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Kupffer cell activation and portal
hypertension
Christian J Steib

Kupffer cells (KC), the resident liver
macrophages, constitute the liver sinu-
soids together with other cells such as
sinusoidal endothelial cells, hepatic stel-
late cells, liver-specific natural killer cells
and dendritic cells. KC account for
approximately 10e15% of the total liver
cell population and represent 80e90% of
tissue macrophages in the reticuloendo-
thelial system. KC represent an important
component of innate immunity.1 2 One
characteristic of innate immunity is the
rapid response to potentially dangerous
stimuli. This suggests a central role of the
liver in systemic and regional immune
response, because KC come in contact
with all the microbiological debris from
the gastrointestinal tract reaching the liver
via the portal vein.3

KC express the scavenger receptor
CD163; CD163 is involved in the clearance
and endocytosis of the haemoglobine
haptoglobin complex.4 Once erythrocytes
or the haemoglobinehaptoglobin complex
has been taken up by KC, the heme
delivered from haemoglobin is degraded
by heme oxygenases. The isoform heme
oxygenase-1 is only observed in KC and its

expression and the consecutive bilirubin
production increases immediately after
exposure to damaged erythrocytes. Heme
oxygenase-1 and CD163 expression
increase after exposure to inflammatory
stimuli. The interplay of KC, CD163 and
heme oxygenase-1 has thus been identified
as an important system that is upregu-
lated in inflammatory conditions in order
to enhance haemoglobin clearance and
heme degradation.5

The interesting study of Holland-
Fischer and colleagues6 published in Gut
(see page 1389) demonstrates evidence in
humans that KC are activated in cirrhosis.
In their study, soluble CD163 was deter-
mined by a commercially available ELISA
kit. Soluble CD163 was measured as
a marker of macrophage activation. The
authors found that the concentration of
soluble CD163 was more than threefold
higher in patients with liver cirrhosis than
in controls, and that soluble CD163 was
linearly related to the portal venous
pressure gradient. These results are of
major interest, because it is one of the first
studies describing macrophage activation
in portal hypertension in humans.
Macrophage activation in human cirrhosis
has only been addressed in one previous
study.7 In the previous study neopterin
was measured as an indicator of inter-
feron-g-stimulated monocytes and
macrophages. Later on animal studies
have shown that KC activation induces
oxidative stress8 and leads to a significant

amount of vasoconstrictors such as
leukotrienes and thromboxane A2. These
vasoconstrictors increase the portal pres-
sure in cirrhosis.9 10 They act on cells with
contractile elements such as hepatic stel-
late cells and myofibroblasts. These cells
increase the intrahepatic resistance, for
example, by Rho kinase.11 12 In the study
by Holland-Fischer et al6 elevated periph-
eral venous soluble CD163 concentrations
did not change systematically after TIPS
insertion although the portal pressure
decreased. In contrast, the lipopolysac-
charide binding protein as an indirect
marker of the lipopolysaccharide concen-
tration in peripheral blood was 70% higher
in cirrhosis patients than in controls, but
decreased to near-normal concentrations
4weeks after TIPS insertion. There are
various interpretations of these data: KC
activation is probably not only dependent
on lipopolysaccharides. Grampositive
bacteria, fungal infections and perhaps
even bacterial DNA could also play a role
for KC activation in liver cirrhosis.
Furthermore, once KC are activated they
can stay in an activated status,13 and it
can be hypothesised that the mechanical
intervention of TIPS insertion does not
change this activation status. In addition,
KC activation in cirrhosis might be not
only dependent on increased levels of
bacterial products; also phagocytosis
of apoptotic or necrotic cells in the
cirrhotic liver could be a mechanism of KC
activation.
The importance of soluble CD163 has

been investigated in earlier studies. In
patients with viral hepatitis and fulmi-
nant hepatic failure high levels of soluble
CD163 have been detected.14 In another
study, the high levels of soluble CD163 in
hepatic failure were correlated with
outcome. The authors concluded that
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soluble CD163 might be used in
combination with other parameters to
determine prognosis.15

Measurements of circulating soluble
CD163 comprise both an increased
expression and an increased subsequent
shedding of the cell surface CD163
receptor. The phenomenon of CD163
shedding is also related to high endotoxin
levels. Therefore endotoxaemia in cirrhosis,
for example by bacterial translocation,
could enhance the CD163 expression on
KC surface and shedding of CD163.16 In
the study of Holland-Fischer and
colleagues6 the soluble CD163 concentra-
tion was measured in a subset of patients
in the portal and the hepatic vein during
the TIPS procedure. The concentration in
the hepatic vein was higher than in the
portal vein. Therefore, the authors
supported the results of earlier investiga-
tions that there is a significant production
of soluble CD163 in the liver by tissue-
specific macrophages,14 but it has to be
considered that soluble CD163 is also
produced by monocytes.17 18 Therefore an
unknown amount of soluble CD163 could
also be related to monocytes migrated to
and activated in the liver. It is known that
monocyte-derived hepatic macrophages are
involved either in the development or in
the resolution of hepatic fibrosis.19 These
relations become even more interesting
because different macrophage subpopula-
tions in liver fibrosis are suspected. So-
called M1 macrophages are the classically
activated macrophages, they react with
microbial products and release type 1
inflammatory cytokines. Alternatively
activated macrophages are the M2 macro-
phages, which, for example, reduce inflam-
matory processes by anti-inflammatory
factors such as interleukin 10 and
transforming growth factor beta. These
new findings are of major interest to
develop targeted therapies. For example,
the activation of macrophage subpopula-
tions, which are responsible for phagocy-
tosis of bacterial products, is welcome in
situations of sepsis to eliminate bacterial

products; on the other hand, subsets of
macrophages could be important to
resolve fibrotic material. In contrast,
intense reactions of macrophages are
undesired; for example, in the situation of
variceal bleeding when they produce high
amounts of vasoconstrictors.
In summary, increased concentrations

of soluble CD163 correlated with elevated
portal pressure. This is a very important
finding for supporting the role of macro-
phages in the pathophysiology of liver
cirrhosis and its complications in humans.
These processes are quite complex, but the
further clarification on a molecular basis is
of major importance for the future devel-
opment of targeted therapies. In parallel,
clinical studies with measurements of
soluble CD163 could be very elegant. The
determination of soluble CD163 might be
used to estimate portal pressure; one of
many conceivable clinical applications
might therefore be to determine the time
point for control endoscopy in patients
with oesophageal or gastric varices.
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