Journal of

Zeitschrift für Naturforschung C

Biosciences

ounded 1946 in the Institutes the Max-Planck-Gesellschaft Volume 42 Number 6 June 1987

Special Issue

Herbicides Affecting Chloroplast Functions

Proceedings of an International Workshop at Lake Placid, N.Y., USA August 17-20, 1986

1987

ZZE-Configuration of Chromophore β-153* in C-Phycocyanin from *Mastigocladus laminosus*

G. Schmidt, S. Siebzehnrübl, R. Fischer, W. Rüdiger, H. Scheer

Botanisches Institut der Universität, Menzinger Straße 67, D-8000 München 19, Bundesrepublik Deutschland

T. Schirmer, W. Bode, R. Huber

Max-Planck-Institut für Biochemie, Am Klopferspitz, D-8033 Martinsried, Bundesrepublik Deutschland

Z. Naturforsch. 42c, 845-848 (1987); received April 21, 1987

Dedicated to Professor W. Nultsch on the occasion of his 60th birthday

Chromophores, Isomerization, Phytochrome, Cyanobacteria

The photochemistry of C-phycocyanin has been studied after denaturation in the dark. It shows an irreversible reaction which has characteristics of a Z,Z,E- to Z,Z,Z-isomerization of dihydrobilins. Its amplitude depends on the reaction conditions, with a maximum corresponding to 15% conversion of one of the three PC chromophores. This chromophore is suggested to be β -153, for which recent X-ray data T. Schirmer, W. Bode, and R. Huber, J. Mol. Biol., submitted, show ring D being highly twisted out of the plane of the other rings. During unfolding, there is thus a probability of falling into the photochemically labile Z,Z,E-configuration.

Introduction

The importance of configurational isomerization of bile pigments in photobiology has been recognized only recently. The primary reaction of phytochrome, the photosensory pigment of plants, involves the reversible light-induced Z-E isomerization of its Adihydrobilindione chromophore at the 15, 16 double bond [5-8]. Spectrally similar reactions have been observed in partly denatured phycobiliproteins [9-12] and located in one case on a specific chromophore [13]. The isomerization of bilirubin has been recognized as an important mechanism operative in phototherapy of neonatal hyperbilirubinamea, by enhancing the solubility in water [14, 15]. Z-E isomerization(s) have also been proposed as the first step during formation of the neobiliverdins, insect bile pigments containing vinyl-group derived C-1 or C-2 bridges between pyrrolic rings [16, 17].

For bile pigments with the natural (= protoporphyrin IX derived) substitution pattern, the Z-configuration of double bonds bridging two pyrrolic rings (see Fig. 1) is generally thermodynamically

4Z, 10Z, 15E

Fig. 1. Schematic formulas for the A-dihydrobilindione chromophore of C-PC in the all-Z and $15\,E$ configuration. Substituents omitted.

Abbreviations: PC. C-phycocyanin: PE, phycoerythrin, M, Mastigocladus.

Reprint requests to Prof. H. Scheer.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0341–0382/87/0700–0845 \$ 01.30/0

^{*} We use the amino acid residue numbering of ref. [1] here, which corresponds to the original sequence data [2] but ignores homology considerations (see ref. [3, 4]).

most stable [17-19]. The reactivity of such double bonds is dependent on their position and structural details: Whereas only the $E \rightarrow Z$ (but not the reverse) reaction is possible in biliverdin type pigments at C-4 and C-15 [20, 21], both isomers are mutually interconvertible in other cases. It has been proposed that $E \rightarrow Z$ conversion at C-10 is a normal photoreaction in biliverdins [17]. If the 10E isomer cannot be trapped, as it is the case in neobiliverdins [16], rapid dark reversion to the 10Z isomer leads to an overall radiationless deactivation [17]. In native phytochrome, the reversion is avoided by the interactions with the protein [7]. In phycocyanin (PC), on the other hand, it has tacitly been assumed that the protein stabilizes the chromophores in the all-Z configuration [7, 22] and that it is therefore photostable. The crystal structure of two PCs from different sources has now shown one of the chromophores, e.g. β -153, to be present in a conformation in which ring D is almost perpendicular to ring C [3, 4, 23]. With an angle greater than 90°, this geometry corresponds at least formally to an E-configuration of the 15. 16 double bond (see Fig. 1). This notation is only meaningful (or has only consequences for the chemical reactivity) if the 15, 16 bond is a true double-bound. This cannot be deduced from the X-ray data alone. This was the reason to check the photochemical reactivity after unfolding the protein of PC.

Materials and Methods

M. laminosus was grown in Castenholz medium [24] in 300 l batches at the Gesellschaft für Molekularbiologische Forschung, Stöckheim. PC was prepared according to previously published procedures [25]. For denaturation, the lyophilized pigment was dissolved in the dark in phosphate buffer (0.1 M, titrated to pH 1.9 with diluted hydrochloric acid) containing urea (8 M) to a final extinction of 0.3 to 0.6 at the long wavelength maximum (662 nm). Spectra were recorded without delay after dissolution and irradiation. ZZE-phycocyanin was prepared in denatured state (8 m urea, 0.1 m phosphate, pH = 7.0) by a modification of the method for ZZE-PC peptides [27]. Absorption spectra were determined with a ZWSII spectrophotometer (Biochem, Puchheim) in split beam mode with thermostated cell holders. One of the cuvettes could be irradiated in the photometer by a Lumilux 150 W light source (Volpi). equipped with a light guide (approx. 10,000 lux at the surface of the sample). Analog data were digitized (Technomar model) and then fed to a microcomputer (Apple Ile) [26].

Results and Discussion

The visible absorption spectrum of PC was determined immediately after dissolving the pigment in acidic denaturating buffer in the dark. The solution was then irradiated for 30 sec and a difference spectrum recorded. It shows a decrease in absorption at 575 nm and an increase at 673 nm (Fig. 2A). The amplitude of these signal increases with irradiation time and saturates after approx. 2 min. After saturating irradiation, the amplitude of the s-shaped difference signal is approx. 1.5% of the final absorption of this sample. If it is irradiated further for prolonged times, this fast photoreaction is followed by a slower one which gives rise to a bleaching of the chromophores. The difference spectrum of the fast reaction is very similar to the difference spectrum (min.: 575 nm, max.: 671 nm) obtained after irradiation of denatured 4Z, 10Z, 15E-PC (Fig. 2C), pre-

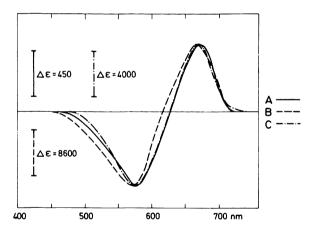


Fig. 2A. (——) Absorption difference spectrum of denatured phycocyanin (8 M urea, pH 1.9), after 2 min irradiation with white light. The reference is the unirradiated sample. The time spent after treatment of the lyophilized C-PC with the solvent was 15 min ($\epsilon_{662} = 90500/3$ chromophores). B. (---) Absorption difference spectrum of 4Z, 10Z, 15E- minus 4Z, 10Z, 15Z-bilipeptide of C-PC from Spirulina platensis (from ref. [27]) ($\epsilon_{661} = 90900/3$ chromophores).

C. (-.-.) Absorption difference spectrum of denatured 4Z, 10Z, 15E- minus 4Z, 10Z, 15Z-phycocyanin (8 M urea, pH 2.8), after 30 sec irradiation with white light ($\varepsilon_{662} = 90500/3$ chromophores). All spectra are normalized for equal absorption at 575 nm; see bars for absolute scale.

pared from urea-denatured PC via irradiation of its mercaptoethanol-adduct. The positions and relative intensities are also similar to difference spectra for photoisomerization in synthetic A-dihydrobilindione model compounds [21] and PC chromopeptides [27] with 15 E-configuration (Fig. 2B). In all these cases, the spectral shift is much larger than that expected for the 4E, 10Z, 15Z-isomer, in which only the 4double bond is uncoupled [21]. In A-dihydro-pigments like phytochrome and phycocyanin the 4Eisomer seems anyhow to be thermodynamically less stable than the 15 E-isomer. Since the reaction kinetics, its pH dependence and the irreversibility are also the same, we conclude that the reaction seen in denatured, but otherwise untreated PC is also an $E \rightarrow Z$ isomerization at the 15, 16-double bond.

In pure ZZE-chromopeptides from PC of S. platensis, the difference amplitude after irradiation is approx. % of the final absorption in the ZZZ form [27]. If just one out of the three chromophores were to be in the ZZE configuration, an amplitude of approx. 10% of the original absorption would be expected.

The amplitude of denatured and acidic PC of M. laminosus is much smaller, however, indicating that only a small fraction of the chromophore is present in the ZZE configuration. The observed maximum yield of 1.5% would then correspond to a maximum of 15% of one of the three chromophores being ZZE after denaturation. The amplitude of the difference signal is furthermore variable (0-1.5%), with the amplitude depending on the history of the sample.

The largest effect has so far been observed in lyophilized samples. With decreasing pH it first increases up to pH 1.9 at a constant temperature of 15 °C in the sample, and decreases again at lower pH. In the same way, there is a decrease of the difference maximum with rising temperature at the optimum pH of 1.9. The origin of the increase is still unclear. The decrease may be due to a dark reaction. If the sample is kept in the dark after denaturation (pH 1.9, 6 °C), there is a slow conversion within two weeks. After 24 h, the maximum yield is reduced to about 70%, after 4 days there is 65% and after 14 days only 25% left. That means, the biggest signal could be observed, when lyophilized PC was dissolved in acidic urea buffer in the dark and the spectrum recorded at once.

The results show, that a small but distinct popula-

tion of chromophores is present after denaturation in the ZZE configuration. According to the X-ray results [3, 4, 23] the chromophore β -153 is a likely candidate for this. The results also show, however, that only a fraction of the chromophore is present in this metastable configuration. A likely explanation would be that the native state has a geometry, which is close to an energy maximum in the denatured chromophore. During denaturation it can fall into either the ZZE- or ZZZ configuration. The different yields of the ZZE isomer would then reflect small variations in the energy profile of the native state and/or the denaturation path, with response to variations in temperature, pH, etc. This isomerization of β -153 in the native state contrasts with the isomerization of β -82 in partly denatured PC [13].

This result may explain several earlier observations indicating distinct differences among the chromophore β-153 and the two remaining chromophores, α -84 and β -82. It is located on a insertion of the polypeptide chain, and its absorption is shifted considerably to the blue. Whereas α -84 and β-82 absorb close to each other around 616 and 622 nm, two independent spectral analysis yielded absorption maxima below 600 nm for β-153 (598 nm in ref. [1, 28]; 594 nm in ref. [29]). The presence of spectrally distinct chromophores absorbing in these regions had originally been inferred from fluorescence polarization studies [30, 31], and has been observed in other phycobiliproteins as well. The third observation comes from NMR data of PC chromopeptides, which were distinctly different for α -84 and β -82 on one hand, and β -153 on the other hand [32, 33].

The previous rationalization for these different properties of β-153 was quite different. Non-covalent chromophore-protein interactions of an unspecified nature were postulated to account for the heterogeneity of the optical spectra [30]. The absorption spectra of bile pigments are sensitive to a variety of factors like state of protonation, conformation, charges in the vicinity, which can be controlled by the next neighbors in the native protein. A different binding site was, on the other hand, suggested as the origin for the NMR differences [33]. From a comparison with model compounds, the NMR spectrum of the chromopeptides bearing chromophore β-153 was very similar to that of a model compound bearing a thioethyl substituent at C-18 (exo) rather than at C-3 (endo).

The results reported here suggest a different origin for the distinct properties of β -153, namely its different configuration at C-15. This tentative assignment suggested from the X-ray crystal structure, together with tests relating to the variable yields, are currently under investigation. It would also be interesting if this is true for PC from other species and for other phycobiliproteins. The occurrence of such unusual and — at least in the free chromophores — very un-

stable and light-sensitive structure also raises questions about its (bio)synthesis and the effect of light on it.

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft, Bonn.

- S. Siebzehnrübl, R. Fischer, and H. Scheer, Z. Naturforsch. 42c, 258–262 (1987).
- [2] G. Frank, W. Sidler, H. Widmer, and H. Zuber. Hoppe-Seyler's Z. Physiol. Chem. 359, 1491 (1978).
- [3] T. Schirmer, W. Bode, R. Huber, W. Sidler, and H. Zuber, J. Mol. Biol. **184**, 257–277 (1985).
- [4] T. Schirmer, W. Bode, and R. Huber, J. Mol. Biol., submitted (1987).
- [5] W. Rüdiger, Phil. Trans. R. Soc. Lond. B303, 377-386 (1983).
- [6] F. Thümmler, W. Rüdiger, E. Cmiel, and S. Schneider, Z. Naturforsch. 38c, 359-368 (1983).
- [7] W. Rüdiger, F. Thümmler, E. Cmiel, and S. Schneider, Proc. Nat. Acad. Sci. USA 80, 6244-6248 (1983).
- [8] W. Rüdiger, P. Eilfeld, and F. Thümmler, in: Optical Properties and Structure of Tetrapyrroles (G. Blauer and H. Sund, eds.), pp. 349–366, W. de Gruyter, Berlin, New York 1985.
- [9] I. Ohad, H.-J. Schneider, S. Gendel, and L. Bogorad, Plant Physiol. **65**, 6–12 (1980).
- [10] K. Ohki and Y. Fujita, Plant Cell Physiol. 20, 1341-1448 (1979a).
- [11] L. O. Björn, Quart. Rev. Biophys. 12, 1-25 (1979).
- [12] J. De Kok, S. E. Braslavsky, and C. J. P. Spruit, Photochem. Photobiol. **34**, 705-718 (1981).
- [13] W. John, R. Fischer, S. Siebzehnrübl, and H. Scheer, in: Antenna and Reaction Centers of Photosynthetic Bacteria (M. E. Michel-Beyerle, ed.), pp. 17-26, Springer Verlag 1985.
- [14] A. F. McDonagh and D. A. Lightner, Pediatrics 75, 443-455 (1985).
- [15] H. Falk, N. Müller, M. Ratzenhofer, and K. Winsauer, Monatsh. Chem. 113, 1321-1432 (1983).
- [16] M. Bois-Choussy and M. Barbier, Heterocycles 9, 677-690 (1978).
- [17] S. E. Braslavsky, A. R. Holzwarth, and K. Schaffner. Angew. Chemie 22, 656-674 (1983).

- [18] H. Falk and N. Müller, Tetrahedron 39, 1875-1885 (1983).
- [19] H. Falk, G. Kapl, and N. Müller, Monatsh. Chem. 114, 773-781 (1983).
- [20] H. Falk, K. Grubmayer, and F. Neufingerl, Monatsh. Chem. 110, 1127-1146 (1979).
- [21] W. Kufer, E. Cmiel, F. Thümmler, W. Rüdiger, S. Schneider, and H. Scheer, Photochem. Photobiol. 36, 603-607 (1982).
- [22] H. Scheer, Angew. Chemie 93, 230-250: Angew. Chemie Int. Ed. 20, 241-261 (1981).
- [23] T. Schirmer, R. Huber, M. Schneider, W. Bode, M. Miller, and M. L. Hackert, J. Mol. Biol. 188, 651–676 (1986).
- [24] R. W. Castenholz, Schweizer Z. Hydrol. **35**, 538-551 (1971).
- [25] P. Füglistaller, H. Widmer, G. Frank, and H. Zuber. Arch. Microbiol. 129, 268-274 (1981).
- [26] S. Siebzehnrübl, Diploma thesis, Universität München (1986).
- [27] F. Thümmler and W. Rüdiger, Tetrahedron 39, 1943–1951 (1981).
- [28] K. Sauer, H. Scheer, and P. Sauer, Photochem. Photobiol., in press.
- [29] M. Mimuro, P. Füglistaller, R. Rümbeli, and H. Zuber, Biochem. Biophys. Acta 848, 155–166 (1986).
- [30] F. W. J. Teale and R. E. Dale, Biochem. J. **116**, 161–169 (1970).
- [31] J. Grabowski and E. Gantt, Photochem. Photobiol. **28**, 39-45 (1978).
- [32] J. C. Lagarias, A. N. Glazer, and H. Rapoport, J. Am. Chem. Soc. 101, 5030-5037 (1979).
- [33] J. E. Bishop, J. C. Lagarias, J. O. Nagy, R. W. Schoenleber, H. Rapoport, A. V. Klotz, and A. N. Glazer, J. Biol. Chem. 261, 6790-6796 (1986).

Original Communications and Notes

Abscisic Acid		Adaptation	
Natural Inhibitors of Germination and Growth		Investigation of the Screening Pigment System in	
IV. Compounds from Fruit and Seeds of Moun-		the Compound Eye of the Moth Agrotis segetum	
tain Ash (Sorbus aucuparia)	1179	(fam. Noctuidae) by Visible Reflectometry	152
Acetoxybutinylbithiophenes	11/9	Adenosylcobalamin	132
Acetyl-CoA: 4-Hydroxybutinylbithiophene O-		Re-Investigation of the Protein Structure of	
Acetyltransferase Isoenzymes from Tagetes			353
patula Seedlings	885	Coenzyme B ₁₂ -Dependent Diol Dehydrase	333
N-Acetyl	005	Adenylate Kinase	
Partial Lack of N-Acetyl Substitution of Glucos-		Extrachloroplastic Site of Synthesis of Three	1113
• • • • • • • • • • • • • • • • • • •		Chloroplast Proteins in Maize (Zea mays)	1113
amine in the Peptidoglycan of the Budding	1145	Affinity Chromatography	
Phototrophic <i>Rhodomicrobium vannielii</i>	1165	Synthesis of Immobilized Peptide Fragments on	
Acetyl-CoA as Intermediate		Polystyrene-Polyoxyethylene for Affinity Chro-	155
Methanogenesis from Acetate by Methanosar-		matography	455
cina barkeri: Catalysis of Acetate Formation		Nitrate Reductase from Sphagnum Species: Iso-	
from Methyl Iodide, CO ₂ , and H ₂ by the En-	260	lation, in vitro Assays and Partial Purification	(53
zyme System Involved	360	(N)	653
Acetyl-CoA Carboxylase Inhibition		Agrobacterium rhizogenes	
Inhibition of the Acetyl-CoA Carboxylase of		Alkaloids in Stem Roots of Nicotiana tabacum	
Barley Chloroplasts by Cycloxydim and Seth-	1271	and Spartium junceum Transformed by Agrobac-	60
oxydim (N)	1361	terium rhizogenes	69
Acetyl-CoA Synthetase		Agrobacterium tumefaciens	
Extrachloroplastic Site of Synthesis of Three		Chimeric Genes – Their Contribution for	
Chloroplast Proteins in Maize (Zea mays)	1113	Molecular Biology and Plant Breeding	1011
$2\beta(R)$ -17-O-Acetylajmalan: Acetylesterase		Ajmalicine	
Characterization of $2\beta(R)$ -17-O-Acetylajmalan:		Geraniol-10-hydroxylase Activity and Its Rela-	
Acetylesterase – a Specific Enzyme Involved in		tion to Monoterpene Indole Alkaloid Accumula-	
the Biosynthesis of the Rauwolfia Alkaloid		tion in Cell Suspension Cultures of Catharanthus	
Ajmaline	333	roseus	1075
Acetylenic Ether		Comparison of Various Strategies Designed to	
Epoxy-trans-isodihydrorhodophytin, a New		Optimize Indole Alkaloid Accumulation of a	
Metabolit from Laurencia obtusa	507	Cell Suspension Culture of Catharanthus roseus.	1101
O-Acetyltransferase Isoenzymes		Ajmaline Biosynthesis	
Acetyl-CoA: 4-Hydroxybutinylbithiophene O-		Characterization of $2\beta(R)$ -17-O-Acetylajmalan:	
Acetyltransferase Isoenzymes from Tagetes		Acetylesterase – a Specific Enzyme Involved in	
patula Seedlings	885	the Biosynthesis of the Rauwolfia Alkaloid	
Acifluorfen		Ajmaline	333
A Non-Metabolic Model of Acifluorfen Activity	813	ALA-Biosynthesis	
Actinomycetales		Glutamic Acid-1-semialdehyde, a Hypothetical	
Phenylalanine and Tyrosine Biosynthesis in		Intermediate in the Biosynthesis of 5-Amino-	
Sporeforming Members of the Order Actino-		levulinic Acid	209
mycetales	387	Alanine Racemase	
Activation Volume		Stereochemistry and Mechanism of Reactions	
Pressure Effects on the Interactions of the Sarco-		Catalyzed by Tyrosine Phenol-Lyase from	
plasmic Reticulum Calcium Transport Enzyme		Escherichia intermedia	307
with Calcium and <i>para</i> -Nitrophenyl Phosphate	641	Algae	
Acyclic Terpenoids		Formation of Large Thioredoxin f Accompanies	
Enzymatic Acyloin Condensation of Acyclic		Chloroplast Development in Scenedesmus obli-	
Aldehydes	559	quus (N)	1364
Acyloin Condensation		Alkaloid Biosynthesis	
Enzymatic Acyloin Condensation of Acyclic		Cell-Free Synthesis of the Alkaloids Ammoden-	
Aldehydes	559	drine and Smipine	197
Acyltransferase		Site of Lupanine and Sparteine Biosynthesis in	
Enzymatic Synthesis of 1,6-Digalloylglucose		Intact Plants and in vitro Organ Cultures	868
from β-Glucogallin by β-Glucogallin: β-Gluco-		Alkaloids	
gallin 6-0-Galloyltransferase from Oak Leaves	87	Alkaloids in Stem Roots of Nicotiana tahacum	

