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Introduction 
PROBLEMS IN T H E STUDY OF BRAIN 
EVOLUTION AND COGNITION 

Mario F. Wullimann and Gerhard Roth, University of Bremen, 
Brain Research Institute and Center for Cognitive Science 

Why a book about the evolution of brains and their cognitive functions? Although the 
evolution of nervous Systems and brains has been much investigated, it still is a 
debated and unsettled topic, as is the question about the relationship between brains 
and cognitive functions. Therefore, we organized an international Symposium 
entitled "Brain Evolution and Cognition" at the University of Bremen in December, 
1994. Many scientists followed our invitation to present their current ideas on that 
topic in Bremen. In the wake of that meeting, the plan emerged to publish a book, and 
almost everyone involved agreed to make a contribution. A few more authors not 
initially involved with the Symposium were asked to join the book project (and they 
kindly agreed to do so) and so here we are at last. 

In our introductory remarks to the Symposium, the contributors were encouraged to 
search for answers to the following questions: Can one draw principles of brain 
evolution? Why did some brains become large and complex, and others small and 
simple and still others remained as they were for hundreds of millions of years? 
Where, how, and why did Cognition evolve? Is there any definable relationship 
between cognitive functions and brain structures and function? What are the forces 
that drove the evolution of cognitive functions (external, internal, or both)? 

Before we let the chapter authors provide answers to these questions, we discuss 
some problems in the study of brain evolution and Cognition. 

HANDICAPS IN T H E S E A R C H F O R AN E V O L U T I O N A R Y HISTORY O F 
V E R T E B R A T E BRAINS 

The case of horses is one of the finest examples of what paleozoology, paleobotany, 
paleoclimatology, and paleoecology can do in reconstructing the phylogeny and 
evolutionary history of a certain animal group (Carroll, 1988). The reason why there 
is so much more known on the evolution of horses than on the evolution of vertebrate 
brains is obvious: There is an almost complete fossil record in the case of horses. 
This primary source of information is missing in the case of brains and represents the 
first handicap for the search for an evolutionary history of brains. The only 
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paleontological information on fossil brains is available in the form of endocasts and 
has mostly been used in the context of brain weight/body weight analyses. Although 
this approach yields fascinating results in its own right—particularly in the primate 
and other mammalian cases (van Dongen, 1998; Jerison, this volume, Chapter 18)— 
it cannot go beyond the primary data and explain the emergence of particular 
cytoarchitectonic differences, let alone their related functional implications that arose 
in the course of vertebrate brain evolution. Unfortunately, as in the case of most soft 
organs, there is no paleontological record of the fine structure of brains. Thus, 
historical brain research is mostly left with neontological data from extant species 
and its analysis using the phyletic method. A second handicap becomes apparent 
when we look at the drastically different functional interpretations of, for example, 
the bird versus the mammalian brain that have been given during the past Century 
based on comparative descriptive neuroanatomy. The sometimes breathtaking beauty 
of diverse histological and cytoarchitectonic patterns in various vertebrate brains 
(Nieuwenhuys et al., 1998) apparently has gone along with conflicting evolutionary 
explanations (i.e., these differences have an immense potential for divergent 
interpretation). Thus, it is clear that descriptive neuroanatomy alone is not a sufficient 
source for a stringent functional explanation of brain structures. One of the greatest 
Problems in that respect has been that certain preconceived views—deeply rooted in 
the teleological preevolutionary concept of a scala naturae (i.e., nature's attempt at 
arriving stepwise to perfection going from lower to higher vertebrates)—were sought 
to be confirmed in the sometimes great apparent morphological differences in brain 
structure (e.g., between fishes and mammals). The idea was that of a successive 
addition of major brain parts and related increasingly complex functions going from 
fish to human in evolution (see critical reviews by Northcutt, 1981; Roth, 1994; 
Wullimann, 1997). Naturally, the study of behavior and Cognition has been 
influenced by such preconceived notions Coming from comparative neuroanatomy. 
However, research of the past three decades has increasingly shown that there are 
more commonalities in general brain Organization and behavior of vertebrates than 
was previously believed. 

