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Abstract

In this thesis, we present several extensions of the Bradley-Terry-Luce model, which
is known as a pair comparison model. The aim of pair comparisons is to elicit an over-
all ranking for a set of objects that are compared pairwise by judges, or, as we will
call them, ‘subjects’ The presented extensions allow for ordinal responses and the
inclusion of subject-specific covariates as well as order effects (or object-specific order
effects). If an order effect is present, there is an advantage or disadvantage in a pair
comparison for the object that is presented first. In the context of sport competitions,
this effect is equivalent to having a home advantage (or a team-specific home ad-
vantage). The inclusion of subject-specific covariates in a Bradley-Terry-Luce model
may lead to an over-parameterized model. This is because subject-specific covari-
ates are included in the model as subject-object interactions, and for each additional
subject-specific covariate, we need to estimate as many subject-object parameters as
there are object parameters. To tackle this problem, we suggest a component-wise
boosting algorithm that is able to select the most important subject-object interac-
tions. The performance of this algorithm is investigated through a simulation study.
This thesis comes along with an R-Package called ordBTL that can be used to fit
the proposed models and extensions. Lastly, we will illustrate some extensions by

applying them to different datasets.
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Nomenclature

List of Notations

numbers and indices

q= "]
m=1,.... M
1=1,...,1
=1,.... K
1,....,P

parameters

>

BT =@, 4", AT)

R )

number of threshold parameters that have to be
estimated

objects

subjects

response categories

subject-specific covariates

candidate covariates (also referred to as subject-
object interactions)

boosting iterations

indices referring to object r and object s, respec-

tively

threshold parameter

object parameter

parameter for candidate covariates (also referred
to as subject-object interaction parameter)
parameter vector containing all parameters
parameter for home advantages or order effects
linear predictor

worth parameter

Kendall’s 7 rank correlation coefficient

dispersion parameter

1ii



Nomenclature

vectors and matrices

x; = (wi1,...,7p) vector of subject-specific covariates for subject 4
T
(x(“s)) = (xgr,s), ,:cg}i’l) vector of object indicators when the pair (r, s) is
compared
-
(ngs)) = (xg’s), . ,x%s)) vector of candidate covariates for subject ¢ when
the pair (7, s) is compared (xl(z’s) = z;,7"%)
(h(’"vs)>T = (h(r’s) h(r’s)) vector of dummy variables indicating object-
U by y g objec
specific order effects (or team-specific home ad-
vantages)
Q(k—1)xq constraint matrix (for the thresholds)
X(Or’s) comparison-specific design matrix when compar-
ing the pair (r, s) once
X0 design matrix containing all X(OT’S) for all pairs
(r,s) that are compared by subject i
Xo design matrix containing X;o, Vi (contains all

comparisons made by all subjects)

matrix of candidate covariates for subject ¢ when

comparing the pair (r, s)

Xco=[x1,...,%0] matrix containing candidate covariates (contains
all ngs) Vr # s,i)
Xf.’“»S) = [Xg’s),ngs)} design matrix containing object indicators and

candidate covariates for a comparison of the pair
(r,s) made by subject i

X = [Xp,X(] complete design matrix with object indicators
and candidate covariates for all comparisons and

all subjects

miscellaneous

X latent variable referring to object m

€m ~ 11d random variable referring to object m

|lz] =max{z € Z|z<z} floor function

F(.), F71(") cumulative distribution function and corresponding

link function

iv



1. Introduction

1. Introduction

The present thesis concentrates on modelling pair comparison data with ordinal
response. In general, pair comparison data is produced when a certain number of
objects are compared pairwise in order to obtain an overall preference ranking of
the objects. We will consider complete pair comparisons in which each object is
compared to all other objects at least once. In many application fields, such as in
marketing research or in psychometric experiments, the objects are presented in a
pairwise manner to judges, or, as we call them in this thesis, ‘subjects’ Their task
for each comparison is to make a preference decision for one of the two presented
objects according to specific (subjective) criteria (e.g. the fragrance of perfumes
when two perfumes are the objects being compared). This preference decision is
called the ‘response’ and can be binary, meaning that the subjects could either
prefer the first object or the second object. Alternatively, the subjects can make
their preference decisions based on a (symmetric) Likert scale with more than two
categories, such as preferring the first object strongly or weakly, preferring neither
of the objects, or preferring the second object strongly or weakly. This yields an
ordinal response that allows a more precise preference ranking of the objects because
we use more information about how strongly an object is preferred (Tutz, 1986). A
slightly different application field can be found in (sport) competitions. Here, the
two competing teams or players correspond to the objects that are being compared
and for which a preference ranking is of interest. In this context, the ‘response’
corresponds to the outcome of the competition (e.g. win, tie, or lose). Thus, there

is a vast range of application fields for pair comparisons.

The main aim of this thesis is first to describe existing pair comparison models that
allow for ordinal responses and then to develop an algorithm that allows for variable
selection in a model that contains subject-specific covariates. These covariates are,
for example, personal characteristics of the subject, which are assumed to play a
role in the decision of a subject. Thus, selecting relevant subject-specific covariates
might reveal important personal characteristics that are specific for preferring certain

objects.



1. Introduction

This thesis is structured as follows: Chapter 2 introduces the basic Bradley-Terry-
Luce model, which is a pair comparison model for binary responses. In Chapter 3, we
present extensions of the Bradley-Terry-Luce model that allow for ordinal responses.
The subsequent Chapter 4 explains how subject-specific covariates and order effects
can be included in the presented models. For a better understanding of the data
structure, we introduce a matrix notation in Chapter 5, which is then used in Chapter
6 within the proposed boosting algorithm that implicitly allows variable selection.
To investigate the performance of this algorithm, a simulation study was conducted
in Chapter 7. Finally, some of the proposed models and the boosting algorithm are
applied on real data sets in Chapter 8. For the models fitted in this thesis, we used the
statistical programming language R (R Core Team, 2013) and the additional ordBTL
package (Casalicchio, 2013) that was developed during this thesis. It is available on
http://cran.r-project.org/web/packages/ordBTL/.


http://cran.r-project.org/web/packages/ordBTL/
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2. The Bradley-Terry-Luce Model

2.1. The Model

One of the most widely used models for comparisons of M different objects in a
pairwise manner is the model suggested by Bradley and Terry (1952). It is closely
related to the choice axiom of Luce (1959) with the restriction to choices being
between two objects. Thus, the model is named the Bradley-Terry-Luce (BTL)

model.

We consider a comparison of the pair (r, s), which represents the comparison between
object r and object s. The response of this comparison is denoted by Y, where
Y,s = 1 indicates the preference for object r and Y,.; = 2 indicates the preference for
object s. An example for pair comparisons are sport competitions in which a match
of team 7 (or player r) and team s (or player s) corresponds to the comparison of
the pair (r,s). In this case, the preference for team r (denoted by Y,s = 1) can be
interpreted as team r wins, whereas the preference for team s (denoted by Y,s = 2)
implies that team r is not preferred and thus can be interpreted as team r loses.
The BTL model for such a binary response specifies the probability for preferring

object r over object s by

IP(YTS:H(T,S)):?T T r,se{l,...,. M}, r#s. (2.1)

Here, the m,,’s are positive-valued worth parameters and represent the worth or
ability of the corresponding object m on a continuous preference scale (Hatzinger
and Dittrich, 2012).

Alternatively, model (2.1) can be written as a logistic model. For this purpose, we
first apply the logit function logit(x) = log (ﬁ) on both sides of equation (2.1),
which yields

7/ (7, + 75)
1 —m /(7 + 7s)

logit(P(Y;, = 1|(r, 5))) = log ( ) — log (2 ) = log(r,) ~ log(r).
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In the next step, we use the re-parameterization ~,, = log(m,,), Vm € {1,..., M}
with the restriction vy, = 0 (which is necessary for identifiability), such that object
M is considered as reference object. For a given pair comparison of (r, s), the logistic

model can then be written as

logit(P(Yrs = 1|(r,5))) =7 — s

(r,s) (r,s)

— l‘l 71 + . e + 'TMflfyM—l (22)
(rs)) "
= (x()) 4,
where
+1 ifm=r
e =3 —1 ifm=s (2.3)

0 otherwise

is considered as an independent variable that indicates if object m is involved in a
given pair comparison. Thus, we call 2("*) the object indicator for object m when
the pair (r,s) is compared. The object parameter =, reflects, in this case, the log-
arithm of the worth parameter for object m. Since the logarithm is a monotonic
transformation, the object parameter ~,, also reflects the worth or ability for object

m.

If independence for all comparisons is assumed, ordinary methods for logistic models
(such as maximum likelihood estimation) can be used to fit the BTL model (Turner
and Firth, 2010; Agresti, 2002, p. 436).

2.2. Generalisation

A logistic model, such as the one in equation (2.2), is a generalized linear model,
where the logit function is used as the link function. In general, the logit link can
be replaced with an arbitrary link function F~!, where F is the corresponding
distribution function. According to David (1988), this yields the following linear

model
P(K"S = 1|(T’8>) - F('Yr - '78)

(2.4)
& F Y P, =1|(r5)) =% — s,

which can be derived by assuming an underlying latent variable for the objects. For
the derivation, we introduce a latent variable X, for each object m € {1,..., M}
that has the form

X = Ym + €m, (2.5)
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where v,, € R is a constant and ¢,, ~ iid is a random variable. The differences
€s — €, are assumed to be symmetrically distributed around zero with the cumulative
distribution function F'. If X, > X, then object r is preferred over object s and the
probability of this event is given by

P(ns = 1|(T7 S)) - P(Xr > Xs)

P('W + € > s+ ES)
Ples — € < v — 7s) (2.6)
F(vr — 7).

Since this is equivalent to F~1(P(Y,, = 1|(r,s))) = 7, —7s, it is obvious that if we use
the logistic distribution function with the corresponding link function F~! = logit,
we will return to the BTL model (2.2). It should be mentioned briefly that the
Thurstone-Mosteller model (Thurstone, 1927; Mosteller, 1951), which is also a pair
comparison model, uses the standard normal distribution function F' = & (with the
corresponding link function /=1 = ®~1) instead of the logistic distribution function.
Thus, the BTL model and the Thurstone-Mosteller model can be seen as special
cases of the model (2.4).
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3. Extensions for Ordinal Responses

3.1. Motivation

In the previous chapter, we mentioned the example of sport competitions with a
response consisting of two categories. Now we will consider sport competitions that
can also end in a draw, such as football matches. Thus, we have to take into account
a third category that allows for a draw in a competition. This yields a response that
consists of three categories and measures the three possible outcomes for a match
between team r and team s: Y,, = 1 if team r wins, Y,, = 2 if the match ends in
a draw and Y,, = 3 if team r loses. In general, ordinal responses with more than
three categories are also conceivable. A response consisting of five categories, for
example, could be: strong preference for object r, weak preference for object r, no
preference, weak preference for object s and strong preference for object s. Without
further assumptions, the method described in Chapter 2 cannot be applied to such

an ordinal response.

