Lipophilic Optical Supramolecular Nano Devices in the Aqueous Phase

Heinz Langhals*, Tim Pust
*Department of Chemistry, LMU University of Munich, Munich, Germany
E-mail: Langhals@lrz.uni-muenchen.de
Received January 5, 2011; revised February 15, 2011; accepted February 19, 2011

Abstract

Nano micelles of sodium dodecyl sulphate in water were prepared as local lipophilic media for the organisation of interacting chromophores. Such arrangements were controlled by peripheric substituents to operate either as isolated chromophores or as skew oriented pairs where H-type transitions cause hysochromic absorption and J-type transitions bathochromic fluorescence. As a consequence, large Stokes’ shift could be obtained.

Keywords: Lipophilic Optical Supramolecular, Nano Device, Nano Micelle, Sodium Dodecyl Sulphate

1. Introduction

The investigation of light-driven processes is an attractive subject of research and will be applied in organic photovoltaic cells [1], photoelectrochemical cells (DSSC) [2], artificial photosynthesis [3] and organic conducting polymers [4]. The controlling of chromophores on the molecular scale is a prerequisite for the development of light-driven devices [4]. Commonly chromophoric systems are applied in media of similar polarity such as lipophilic systems in lipophilic media and hydrophilic system in hydrophilic ones. However, this means not only a restriction for the variety of combinations, but neglects also many possibilities given by the interaction of lipophilic and hydrophilic structures. We used such interactions for the preparation of nano micelles in order to incorporate lipophilic chromophores for their operation in the aqueous phase. Lipophilic organic chromophores in micelles of maleinated linseed oil were previously described [5], however, only isolated chromophores could be incorporated and the intrinsic light absorption of the detergent interferes with some applications of such systems. The development of more universal micellar dyes systems would bring about an appreciable progress.

2. Results and Discussion

We investigated various surfactants such as 1-dodecyl-sulphate or 2,3-dimethylnaphthalene-4-sulphonate [6] (Nekal®) and found the sodium salt of the former (SDS) to be the most appropriate for the preparation of suitable nano micelles [7,8]. The lack of light absorption in the UVA and visible is of special advantage for optical applications. Perylene dyes [9] 1 (perylene-3,4:9,10-tetracarboxylic bisimides) were applied for incorporation into micelles because of their extraordinarily high stability and light fastness. The surfactant SDS was transformed to a gel [10], doped with dyes and then diluted with water where the application of ultra sonic is helpful, but not essential.

We applied the perylene derivatives 1a ... 1h where R are long-chain sec-alkyl groups [11] (“swallow-tail substituents”) for solubilising and used the chain-lengths of R for controlling the arrangement in micelles. Unstructured nano particles could be obtained from all derivatives of 1 by means of sodium dodecyl sulphahe; see Figure 1 for the size distribution and Figure 2 for the shape and structure. The behaviour of derivatives with short chains in R is complex: Particles with 70 nm (peak) were
obtained with the incorporation of the only slightly soluble 1a, the size increases for 1b to 100 nm and reaches nearly 200 nm for 1d. 1c is supposed to be an exception because of its labile crystal lattice [12] helping dispersion. A further increase of the chain lengths in R from 1d to 1h causes a successive decrease in the size of particles remarkably until below 40 nm for 1h. The arrangement of nano particles in water remains stable for a long time: No degradation was observed over many months.

The arrangement of chromophores in the nano particles is indicated by their UV/Vis spectra reported in Figure 3. The spectrum of 1c documents essentially isolated chromophores in the micelles and corresponds to the spectrum of the homogeneously dissolved 1e in chloroform [13]. Some increase in intensity at 490 nm is found as well as a novel weaker absorption at 540 nm; compare

Figure 1. Size distribution of nano particles of 1 and SDS in water by DLS.

Figure 2. Cryo TEM micrograph of nano particles of 1c and 1-dodecylsulphate in water. The diameter of the big particle left bottom left is 260 nm.

Figure 3. UV/Vis absorption spectra of derivatives of 1 in nano micelles compared with 1e in chloroform.

Ref. [12,14]. These alterations are attributed to a minor amount of interacting chromophores. The extent of interaction can be controlled by the chain length of R in 1 where an increasing size of the aliphatic group causes a progressive damping of the absorption at 525 nm and an increase of intensity at about 490 and 540 nm. We interpret the occurrence of two novel bands as a consequence of a skew arrangement of the chromophores in the nano micellar particles where the hypsochromic H-type absorptions dominate over the bathochromic J-type according to their higher intensity [15]. The occurrence of two novel bands may be interpreted in terms of a Davydow splitting in the interacting chromophores [16] forming a more hypsochromic β and a more bathochromic α-electronic transition compared with the isolated chromophore [5]. The intensities of these transitions depend on the orientation of the dipoles of electronic transition being parallel to the N-N-connection line in 1. Collinearly oriented dipoles such as in Figure 4, left, favour the more hypsochromic β-transition [17] and suppress both the α-transition and fluorescence because of electrostatic interaction and symmetry of the electron movement [18]; see Figure 4 left, and marked charges. On the other hand, a shifted arrangement of dipoles such as in Figure 4, right, suppresses the β-transition and allows both, the α-transition [19] and fluorescence [18]. Finally, a skew type arrangement allows both transitions where the intensities are controlled by the orientation of the transition dipoles.