and Spartium junceum Transformed by Agrobac-		Photosynthesis. I. Inhibition of Photosynthesis	
terium rhizogenes	69	and Accumulation of Ammonia	263
Tetraponerine-8, an Alkaloidal Contact Poison		Ammonia Excretion	
in a Neoguinean Pseudomyrmecine Ant. Tetra-		Effect of pH on Glycolate and Ammonia Excre-	
<i>ponera</i> sp	627	tion in L-MSO Treated Chlorella Cells	525
n-Alkanes		cAMP-Dependent Protein Kinase	
Epicuticular Wax Hydrocarbons of Ericaceae in		cAMP-Dependent Protein Kinase Activity in	
Germany	499	Yeast Mitochondria	1291
(Z)-Alkenols		cAMP-Phosphodiesterase Inhibition	
(Z)-5-Dodecen-1-ol, Another Inhibitor of Phero-		Inhibition of cAMP-Phosphodiesterase by	
monal Attraction in Coleophora laricella (N)	1349	Molybdate (N)	162
Δ3-Alkenyl Acetates		Amperometric Titration	
(Z)-3-Tetradecenyl Acetate as a Sex-Attractant		Amperometric Titration Largely Overestimates	
Component in Gelechiinae and Anomologinae		Chloride Concentrations in Chloroplast Extracts	1109
(Lepidoptera: Gelechiidae) (N)	1352	Amphipathy	
Alkylation		Protein Sequence and Structure of N-Terminal	
Methylation of Guanine in vivo by the Organo-		Amino Acids of Subunit Delta of Spinach Photo-	
phosphorus Insecticide Methamidophos	17	synthetic ATP-Synthase CF ₁	1231
<i>n</i> -Alkylphenols		Anabaena cylindrica	
n-Alkylphenols from Schinus terebinthifolius		Uptake and Utilization of Sulfonic Acids in the	
RADDI (Anacardiaceae)	7	Cyanobacterial Strains Anabaena variabilis and	
Allelochemical		Plectonema 73 1 10	891
Structure of Azadirachtin B	4	Anabaena variabilis	
Alligator		Comparing Short-Term-Effects of Ammonia	
Lipids in the Gular Gland Secretions of the		and Methylamine on Nitrogenase Activity in	0.00
American Alligator (Alligator mississippiensis)		Anabaena variabilis (ATCC 29413)	902
(N)	1345	Anabasine	
Alloxydim		Adnexal Glands Chemistry of Messor ebeninus	1027
Inhibition by Sethoxydim of Pigment Accumula-		Forel (Formicidae: Myrmicinae)	1027
tion and Fatty Acid Biosynthesis in Chloroplasts	1075	Anaerobiosis	
of Avena Seedlings	1275	Growth Kinetics of the G2-Phase of Ehrlich	
Amanita		Ascites Tumor Cells, Separated from Anaerobi-	00.1
Occurrence of Amavadin in Mushrooms of the	072	cally Treated Asynchronous Cultures	991
Genus Amanita	873	Analogues Analogues Canaistina of	
Amaranthus caudatus Notice Inhibitors of Cormination and Crowth		Acyclonucleoside Analogues Consisting of	
Natural Inhibitors of Germination and Growth		5- and 5,6-Substituted Uracils and Different	
IV. Compounds from Fruit and Seeds of Mountain Ash (Sanhus guannaria)	1170	Acylic Chains: Inhibitory Properties vs Purified	288
tain Ash (Sorbus aucuparia)	1179	E. coli Uridine Phosphorylase	200
Polyenic Hydrocarbons as Sex Attractants for		Anion Antiporter Organolead Toxicity in Plants: Triethyl Lead	
Geometrids and Amatids (Lepidoptera) Found		(Et ₃ Pb ⁺) Acts as a Powerful Transmembrane	
by Field Screening in Hungary (N)	165	Cl ⁻ /OH ⁻ Exchanger Dissipating H ⁺ -Gradients	
Amavadin	105	at Nano-Molar Levels	1116
Occurrence of Amavadin in Mushrooms of the		Ant	1110
Genus Amanita	873	Tetraponerine-8, an Alkaloidal Contact Poison	
Amino Acid	075	in a Neoguinean Pseudomyrmecine Ant. Tetra-	
A New Detection Procedure for Aminoacylase		ponera sp	627
Activity of Microorganisms Directly on Plate		Antenna	027
Culture with o-Phthalaldehyde	1082	Lipid Influence on the Structure of the Light	
Aminoacylase	1002	Harvesting B 800 – 850 Proteins	109
A New Detection Procedure for Aminoacylase		Antenna Pigments	107
Activity of Microorganisms Directly on Plate		Chromophore Assignment in C-Phycocyanin	
Culture with o-Phthalaldehyde	1082	from Mastigocladus laminosus	258
Ammodendrine	100=	CARS Investigation of Changes in	200
Cell-Free Synthesis of the Alkaloids Ammoden-		Chromophore Geometry of C-Phycocyanin from	
drine and Smipine	197	Mastigocladus laminosus Induced by Titration	
Ammonia		with <i>p</i> -Chloromercuribenzenesulfonate	1269
The Effect of Phosphinothricin (Glufosinate) on		Antheraea pernyi	1200
Photosynthesis. II. The Causes of Inhibition of		Functional Group Recognition of Pheromone	
Photosynthesis	270	Molecules by Sensory Cells of Antheraea	
Comparing Short-Term Effects of Ammonia and		polyphemus and Antheraea pernyi (Lepidoptera:	
Methylamine on Nitrogenase Activity in Ana-		Saturniidae)	435
baena variabilis (ATCC 29413)	902	Identification of Three Sex Pheromone Compo-	
Ammonia Accumulation		nents of the Female Saturniid Moth Antheraea	
The Effect of Phosphinothricin (Glufosinate) on		pernyi (Lepidoptera: Saturniidae)	631

Antheraea polyphemus		Artificial Receptor	
Functional Group Recognition of Pheromone		Synthesis and Complexing Features of an Artifi-	
Molecules by Sensory Cells of Antheraea		cial Receptor for Biogenic Amines	476
polyphemus and Antheraea pernyi (Lepidoptera:	125	Arylsulfatase	
Saturniidae)	435	Derepression of Arylsulfatase Activity by Sul-	520
Anthers The Separation of Two Different Engages		fate Starvation in Chlorella fusca	530
The Separation of Two Different Enzymes		Ascochyta rabiei	
Catalyzing the Formation of Hydroxycinnamic	1223	Partial Characterization of an Enzyme from the	
Acid Glucosides and Esters	1223	Fungus Ascochyta rabiei for the Reductive Cleavage of Pterocarpan Phytoalexins to 2'-Hy-	
Distinct Substrate Specificity of Dihydroflavonol		droxyisoflavans	897
4-Reductase from Flowers of <i>Petunia hybrida</i>		Accumulation of Phenolic Compounds and Phy-	097
(N)	1146	toalexins in Sliced and Elicitor-Treated Cotyle-	
Antibody	1170	dons of Cicer arietinum L	1171
Site Directed Antisera to the D-2 Polypeptide		Ascomycetes	11/1
Subunit of Photosystem II	491	Isopulegol from Liquid Cultures of the Fungus	
Expression of the <i>psbA</i> Gene in <i>E. coli</i>	755	Ceratocystis coerulescens (Ascomycotina) (N).	159
Protein Sequence and Structure of N-Terminal	,	Ascorbate Oxidase	107
Amino Acids of Subunit Delta of Spinach Photo-		Interaction of Sodium, Lithium, Caesium, and	
synthetic ATP-Synthase CF ₁	1231	Potassium Ions with Ascorbyl Radicals	215
Anticancer Drugs		Ascorbic Acid	
In the Search for New Anticancer Drugs, XXI.		Ascorbic Acid and Glutathione Contents of	
Spin Labeled Nitrosoureas	921	Spruce Needles from Different Locations in	
Antigens		Bavaria	879
Recognition of HLA Class II Molecules by Anti-		Ascorbyl Radical	
peptide Antibodies Elicited by Synthetic		Interaction of Sodium, Lithium, Caesium, and	
Peptides Selected from Regions of HLA-DP		Potassium Ions with Ascorbyl Radicals	215
Antigens	1313	Aspergillus	
Antiviral Activity		Fungal Metabolism of the Prenylated Isoflavone	
6-Methylpurine, 6-Methyl-9-β-p-ribofuranosyl-		2,3-Dehydrokievitone	1055
purine, and 6-Hydroxymethyl-9-β-p-ribofurano-		Aspergillus flavus	
sylpurine as Antiviral Metabolites of Collybia	100	Metabolism of the Prenylated Pterocarpan	1050
maculata (Basidiomycetes)	420	Edunol by Aspergillus flavus	1050
Aorta		Aspergillus niger	
Twisted Fibrils are a Structural Principle in the		Semicontinuous and Continuous Production of	
Assembly of Interstitial Collagens, Chordae	1202	Citric Acid with Immobilized Cells of Aspergil-	400
Tendineae Included	1303	lus niger	408
A Final Matabalita on the Male Wing Gland		Asteraceae Flavonoids from the Leaf Resin of Snakeweed.	
A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth.		Gutierrezia sarothrae	73
	657	Atmosferics	13
Aphomia sociella L. (N)	057	Demonstration of Statistically Significant Corre-	
NMR Spectra of Flavone Di-C-glycosides from		lations between 8 and 12 kHz Atmosferics and	
Apometzgeria pubescens and the Detection of		Sudden Deafness	999
Rotational Isomerism in 8-C-Hexosylflavones .	1039	ATPase	,,,,
Arahomocytidine	1007	The Rate of ATP Hydrolysis Catalyzed by	
Pyrimidine Homoribonucleosides: Synthesis.		Reconstituted CF_0F_1 -Liposomes	231
Solution Conformation, and Some Biological		H ⁺ -ATPase (Tonoplast)	
Properties	589	Organolead Toxicity in Plants: Triethyl Lead	
Archaebacteria		(Et ₃ Pb ⁺) Acts as a Powerful Transmembrane	
Divergent Evolution of 5S rRNA Genes in		Cl ⁻ /OH Exchanger Dissipating H ⁺ -Gradients	
Methanococcus	373	at Nano-Molar Levels	1116
Arenediazonium Iones		ATP-Hydrolysis	
Reactions of Substituted Arenediazonium		Protein Transport in Chloroplasts: ATP is Pre-	
Chlorides with Methylamine-Formaldehyde Pre-		requisit	103
mix Revisited: Reactivity and Transformations		The Rate of ATP Hydrolysis Catalyzed by	
of Methylolamine Intermediates and Their		Reconstituted CF_0F_1 -Liposomes	231
Biological Significance	41	ATP-Synthase	
Arogenate Dehydrogenase		The Rate of ATP Hydrolysis Catalyzed by	
Phenylalanine and Tyrosine Biosynthesis in		Reconstituted CF ₀ F ₁ -Liposomes	231
Sporeforming Members of the Order Actino-		Isolation and Characterization of a Supra-	
mycetales	387	molecular Complex of Subunit III of the ATP-	
Arrhythmicity		Synthase from Chloroplasts	1239
Evidences for Circadian Rhythmicity in the per	1225	Atrazine	
Mutant of Drosophila melanogaster	1335	Genetic Engineering of Herbicide Resistance:	

Saturation Mutagenesis of Isoleucine 229 of the		Biliproteins	
Reaction Center L Subunit	769	CARS Investigation of Changes in Chromo-	
Atrazine and Urea Cross-Resistance		phore Geometry of C-Phycocyanin from Masti-	
Photosynthetic Properties and Cross-Resistance		gocladus laminosus Induced by Titration with	
to Some Urea Herbicides of Triazine-Resistant		<i>p</i> -Chloromercuribenzenesulfonate	1269
Conyza Canadensis Cronq (L.)	783	Q _A Binding Protein	
Atrazine-Resistance		Site Directed Antisera to the D-2 Polypeptide	
Photosynthetic Properties and Cross-Resistance		Subunit of Photosystem II	491
to Some Urea Herbicides of Triazine-Resistant		Q _B Binding Protein	
Conyza Canadensis Crong (L.)	783	A Role of the Q_B Binding Protein in the Mecha-	
Atropisomer	705	nism of Cyanobacterial Adaptation to Light	
Stereochemistry of Two Hydroxybiflavanonols			727
from Garcinia cola Nuts	855	Intensity?	121
	633	Binding Volume	
Attraction-Inhibitor		Pressure Effects on the Interactions of the Sarco-	
(Z)-5-Dodecen-1-ol, Another Inhibitor of		plasmic Reticulum Calcium Transport Enzyme	
Pheromonal Attraction in Coleophora laricella	1240	with Calcium and para-Nitrophenyl Phosphate	641
(N)	1349	Biogenic Amines	
(Z)-3-Tetradecenyl Acetate as a Sex-Attractant		Synthesis and Complexing Features of an Artifi-	
Component in Gelechiinae and Anomologinae		cial Receptor for Biogenic Amines	476
(Lepidoptera: Gelechiidae) (N)	1352	Biological Activity	
Azacrown Ether Complex		Transformations of trans-2-Hexenal by Botrytis	
Synthesis and Complexing Features of an Artifi-		cinerea PERS. as Detoxification Mechanisms	64
cial Receptor for Biogenic Amines	476	Biological Properties	
Azadirachtin		Pyrimidine Homoribonucleosides: Synthesis,	
Structure of Azadirachtin B	4	Solution Conformation, and Some Biological	
		Properties	589
		Biominerals	
Bacillus macerans		On the Possible Relation between Morphology	
Fermentation of p-Xylose to Ethanol by <i>Bacillus</i>		and Precursors of the Crystallities in Calcified	
macerans	401	Tissues	916
Bacillus megaterium	401	Biopterin	710
Reversible pH-Induced Dissociation of Glucose		Biopterin Synthesis in Mouse Spleen during	
Dehydrogenase from <i>Bacillus megaterium</i> .			
	007	Bone Marrow Transplantation Correlates with	461
II. Kinetics and Mechanism	907	Unimpaired Hemopoietic Engraftment	461
Bacillus subtilis		Bioreductive Alkylation	
Synthesis of Heat Shock Proteins during Amino		Irreversibly Binding Photosynthetic Electron	
Acid or Oxygen Limitation in Bacillus subtilis		Transport Inhibitors. II. Halogen-Substituted	
$relA^+$ and $relA$	941	1,4-Naphthoquinones and Halogenmethyl-1,4-	
Basidiomycetes		Quinones	693
6-Methylpurine, 6-Methyl-9-β-D-ribofuranosyl-		Bioselectivity	
purine, and 6-Hydroxymethyl-9-β-D-ribofurano-		Ring Opening Reactions of Bioreactive Lactam	
sylpurine as Antiviral Metabolites of Collybia		Systems	603
maculata (Basidiomycetes)	420	Biosynthesis	
Benzofuroxan		The 14β-Hydroxylation in the Biosynthesis of	
Benzofuroxan as Electron Acceptor at Photo-		Cardenolides in Digitalis purpurea. The Role of	
system I	1265	3β -Hydroxy- 5β -pregn- $8(14)$ -en- 20 -one	77
1,4-Benzoquinones		Induction and Characterization of a NADPH-	
Irreversibly Binding Photosynthetic Electron		Dependent Flavone Synthase from Cell Cultures	
Transport Inhibitors. II. Halogen-Substituted		of Soybean	343
1.4-Naphthoquinones and Halogenmethyl-1,4-		Synthesis, Analysis and Characterization of the	545
Quinones	693	Coenzyme A Esters of o-Succinylbenzoic Acid.	
Pongulisacuinalina Alkalaida	093		
Benzylisoquinoline Alkaloids		an Intermediate in Vitamin K ₂ (Menaquinone)	5.40
Distant Precursors of Benzylisoquinoline Alka-	210	Biosynthesis	542
loids and Their Enzymatic Formation	319	Biosynthesis of Phenylalanine and Tyrosine	
Berberis Species		Phenylalanine and Tyrosine Biosynthesis in	
Distant Precursors of Benzylisoquinoline Alka-		Sporeforming Members of the Order Actino-	
loids and Their Enzymatic Formation	319	mycetales	387
Betula alba		Biosynthesis of Vitexin	
Identification of Betulin in Archaeological Tar .	1151	Biosynthesis of Vitexin and Isovitexin: Enzymat-	
Biflavonoids: Isoflavone-flavone		ic Synthesis of the C-Glucosylflavones Vitexin	
Bryoflavone and Heterobryoflavone, Two New		and Isovitexin with an Enzyme Preparation from	
Isoflavone-flavone Dimers from Bryum capillare	863	Fagopyrum esculentum M. Seedlings	519
Biflavanonol		Biotechnology	
Stereochemistry of Two Hydroxybiflavanonols		Radiochemical Methods for Studying Lipase-	
from Garcinia cola Nuts	855	Catalyzed Interesterification of Lipids	1285

Biotransformation		Pressure Effects on the Interactions of the Sarco-	
Biotransformation of Humulene by Fungi and	79	plasmic Reticulum Calcium Transport Enzyme with Calcium and para-Nitrophenyl Phosphate	641
Enantioselectivity of the Strains Used Enzymatic Acyloin Condensation of Acyclic	79	•	041
Aldehydes	559	Calcium-Influx Light-Induced Ca ²⁺ Influx into Spinach Proto-	
Birch Tar		plasts	283
Identification of Betulin in Archaeological Tar .	1151	Capillary Gas Chromatography	-00
Bleaching Herbicides		Biotransformation of Citral by <i>Botrytis cinerea</i> .	1097
A Non-Metabolic Model of Acifluorfen Activity	813	• •	10,7,
Block of Chlorophyll Accumulation		Carbon Monoxide Dehydrogenase Methanogenesis from Acetate by <i>Methanosarci</i> -	
Inhibition by Sethoxydim of Pigment Accumula-		na barkeri: Catalysis of Acetate Formation from	
tion and Fatty Acid Biosynthesis in Chloroplasts		Methyl Iodide, CO_2 , and H_2 by the Enzyme Sys-	
of Avena Seedlings	1275	tem Involved	360
Blood		4-(2'-Carboxyphenyl)-4-oxobutyryl Coenzyme A	•
Melting Pressure, Volume and Stability of Blood	1370	Ester	
at High Pressure (N)	1370	4-(2'-Carboxyphenyl)-4-oxobutyryl Coenzyme A	
Characterization and Amino Acid Composition		Ester, an Intermediate in Vitamin K ₂ (Mena-	
of a Hypertrehalosaemic Neuropeptide from the		quinone) Biosynthesis	1207
Corpora cardiaca of the Cockroach, Nauphoeta		Cardenolide	
cinerea	225	The 14β-Hydroxylation in the Biosynthesis of	
Blue Copper Proteins		Cardenolides in Digitalis purpurea. The Role of	
Structural Features and Biological Functions in		3β -Hydroxy- 5β -pregn- $8(14)$ -en- 20 -one	77
Blue Copper Proteins (N)	1358	β-Carotene Synthesis	
Blue Duiker		Substrate Flow from Photosynthetic Carbon	
Mammalian Pheromone Studies, VI. Com-		Metabolism to Chloroplast Isoprenoid Synthesis	
pounds from the Preorbital Gland of the Blue		in Spinach Evidence for a Plastidic Phosphoglyc-	
Duiker, Cephalophus monticola (N)	1355	erate Mutase	570
Bone Marrow Transplantation		Carotenes	
Biopterin Synthesis in Mouse Spleen during		Interconversion of Prenyl Pyrophosphates and	
Bone Marrow Transplantation Correlates with Unimpaired Hemopoietic Engraftment	461	Subsequent Reactions in the Presence of FMC 57020	803
Botrvtis	401	Carotenoids	603
Fungal Metabolism of the Prenylated Isoflavone		A Non-Metabolic Model of Acifluorfen Activity	813
2.3-Dehydrokievitone	1055	CARS	
Botrytis cinerea		CARS Investigation of Changes in Chromo-	
Transformations of trans-2-Hexenal by Botrytis		phore Geometry of C-Phycocyanin from Masti-	
cinerea PERS. as Detoxification Mechanisms	64	gocladus laminosus Induced by Titration with	
Biotransformation of Citral by <i>Botrytis cinerea</i> .	1097	<i>p</i> -Chloromercuribenzenesulfonate	1269
Brain Neurotransmitters		Catharanthus roseus	
Free Amino Acids in Cytosol of Rat Brain after		Geraniol-10-hydroxylase Activity and Its Rela-	
Intraventricular Administration of 5,6-Di-	(27	tion to Monoterpene Indole Alkaloid Accumula-	
hydroxytryptamine and 6-Hydroxydopamine Bryoflavone	637	tion in Cell Suspension Cultures of Catharanthus	1075
Bryoflavone and Heterobryoflavone, Two New		roseus	1073
Isoflavone-flavone Dimers from Bryum capillare	863	Optimize Indole Alkaloid Accumulation of a	
Bryozoa	005	Cell Suspension Culture of Catharanthus roseus.	1101
Terpenoids from a Black Sea Bryozoan Cono-		Role of Pyrophosphate: Fructose-6-phosphate 1-	
peum seuratum	1019	Phosphotransferase in Glycolysis in Cultured	
Bryum		Catharanthus roseus Cells	1215
Bryoflavone and Heterobryoflavone, Two New		Cedrene	
Isoflavone-flavone Dimers from Bryum capillare	863	Microbial Hydroxylation of Cedrol and Cedrene	414
Bud Exudate		Cedrol	
A Novel Caffeic Acid Derivative and Other		Microbial Hydroxylation of Cedrol and Cedrene	414
Constituents of <i>Populus</i> Bud Excretion and	1000	Cell Coupling	
Propolis (Bee-Glue)	1030	Light and Electron Microscopic Studies Regard-	
By-Products Formantation of a Vulcon to Ethanal by Pacilles		ing Cell Contractility and Cell Coupling in Light	
Fermentation of D-Xylose to Ethanol by <i>Bacillus</i> macerans	401	Sensitive Smooth Muscle Cells from the Isolated Frog Iris Sphincter	977
macrans	401	Cell Cultures	711
Calcinosis		Purification and Properties of Chalcone Syn-	
A Vitamin D ₃ Steroid Hormone in the Cal-		thase from Cell Suspension Cultures of Soybean	1200
cinogenic Grass Trisetum flavescens	430	Cell-Free Synthesis	
Calcium Dependent para-Nitrophenyl Phosphate		Cell-Free Synthesis of the Alkaloids Ammoden-	
Hydrolysis		drine and Smipine	197

