Psychotherapy in dizziness: a systematic review

G Schmid,1,2 P Henningsen,1,2 M Dieterich,2,3 H Sattel,1 C Lahmann1,2

ABSTRACT
Background About 30–50% of complex dizziness disorders are organically not sufficiently explained or related to a psychiatric disorder. Of patients with such dizziness disorders, 80% are severely impaired by dizziness in their daily and working lives; nevertheless, they are often not diagnosed or treated adequately.

Objectives This review aims to give a systematic overview of psychotherapeutic approaches and their efficacy regarding the treatment of dizziness that is medically not sufficiently explained or related to a psychiatric disorder.

Methods A systematic literature search was conducted in Medline, PSYNDEx and PsycINFO. Included in this systematic review were (randomised) controlled trials (RCTs) concerning psychotherapy in patients with dizziness, medically not sufficiently explained or associated with a psychiatric disorder. If possible, Hedges’ g was used to express the effect sizes (ES) of the treatment. Heterogeneity was assessed using the Q statistic. In addition, the quality of the studies was rated.

Results Three RCTs were included. All studies used cognitive–behavioural treatment methods in combination with relaxation techniques or vestibular rehabilitation. All studies suggested that psychotherapy may provide improvement. The mean ES in the treatment groups was 0.46 (95% CI 0.05 to 0.88) for dizziness related outcome, 0.10 (−0.44 to 0.64) for anxiety and 0.17 (−0.24 to 0.58) for depression whereas in the control groups the mean dizziness related ES was −0.04 (−0.44 to 0.37), anxiety related ES was −0.03 (−0.43 to 0.38) and depression related ES was −0.02 (−0.42 to 0.38). The quality of the studies was average. Sample sizes were small, however, and there was a lack of long term studies.

Conclusion This systematic review provides some preliminary evidence that psychotherapy may be effective in patients with dizziness that is medically not sufficiently explained or due to a psychiatric disorder. The results should be replicated in larger samples and follow-up RCTs.

INTRODUCTION
Dizziness and unsteadiness1 are common symptoms presented to general practitioners and neurologists. For individuals over the age of 75 years, these symptoms are the most frequent reason for visiting a physician.2 Their lifetime prevalence is about 20–30%.3 Approximately 30–50% of complex dizziness disorders (ie, dizziness is the cardinal symptom and persistent) are not fully explained by an identifiable medical illness and are related to phobic, panic, anxiety, depressive, dissociative or somatoform disorders.4–7 Dizziness can occur without a prior organic vestibular disorder or as a consequence of an organic vestibular disorder, particularly in patients with a vestibular migraine or Menière’s disease.8 About 30% of all patients with peripheral vestibular vertigo subsequently develop dizziness or unsteadiness that is not fully medically explained or related to a psychiatric disorder.9 Godemann and colleagues9 found that a lack of social support, a high burden of suffering and moderate to severe impairment of self-experience were associated with the development of a panic disorder after an episode of an acute vestibular disorder. Phobic postural vertigo (FPV) frequently follows a period of an organic vestibular disorder, a serious illness or emotional stress,10 and is characterised by a combination of non-rotational vertigo with subjective postural and gait instability.11 It is often associated with anxiety, is context dependent (eg, occurs in large crowds) and results in avoidance behaviour. The symptoms improve when the patient has taken a small amount of alcohol or engages in sports.12

There seems to be a link between anxiety and balance disorders13; patients with panic or anxiety and with vestibular disorders frequently present with similar behaviour—namely, avoidance and similar complaints (ie, dizziness, spatial disorientation and anxiety in particular environments).14 Additionally, increased visual dependence (ie, subjects who preferentially use vision for spatial orientation and postural control) and thus increased body sway can be observed both in patients with primary vestibular disorders and in patients with anxiety disorders.15 16 Therefore, the hypothesis was discussed that vestibular or balance dysfunctions occur particularly in panic patients with moderate to severe agoraphobia.7

About 80% of patients with dizziness that is medically not sufficiently explained or related to a psychiatric illness feel impaired in their daily and working lives or are even unable to work due to the dizziness.5 Because of this substantial impact of dizziness on daily functioning, an adequate intervention is necessary. However, these patients often undergo an odyssey of visits to different physicians until the correct diagnosis is made and an appropriate treatment can be administered. The therapy has to include a discussion on a psychosomatic illness concept and a demonstration of associations between organic and psychological states and sensations. Mild forms can be treated with short time interventions17 whereas complex dizziness syndromes require specific interdisciplinary and integrative treatment that includes physiotherapy (eg, vestibular rehabilitation), pharmacotherapy and psychotherapy.5 12 18 19