In the following sections, we tackle this problem using the cumulative logit model and
the adjacent categories logit model, which are known as multivariate regression mod-
els for ordinal responses and allow parameter estimation via maximum likelihood
estimation (see Agresti, 1992; Fahrmeir et al., 1994, p. 73 - 99). These two models
can be seen as a generalisation of the BTL model. Thus, many other extensions of the
BTL model that allow for responses with three categories can be assigned to the mul-

tivariate regression models mentioned above (see Section 3.5).

3.2. Symmetry Condition

The ordinal response with K > 2 categories is denoted by Y., € {1,..., K} and
is assumed to be symmetric, meaning that V,, = k & Y,, = K — k + 1 and
thus

P(Y,,=k)=P(Y, =K —-k+1), Vk=1,... K. (3.1)
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To fix the notation, we let lower response categories indicate the preference for
object r. Thus, Y,s = 1 is the most favourable response category for object r and
Y,, = K is the most favourable response category for object s, or, equivalently, the
least favourable response category for object r. The symmetry condition (3.1) can
then be interpreted as the probability that object r is preferred over object s with
strength k is equal to the probability that object s is preferred over object r with the
corresponding strength K — k 4+ 1 (Tutz, 1986; Agresti, 1992).

3.3. Cumulative Logit Model

3.3.1. The Model

The cumulative logit model for an ordinal response denoted by Y,, € {1,..., K}
is based on the consideration of cumulative probabilities P(Y,s < k) = P(Y,s =
1)+ ...+ P(Y,s = k). The logarithm of cumulative odds is called cumulative logit

and can be written as

P(Y,s < k)

logit(P(Y,s < k)) = log (IP’(Y}s>k)

), k=1,...,K —1. (3.2)

It measures how likely the response Y,, is in category k or below, compared to a
category higher than k (Fahrmeir et al., 1994, p. 76-78).

In a comparison of the pair (7, s), the BTL model for ordinal responses proposed by

Tutz (1986) can be written as cumulative logit model

logit(P(Y,s < k[(r,8))) =6k + (v —7s)
= O+ (@77 + o+ 2 ) (3.3)
T
= ek -+ (X(T75)> fy’

where —co =6y < 0 < ... < 01 < O = oo are the thresholds (Tutz, 1989, p. 110-
114). Due to the symmetry condition, we need the following additional restrictions
for the thresholds (for proof, see Tutz (1986)):

(1) If K is odd

O = —0rg_y for k=1,..., % = {;w (34)
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(2) If K is even

(9[(/2 =0 and QK/Q,k = _HK/2+k for k= 1, ceey % —1= {%J (35)

From these restrictions, we can see that if K > 2, then only ¢ = {%J threshold
parameters need to be estimated, although the cumulative logit model requires K —1
thresholds (apart from 6y = —oo and 0 = o0). If we consider a response with K = 2

categories, we have ¢ = {EJ = EJ = 0 and #; = 0 due to the constraint (3.5).

2
Thus, we do not have to estimate any threshold parameters. In this case, model

(3.3) simplifies to
logit(B(Y,. < 1((r,5))) = logit(B(¥;. = 1/(r, 5))) = (x") '

and we return to the BTL model (2.2), which is a special case of the model described

in this section.

3.3.2. Generalisation

If we consider the latent variable X,, = v, + €, from equation (2.5) that under-
lies each object m, we can use the category boundary approach (also known as
the threshold approach) to derive the cumulative logit model (3.3) (Tutz, 1989,
p. 66-68; Agresti, 1992). Here, we assume that object r is preferred over object s
with strength £ if X, — X, is between 6,_; and 6. This statement can be written
as

Yis=k & 01 < Xy — X, < b, Ve=1,....K (3.6)

and means that Y, is a categorized version of X; — X, (Fahrmeir et al., 1994,
p. 74). The lower the response category Y, the smaller X, — X, and the smaller
X — X, the more one prefers object r. Thus, lower response categories indicate the
preference for object r. As in Chapter 2, we assume that the differences €¢; — ¢, are
symmetrically distributed around zero with the cumulative distribution function F'.
Therefore, it follows that

P(Y,, < k|(r,5) B P(X, — X, <0) =P(ys — v + e — e < 0)
Ples — & < O + (3 — 75)) (3.7)
= F(‘gk + ('Yr - 73))7
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where the thresholds are restricted in the same way as defined in the previous sec-
tion. Model (3.7) corresponds to the cumulative link model supposed by Agresti
(1992) and is a generalisation of the cumulative logit model (3.3). This is because
we are allowed to use an arbitrary distribution function F' (with F(x) =1— F(—x))
instead of the logistic distribution function used in model (3.3) (Tutz, 1989, p.
71).

3.4. Adjacent Categories Logit Model

The adjacent categories logit model is defined as

lo ( P(}/}s:k\(r,s))
P(Y,s =k + 1|(r, s))

>:0k+(7r_75)

=0, + (IY’S)% +...F $§\7fj17M—1)
T
= ek + (X(r,s)) v,

(3.8)

again with the constraints (3.4) and (3.5) for the symmetry of the thresholds. It uses
adjacent response categories P(Y,s = k) and P(Y,s = k + 1) instead of cumulative
probabilities P(Y,s < k|(r, s)) and P(Y,s > k|(r, s)) as in the cumulative link model
(3.3). Thus, the interpretation is directly related to the log-odds for two adjacent
response categories (namely Y,s = k and Y,; = k + 1) instead of the log-odds for
two groupings of response categories (which, in the cumulative link model, are de-
termined by Y,s < k and Y, > k) (Agresti, 2002, p. 286 - 287).

The adjacent categories logit model reduces to the BTL model (2.2) if the response
consists of K = 2 categories. In this case, the cumulative logit model and the
adjacent categories logit model are equivalent. Since the adjacent categories logit
model can also be represented as a log-linear model, one can find many extensions
for the BTL model based on its log-linear representation (see Agresti, 1992; Dittrich
et al., 1998, 2004, 2007).

3.5. Overview

Various approaches have been proposed to extend the BTL model for allowing ordi-

nal responses. According to Agresti (1992), most of these extensions can be assigned
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into two general models: the cumulative link model and the adjacent categories logit

model (see also Figure 3.1).

model

‘ cumulative link
(Agresti, 1992)

[ logit-link | [ probit-link |
adjaclzsgitt (r::(t)e(:gl)ries ‘ cumurfct)i(\jlgllogit ‘ cumulative probit
(Agresti, 1992) (Tutz, 1986) el
K=3] K=2] K=2] |[K=3]
Davidson Bradley-Terry Rao-Kupper Thurstone Glenn-David
(1970) (1952) (1967) (1927) (1960)

— log-linear representation |—

Figure 3.1.: Overview of existing models and their connections.

The cumulative link model uses cumulative probabilities in order to model ordinal
responses. If the logit link is used as the link function, we obtain the cumulative
logit model suggested by Tutz (1986). This again corresponds to the Rao-Kupper
model (Rao and Kupper, 1967) if the response consists of K = 3 categories, and it
is equivalent to the BTL model (Bradley and Terry, 1952) if the response consists of
K = 2 categories. Using the probit link instead of the logit link yields the Thurstone
model if the response consists of K = 2 categories, or the model proposed by Glenn

and David (1960) if the response consists of K = 3 categories.

The adjacent categories logit model is based on adjacent response probabilities in-
stead of cumulative probabilities. It corresponds to the BTL model if the response
consists of K = 2 categories and equates to the model proposed by Davidson (1970)
if the response consists of K = 3 categories. Dittrich et al. (2004) use a log-linear
representation for the BTL model based on the adjacent categories logit model.
They also suggest several other extensions for the log-linear BTL model, such as in-
cluding (subject-specific) covariates or considering order effects. In the next section,
we will show how to include these extensions without using a log-linear representa-

tion.

10
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4. Extensions for Covariates

The linear predictor for any model presented in the previous chapter is
TS 7,8 T
77/5: ):«9k+<x(’)) .

The following extensions can be applied on all of these models through an extension
or modification of the linear predictor. For illustration purposes, however, we will

apply them only on the cumulative logit model (3.3).

4.1. Subject-specific Covariates

According to Dittrich et al. (1998), the preference for a certain object in a pair
comparison can depend on personal characteristics of the subject. To include this
assumption in the model, we introduce the vector of subject-specific covariates
x,; = (2;1,...,7;p) that contains P personal characteristics for subject i. The ob-
ject parameter 7, (that reflects the worth of object m) is then assumed to depend
on the personal characteristics of the subject. To incorporate (binary or metric)
subject-specific covariates into the model, we can follow Francis et al. (2002) and
express the object parameters as a linear combination of P subject-specific covari-
ates. The object parameter for subject ¢ that depends on P subject-specific covariates

is then

P
Vitm) = Vm) +X; Am) = Vm) + 2 LipA@mps (4.1)
p=1

where 7(,,) is a parameter for object m that is independent of the personal character-
istics of the subject, and A, is a modifying effect for object m depending on the p-
th subject-specific covariate. According to Francis et al. (2002), we have to constrain

Ay = 0, Vp so that the model below remains identifiable.

11
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The corresponding model for subject ¢ that considers P subject-specific covariates

is then
logit(P(Yys < k|(r,5),4)) = Ok + (Yier) — Vics))

P
=0k + (V) — ) + 2 Tip(Awpp — Aip)

= (4.2)
M-1 P M1
= O+ > 8 Ym) + D i D 5 Ay,
m=1 p=1 m=1

where the object indicators z("*) are defined as in equation (2.3) and are used to
represent the differences of () — v(5) and Ay, — As)p as a linear combination of
all 7’s and A’s, respectively. The parameter A(,), is regarded as a subject-object
(interaction) parameter that refers to the m-th object and the p-th subject-specific
covariate (Tutz, 1989, p.110-114; Cattelan, 2012).

In the absence of subject-specific covariates, we have x;, = 0, Vi,p and we re-
turn to the cumulative logit model without subject-specific covariates as described
in Section 3.3. Since subject-specific covariates enter the model as subject-object
interactions, we have to estimate M — 1 subject-object parameters for each addi-
tional subject-specific covariate. This can result in an over-parameterized model.
To overcome this problem, we introduce a variable selection procedure in Chapter
6.

4.2. Order Effect and Home Advantage

When comparing two objects, sometimes there can be an advantage (or disadvan-
tage) for the object that is presented first. This advantage refers to the order of the
presentation of the objects and is thus called order effect. In the context of sport
competitions, the order effect is equivalent to a home advantage, where the team
that plays at its home location has an advantage over the away team (Fahrmeir and
Tutz, 1994).