0.11.5			
Cell-Free Systems Dietont Progressors of Pangulisaguinaline Alle		Chemical Defense	
Distant Precursors of Benzylisoquinoline Alkaloids and Their Enzymatic Formation	319	Tetraponerine-8, an Alkaloidal Contact Poison in a Neoguinean Pseudomyrmecine Ant, <i>Tetra</i> -	
Cell Junctions	319	ponera sp	627
Light and Electron Microscopic Studies Regard-		Chemical Stimulation	027
ing Cell Contractility and Cell Coupling in Light		Chemical Control of Photorespiration: Steady-	
Sensitive Smooth Muscle Cells from the Isolated		State Kinetic and Conformational Changes of	
Frog Iris Sphincter	977	Ribulose-1,5-bisphosphate Carboxylase/Oxy-	
Cell Movement		genase Obtained with O-p-Nitrophenylhydroxyl-	
Chemokinesis and Necrotaxis of Human Granu-		amine	837
locytes: the Important Cellular Organelles	1126	Chemotaxonomy	
Cell Suspension Culture		Species and Sex Specificity in the Odour Com-	
Characterization of $2\beta(R)$ -17-O-Acetylajmalan:		position of Two Panurgine Bees (Hymenoptera,	
Acetylesterase – a Specific Enzyme Involved in		Andrenidae) (N)	169
the Biosynthesis of the Rauwolfia Alkaloid	222	Epicuticular Wax Hydrocarbons of Ericaceae in	
Ajmaline	333	Germany	499
Geraniol-10-hydroxylase Activity and Its Relation to Monoterpene Indole Alkaloid Accumula-		Chimeric Genes	
tion in Cell Suspension Cultures of Catharanthus		Chimeric Genes – Their Contribution for	1011
roseus	1075	Molecular Biology and Plant Breeding	1011
Comparison of Various Strategies Designed to	10.0	(Z)-3-Tetradecenyl Acetate as a Sex-Attractant	
Optimize Indole Alkaloid Accumulation of a		Component in Gelechiinae and Anomologinae	
Cell Suspension Culture of Catharanthus roseus.	1101	(Lepidoptera: Gelechiidae) (N)	1352
Cell-to-Cell Communication		Chiral Methyl Group	1002
Transmission of Hormonal Imprinting in Tetra-		Steric Course of the Rhodium-Catalyzed Decar-	
hymena Cultures by Intercellular Communica-		bonylation of Chiral 4-Methyl-[1-3H,2-2H ₁]pen-	
tion	932	tanal	449
Cell Wall		Chlamydomonas reinhardii	
A Correlation between Detergent Tolerance and	245	The Use of HPLC for the Purification of the Q _B -	
Cell Wall Structure in Green Algae Cellular Spin Resonance (CSR)	245	Protein	739
Cellular Spin Resonance of Yeast in a Frequency		Chlorella	
Range up to 140 MHz (N)	1367	Derepression of Arylsulfatase Activity by Sul-	
Cephalophus monticola	1001	fate Starvation in Chlorella fusca	530
Mammalian Pheromone Studies, VI. Com-		Chlorella vulgaris	
pounds from the Preorbital Gland of the Blue		Effect of pH on Glycolate and Ammonia Excre-	
Duiker, Cephalophus monticola (N)	1355	tion in L-MSO Treated Chlorella Cells	525
Ceramide Aminoethyl Phosphonate		Chloride	
Thin Layer Chromatographic and Infra Red		Amperometric Titration Largely Overestimates	
Spectral Evidence for the Presence of Phos-	1022	Chloride Concentrations in Chloroplast Extracts	1109
phonolipids in Cicada oni	1023	Chloride Availability	
Ceratocystis coerulescens Isopulegol from Liquid Cultures of the Fungus		Chloride Availability Affects the Malate Con-	
Ceratocystis coerulescens (Ascomycotina) (N)	159	tent and its Control by the Circadian Clock in	553
Ceroptene (Ascomycottina) (17):	137	Pulvini of <i>Phaseolus coccineus</i> L	553
α-Diceroptene: A New Dimeric Structure for		Chlorophyll Fluorescence	
Isoceroptene	849	Photosystem II Heterogeneity in Triazine-Resistant and Susceptible Biotypes of <i>Cheno-</i>	
CF_0F_1		podium album	794
Isolation and Characterization of a Supra-		The Polyphasic Rise of Chlorophyll Fluores-	,,,
molecular Complex of Subunit III of the ATP-		cence upon Onset of Strong Continuous Illumi-	
Synthase from Chloroplasts	1239	nation: I. Saturation Characteristics and Partial	
Chalcone Synthase		Control by the Photosystem II Acceptor Side	1246
Enzymatic Synthesis of 4'- and 3',4'-Hy-		The Polyphasic Rise of Chlorophyll Fluores-	
droxylated Flavanones and Flavones with Flower Extracts of Sinningia cardinalis	1193	cence upon Onset of Strong Continuous Illumi-	
Purification and Properties of Chalcone Syn-	1175	nation: II. Partial Control by the Photosystem II	
thase from Cell Suspension Cultures of Soybean	1200	Donor Side and Possible Ways of Interpretation	1255
Characterization		Chlorophyll Fluorescence Quenching	
Lysine Decarboxylase from Hafnia alvei: Purifi-		Energy-Dependent Chlorophyll Fluorescence	
cation, Molecular Data and Preparation of Poly-		Quenching in Chloroplasts Correlated with	
clonal Antibodies	1307	Quantum Yield of Photosynthesis	581
Chemical Communication		Chlorophyll Synthesis	
Mammalian Pheromone Studies, VI. Com-		Formation of Large Thioredoxin f Accompanies	
pounds from the Preorbital Gland of the Blue	1255	Chloroplast Development in Scenedesmus obli-	1364
Duiker, Cephalophus monticola (N)	1355	quus (N)	1304

Chloroplast Development Formation of Large Thioredoxin f Accompanies		Chronoresistance A Temporal Phase Mutation of Chlorophyll	
Chloroplast Development in Scenedesmus obliquus (N)	1364	Fluorescence in Triazine-Resistant Brassica napus	775
Chloroplast DNA Daffodil Chromoplast DNA: Comparison with Chloroplast DNA, Physical Map, and Gene Localization	118	Chordae tendineae Twisted Fibrils are a Structural Principle in the Assembly of Interstitial Collagens, Chordae Tendineae Included	1303
Chloroplast Metabolism Sn-Glycerol-3-phosphate is a Product of Starch Degradation in Isolated Chloroplasts from		Chorismate Mutase Phenylalanine and Tyrosine Biosynthesis in Sporeforming Members of the Order Actino-	
Chlamydomonas reinhardii	567	mycetales	387
Protein Transport in Chloroplasts: ATP is Prerequisit	103	On the Essential Oils from <i>Chrysanthemum balsamita</i> L	502
The Effect of Phosphinothricin (Glufosinate) on Photosynthesis. II. The Causes of Inhibition of Photosynthesis.	270	Cicer arietinum Further Characterization of Chickpea Isoflavone 7-O-Glucoside-6"-O-malonate: malonylesterase:	
Energy-Dependent Chlorophyll Fluorescence Quenching in Chloroplasts Correlated with Quantum Yield of Photosynthesis	581	Evidence for a Highly Specific, Membrane-Bound Enzyme in Roots of <i>Cicer arietinum</i> L. Accumulation of Phenolic Compounds and	251
Cyanoacrylate Inhibitors of Photosynthetic Electron Transport in Atrazine Susceptible and Atra-		Phytoalexins in Sliced and Elicitor-Treated Cotyledons of <i>Cicer arietinum</i> L	1171
zine Resistant <i>Brassica</i> Chloroplasts Interference by Herbicides with the Transmembrane Potential of Thylakoids	670 718	A Temporal Phase Mutation of Chlorophyll Fluorescence in Triazine-Resistant Brassica	
Triazine Resistance in <i>Phalaris paradoxa:</i> Physiological and Molecular Analyses	779	napus	775
Photosystem II Heterogeneity in Triazine-Resistant and Susceptible Biotypes of <i>Cheno-</i>		Mutant of <i>Drosophila melanogaster</i> Circadian Leaf Movement	1335
podium album	794	Chloride Availability Affects the Malate Content and its Control by the Circadian Clock in Pulvini of <i>Phaseolus coccineus</i> L	553
Biotypes of <i>Poa</i>	798	Circular Dichroism Stereochemistry of Two Hydroxybiflavanonols	
Chloride Concentrations in Chloroplast Extracts Effect of pH on the Slow Phase Components of	1109	from <i>Garcinia cola</i> Nuts	855
Delayed Luminescence in Chloroplasts Isolation and Characterization of a Supramolecular Complex of Subunit III of the ATP-	1121	Epicuticular Leaf Wax of Cistus albanicus, Cistaceae (N)	157
Synthase from Chloroplasts	1239	Epicuticular Leaf Wax of <i>Cistus albanicus</i> , Cistaceae (N)	157
Estimation of the Extent of DNA Platination after Interaction of cis-DDP with DNA and	970	Citral Biotransformation Biotransformation of Citral by <i>Botrytis cinerea</i> Citrate	1097
Chromatin	970	Chloride Availability Affects the Malate Content and its Control by the Circadian Clock in Pulvini of <i>Phaseolus coccineus</i> L	553
sphaeroides	690	Citric Acid Semicontinuous and Continuous Production of	
Chromophores ZZE-Configuration of Chromophore β-153 in C-Phycocyanin from Mastigocladus laminosus	845	Citric Acid with Immobilized Cells of Aspergil- lus niger	408
Chromoplast DNA Daffodil Chromoplast DNA: Comparison with Chloroplast DNA, Physical Map, and Gene		Claviceps Characterization of Some Claviceps Strains Derived from Regenerated Protoplasts	381
Localization	118	Clethodim Inhibition of the Acetyl-CoA Carboxylase of Barley Chloroplasts by Cycloxydim and Seth-	
A Temporal Phase Mutation of Chlorophyll Fluorescence in Triazine-Resistant Brassica	775	oxydim (N)	1361
napus	775	Sexual Pheromones and Related Egg Secretions in Laminariales (Phaeophyta)	948
A Temporal Phase Mutation of Chlorophyll Fluorescence in Triazine-Resistant <i>Brassica</i>	775	Codon Assignments Evolution of <i>E. coli</i> tRNA ^{lle} : Evidence of Deri-	120
napus	775	vation from Other tRNAs	129

Colchicine		Coupled on-Line Capillary Gas Chromatographic	
Chemokinesis and Necrotaxis of Human Granu-		Techniques	
locytes: the Important Cellular Organelles	1126	Biotransformation of Citral by <i>Botrytis cinerea</i> .	1097
Coleophora laricella		Coupling Factor	
(Z)-5-Dodecen-1-ol, Another Inhibitor of		Protein Sequence and Structure of N-Terminal	
Pheromonal Attraction in Coleophora laricella		Amino Acids of Subunit Delta of Spinach Photo-	
(N)	1349	synthetic ATP-Synthase CF ₁	1231
Coleophoridae		CPMAS	
(Z)-5-Dodecen-1-ol, Another Inhibitor of Pheromonal Attraction in <i>Coleophora laricella</i>		Comparison of the Solid State CPMAS and Solution Carbon-13-NMR Spectra of Humic	
(N)	1349	Acids Extracted from Composted Municipal	
Collagen	15 ()	Refuse	205
Twisted Fibrils are a Structural Principle in the		Crohn's Disease	
Assembly of Interstitial Collagens, Chordae		Are Small RNAs Associated with Crohn's	
Tendineae Included	1303	Disease? (N)	1006
Collybia maculata		Cross-Reactivity	
6-Methylpurine, 6-Methyl-9-β-D-ribofuranosyl-		PAPS-Reductase from Escherichia coli: Charac-	
purine, and 6-Hydroxymethyl-9-β-D-ribofurano-		terization of the Enzyme as Probe for Thio-	93
sylpurine as Antiviral Metabolites of <i>Collybia</i> maculata (Basidiomycetes)	420	redoxins	93
Compound Eye	720	Conformational Changes in Proteins Induced by	
Reversed Light Reaction of the Screening Pig-		Low Temperatures: an Infrared Study (N)	1339
ment in a Compound Eye Induced by Noradren-		Crystal Morphology	
aline	973	On the Possible Relation between Morphology	
Compressibility		and Precursors of the Crystallities in Calcified	
Melting Pressure, Volume and Stability of Blood	1270	Tissues	916
at High Pressure (N)	1370	Culture Conditions Comparison of Various Strategies Designed to	
Experiments on the Optical Resolution of Con-		Comparison of Various Strategies Designed to Optimize Indole Alkaloid Accumulation of a	
duramine Analogs by Enzymatic Transesterifica-		Cell Suspension Culture of Catharanthus roseus.	1101
tion in Organic Solvents	446	Cyanide Respiration	
Configurational Change		Active Cyanogenesis – in Zygaenids and Other	
Small Angle X-Ray Study on the Structure of		Lepidoptera	1319
Active and Inactive Ribulose-1,5-bisphosphate		Cyanoacrylates	
Carboxylase-Oxygenase from Spinach. Evidence	1000	Cyanoacrylate Inhibitors of Photosynthetic Elec-	
for a Configurational Change	1089	tron Transport in Atrazine Susceptible and Atra-	670
Pyrimidine Homoribonucleosides: Synthesis,		zine Resistant <i>Brassica</i> Chloroplasts Stereospecific Inhibitor Probes of the PS II Her-	070
Solution, Conformation, and Some Biological		bicide Binding Site	674
Properties	589	Cyanoacrylate Inhibitors of the Hill Reaction.	
Conjugation		IV. Binding Characteristics of the Hydrophobic	
Metabolism of the Herbicide 2-(2.4-Dichloro-		Domain	679
phenoxy)-propionic Acid (Dichlorprop) in Bar-		Cyanoacrylate Inhibitors of the Hill Reaction.	
ley (Hordeum vulgare)	486	V. The Effect of Chirality on Inhibitor Binding	684
Continuous Semicontinuous and Continuous Production of		Cyanobacteria Chromophore Assignment in C-Phycocyanin	
Citric Acid with Immobilized Cells of Aspergil-		from Mastigocladus laminosus	258
lus niger	408	A Role of the Q _B Binding Protein in the Mecha-	2
Conyza canadensis		nism of Cyanobacterial Adaptation to Light	
Photosynthetic Properties and Cross-Resistance		Intensity?	727
to Some Urea Herbicides of Triazine-Resistant		Isolation and Characterization of Herbicide	
Conyza Canadensis Cronq (L.)	783	Resistant Mutants in the Cyanobacterium	750
Copper Enzymes		Synechococcus R2	758
Structural Features and Biological Functions in	1358	Residues in the D2 Protein Inactivate and	
Blue Copper Proteins (N)	1336	Destabilize Photosystem II in the Cyanobac-	
Characterization and Amino Acid Composition		terium Synechocystis 6803	762
of a Hypertrehalosaemic Neuropeptide from the		ZZE-Configuration of Chromophore β-153 in	
Corpora cardiaca of the Cockroach, Nauphoeta		C-Phycocyanin from Mastigocladus laminosus .	845
cinerea	225	Uptake and Utilization of Sulfonic Acids in the	
Corrinoid Enzymes		Cyanobacterial Strains Anabaena variabilis and	00.1
Methanogenesis from Acetate by Methanosarci-		Plectonema 73110	891
na barkeri: Catalysis of Acetate Formation from Methyl Iodide, CO ₂ , and H ₂ by the Enzyme Sys-		Methylamine on Nitrogenase Activity in Ana-	
tem Involved	360	baena variabilis (ATCC 29413)	902
	•	\	

Cyanogenesis		Delta-11 Desaturation	
Active Cyanogenesis – in Zygaenids and Other		Comparative Sex Pheromone Biosynthesis in the	
Lepidoptera	1319	Obliquebanded Leafroller, Choristoneura	
Cyclic AMP Phosphodiesterase		rosaceana, and the Redbanded Leafroller, Argy-	
Inhibition of cAMP Phosphodiesterase by Some	1000	rotaenia velutinana, Moths	961
Phototherapeutic Agents (N)	1009	Deoxynivalenol	
Cyclic Monoterpene Alcohol		Trichothecene Mycotoxins from Fusarium cul-	
Isopulegol from Liquid Cultures of the Fungus		morum Cultures	1043
Ceratocystis coerulescens (Ascomycotina) (N)	159	Derepression by Starvation	
Cyclohexan-1,3-dione Derivatives		Derepression of Arylsulfatase Activity by Sul-	520
Inhibition by Sethoxydim of Pigment Accumula-		fate Starvation in Chlorella fusca	530
tion and Fatty Acid Biosynthesis in Chloroplasts	1275	Detection Provide Assistance Assi	
of Avena Seedlings	1275	A New Detection Procedure for Aminoacylase	
Cysteamine Efficiency of Cystein of Balance Badinassatzation		Activity of Microorganisms Directly on Plate	1002
Efficacy of Sustained-Release Radioprotective	1222	Culture with o-Phthalaldehyde	1082
Drugs in vivo	1323	Detergent Resistance A Correlation between Detergent Tolerance and	
Efficacy of Sustained-Release Radioprotective			245
Drugs in vivo	1323	Cell Wall Structure in Green Algae	243
Cysteine Modification	1,72,7	Transformations of <i>trans</i> -2-Hexenal by <i>Botrytis</i>	
Chromophore Assignment in C-Phycocyanin		cinerea PERS. as Detoxification Mechanisms	64
from Mustigocladus laminosus	258	1.6-Di-0-galloyl-β-D-glucopyranose	04
Cytisine	~.()	Enzymatic Synthesis of 1,6-Digalloylglucose	
Alkaloids in Stem Roots of <i>Nicotiana tabacum</i>		from β-Glucogallin by β-Glucogallin: β-	
and Spartium junceum Transformed by Agrobac-		Glucogallin 6-0-Galloyltransferase from Oak	
terium rhizogenes	69	Leaves	87
Cytochalasin B	0,	Diamine Oxidase	07
Chemokinesis and Necrotaxis of Human Granu-		Cell-Free Synthesis of the Alkaloids Ammoden-	
locytes: the Important Cellular Organelles	1126	drine and Smipine	197
Cytochrome b_6/f -Complex		Cis-Diamminedichloroplatinum	
Bioenergetics Studies of the Cyanobacterium		Estimation of the Extent of DNA Platination	
Anabaena variabilis	1280	after Interaction of cis-DDP with DNA and	
Cytochrome P-450		Chromatin	970
Induction and Characterization of a NADPH-		Digitalis purpurea	
Dependent Flavone Synthase from Cell Cultures		The 14β-Hydroxylation in the Biosynthesis of	
of Soybean	343	Cardenolides in Digitalis purpurea. The Role of	
Cytogenetic Effect		3β -Hydroxy- 5β -pregn- $8(14)$ -en- 20 -one	77
Cytogenetic Effects of the Insecticide		Digitoxin	
Methamidophos in Mouse Bone Marrow and		The 14β-Hydroxylation in the Biosynthesis of	
Cultured Mouse Spleen Cells	21	Cardenolides in Digitalis purpurea. The Role of	
Cytokineplast		3β -Hydroxy- 5β -pregn- $8(14)$ -en- 20 -one	77
Chemokinesis and Necrotaxis of Human		Dihydroflavonol 4-Reductase	
Granulocytes: the Important Cellular Organelles	1126	Distinct Substrate Specificity of Dihydroflavonol	
DOMEST A LUC		4-Reductase from Flowers of <i>Petunia hybrida</i>	1116
DCMU-Type Inhibitors		(N)	1146
A Role of the Q _B Binding Protein in the Mecha-		5.2'-Dihydroxy-7,8-dimethoxy Flavone	
nism of Cyanobacterial Adaptation to Light	727	Novel Flavonoids from the Fern Notholaena sul-	1062
Intensity?	121	phurea	1063
γ-Decalactone, an Odoriferous Compound from		Synthesis, Analysis and Characterization of the	
the Male Butterfly, Lethe marginalis Motschul-		Coenzyme A Esters of o-Succinylbenzoic Acid,	
sky (N)	1001	an Intermediate in Vitamin K_2 (Menaquinone)	
Decarbonylation	1001	Biosynthesis	542
Steric Course of the Rhodium-Catalyzed Decar-		4-(2'-Carboxyphenyl)-4-oxobutyryl Coenzyme A	3 12
bonylation of Chiral 4-Methyl-[1-3H,2-2H]pen-		Ester, an Intermediate in Vitamin K ₂ (Mena-	
tanal	449	quinone) Biosynthesis	1207
Defense Mechanism		1,25-Dihydroxy-vitamin D ₃	
Active Cyanogenesis - in Zygaenids and Other		Phosphate Accumulation by Muscle <i>in vitro</i> and	
Lepidoptera	1319	the Influence of Vitamin D_3 Metabolites	237
2,3-Dehydrokievitone		A Vitamin D ₃ Steroid Hormone in the Cal-	-07
Fungal Metabolism of the Prenylated Isoflavone		cinogenic Grass Trisetum flavescens	430
2.3-Dehydrokievitone	1055	Dihydroxytryptamine	.20
Delayed Luminescence		Free Amino Acids in Cytosol of Rat Brain after	
Effect of pH on the Slow Phase Components of		Intraventricular Administration of 5,6-Dihy-	
Delayed Luminescence in Chloroplasts	1121	droxytryptamine and 6-Hydroxydopamine	637

6,8-Dimethoxy Flavones		Effect of Altitude	
Flavonoids from the Leaf Resin of Snakeweed,		Epicuticular Wax Hydrocarbons of Ericaceae in	
Gutierrezia sarothrae	73	Germany	499
[¹³ C]6,7-Dimethyl-8-ribityllumazine		Effect of Oxygen	
Enzymatic Synthesis of Riboflavin and FMN		Fermentation of D-Xylose to Ethanol by Bacillus	401
Specifically Labeled with ¹³ C in the Xylene Ring	425	macerans	401
$[6\alpha, 7\alpha^{-13}C_2]6, 7$ -Dimethyl-8-ribityllumazine		Effector Oligonucleotide	
Enzymatic Synthesis of Riboflavin and FMN	40.5	Reactivation of Streptolysin S by Oligo-	500
Specifically Labeled with ¹³ C in the Xylene Ring	425	nucleotide	599
Diol Dehydrase		Ehrlich Ascites Tumor Cells	
Re-Investigation of the Protein Structure of	252	Growth Kinetics of the G2-Phase of Ehrlich	
Coenzyme B ₁₂ -Dependent Diol Dehydrase	353	Ascites Tumor Cells, Separated from Anaerobi-	001
4.5-Dioxovaleric Acid		cally Treated Asynchronous Cultures	991
Glutamic Acid-1-semialdehyde, a Hypothetical		Electron Acceptor	
Intermediate in the Biosynthesis of 5-Amino-	200	Benzofuroxan as Electron Acceptor at Photosys-	1265
levulinic Acid	209	tem I	1265
Diphenyl Ether	012		
A Non-Metabolic Model of Acifluorfen Activity Dismutation	813	Bioenergetics Studies of the Cyanobacterium	1280
Interaction of Sodium, Lithium, Caesium, and		Anabaena variabilis	1200
	215	Electron Spin Resonance Thermal Lability of Membrane Proteins of Age	
Potassium Ions with Ascorbyl Radicals	215	Separated Erythrocytes as Studied by Electron	
Dissociation of Protein Components Re-Investigation of the Protein Structure of		Spin Resonance Spin Label Technique (N)	1343
Coenzyme B ₁₂ -Dependent Diol Dehydrase	353	Electron Transport	1373
1.4-Dithiothreitol	333	The Role of Chirality in the Activity of Photo-	
Intermolecular H-Abstraction of Thiyl Radicals		system II Herbicides	663
from Thiols and the Intramolecular Complexing		•	005
of the Thiyl Radical with the Thiol Group in 1.4-		Electron Transport Inhibitors Cyanoacrylate Inhibitors of Photosynthetic Elec-	
Dithiothreitol. A Pulse Radiolysis Study	134	tron Transport in Atrazine Susceptible and Atra-	
DNA	154	· · · · · · · · · · · · · · · · · · ·	670
Methylation of Guanine in vivo by the Organo-		zine Resistant <i>Brassica</i> Chloroplasts Electrorotation	070
phosphorus Insecticide Methamidophos	17	Cellular Spin Resonance of Yeast in a Frequency	
Estimation of the Extent of DNA Platination	17	· · · · · · · · · · · · · · · · · · ·	1367
after Interaction of cis-DDP with DNA and		Range up to 140 MHz (N)	1307
Chromatin	970	Accumulation of Phenolic Compounds and	
DNA Alkylation	770	Phytoalexins in Sliced and Elicitor-Treated	
Embryotoxicity Induced by Alkylating Agents.		Cotyledons of <i>Cicer arietinum</i> L	1171
Some Methodological Aspects of DNA Alkyla-		Elongation Growth	11/1
tion Studies in Murine Embryos Using Ethyl-		Organolead Toxicity in Plants: Triethyl Lead	
methanesulfonate	613	(Et ₃ Pb ⁺) Acts as a Powerful Transmembrane	
DNA-Synthesis		Cl ⁻ /OH ⁻ Exchanger Dissipating H ⁺ -Gradients	
Building Blocks for Oligonucleotide Syntheses		at Nano-Molar Levels	1116
with Uniformly Fragmentable β-Halogenated			1110
Protecting Groups	442	Embryotoxicity Embryotoxicity Induced by Alkyleting Agents	
Dormancy		Embryotoxicity Induced by Alkylating Agents.	
Natural Inhibitors of Germination and Growth		Some Methodological Aspects of DNA Alkylation Studies in Murine Embryos Using Ethyl-	
IV. Compounds from Fruit and Seeds of Moun-		methanesulfonate	613
tain Ash (Sorbus aucuparia)	1179		013
Drug-Conjugates	••••	Enantioselectivity	
In vivo Screening of Glutathione Related De-		Biotransformation of Humulene by Fungi and	70
toxification Products in the Early State of Drug		Enantioselectivity of the Strains Used	79
Development	465	Energy Distribution	
Dufour Gland		Structure-Function-Relationship in Thylakoids	
The Contents of the Dufour Gland of the Ant		Influenced by the Pyridazinone BAS 13-338	200
Harpagoxenus sublaevis Nyl. (Hymenoptera:		(SAN 9785)	808
Formicidae)	141	Energy Transfer	
Comparison of Dufour Gland Secretions of Two		Chromophore Assignment in C-Phycocyanin	_
Species of Leptothorax Ants (Hymenoptera:		from Mastigocladus laminosus	258
Formicidae)	955	Enterobacterium	
Adnexal Glands Chemistry of Messor ebeninus		Lysine Decarboxylase from Hafnia alvei: Purifi-	
Forel (Formicidae: Myrmicinae)	1027	cation. Molecular Data and Preparation of Poly-	
		clonal Antibodies	1307
Edunol		Envelope	
Metabolism of the Prenylated Pterocarpan		Protein Transport in Chloroplasts: ATP is Pre-	
Edunol by Aspergillus flavus	1050	requisit	103

