Adaptive motion processing in bilateral vestibular failure

Roger Kalla,1,2,3 Neil Muggleton,2 Rainer Spiegel,1 Domenica Bueti,2 Jens Claassen,1 Vincent Walsh,2 Adolfo Bronstein3,4

ABSTRACT

Background Patients with bilateral vestibular failure (BVF) suffer from oscillopsia during head movements. This is secondary to the loss of the vestibulo-ocular reflex which is responsible for stabilising retinal images during head movements of high frequency or velocity. Previous studies documented decreased visual motion sensitivity in such patients at low velocities. The authors now examine motion coherence tasks, which have two advantages: (1) the task is associated with the functions of the middle temporal area; and (2) it affords testing at low and high motion velocities, as relevant for patients with oscillopsia due to BVF.

Methods Nine BVF patients and nine healthy control subjects were examined with a random dot pattern with variable percentages of dots moving in the target direction. Participants were asked to indicate in which of two possible directions they perceived the coherent motion. Horizontal and vertical planes were tested at speeds from 0.156 to 40°/s.

Results Motion coherence thresholds were lower at higher speeds in both groups (p<0.0001). BVF patients had raised motion coherence thresholds (p=0.002) across all velocities as compared with the control subject group.

Conclusion In a motion coherence paradigm, BVF patients show raised thresholds. This is the first demonstration of diminished visual motion processing at high velocities, supporting the view that the changes allow BVF patients to partly compensate for the oscillopsia. The findings are interpreted as an adaptive process likely to involve the middle temporal visual motion processing areas.

INTRODUCTION

Bilateral vestibular failure (BVF) is a chronic disorder of the peripheral labyrinths or the eighth cranial nerves. The patients present to the neurologist rather than to the otologist because patients usually have unsteadiness and visual symptoms, rather than hearing complaints. BVF can be caused by various aetiologies, such as progressive cerebellar ataxia, cranial or peripheral neuropathies, otological, neoplastic, autoimmune or associated neurological diseases; the more common causes are postmeningitis, ototoxic drugs (in particular gentamicin) and idiopathic BVF.1,2

A key symptom in BVF patients is oscillopsia, an illusionary movement of the visual world, during passive (eg, travelling in vehicles) and active head movements. Oscillopsia arises as a result of retinal image slip owing to an insufficient vestibulo-ocular reflex (VOR), the reflex responsible for stabilising retinal images during head movements. Several mechanisms exist in these patients that allow retinal image stability during slow head movements, such as pursuit-optokinetic and cervico-ocular reflexes.3–5 This is the reason why patients’ oscillopsia is almost exclusively reported during activities involving head movements of high velocity or frequency content—for example, driving on a bumpy road, walking briskly or shaking the head.

During the acute stages of vestibular loss (eg, upon first mobilising after gentamicin treatment), oscillopsia is marked and distressing. However, with time, the severity of symptoms decreases,3,4 even though VOR recovery is exceptional, and oculomotor mechanisms hardly take over the high-velocity gaze-stabilising role of the VOR.4,5 This suggests that sensory or perceptual processes, in addition to oculomotor mechanisms, may contribute to the subjective symptomatic recovery of these patients.

In this regard, one study found that changes in subjective ‘tolerance’ to retinal image slippage was associated with lower oscillopsia handicap scores as a measure for defining the degree of disruption to the daily life and social activities of that individual6 and with a higher perceived degree of control over one’s health. Although, at first, this finding is counterintuitive (ie, a higher retinal slip speed was associated with lower oscillopsia handicap scores), the suggestion was that adaptation to oscillopsia was partly dependent on the development of tolerance to the movement of images on the retina during self-motion. Accordingly, the latter may be mediated by a reduction in visual-motion sensitivity.4,6

Evidence for a loss of sensitivity to visual motion was first described in patients with oculomotor disorders and was proposed to account for the rarity of reports of oscillopsia during head movements in these patients.7 It was later found that sensitivity for slowly moving small targets8 and drifting gratings9 was impaired in BVF patients, even when patients’ heads were stationary, and the VOR was inactive.9 Consequently, the mechanism that helps to suppress oscillopsia during head movements cannot be entirely switched off when the head is held still, thus suggestive of a generalised adaptive suppression in motion sensitivity perception in these patients, presumably in cortical areas responsible for multimodal motion processing.8,9