4.2.1. Global Effect

If we consider the pair (7, s), we fix the notation such that object r corresponds to

the object that is presented first (or, in the context of sport competitions, the team

12
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that plays at its home location). Thus, the order effect (or home advantage) is only
included within the first presented object r, such that the object parameter ~, can

be re-parameterized by 7, — v, + ap. This yields the model

logit(P(Y,s < k[(r,5))) = Ok + a0 + 7 — s

=0y + g + (gjgr’s)")/l +...+ :zEQ“?fYM—l) (4.3)

=0+ o+ (X(T’S))T'y,

where o represents the order effect (or home advantage) that is present in all pair

comparisons (Goos and Grofimann, 2011).

In some sport competitions, there is the possibility that the teams will play on a
neutral field, where neither team r nor team s has a home advantage. This is not
considered in the model above because the re-parameterization ~, — 7, + «q forces
team r to have a home advantage even if the match would be played on a neutral field.

In such a case, we can use the re-parameterization v, — v, + h(()r’s)ao instead, where

h"*) is a dummy variable that indicates if team r has a home advantage (A" = 1)
or if it plays on a neutral field without having a home advantage (h(()r’s) = 0). This

brings us to the model

IOgitaP’(Y;s < k’(r’ 5))) =0, + h(()r,s)ao Ty — s
=0+ h g+ (2" + . 20 ) (4.4)
8 rs)\ |

Thus, in general, order effects or home advantages can be seen as comparison-specific
or contest-specific covariates, respectively (Harville and Smith, 1994; Turner and
Firth, 2010; Masarotto and Varin, 2012).

Note that the models (4.3) and (4.4) are still identifiable due to the symmetry
constraints for the thresholds. However, for the model (4.4) care must be taken when
having a single round-robin structure for which the pairs (r, s), Vr < s are compared
only once. For example, if we assume that all matches are played on the home field of
team 1, only team 1 will have a home advantage and all other matches will be played
on a neutral field. Then, because of r < s, it follows that object r € {1,..., M — 1}
and object s € {2,..., M} and thus s # 1 yielding

1 ifr=1
M S (4.5)
0 otherwise.
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In such a case, we would have A" = 2{"* for all comparisons r < s and thus the
model (4.4) would not be identifiable.

4.2.2. Object-specific or Team-specific Effects

It is also possible to consider object-specific order effects, or equivalently, team-
specific home advantages (Harville and Smith, 1994). These effects vary from object
to object (or team to team) and are incorporated into model (4.3) using a covariate
vector (h(’"’s))T = (hﬁ“s), e h$5)>, where

1 ifm=r

hs) = { (4.6)

0 otherwise

indicates (when considering the pair (r, s)) if object r or team r has an order effect or

home advantage, respectively. The model can then be written as

logit(P(Y,s < k|(r,5)) = O + (" oy + ... + A an)
(r,5)

+ (g;l YA+ :L‘E\st_)l’YMq) (4-7)
=0 + (0) at (x) ',

T = (ay,...,ay) contains the object-specific order

where the parameter vector a
effects, or equivalently, the team-specific home advantages. Note that the model
described in this section is only identifiable if at least a double round robin struc-
ture is present and each object of a fixed pair comparison is allowed to have the
object-specific order effect (or equivalently, the team-specific home advantage) once.
This is only possible if every pair (r,s) is compared at least twice (e.g. comparing
(r,s) and (s,r) giving the order effect once object r and once object s, respec-

tively).
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5. Matrix Notation

This chapter is intended to illustrate the structure of the design matrix for pair
comparisons with and without considering subject-specific covariates. Having the
design matrix at hand, we can use the Fisher scoring algorithm within the framework
of multivariate maximum likelihood estimation as described in Fahrmeir et al. (1994,
p. 97 - 99) to obtain the parameter estimates. The matrix notation introduced in
this chapter will also facilitate the description of the proposed boosting algorithm

in the next chapter.

5.1. Constraint Matrix

As mentioned in Section 3.3, we do not have to estimate any threshold parameters
for K = 2 response categories, whereas for K > 2 we have to estimate ¢ = {%J

threshold parameters. Below we consider the case where K > 2.

Let 0; = (6y,...,0,) denote a vector containing all threshold parameters that have
to be estimated and 8}, = (0y,...,0x_1) denote a vector containing all threshold
parameters in the model (including those that are determined by the symmetry con-
straints from equation (3.4) and (3.5)). We then define a constraint matrix Q(x—1)xq;

such that Q(x_1)xq-8q = Ox—1 satisfies the symmetry constraints.

For illustration, we will consider a response that consists of K = 6 categories. Ac-
cording to constraint (3.5), we have 8., = 01 = (01, 05,05,04,05) = (61,05,0, —0, —0).
We are looking for a constraint matrix Qsyo that satisfies Qsxo - @2 = 05, where

0, =0, = (01,0,). This is achieved with the following equation

1 0 01
0 0,
6,
Qsx2-02=[0 0 (9)2 0 [=0s, (5.1)
0 -1 ? — 0y
-1 0 —6,
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5. Matrix Notation

which satisfies the constraints from equation (3.5).

Another example with an odd number of response categories, for instance K = 5,
is presented. According to constraint (3.4), we have 0}, | = 0] = (0,0,,03,0,) =

(01,05, —05, —07). Thus, the constraint matrix Q42 is chosen as follows

0 0,
0 1 01 0,
Quxz - 02 0 —1 (92) 9, 4 (5.2)
-1 0 —0,
To obtain the general structure of Qx_1)xq, we use the null vector ()qT = (0,...,0)
and the matrices
1 0 0 0 0 -1
0 1 -1 0
0 0
0 0 -1 0 0

The constraint matrix is a block matrix and has the form

Iqu
I
Qr—1)xq = OqT if K is even and Qx—_1)xq = [ qu] if K is odd.
J qxq
qgxq

Using this general structure and considering the case with K = 6 response categories,
it follows that

1 0
Loyo 0 1
Qsx2= 10" | =1| 0 01,
Joxo 0 -1
-1 0

which corresponds to the constraint matrix from equation (5.1). Consequently, a
response consisting of K = 5 categories yields the constraint matrix from equation

(5.1), namely

1 0
Q4><2 - |:J2><2] - 0 1
-1 0
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5.2. Design Matrix without Subject-specific

Covariates

5.2.1. Single Pair Comparison

For a single comparison of the pair (r, s), we can represent the model without subject-

specific covariates in equation (3.2) as
logit(P(Y;. < k|(r,5))) = X§*B. (5.3)
With the parameter vector

ﬂT = (ho?’yT> = (617"'79q7717"'7ﬁ)/M71>

and the comparison-specific design matrix
(rs) _ (r,s) T
X0 = |Qr-1)xq: 1k—1 ® (X ) , (5.4)

in which the constraint matrix Qx_1)x4 and the vector of object indicators (X(”’S))T =
(mﬁ*’s), e ,:L‘SQS_)I) are included. The Kronecker product (denoted by ®) with the vec-
tor 151 = (1,...,1)T yields a matrix, in which the object indicators (X(T’S))T are
repeated K — 1 times row-wise (see example below). The design matrix is consid-
ered as block matrix consisting of two blocks, where the constraint matrix Qx—_1)xq
forms the first block and the second block contains the object indicators (where
each column refers to an object). Thus, the design matrix has (K — 1) rows and
(¢ + (M —1)) columns.

To illustrate the structure of the comparison-specific design matrix, we consider
the case where the response consists of K = 5 categories. If only the pair (1,2) is

compared, the design matrix has the form

01 -1 0 0

T 1 1 —1 0 0
st”:[mw,u@(xuw) ]: I
-1 011 -1 O 0

17



5. Matrix Notation

where the first block contains the constraint matrix Q4«2 and the second block
T
contains a matrix of object indicators 1,® (x(u)) , which is repeated for all K —1 =

4 rows.

The extension for comparing an arbitrary pair (r, s) is straightforward: in the second
block of Xg’s), the 1’s are positioned in the r-th column and the —1’s in the s-th
column. Note that for the pair (M — 1, M), the second block is slightly different.
This is because, in general, object M is set as the reference object such that the

second block has only M — 1 columns and thus

_ T
XE)M b= {Q4><27 1, ® (X(M_LM))

-1
-1 0

o O O O
o O O O
— = =

where in the second block of X(OM_I’M) the 1’s are positioned in the (M — 1)-th

column.

5.2.2. Complete Pair Comparison

In a complete pair comparison experiment, I subjects and M objects are involved,

and each subject has the task of making preference decisions for all (A;) com-

M\ _ M
2) — 2(M-2)!

coefficient representing the number of all distinct pairs in a set of M objects,

parisons. Here, ( is read as ‘M choose 2’ and denotes the binomial

namely
(1,2),(1,3),...,(r,s),..., (M —1,M),¥r < s.

The subject-specific design matrix that contains all of these pair comparisons, which

were made by a single subject (subject i), has the form

] o
[ X521 |Qu-nxg 1k ® (x12)
.
X(ol’g) Q(x-1)xq 1p 1 ® (X(1’3)>
X0 = o= : Vr < s, (5.5)
7 (r,s) rs T )
X0 Qr-1xq 1k ® (X( ’ ))
(M—1,M) ' T
X | Qg 1@ (o 10)
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5. Matrix Notation

The single blocks Xg’s), Vr < s do not depend on subject ¢, meaning that all of the
subjects have the same design matrix and thus X0 = X0 = ... = Xjo. Thus, the
complete design matriz containing all of the pair comparisons that were made by

any subject is then defined as

Xo=1| .| (5.6)
X0
5.3. Design Matrix with Subject-specific Covariates

5.3.1. Single Pair Comparison

For estimation purposes and later use in Chapter 6, we define candidate covariates
of the form z{"" = 22" ¥p,m with ¢ = 1,...,C = P- (M — 1). They serve as
a proxy for the subject-object interactions, where each candidate covariate refers to
an interaction of the m-th object and the p-th subject-covariate. The model from

equation (4.2) can then be expressed as

M-1 M—1
logit(P(Yys < k[(r,5),1) = O + > 20y + D D 2l Ay
m=1 p=1 m=1
o - (5.7)
=0 + Dy + 2N,
m=1 c=1

where Ac = A(), is the associated parameter for the c-th candidate covariate. We
T
introduce the vector (XZ%’S)) = (:cﬁ’s), e ,xggs)) that contains all of the candidate

covariates for subject @ when the pair (r, s) is compared and rewrite the model (5.7)

as
logit (B(Y;, < Kl(r,s),1)) = 0 + (x9) y + (x57) " . (5.8)

The model for a single comparison of the pair (r,s) made by subject ¢ is given in

matrix notation as follows

logit(P(Y,s < k|(r, s),1)) = X8, (5.9)

)
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5. Matrix Notation

with the parameter vector

ﬂ—l— = (0;—7’YT7’\T) = (917'"a0q7717-"77M—1>)\17"'a)\c>

and the subject-specific and comparison-specific design matrix

XZ(T’S) _ Q(Kfl)xqa 1,1 ® (X(T,s))—r’ 1k 1 ® (ngs))T ]

X Xz

The block matrix X(Om) from above contains the object indicators and has the
same form as in equation (5.4), whereas the matrix X" contains only the can-
didate covariates. Thus, the dimension of this matrix is (K — 1) x (¢ + (M —1) +
C).