Enzymatic Transesterification		E. coli Maltodextrin Phosphorylase: Primary	
Experiments on the Optical Resolution of Con-		Structure and Deletion Mapping of the C-Termi-	
duramine Analogs by Enzymatic Transesterifica-		nal Site	394
tion in Organic Solvents	446	Exocrine Chemistry	
Enzyme Conformation		Adnexal Glands Chemistry of Messor ebeninus	1007
Effect of Hydroxylamine Derivatives on Photo-		Forel (Formicidae: Myrmicinae)	1027
respiration in the Tobacco Aurea Mutant	965	Exocrine Secretions Mammalian Pharamana Studies VI Com	
Nicotiana tabacum Su/su	903	Mammalian Pheromone Studies, VI. Com-	
		pounds from the Preorbital Gland of the Blue	1355
Stereochemistry and Mechanism of Reactions Catalyzed by Tyrosine Phenol-Lyase from		Duiker, Cephalophus monticola (N) Expression Vectors	1333
Escherichia intermedia	307	Chimeric Genes – Their Contribution for	
Enzymes	507	Molecular Biology and Plant Breeding	1011
Characterization of Some <i>Claviceps</i> Strains		Molecular Biology and Flant Breeding	1011
Derived from Regenerated Protoplasts	381		
Enzymes of Tyrosine Metabolism		Fagopyrum esculentum M.	
Distant Precursors of Benzylisoquinoline Alka-		Biosynthesis of Vitexin and Isovitexin: Enzymat-	
loids and Their Enzymatic Formation	319	ic Synthesis of the C-Glucosylflavones Vitexin	
Epicuticular Wax		and Isovitexin with an Enzyme Preparation from	
Epicuticular Wax Hydrocarbons of Ericaceae in		Fagopyrum esculentum M. Seedlings	519
Germany	499	(E)-β-Farnesene	
Epicuticular Wax Composition		The Contents of the Dufour Gland of the Ant	
Epicuticular Leaf Wax of Euphorbia dendroides		Harpagoxenus sublaevis Nyl. (Hymenoptera:	
L., Euphorbiaceae	191	Formicidae)	141
Epicuticular Wax Constituents		Fat Body Glycogen Phosphorylase	
Epicuticular Leaf Wax of Cistus albanicus, Cista-		Characterization and Amino Acid Composition	
ceae (N)	157	of a Hypertrehalosaemic Neuropeptide from the	
Ergot Alkaloids		Corpora cardiaca of the Cockroach, Nauphoeta	22.5
Characterization of Some Claviceps Strains	20.1	cinerea	225
Derived from Regenerated Protoplasts	381	Fatty Acid Biosynthesis	
Ericaceae		Inhibition of the Acetyl-CoA Carboxylase of	
Epicuticular Wax Hydrocarbons of Ericaceae in	499	Barley Chloroplasts by Cycloxydim and Sethoxydim (N)	1361
Germany	477	Fatty Acid Desaturation	1501
Thermal Lability of Membrane Proteins of Age		Structure-Function-Relationship in Thylakoids	
Separated Erythrocytes as Studied by Electron		Influenced by the Pyridazinone BAS 13-338	
Spin Resonance Spin Label Technique (N)	1343	(SAN 9785)	808
Essential Oil	10.10	Fatty Acids	
On the Essential Oils from <i>Chrysanthemum bal-</i>		Lipids in the Gular Gland Secretions of the	
samita L	502	American Alligator (Alligator mississippiensis)	
Esterase		(N)	1345
Development of New Plate Tests for the Detec-		Fedia cornucopiae	
tion of Microbial Hydrolysis of Esters and Oxi-		Effects of Plant Bioregulators on the Production	
dations of 2-Hydroxycarboxylic Acids	1187	of Iridoid Derived Terpenoids in Valeriana	
Ethanol Formation		wallichii and Fedia cornucopiae Cell Suspension	
Fermentation of D-Xylose to Ethanol by <i>Bacillus</i>		Cultures	33
macerans	401	Feeding Behavior	
17α-Ethyl-estradiol		Chemical Composition and Morphology of	
Molecular Mechanics Investigation on Side-		Epicuticular Waxes from Leaves of Solanum	1152
Chain Conformations of a 17α-Ethyl-17β-hy-		tuberosum	1153
droxy Steroid with Regard to Receptor Binding.	221	Field Desorption	
Ethylmethanesulfonate		Natural Waxes Investigated by Soft Ionization	178
Embryotoxicity Induced by Alkylating Agents.		Mass Spectrometry	176
Some Methodological Aspects of DNA Alkyla-		Natural Waxes Investigated by Soft Ionization	
tion Studies in Murine Embryos Using Ethyl-		Mass Spectrometry	178
methanesulfonate	613	Field Trapping	170
Euphorbia dendroides		Polyenic Hydrocarbons as Sex Attractants for	
Epicuticular Leaf Wax of Euphorbia dendroides		Geometrids and Amatids (Lepidoptera) Found	
L., Euphorbiaceae	191	by Field Screening in Hungary (N)	165
Evolution		Fine Structure	
Evolution of E. coli tRNA le: Evidence of Deri-		Light and Electron Microscopic Studies Regard-	
vation from Other tRNAs	129	ing Cell Contractility and Cell Coupling in Light	
Divergent Evolution of 5S rRNA Genes in	_	Sensitive Smooth Muscle Cells from the Isolated	
Methanococcus	373	Frog Iris Sphincter	977

Flavan-3,4-diols (leucoanthocyanindins)		Frond Exudate	
Distinct Substrate Specificity of Dihydroflavonol		Novel Flavonoids from the Fern Notholaena sul-	
4-Reductase from Flowers of <i>Petunia hybrida</i>		phurea	1063
(N)	1146	Fructose-2,6-bisphosphate	
Flavone Di-C-glycosides		Role of Pyrophosphate: Fructose-6-phosphate	
NMR Spectra of Flavone Di-C-glycosides from		1-Phosphotransferase in Glycolysis in Cultured	1215
Apometzgeria pubescens and the Detection of	1020	Catharanthus roseus Cells	1215
Rotational Isomerism in 8-C-Hexosylflavones .	1039		
Flavone Synthase II		Conformational Changes in Proteins Induced by	1220
Enzymatic Synthesis of 4'- and 3',4'-Hy- droxylated Flavanones and Flavones with		Low Temperatures: an Infrared Study (N) Functional Group Recognition	1339
Flower Extracts of Sinningia cardinalis	1193	Functional Group Recognition of Pheromone	
Flavonoid Aglycones	1193	Molecules by Sensory Cells of Antheraea poly-	
Flavonoids from the Leaf Resin of Snakeweed,		phemus and Antheraea pernyi (Lepidoptera:	
Gutierrezia sarothrae	73	Saturniidae)	435
Flavonoid Biosynthesis	7.5	Fungal Metabolism	150
Enzymatic Synthesis of 4'- and 3',4'-Hy-		Fungal Metabolism of the Prenylated Isoflavone	
droxylated Flavanones and Flavones with		2,3-Dehydrokievitone	1055
Flower Extracts of Sinningia cardinalis	1193	Fungal Metabolites	
Flavonoid-C-glucosylation		Isopulegol from Liquid Cultures of the Fungus	
Biosynthesis of Vitexin and Isovitexin: Enzymat-		Ceratocystis coerulescens (Ascomycotina) (N).	159
ic Synthesis of the C-Glucosylflavones Vitexin		A Fungal Metabolite as the Male Wing Gland	
and Isovitexin with an Enzyme Preparation from		Pheromone of the Bumble-Bee Wax Moth,	
Fagopyrum esculentum M. Seedlings	519	Aphomia sociella L. (N)	657
Flavonoid 3'-Hydroxylase		Furochromones	
Enzymatic Synthesis of 4'- and 3',4'-Hy-		Inhibition of cAMP Phosphodiesterase by Some	
droxylated Flavanones and Flavones with		Phototherapeutic Agents (N)	1009
Flower Extracts of Sinningia cardinalis	1193	Furocoumarins	
Flavonoids		Inhibition of cAMP Phosphodiesterase by Some	1000
Induction and Characterization of a NADPH-		Phototherapeutic Agents (N)	1009
Dependent Flavone Synthase from Cell Cultures	2.42	Fusarium Tricketheren Marcherine frank Franken	
of Soybean	343	Trichothecene Mycotoxins from Fusarium cul-	10.12
A Novel Caffeic Acid Derivative and Other		morum Cultures	1043
Constituents of Populus Bud Excretion and	1020	morum Cultures	1043
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1030	morum Cultures	1043
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)			1043
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1030 1200	Galleriinae	1043
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)		Galleriinae A Fungal Metabolite as the Male Wing Gland	1043
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth.	657
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)		Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth, Aphomia sociella L. (N)	
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth, Aphomia sociella L. (N)	
Constituents of Populus Bud Excretion and Propolis (Bee-Glue)	1200	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. <i>Aphomia sociella</i> L. (N)	657
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657 87
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657 87 147
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth, Aphomia sociella L. (N) Gallotannin Biosynthesis Enzymatic Synthesis of 1,6-Digalloylglucose from β-Glucogallin by β-Glucogallin: β-Glucogallin 6-0-Galloyltransferase from Oak Leaves GC/MS A GC/MS Study of the Propolis Phenolic Constituents Terpenoids from a Black Sea Bryozoan Conopeum seuratum	657 87
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657 87 147
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657 87 147
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657 87 147 1019
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N). Gallotannin Biosynthesis Enzymatic Synthesis of 1.6-Digalloylglucose from β-Glucogallin by β-Glucogallin: β-Glucogallin 6-0-Galloyltransferase from Oak Leaves. GC/MS A GC/MS Study of the Propolis Phenolic Constituents. Terpenoids from a Black Sea Bryozoan Conopeum seuratum. GC/MS-Analysis Species and Sex Specificity in the Odour Composition of Two Panurgine Bees (Hymenoptera, Andrenidae) (N).	657 87 147
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N). Gallotannin Biosynthesis Enzymatic Synthesis of 1.6-Digalloylglucose from β-Glucogallin by β-Glucogallin: β-Glucogallin 6-0-Galloyltransferase from Oak Leaves. GC/MS A GC/MS Study of the Propolis Phenolic Constituents	657 87 147 1019
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657 87 147 1019
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth, Aphomia sociella L. (N)	657 87 147 1019
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth, Aphomia sociella L. (N) Gallotannin Biosynthesis Enzymatic Synthesis of 1.6-Digalloylglucose from β-Glucogallin by β-Glucogallin: β-Glucogallin 60-Galloyltransferase from Oak Leaves GC/MS A GC/MS Study of the Propolis Phenolic Constituents Terpenoids from a Black Sea Bryozoan Conopeum seuratum GC/MS-Analysis Species and Sex Specificity in the Odour Composition of Two Panurgine Bees (Hymenoptera, Andrenidae) (N) Gel Filtration The Effect of Guanidinium Chloride on the Self-Association of Bovine Liver Glutamate Dehydrogenase: A Gel Filtration Study	657 87 147 1019
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N) Gallotannin Biosynthesis Enzymatic Synthesis of 1,6-Digalloylglucose from β-Glucogallin by β-Glucogallin: β-Glucogallin 6-0-Galloyltransferase from Oak Leaves GC/MS A GC/MS Study of the Propolis Phenolic Constituents Terpenoids from a Black Sea Bryozoan Conopeum seuratum GC/MS-Analysis Species and Sex Specificity in the Odour Composition of Two Panurgine Bees (Hymenoptera, Andrenidae) (N) Gel Filtration The Effect of Guanidinium Chloride on the Self-Association of Bovine Liver Glutamate Dehydrogenase: A Gel Filtration Study mal P Gene	657 87 147 1019
Constituents of Populus Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803 1001	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657 87 147 1019
Constituents of Populus Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657 87 147 1019
Constituents of Populus Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803 1001	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N)	657 87 147 1019 169 217
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803 1001	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N). Gallotannin Biosynthesis Enzymatic Synthesis of 1.6-Digalloylglucose from β-Glucogallin by β-Glucogallin: β-Glucogallin 6-0-Galloyltransferase from Oak Leaves. GC/MS A GC/MS Study of the Propolis Phenolic Constituents	657 87 147 1019 169 217
Constituents of <i>Populus</i> Bud Excretion and Propolis (Bee-Glue)	1200 698 986 803 1001	Galleriinae A Fungal Metabolite as the Male Wing Gland Pheromone of the Bumble-Bee Wax Moth. Aphomia sociella L. (N). Gallotannin Biosynthesis Enzymatic Synthesis of 1.6-Digalloylglucose from β-Glucogallin by β-Glucogallin: β-Glucogallin 6-0-Galloyltransferase from Oak Leaves. GC/MS A GC/MS Study of the Propolis Phenolic Constituents. Terpenoids from a Black Sea Bryozoan Conopeum seuratum. GC/MS-Analysis Species and Sex Specificity in the Odour Composition of Two Panurgine Bees (Hymenoptera, Andrenidae) (N). Gel Filtration The Effect of Guanidinium Chloride on the Self-Association of Bovine Liver Glutamate Dehydrogenase: A Gel Filtration Study	657 87 147 1019 169 217

	Ascorbic Acid and Glutathione Contents of	
750		879
136		0/9
779		
		1113
	Sn-Glycerol-3-phosphate	
	Sn-Glycerol-3-phosphate is a Product of Starch	
118		
		567
1011		
		567
		307
165		537
10.7		
	Effect of pH on Glycolate and Ammonia Excre-	
	tion in L-MSO Treated Chlorella Cells	525
	Glycosyltransferases	
1075		
		1222
		1223
87		
		461
	Granulocyte	
1175	Chemokinesis and Necrotaxis of Human	
1165	Granulocytes: the Important Cellular Organelles	1126
		245
007		245
907		
		567
	Growth Kinetics	
263	Growth Kinetics of the G2-Phase of Ehrlich	
	Ascites Tumor Cells, Separated from Anaerobi-	
		991
270		
		217
217		21,
217		
	Protecting Groups	442
209	Gular Glands	
		1345
	(-)	1343
270		
		73
242	Hafnia alvei	
263	Lysine Decarboxylase from Hafnia alvei: Purifi-	
		1307
270		
		698
		370
465	The Contents of the Dufour Gland of the Ant	
	1011 165 1075 87 1165 907 263 270 217 209 270 263 270	Spruce Needles from Different Locations in Bavaria Glycerate Kinase Extrachloroplastic Site of Synthesis of Three Chloroplast Proteins in Maize (Zea mays) Sn-Glycerol-3-phosphate Sn-Glycerol-3-phosphate is a Product of Starch Degradation in Isolated Chloroplasts from Chlamydomonas reinhardii Glycerol-3-phosphate behydrogenase Root Hair Specific Proteins in Glycine max Glycolate Excretion Effect of pH on Glycolate and Ammonia Excretion in L-MSO Treated Chloroplast from Catalyzing the Formation of Hydroxycinnamic Acid Glucosides and Esters Graft-versus-Host-Disease Biopterin Synthesis in Mouse Spleen during Bone Marrow Transplantation Correlates with Unimpaired Hemopoietic Engraftment Granulocyte Chemokinesis and Necrotaxis of Human Granulocytes: the Important Cellular Organelles Green Algae A Correlation between Detergent Tolerance and Cell Wall Structure in Green Algae A Correlation in Isolated Chloroplasts from Chlamydomonas reinhardii Growth Kinetics Growth Kinetics of the G2-Phase of Ehrlich Ascites Tumor Cells, Separated from Anaerobically Treated Asynchronous Cultures Guanidine Chloride The Effect of Guanidinium Chloride on the Self-Association of Bovine Liver Glutamate Dehydrogenase: a Gel Filtration Study Guanidine-Protection Building Blocks for Oligonucleotide Syntheses with Uniformly Fragmentable β-Halogenated Protecting Groups Gular Glands Lipids in the Gular Gland Secretions of the American Alligator (Alligator mississippiensis) (N) Gutierrezia sarothrae Flavonoids from the Leaf Resin of Snakeweed. Gutierrezia sarothrae Flavonoids from the Leaf Resin of Snakeweed. Gutierrezia sarothrae Hafnia alvei Lysine Decarboxylase from Hafnia alvei: Purification, Molecular Data and Preparation of Polyclonal Antibodies Halogenated ρ-Benzoquinones Interaction of Halogenated 1,4-Benzoquinones with System II of Photosynthesis

Harpagoxenus sublaevis Nyl. (Hymenoptera:		Herbicide Target	
Formicidae)	141	The Three-Dimensional Structure of the Herbi-	
Comparison of Dufour Gland Secretions of Two		cide Binding Niche on the Reaction Center Poly-	7.12
Species of Leptothorax Ants (Hymenoptera:	055	peptides of Photosystem II	742
Formicidae)	955	Herbicides Sathanudim Untaka by Loof Sliggs of Sath	
Heat Shock Proteins Synthesis of Heat Shock Proteins during Amino		Sethoxydim-Uptake by Leaf Slices of Seth-	279
Acid or Oxygen Limitation in Bacillus subtilis		oxydim Resistant and Sensitive Grasses Metabolism of the Herbicide 2-(2,4-Dichloro-	219
$relA^+$ and $relA$	941	phenoxy)-propionic Acid (Dichlorprop) in Bar-	
Helix pomatia	771	ley (Hordeum vulgare)	486
Fluorescence Monitoring of Membrane Poten-		Herbicide and Quinone Binding to Chromato-	400
tials: the Spatio-Temporal Resolution in Isolated		phores and Reaction Centers from <i>Rhodobacter</i>	
Neurons of <i>Helix pomatia</i>	986	sphaeroides	690
Hemoglobin		Irreversibly Binding Photosynthetic Electron	0,70
Conformational Changes in Proteins Induced by		Transport Inhibitors. II. Halogen-Substituted	
Low Temperatures: an Infrared Study (N)	1339	1.4-Naphthoquinones and Halogenmethyl-1.4-	
Hemolysin Reconstruction		quinones	693
Reactivation of Streptolysin S by Oligonucleo-		Inhibition and Photoaffinity Labeling of Photo-	
tide	599	system II by Thiazolyliden-ketonitriles	704
Hemopoietic Engraftment		Can Quantitative Structure Activity Analyses	
Biopterin Synthesis in Mouse Spleen during		and Molecular Graphics Assist in Designing	
Bone Marrow Transplantation Correlates with		New Inhibitors of Photosystem II?	713
Unimpaired Hemopoietic Engraftment	461	Interference by Herbicides with the Transmem-	
(Z,Z)-6,9-Henicosadiene		brane Potential of Thylakoids	718
Polyunsaturated Pheromones: Semi-Synthesis of		Genetic Engineering of Herbicide Resistance:	
(Z,Z)-6,9-Alkadienes and (Z,Z,Z) -3,6,9-Alka-		Saturation Mutagenesis of Isoleucine 229 of the	
trienes from Naturally Occurring Fatty Acids	1035	Reaction Center L Subunit	769
Heptadecane		Photosystem II Heterogeneity in Triazine-Resist-	
The Contents of the Dufour Gland of the Ant		ant and Susceptible Biotypes of <i>Chenopodium</i>	704
Harpagoxenus sublaevis Nyl. (Hymenoptera:	1.41	album	794
Formicidae)	141	Heterobryoflavone Bryoflavone and Heterobryoflavone, Two New	
Herbicide Binding The Role of Chirolity in the Activity of Photo			962
The Role of Chirality in the Activity of Photosystem II Herbicides	663	Isoflavone-flavone Dimers from <i>Bryum capillare</i> Heteropentalenes	863
Sequence Analysis of Mutants from <i>Rhodo-</i>	003	The Effects of Photosystem I Electron Accep-	
pseudomonas viridis Resistant to the Herbicide		tors on Leaf Discs	829
Terbutryn	751	11-Hexadecenyl Acetate	0-2
Site-Directed Mutations of Two Histidine	7.57	Identification of the Sex Pheromone of Eggplant	
Residues in the D2 Protein Inactivate and		Borer Leucinodes orbonalis Guenèe (Lepido-	
Destabilize Photosystem II in the Cyanobac-		ptera: Pyralidae) (N)	1347
terium Synechocystis 6803	762	tr-2-Hexenal Conversion	
Herbicide Binding Protein		Transformation of <i>trans</i> -2-Hexenal by <i>Botrytis</i>	
Expression of the psbA Gene in E. coli	755	cinerea PERS. as Detoxification Mechanisms	64
32 kDa Herbicide Binding Protein	, , , ,	High Frequency Effects	ν.
The Topology of the 32 kDa Herbicide Binding		Cellular Spin Resonance of Yeast in a Frequency	
Protein of Photosystem II in the Thylakoid		Range up to 140 MHz (N)	1367
Membrane	733	High-Mass Lipids	100.
Herbicide Design	,,,,	Natural Waxes Investigated by Soft Ionization	
Use of Pyruvate-Phosphate Dikinase as a Target		Mass Spectrometry	178
for Herbicide Design: Analysis of Inhibitor		Hill Reaction	110
Specificity	834	Stereospecific Inhibitor Probes of the PS II Her-	
Herbicide Resistance		bicide Binding Site	674
The Three-Dimensional Structure of the Herbi-		Cyanoacrylate Inhibitors of the Hill Reaction.	0, .
cide Binding Niche on the Reaction Center Poly-		IV. Binding Characteristics of the Hydrophobic	
peptides of Photosystem II	742	Domain	679
Isolation and Characterization of Herbicide		Cyanoacrylate Inhibitors of the Hill Reaction.	
Resistant Mutants in the Cyanobacterium		V. The Effect of Chirality on Inhibitor Binding	684
Synechococcus R2	758	Counteraction of Paraquat Toxicity at the	
Triazine Resistance in Phalaris paradoxa: Phys-		Chloroplast Level	824
iological and Molecular Analyses	779	Histochemistry	
Herbicide Resistant Mutants		Quantitative Histochemical Analysis of Starch.	
A Role of the Q _B Binding Protein in the Mecha-		Malate and K ⁺ , Together with the Activity of	
nism of Cyanobacterial Adaptation to Light		Phospho-enolpyruvate Carboxylase along an	
Intensity?	727	Elongating Primary Leaf of Hordeum vulgare	1092