Dizziness specific treatment requirements
To determine the appropriate management of dizziness and unsteadiness, the patient has to be asked how far dizziness affects his or her life.2 For
example, some patients may have no unsteadiness while walking but can no longer play golf or tennis due to their imbalance. These patients require limited vestibular rehabilitation, while patients severely affected by their dizziness (ie, they are unable to leave their house or go to work) need extensive counselling and physical therapy. In the following paragraphs, some dizziness specific treatment elements are described.

Vestibular rehabilitation
Vestibular rehabilitation (VR) has been recommended as the treatment of choice for patients with persistent vertigo due to vestibular dysfunction. The central element of VR is a set of exercises that promote central compensation by providing the CNS with repeated exposure to a range of eye, head and body movements that require the patient’s compliance and active collaboration.20–22 This approach aims at the habituation or remediation of dizziness, improvement of gait, retraining of balance and enhancement of physical fitness. The mechanisms of balance and vestibular compensation are explained to the patient in detail so that the patient can understand why psychotherapy is reasonable.22 In controlled studies, VR has been shown to be efficient in patients suffering from vertigo and balance disorders.23 Furthermore, VR has positively influenced the emotional condition of patients with chronic vestibular deficits24 and improved both the independence in daily living activities25 and the patient’s quality of life.26

Cognitive—behavioural approaches
The cognitive—behavioural approach aims to develop an integrative explanation model for dizziness taking into account medical and psychological factors.27 With the use of behaviour analysis, the first dizziness attack, in particular, has to be explored extensively. Additionally, factors that trigger, sustain or intensify the dizziness have to be analysed and evaluated—for example, irrational cognitions.28 In vivo exposures to dizziness triggering stimuli and exercises form part of the treatment.29 In terms of exposure procedures, cognitive—behavioural approaches are similar to VR. Moreover, relaxation techniques are taught, and there is a focus on how the person can minimise the disorienting effects of visuovestibular mismatch.30 Furthermore, patients suffering from dizziness related to a psychiatric disorder increasingly activate their posture musculature due to anxiety and thus show a reduced horizontal and an increased vertical sway path that can be normalised within a short term behavioural therapy.31

Aim of this systematic review
In summary, the psychotherapeutic treatment of dizziness that is medically not sufficiently explained or due to phobic, panic, anxiety, depressive, dissociative or somatoform disorders has been, to date, subject to expert opinion review only; there is a lack of systematic reviews of controlled trials or evidence based guidelines. Thus we wished to give an overview of the psychotherapeutic approaches that are available for dizziness and their efficacy in the form of a systematic review considering all (randomised) controlled trials (R)CTs) obtainable at present. This can be seen as a first important step towards identifying future directions and to work out guidelines for treating dizziness that is medically not sufficiently explained or related to a psychiatric illness, and—if applicable—to develop a therapy manual for these dizziness disorders.

METHODS
Relevant articles were identified by searching Medline, PSYNDEx and PsycINFO from 1900 to June 2010. The following keywords were searched: dizziness, vertigo, Ménière, vestibular migraine, benign paroxysmal positional and vestibular neuritis. These terms were cross referenced with the following keywords: controlled trial, psychotherapy, psychotherapeutic treatment, intervention and behaviour therapy. In addition, to ensure a comprehensive review of the literature, we searched for further relevant citations by checking the reference lists of the initial studies identified and of review papers. This searching strategy revealed more than 1000 papers (see figure 1).

Studies were included if they were in English or German; if they had been conducted on humans suffering from dizziness, medically not sufficiently explained or associated with phobic, panic, anxiety, depressive, dissociative or somatoform disorders, or persistent dizziness after an organically explained condition; if the therapy described was a psychotherapy (eg, a cognitive—behavioural therapy (CBT)); if the paper was not a review paper with expert opinions; and if the study design was an (R)CT. With the use of that strategy, up to the end of June 2010, a total of four original papers (or three studies) that met the inclusion criteria emerged (see figure 1).17 32–34 Literature research and selection was carried out independently by two researchers (GS and CL). In addition, inclusion of studies was discussed between GS and CL. Two conference papers31 35 were not included in this review as the data reported were not detailed enough to compute effect sizes and further data were not available from the authors as the data have not yet been published.