The arrangements of two chromophores were further investigated by quantum chemical methods and an energetic minimum was found for the structure in Figure 5:

- H-type arrangement
- J-type arrangement

Figure 4. Arranged transition dipoles in aggregates.
the AM1 method was preferred because of many non-
covalent interactions in the pair, whereas less reliable
results are expected for DFT B3LYP calculations [20].
The structure of the dimer is presumably stabilised by
electrostatic-interaction between electron rich and elec-
tron depleted atoms of the two dye molecules. As a con-
sequence, a dihedral angle of some 60° between the skew
arranged chromophores is formed allowing both the
weak α and the strong β transition because of the domi-
nating H-type interaction. This corresponds to the UV/is
spectra in Figure 3 where a weaker bathochromic and a
stronger hypsochromic absorption was found.

The light emission of the β-transition is symmetry for-
bidden and causes the fluorescence quenching of H-ag-
gregates. This can be overcome by skew type arrange-
ments such as in Figure 5 where the α-transition be-
comes allowed. One may expect an internal energy con-
version [21] from the excited electronic state of the β-
transition to the exited state of the α-transition causing a
bathochromically shifted fluorescence. This shift in
fluorescence from isolated chromophores in the lipo-
philic chloroform to stacked chromophores in nano mi-
celles reaches some 150 nm (5000 cm⁻¹) and is shown in
Figure 6. A fine tuning can be achieved by the substitu-
ent R in 1, both for the position of the bathochromic band of fluorescence and some residual fluorescence of
isolated chromophores at 530 nm.

The stacking of chromophores according to Figure 5
is further confirmed by a comparison with the UV/Vis
spectra of 2 [22]; see Figure 7, compare also Ref. [12,15]
for comparable arrangements. The spectra of 1f in mi-
celles and 2 in homogeneous solution are very similar
and both differ appreciably from 1e and 1f, respectively,
in homogeneous solution; see Figure 7. Two chromo-
phoric units of 1 are tied together in the cyclophane 2.
The twelve membered connecting aliphatic chains are
small enough to keep the chromophores close together,
but large enough to allow their optimal orientation. Thus
a similar orientation as the aggregated 1f in micelles is
expected. This is indicated by the similarity of their UV/
Vis spectra. Moreover, the fluorescence quantum yield of
2 is found to be 46% (integration until 900 nm) and is
about the same as the fluorescence quantum yield of 1f
in the nano particles where 40% are observed. The ap-
preciably smaller fluorescence quantum yield of the
dimer of 1f in micelles and 2, respectively, compared
with close to 100% of isolated dye molecules of 1f in
chloroform is interpreted as a consequence of similarly
lower transition probability of the α-transition compared
with the high transition probability for isolated chromo-
phores.

![Figure 5. Calculated structure of a typical dimer of 1 with
R = CH₃.](image)

![Figure 6. UV/Vis fluorescence spectra of derivatives of 1 in
nano micelles compared with 1e in chloroform.](image)

![Figure 7. UV/Vis absorption (left) and fluorescence spectra
(right). Blue: nano micelles of 1f, magenta: 2 in chloroform,
thin black: 1e in chloroform.](image)
3. Conclusion

Lipophilic chromohores can be introduced into the aqueous phase by means of micelle forming detergents such as 1-dodecyl sulphate (SDS) where local nano-dimensioned lipophilic cages were established for organising supramolecular interactions. Peripheral substituents control the interaction of chromophores by their size to form nano devices with special optical properties such as increased Stokes’ shifts. This may be applied, for example, for solar energy collectors [23]. Even more complex functional structures may be constructed in such micellar nano devices.

4. Experimental

General UV/Vis spectra: Varian Cary 5000; fluorescence spectra: Varian Eclipse. The dyes 1 and 2 were prepared and purified according to the literature [11,22]. Preparation of nano particles in the aqueous phase: Sodium 1-dodecylsulphate (460 mg) and distilled water (1.7 g) were heated to 50°C to form a colourless gel. 1 (some 10 mg) and chloroform (60 mg, ca. 10 drops) were added at 50°C with subsequent ultra sonification for 10 min, treatment with distilled water (30 mL) and filtration (D5 glass filter). The nano particles in water remain unaltered for many months. Neither flocculation nor degradation of the strong fluorescence could be observed.

5. Acknowledgements

This work was supported by the Fonds der Chemischen Industrie. T. P. thanks Degussa Evonik for a PhD scholarship and support by the CIPSM cluster. We thank Prof. Thomas Bein for help with electron microscopy and DLS measurements.

6. References