S I L E N T REVOLUTIONS E M E R G I N G 

Three events had a substantial effect on a new understanding of vertebrate brain 
evolution in the second part of the twentieth Century. First, the explosive 
development of neurobiological methodology (e.g., the invention of many new 
investigative tools such as immunohistochemistry, neuronal tracing agents, 
improved extracellular and intracellular neurophysiology, and refined protocols for 
controlled behavioral studies) marked massive progress for various disciplines of the 
neurosciences. At the same time, the quantity and diversity of data available for 
comparative evolutionary brain studies has been tremendously enlarged, and the 
validity of interpretations has been improved. Second, the introduction of Hennigian 
cladistics (Hennig, 1966; Northcutt, 1984; compare Wullimann, this volume, 
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Chapter 1) into the comparative discussion as a tool for analyzing neural characters 
altered the way one deals with the interpretation of evolutionary change in brains 
(compare, for example, a treatise on the evolution of the mammalian isocortex by 
Northcutt and Kaas, 1995). Finally, the immense new input Coming from 
developmental molecular genetic studies led to the discovery of many early active 
regulatory genes and developmental pathways that directly bear on the vertebrate 
brain Bauplan and continue to have a tremendous effect on evolutionary brain 
studies (Heinzeller and Welsch; Strausfeld; Wullimann, this volume, Chapters 2, 12, 
and 1, respectively). 

T H E AMNIOTE T E L E N C E P H A L O N AS A C A S E IN POINT 

In browsing through many chapters of this book, it becomes clear that a central 
question in the discussion on vertebrate brain evolution is how the large and 
differentiated telencephalon of birds compares to that of mammals: Are there 
comparable structures and functions in their respective pal Ii um and subpallium, and 
what, if any, is their common origin in phylogeny? There is a long and winding road 
of comparative neuroanatomy starting at the beginning of the twentieth Century on that 
subject (nicely summarized by Striedter, 1997). However, by midcentury, the eminent 
American neurobiologist of that time, C. Judson Herrick, succinctly summarized the 
then accepted view (which became the traditional one for later decades) in 1956 in his 
book The Evolution of Human Nature: "The bird's cerebral hemispheres are composed 
almost entirely of the enormously enlarged corpora striata, which are concerned almost 
exclusively with stereotyped reflex and instinctive behavior." Thus, the suspected less 
well developed plasticity of behavior, learning capacity, and other cognitive abilities of 
birds compared to mammals was considered beautifully consistent with two 
neuroanatomical Undings, the first one being that birds have a massive intraventricular 
telencephalic nuclear neural mass, the dorsoventricular ridge, resembling the relatively 
much smaller basal ganglia of mammals. Second, the Situation seemed in reverse when 
the pallium (especially the isocortex or dorsal pallium) was considered: Birds have a 
rather small structure (Wulst) in comparison to the large isocortex of most mammals 
(Hofman; Nieuwenhuys; Schüz, this volume, Chapters 17, 6, and 16 respectively). 
However, views changed dramatically as new data became available on the intrinsic 
neurochemical, hodological, and neurophysiological Organization of avian 
telencephalic areas during the 1960s. Harvey Karten, a pioneer of a new school of 
comparative neurobiology, proposed that most of the avian dorsoventricular ridge in 
fact functionally corresponds to isocortex of mammals and that the avian basal ganglia 
are equally represented by a limited territory at the base of the telencephalon, much 
like the Situation in mammals (Karten, 1969; Shimizu, this volume, Chapter 5). This 
view is indeed more consistent with the mammal-like, fascinating learning and 
cognitive capabilites of the vocalizing African gray parrot Alex (Pepperberg, 1990). 
Cognitive abilities are partially equally well developed in pigeons (Delius, Siemann, 
Emmerton, and Xia; Macphail, both this volume, Chapters 15 and 13, respectively), 
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which even display a suite of critical anatomical, neurochemical, neurophysiological, 
and behavioral features together composing an equivalent to a prefrontal cortex of 
sorts (Güntürkün and Durstewitz, this volume, Chapter 14; compare also Wagner, this 
volume, Chapter 7, for the special case of the barn owl). 