To evaluate the efficacy of the interventions, effect sizes (ES; Hedges’ g) and 95% confidence intervals (95% CI) were calculated concerning dizziness, anxiety and depression related outcomes (see figure 2A–C). Hedges’ g statistic was computed as this is an estimate of the standardised mean difference that is bias corrected for small sample sizes.36 The ES was interpreted as follows: small effect if 0.2 ≤ |ES| <0.5, medium effect if 0.5 ≤ |ES| <1.0, large effect if |ES| ≥ 1.0. Total papers yielded by search
n = 1278
Possible inclusion – Titles and abstracts scrutinised in detail
n = 118
Papers scrutinised in detail
n = 60
Case reports, psychotherapy, follow-up and randomised controlled studies
n = 17
(n = 16 studies)*
(R)CTs included in this systematic review
n = 4
(n = 3 studies)*
Not meeting inclusion criteria (e.g., treatment with medication)
(n = 1160)
Not meeting inclusion criteria (e.g., vestibular rehabilitation, not psychotherapy)
(n = 58)
Excluded from systematic review (e.g., review of expert opinions, conference abstract)
(n = 43)
Excluded from systematic review (case reports and uncontrolled studies)
(n = 13)

Figure 1 Process of choice and inclusion of papers reported in this systematic review. (R)CTs, (randomised) controlled trials.

* Two papers (Holmberg et al, 2006; 2007) covered the same sample (initial treatment and follow-up); thus, the two papers were handled as one study.
* An overview of these papers is given in the Appendix, Tables I and II.
ES] <0.8 and large effect if \(|\text{ES}| \geq 0.8 \). To ensure an appropriate interpretation of the results, the Z statistic (test of null) was estimated and the p value was set at <0.05. Furthermore, tests for heterogeneity were carried out using the Q statistic \((p < 0.05)\) to evaluate whether the variation in study outcomes between studies was significant.\(^{38}\) Statistical analyses were conducted using Comprehensive Meta-Analysis V.2.\(^{39}\)

Furthermore, GS and a research assistant independently rated the quality of all reviewed studies using the Cochrane Collaboration Depression, Anxiety and Neurosis (CCDAN) quality assessment rating scale by Moncrieff and colleagues.\(^{40}\) The 23 items were rated on a three point scale \((0 = \text{criterion not fulfilled}, 1 = \text{half fulfilled}, 2 = \text{fulfilled})\) and assessed topics such as objectives and specification of main outcomes, adequacy of sample size, clear description of treatments, recording of exclusion criteria, report of number of exclusions and refusals, sample demographics, clear description of outcome measures or use of validated instruments, appropriateness of statistical analyses and conclusions. Table 1 reports the mean quality assessment rating scores by GS and the research assistant and the proportions for each study.

RESULTS

Table 1 summarises the (R)CTs. An overview of the case reports and uncontrolled studies is given in tables I and II in the appendix (available online only).

Patients

The studies reviewed included a total of 87 patients (60 women and 27 men) with a range over the studies of 22–36 patients. Patients suffered from PPV,\(^{10}\) vestibular dysfunction, tension related medically unexplained dizziness, previous diagnosis of Menière’s disease, whiplash or neck related problems, or mixed problems. They were either recruited via newspaper advertisements or were referred by neurological specialists. Table 1

Table 1

<table>
<thead>
<tr>
<th>Source</th>
<th>Group</th>
<th>Sample size (n)</th>
<th>Effect size (95% CI)</th>
<th>Total Z (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johansson et al., 2001</td>
<td>Treatment</td>
<td>9</td>
<td>0.43 (-0.39; 1.25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>10</td>
<td>-0.32 (-1.10; 0.47)</td>
<td></td>
</tr>
<tr>
<td>Andersson et al., 2006</td>
<td>Treatment</td>
<td>14</td>
<td>0.44 (-0.26; 1.13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>15</td>
<td>0.03 (-0.63; 0.70)</td>
<td></td>
</tr>
<tr>
<td>Holmberg et al., 2006</td>
<td>Treatment</td>
<td>16</td>
<td>0.95 (-1.15; 1.17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>15</td>
<td>0.10 (-0.57; 0.76)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Treatment</td>
<td>39</td>
<td>0.46 (0.05; 0.88)</td>
<td>2.20 (.03)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>40</td>
<td>-0.04 (-0.44; 0.37)</td>
<td>-0.17 (.86)</td>
</tr>
</tbody>
</table>

A Dizziness was measured by the Dizziness Handicap Inventory (DHI).