A major limitation of previous studies measuring visual motion processing is that slow target velocities were used. Since pursuit-optokinetic mechanisms suffice to stabilise retinal images at low velocities, it could be argued that the velocities
practised usually four training blocks of 32 trials each until they

instructed that they would have to determine whether the

vertical task or left or right for the horizontal task. For illustrative

purposes, coherent and randomly moving dots are indicated as white

and black respectively.

Procedure and experimental paradigms

were accustomed to the experiment. This included two training

blocks for both directions (horizontal/vertical) with slow- and

moderately fast-moving dots (1.25 and 10°/s). The initial display

contained dots in a one-to-one signal-to-noise ratio. If the

observer’s direction judgement was correct, the degree of

coherent motion was decreased by 1 dB. Likewise, an incorrect

judgement led to an increase in the degree of coherent motion of

3 dB. For each staircase, the observer completed 128 trials. To
calculate a coherence threshold, the proportion of correct
responses at each tested displacement was calculated. A probit
analysis was used to find the coherence level at which the
subject would be expected to perform at 75% correct. The dots
moved at 0.15, 0.3, 0.6, 1.25, 2.5, 5, 10, 20 or 40°/s for both
horizontal and vertical motion; hence 18 conditions were tested
with 128 trials for each speed and direction combination. One
speed and one axis of motion was used in each block of trials
with the direction within each axis selected randomly across
trials. The total testing time usually lasted 90 min, including
two breaks of 5 min each, in a room with normal lighting.

For statistical analysis, a repeated-measures ANOVA (Statis-
tica 6.1, Statsoft) with post-hoc Scheffé tests was performed.
The ANOVA design was composed of one between-subjects
factor (group: normal/BVF patients) and two within-subjects
factors (direction: horizontal/vertical; speed: 0.1562, 0.3125,
0.625, 1.25, 2.5, 5, 10, 20, 40°/s).

RESULTS

The task and an accompanying illustration appear in figure 1.
The results for patients and control subjects are presented in
figure 2 (for individual mean scores, see table 1), showing higher
thresholds for patients than control subjects at all velocities and
directions. The ANOVA on motion coherence thresholds
revealed a significant main effect of group, F(1, 16)=12.452,
p=0.00281, which was due to increased thresholds in patients.
The main effect of speed, F(8, 128)=81.304, p<0.0001, across
both groups was due to a difference in thresholds as a function
target speed. Thresholds dropped steeply between 0.31 and

Figure 1 Array containing randomly positioned dots presented on
a computer screen. A percentage of the dots moved coherently either up
or down (vertical) or left or right (horizontal task). The remaining dots
moved in random directions. The subject was required to indicate, by
means of a key press, whether the coherent motion was up or down for
the vertical task or left or right for the horizontal task. For illustrative
purposes, coherent and randomly moving dots are indicated as white
and black respectively.

J Neurol Neurosurg Psychiatry 2011;82:1212–1216. doi:10.1136/jnnp.2010.235960

Downloaded from http://jnnp.bmj.com/ on November 20, 2014 - Published by group.bmj.com
A study found that adaptation to retinal image slippage, and horizontal visual motion. We will now discuss these two main findings.

DISCUSSION

The present study tested motion coherence in patients with BVF and healthy control subjects, at a broad range of target speeds. This fulfilled two purposes. First, it allowed us to examine velocities of visual motion relevant for BVF patients (ie, that cannot be compensated for by cervico-ocular and/or pursuit optokinetic mechanisms). The result was that motion coherence thresholds were higher for patients than in the control group, that is, patients had more difficulty detecting coherent motion. Second, it allowed us to test if the ability to spot motion coherence was influenced by target velocity. Here, we found that higher target speeds have lower motion coherence thresholds in both groups, that is, they are easier to detect. The ANOVA conducted showed that there was no significant interaction between group and speed, indicating that patients and control subjects were equally affected by the various speeds.