5.3.2. Complete Pair Comparison

For a complete pair comparison experiment, we have ( 2) comparisons for each sub-

ject. Here, the complete design matrix is a block matrix of the form

1,2) ] i 1,2 1,2
Xi? Xy Xic”
M—1,M M—1,M M—1,M
I P
X — — , (5.10)
1,2 1,2 1,2
X(? X§P X
M—1,M M—-1,M M—1,M
X)X X
Xo Xc

where the block matrix Xo is defined as in equation (5.6) and the block matrix
X contains only the candidate covariates for all of the possible comparisons r < s

made by any subject 1 =1,...,1.
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6. Boosting with Implicit Variable Selection

6. Boosting with Implicit Variable Selection

6.1. Introduction

Boosting was developed in the machine learning community to improve classification
by combining a set of (iteratively learned) weak learners to create a single, strong
learner (Schapire, 1990; Freund, 1990). In a joint work, Freund and Schapire (1997)
introduced the well-known AdaBoost algorithm, which can be seen as a weighted
refitting of observations based on a binary classificator (that represents the weak
learner). In each boosting iteration of the AdaBoost algorithm, a weak learner is fit-
ted to the weighted data, wherein the weights for misclassified observations increase
from iteration to iteration. Thus, one concentrates more on misclassified observa-
tions. Finally, a linear combination of the weak learners from each iteration is used,

which leads to a strong learner.

The idea to use weak learners and ‘boost’ them to gain a strong learner has also
received a great deal of attention in statistics. The breakthrough, from a statistical
point of view, came with the reinterpretation of AdaBoost as an optimization algo-
rithm, namely as ‘functional gradient descent’ that minimizes an exponential loss
within the framework of ‘forward stage-wise additive modelling’ (Friedman et al.,
2000; Friedman, 2001). When using a different loss function, such as the squared
error loss, this can be seen as iteratively ‘fitting of residuals’ and allows for an ex-
tension of boosting to regression problems. Based on this ground breaking discovery,
Bithlmann and Yu (2003) proposed a ‘component-wise boosting’ procedure that im-
plies variable selection and does a fitting of the residuals using only one (or a subset
of) covariates in each iteration. Tutz et al. (2006) use a similar approach, but instead
of minimizing a specific loss function with functional gradient descent, they directly
maximize the log-likelihood using one-step Fisher scoring to obtain a weak learner
(this is known as likelihood-based boosting). Further development of the component-
wise boosting was done by Tutz and Binder (2007), who proposed a procedure that
allows for distinguishing between obligatory covariates (that have to be included in

the model) and optional covariates (that might be of relevance).
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6. Boosting with Implicit Variable Selection

6.2. Algorithm

The following boosting algorithm uses the terminology introduced in Chapter 5 and
is a (likelihood-based) component-wise boosting procedure based on the pomBoost
algorithm (Zahid and Tutz, 2011), which is able to handle both obligatory and op-
tional covariates, and allows for ordinal responses (since it is based on the cumulative
logit model). The object indicators with the associated parameter vector 7 are used
as obligatory covariates, and the subject-object interactions (referred to as candidate
covariates) with the associated parameter vector A are used as optional covariates.
For simplicity, we assume that the subject-specific covariates, and therefore also the
candidate covariates, are either metric or binary. Categorical covariates with K > 2
categories can be included by creating K — 1 dummy variables, where the K-th

category level is set as the reference category.

After the initialization in Step 1, the algorithm splits up into two main parts within
an iteration. The first part (Step 2.1) considers the design matrix X, in which
the constraint matrix and the object indicators are included. Thus, the parameter
estimates for the object indicators are updated along with the estimates for the
threshold parameters. The second part (Step 2.2) considers the matrix of candidate
covariates X¢ = [x.1,...,X.¢], where x.. is the c-th column of X and reflects the
vector for a single candidate covariate. In each iteration, only the parameter of a
single candidate covariate is updated, namely the one that maximally improves the
fit according to a certain criterion, such as the AIC or BIC that are introduced in
Section 6.3. This is considered as ‘component-wise linear base procedure’ because
the weak learner, which is also called the base learner, is used to describe a linear
effect of the single candidate covariate (see Hofner, 2011, chap 2.3). The algorithm
stops if the maximum number of iterations bs,p is reached, and it can be described

as follows:

Algorithm: BTLboost

Step 1: Initialization

Fit the intercept model u® = h(n®) (for some response function h) by max-

imizing the likelihood in order to obtain

1 = Qic1)xq - by
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6. Boosting with Implicit Variable Selection

This yields only estimates for the threshold parameters, such that the esti-

mated parameter vector has the form

Step 2: For each b =1,2,.. ., bsop

Step 2.1: Consider object indicators and thresholds
— Estimation:
Fit the model g = h(®Y +XoB0), where H®~1) is treated as offset and
X is a design matrix based on the object indicators and the constraint
matrix for updating the object parameters and threshold parameters,

respectively. The estimated parameter vector

A

AT A . A P R
ﬁO = (o;raryTa)‘T) = (917 s 76q77(1)7 s 77(M—1)707 . 70)

is obtained by one-step Fisher scoring (see Tutz et al., 2006).
— Update:
ﬁ(b) = ﬁ(b—l) + XO,éO
B(b) = ﬁ(bfl) +ﬁ0

Step 2.2: Consider candidate covariates

— Estimation (for each candidate covariate c =1,...,C):
Fit the model pu = h(H® +x..\.), Ve = 1,...,C, where ) is treated as

offset and x.. reflects the c-th candidate covariate. The estimated param-

eter ), is obtained by one-step Fisher scoring (see Tutz et al., 2006).

— Selection:
Choose the candidate covariate xpes over all x.1,...,X.¢ covariates that
maximally improves the fit with respect to some criteria (e.g. AIC, BIC).
The associated estimated parameter S\best is included within the param-

eter vector /A\, such that

leest = (éT ;)~,T75\T) = (07 s 707 5\bestaoa s 70)

— Update:
ﬁ(b) - ﬁ(b) + Xbestﬁbest) where Xbest - [07 ce 70; Xbests 07 cee 70]
:B(b) = ,B(b) + ,Bbest
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6.3. Stopping Criteria

The stopping iteration by, can be seen as a tuning parameter in boosting. Com-
mon choices for determining the optimal stopping iteration are either information
criteria, such as the AIC or BIC, or cross-validation. In this thesis, we consider only
the two information criteria mentioned above, which are known measures for the
trade-off between goodness-of-fit and model complexity. The computation of both
criteria is based on the deviance Dev(f®) and the degrees of freedom df(b) after
b boosting iterations. Since the boosting algorithm is an iterative procedure, the
true degrees of freedom after b boosting iterations are unknown and need to be

approximated.

In the literature, using the trace of the hat matrix after b boosting iterations as
an approximation for the degrees of freedom is often suggested (Tutz et al., 2006;
Bithlmann and Hothorn, 2007). Thus, we have df(b) ~ dfiace(b) = trace(Hy), for
which the approximate hat matrix H;, needs to be computed in each iteration. The
estimation formula for the approximate hat matrix and its trace can be found in

Zahid and Tutz (2011).

Another possibility proposed by Biithlmann and Hothorn (2008) is to use the number
of parameters that have been selected until the b-th boosting iteration (denoted by
dfactset (b)) as an approximation for the degrees of freedom. The results in their paper
suggest that dfycset(b) ‘Us a better approximation for degrees of freedom for boosting
with the component-wise linear base procedure.” Since we use a component-wise linear
base procedure in the BTLboost algorithm, the use of df, (st (b) seems reasonable and
allows for faster and simpler computation because we do not need to estimate the

hat matrix in each iteration.

The definition of the AIC and BIC after b iterations is given by
AIC(b) = Dev(i®) + 2 - df(b) (6.1)

and
BIC(b) = Dev(®) + log(n) - df(b), (6.2)

where n is usually the number of observations, or, in our case, the number of com-
parisons that are made by all subjects. Thus, in a complete pair comparison exper-
iment n = (]2\/[> - I. For the degrees of freedom df(b), we can use the approximation
df(b) ~ dfiace(b) or df(b) & df,eset(b) as mentioned above.
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6. Boosting with Implicit Variable Selection

E3
stop

The optimal stopping iteration 0% is chosen among the iterations b = 1,. .., bsop

as the one yielding the best (=lowest) AIC or BIC, respectively. Thus, one has to
compute the AIC or BIC for all iterations first. The optimal stopping iteration is
then determined afterwards using

b*

stop

=b & AICKH

stop

)= min AIC(b)

bzlv---vbstop

when the AIC is chosen as stopping criterion and

k
bstop

=b <« BIC(}; ):b min  BIC(b)

stop =1,...,bstop

when the BIC is chosen as stopping criterion, respectively.
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7. Simulation

7.1. Basic Considerations

In this chapter, we investigate the performance of the boosting algorithm for three
simulation scenarios with 100 simulations for each scenario. In the first two scenarios,
we use M = 4 objects, and M = 8 objects in the third scenario. All objects are
compared pairwise by I = 150 subjects on K = 3 response categories, meaning
that each simulated subject has the possibility to prefer the first object, neither of
the objects, or the second object. In all scenarios, we use P = 6 subject-specific

covariates, which are drawn from the following distributions:

L X1 ~ B(]_,OS) and XQ,Xg ~ B<1,05>
o X4, X5, Xe~ N(0,1)

Each scenario is performed twice, once with the AIC as the stopping criterion and
once with the BIC. For the sake of simplicity, the AIC and BIC are computed using
the number of parameters that have been selected until the b-th boosting iteration
as an approximation for the degrees of freedom. This was also done to investigate
whether the results will be meaningful or useful when using df(b) ~ dfactset().
Furthermore, we set the maximum number of iterations to bs., = 1000 and allow
the algorithm to stop earlier if the chosen stopping criterion deteriorated in the last
10 consecutive iterations. We then use the estimates of the iteration b that yielded

stop
the best (=lowest) AIC or BIC, respectively (see Section 6.3).

7.2. Simulation Scenarios

For each subject ¢« = 1, ..., 150, we have the realizations of subject-specific covariates

XZ»T = (21, ..., %) that are used to simulate the cumulative logit model

M-1 P M-1

logit(P(Yys < k|(1,8),1)) = O + > a0y + 3 3 20209\, k=12,

m=1 p=1m=1
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In the first two scenarios, we use M = 4 objects yielding C = P - (M — 1) = 18
subject-object interactions that can potentially be included in the model. In scenario
3, we use M = 8 objects yielding C = P - (M — 1) = 42 possible subject-object
interactions. Each component used in the model above is standardized, such that

they have a variance of 1.