B Anxiety was measured by the State Trait Anxiety Inventory (STAI-t) – trait anxiety.

C Depression was measured by the Hospital Anxiety and Depression Scale (HADS) – depression.
Table 1 Summary of reviewed controlled trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Study design</th>
<th>Sample, diagnoses, inclusion criteria</th>
<th>Control group</th>
<th>Intervention, duration</th>
<th>Measurements</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johansson et al32</td>
<td>Prospective RCT; assessment points: before and after treatment</td>
<td>Initially: n = 22 (n = 16 women, n = 6 men; mean age 71.8 years); recruited via newspaper advertisement; dizziness (mixed diagnoses); inclusion criteria: age between 65 and 80 years, recurrent vertigo for at least the last month, not only spontaneous attacks, no diagnosis of, for example, Parkinson’s disease or cerebral haemorrhage; After treatment: n = 19 (TG n = 9; CG n = 10)</td>
<td>Yes (waiting list)</td>
<td>CBT and VR (individualised): education about dizziness, function of balance, fight and flight response; exercises; exposure; applied relaxation; associations between thoughts, moods, behaviours; duration: 7 weeks (5 sessions, 1 phone call)</td>
<td>Questionnaires: DHI, VSS, BDI, STAI-t; measures: walking time, balance</td>
<td>After treatment: TG: better performance (walking, head nodding); greater improvement concerning the DHI than CG</td>
</tr>
<tr>
<td>Andersson et al33</td>
<td>Prospective RCT; assessment points: before and after treatment</td>
<td>n = 29 (n = 26 women, n = 3 men; mean age: 50.9 years); recruited via newspaper advertisement; dizziness (mixed diagnoses); inclusion criteria: age between 18 and 64 years; recurrent vertigo for at least the last month; not only spontaneous attacks; no diagnosis of, for example, Parkinson’s disease, cerebral haemorrhage, primary psychiatric condition; 2 groups: n = 29 (TG n = 14; CG n = 15)</td>
<td>Yes (waiting list)</td>
<td>CBT and VR (individualised): (see Johansson32); duration: 6 weeks</td>
<td>Questionnaires: DHI, VSS, CEA, STAI-t, BDI, PSS; behavioural measures: time for exercises; rating of dizziness after each exercise; Romberg test; diary registrations: dizziness and imbalance</td>
<td>After treatment: TG: improved DHI and VSS, improved head shaking / nodding; less experienced dizziness and distress due to dizziness; CG: no improvements</td>
</tr>
<tr>
<td>Holmberg et al17, 34</td>
<td>Controlled study; assessment points: before and after treatment; Follow-up study: 1 year</td>
<td>n = 36 (n = 18 women, n = 18 men; age median 43.5 years); referred by otoneurological specialists; PPV; inclusion criteria: normal (oto-)neurological examination results; Before treatment: n = 36 (TG n = 18; CG n = 18)</td>
<td>Yes (self-treatment)</td>
<td>At follow-up: no</td>
<td>CG: self-exposure to provoke dizziness; TG: CBT (individualised): self-observations; explanation of avoidance; information about natural body sway; evaluation of fear of falling and social embarrassment; relaxation techniques; duration: 8–12 sessions</td>
<td>Questionnaires: DHI, VSS, VHQ, HADS;</td>
</tr>
</tbody>
</table>

The proportion (in per cent) is reported.\textasteriskcentered The quality assessment rating score (Moncrieff and colleagues40) could range between 0 (very poor study quality) and 46 (excellent study quality). BDI, Beck Depression Inventory; CBT, cognitive–behavioural therapy; CEA, Confidence in Everyday Activities questionnaire; CG, control group; DHI, Dizziness Handicap Inventory; HADS, Hospital Anxiety and Depression Scale; PPV, phobic postural vertigo; PSS, Perceived Stress Scale; RCT, randomised controlled trial; STAI(-t), State—Trait Anxiety Inventory (trait form); TG, treatment group; VHQ, Vertigo Handicap Questionnaire; VR, vestibular rehabilitation; VSS, Vertigo Symptom Scale.
shows the inclusion criteria for each study. The duration of treatment ranged from 5 to 12 sessions (see table 1).