Similarly, there were no differences between vertical or horizontal visual motion. There was no overall direction effect. As to which CNS areas may be involved in this adaptive process, functional brain-imaging studies with stimuli differing in their level of coherence show activity in the middle temporal area of the human brain but not in the preceding area of V1. In support of this notion, lesions to the middle temporal area of the macaque brain induce specific deficits for this task with relative sparing of other visual functions. Further evidence stems from recent findings illustrating how vestibular signals contribute to cortical processes mediating self-motion perception. This study, which recorded the activity of neurons in the dorsal medial superior temporal area during a task in which monkeys combined visual and vestibular cues to discriminate heading, showed that responses recorded in dorsal medial superior temporal area were significantly correlated with the perceptual decisions of the monkeys and that the strongest correlations occurred in the most sensitive neurons. Consequently, the medial temporal area of the brain is active not only in the motion coherence paradigm but also in visuo-vestibular interaction, and thus is particularly relevant to our findings in patients with BVF.

In contrast, a recent fMRI study on BVF patients showed no evidence of there being less activation in the middle temporal area, but this study did not use the motion-coherence paradigm. In another recent fMRI study with patients with unilateral vestibular failure, visual motion with optokinetic stimuli did show diminished activation of bilateral visual cortex areas, including the middle temporal area; this was interpreted as an adaptive mechanism suppressing oscillopsia. In agreement, we suggest that the raised coherent motion thresholds in BVF patients could be mediated by a downregulatory process in the middle temporal area leading to a subjective reduction in the levels of perceived oscillopsia during head movements. It should be taken into account that the time of lesion onset varies strongly in our sample (8 to 26 years). This aspect could have led to possible reorganisation processes in some patients more than in others. Hence, we rather take on a cautious perspective by saying that downregulatory processes could have been at work, and that movement of images on the retina during self-motion, suggestive of reduced visual motion sensitivity. Moreover, it was found that the mechanism responsible for suppressing oscillopsia during head movements is still active when the head is stationary. This result is in line with a generalised adaptive suppression in motion sensitivity perception in patients with BVF; which might take place in cortical areas responsible for multimodal motion processing. In order to extract the direction of motion in these motion tasks, the observer needs to combine information from many parts of the image, and it is therefore assumed to involve a global process rather than the local-motion detection of earlier stages in visual processing. Surprisingly, our results showed no direction effect, in contrast to data from Grünbauer and colleagues, who reported that horizontal object motion was more severely impaired than vertical motion perception. The difference between the two studies is likely to relate to the fact that Grünbauer and colleagues focused on low speed thresholds. The low speed thresholds in these data (see figure 2A,B) also suggests there is a horizontal versus vertical effect found by Grünbauer and colleagues, as there is a greater difference between patients and healthy control subjects for horizontal rather than for vertical motion. As target speed increases (ie, with medium to high speed), this difference vanishes. Given that we tested a large range of thresholds, in contrast to earlier work where low thresholds only had been considered, it becomes clear why there is no overall direction effect.