Hereinafter, we denote )\(T,)p = (Ayp» - - - » Am—1)p) as a vector that contains all M —1
subject-object interactions referring to a single subject-specific covariate p. The first
two scenarios split up into ‘strong effects’ and ‘small effects’ settings. In the ‘small
effects’ setting, the relevant (= non-zero) subject-object parameters are reduced by
a factor of 0.5 compared to those from the ‘strong effects’ setting. This was done
to investigate whether smaller effects could also be identified. The scenarios are

organized as follows:

e Scenario 1 (4 relevant and 14 irrelevant subject-object interactions):

The corresponding relevant parameters, for which A, # 0, are displayed in
boldface in Table 7.1. Additionally, we use the following irrelevant parameters:
Al = A3 = Als = Alje = (0.0,0.0,0.0) that are set to zero.

Parameter | Strong Effects Small Effects
67 (-0.8, 0.8) (-0.8, 0.8)
T (2.0, 1.5, 1.0) (2.0, 1.5, 1.0)
D VI (-0.8, -0.7, 0.0) | (-0.4, -0.35, 0.0)
Al (0.8, 0.7, 0.0) | (0.4, 0.35,0.0)

Table 7.1.: Parameters used in scenario 1

» Scenario 2 (5 relevant and 13 irrelevant subject-object interactions):

The corresponding relevant parameters are displayed in boldface in Table

7.2. Additionally, we use the following irrelevant parameters )\(T,)5 = )\(T,)G =

(0.0,0.0,0.0).

Parameter | Strong Effects | Small Effects
0" (-0.8, 0.8) (-0.8, 0.8)
' (2.0, 1.5, 1.0) (2.0, 1.5, 1.0)

Ay || (-0.8,0.0,0.0) | (-0.4,00,00)

A(T)z (0.0, -0.7, 0.0) | (0.0, -0.35, 0.0)
A(T)3 (0.0, 0.6, 0.0) | (0.0, 0.3, 0.0)
)\64 (0.8,0.7,0.6) | (0.4, 0.35, 0.3)

Table 7.2.: Parameters used in scenario 2
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» Scenario 3 (10 relevant and 32 irrelevant subject-object interactions):

The corresponding relevant parameters are displayed in boldface in Table 7.3.
Additionally, we use the following irrelevant parameters )\(T,)z = /\(T,)S = /\(T.)S =
)\(T,)ﬁ = (0.0,0.0,0.0,0.0,0.0,0.0,0.0).

Parameter Effects
0" (-0.8, 0.8)
AT (2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8)
Ay | (-0.7,-0.6,0.0,00,-0.3,-0.2,-0.1)
Al (0.0, 0.0, 0.5, 0.4, 0.3, 0.2, 0.1)

Table 7.3.: Parameters used in scenario 3

7.3. Results

As in Zahid and Tutz (2011), we introduce two measurements to investigate the

performance of the algorithm:

o The hit rate (HR) that represents the percentage of correctly identified relevant

subject-object interactions is given by

P M-1 ~
2 X Ay # 0) - I(Am)p # 0)
HR = p=1 m=1 (71)

P M-1

2 2 I Ay 7 0)

p=1 m=1

o The false alarm rate (FAR) that represents the percentage of irrelevant candi-

date covariates that are mistakenly identified as relevant candidate covariates

is given by
P M-1 A
Py LAy = 0) - I(A@mp # 0)
FAR = T (7.2)
)IEDY I(A(m)p =0)
p=1 m=1

The S\(m)p’s are the parameters that were identified and estimated by the BTLboost
algorithm, whereas the A(,),’s are the predefined (true) subject-object parameters
from Tables 7.1 — 7.3.

An overview of the hit rate and false alarm rate for all three scenarios is given in
Table 7.4. Hereby, we denote HR ;¢ and HRgj¢ as the hit rate when the AIC or
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BIC is used as stopping criterion, and FARx;c and FARgic are, accordingly, the
false alarm rate when the AIC or BIC is used.

In the ‘strong effects’ setting of scenario 1, both the AIC and the BIC identified
all relevant subject-object parameters (HRajc = HRpie = 1). In this setting, the
FARgic = 0.01571 is lower than the FAR ;¢ = 0.10929. This suggests that the BIC
performs better than the AIC because the AIC is likely to select irrelevant subject-
object interactions more frequently (see also Figure 7.1, which shows that in all
scenarios, the relative frequency for including irrelevant subject-object interactions
is always higher for the AIC than for the BIC). However, in the ‘small effects’ setting,
the HRpic = 0.73750 is much lower than the HRAj¢ = 0.98500, whereas both the
FAR1c and the FARgc increased by about 0.04 compared to the ‘strong effects’
setting. This suggests that, in this case, the BIC might be too restrictive. The results

in scenario 2 are similar.

In scenario 3, we use strong and small effects at the same time. The FARA ;¢ =
0.17781 is much higher compared to the FARg;c = 0.03500. This could be explained
from the following fact: Within our predefined (true) parameters of X[y, and A/,
from Table 7.3, two subject-object parameters were set to zero (those that are not
boldface), and the AIC tends to select these subject-object interactions more fre-
quently than the BIC (see also Figure 7.1, where, for example, in scenario 3 the
relative frequency for 5\(4)1 is about 90%, although we use the predefined parameter
Ay = 0.0).

Scenario Setting HRaic  HRpic | FARAic FARgic
1 strong effects 1.00000 1.00000 | 0.10929 0.01571
small effects 0.98500 0.73750 | 0.14929 0.06000

9 strong effects 1.00000 1.00000 | 0.10500 0.01083
small effects 0.98333 0.62833 | 0.13583 0.05333

3 strong and small effects | 0.88800 0.77900 | 0.17781 0.03500

Table 7.4.: Averaged hit rate (HR) and false alarm rate (FAR) over all 100 simu-
lations for each setting.

Figures 7.2 - 7.6 display the estimates of 100 simulated data sets for all settings
that are mentioned in Section 7.2. The boxplots give an overview of the range of the
estimates, where the red squares denote the underlying predefined (true) parameter
values that are defined in Tables 7.1 - 7.3. Note that the width of the boxplots is
directly related to the number of observations within the boxplot: the thinner the

boxplot, the fewer times its associated parameter was selected.
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7. Simulation

All in all it is difficult to say whether the AIC or the BIC should be chosen as the
stopping criterion. If one is mainly interested in identifying ‘strong effects’, the BIC
seems more appropriate due to the lower FARgic compared to the FARA¢ from
our ‘strong effects’ settings. If one wants to identify ‘small effects’ as well, using
the BIC might be too restrictive and may lead to a lower HRgjc compared to the
HRarc. Thus, one has to weigh the options between the AIC, which may lead to
a higher HR but also a higher FAR, or the BIC, which may lead to a lower FAR
but, in some cases (especially when ‘small effects’ are relevant), also to a much lower
HR.
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Figure 7.1.: Relative frequency of selected subject-object interactions averaged
over the 100 simulations for each scenario. Irrelevant subject-object
interactions are labelled in red, whereas the relevant ones are labelled
in black.
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Scenario 1 — Strong Effects — AIC
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Figure 7.2.: Estimated coefficients after running the BTLboost algorithm with AIC
and BIC as stopping criteria for scenario 1 (strong effects)
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Scenario 1 — Small Effects — AIC
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Figure 7.3.: Estimated coefficients after running the BTLboost algorithm with AIC
and BIC as stopping criteria for scenario 1 (small effects)
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Figure 7.4.: Estimated coefficients after running the BTLboost algorithm with AIC
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Coefficients
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Figure 7.5.: Estimated coefficients after running the BTLboost algorithm with AIC
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Figure 7.6.: Estimated coefficients after running the BTLboost algorithm with AIC

and BIC as stopping criteria for scenario 3

36



8. Application

8. Application

All of the models presented in this chapter are fitted with the ordBTL package,
which was developed during this master thesis. The R-code to reproduce the results
from the following applications can be found in Appendix A.2. The first application
considers an ordinal response with 7 categories. The second application concen-
trates on fitting a pair comparison model considering subject-specific covariates.
Furthermore, the BTLboost algorithm introduced in Chapter 6 is applied. The last

application concerns the inclusion of home advantages.

8.1. Typewriter Ribbon Data

Agresti (1992) used a dataset where 5 different typewriter ribbon brands were com-
pared pairwise by 30 secretaries yielding (g) = 10 pair comparisons for each sec-
retary. In a comparison of brand r and brand s, the secretaries had the choice to
prefer brand r strong, moderate, or mild, prefer neither brand, or prefer brand s
mild, moderate, or strong. Thus, the response consists of seven categories, such that
Vs €{l,...,7}.

In Figure 8.1, we see stacked bar plots showing the percentage of how strong a brand
was preferred in a pair comparison. The brands displayed on the left green bars have
a higher percentage of being preferred than the brands displayed on the yellowish
bars on the right side of the plot. The first bar plot, for example, shows that in a
comparison between brand 3 and brand 4, the latter was preferred in 3% of the cases
and brand 3 was preferred in 87% of the cases, whereas in 10% of the cases none of
either brand were preferred. Furthermore, we can see that each brand was involved
in four comparisons and brand 3 only shows up on the left green bars. This means
that in any comparison in which brand 3 was involved, it was the most preferred
brand. In contrast to this, brand 4 was never the most preferred brand since it only

shows up on the yellow bars on the right. From this simple visual analysis, we can
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assume that brand 3 may be the most preferred brand, whereas brand 4 may be the

least preferred brand.