Treatment approaches and measures

All studies used cognitive–behavioural treatment methods, combined with relaxation techniques, and/or VR, and consisted of the following elements: information and education about dizziness and the balance and vestibular system; explanation and discussion of associations between assumptions (about dizziness), arousal, thoughts, moods and behaviours; (self-controlled) exposure to fear triggering and avoided situations; coping strategies; balance exercises; and self-observations and written recordings. In two studies CBT was combined with VR. The purpose of providing VR within a CBT framework is to facilitate exposure to movements and to teach strategies to cope with associated thoughts and beliefs concerning the dizziness.

The studies provided as outcome measures dizziness related factors (ie, severity, frequency, handicap and distress due to dizziness, imbalance, walking time) and, in addition, depression and anxiety were assessed. For measuring treatment outcome, all studies used standardised questionnaires (eg, the Dizziness Handicap Inventory41 or the Beck Depression Inventory)42 (see table 1).

Treatment outcomes

All studies suggest that psychotherapy (ie, cognitive–behavioural interventions combined with VR or relaxation techniques) provides improvement in patients suffering from dizziness (eg, PPV, medically unexplained, previous Menière’s disease) (see table 1). However, only one study conducted a follow-up and found no long term effect: at the 1 year follow-up, the test results were similar to those obtained before treatment, indicating that the CBT effects were not persistent in patients with PPV.44

Efficacy of treatments

The ES were divided into three outcome domains: dizziness, anxiety and depression related (see figure 2A–C).

Tests for heterogeneity

Neither in the treatment nor in the control groups were the tests for heterogeneity significant concerning dizziness ($Q_{\text{treatment}}=0.03$, $d_{\text{treatment}}=2$, $p_{\text{treatment}}=0.99$; $Q_{\text{control}}=0.68$, $d_{\text{control}}=2$, $p_{\text{control}}=0.71$), anxiety ($Q_{\text{treatment}}=5.40$, $d_{\text{treatment}}=2$, $p_{\text{treatment}}=0.18$; $Q_{\text{control}}=0.04$, $d_{\text{control}}=2$, $p_{\text{control}}=0.98$) or depression ($Q_{\text{treatment}}=1.72$, $d_{\text{treatment}}=2$, $p_{\text{treatment}}=0.42$; $Q_{\text{control}}=0.24$, $d_{\text{control}}=2$, $p_{\text{control}}=0.89$), indicating that there were no significant variations in study outcomes between studies.

Efficacy of treatment and control groups

Both Johansson and colleagues32 and Andersson and colleagues33 reported small but clinically not relevant effects concerning dizziness, and a small but not significant deterioration regarding anxiety and depression with their combined CBT and VR approach. In contrast, Holmberg and colleagues17 who conducted CBT, achieved medium but not significant effects with respect to dizziness and anxiety and an almost medium but clinically not relevant effect concerning depression (see figures 2A and 2C). At follow-up, 1 year after treatment, however, none of the patients were symptom free and test results were similar to those before treatment.34 Overall, the three CBT approaches reached a small and clinically relevant effect concerning dizziness and no effects in terms of anxiety and depression (see figures 2A and 2C).

There were no effects in the control groups (waiting list or self-treatment), nor were the overall control group effects significant in terms of dizziness, anxiety or depression (see figures 2A and 2C).

Concerning dizziness, the ES difference between the treatment and control groups was 0.5. With 40 or 39 persons in each group, the power to detect differences would be 0.60 and thus it would be doubtful to prove statistically significant group differences.43

Quality assessment rating of studies

The quality score of the studies ranged between 24 and 27, which corresponds to 52.2% and 58.7% of the 46 possible points of the CCDAN quality assessment rating scale (see table 1).

DISCUSSION

This systematic review aimed to give an overview of psychotherapy approaches concerning dizziness and their efficacy. In summary, all (R)CTs used CBT approaches. Two of these studies used a combination of CBT and VR. All studies reported an improvement after treatment, particularly in terms of dizziness. However, all studies had methodological shortcomings, such as small sample sizes and/or lack of follow-up.