Histocompatibility		IV. Binding Characteristics of the Hydrophobic	
Recognition of HLA Class II Molecules by Anti-		Domain	679
peptide Antibodies Elicited by Synthetic		Hydrophobic Moments	
Peptides Selected from Regions of HLA-DP		The Topology of the 32 kDa Herbicide Binding	
Antigens	1313	Protein of Photosystem II in the Thylakoid	
Histoincompatibility		Membrane	733
Biopterin Synthesis in Mouse Spleen during		Hydrophobicity	
Bone Marrow Transplantation Correlates with		Evolution of E. coli tRNA ^{lle} : Evidence of Deri-	
Unimpaired Hemopoietic Engraftment	461	vation from Other tRNAs	129
Histones		3β-Hydroxy-5β-pregn-8(14)-en-20-one	
Interaction in vitro of Non-Epithelial Intermedi-		The 14β-Hydroxylation in the Biosynthesis of	
ate Filament Proteins with Histones	47	Cardenolides in Digitalis purpurea. The Role of	
HIV		3β -Hydroxy- 5β -pregn- $8(14)$ -en- 20 -one	77
MHC-Antigens: Constituents of the Envelopes		25-Hydroxy-vitamin D ₃	
of Human and Simian Immunodeficiency		Phosphate Accumulation by Muscle in vitro and	
Viruses	1328	the Influence of Vitamin D ₃ Metabolites	237
HIV-Cell Interaction		Hydroxybutinylbithiophenes	
MHC-Antigens: Constituents of the Envelopes		Acetyl-CoA: 4-Hydroxybutinylbithiophene	
of Human and Simian Immunodeficiency		O-Acetyltransferase Isoenzymes from Tagetes	005
Viruses	1328	patula Seedlings	885
Homofarnesene		Hydroxycinnamic Acids	
The Contents of the Dufour Gland of the Ant		The Separation of Two Different Enzymes	
Harpagoxenus sublaevis Nyl. (Hymenoptera:		Catalyzing the Formation of Hydroxycinnamic	1222
Formicidae)	141	Acid Glucosides and Esters	1223
Homonucleotides		Hydroxydopamine	
Pyrimidine Homoribonucleosides: Synthesis.		Free Amino Acids in Cytosol of Rat Brain after	
Solution Conformation, and Some Biological	500	Intraventricular Administration of 5,6-Di-	(27
Properties	589	hydroxytryptamine and 6-Hydroxydopamine	637
Hordeum vulgare		2-Hydroxyflavanones	
Quantitative Histochemical Analysis of Starch,		Biosynthesis of Vitexin and Isovitexin: Enzymat-	
Malate and K ⁺ , Together with the Activity of		ic Synthesis of the C-Glucosylflavones Vitexin	
Phospho-enolpyruvate Carboxylase along an	1002	and Isovitexin with an Enzyme Preparation from	519
Elongating Primary Leaf of <i>Hordeum vulgare</i>	1092	Fagopyrum esculentum M. Seedlings	319
Hormonal Imprinting		Hydroxylamine Derivatives on Photo	
Transmission of Hormonal Imprinting in Tetra-		Effect of Hydroxylamine Derivatives on Photo-	
hymena Cultures by Intercellular Communi-	932	respiration in the Tobacco Aurea Mutant Nicotiana tabacum Su/su	965
cation	932	Hydroxylation	903
Synthesis and Complexing Features of an Artifi-		Metabolism of the Herbicide 2-(2,4-Dichloro-	
cial Receptor for Biogenic Amines	476	phenoxy)-propionic Acid (Dichlorprop) in Bar-	
HPLC	770	ley (Hordeum vulgare)	486
A Simple Analysis of Purine and Pyrimidine		Hypertrehalosaemic Neuropeptide	10,0
Nucleotides in Plant Cells by High-Performance		Characterization and Amino Acid Composition	
Liquid Chromatography	297	of a Hypertrehalosaemic Neuropeptide from the	
In vivo Screening of Glutathione Related Detox-		Corpora cardiaca of the Cockroach. Nauphoeta	
ification Products in the Early State of Drug		cinerea	225
Development	465		
HPLC-Protein Purification		(Z,Z)-6,9-Icosadiene	
The Use of HPLC for the Purification of the Q _B -		Polyunsaturated Pheromones: Semi-Synthesis of	
Protein	739	(Z,Z)-6,9-Alkadienes and (Z,Z,Z) -3,6,9-Alka-	
Humic Acids		trienes from Naturally Occurring Fatty Acids	1035
Comparison of the Solid State CPMAS and So-		Identification	
lution Carbon-13-NMR Spectra of Humic Acids		Identification of the Sex Pheromone of Eggplant	
Extracted from Composted Municipal Refuse	205	Borer Leucinodes orbonalis Guenèe (Lepido-	
Humulene		ptera: Pyralidae) (N)	1347
Biotransformation of Humulene by Fungi and		Identification of Betulin	
Enantioselectivity of the Strains Used	79	Identification of Betulin in Archaeological Tar.	1151
Hybrid Protein		Immobilization	
Expression of the <i>psbA</i> Gene in <i>E. coli</i>	755	Synthesis of Immobilized Peptide Fragments on	
Hydrocarbons		Polystyrene-Polyoxyethylene for Affinity Chro-	
Comparison of Dufour Gland Secretions of Two		matography	455
Species of Leptothorax Ants (Hymenoptera:		Immobilized Cells	
Formicidae)	955	Semicontinuous and Continuous Production of	
Hydrophobic Binding		Citric Acid with Immobilized Cells of Aspergil-	
Cyanoacrylate Inhibitors of the Hill Reaction.		lus niger	408

In vitro Assays		7-O-Glucoside-6"-O-malonate: malonylesterase:	
Nitrate Reductase from Sphagnum Species: Iso-		Evidence for a Highly Specific, Membrane-	
lation, in vitro Assays and Partial Purification		Bound Enzyme in Roots of Cicer arietinum L	251
(N)	653	Isoflavones	
Inactivation		Structure Elucidation of Kwakhurin, a New Pre-	
The Effect of Guanidinium Chloride on the Self-		nylated Isoflavone from Pueraria mirifica Roots	510
Association of Bovine Liver Glutamate De-		Accumulation of Phenolic Compounds and	
hydrogenase: a Gel Filtration Study	217	Phytoalexins in Sliced and Elicitor-Treated	
Indicator		Cotyledons of Cicer arietinum L	1171
Development of New Plate Tests for the Detec-		Isoflavonoid	
tion of Microbial Hydrolysis of Esters and Oxi-		Structure Elucidation of Kwakhurin, a New Pre-	
dations of 2-Hydroxycarboxylic Acids	1187	nylated Isoflavone from Pueraria mirifica Roots	510
Infection		Metabolism of the Prenylated Pterocarpan	
Root Hair Specific Proteins in Glycine max	537	Edunol by Aspergillus flavus	1050
Inhibition		Isomerization	
The ν versus $\nu[I]$ Plot	1185	ZZE-Configuration of Chromophore β-153 in C-	
Inhibition of Carotenoid Accumulation		Phycocyanin from Mastigocladus laminosus	845
Inhibition by Sethoxydim of Pigment Accumula-		Isopropylmalic Acid	
tion and Fatty Acid Biosynthesis in Chloroplasts		Natural Inhibitors of Germination and Growth	
of Avena Seedlings	1275	IV. Compounds from Fruit and Seeds of Moun-	
Inhibitor Specificity	12.0	tain Ash (Sorbus aucuparia)	1179
Use of Pyruvate-Phosphate Dikinase as a Target		(-)Isopulegol	11//
for Herbicide Design: Analysis of Inhibitor		Isopulegol from Liquid Cultures of the Fungus	
	834	Ceratocystis coerulescens (Ascomycotina) (N)	159
Specificity	654	Certalocysus coertaescens (Asconiycothia) (N)	139
		Kaurene	
Acyclonucleoside Analogues Consisting of 5-			
and 5,6-Substituted Uracils and Different Acylic		Interconversion of Prenyl Pyrophosphates and	
Chains: Inhibitory Properties vs Purified E. coli	200	Subsequent Reactions in the Presence of FMC	003
Uridine Phosphorylase	288	57020	803
Inhibitors of Electron Transport		Kautsky Effect	
Stereospecific Inhibitor Probes of the PS II Her-		The Polyphasic Rise of Chlorophyll Fluores-	
bicide Binding Site	674	cence upon Onset of Strong Continuous Illumi-	
Cyanoacrylate Inhibitors of the Hill Reaction.		nation: I. Saturation Characteristics and Partial	
IV. Binding Characteristics of the Hydrophobic		Control by the Photosystem II Acceptor Side	1246
Domain	679	Kinetic Resolution	
Cyanoacrylate Inhibitors of the Hill Reaction.		Biotransformation of Humulene by Fungi and	
V. The Effect of Chirality on Inhibitor Binding.	684	Enantioselectivity of the Strains Used	79
Insect Growth Inhibitor		Kinetics	
Structure of Azadirachtin B	4	Acyclonucleoside Analogues Consisting of 5-	
Insecticides		and 5,6-Substituted Uracils and Different Acylic	
Methylation of Guanine in vivo by the Organo-		Chains: Inhibitory Properties vs Purified E. coli	
phosphorus Insecticide Methamidophos	17	Uridine Phosphorylase	288
Cytogenetic Effects of the Insecticide		Kinetics (Enzyme, Carrier)	
Methamidophos in Mouse Bone Marrow and		The ν versus $\nu[I]$ Plot	1185
Cultured Mouse Spleen Cells	21	Klebsiella pneumoniae	
Interesterification of Lipids		Re-Investigation of the Protein Structure of	
Radiochemical Methods for Studying Lipase-		Coenzyme B ₁₂ -Dependent Diol Dehydrase	353
Catalyzed Interesterification of Lipids	1285	,	
Intermediate Filament Protein-Histone Interaction		Lactam Systems	
Interaction in vitro of Non-Epithelial Intermedi-		Ring Opening Reactions of Bioreactive Lactam	
ate Filament Proteins with Histones	47	Systems	603
Intermediate Filament Proteins	.,	Laminariales	000
Interaction in vitro of Non-Epithelial Intermedi-		Sexual Pheromones and Related Egg Secretions	
ate Filament Proteins with Histones	47	in Laminariales (Phaeophyta)	948
Ion Channels	٠,	Laurencia obtusa	770
Analysis of Single Channel Currents with a	172		507
Microprocessor Based Device	173	Metabolit from Laurencia obtusa	507
Ion Chromatography		Leaf and Stem Exudate	
Amperometric Titration Largely Overestimates	1100	Flavonoids from the Leaf Resin of Snakeweed.	
Chloride Concentrations in Chloroplast Extracts	1109	Gutierrezia sarothrae	73
Isoceroptene		Leaf Discs	
α-Diceroptene: A New Dimeric Structure for		The Effects of Photosystem I Electron Accep-	
Isoceroptene	849	tors on Leaf Discs	829
Isoflavone Metabolism		Leaf Expansion	
Further Characterization of Chickpea Isoflavone		Quantitative Histochemical Analysis of Starch,	

Malate and K ⁺ . Together with the Activity of		Lipid Diffusion	
Phospho-enolpyruvate Carboxylase along an		Sethoxydim-Uptake by Leaf Slices of Seth-	
Elongating Primary Leaf of Hordeum vulgare	1092	oxydim Resistant and Sensitive Grasses	279
Leafroller		Lipid/Protein Interaction	
Comparative Sex Pheromone Biosynthesis in the		Lipid Influence on the Structure of the Light	
Obliquebanded Leafroller, Choristoneura		Harvesting B 800 – 850 Proteins	109
rosaceana, and the Redbanded Leafroller, Argy-		Lipids	
rotaenia velutinana, Moths	961	Binding and Peroxidative Action of Oxyfluorfen	
Leguminosae	,,,	in Sensitive and Tolerant Algal Species	819
Structure Elucidation of Kwakhurin, a New Pre-		Liposomal Membranes	017
	510		
nylated Isoflavone from <i>Pueraria mirifica</i> Roots	510	Spontaneous Release of Malondialdehyde from	
Lepidoptera		Ultraviolet Light Exposed Liposomal Mem-	505
Identification of Three Sex Pheromone Compo-		branes	585
nents of the Female Saturniid Moth Antheraea		Liposomes	
pernyi (Lepidoptera: Saturniidae)	631	The Rate of ATP Hydrolysis Catalyzed by Re-	
Comparative Sex Pheromone Biosynthesis in the		constituted CF ₀ F ₁ -Liposomes	231
Obliquebanded Leafroller, Choristoneura		Liquid-Solid-Phase	
rosaceana, and the Redbanded Leafroller. Argy-		Synthesis of Immobilized Peptide Fragments on	
rotaenia velutinana, Moths	961	Polystyrene-Polyoxyethylene for Affinity Chro-	
Active Cyanogenesis – in Zygaenids and Other	J.().	matography	455
Lepidoptera	1319	Liverworts	
	1319	NMR Spectra of Flavone Di-C-glycosides from	
Identification of the Sex Pheromone of Eggplant			
Borer Leucinodes orbonalis Guenèe (Lepido-		Apometzgeria pubescens and the Detection of	1020
ptera: Pyralidae) (N)	1347	Rotational Isomerism in 8-C-Hexosylflavones	1039
Leptinotarsa decemlineata		Localization of Epicuticular Waxes	
Chemical Composition and Morphology of		"Epicuticular Waxes" from Exine Material of	
Epicuticular Waxes from Leaves of Solanum		Pine Pollen	858
tuberosum	1153	Locomotor Activity	
Leptothorax		Evidences for Circadian Rhythmicity in the per	
Comparison of Dufour Gland Secretions of Two		Mutant of <i>Drosophila melanogaster</i>	1335
Species of Leptothorax Ants (Hymenoptera:		Lupanine	
Formicidae)	955	Site of Lupanine and Sparteine Biosynthesis in	
Lethe marginalis Motschulsky	755	Intact Plants and in vitro Organ Cultures	868
γ-Decalactone, an Odoriferous Compound from		Lupinus	000
		Site of Lupanine and Sparteine Biosynthesis in	
the Male Butterfly, Lethe marginalis Motschul-	1001		040
sky (N)	1001	Intact Plants and in vitro Organ Cultures	868
Leucinodes orbonalis		Lysine Decarboxylase	
Identification of the Sex Pheromone of Eggplant		Lysine Decarboxylase from Hafnia alvei: Purifi-	
Borer Leucinodes orbonalis Guenèe (Lepido-		cation, Molecular Data and Preparation of	
ptera: Pyralidae) (N)	1347	Polyclonal Antibodies	1307
Leukemia P388 and L1210		Lyso-Phosphatidylinositol	
In the Search for New Anticancer Drugs, XXI.		The Phosphatidylinositol Species of Suspension	
Spin Labeled Nitrosoureas	921	Cultured Plant Čells (N)	1003
•	921		
Light		Maackiain	
Formation of Large Thioredoxin f Accompanies		Partial Characterization of an Enzyme from the	
Chloroplast Development in Scenedesmus obli-		Fungus Ascochyta rabiei for the Reductive	
quus(N)	1364		
Light and Electron Microscopy		Cleavage of Pterocarpan Phytoalexins to 2'-Hy-	007
Magnetotactic Bacteria from Freshwater	300	droxyisoflavans	897
Light Sensitive Smooth Muscle Cells		Magnetic Earth Field	
Light and Electron Microscopic Studies Regard-		Dependence of a Sleeping Parameter from the	
		N-S or E-W Sleeping Direction	1140
ing Cell Contractility and Cell Coupling in Light		Magnetotactic Bacteria	
Sensitive Smooth Muscle Cells from the Isolated	077	Magnetotactic Bacteria from Freshwater	300
Frog Iris Sphincter	977	iojap Maize	
Light-Induced		Extrachloroplastic Site of Synthesis of Three	
Light-Induced Ca ²⁺ Influx into Spinach Proto-		Chloroplast Proteins in Maize (Zea mays)	1113
plasts	283	Malate	1115
Liliaceae	_00		
		Chloride Availability Affects the Malate Con-	
The Separation of Two Different Enzymes		tent and its Control by the Circadian Clock in	
Catalyzing the Formation of Hydroxycinnamic	1222	Pulvini of <i>Phaseolus coccineus</i> L	553
Acid Glucosides and Esters	1223	Quantitative Histochemical Analysis of Starch.	
Linear Alkylbenzene Sulfonate (LAS)		Malate and K ⁺ , Together with the Activity of	
A Correlation between Detergent Tolerance and		Phospho-enolpyruvate Carboxylase along an	
Cell Wall Structure in Green Algae	245	Elongating Primary Leaf of Hordeum vulgare	1092

Male Pheromone		Menaquinone	
A Fungal Metabolite as the Male Wing Gland		Synthesis, Analysis and Characterization of the	
Pheromone of the Bumble-Bee Wax Moth,		Coenzyme A Esters of o-Succinylbenzoic Acid,	
Aphomia sociella L. (N)	657	an Intermediate in Vitamin K ₂ (Menaquinone) Biosynthesis	542
γ-Decalactone, an Odoriferous Compound from		4-(2'-Carboxyphenyl)-4-oxobutyryl Coenzyme A	572
the Male Butterfly. Lethe marginalis Motschul-		Ester, an Intermediate in Vitamin K_2 (Mena-	
sky (N)	1001	quinone) Biosynthesis	1207
Malondialdehyde		2-Mercaptoethanol	
Spontaneous Release of Malondialdehyde from		Intermolecular H-Abstraction of Thiyl Radicals	
Ultraviolet Light Exposed Liposomal Mem-	505	from Thiols and the Intramolecular Complexing	
branes	585	of the Thiyl Radical with the Thiol Group in 1.4- Dithiothreitol. A Pulse Radiolysis Study	134
Further Characterization of Chickpea Isoflavone		Messor ebeninus	
7-O-Glucoside-6"-O-malonate: malonylesterase:		Adnexal Glands Chemistry of Messor ebeninus	
Evidence for a Highly Specific, Membrane-		Forel (Formicidae: Myrmicinae)	1027
Bound Enzyme in Roots of Cicer arietinum L.	251	Metabolism	
Malonylglucosides		Metabolism of the Herbicide 2-(2,4-Dichloro-	
Further Characterization of Chickpea Isoflavone 7-O-Glucoside-6"-O-malonate: malonylesterase:		phenoxy)-propionic Acid (Dichlorprop) in Bar- ley (Hordeum vulgare)	486
Evidence for a Highly Specific, Membrane-		Metamitron	100
Bound Enzyme in Roots of Cicer arietinum L.	251	Can Quantitative Structure Activity Analyses	
Maltodextrin Phosphorylase		and Molecular Graphics Assist in Designing	
E. coli Maltodextrin Phosphorylase: Primary		New Inhibitors of Photosystem II?	713
Structure and Deletion Mapping of the C-Termi-	20.1	Methamidophos Consequentia Effects of the Inserticide	
nal Site	394	Cytogenetic Effects of the Insecticide Methamidophos in Mouse Bone Marrow and	
Mammalian Pheromone Studies VI. Compounds		Cultured Mouse Spleen Cells	21
from the Preorbital Gland of the Blue Duiker.		Methanogenesis from Acetate	
Cephalophus monticola (N)	1355	Methanogenesis from Acetate by Methanosarci-	
Marine Invertebrates		na barkeri: Catalysis of Acetate Formation from	
Terpenoids from a Black Sea Bryozoan Cono-	1010	Methyl Iodide, CO ₂ , and H ₂ by the Enzyme Sys-	260
peum seuratum	1019	tem Involved	360
Mass Spectra X-Ray Structure Analysis and Spectroscopic		Methanogenesis from Acetate by Methanosarci-	
Data of the Antibiotic 8-(Dichloroacetyl)-5-hy-		na barkeri: Catalysis of Acetate Formation from	
droxy-2.7-dimethyl-1.4-naphthoquinone from		Methyl Iodide, CO ₂ , and H ₂ by the Enzyme Sys-	
the Fungus Mollisia sp	1	tem Involved	360
Natural Waxes Investigated by Soft Ionization	170	7-Methyl-aromadendrin 3-cis-butyrate	
Mass Spectrometry	178	Novel Flavonoids from the Fern Notholaena sul- phurea	1063
Mastigocladus laminosus CARS Investigation of Changes in Chromo-		Methylamine	1005
phore Geometry of C-Phycocyanin from <i>Masti</i> -		Comparing Short-Term Effects of Ammonia and	
gocladus laminosus Induced by Titration with p-		Methylamine on Nitrogenase Activity in	
Chloromercuribenzenesulfonate	1269	Anabaena variabilis (ATCC 29413)	902
Medicarpin		5-(3,4-Methylenedioxyphenyl)-2,4-pentadienoic	
Partial Characterization of an Enzyme from the		Acid Synthesis of Piperoyl Coenzyme A Thioester	1070
Fungus Ascochyta rabiei for the Reductive		Methylolamine Intermediates	1070
Cleavage of Pterocarpan Phytoalexins to 2'-Hy-droxyisoflavans	897	Reactions of Substituted Arenediazonium	
Mellein	071	Chlorides with Methylamine-Formaldehyde Pre-	
A Fungal Metabolite as the Male Wing Gland		mix Revisited: Reactivity and Transformations	
Pheromone of the Bumble-Bee Wax Moth.		of Methylolamine Intermediates and Their	4.
Aphomia sociella L. (N)	657	Biological Significance	41
Melting Pressure Curve		4-Methylpentanal Steric Course of the Rhodium-Catalyzed Decar-	
Melting Pressure, Volume and Stability of Blood		bonylation of Chiral 4-Methyl-[1-3H,2-2H]pen-	
at High Pressure (N)	1370	tanal	449
Membrane Proteins		6-Methylpurine	
Thermal Lability of Membrane Proteins of Age		6-Methylpurine. 6-Methyl-9-β-D-ribofuranosyl-	
Separated Erythrocytes as Studied by Electron Spin Resonance Spin Label Technique (N)	1343	purine, and 6-Hydroxymethyl-9-\(\beta\)-p-ribofurano-	
Membrane Structure	1010	sylpurine as Antiviral Metabolites of <i>Collybia</i> maculata (Basidiomycetes)	420
Lipid Influence on the Structure of the Light		MHC Class I and II Antigens	7±0
Harvesting B 800 – 850 Proteins	109	MHC-Antigens: Constituents of the Envelopes	

