenario “WETTREG B1” will be
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6. Summary and perspectives

fulfilled as expected, in the north of the Danube the Spruce will only occur in
higher altitudes along the Czech border and in the Rhén and Spessart. The
Spruce is almost no longer found in Lower and Middle Franconia. Kolling et al.

[2007] have also made researches and come to similar results.

Bivariate Distribution of Precipitation and Temperature
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Figure 6.1.: Bivariate Distribution of Precipitation (pink) and Temperature (violet)
in Bavaria.

Although the predictions of the two boosting models do not differ clearly, the
response curves differ mainly at the margins. Particularly the basis-model
has great difficulties to model the margins correctly. This is the result of the
combination of the presence of concurvity and very few data on the edges as

shown by figure 6.1. The figure 6.1 presents the bivariate Distribution of Pre-
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cipitation (pink) and temperature (violet) in Bavaria. Lindenlaub and Wickler
[2012] could stabilize the estimation of the response curves and especially the
margins by using Bayesian Analysis. Lindenlaub and Wickler [2012] devel-
oped a model with prior information from an European model with the aim
to stabilize the margins. However, the Bayesian Analysis is very computation-
ally intensive and costly and requires much programming. In this situation,
the %l1%-operator is a very good alternative. The %l1%-operator needs little

processing time and is the adequate tool for this situation to get useful results.
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A. Appendix

"%117" <- function(bll, bl2){

if(is.list(bl1l) && !inherits(bll, "blg"))
return(lapply(bl1l, "%117", bl2 = bl2))

if(is.list(bl2) && !inherits(bl2, "blg"))
return(lapply(bl2, "%117", bll = bl1l))

### set baselearner name

cll <- paste(bli$get_call(), "Z117",
bl12$get_call(), collapse = "")

cll <- paste(bli$get_call())

## test if baselearners
stopifnot(inherits(bl1l, "blg"))
stopifnot (inherits(bl2, "blg"))

## build model.frame
mf <- cbind(model.frame(bll), model.frame(bl2))

## index
index <- NULL

## vary
vary <_ nn

## return
ret <- list(

## model.frame
model.frame = function() mf,
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## function
get_call = function(O{
#cll <- deparse(cll, width.cutoff = 500L)
if (length(cll) > 1)
cll <- paste(cll, collapse = "")
cll
+,

## model.frame data
get_data = function() nf,

## index
get_index = function() index,
get_vary = function() vary,

## get the names of the model.frame
get_names = function() colnames(mf),

## change the names of the model.frame
set_names = function(value) attr(mf, "names'") <<- value
)
## class return
class(ret) <- "blg"

## read arguments
argsl <- environment (bl1$dpp)$args
args2 <- environment (b12$dpp)$args

## lambda
11 <- argsl$lambda
12 <- args2$lambda
if (!is.null(11) && '!is.null(12)){
args <- list(lambda = 1, df = NULL)

}
else{
args <- list(lambda = NULL,
df = ifelse(is.null(args1$df), 0, argsi1$df) +
ifelse(is.null(args2$df), 0, args2$df))
}
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A. Appendix

### Xfun
Xfun <- function(mf, vary, args){

## create x and k matrices
newX1 <- environment (bl1$dpp)$newX
newX2 <- environment (bl2$dpp)$newX

## extract x and k matrices

X1 <- newX1(mf[, bl1$get_names(), drop = FALSE])
K1 <- X1$K

if (!is.null(11)) K1 <- 11 * K1

X1 <- X1$X

X2 <- newX2(mf[, bl2$get_names(), drop = FALSE])
K2 <- X2%$K

if (!is.null(12)) K2 <- 12 * K2

X2 <- X2%X

## make x1 orthogonal to x2

# qr.resid(qr, y)

# Xlorth <- gr.resid(qr(X2), X1)

# Xlorth2 <- (I - (X2 (X2'X2)"-1 X2') X1)

# X1 <- gr.resid(qr(X2), X1) = I - (X2 (X2'X2)"-1 X2') X1
Xlorth <- gr.resid(qr(X2), X1)

## new design matrix X
X <- Xlorth

## new penalty matrix K
K <- K1

## return
list(X = X, K = K)
}

ret$dpp <- bl_lin(ret, Xfun = Xfun, args = args)

return(ret)
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B. CD-ROM Content

The attached CD-ROM contains the whole R-Code used in this thesis, as well
as the data-sets, the generated graphics and a digital version of thesis.

A small overview over the content of the included folders is given below:

e application: All the R-files and the raw data of the application.

e results: All results and generated graphics of the simulation and the

application in .pdf format.

e simulation: All the R-files for the data generating process and the sim-

ulation.
e masterthesis.pdf

e readme.txt
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