As to which CNS areas may be involved in this adaptive process, functional brain-imaging studies with stimuli differing in their level of coherence show activity in the middle temporal area of the human brain but not in the preceding area of V1. In support of this notion, lesions to the middle temporal area of the macaque brain induce specific deficits for this task with relative sparing of other visual functions. Further evidence stems from recent findings illustrating how vestibular signals contribute to cortical processes mediating self-motion perception. This study, which recorded the activity of neurons in the dorsal medial superior temporal area during a task in which monkeys combined visual and vestibular cues to discriminate heading, showed that responses recorded in dorsal medial superior temporal area were significantly correlated with the perceptual decisions of the monkeys and that the strongest correlations occurred in the most sensitive neurons. Consequently, the medial temporal area of the brain is active not only in the motion coherence paradigm but also in visuo-vestibular interaction, and thus is particularly relevant to our findings in patients with BVF. In contrast, a recent fMRI study on BVF patients showed no evidence of there being less activation in the middle temporal area, but this study did not use the motion-coherence paradigm. In another recent fMRI study with patients with unilateral vestibular failure, visual motion with optokinetic stimuli did show diminished activation of bilateral visual cortex areas, including the middle temporal area; this was interpreted as an adaptive mechanism suppressing oscillopsia. In agreement, we suggest that the raised coherent motion thresholds in BVF patients could be mediated by a downregulatory process in the middle temporal area leading to a subjective reduction in the levels of perceived oscillopsia during head movements. It should be taken into account that the time of lesion onset varies strongly in our sample (8 to 26 years). This aspect could have led to possible reorganisation processes in some patients more than in others. Hence, we rather take on a cautious perspective by saying that downregulatory processes could have been at work, and that...
Another interpretation that should not be neglected is that a loss of vestibular input can just as well directly lead to impaired motion perception, so instead of motion detection being an adaptive response, it could just as well be a consequence of the lesion. However, this interpretation would contradict the findings by Grunfeld et al in patients with BVF showing that patients who are better compensated display more tolerance to retinal slippage. This suggests that the decrease in visual motion sensitivity is indeed a secondary, compensatory process. An additional mechanism could be related to adaptation effects, which occur in normal subjects following presentation of moving stimuli. The contribution of aftereffects to reduced sensitivity in patient populations may also warrant further investigation.

The second finding of this paper was that motion coherence is detected more easily when motion is faster, both in healthy control subjects and in patients with BVF. This finding in control subjects is consistent with both the greater change in information inherent to faster-moving stimuli and previous reports of degraded motion discrimination for lower-speed stimuli presented for the same duration. While BVF patients were impaired relative to control subjects, they maintained a similar pattern of better performance for higher-speed coherent motion.

To conclude, this study showed that BVF patients have higher motion coherence thresholds than control subjects, which may be the result of an adaptive process to reduce unpleasant symptoms of oscillopsia owing to retinal image motion during head movements in patients with loss of the VOR. Stimulus speed influenced motion coherence thresholds, that is, motion coherence was spotted more easily when motion was faster in both subject groups.

Acknowledgements This experiment was carried out using Cogent Graphics developed by J Romaya at the LON at the Wellcome Department of Imaging Neuroscience, London, UK. We thank the patients and healthy control subjects who kindly agreed to take part in this study.

Funding This work was supported by the German Ministry of Education and Research (BMBF), grant No 01ED0901 to the IFBLMU ‘Integriertes Forschungs- und Behandlungszentrum für Schwindel, Gleichgewichts- und Augenbewegungsstörungen’ and a post-doc grant to the first author by Deutsche Forschungsgemeinschaft (DFG).

Table 1 Coherence thresholds at different speeds with horizontal (A) and vertical (B) motion for all bilateral vestibular failure (BVF) patients and healthy control subjects (Con)