Preference . strong for r moderate for r mild for r none mild for s moderate for s strong for s

r=3vs.s=4 | 87% r=3 10% s=4 3%

r=1vs.s=4 | 80% r=1 - 7:%: s=4 13%
r=5vs.s=4 | 7% 1(;% s=4 13%
r=3vs.s=1 | 70% 20% s=1 10%
r=3vs.s=2 | 60% l3l% s=2 27%
r=2vs.s=4 | 57% 2(;% s=2 23%
r=1vs.s=2 | 57% 17I% s=4 27%
r=5vs.s=2 | 53% 20I% s=2 27%
r=3vs.s=5 | 53% 13:% s=5 33%
r=1vs.s=5 | 43% 13:% s=5 43%

100 50 {I) 50 100
Percentage

Figure 8.1.: Percentages of how strong a brand was preferred in a comparison be-
tween brand r and brand s

For illustration, we fit the cumulative logit model from Agresti (1992):
logit (P(Yys < k|(r,s)) = 0 + (2" + ...+ 2"y), k=1,....6, (8.1)

which has the constraint that all object parameters sum up to zero: 3.2, v; = 0. The
ordBTL package is only able to fit the model with the constraint v; = 0. Therefore, we
have to re-parametrize model (8.1) to get the same results as Agresti. To do this, we
use the constraint that all parameters sum up to zero and re-express the parameter

v5 as a linear combination of all other parameters, which yields

4 5
B5=0=>v & > 7=0.
i=1 i=1
This is then plugged in model (8.1), yielding the model

logit (P(Ype < k|(r,8))) = O + (2 + ..+ 279, k=1,...,6, (82)

re) — plre) 09 i = 1,....4 are used as independent variables to

where z ;

obtain estimates for ~q,...,7v; and the estimate for 75 is computed by the linear

combination 45 = 0 — Zf‘zl .
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The results can be seen in Table 8.1 and are the same as in Agresti (1992, Table 2).
Note that §4 = —ég, ég, = —92 and éﬁ = —él due to the symmetry constraints for the
thresholds. The parameter estimates for the adjacent categories logit model and the
cumulative probit model are carried out analogously. In each of the three models, the
ranking based on the object parameters is the same: brand 3 ranks best, followed by
brand 5, brand 1, brand 2 and brand 4, which is ranked worst.

Adjacent Cumulative Cumulative
Parameter . . ) . Rank
categories logit logit probit
0, -0.852 -1.379 -2.400 -
0 0.833 -0.490 -0.830 -
0 -0.544 -0.219 -0.371 -
o 0.042 0.058 0.117 3
Ao -0.050 -0.088 -0.196 4
A3 0.270 0.494 0.887 1
Ay -0.340 -0.607 -1.048 5
s 0.078 0.143 0.239 2

Table 8.1.: Estimated thresholds and object parameters; The last column displays
the ranking of the five brands, which is the same for all models.

8.2. CEMS Data

8.2.1. Description

We use the Community of European management schools (CEMS) data from Dit-
trich et al. (1998) that was collected in a survey of 303 students of the Vienna
University of Economics. The aim of this study was to investigate the preferences
of students for studying at least one semester abroad in one of 6 different univer-
sities (London, Paris, Barcelona, St.Gallen, Milan and Stockholm) and to establish
an overall ranking of these universities. For each of the <A24> = (g) = 15 pairs of
universities the students could either prefer the first university, none of both uni-
versities, or the second university. Additionally, the data contains different personal
characteristics (subject-specific covariates) of the students. An overview of the P = 8

subject-specific (binary) covariates is given in Table 8.2.

In Figure 8.2, we illustrate the results of the study using stacked bar plots for each

possible pair comparison. The green bars on the left always have a higher percentage
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of being preferred than the yellow bars on the right. The grey bars reflect the per-
centage in which the surveyed students had no preference in a given comparison of
university r and university s. London appears only on the left green bars, meaning
that in any comparison where London was involved, it was the most preferred uni-
versity. This suggests that, without considering subject-specific covariates, London
may be the most preferred university. Consequently, Stockholm may be the least
preferred university, since it appears only on the right yellow bars. The results in

the following section will confirm these conclusions that were drawn purely from

Figure 8.2.
Covariate Description Coding

STUD Main discipline of study 0 = other, 1 = commerce
ENG Knowledge of English 0 = good, 1 = poor
FRA Knowledge of French 0 = good, 1 = poor

SPA Knowledge of Spanish 0 = good, 1 = poor

ITA Knowledge of Italian 0 = good, 1 = poor
WOR Full-time employment while studying 0 = no, 1 = yes

DEG Intention to take an international degree 0 = no, 1 = yes

SEX Gender 0 = female, 1 = male

Table 8.2.: Description of all P = 8 subject-specific covariates.

Preference . forr

none . fors

6%- s=Stockholm 11%
9% - s=Milano 18%

6%

London vs. Stockholm | 83%

London vs. Milano | 73%

London vs. Barcelona | 72% s=Barcelona 22%

London vs. St.Gallen | 69% 7% s=St.Gallen 24%

10%

Paris vs. Stockholm | 67% s=Stockholm 23%

London vs. Paris | 61% 9% s=Paris 30%

Paris vs. Milano | 57% 15% s=Milano 28%

i

Barcelona vs. Stockholm | 57% 4% s=Stockholm 30%

5%

Milano vs. Stockholm | 52% s=Stockholm 33%

=

St.Gallen vs. Stockholm | 51% 17% s=Stockholm 32%

Paris vs. Barcelona | 52% 12% s=Barcelona 36%

Paris vs. St.Gallen | 54% s=St.Gallen 39%

Barcelona vs. Milano | 44% s=Milano 34%

St.Gallen vs. Barcelona | 48% _ s=Barcelona 44%
St.Gallen vs. Milano | 46% _ s=Milano 45%
100 50 0 50 100
Percentage

Figure 8.2.: Percentages of the preferred universities in the comparison of univer-
sity r and university s.
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8.2.2. Model without Subject-specific Covariates

The adjacent categories logit model (3.8) can be represented as a log-linear BTL
model (see Agresti, 1992). Thus, we can reproduce the results of the log-linear BTL
model from Dittrich et al. (2001) by fitting the adjacent categories logit model using
the ordBTL package.

In this application, the adjacent categories logit model without considering the

subject-specific covariates is

P(Yys = k[(r, 5))
1 = ‘9 r /s
’ (P<Y;~s:k:+1|(r,s)) e+ (=)
= O+ (@ + 2T, k=12,

where

~v1 is the parameter for London,
7o is the parameter for Paris,

~v3 is the parameter for Barcelona,
~v4 is the parameter for St.Gallen,
v5 is the parameter for Milan and

¢ is the parameter for Stockholm, which is used as reference and thus 74 = 0.

The resulting estimates are given in Table 8.3, which are the same estimates as in
the ‘initial model’ from Dittrich et al. (2001, Table 3). Here, London is the most
preferred university, followed by Paris, Barcelona, St.Gallen, Milan and Stockholm,
which is the least preferred university. The interpretation of the threshold 6; can
be derived when two universities with the same ‘worth” and hence the same object
parameters v, = Vs < (7 — 7s) = 0 are considered. In this case, the resulting
log-odds for the adjacent categories logit model with K = 3 response categories are
defined as

P(Y,s = 1|(r, s)) P(‘r is preferred’)
1 =1 =0 4
o8 (IP’(YTS =2[(r,s)) ©8 P(‘no preference’) ! (8.4)
" P(Y,, = 2/(r,5)) P((no preference
e = 2|(r, s ‘no preference’
°8 (IP’(YTS = 3|(r, s))) o8 (P(‘s is preferred’)) ? (8:5)
Since 0y = —0; , we can re-express equation (8.5) as

P(Y,s = 3|(r, s)) P(‘s is preferred’)
°8 (IP)(Y,.S =2|(r,s)) o8 P(‘no preference’) b (8.6)
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From equations (8.4) and (8.6), it follows that

P(‘s is preferred’ P('r is preferred’
log( (‘s is preferre )>:10g< (‘r is preferre )>:6’1. (8.7)

P(‘no preference’) P(‘no preference’)

Thus, 6; can be interpreted as a ‘no preference’ parameter, where 6; > 0 indicates
that there is a tendency in favour of a decision (see also Dittrich et al. (1998), in
which their —§ corresponds to our ;). As seen in Table 8.3, the estimate for the
threshold has a positive value (él = 1.317). Thus, there is a tendency in favour of a

decision.

Parameter University Estimates

0, - 1.317
M London 0.911
2 Paris 0.516
A3 Barcelona 0.306
4 St.Gallen 0.299
As Milan 0.221
Y6 Stockholm  (reference)

Table 8.3.: Parameter estimates for the adjacent categories logit model
without subject-specific covariates from equation (8.3).

8.2.3. Model with Subject-specific Covariates

Dittrich et al. (1998) considered all C' = P - (M — 1) = 8 - 5 = 40 subject-object
interactions and all P = 8 two-way interactions between the subject-specific covari-
ates and the no-preference term (which they denoted by §). Thus, a total number of
48 covariates could potentially be included in their model. To select only the most
important covariates, they used a forward and backward elimination procedure for
their log-linear BTL model (see Christensen, 1990, p. 128). In their final model, 13
subject-object interactions and 2 interactions between subject-specific covariates and
the no-preference term were selected with this procedure (see Dittrich et al., 2001,
Table 6). Below, we apply the BTLboost algorithm on the adjacent categories logit
model and get similar results. Within this model, the two-way interactions between
subject-specific covariates and the no-preference term can be understood as thresh-
old covariates. In this case, the threshold 6, is assumed to depend on subject-specific
covariates and can be re-parametrized using a linear combination of subject-specific
covariates, namely 6; +Z,I;:1 xpbh, (see Fahrmeir et al., 1994, p. 79 - 80). Thus, these
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two-way interactions can be included in the adjacent categories logit model using
the subject-specific covariates and restrict their estimated parameters in the same

way as the thresholds (using the symmetry constraints).

Table 8.4 displays the results of the BTLboost algorithm, where we the Wilkinson and
Rogers notation (Wilkinson and Rogers, 1973) is used as a label for the parameters.
Furthermore, we used the AIC as the stopping criterion because we also wanted
to identify small effects. Here, we used bgop, = 1000 and allowed the algorithm to
stop earlier if the AIC deteriorated in the last 10 consecutive iterations. As seen,
the BTLboost algorithm selected almost the same covariates as the forward and
backward elimination procedure that was used by Dittrich et al. (2001). Compared to
their ‘final model’, the BTLboost algorithm additionally identifies the subject-object
interactions Barcelona.ENG and Milan.FRA, whereas the interaction London.ITA

was not selected.

Parameter  Estimate Parameter Estimate
London 1.046 Barcelona.WOR 0.548
Paris 0.660 StGallen.DEG 0.277
Milan 1.114 Paris.STUD 0.412
StGallen 0.266 StGallen.STUD -0.210
Barcelona 1.060 StGallen.ENG 0.106
Stockholm (reference) London.FRA -0.193
1 1.415 Paris.FRA -0.764
SEX.1 -0.348 Barcelona.SPA -0.811
WOR.1 0.633 Milan.ITA -0.911
Paris.WOR 0.706 Milan.SEX -0.147
Milan.WOR 0.540 Barcelona.ENG -0.167
Milan.FRA -0.164

Table 8.4.: Selected covariates from BTLboost with AIC as the stopping criterion;
The parameters in boldface do not appear in the final model from
Dittrich et al. (2001).