of Human and Simian Immunodeficiency		Muscle Culture	
Viruses	1328	Phosphate Accumulation by Muscle in vitro and	
Microbial		the Influence of Vitamin D ₃ Metabolites	237
A New Detection Procedure for Aminoacylase		Mushrooms	
Activity of Microorganisms Directly on Plate	.000	Occurrence of Amavadin in Mushrooms of the	073
Culture with o-Phthalaldehyde	1082	Genus Amanita	873
Development of New Plate Tests for the Detec-		Mutagenesis	
tion of Microbial Hydrolysis of Esters and Oxi-	1107	E. coli Maltodextrin Phosphorylase: Primary	
dations of 2-Hydroxycarboxylic Acids	1187	Structure and Deletion Mapping of the C-Termi-	204
Microbial Hydroxylation	414	nal Site	394
Microbial Hydroxylation of Cedrol and Cedrene	414	per ^o Mutant	
Microprocessor Analysis of Single Channel Currents with a		Evidences for Circadian Rhythmicity in the per Mutant of <i>Drosophila melanogaster</i>	1335
	173		1333
Microprocessor Based Device	173	Mutants Isolation and Characterization of Herbicide Re-	
Microsomal Enzyme Further Characterization of Chickpea Isoflavone		sistant Mutants in the Cyanobacterium Synecho-	
7-O-Glucoside-6"-O-malonate: malonylesterase:			758
Evidence for a Highly Specific, Membrane-		coccus R2	150
Bound Enzyme in Roots of Cicer arietinum L.	251	Trichothecene Mycotoxins from Fusarium cul-	
Mitochondria	231	morum Cultures	1043
cAMP-Dependent Protein Kinase Activity in		Myoblasts	1043
Yeast Mitochondria	1291	Phosphate Accumulation by Muscle <i>in vitro</i> and	
Mode of Action of Cycloxydim	1291	the Influence of Vitamin D_3 Metabolites	237
Inhibition of the Acetyl-CoA Carboxylase of		Myoglobin	201
Barley Chloroplasts by Cycloxydim and		Conformational Changes in Proteins Induced by	
Sethoxydim (N)	1361	Low Temperatures: an Infrared Study (N)	1339
Mode of Action of Sethoxydim	1501	Low Temperatures, an Infrared Study (17)	1557
Inhibition by Sethoxydim of Pigment Accumula-			
tion and Fatty Acid Biosynthesis in Chloroplasts		NADP Reduction	
of Avena Seedlings	1275	Counteraction of Paraquat Toxicity at the Chlo-	
Molecular Graphics	12/0	roplast Level	824
Can Quantitative Structure Activity Analyses		Naphthoguinone	-
and Molecular Graphics Assist in Designing		X-Ray Structure Analysis and Spectroscopic	
New Inhibitors of Photosystem II?	713	Data of the Antibiotic 8-(Dichloroacetyl)-5-hy-	
Molecular Mechanics Calculations	,	droxy-2,7-dimethyl-1,4-naphthoquinone from	
Molecular Mechanics Investigation on Side-		the Fungus <i>Mollisia</i> sp	1
Chain Conformations of a 17α -Ethyl-17 β -hy-		1.4-Naphthoquinones	
droxy Steroid with Regard to Receptor Binding.	221	Irreversibly Binding Photosynthetic Electron	
Molluscicides		Transport Inhibitors. II. Halogen-Substituted	
Molluscicidal Properties of Quinones	31	1.4-Naphthoquinones and Halogenmethyl-1.4-	
Molybdate		quinones	693
Inhibition of cAMP-Phosphodiesterase by		Narcissus	
Molybdate (N)	162	Daffodil Chromoplast DNA: Comparison with	
Monochroa		Chloroplast DNA, Physical Map, and Gene	
(Z)-3-Tetradecenyl Acetate as a Sex-Attractant		Localization	118
Component in Gelechiinae and Anomologinae		Natural Waxes	
(Lepidoptera: Gelechiidae) (N)	1352	Natural Waxes Investigated by Soft Ionization	
Monooxygenase		Mass Spectrometry	178
Induction and Characterization of a NADPH-		Nauphoeta cinerea	
Dependent Flavone Synthase from Cell Cultures		Characterization and Amino Acid Composition	
of Soybean	343	of a Hypertrehalosaemic Neuropeptide from the	
Moth		Corpora cardiaca of the Cockroach, Nauphoeta	
Investigation of the Screening Pigment System in		cinerea	225
the Compound Eye of the Moth Agrotis segetum		Neem	
(fam. Noctuidae) by Visible Reflectometry	152	Structure of Azadirachtin B	4
MTD Method		Nicotiana	
MTD Calculations on Quantitative Structure-		Alkaloids in Stem Roots of Nicotiana tabacum	
Activity Relationships of Steroids Binding to the		and Spartium junceum Transformed by Agrobac-	
Progesterone Receptor	935	terium rhizogenes	69
Mucor miehei		Nicotine	
Radiochemical Methods for Studying Lipase-		Alkaloids in Stem Roots of Nicotiana tabacum	
Catalyzed Interesterification of Lipids	1285	and Spartium junceum Transformed by Agrobac-	
Musci		terium rhizogenes	69
Bryoflavone and Heterobryoflavone. Two New	0.65	Nitrate Reductase	
Isoflavone-flavone Dimers from Bryum capillare	863	Nitrate Reductase from Sphagnum Species: Iso-	

lation, in vitro Assays and Partial Purification		5'-Nucleotidase	
(N)	653	Inhibition of cAMP-Phosphodiesterase by	
Nitrogenase Regulation		Molybdate (N)	162
Comparing Short-Term Effects of Ammonia and			
Methylamine on Nitrogenase Activity in			
Anabaena variabilis (ATCC 29413)	902	Odour Composition	
O-p-Nitrophenylhydroxylamine		Species and Sex Specificity in the Odour Com-	
Chemical Control of Photorespiration: Steady-		position of Two Panurgine Bees (Hymenoptera.	
State Kinetic and Conformational Changes of		Andrenidae) (N)	169
Ribulose-1,5-bisphosphate Carboxylase/Oxygen-		Ontogenetic Development	
ase Obtained with O-p-Nitrophenylhydroxyl-		On the Essential Oils from Chrysanthemum bal-	
	837	samita L	502
amine	037	Optical Isomers	502
Nitrosoureas			
In the Search for New Anticancer Drugs, XXI.	021	Cyanoacrylate Inhibitors of Photosynthetic Elec-	
Spin Labeled Nitrosoureas	921	tron Transport in Atrazine Susceptible and Atra-	(70
Nitroxyl Radicals		zine Resistant Brassica Chloroplasts	670
In the Search for New Anticancer Drugs, XXI.		Optical Resolution	
Spin Labeled Nitrosoureas	921	Experiments on the Optical Resolution of Con-	
NMR		duramine Analogs by Enzymatic Transesterifica-	
NMR Spectra of Flavone Di-C-glycosides from		tion in Organic Solvents	446
Apometzgeria pubescens and the Detection of		Optically Active Benzylamino Derivatives	
Rotational Isomerism in 8-C-Hexosylflavones .	1039	Cyanoacrylate Inhibitors of the Hill Reaction.	
¹³ C NMR		V. The Effect of Chirality on Inhibitor Binding	684
X-Ray Structure Analysis and Spectroscopic		Organic Compounds in Archaeometry	
Data of the Antibiotic 8-(Dichloroacetyl)-5-hy-		Identification of Betulin in Archaeological Tar	1151
droxy-2,7-dimethyl-1,4-naphthoquinone from		Organic Materials in Archaeology	
the Fungus <i>Mollisia</i> sp	1	Identification of Betulin in Archaeological Tar .	1151
Comparison of the Solid State CPMAS and So-	•	Over-Replication	
lution Carbon-13-NMR Spectra of Humic Acids		Growth Kinetics of the G2-Phase of Ehrlich	
Extracted from Composted Municipal Refuse	205	Ascites Tumor Cells, Separated from Anaerobi-	
Microbial Hydroxylation of Cedrol and Cedrene	414	cally Treated Asynchronous Cultures	991
H NMR	714	Oxidation	//1
X-Ray Structure Analysis and Spectroscopic		Development of New Plate Tests for the Detec-	
Data of the Antibiotic 8-(Dichloroacetyl)-5-hy-		tion of Microbial Hydrolysis of Esters and Oxi-	
		dations of 2-Hydroxycarboxylic Acids	1187
droxy-2,7-dimethyl-1,4-naphthoquinone from		Oxidative Phosphorylation	1107
the Fungus Mollisia sp	1		
Stereochemistry of Two Hydroxybiflavanonols	055	Bioenergetics Studies of the Cyanobacterium	1280
from Garcinia cola Nuts	855	Anabaena variabilis	1260
H NMR Experimental and Calculated Spectra		Oxocarboxylic Acids	
n-Alkylphenols from Schinus terebinthifolius	_	Asymmetric Reduction of 4(5)-Oxocarboxylic	1150
RADDI (Anacardiaceae)	7	Acids by Baker's Yeast	1159
(Z,Z)-6,9-Nonadecadiene		Oxyfluorfen Binding	
Polyunsaturated Pheromones: Semi-Synthesis of		Binding and Peroxidative Action of Oxyfluorfen	0.10
(Z,Z)-6,9-Alkadienes and (Z,Z,Z) -3,6,9-Alka-		in Sensitive and Tolerant Algal Species	819
trienes from Naturally Occurring Fatty Acids	1035	Oxygen Evolution	
(Z,Z,Z)-3,6,9-Nonadecatriene		Interaction of Halogenated 1,4-Benzoquinones	
Polyunsaturated Pheromones: Semi-Synthesis of		with System II of Photosynthesis	698
(Z,Z)-6,9-Alkadienes and (Z,Z,Z) -3,6,9-Alka-			
trienes from Naturally Occurring Fatty Acids	1035		
Noradrenaline		Panurgus	
Reversed Light Reaction of the Screening Pig-		Species and Sex Specificity in the Odour Com-	
ment in a Compound Eye Induced by Nor-		position of Two Panurgine Bees (Hymenoptera,	
adrenaline	973	Andrenidae) (N)	169
Notholaena sulphurea (Pteridophyta, Pteridaceae)		PAPS-Reductase	
Novel Flavonoids from the Fern Notholaena sul-		PAPS-Reductase from Escherichia coli: Charac-	
phurea	1063	terization of the Enzyme as Probe for Thio-	
Novel Role of NAD		redoxins	93
Proposal for the Mechanism of Action of Uro-		Parallel Electron Transport	,,,
canase. Inference from the Inhibition by 2-Meth-		Counteraction of Paraquat Toxicity at the Chlo-	
ylurocanate	349	roplast Level	824
Nucleosides	J + 7	Paraquat	044
6-Methylpurine, 6-Methyl-9-β-D-ribofuranosyl-		The Effects of Photosystem I Electron Accep-	
purine, and 6-Hydroxymethyl-9-β-D-ribofurano-		tors on Leaf Discs	829
sylpurine as Antiviral Metabolites of <i>Collybia</i>		Counteraction of Paraquat Toxicity at the Chlo-	0.27
maculata (Basidiomycetes)	420	roplast Level	824
mucania (Dasiajoni veetes)	720	TOPIASI LEVEL	0.4

Paraquat Reduction Counteraction of Paraquat Toxicity at the Chlorida.		(Z,Z)-6,9-Alkadienes and (Z,Z,Z) -3,6,9-Alkatrienes from Naturally Occurring Fatty Acids	1035
Counteraction of Paraquat Toxicity at the Chloroplast Level	824	trienes from Naturally Occurring Fatty Acids Phosphate Accumulation	1033
Parasorbic Acid	024	Phosphate Accumulation by Muscle <i>in vitro</i> and	
Natural Inhibitors of Germination and Growth		the Influence of Vitamin D ₃ Metabolites	237
IV. Compounds from Fruit and Seeds of Moun-		Phosphatidylinositols	
tain Ash (Sorbus aucuparia)	1179	The Phosphatidylinositol Species of Suspension	
Patch Clamp		Cultured Plant Cells (N)	1003
Analysis of Single Channel Currents with a		Phosphinothricin	
Microprocessor Based Device	173	The Effect of Phosphinothricin (Glufosinate) on	
C-5 Pathway		Photosynthesis. I. Inhibition of Photosynthesis	
Glutamic Acid-1-semialdehyde, a Hypothetical		and Accumulation of Ammonia	263
Intermediate in the Biosynthesis of 5-Amino-		Phosphite Triester	
levulinic Acid	209	Building Blocks for Oligonucleotide Syntheses	
Peptides		with Uniformly Fragmentable β-Halogenated	
Synthesis of Immobilized Peptide Fragments on		Protecting Groups	442
Polystyrene-Polyoxyethylene for Affinity Chro-		Phosphoenolpyruvate Carboxylase	
matography	455	Use of Pyruvate-Phosphate Dikinase as a Target	
Peptidoglycan		for Herbicide Design: Analysis of Inhibitor	
Partial Lack of N-Acetyl Substitution of		Specificity	834
Glucosamine in the Peptidoglycan of the Bud-		Quantitative Histochemical Analysis of Starch.	
ding Phototrophic Rhodomicrobium vannielii	1165	Malate and K ⁺ , Together with the Activity of	
G2-Period		Phosphoenolpyruvate Carboxylase along an	
Growth Kinetics of the G2-Phase of Ehrlich		Elongating Primary Leaf of Hordeum vulgare	1092
Ascites Tumor Cells, Separated from Anaerobi-		Phosphofructokinase	
cally Treated Asynchronous Cultures	991	Role of Pyrophosphate: Fructose-6-Phosphate	
Peroxidation		1-Phosphotransferase in Glycolysis in Cultured	
Binding and Peroxidative Action of Oxyfluorfen		Catharanthus roseus Cells	1215
in Sensitive and Tolerant Algal Species	819	Phosphoglycerate Mutase in Chloroplasts	
Petunia hybrida		Substrate Flow from Photosynthetic Carbon	
Distinct Substrate Specificity of Dihydroflavonol		Metabolism to Chloroplast Isoprenoid Synthesis	
4-Reductase from Flowers of <i>Petunia hybrida</i>		in Spinach Evidence for a Plastidic Phosphoglyc-	
(N)	1146	erate Mutase	570
pH-Effect		Phosphono Analogues	
Effect of pH on Glycolate and Ammonia Excre-		Thin Layer Chromatographic and Infra Red	
tion in L-MSO Treated <i>Chlorella</i> Cells	525	Spectral Evidence for the Presence of Phos-	1000
Phaeophyceae		phonolipids in Cicada oni	1023
Sexual Pheromones and Related Egg Secretions		Phosphonolipids	
in Laminariales (Phaeophyta)	948	Thin Layer Chromatographic and Infra Red	
Phaseolus coccineus L.		Spectral Evidence for the Presence of Phos-	1022
Chloride Availability Affects the Malate Con-		phonolipids in Cicada oni	1023
tent and its Control by the Circadian Clock in		Photoaffinity Label	
Pulvini of <i>Phaseolus coccineus</i> L	553	Inhibition and Photoaffinity Labeling of Photo-	
Phenolic Compound		system II by Thiazolyliden-ketonitriles	704
Structure Elucidation of Kwakhurin, a New Pre-		Photochemical Quenching	
nylated Isoflavone from Pueraria mirifica Roots	510	The Polyphasic Rise of Chlorophyll Fluores-	
Phenolics		cence upon Onset of Strong Continuous Illumi-	
A GC/MS Study of the Propolis Phenolic Con-		nation: II. Partial Control by the Photosystem II	
stituents	147	Donor Side and Possible Ways of Interpretation	1255
A Novel Caffeic Acid Derivative and Other		Photodimerisation	
Constituents of <i>Populus</i> Bud Excretion and		α-Diceroptene: A New Dimeric Structure for	
Propolis (Bee-Glue)	1030	Isoceroptene	849
Phenylurea		Photoinactivation	
The Role of Chirality in the Activity of Photo-		Uptake of Protoporphyrin and Violet Light	
system II Herbicides	663	Photodestruction of <i>Propionibacterium acnes</i>	123
Pheromone Analogues		Photoinhibition	
Functional Group Recognition of Pheromone		Energy-Dependent Chlorophyll Fluorescenice	
Molecules by Sensory Cells of Antheraea		Quenching in Chloroplasts Correlated with	
polyphemus and Antheraea pernyi (Lepidoptera:		Quantum Yield of Photosynthesis	581
Saturniidae)	435	Photophosphorylation	,,
Pheromones		Interference by Herbicides with the Transmern-	
Sexual Pheromones and Related Egg Secretions		brane Potential of Thylakoids	718
im Laminariales (Phaeophyta)	948	Bioenergetics Studies of the Cyanobacterium	
Polyunsaturated Pheromones: Semi-Synthesis of		Anabaena variabilis	1280

Photorespiration		to Some Urea Herbicides of Triazine-Resistant	
The Effect of Phosphinothricin (Glufosinate) on		Conyza canadensis Cronq (L.)	783
Photosynthesis. I. Inhibition of Photosynthesis		Photosynthetic Reaction Centre	
and Accumulation of Ammonia	263	Sequence Analysis of Mutants from Rhodo-	
Effect of pH on Glycolate and Ammonia Excre-	-0	pseudomonas viridis Resistant to the Herbicide	
tion in L-MSO Treated Chlorella Cells	525	Terbutryn	751
Chemical Control of Photorespiration: Steady-		Photosystem I	
State Kinetic and Conformational Changes of		Benzofuroxan as Electron Acceptor at Photo-	
Ribulose-1,5-bisphosphate Carboxylase/Oxygen-		system I	1265
ase Obtained with O-p-Nitrophenylhydroxyl-	027	Photosystem I Electron Acceptors	
amine	837	The Effects of Photosystem I Electron Accep-	
		tors on Leaf Discs	829
respiration in the Tobacco Aurea Mutant Nicotiana tabacum Su/su	965	Photosystem II	.,_,
Photosensitization	903	The Role of Chirality in the Activity of Photo-	
Uptake of Protoporphyrin and Violet Light		system II Herbicides	663
Photodestruction of <i>Propionibacterium acnes</i>	123	Irreversibly Binding Photosynthetic Electron	005
Photosynthesis	123	Transport Inhibitors. II. Halogen-Substituted	
Lipid Influence on the Structure of the Light		1,4-Naphthoquinones and Halogenmethyl-1,4-	
Harvesting B 800 – 850 Proteins	109	Quinones	693
Chromophore Assignment in C-Phycocyanin	107	Interaction of Halogenated 1,4-Benzoquinones	
from Mastigocladus laminosus	258	with System II of Photosynthesis	698
Site-Directed Antisera to the D-2 Polypeptide	250	Inhibition and Photoaffinity Labeling of Photo-	
Subunit of Photosystem II	491	system II by Thiazolyliden-ketonitriles	704
Energy-Dependent Chlorophyll Fluorescence	.,,	The Three-Dimensional Structure of the Herbi-	
Quenching in Chloroplasts Correlated with		cide Binding Niche on the Reaction Center Poly-	
Quantum Yield of Photosynthesis	581	peptides of Photosystem II	742
Interference by Herbicides with the Transmem-		Isolation and Characterization of Herbicide	
brane Potential of Thylakoids	718	Resistant Mutants in the Cyanobacterium	
Site-Directed Mutations of Two Histidine		Synechococcus R2	758
Residues in the D2 Protein Inactivate and		Triazine Resistance in <i>Phalaris paradoxa</i> : Phys-	
Destabilize Photosystem II in the Cyanobac-		iological and Molecular Analyses	779
terium Synechocystis 6803	762	Effect of pH on the Slow Phase Components of	
Triazine Resistance in Phalaris paradoxa: Phys-		Delayed Luminescence in Chloroplasts	1121
iological and Molecular Analyses	779	The Polyphasic Rise of Chlorophyll Fluores-	
The Effects of Photosystem I Electron Accep-		cence upon Onset of Strong Continuous Illumi-	
tors of Leaf Discs	829	nation: I. Saturation Characteristics and Partial	1246
Effect of pH on the Slow Phase Components of		Control by the Photosystem II Acceptor Side	1246
Delayed Luminescence in Chloroplasts	1121	The Polyphasic Rise of Chlorophyll Fluores-	
The Polyphasic Rise of Chlorophyll Fluores-		cence upon Onset of Strong Continuous Illumi-	
cence upon Onset of Strong Continuous Illumi-		nation: II. Partial Control by the Photosystem II	1255
nation: I. Saturation Characteristics and Partial		Donor Side and Possible Ways of Interpretation	1233
Control by the Photosystem II Acceptor Side	1246	Photosystem II Proteins	
The Polyphasic Rise of Chlorophyll Fluores-		Site-Directed Mutations of Two Histidine	
cence upon Onset of Strong Continuous Illumi-		Residues in the D2 Protein Inactivate and	
nation: II. Partial Control by the Photosystem II	1255	Destabilize Photosystem II in the Cyanobac-	
Donor Side and Possible Ways of Interpretation	1255	terium Synechocystis 6803	
Benzofuroxan as Electron Acceptor at Photo-	1265	Phthalaldehyde	
system I	1265	A New Detection Procedure for Aminoacylase	
C ₄ -Photosynthesis		Activity of Microorganisms Directly on Plate	1003
Use of Pyruvate-Phosphate Dikinase as a Target		Culture with o-Phthalaldehyde	1082
for Herbicide Design: Analysis of Inhibitor	024	Phycocyanin	
Specificity	834	CARS Investigation of Changes in Chromo-	
Photosynthesis Inhibition		phore Geometry of C-Phycocyanin from Masti-	
Can Quantitative Structure Activity Analyses		gocladus laminosus Induced by Titration with	1260
and Molecular Graphics Assist in Designing	712	<i>p</i> -Chloromercuribenzenesulfonate	1269
New Inhibitors of Photosystem II?	713	Physical Map	
Photosynthetic Carbon Fixation		Daffodil Chromoplast DNA: Comparison with	
Substrate Flow from Photosynthetic Carbon		Chloroplast DNA, Physical Map, and Gene	
Metabolism to Chloroplast Isoprenoid Synthesis		Localization	118
in Spinach Evidence for a Plastidic Phosphoglyc-	53 0	Phytoalexins	
erate Mutase	570	Accumulation of Phenolic Compounds and	
Photosynthetic Properties		Phytoalexins in Sliced and Elicitor-Treated	
Photosynthetic Properties and Cross-Resistance		Cotyledons of Cicer arietinum L	1171