As the tests for heterogeneity were not significant, one can assume that the ES of the different studies were homogeneous.40 Furthermore, the studies were predominantly uniform regarding sample sizes, treatment methods and duration of treatments. In addition, all studies measured dizziness, anxiety and depression before and after treatment using standardised questionnaires. Thus the results and outcome measures may be comparable and the studies can be considered together. However, the patients in the study of Johansson and colleagues32 were much older than the patients in the two other studies.17 33 Additionally, the recruitment methods differed (see table 1), which may have led to a sample bias (ie, the participants may not be representative but especially impaired or motivated). Finally, the level of impairment was not specified or determined which might have caused a result bias. Thus the results should be replicated with representative and larger samples.

All three studies together reached small but significant ES in terms of dizziness. The unpublished and preliminary results of Best and colleagues31 and Tschan and colleagues35 support the hypothesis that short term CBT may be effective—even in the long term—in normalising the patients’ body posture, in reducing the severity of dizziness symptoms and in modifying dysfunctional illness experiences. However, Holmberg and colleagues17 34 found no significant difference between the psychometric test results before treatment and 1 year later, and none of the patients was symptom free at follow-up.34 Holmberg et al argued that this result confirms the observation that the treatment of PPV is complex, and that their CBT method, which was developed during their project, needs further attention and might lead to better results in a randomised intervention.

Both Johansson and colleagues32 and Andersson and colleagues33, who conducted a combination of CBT and VR, showed in RCTs small but clinically not relevant ES concerning dizziness in patients with mixed dizziness diagnoses and a broad age range. Combining CBT and VR seems to be reasonable as VR programmes already cover implicitly some psychotherapeutic elements (ie, both approaches address the functional impairment due to the disorder, develop an individualised treatment plan and provide exposure to reach habituation). In addition, it has been shown that a combination of VR and a 50 min therapy session improved postural control, subjective symptom report and emotional well being, even in the long term.44 Yardley and colleagues45 found that exercises that stimulate the vestibular system and provoke dizziness can modify negative beliefs about...
the consequences of dizziness. Patients with both panic disorder and vestibular dysfunctions may benefit in particular from the combination of CBT and VR. In further research, the efficacy of the CBT/VR approach should be tested against other interventions, with larger samples, and in the long term course.

However, Johansson and colleagues, Andersson and colleagues and Holmberg and colleagues did not achieve any clinically relevant improvement concerning anxiety or depression. This indicates that the CBT treatment approach (in combination with VR) should be expanded to address these issues (e.g. by focusing on anxiety symptoms other than dizziness, particularly cognitive symptoms). To enhance existing treatment programmes it may be reasonable to offer a basic psychotherapeutic module to all patients suffering from dizziness and unsteadiness. This basic treatment should consist of education and information about the natural body sway, unsteadiness, dizziness and the function of balance, exercises to improve balance and exposure to dizziness triggering situations. Additionally, specific treatment modules tailored for patients with depression, anxiety, phobic, panic or somatoform related dizziness should be offered. For example, patients with somatoform related dizziness should participate in the somatoform module consisting of enhancement of bodily activities, improving the distinction between bodily complaints and effects, and effect regulation. The multicentre FISO study currently evaluates a new three phased short term psychodynamic intervention that is tailored for pain predominant somatofom disorder. This therapy approach may also be adequate for patients with dizziness related to a somatofom disorder.

In summary, the present systematic review provides some preliminary evidence that psychotherapy may be effective in patients suffering from dizziness, such as PPV, medically unexplained or a previous Menière disease. More importantly, it reveals a lack of (R)CTs and long term follow-up explained or a previous Menière disease. More importantly, it reveals a lack of (R)CTs and long term follow-up.

Funding This project was supported by funds from the German Federal Ministry of Education and Research under the grant code 01 EO 0901. The authors bear full responsibility for the content of this publication.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

Psychotherapy in dizziness: a systematic review

G Schmid, P Henningsen, M Dieterich, H Sattel and C Lahmann

J Neurol Neurosurg Psychiatry 2011 82: 601-606 originally published online February 4, 2011
doi: 10.1136/jnnp.2010.237388

Updated information and services can be found at:
http://jnnp.bmj.com/content/82/6/601

Supplementary material can be found at:
http://jnnp.bmj.com/content/suppl/2011/02/17/jnnp.2010.237388.DC1.html

These include:

References
This article cites 40 articles, 9 of which you can access for free at:
http://jnnp.bmj.com/content/82/6/601#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Articles on similar topics can be found in the following collections

Editor's choice (105)
Psychotherapy (9)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/