<table>
<thead>
<tr>
<th>Speed (°/s)</th>
<th>0.16</th>
<th>0.31</th>
<th>0.63</th>
<th>1.25</th>
<th>2.50</th>
<th>5.00</th>
<th>10.0</th>
<th>20.0</th>
<th>40.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Con-1</td>
<td>0.93</td>
<td>0.24</td>
<td>0.24</td>
<td>0.16</td>
<td>0.13</td>
<td>0.14</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Con-2</td>
<td>0.43</td>
<td>0.47</td>
<td>0.48</td>
<td>0.27</td>
<td>0.21</td>
<td>0.20</td>
<td>0.12</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Con-3</td>
<td>1.00</td>
<td>0.70</td>
<td>0.35</td>
<td>0.31</td>
<td>0.16</td>
<td>0.22</td>
<td>0.17</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>Con-4</td>
<td>0.63</td>
<td>0.60</td>
<td>0.49</td>
<td>0.38</td>
<td>0.17</td>
<td>0.20</td>
<td>0.12</td>
<td>0.09</td>
<td>0.13</td>
</tr>
<tr>
<td>Con-5</td>
<td>0.47</td>
<td>0.51</td>
<td>0.41</td>
<td>0.30</td>
<td>0.15</td>
<td>0.22</td>
<td>0.11</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>Con-6</td>
<td>1.00</td>
<td>0.56</td>
<td>0.44</td>
<td>0.25</td>
<td>0.14</td>
<td>0.16</td>
<td>0.09</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Con-7</td>
<td>0.81</td>
<td>0.37</td>
<td>0.17</td>
<td>0.13</td>
<td>0.13</td>
<td>0.10</td>
<td>0.09</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Con-8</td>
<td>0.28</td>
<td>0.65</td>
<td>0.43</td>
<td>0.29</td>
<td>0.26</td>
<td>0.12</td>
<td>0.12</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>Con-9</td>
<td>0.90</td>
<td>0.51</td>
<td>0.27</td>
<td>0.28</td>
<td>0.14</td>
<td>0.16</td>
<td>0.11</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>BVF-1</td>
<td>0.98</td>
<td>0.75</td>
<td>0.44</td>
<td>0.32</td>
<td>0.27</td>
<td>0.17</td>
<td>0.13</td>
<td>0.10</td>
<td>0.18</td>
</tr>
<tr>
<td>BVF-2</td>
<td>1.00</td>
<td>0.99</td>
<td>0.56</td>
<td>0.27</td>
<td>0.22</td>
<td>0.18</td>
<td>0.12</td>
<td>0.18</td>
<td>0.28</td>
</tr>
<tr>
<td>BVF-3</td>
<td>1.00</td>
<td>0.87</td>
<td>0.51</td>
<td>0.31</td>
<td>0.25</td>
<td>0.21</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>BVF-4</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.76</td>
<td>0.66</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>BVF-5</td>
<td>0.67</td>
<td>0.71</td>
<td>0.29</td>
<td>0.17</td>
<td>0.15</td>
<td>0.26</td>
<td>0.09</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>BVF-6</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.88</td>
<td>0.68</td>
<td>0.26</td>
<td>0.10</td>
<td>0.40</td>
<td>0.88</td>
</tr>
<tr>
<td>BVF-7</td>
<td>1.00</td>
<td>1.00</td>
<td>0.89</td>
<td>0.79</td>
<td>0.53</td>
<td>0.46</td>
<td>0.23</td>
<td>0.45</td>
<td>0.33</td>
</tr>
<tr>
<td>BVF-8</td>
<td>0.78</td>
<td>1.00</td>
<td>0.86</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.29</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>BVF-9</td>
<td>0.88</td>
<td>0.93</td>
<td>0.51</td>
<td>0.27</td>
<td>0.23</td>
<td>0.23</td>
<td>0.24</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Con-1</td>
<td>1.00</td>
<td>0.75</td>
<td>0.44</td>
<td>0.16</td>
<td>0.14</td>
<td>0.15</td>
<td>0.28</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>Con-2</td>
<td>0.70</td>
<td>0.76</td>
<td>0.61</td>
<td>0.24</td>
<td>0.29</td>
<td>0.09</td>
<td>0.13</td>
<td>0.19</td>
<td>0.08</td>
</tr>
<tr>
<td>Con-3</td>
<td>1.00</td>
<td>1.00</td>
<td>0.48</td>
<td>0.30</td>
<td>0.28</td>
<td>0.24</td>
<td>0.17</td>