Phytochrome		Populus (Salicaceae)	
ZZE-Configuration of Chromophore β -153 in		A Novel Caffeic Acid Derivative and Other	
C-Phycocyanin from Mastigocladus laminosus .	845	Constituents of <i>Populus</i> Bud Excretion and	
Pigment Migration		Propolis (Bee-Glue)	1030
Reversed Light Reaction of the Screening Pig-		Potential Energy Surface	
ment in a Compound Eye Induced by Nor-		Molecular Mechanics Investigation on Side-	
adrenaline	973	Chain Conformations of a 17α-Ethyl-17β-hy-	
Pinaceae		droxy Steroid with Regard to Receptor Binding.	221
"Epicuticular Waxes" from Exine Material of		Potential Sensitive Dye	
Pine Pollen	858	Fluorescence Monitoring of Membrane Poten-	
Pinus mugo Turra		tials: the Spatio-Temporal Resolution in Isolated	
"Epicuticular Waxes" from Exine Material of		Neurons of <i>Helix pomatia</i>	986
Pine Pollen	858	Potentiometric Detn of Stability Constants	
Piperic Acid		Synthesis and Complexing Features of an Artifi-	
Synthesis of Piperoyl Coenzyme A Thioester	1070	cial Receptor for Biogenic Amines	476
Piperoyl Coenzyme A		Precursors	
Synthesis of Piperoyl Coenzyme A Thioester	1070	On the Possible Relation between Morphology	
Pisum sativum	10.0	and Precursors of the Crystallities in Calcified	
Protein Transport in Chloroplasts: ATP is Pre-		Tissues	916
requisit	103	Prenyl Pyrophosphates	710
Pityrogramma triangularis	105	Interconversion of Prenyl Pyrophosphates and	
α -Diceroptene: A New Dimeric Structure for		Subsequent Reactions in the Presence of FMC	
	849		803
Isoceroptene	049	57020	603
Planar Lipid Bilayer		Prenylated Pterocarpan	
Analysis of Single Channel Currents with a	172	Metabolism of the Prenylated Pterocarpan	1050
Microprocessor Based Device	173	Edunol by Aspergillus flavus	1050
Plant Bioregulators		Prephenate Dehydratase	
Effects of Plant Bioregulators on the Production		Phenylalanine and Tyrosine Biosynthesis in	
of Iridoid Derived Terpenoids in Valeriana		Sporeforming Members of the Order Actino-	207
wallichii and Fedia cornucopiae Cell Suspension	2.2	mycetales	387
Cultures	33	Primula obconica	٠.
Plant Cell Culture		Molluscicidal Properties of Quinones	31
Role of Pyrophosphate: Fructose-6-phosphate		Progestational Steroids	
1-Phosphotransferase in Glycolysis in Cultured		MTD Calculations on Quantitative Structure-	
Catharanthus roseus Cells	1215	Activity Relationships of Steroids Binding to the	
Plant Cells		Progesterone Receptor	935
A Simple Analysis of Purine and Pyrimidine		Progesterone-Receptor Binding Affinity	
Nucleotides in Plant Cells by High-Performance		MTD Calculations on Quantitative Structure-	
Liquid Chromatography	297	Activity Relationships of Steroids Binding to the	
Plastoquinone-9 Synthesis		Progesterone Receptor	935
Substrate Flow from Photosynthetic Carbon		Propionibacterium acnes	
Metabolism to Chloroplast Isoprenoid Synthesis		Uptake of Protoporphyrin and Violet Light	
in Spinach Evidence for a Plastidic Phosphoglyc-		Photodestruction of <i>Propionibacterium acnes</i>	123
erate Mutase	570	Propolis	
Plot		A GC/MS Study of the Propolis Phenolic Con-	
The v versus $v[I]$ Plot	1185	stituents	147
Poa annua		A Novel Caffeic Acid Derivative and Other	• • •
Sethoxydim-Uptake by Leaf Slices of Seth-		Constituents of <i>Populus</i> Bud Excretion and	
oxydim Resistant and Sensitive Grasses	279	Propolis (Bee-Glue)	1030
Poa pratensis			1050
Sethoxydim-Uptake by Leaf Slices of Seth-		Protective Groups	
oxydim Resistant and Sensitive Grasses	279	Building Blocks for Oligonucleotide Syntheses	
Poison Gland		with Uniformly Fragmentable β-Halogenated	
Adnexal Glands Chemistry of Messor ebeninus		Protecting Groups	442
Forel (Formicidae: Myrmicinae)	1027	D-1 Protein	
Pollen	1027	The Use of HPLC for the Purification of the Q _B -	
"Epicuticular Waxes" from Exine Material of		Protein	739
Pine Pollen	858	Q _B -Protein	
D-2 Polypeptide	0.50	Inhibition and Photoaffinity Labeling of Photo-	
Site-Directed Antisera to the D-2 Polypeptide		system II by Thiazolyliden-ketonitriles	704
Subunit of Photosystem II	491	The Use of HPLC for the Purification of the Q _B -	
Polyunsaturated Hydrocarbons	マフェ	Protein	739
		Protein Conformation	
Polyenic Hydrocarbons as Sex Attractants for		Conformational Changes in Proteins Induced by	
Geometrids and Amatids (Lepidoptera) Found	145	Low Temperatures: an Infrared Study (N)	1339
by Field Screening in Hungary (N)	165	Low reinperatures, an infrared study (N)	1333

Protein Phaemhataga		Duridazinana	
Protein Phosphatase cAMP-Dependent Protein Kinase Activity in		Pyridazinone Structure-Function-Relationship in Thylakoids	
Yeast Mitochondria	1291	Influenced by the Pyridazinone BAS 13-338	
Protein Transport		(SAN 9785)	808
Protein Transport in Chloroplasts: ATP is Pre-		Pyridoxal Phosphate	
requisit	103	Stereochemistry and Mechanism of Reactions	
Proton Motive Force		Catalyzed by Tyrosine Phenol-Lyase from	
Interference by Herbicides with the Transmem-		Escherichia intermedia	307
brane Potential of Thylakoids	718	Pyrimidine Acyclonucleosides	
Protoplasts		Acyclonucleoside Analogues Consisting of 5-	
Light-Induced Ca ²⁺ Influx into Spinach Proto-		and 5.6-Substituted Uracils and Different Acylic	
plasts	283	Chains: Inhibitory Properties vs Purified E. coli	200
Protoplasts Regeneration		Uridine Phosphorylase	288
Characterization of Some Claviceps Strains	201	Pyrimidine Homonucleosides Pyrimidine Homoribonucleosides: Synthesis,	
Derived from Regenerated Protoplasts	381	Solution Conformation, and Some Biological	
Protoporphyrin Lintaka of Protoporphyrin and Violet Light		Properties	589
Uptake of Protoporphyrin and Violet Light Photodestruction of <i>Propionibacterium acnes</i>	123	Pyrimidine Nucleotide	
Protoporphyrin Uptake	123	A Simple Analysis of Purine and Pyrimidine	
Uptake of Protoporphyrin and Violet Light		Nucleotides in Plant Cells by High-Performance	
Photodestruction of <i>Propionibacterium acnes</i>	123	Liquid Chromatography	297
Pseudomyrmecinae		Pyrophosphate: Fructose-6-phosphate 1-Phospho-	
Tetraponerine-8, an Alkaloidal Contact Poison		transferase	
in a Neoguinean Pseudomyrmecine Ant, Tetra-		Role of Pyrophosphate: Fructose-6-phosphate	
ponera sp	627	1-Phosphotransferase in Glycolysis in Cultured	
Pseudopupil		Catharanthus roseus Cells	1215
Investigation of the Screening Pigment System in		Pyruvate-Phosphate Dikinase	
the Compound Eye of the Moth Agrotis segetum		Use of Pyruvate-Phosphate Dikinase as a Target	
(fam. Noctuidae) by Visible Reflectometry	152	for Herbicide Design: Analysis of Inhibitor Specificity	834
Psoriasis		Specificity	654
Inhibition of cAMP Phosphodiesterase by Some	1009	OSAR Methods and Parameters	
Phototherapeutic Agents (N)	1009	Can Quantitative Structure Activity Analyses	
α-Diceroptene: A New Dimeric Structure for		and Molecular Graphics Assist in Designing	
Isoceroptene	849	New Inhibitors of Photosystem II?	713
Pterocarpan: NADPH Oxidoreductase	017	Quantitative Structure-Activity Relationships	
Partial Characterization of an Enzyme from the		MTD Calculations on Quantitative Structure-	
Fungus Ascochyta rabiei for the Reductive		Activity Relationships of Steroids Binding to the	
Cleavage of Pterocarpan Phytoalexins to 2'-Hy-		Progesterone Receptor	935
droxyisoflavans	897	Quercus robur	
Pterocarpan Phytoalexin		Enzymatic Synthesis of 1,6-Digalloylglucose	
Partial Characterization of an Enzyme from the		from β-Glucogallin by β-Glucogallin: β-Glucogallin 6-0-Galloyltransferase from Oak Leaves .	87
Fungus Ascochyta rabiei for the Reductive		Quinone Binding	07
Cleavage of Pterocarpan Phytoalexins to 2'-Hy-	907	Genetic Engineering of Herbicide Resistance:	
droxyisoflavans	897	Saturation Mutagenesis of Isoleucine 229 of the	
Structure Elucidation of Kwakhurin, a New Pre-		Reaction Center L Subunit	769
nylated Isoflavone from <i>Pueraria mirifica</i> Roots	510	Quinone Binding Protein	
Pulse Radiolysis	5.0	The Three-Dimensional Structure of the Herbi-	
Intermolecular H-Abstraction of Thiyl Radicals		cide Binding Niche on the Reaction Center Poly-	
from Thiols and the Intramolecular Complexing		peptides of Photosystem II	742
of the Thiyl Radical with the Thiol Group in 1,4-		Quinone Binding Sites	
Dithiothreitol. A Pulse Radiolysis Study	134	Interaction of Halogenated 1,4-Benzoquinones	700
Purification		with System II of Photosynthesis	698
Lysine Decarboxylase from Hafnia alvei: Purifi-		Quinones Mally spirited Proporties of Quinones	31
cation, Molecular Data and Preparation of Poly-		Molluscicidal Properties of Quinones	31
clonal Antibodies	1307	Radiation Biology	
Purine Nucleotide		Intermolecular H-Abstraction of Thiyl Radicals	
A Simple Analysis of Purine and Pyrimidine		from Thiols and the Intramolecular Complexing	
Nucleotides in Plant Cells by High-Performance		of the Thiyl Radical with the Thiol Group in 1,4-	
Liquid Chromatography	297	Dithiothreitol. A Pulse Radiolysis Study	134
PUVA Therapy		Radiochemical Methods	
Inhibition of cAMP Phosphodiesterase by Some		Radiochemical Methods for Studying Lipase-	
Phototherapeutic Agents (N)	1009	Catalyzed Interesterification of Lipids	1285

Radioprotectants		Respiratory and Photosynthetic Inhibitors	
Efficacy of Sustained-Release Radioprotective	1222	Bioenergetics Studies of the Cyanobacterium	1200
Drugs in vivo	1323	Anabaena variabilis	1280
Range of Entrainment		Rhodium Catalyst	
Evidences for Circadian Rhythmicity in the per	1225	Steric Course of the Rhodium-Catalyzed Decar-	
Mutant of Drosophila melanogaster	1335	bonylation of Chiral 4-Methyl-[1-3H,2-2H ₁]pen-	
Rapeseed		tanal	449
A Temporal Phase Mutation of Chlorophyll		Rhodobacter sphaeroides	
Fluorescence in Triazine-Resistant Brassica		Herbicide and Quinone Binding to Chromato-	
napus	775	phores and Reaction Centers from Rhodobacter	
Rauwolfia serpentina Benth.		sphaeroides	690
Characterization of $2\beta(R)$ -17-O-Acetylajmalan:		Rhodomelaceae	
Acetylesterase – a Specific Enzyme Involved in		Epoxy-trans-isodihydrorhodophytin, a New	
the Biosynthesis of the Rauwolfia Alkaloid		Metabolit from Laurencia obtusa	507
Ajmaline	333	Rhodomicrobium vannielii	
Reaction Centers		Partial Lack of N-Acetyl Substitution of	
Herbicide and Quinone Binding to Chromato-		Glucosamine in the Peptidoglycan of the Bud-	
phores and Reaction Centers from Rhodobacter		ding Phototrophic Rhodomicrobium vannielii	1165
sphaeroides	690	[¹³ C]Riboflavin	
Receptor Binding		Enzymatic Synthesis of Riboflavin and FMN	
Molecular Mechanics Investigation on Side-			425
Chain Conformations of a 17α-Ethyl-17β-hy-		Specifically Labeled with ¹³ C in the Xylene Ring	423
droxy Steroid with Regard to Receptor Binding.	221	$[6.9.7\alpha,8\alpha^{-13}C]$ Riboflavin	
Receptor Site Mapping	-21	Enzymatic Synthesis of Riboflavin and FMN	125
MTD Calculations on Quantitative Structure-		Specifically Labeled with ¹³ C in the Xylene Ring	425
		Ribonucleosides	
Activity Relationships of Steroids Binding to the	935	Ring Opening Reactions of Bioreactive Lactam	600
Progesterone Receptor	933	Systems	603
Receptor Sites		Ribosomal RNA	
Cyanoacrylate Inhibitors of Photosynthetic Elec-		Divergent Evolution of 5S rRNA Genes in	
tron Transport in Atrazine Susceptible and Atra-	670	Methanococcus	373
zine Resistant <i>Brassica</i> Chloroplasts	670	Ribosylation	
Reconstitution		Ring Opening Reactions of Bioreactive Lactam	
The Rate of ATP Hydrolysis Catalyzed by Re-	221	Systems	603
constituted CF ₀ F ₁ -Liposomes	231	Ribulose-1,5-bisphosphate Carboxylase-Oxygenase	
Red Algae		Small Angle X-Ray Study on the Structure of	
Epoxy-trans-isodihydrorhodophytin, a New	505	Active and Inactive Ribulose-1,5-bisphosphate	
Metabolit from Laurencia obtusa	507	Carboxylase-Oxygenase from Spinach. Evidence	
Redox Balance		for a Configurational Change	1089
Sn-Glycerol-3-phosphate is a Product of Starch		Rigid Layer	
Degradation in Isolated Chloroplasts from		Partial Lack of N-Acetyl Substitution of	
Chlamydomonas reinhardii	567	Glucosamine in the Peptidoglycan of the Bud-	
Reflection		ding Phototrophic Rhodomicrobium vannielii	1165
Investigation of the Screening Pigment System in		RNA	
the Compound Eye of the Moth Agrotis segetum		Methylation of Guanine in vivo by the Organo-	
(fam. Noctuidae) by Visible Reflectometry	152	phosphorus Insecticide Methamidophos	17
¹ H Relaxation of Blood		Root Hairs	
In vitro T_1 and T_2 Relaxation Times of Coagulat-		Root Hair Specific Proteins in Glycine max	537
ing Blood and Thrombuses	1135	Roots	
²³ Na Relaxation of Blood		Root Hair Specific Proteins in Glycine max	537
In vitro T ₁ and T ₂ Relaxation Times of Coagulat-		Rotational Isomerism	
ing Blood and Thrombuses	1135	NMR Spectra of Flavone Di-C-glycosides from	
¹ H Relaxation of Thrombuses		Apometzgeria pubescens and the Detection of	
		Rotational Isomerism in 8-C-Hexosylflavones .	1039
In vitro T ₁ and T ₂ Relaxation Times of Coagulat-	1125	Rubisco	
ing Blood and Thrombuses	1135	Chemical Control of Photorespiration: Steady-	
²³ Na Relaxation of Thrombuses		State Kinetic and Conformational Changes of	
In vitro T_1 and T_2 Relaxation Times of Coagulat-		Ribulose-1,5-bisphosphate Carboxylase/Oxygen-	
ing Blood and Thrombuses	1135	ase Obtained with O-p-Nitrophenylhydroxyl-	
REM Latency		amine	837
Dependence of a Sleeping Parameter from the			201
N-S or E-W Sleeping Direction	1140		
Resistance		Salicylhydrazide	
Sequence Analysis of Mutants from Rhodo-		Development of New Plate Tests for the Detec-	
pseudomonas viridis Resistant to the Herbicide		tion of Microbial Hydrolysis of Esters and Oxi-	
Terbutryn	751	dations of 2-Hydroxycarboxylic Acids	1187
•	-		

Sarcoplasmic Reticulum		Comparison of Dufour Gland Secretions of Two	
Pressure Effects on the Interactions of the Sarco-		Species of Leptothorax Ants (Hymenoptera:	0.55
plasmic Reticulum Calcium Transport Enzyme		Formicidae)	955
with Calcium and <i>para</i> -Nitrophenyl Phosphate	641	Sesquiterpenoid	414
Saturniidae		Microbial Hydroxylation of Cedrol and Cedrene	414
Identification of Three Sex Pheromone Compo-		Sethoxydim Sethoxydim-Uptake by Leaf Slices of Seth-	
nents of the Female Saturniid Moth Antheraea	(2)	oxydim Resistant and Sensitive Grasses	279
<i>pernyi</i> (Lepidoptera: Saturniidae) Satyridae	631	Sex Attractants	219
γ-Decalactone, an Odoriferous Compound from		Polyenic Hydrocarbons as Sex Attractants for	
the Male Butterfly, Lethe marginalis Motschul-		Geometrids and Amatids (Lepidoptera) Found	
sky (N)	1001	by Field Screening in Hungary (N)	165
Scenedesmus obliquus	1001	(Z)-3-Tetradecenyl Acetate as a Sex Attractant	105
Formation of Large Thioredoxin f Accompanies		Component in Gelechiinae and Anomologinae	
Chloroplast Development in Scenedesmus obli-		(Lepidoptera: Gelechiidae) (N)	1352
quus (N)	1364	Sex Pheromone	
Schinus terebinthifolius RADDI	1501	Identification of Three Sex Pheromone Compo-	
n-Alkylphenols from Schinus terebinthifolius		nents of the Female Saturniid Moth Antheraea	
RADDI (Anacardiaceae)	7	pernyi (Lepidoptera: Saturniidae)	631
Schistosomiasis		Identification of the Sex Pheromone of Eggplant	
Molluscicidal Properties of Quinones	31	Borer Leucinodes orbonalis Guenèe (Lepido-	
Screening		ptera: Pyralidae) (N)	1347
In vivo Screening of Glutathione Related		(Z)-5-Dodecen-1-ol, Another Inhibitor of	
Detoxification Products in the Early State of		Pheromonal Attraction in Coleophora laricella	
Drug Development	465	(N)	1349
Screening Pigment		Sex Pheromone Biosynthesis	
Investigation of the Screening Pigment System in		Comparative Sex Pheromone Biosynthesis in the	
the Compound Eye of the Moth Agrotis segetum	150	Obliquebanded Leafroller, Choristoneura	
(fam. Noctuidae) by Visible Reflectometry	152	rosaceana, and the Redbanded Leafroller, Argy-	061
Reversed Light Reaction of the Screening Pig-		rotaenia velutinana, Moths	961
ment in a Compound Eye Induced by Nor-adrenaline	973	Sexual Pheromones and Related Egg Secretions	
Seasonal Dependence	913	in Laminariales (Phaeophyta)	948
On the Essential Oils from Chrysanthemum bal-		Shade Adaptation	740
samita L	502	A Role of the Q _B Binding Protein in the Mecha-	
Secondary Structure		nism of Cyanobacterial Adaptation to Light	
Protein Sequence and Structure of N-Terminal		Intensity?	727
Amino Acids of Subunit Delta of Spinach Photo-		Silylation	
synthetic ATP-Synthase CF ₁	1231	Ring Opening Reactions of Bioreactive Lactam	
Self-Association		Systems	603
The Effect of Guanidinium Chloride on the Self-		Single Cell Recording	
Association of Bovine Liver Glutamate De-		Functional Group Recognition of Pheromone	
hydrogenase: a Gel Filtration Study	217	Molecules by Sensory Cells of Antheraea	
Semicontinuous		polyphemus and Antheraea pernyi (Lepidoptera:	
Semicontinuous and Continuous Production of		Saturniidae)	435
Citric Acid with Immobilized Cells of Aspergil-		Single Channel Statistics	
lus niger	408	Analysis of Single Channel Currents with a	
Sequence		Microprocessor Based Device	173
E. coli Maltodextrin Phosphorylase: Primary		Sinningia cardinalis	
Structure and Deletion Mapping of the C-Termi-	20.4	Enzymatic Synthesis of 4'- and 3',4'-Hy-	
nal Site	394	droxylated Flavanones and Flavones with	
Protein Sequence and Structure of N-Terminal		Flower Extracts of Sinningia cardinalis	1193
Amino Acids of Subunit Delta of Spinach Photo-	1231	Site-Directed Mutagenesis	
synthetic ATP-Synthase CF ₁	1231	Site-Directed Mutations of Two Histidine	
Sequence Analysis		Residues in the D2 Protein Inactivate and	
Sequence Analysis of Mutants from <i>Rhodopseu-</i>		Destabilize Photosystem II in the Cyanobac-	
domonas viridis Resistant to the Herbicide Ter-	751	terium Synechocystis 6803	762
butryn	/31	Genetic Engineering of Herbicide Resistance:	
Sequence Homology Evolution of F. and the Decidence of Darie		Saturation Mutagenesis of Isoleucine 229 of the	740
Evolution of <i>E. coli</i> tRNA ^{lic} : Evidence of Derivation from Other tRNAs	129	Reaction Center L Subunit	769
	129	SIV MIC Antigonal Constituents of the Envelopes	
Sesquiterpene Piotropoformation of Humulana by Fungi and		MHC-Antigens: Constituents of the Envelopes	
Biotransformation of Humulene by Fungi and	79	of Human and Simian Immunodeficiency	1328
Enantioselectivity of the Strains Used	17	Viruses	1348