The selected interactions between subject-specific covariates and the no-preference
term (denoted by 1) are SEX.1 and WOR. 1. It is found that fuor.1 = 0.633 > 0, which
means that students who are employed full-time have a higher tendency in favour
of a decision (compared to students who are not employed full-time) and because
ésmu = —0.348 < 0, male students have a lower tendency in favour of a decision
(compared to female students). Furthermore, Xparis.pm, S\Barcelona.spA, S\Milan.ITA have
a negative value, which means that students with poor knowledge of French, Span-

ish and Ttalian have a lower tendency to prefer the universities in Paris (France),

43



8. Application

Barcelona (Spain), and Milan (Italy), respectively. All interactions with the covari-
ate WOR are positive valued, meaning that students who are employed full-time have
a higher tendency to prefer the universities in Paris (France), Barcelona (Spain),
and Milan (Italy). The interpretation for all the other subject-object interactions
is analogous: when the subject-specific covariate has the value 1, then all subject-
object interaction parameters with a negative value reflect a lower tendency for
the corresponding object (here, university) and a positive value of the subject-
object interaction parameters means a higher tendency for the corresponding ob-

ject.

8.3. German Football League 2005/2006

8.3.1. Home Advantage

In this application, we consider the German football league (Bundesliga) of 2005/2006,
in which M = 18 teams competed pairwise. There were a total of (Aj ) 2= (128) 2=
306 matches. This is because in the Bundesliga, the teams meet twice (double round-
robin tournament), where each team is allowed to play at its home location once.
Therefore, we have the pairs (r,s), Vr # s. The final standings are listed in Table
8.5 and are based on the points that are earned in each match: The winning team
earns 3 points, whereas the losing team earns nothing. If the match ends in a draw,

both teams get 1 point.

Since the final standings are based on the number of points and the points are
given based on the three possible outcomes of a match (win, tie, or lose), we fit
a cumulative logit model with K = 3 response categories, such that model M,

(without considering a home advantage) corresponds to
logit (P(Yys < k[(r,5))) = 0 + (28" + ...+ 2l 0), k=12 (8.8)
and model M (that considers a home advantage ag) corresponds to
logit(P(Yys < k|(r,8))) = 0 + a0 + (2" + . 4 2000), k=1,2,  (8.9)

where ~q,...,7v17 are the parameters that represent the ‘ability’ of a team, and

s = 0 (here, MSV Duisburg) is the reference team.
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8. Application

In football competitions there is often the question, whether the team that plays at
its home location has an advantage (home advantage). This can be tested using the
likelihood ratio test, in which we test Hy : ag = 0 against H; : oy # 0 to see if the
home advantage parameter «g can be neglected (Fahrmeir et al., 1994, p. 99-101).
The likelihood ratio test statistic is then computed by

Dev(My) — Dev(My)
A= ,
o
where, in this case, the dispersion parameter ® = 1. Since we test only one pa-

rameter to be equal to zero, Hy can be rejected on 5% significance level when
A > Xgg5(1).

The estimated parameters for model M, and model M; are shown in Table 8.5.
For the test above, we computed the likelihood ratio test statistic by A = 18.045 >
X2 o5(1) = 3.841. Thus, Hy : g = 0 can be rejected, meaning that the home advan-

tage parameter could not be neglected.

We can follow Cattelan et al. (2013) and use the Kendall 7 rank correlation to
see if the ranking based on the estimated team parameters is similar to the (real)
final ranking based on the points. The rank correlation of the restricted model
without considering a home advantage is 73, = 0.922 and 7y, = 0.961 for the
unrestricted model that considers the home advantage. Thus, both models seem

appropriate.
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Final standings Model M, Model M;
Team Points | Rank Estimate | Rank Estimate
FC Bayern Muenchen 75 1 2.152 1 2.324
SV Werder Bremen 70 2 1.971 2 2.100
Hamburger SV 68 3 1.851 3 2.005
FC Schalke 04 61 4 1.537 4 1.648
Bayer Leverkusen 52 5 1.112 5 1.176
Hertha BSC Berlin 48 6 0.969 6 1.063
Borussia Dortmund 46 7 0.887 7 0.991
1. FC Nuernberg 44 10 0.696 9 0.801
VB Stuttgart 43 8 0.843 8 0.946
Borussia Moenchengladbach 42 9 0.736 10 0.790
1. FSV Mainz 05 38 12 0.465 12 0.514
Hannover 96 38 11 0.679 11 0.748
Arminia Bielefeld 37 15 0.295 13 0.393
Eintracht Frankfurt 36 14 0.334 15 0.373
VL Wolfsburg 34 13 0.377 14 0.381
1. FC Kaiserslautern 33 16 0.172 16 0.228
1. FC Koeln 30 17 0.064 17 0.115
MSV Duisburg (reference) 27 | 18 0.000 |18 0.000
Estimate for 6, - - -0.767 | — -0.805
Estimate for oy - — - - 0.478

Table 8.5.: The table shows the final standings, the ranking and estimates based
on the restricted model M, (without considering a home advantage)
and the ranking and estimates based on the unrestricted model M,
(that considers the home advantage).

8.3.2. Team-specific Home Advantage
The consideration of team-specific home advantages enables the reproduction of a
ranking

o for matches where the teams playing at their home location have a home
advantage (which corresponds to the ranking of the home table) and
o for matches where the teams have no home advantage (which corresponds to

the ranking of the away table).

We specify the model M, that includes team-specific home advantages as

logit(P(Y,s < k|(r, ) = Op+ar+ (@4 . +20990), k=1,2, Vr # 5. (8.10)
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8. Application

Using the likelihood ratio test, we can test if including team-specific home advantages
o, Vr =1,...,18 is significantly better than including a single home advantage pa-

rameter ag (as in the model M;). The test can be formulated as
HolOél—Oé(]:...:alg—OéO:O

against H; : a, — ap # 0 for at least one r € {1,...,18}.

Here, the test statistic is A = De”(Ml)IDev(MQ) = 15.917 < 27.587 = X3 ¢5(17). Thus,
Hy can not be rejected and the model M, with team-specific home advantages is
not significantly better than the model M; with a single home advantage « for all

teams.

Table 8.6 reflects the (real) home table and contains estimates of the team’s ‘ability’
(denoted by 7,,) and the home advantage «,, for all m teams. Since the estimates
from the home table represent the ‘ability’ of a team when it plays at its home
location, the estimates are computed by the sum of #,, + &,, and the ranking is
based on this sum. Accordingly, the estimates from the away table, which is given in
Table 8.7, represent the ‘ability’ of a team when it did not play at its home location

(thus, the ranking is based on 4,,).

Kendall’'s mhome = 0.935 for the home table and Tuway = 0.908 for the away ta-
ble, therefore, the rankings based on the estimated parameters are similar to the
(real) rankings based on the points of the home table and the away table, respec-

tively.
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8. Application

Team Points | 4y, Om  Ym + &y Rank
FC Bayern Muenchen 44 2.391 1.192 3.582 1
SV Werder Bremen 39 2.337  0.693 3.029 2
FC Schalke 04 36 1.949 0.532 2482 3
Hamburger SV 32 3.110 -1.175 1.935 5
Borussia Moenchengladbach 31 0.415 1.777 2.191 4
1. FC Nuernberg 30 0.737 1.196 1.932 6
Hertha BSC Berlin 29 1.356  0.426 1.782 7
Borussia Dortmund 28 1.400 0.286 1.686 8
Bayer Leverkusen 27 1.848 -0.194 1.664 9
Arminia Bielefeld 26 0.417 1.007 1.423 11
1. FSV Mainz 05 25 0.523 0.974 1.497 10
VL Wolfsburg 22 0.347 1.011 1.358 12
VIB Stuttgart 22 1.653 -0.408  1.245 13
Hannover 96 21 1.319 -0.126 1.193 14
Eintracht Frankfurt 20 0.933 -0.061 0.871 17
1. FC Kaiserslautern 20 0.505 0.509 1.014 15
1. FC Koeln 19 0.491 0.347 0.838 18
MSV Duisburg (reference) 18 | 0.000 0932 0932 16

Table 8.6.: (real) home table and ranking based on 4, + &,

Team Points | 4,,  Rank
Hamburger SV 36 3.110 1
SV Werder Bremen 31 2337 3
FC Bayern Muenchen 31 2.391 2
Bayer Leverkusen 25 1.848 5
FC Schalke 04 25 1.949 4
VB Stuttgart 21 1.653 6
Hertha BSC Berlin 19 1.356 8
Borussia Dortmund 18 1.400 7
Hannover 96 17 1.319 9
Eintracht Frankfurt 16 0.933 10
1. FC Nuernberg 14 0.737 11
1. FSV Mainz 05 13 0.523 12
1. FC Kaiserslautern 13 0.505 13
VL Wolfsburg 12 0.347 17
1. FC Koeln 11 0.491 14
Borussia Moenchengladbach 11 0.415 16
Arminia Bielefeld 11 0.417 15
MSV Duisburg (reference) 9 0.000 18

Table 8.7.: (real) away table and ranking based on 4,,
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9. Discussion and Outlook

In this thesis, we described methods that enable making preference rankings for
objects that are compared pairwise. The estimated object parameters reflect the
‘ability’ or ‘worth’ of an object and are assumed to be fixed values. It is also possible
to assume that the object parameters vary over time, which is an approach that
was considered by Fahrmeir and Tutz (1994) and more recently by Cattelan et al.
(2013). This can make sense in terms of sport competitions if the ‘ability’ of a team
(or player) is assumed to be time-dependent, e.g. if the ‘ability’ of a team (or player)

improves over time.

We also handled the case when subject-specific covariates and order effects (or,
equivalently, home advantages) are included in the model. However, for the subject-
specific covariates we used only linear effects, which might be too restrictive in
some application fields, but theoretically, non-linear effects could also be considered
(see Francis et al., 2002). The model considered by Cattelan et al. (2013) is being
described as a ‘convenient way to induce home abilities which vary between teams
and in time depending on past performances of teams’. In their paper, the authors
state that the inclusion of team-specific home advantages is controversial in the
literature since different researchers make different conclusions about whether team-
specific home advantages should be considered or whether supposing the same home
advantage for all teams is appropriate. The same statement can also be found in
Cattelan et al. (2010), who also criticised the method of including team-specific
home advantages as we have done in Section 4.2.2 due to the additional number
of parameters that have to be estimated. Since team-specific home advantages are
included in the model as dummy variables (see Section 4.2.2), one can apply the
boosting algorithm for variable selection (proposed in Chapter 6) to overcome the
criticised issue, such that only important team-specific home advantages might be

included.

The inclusion of object-specific covariates was not considered in this thesis. The
easiest way to include object-specific covariates is to replace the object parameters

Ym by a linear combination of object-specific covariates 7, = 29, 00T (m)o, Where
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9. Discussion and Outlook

T(m)1,- - - T(m)o are the object-specific covariates and 4y, ..., 0o are the correspond-
ing parameters (Hatzinger and Dittrich, 2012). However, this will only allow for mak-
ing conclusions about the effect of object-specific covariates (without considering an
effect for the objects themselves) and makes sense if the object-specific covariates are

assumed to fully represent the ‘worth’ or ‘ability’ of the objects.