However, as convincing as the neuroanatomical similarities and functional 
correspondences might be, the question of whether or not they are homologous rests 
on data to be gained in taxa outside birds and mammals (Northcutt and Kaas, 1995). 
Only a comparative evaluation, including an outgroup comparison, will eventually teil 
us which characters might be considered ancestral for amniotes and which are derived 
for birds or mammals. Not unexpectedly, the Situation is complex. Clearly, the avian 
telencephalic morphotype (i.e., dorsoventricular ridge versus isocortex) is present in 
other sauropsids (Ulinski, 1983), and many of the diagnostic features that led to the 
recognition of basic pallial regions, such as a medial (hippocampus; Rehkämper, 
Frahm, and Mann, this volume, Chapter 9), lateral (olfactory) and dorsal pallium 
(isocortex), as well as of subpallial divisions (e.g., septum, caudatoputamen, 
pallidum), are seen in nonavian sauropsids as well (Butler and Hodos, 1996). 
Although many forebrain features typical of amniotes are recognized meanwhile in 
anamniotes as well (Wullimann, 1997; Demski and Beaver, this volume, Chapter 10), 
the search for the ancestral amniote condition remains a matter of controversy. On the 
motor side (basal ganglia), recent investigations point to a detailed correspondence of 
structure and function between the amniote and the amphibian brain (Marin et al., 
1998; ten Donkelaar, this volume, Chapter 3). However, the ancestral condition for 
sensory and integrative Systems is less well established, and there may be many 
independently derived features, such as dominance and detailed functional properties 
of visual Subsystems in the bird and mammalian cases (Hodos and Butler, this volume, 
Chapter 4). An eminent problem for a comparative analysis is that amphibians—the 
outgroup of sauropsids and mammals—are paedomorphic in their brain morphology 
to various degrees and might not reliably be used for establishing the ancestral 
tetrapod condition (Roth et al., 1993; Roth and Wake, this volume, Chapter 8). 

A third event that revived comparative neurobiology recently is the new alliance 
between molecular developmental and evolutionary studies. Many early active regu
latory genes and developmental pathways clearly are common to all bilaterian animals 
and their brains even outside the vertebrates (for a critical review of the relationhip 
between genes and brain phenotype, see Wullimann, this volume, Chapter 1). There 
are equally amazing correspondences between invertebrate and vertebrate brains on 
the anatomical (Strausfeld, this volume, Chapter 12) and the behavioral level (Menzel, 
Giurfa, Gerber, and Hellstern, this volume, Chapter 11). To return to the vertebrate 
ränge, early regulatory gene expression patterns led to the proposition of a new 
(neuromeric) model of the vertebrate brain Bauplan (Puelles and Rubenstein, 1993) 
that has proven to be highly fruitful in a number of evolutionary questions. In 
particular, early forebrain gene expression patterns shed new light on the evolution of 
the amniote brain, challenging Karten's theory outlined previously: The dorsoven
tricular ridge may be homologous to part of the mammalian amygdala and claustrum 
rather than to isocortex (Puelles et al., 1999), as similarly proposed based on neural 
circuitry before (Bruce and Neary, 1995; compare Shimizu, this volume, Chapter 5). 
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Some of the discussed pervasive similarities between different vertebrate brains 
(and even between all bilaterian brains) should not be misunderstood to advocate a 
generality of animal brain Organization. A true comparative neurobiology will finally 
explain not only the commonalities but also the various specializations of vertebrate 
brains (Nieuwenhuys et al., 1998). The search for the evolutionary emergence of 
those vertebrate nervous structures subserving complex behavior, including 
Cognition, is far from being completed and the discussion about it continues. The 
present book lends vivid testimony to that notion. 

A S P E C I A L POSITION F O R HUMANS? 

In traditional Western thinking, humans are situated well above the animal kingdom; 
they have qualities and capabilities that are either unique or greatly exceed those 
found in animals. However, during the nineteenth Century, it became undeniable that 
at least with regard to their anatomy, human beings are representatives of one out of 
many evolutionary lines in the sense that in every aspect of their body they are 
vertebrates, mammals, primates, and great apes. This certainly was a shocking 
conclusion: Human beings are animals. 

At the same time, most biologists (Charles Darwin being among the notable 
exceptions) continued to believe that at least with respect to spiritual or cognitive 
abilities, humans are still far superior to animals: Only humans have mind and 
consciousness, only humans can think and plan. However, unless these abilities were 
assumed to be supernatural qualities, they had to be derived from properties of the 
brain. Thus, a necessary conclusion was that—unlike the rest of the body—the 
human brain had unique properties in comparison to other vertebrate brains. Many 
candidates for such unique properties have been discussed, including the absolute or 
relative size of the entire brain, of the cerebral cortex, of the prefrontal cortex, the 
possession of speech centers, and the degree of lateralization. 