<td>0.21</td>
<td>0.14</td>
</tr>
<tr>
<td>Con-4</td>
<td>0.89</td>
<td>0.93</td>
<td>0.78</td>
<td>0.42</td>
<td>0.19</td>
<td>0.13</td>
<td>0.18</td>
<td>0.17</td>
<td>0.23</td>
</tr>
<tr>
<td>Con-5</td>
<td>1.00</td>
<td>0.71</td>
<td>0.41</td>
<td>0.34</td>
<td>0.22</td>
<td>0.21</td>
<td>0.25</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Con-6</td>
<td>0.64</td>
<td>0.48</td>
<td>0.37</td>
<td>0.16</td>
<td>0.17</td>
<td>0.16</td>
<td>0.09</td>
<td>0.10</td>
<td>0.18</td>
</tr>
<tr>
<td>Con-7</td>
<td>0.39</td>
<td>0.19</td>
<td>0.41</td>
<td>0.31</td>
<td>0.13</td>
<td>0.11</td>
<td>0.20</td>
<td>0.16</td>
<td>0.23</td>
</tr>
<tr>
<td>Con-8</td>
<td>0.47</td>
<td>0.39</td>
<td>0.53</td>
<td>0.25</td>
<td>0.07</td>
<td>0.18</td>
<td>0.32</td>
<td>0.26</td>
<td>0.14</td>
</tr>
<tr>
<td>Con-9</td>
<td>0.94</td>
<td>0.48</td>
<td>0.24</td>
<td>0.17</td>
<td>0.10</td>
<td>0.09</td>
<td>0.15</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>BVF-1</td>
<td>0.96</td>
<td>0.60</td>
<td>0.30</td>
<td>0.24</td>
<td>0.28</td>
<td>0.27</td>
<td>0.24</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>BVF-2</td>
<td>1.00</td>
<td>0.85</td>
<td>0.79</td>
<td>0.35</td>
<td>0.45</td>
<td>0.18</td>
<td>0.21</td>
<td>0.14</td>
<td>0.21</td>
</tr>
<tr>
<td>BVF-3</td>
<td>1.00</td>
<td>0.99</td>
<td>0.58</td>
<td>0.48</td>
<td>0.37</td>
<td>0.98</td>
<td>0.21</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>BVF-4</td>
<td>1.00</td>
<td>0.91</td>
<td>1.00</td>
<td>0.46</td>
<td>0.40</td>
<td>0.25</td>
<td>0.30</td>
<td>0.46</td>
<td>0.30</td>
</tr>
<tr>
<td>BVF-5</td>
<td>0.54</td>
<td>0.34</td>
<td>0.24</td>
<td>0.17</td>
<td>0.11</td>
<td>0.13</td>
<td>0.17</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>BVF-6</td>
<td>1.00</td>
<td>1.00</td>
<td>0.79</td>
<td>0.91</td>
<td>0.44</td>
<td>0.15</td>
<td>0.51</td>
<td>0.30</td>
<td>0.48</td>
</tr>
<tr>
<td>BVF-7</td>
<td>1.00</td>
<td>1.00</td>
<td>0.82</td>
<td>0.59</td>
<td>0.59</td>
<td>0.38</td>
<td>0.43</td>
<td>0.33</td>
<td>0.29</td>
</tr>
<tr>
<td>BVF-8</td>
<td>0.39</td>
<td>1.00</td>
<td>1.00</td>
<td>0.50</td>
<td>0.23</td>
<td>0.17</td>
<td>0.22</td>
<td>0.21</td>
<td>0.17</td>
</tr>
<tr>
<td>BVF-9</td>
<td>1.00</td>
<td>1.00</td>
<td>0.79</td>
<td>0.85</td>
<td>0.39</td>
<td>0.31</td>
<td>0.32</td>
<td>0.35</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Germany) in collaboration with the Medical Research Council (UK), Grant No KA2284/2-1.

Competing interests None.

Patient consent Obtained.

Ethics approval Ethics approval was provided by the University College London, Department of Cognitive Neuroscience Ethics Approval Board (ethics approval no EA1144/001).

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

Adaptive motion processing in bilateral vestibular failure

Roger Kalla, Neil Muggleton, Rainer Spiegel, Domenica Bueti, Jens Claassen, Vincent Walsh and Adolfo Bronstein

J Neurol Neurosurg Psychiatry 2011 82: 1212-1216 originally published online May 7, 2011
doi: 10.1136/jnnp.2010.235960

Updated information and services can be found at:
http://jnnp.bmj.com/content/82/11/1212

References

These include:
This article cites 20 articles, 8 of which you can access for free at:
http://jnnp.bmj.com/content/82/11/1212#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections
Ophthalmology (755)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/