Threshold covariates, where the thresholds are assumed to be dependent from ex-
planatory variables, could also be considered in the model. This was implicitly done
for the adjacent categories logit model with 3 response categories in Section 8.2.3.
However, the interpretation of threshold covariates for the cumulative link model
or the adjacent categories logit model with more than 3 response categories is
more complicated, since more than a single threshold parameter has to be esti-

mated.

The results of the simulation study in Chapter 7 and the application of the boosting
algorithm on a real data set in Section 8.2.3 suggest that the algorithm seems to
work. However, we used only linear effects for the covariates (linear base learners).
Above, we mentioned that non-linear effects could also be included. Thus, further
work will be required to extend the BTLboost algorithm to also include non-linear

base learners.
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A. R-Code

A.1. BTLboost Implementation

Listing A.1: R function for BTLboost algorithm

BTLboost <- function(formula, data, mstop=1000, selection=c("AIC","BIC"),
objects, stopif=3, parallel=TRUE, verbose=TRUE, ...){

require(gtools)

require (VGAM)

selection <- match.arg(selection)

mc <- match.call()

mc[[1]] <- as.name("ordBTL")

rm <- c("mstop", "selection","stopif","objects",
"parallel","verbose")

mc [rm] <- NULL

mc$noWarning <- TRUE

# model formulas

allVars <- attr(terms(formula),"term.labels")

pool <- allVars['!allVarsinjobjects]

response <- as.character(formula) [2]

formobjects <- paste(response, paste(objects, collapse="+"), sep="~")

formCandidate <- paste(response, paste(pool, "1", sep="-"), sep="~")

# preallocation
base <- vector("list", length=length(formCandidate))
metric <- nparam <- numeric(length(formCandidate))

crit <- selected <- rep(NA, length(mstop))

### Step 1: get initial values (intercept model)

mc$formula <- as.formula(paste(response,"~", "1"))

95




28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

52

53

54

55

56

57

58

59

60

61

62

63

64

65

A. R-Code

intercept <- eval(mc)
f <- intercept@predictors
param <- coefficients(intercept)

paramlist <- rbind(NA, param)

# Start loop for m=1,..., mstop

for(j in 1:mstop){
### Step 2A: object predictors
mc$data <- data
mc$formula <- as.formula(formobjects)
mc$offset <- mc$etastart <- f
mcPmaxit <- 1
obligatory <- eval(mc)
# update step
f <- £ + obligatory@predictors
coefs <- smartbind(param, coefficients(obligatory))

param <- colSums(coefs, na.rm=TRUE)

### Step 2B: candidate predictors
if (parallel){ # parallel computation
base <- foreach(i=1:length(formCandidate),
.packages="ordBTL") Ydopar’ {
mc$formula <- as.formula(formCandidate[i])
mc$offset <- mcPetastart <- £
mcPmaxit <- 1
mc$data <- data
base <- eval(mc)
}
}else{ # sequential computation (slower)
for(i in 1:length(formCandidate)) {
mc$formula <- as.formula(formCandidatel[i])
mc$offset <- mcPetastart <- f

base[[i]] <- eval(mc)

# stopping and selection criterion
nparam <- sapply(pool, function(X){length(unique(c(names(param), X)))
b
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A. R-Code

if (selection=="AIC"){

metric <- sapply(base, function(X){deviance(X)}) + 2*nparam
} elsed{

metric <- sapply(base, function(X){deviance(X)}) + log(nobs(

intercept) ) *nparam

# update step

best <- which.min(metric)

coefs <- smartbind(param, coefficients(base[[best]]))
param <- colSums(coefs, na.rm=TRUE)

paramlist <- smartbind(paramlist, param)

f <- f + basel[[best]]@predictors

crit[j] <- metric[best]

selected[j] <- pooll[best]

# print iteration
if (verbose==TRUE){
cat(sprintf ("% 5.0f", j),
paste(selection, ":", sep=""), sprintf("%.3f", critl[jl),
"| vars:", sprintf("% 3.0f", length(param)),
"| updated:", pool[best], "\n")

# stop earlier
if (length(na.omit (crit))>=stopif &&
lis.unsorted(window(crit, j-(stopif-1),j), na.rm=TRUE)){
cat("Finished:", "No improvement of", selection, "in the last",
stopif, "steps \n")
return(list (BEST=paramlist[which.min(crit)+2,], CRITERION=crit,
PATH=paramlist, UPDATED=selected))

return(list (BEST=paramlist[which.min(crit)+2,], CRITERION=crit,

PATH=paramlist, UPDATED=selected))
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A.2. Applications

Listing A.2: R code for models from Section 8.1

library(ordBTL)

g T
# Reproduce model from Table 8.1
g s T
# Data from Table 1 of Agresti (1992)

data(ribbon)

# design matrix

des3 <- design(ribbon, varl="objl", var2="obj2", use.vars="ALL")

# Note that Agresti (1992) used the constraint that the object

# parameters sum up to 1. To get the same results, we use the model

form3 <- cbind(V1,V2,V3,V4,V5,V6,V7)~I(GAMMA.1-GAMMA.5)+
T(GAMMA.2-GAMMA.5)+I (GAMMA .3-GAMMA.5)+I (GAMMA .4-GAMMA .5)

# Fit the adjacent categories logit model
ac <- ordBTL(form3, data=des3, family="acat",
family.control=list(reverse=TRUE))

# Fit the cumulative logit model
clm.logit <- ordBTL(form3, data=des3)

# Fit the cumulative probit model
clm.probit <- ordBTL(form3, data=des3,
family.control=list (link="probit"))

# Parameter estimates

coefs <- t(rbind("Adjacent categories logit"=coefficients(ac),
"Cumulative probit"=coefficients(clm.probit),
"Cumulative logit"=coefficients(clm.logit)))

coefs <- rbind(coefs, "GAMMA.5"=0-colSums(coefs[4:7,]))

coefs
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Listing A.3: R code for models from Section 8.2

library(ordBTL)

HEHHAH B H AR R R R R

# Reproduce model from Table 8.3

S s s S s s

# Get the CEMS data and generate design matrix

example (wide2long, package="ordBTL", echo=FALSE)

desl <- design(CEMSlong, varl="objectl", var2="object2",
use.vars="Y", reference="Stockholm")

# Fit the adjacent categories model

modl <- ordBTL(Y~., data=desl, family="acat",
family.control=list (reverse=TRUE))

# We get the same results from Table 3 of Dittrich et al (2001).

getRank (mod1)

B e
# Apply BTLboost algorithm on CEMS data (reproduce Table 8.4)
s s s e s S S s s e s e e e e S e S e e e R T
# Generate design matrix and specify model formula
des2 <- design(CEMSlong[-which(is.na(CEMSlong$Y)),],
varl="objectl", var2="object2",
use.vars="ALL", reference="Stockholm")
form.all <- Y ~ (GAMMA.London + GAMMA.Paris + GAMMA.Milano +
GAMMA.StGallen + GAMMA.Barcelona)*
(WOR +SEX + DEG + STUD + ENG + FRA + SPA + ITA)
objects <- c("GAMMA.London", "GAMMA.Paris","GAMMA.Milano",
"GAMMA.StGallen", "GAMMA.Barcelona")
subject.covs <- c("ENG","FRA","SPA","ITA","WOR","DEG","SEX","STUD")

# convert subject-specific covariates to 0-1 dummy variables

for(i in subject.covs) des2[,i] <- as.numeric(as.character(des2[,i]))-1

# You have to load the BTLboost function from Appendix A.1 first

AICcems <- BTLboost(form.all, data=des2, family="acat", parallel=FALSE,
family.control=1list(reverse=TRUE), objects=objects,
restrict=subject.covs, selection="AIC")

AICcems$BEST
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Listing A.4: R code for models from Section 8.3

library(ordBTL)
HHHHHAHHBHBHBHBHBH AR HRHAHAHREHEHEHEHEH GRS R RS RS RGBS BHBHRH B RS
# Reproduce models from Table 8.5

HHHHAHBHHAHHAH R H R H R AR R H B R AR ARG H RS H R
# load data

example(design, package="ordBTL", echo=FALSE)

# Model without home advantage

des.nohome <- design(buli0506, varl="Heim", var2="Gast",
use.vars="Y3", home.advantage="no",
reference="GAMMA .MSV.Duisburg")

mod .nohome <- ordBTL(Y3~., data=des.nohome)

# team 'abilities' (should be the ranking of the final standings)

getRank (mod.nohome, prefix="GAMMA", reference="GAMMA.MSV.Duisburg")

# Model with home advantage

des.onehome <- design(buli0506, varl="Heim", var2="Gast",
use.vars="Y3", home.advantage="yes",
reference="GAMMA .MSV.Duisburg")

mod.onehome <- ordBTL(Y3~., data=des.onehome)

# team 'abilities'

getRank (mod.onehome, prefix="GAMMA", reference="GAMMA.MSV.Duisburg")

# home advantage

getRank (mod.onehome, prefix="ALPHA")

g S T T

# Reproduce model from Table 8.6 and Table 8.7

g T

# Model with team-specific home advantage

des.teamhome <- design(buli0506, varl="Heim", var2="Gast",
use.vars="Y3", home.advantage="specific",
reference="GAMMA.MSV.Duisburg")

mod.teamhome <- ordBTL(Y3~., data=des.teamhome)

# team 'abilities' (should be the ranking for the away table)

getRank (mod.teamhome, prefix="GAMMA", reference="GAMMA.MSV.Duisburg")

# team-specific home advantages

getRank (mod.teamhome, prefix="ALPHA")
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B. Structure of the CD-ROM

B. Structure of the CD-ROM

The attached CD-ROM contains the following files and file folders:

. : Folder containing all created graphics (as .pdf file) used in this

thesis.

Simulation\ ‘: Folder containing the following files:

- : Subfolder containing all .RData files that are created from
the files listed below. They include the simulated data sets and the results.

— : Functions used for simulations.
— |AICsim.R | R code for Scenario 1 and 2 with AIC as stopping criterion.

— |BICsim.R | R code for Scenario 1 and 2 with BIC as stopping criterion.
— [Scenario3AIC.R]: R code for Scenario 3 with AIC as stopping criterion.

— |Scenario3BIC.R|: R code for Scenario 3 with BIC as stopping criterion.

- ’simulation_results.R‘: R code for tables and figures from Chapter 7.

Applications\ | Contains the following files:

— |AppFun.R | Functions used for applications.
— [ribbon.R | Results for Section 8.1.

— [cems.R| Results for Section 8.2.

— ’AICcemsBoost.RData ‘: Saved results for Table 8.4 generated by cems.R.

— [football.R]: Results for Section 8.3.

— ’home_away_tab.RData ‘: Saved home table and away table.
MA_Casalicchio.pdf ‘: The present thesis as .pdf file.
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