However, even that view has been questioned by modern comparative and 
evolutionary neurobiology. The human brain appears to be a "typical" primate brain, 
and while in some respects (e.g., degree of encephalization) it exceeds most, i f not 
all, other animals, no fundamental gap is apparent between the brains of nonhuman 
animals and Homo sapiens. Furthermore, in many lines of invertebrate and vertebrate 
animals, anatomically and functionally complex and large brains have evolved 
independently. Thus, the human brain is not even unique in that respect. I f we stick 
to the assumption that the cognitive or spiritual abilities of humans derive from brain 
properties, three explanations remain: (1) The exact properties that are the basis for 
unique abilities of the human brain have not yet been discovered; (2) these abilities 
originate from a special combination of brain properties that taken by themselves are 
not unique; and (3) there are no unique cognitive or spiritual abilities of humans. 
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WHAT IS COGNITION? 

The term Cognition has a long and diverse tradition in philosophy and psychology. 
Until recent times, this term was often restricted to perceptual, mental, emotional, 
and volitional states as far as these were connected to awareness and consciousness. 
Later, the term Cognition has been applied to all those psychological functions that 
exceed simple stimulus-response relationships (D.O. Hebb) and/or refer to the 
acquisition or generation of meaning (E.C. Tolman). According to a much-cited 
definition by Ulric Neisser, Cognition "refers to all processes by which the sensory 
input is transformed, reduced, elaborated, stored, recovered and used" (Neisser, 
1967). In terms of cognitive psychology, this includes faculties such as pattern 
recognition, attention, short- and long-term memory, the representation and 
Organization of knowledge (visual images, categorization, semantic Organization, 
etc.), and complex cognitive skills such as language, comprehension and memory for 
text, problem solving, expertise and creativity, and decision making (Reed, 1996). 

In another much-read textbook of cognitive psychology by Anderson (1990), 
Cognition—as the target of cognitive psychology—is identified with the "nature of 
human intelligence and how people think" and at the same time with "information 
processing." Of course, the latter interpretation is too narrow and not very useful in 
the context of comparative neuroscience. First, it is unclear, what is meant by "human 
intelligence," and it is even more unclear what could be meant by "information 
processing." There is no logically satisfactory distinction between information 
processing in the sense of signal processing and in the sense of processing and 
generation of meaning. While there is a well-elaborated information theory for the 
former (e.g., that developed by Shannon and Wever; 1949), no such theory exists for 
the latter. This is most regrettable, because what brains do is not just processing of 
neural Signals, but the generation of meaningful states. One of the greatest challenges 
of cognitive sciences is the establishment of such a theory of meaning. 

It is likewise clear that cognitive psychology concentrates exclusively on human 
cognitive functions and largely ignores the question of cognitive functions in 
nonhuman animals. Historically, most authors either believed that there are no 
cognitive functions in animals at all or that they are beyond consideration. However, 
in cognitive psychology, cognitive functions were not restricted to states 
characterized by awareness and consciousness. This approach was an important step 
forward when compared to a more philosophical understanding of Cognition as 
"highest mental states" necessarily involving consciousness. The recent 
establishment of the field of cognitive neuroscience is best exemplified by the 
voluminous book edited by Michael Gazzaniga (1995). However, the book does not 
give an explicit definition of the term Cognition, but the titles of book chapters are 
largely identical with those of Reed's (1996) book, (i.e., Sensory Systems, Stragegies 
and Planning, Attention, Memory, Language, Thought and Imagery, Emotion and 
Consciousness). Since a substantial amount of data presented in these chapters come 
from animal experiments—mostly from primates and other mammals, with some 
data from birds and amphibians—it is indirectly implied that Cognition is something 
that is found in animals as well. 
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Accordingly, in this book the term Cognition is used in a wide sense to designate 
brain functions that exclude only primary sensory and motor functions, autonomic 
brain functions, reflexes and reflexlike stereotyped behavior. Cognition thus includes 
such diverse functions as perception, learning, memory, imagination, thinking, 
expecting, and planning, be they accompanied by consciousness or not. From this 
follows that Cognition is not necessarily restricted to human beings, nor does it 
presuppose the existence of consciousness. 
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