Skin		Spin Labeling	
Twisted Fibrils are a Structural Principle in the		The the Search for New Anticancer Drugs, XXI.	
Assembly of Interstitial Collagens, Chordae		Spin Labeled Nitrosoureas	921
Tendineae Included	1303	Spinach	
Skin Irritation		Light-Induced Ca ²⁺ Influx into Spinach Proto-	202
n-Alkylphenols from Schinus terebinthifolius	_	plasts	283
RADDI (Anacardiaceae)	7	Spinacia oleracea	
Sleeping Direction		Substrate Flow from Photosynthetic Carbon	
Dependence of a Sleeping Parameter from the	1.10	Metabolism to Chloroplast Isoprenoid Synthesis	
N-S or E-W Sleeping Direction	1140	in Spinach Evidence for a Plastidic Phosphoglyc-	570
Slow-Release		erate Mutase	570
Efficacy of Sustained-Release Radioprotective	1222	Sporopollenin	
Drugs in vivo	1323	A Correlation between Detergent Tolerance and	245
Small Angle X-Ray Study		Cell Wall Structure in Green Algae	245
Small Angle X-Ray Study on the Structure of		Spruce Decline	
Active and Inactive Ribulose-1,5-bisphosphate		Ascorbic Acid and Glutathione Contents of	
Carboxylase-Oxygenase from Spinach. Evidence	1000	Spruce Needles from Different Locations in	879
for a Configurational Change	1089	Bavaria	0/9
Smipine Call Fine Synthesis of the Alkalaids Ammadan		Squalene Interconversion of Branul Buranhashatas and	
Cell-Free Synthesis of the Alkaloids Ammoden-	197	Interconversion of Prenyl Pyrophosphates and	
drine and Smipine	197	Subsequent Reactions in the Presence of FMC	803
		57020	803
Chemical Composition and Morphology of		Lipids in the Gular Gland Secretions of the	
Epicuticular Waxes from Leaves of Solanum	1153	American Alligator (Alligator mississippiensis)	1345
tuberosum	1133	(N)	1545
Species and Sex Specificity in the Odour Com-		Stereochemistry and Mechanism of Reactions	
position of Two Panurgine Bees (Hymenoptera,		Catalyzed by Tyrosine Phenol-Lyase from	
Andrenidae) (N)	169	Escherichia intermedia	307
Soybean	107	Steric Course of the Rhodium-Catalyzed Decar-	507
Induction and Characterization of a NADPH-		bonylation of Chiral 4-Methyl-[1-3H.2-2H ₁]pen-	
Dependent Flavone Synthase from Cell Cultures		tanal	449
of Soybean	343	Stereochemistry of Two Hydroxybiflavanonols	,
Purification and Properties of Chalcone Syn-		from Garcinia cola Nuts	855
thase from Cell Suspension Cultures of Soybean	1200	Stereoselectivity	
Sparteine Sparteine	1200	Enzymatic Acyloin Condensation of Acyclic	
Site of Lupanine and Sparteine Biosynthesis in		Aldehydes	559
Intact Plants and in vitro Organ Cultures	868	Stereospecific Binding	
Specific Proteins		Stereospecific Inhibitor Probes of the PS II Her-	
Root Hair Specific Proteins in Glycine max	537	bicide Binding Site	674
sn-1.3 Specific Triacylglycerol Lipase		Steroid Conformations	
Radiochemical Methods for Studying Lipase-		Molecular Mechanics Investigation on Side-	
Catalyzed Interesterification of Lipids	1285	Chain Conformations of a 17α-Ethyl-17β-hy-	
Specificity as Cosubstrate		droxy Steroid with Regard to Receptor Binding.	221
PAPS-Reductase from <i>Escherichia coli</i> : Charac-		Strain Development	
terization of the Enzyme as Probe for Thioredo-		Characterization of Some Claviceps Strains	
xins	93	Derived from Regenerated Protoplasts	381
Spectroscopy		Streptococci	
Embryotoxicity Induced by Alkylating Agents.		Reactivation of Streptolysin S by Oligo-	
Some Methodological Aspects of DNA Alkyla-		nucleotide	599
tion Studies in Murine Embryos Using Ethyl-		Streptolysin S	
methanesulfonate	613	Reactivation of Streptolysin S by Oligo-	
Sphagnum Species	015	nucleotide	599
Nitrate Reductase from <i>Sphagnum</i> Species: Iso-		Stringent Control	
lation, in vitro Assays and Partial Purification		Synthesis of Heat Shock Proteins during Amino	
(N)	653	Acid or Oxygen Limitation in Bacillus subtilis	
	0.7.5	rel A^+ and rel A	941
Sphingid Moth		Structure and Function	741
Reversed Light Reaction of the Screening Pig-			
ment in a Compound Eye Induced by Nor-	072	Structural Features and Biological Functions in Blue Copper Proteins (N)	1358
adrenaline	973	. ,	1330
Spin Label Technique		Structure-Function Relationship	
Thermal Lability of Membrane Proteins of Age		Structure-Function Relationship in Thylakoids	
Separated Erythrocytes as Studied by Electron	1242	Influenced by the Pyridazinone BAS 13-338	000
Spin Resonance Spin Label Technique (N)	1343	(SAN 9785)	808

Styryl Dyes		Suspension Cultures	
Fluorescence Monitoring of Membrane Poten-		Effects of Plant Bioregulators on the Production	
tials: the Spatio-Temporal Resolution in Isolated		of Iridoid Derived Terpenoids in Valeriana	
Neurons of <i>Helix pomatia</i>	986	wallichii and Fedia cornucopiae Cell Suspension	
Sub-Mitochondrial Location		Cultures	33
cAMP-Dependent Protein Kinase Activity in	1201	Distant Precursors of Benzylisoquinoline Alka-	210
Yeast Mitochondria	1291	loids and Their Enzymatic Formation	319
Substrate Specificity		Synthesis	
Distinct Substrate Specificity of Dihydroflavonol		Synthesis of Immobilized Peptide Fragments on	
4-Reductase from Flowers of <i>Petunia hybrida</i>	1146	Polystyrene Polyoxyethylene for Affinity	
(N)	1146	Chromatography	455
Substrate-Specificity Factor		Embryotoxicity Induced by Alkylating Agents.	
Chemical Control of Photorespiration: Steady-		Some Methodological Aspects of DNA Alkyla-	
State Kinetic and Conformational Changes of		tion Studies in Murine Embryos Using Ethyl-	(12
Ribulose-1,5-bisphosphate Carboxylase/Oxygen-		methanesulfonate	613
ase Obtained with O-p-Nitrophenylhydroxyl-	837	Synthetic Peptides Pagagnition of III A Class II Malagulas by	
amine	037	Recognition of HLA Class II Molecules by	
		Antipeptide Antibodies Elicited by Synthetic	
Isolation and Characterization of a Supra-		Peptides Selected from Regions of HLA-DP	1212
molecular Complex of Subunit III of the ATP-	1239	Antigens	1313
Synthase from Chloroplasts	1239		
Reversible pH-Induced Dissociation of Glucose			
Dehydrogenase from <i>Bacillus megaterium</i> .		Tablet Matrix	
II. Kinetics and Mechanism	907	Efficacy of Sustained-Release Radioprotective	
Subunits of CF ₀	907	Drugs in vivo	1323
Isolation and Characterization of a Supra-		Tagetes patula	1323
molecular Complex of Subunit III of the ATP-		Acetyl-CoA: 4-Hydroxybutinylbithiophene	
Synthase from Chloroplasts	1239	O-Acetyltransferase Isoenzymes from Tagetes	
N-Succinimidyl Piperate	1/	patula Seedlings	885
Synthesis of Piperoyl Coenzyme A Thioester	1070	Taurine Uptake	005
o-Succinylbenzoic Acid	1070	Uptake and Utilization of Sulfonic Acids in the	
4-(2'-Carboxyphenyl)-4-oxobutyryl Coenzyme		Cyanobacterial Strains Anabaena variabilis and	
A Ester, an Intermediate in Vitamin K ₂ (Mena-		Plectonema 73110	891
quinone) Biosynthesis	1207	Terpenes	0,, 1
o-Succinylbenzoic Acid Coenzyme A Ester	1207	On the Essential Oils from <i>Chrysanthemum bal-</i>	
Synthesis, Analysis and Characterization of the		samita L	502
Coenzyme A Esters of o-Succinylbenzoic Acid.		Terpenoids	502
an Intermediate in Vitamin K ₂ (Menaquinone)		Terpenoids from a Black Sea Bryozoan Cono-	
Biosynthesis	542	peum seuratum	1019
Sudden Deafness		[14C]Tetrabromo-1,4-benzoquinone	
Demonstration of Statistically Significant Corre-		Herbicide and Quinone Binding to Chromato-	
lations between 8 and 12 kHz Atmosferics and		phores and Reaction Centers from Rhodobacter	
Sudden Deafness	999	sphaeroides	690
Sulfate Starvation		Tetrahymena	
Derepression of Arylsulfatase Activity by Sul-		Transmission of Hormonal Imprinting in Tetra-	
fate Starvation in Chlorella fusca	530	hymena Cultures by Intercellular Communica-	
Sulfonate Metabolism		tion	932
Uptake and Utilization of Sulfonic Acids in the		Tetraponera	
Cyanobacterial Strains Anabaena variabilis and		Tetraponerine-8, an Alkaloidal Contact Poison	
Plectonema 73 110	891	in a Neoguinean Pseudomyrmecine Ant, Tetra-	
Sulfonate Uptake		<i>ponera</i> sp	627
Uptake and Utilization of Sulfonic Acids in the		Thermal Energy Dissipation	
Cyanobacterial Strains Anabaena variabilis and		Energy-Dependent Chlorophyll Fluorescence	
Plectonema 73 110	891	Quenching in Chloroplasts Correlated with	
Sulphate Reduction		Quantum Yield of Photosynthesis	581
PAPS-Reductase from Escherichia coli: Cha-		Thiazolyliden-ketonitriles	
racterization of the Enzyme as Probe for Thio-		Inhibition and Photoaffinity Labeling of Photo-	
redoxins	93	system II by Thiazolyliden-ketonitriles	704
Susceptible/Resistant Species		Thioester	
Binding and Peroxidative Action of Oxyfluorfen		Synthesis of Piperoyl Coenzyme A Thioester	1070
in Sensitive and Tolerant Algal Species	819	Thiophene Derivatives	
Suspension Cultured Plant Cells		Acetyl-CoA: 4-Hydroxybutinylbithiophene	
The Phosphatidylinositol Species of Suspension		O-Acetyltransferase Isoenzymes from Tagetes	
Cultured Plant Cells (N)	1003	patula Seedlings	885

Thioredoxins		Tryptamine	
PAPS-Reductase from Escherichia coli: Cha-		Comparison of Various Strategies Designed to	
racterization of the Enzyme as Probe for Thio-		Optimize Indole Alkaloid Accumulation of a	
redoxins	93	Cell Suspension Culture of Catharanthus roseus.	1101
Thiyl Radicals Intermolecular H-Abstraction of Thiyl Radicals		Tryptophan Decarboxylase Geraniol-10-hydroxylase Activity and Its Rela-	
from Thiols and the Intramolecular Complexing		tion to Monoterpene Indole Alkaloid Accumula-	
of the Thiyl Radical with the Thiol Group in 1,4-		tion in Cell Suspension Cultures of Catharanthus	
Dithiothreitol. A Pulse Radiolysis Study	134	roseus	1075
Thylakoid Membrane		Tulipa cv. Apeldoorn	
Site-Directed Antisera to the D-2 Polypeptide	401	The Separation of Two Different Enzymes	
Subunit of Photosystem II	491	Catalyzing the Formation of Hydroxycinnamic Acid Glucosides and Esters	1222
The Three-Dimensional Structure of the Herbi-		Turgor Pressure	1223
cide Binding Niche on the Reaction Center Poly-		Automatic Turgor Pressure Recording in Plant	
peptides of Photosystem II	742	Cells (N)	1143
Tobacco Mutant		Turnover	
Effect of Hydroxylamine Derivatives on Photo-		Site of Lupanine and Sparteine Biosynthesis in	0.60
respiration in the Tobacco Aurea Mutant Nicotiana tabacum Su/su	965	Intact Plants and in vitro Organ Cultures	868
α-Tocopherol	905	Tyrosine Phenol-Lyase Stereochemistry and Mechanism of Reactions	
Lipids in the Gular Gland Secretions of the		Catalyzed by Tyrosine Phenol-Lyase from	
American Alligator (Alligator mississippiensis)		Escherichia intermedia	307
(N)	1345		
Tortricidae			
Comparative Sex Pheromone Biosynthesis in the		Ultrastructure	
Obliquebanded Leafroller, <i>Choristoneura</i> rosaceana, and the Redbanded Leafroller, <i>Argy-</i>		Structural and Physiological Comparisons of Triazine-Susceptible, -Resistant, and "Mixed"	
rotaenia velutinana, Moths	961	Biotypes of <i>Poa</i>	798
Transfer RNA		Uridine Phosphorylase	770
Evolution of E. coli tRNA ^{lle} : Evidence of Deri-		Acyclonucleoside Analogues Consisting of 5-	
vation from Other tRNAs	129	and 5.6-Substituted Uracils and Different Acylic	
Transgenic Plants Chimagia Canasa Thair Cantaibutian for		Chains: Inhibitory Properties vs Purified E. coli	200
Chimeric Genes – Their Contribution for Molecular Biology and Plant Breeding	1011	Uridine Phosphorylase	288
Triazine	1011	Urocanase Mechanism Proposal for the Mechanism of Action of	
The Role of Chirality in the Activity of Photo-		Urocanase. Inference from the Inhibition by	
system II Herbicides	663	2-Methylurocanate	349
Triazine Resistance		UV-Light	
Photosystem II Heterogeneity in Triazine-Re-		Spontaneous Release of Malondialdehyde from	
sistant and Susceptible Biotypes of <i>Chenopodium album</i>	794	Ultraviolet Light Exposed Liposomal Mem-	585
Structural and Physiological Comparisons of	7,24	branes	202
Triazine-Susceptible, -Resistant, and "Mixed"			
Biotypes of <i>Poa</i>	798		
Trichothecene		Valepotriates Effects of Plant Bioregulators on the Production	
Trichothecene Mycotoxins from Fusarium cul- morum Cultures	1043	of Iridoid Derived Terpenoids in Valeriana	
Triethyl Lead (Et ₃ Pb ⁺)-Toxicity	104.5	wallichii and Fedia cornucopiae Cell Suspension	
Organolead Toxicity in Plants: Triethyl Lead		Cultures	33
(Et ₃ Pb ⁺) Acts as a Powerful Transmembrane		Valeriana wallichii	
Cl ⁻ /OH ⁻ Exchanger Dissipating H ⁺ -Gradients		Effects of Plant Bioregulators on the Production	
at Nano-Molar Levels	1116	of Iridoid Derived Terpenoids in Valeriana wallichii and Fedia cornucopiae Cell Suspension	
3.5,2'-Trihydroxy-7-methoxy-8-acetoxy Flavone Novel Flavonoids from the Fern <i>Notholaena sul</i> -		Cultures	33
phurea	1063	Vanadium	
Trisetum flavescens	1005	Occurrence of Amavadin in Mushrooms of the	
A Vitamin D ₃ Steroid Hormone in the Cal-		Genus Amanita	873
cinogenic Grass Trisetum flavescens	430	Vitamin D ₃ Glucosides	
Triterpenols		A Vitamin D ₃ Steroid Hormone in the Calcinogenic Grass <i>Trisetum flavescens</i>	430
Epicuticular Leaf Wax of <i>Euphorbia dendroides</i> L., Euphorbiaceae	191	Virus Envelope	450
Triterpenones	171	MHC-Antigens: Constituents of the Envelopes	
Epicuticular Leaf Wax of Euphorbia dendroides		of Human and Simian Immunodeficiency	
L., Euphorbiaceae	191	Viruses	1328

Vitamin K Synthesis, Analysis and Characterization of the Coenzyme A Esters of o-Succinylbenzoic Acid. an Intermediate in Vitamin K ₂ (Menaquinone) Biosynthesis	542 1207	X-Ray Structure Analysis X-Ray Structure Analysis and Spectroscopic Data of the Antibiotic 8-(Dichloroacetyl)-5-hy- droxy-2,7-dimethyl-1,4-naphthoquinone from the Fungus Mollisia sp. Xylose Fermentation Fermentation of D-Xylose to Ethanol by Bacillus macerans	401
Warburg Effect			
Effect of Hydroxylamine Derivatives on Photorespiration in the Tobacco Aurea Mutant Nicotiana tabacum Su/su	965 1153	Yeast Asymmetric Reduction of 4(5)-Oxocarboxylic Acids by Baker's Yeast	1159 1291 1367
tuberosum	1153	Zea mays	
Wings "Epicuticular Waxes" from Exine Material of Pine Pollen	858	Organolead Toxicity in Plants: Triethyl Lead (Et ₃ Pb ⁺) Acts as a Powerful Transmembrane Cl ⁻ /OH ⁻ Exchanger Dissipating H ⁺ -Gradients	
X-Ray Diffraction		at Nano-Molar Levels	1116
Twisted Fibrils are a Structural Principle in the Assembly of Interstitial Collagens, Chordae Tendineae Included	1303	Zygaenidae Active Cyanogenesis – in Zygaenids and Other Lepidoptera	1319

Authors Index

Abdulrazik, M. 1323 Abraham, W.-R. 79, 414, 559 Agarwal, S. 585 Aguilar, M. 1265 Akhlaq, M. S. 134 Albores, M. 1265 Ali, M. F. 955 Allen, J. I. 834 Almon, H. 902 Amer, S. M. 21 Andrea, T. A. 733 Andreassi, L. 1009 Andreev, St. 1019 Anke, T. 420 Arntzen, Ch. J. 762 Arriaga-Giner, F. J. 1063 Arrondo, J. L. R. 1339 Asakawa, Y. 1030 Ashihara, H. 297, 1215 Assche, C. J. van 965 Attygalle, A. B. 141, 631, 955

Bacher, A. 425 Bader, K. P. 965 Bärenwald, G. 486 Bäumker, P. A. 1223 Baldwin, N. C. P. 1043 Balgobin, N. 442 Bandlow, W. 1291 Bankova, V. 147 Bartosz, G. 1343 Barz, W. 251, 897, 1171 Baumann, F. 1269 Baumer, H. 999 Bayer, E. 455, 873 Becker, H. 33, 1035 Beier, H. 1307 Bellido, T. 237 Ben-Yehuda, A. Benda, I. 1097 Benita, S. 1323 Bennema, P. 916 Bergström, G. 169 Berlin, J. 1075, 1101, 1307 Berthold, W. 1116 Berzborn, R. J. 491, 1231 Bestmann, H. J. 165, 435, Biedlingmaier, S. 245, 530, 891 Billen, J. P. J. 141, 955 Bloch, D. P. 129 Blos, I. 1179 Bochert, G. 613 Bock, G. 1097

Bodden, J. 191 Bode, W. 845 Böck, A. 373 Böger, P. 803, 819, 902, 1280 Boekema, E. J. 1239 Bohl, M. 221, 935 Boisfleury Chevance, A. de 1126 Boland, R. 237, 948 Borg-Karlsson, A. K. 169 Borstlap, A. C. 1185 Bosse, H. 1343 Bovalini, L. 1009 Bowyer, J. R. 829 Braekman, J. C. 627 Bringer-Meyer, St. 401 Brosche, Th. 631 Brunerie, P. 1097 Brus, R. 637 Budevska, B. 1019 Büchner, K.-H. 1143 Bühmann, U. 704 Burger, B. V. 1355 Bycroft, B. W. 1043 Bylina, E. J. 769

Camilleri, P. 829 Casal, H. L. 1339 Cassini, R. 657 Chancel, A. 837 Chatterjee, S. N. 585 Chattopadhyaya, J. 442 Chen, Te-Ming 631 Chersi, A. 1313 Christ, G. 1343 Christmann, D. 1303 Cohen, B. 733 Coll, M. 1027 Courtiade, B. 837, 965 Csaba, G. 932

Dall'Acqua, F. 1009 Daloze, D. 627 Declercq, J. P. 627 Dedner, N. 739 Deising, H. 653 Dekker, J. 775 Deluca, M. E. 77 Demeter, S. 1121 Denzel, K. 87 Depka, B. 491, 704 Dewick, P. M. 1043 DiCosmo, F. 1101 Döhla, B. 435 Dörnemann, D. 209 Dostatni, R. 693 Dow, C. S. 1165

Draber, W. 713 Drabikowska, A. K. 288 Draminski, M. 288 Driessens, F. C. M. 916 Duke, St. O. 813 Dupont, L. 849 Dyulgerov, Al. 147, 1019 Dziedzic, St. Z. 510

Eckstein, H. 455 Eikmann, B. 360 Eikmeier, H. 408 Eisele, K. 162 Elstner, E. F. 879 Engelhardt, G. 465 Engelmann, W. 1335 Erler, J. 631

Favilla, R. 217 Fecker, L. F. 1307 Fiebig, C. 739 Filipiak, B. 999 Finke, W. 1231 Fischer, B. 394 Fischer, R. 258, 845 Floss, H. G. 307, 449 Focke, M. 1361 Förster, W. 33 Folkhard, W. 1303 Follmann, H. 1364 Forkmann, G. 1146, 1193 Forster, H. 4 Foster, St. P. 961 Francke, W. 169, 627 Frank, H. 300 Franz, G. 519 Frimmer, U. 360 Frister, H. 603 Fromherz, P. 986 Fromme, P. 1239 Fründ, R. 205

Gabrys, J. 637 Gäde, G. 225 Gärtner, H. 1343 Garcia, A. 1265 Gardner, G. 663, 733 Gasquez, J. 798 Gassmann, G. 948 Geercken, W. 1303 Geiger, H. 863 Geiger, R. 491 Gelderblom, H. 1328 Gerlinger, E. 349 Gessner, M. 1159 Ghosh, A. 585

Gieren, A. 1 Gilbert, J. 1043 Goerl, R. 394 Golle, B. 279 Goñi, F. M. 1339 Gonzalez-Vila, F. J. 205 Gräber, P. 231, 1239 Graf, J. A. 808 Grisebach, H. 343, 1200 Gröger, D. 381 Gros, E. G. 77 Gross, G. G. 87, 1070 Gross, H. J. 1006 Gruler, H. 1126 Gülz, P.-G. 157, 191, 858 Günther, C. 1159

Hadjieva, P. 1019 Hager, A. 1116 Hampp, R. 553, 1092 Hamdorf, K. 973 Hansmann, P. 118 Hasselbach, W. 641 Hatzios, K. K. 824 Hayek, E. 1151 Hayashi, N. 1001 Heath, R. R. 165 Hecke, P. van 627 Hecker, M. 941 Hefetz, A. 1027 Hegedus, J. K. J. 733 Heim, S. 1003 Heimann, K. 283 Heintze, A. 570 Helfrich, Ch. 1335 Hellstern, H. 455 Hemmers, H. 191 Hergan, K. 1135 Herrmann, E. C. 704 Hideg, E. 1121 Hillen-Maske, E. 420 Hinderer, W. 251 Hirschberg, J. 758, 779 Höglund, G. 973 Höhl, B. 897 Hölzel, R. 1367 Hofer, E. 173 Holdenrieder, O. 1 Horikosi, T. 1215 Houghten, R. A. 1313 Hracky, R. 103 Hradetzky, D. Hu, Xinhua 1347 Huber, R. 845 Huber, S. 837 Hubert, A. 849 Hübner, Th. 1 Hummel, W. 1082

1404 Authors Index

Hund, H.-K. 387 Huppatz, J. L. 670, 674, 679, 684

Iinuma, M. 1063Imre, S. 507Ingham, J. L. 510, 1050, 1055Ishii, K. 1275

Jaenicke, L. 948 Jaques, U. 1171 Jin, Shuping 1347 Johanningmeyer, U. 755 Jordis, U. 1151 Jürgens, U. J. 1165 Jütte, M. 1223 Juse, A. 973 Justich, E. 1135

Kah, A. 209 Kaiser, W. M. 1109 Kaissling, K. E. 435, 631 Karl, R. 442 Kaufmann, G. 935 Kawaguchi, H. 1001 Kayed, A. 698 Keller, B. 387 Keller, P. J. 425 Kelley, S. R. 834 Kenyon, W. H. 813 Kerscher, F. 519 Keßmann, H. 1171 Kieslich, K. 414 Kleczkowski, L. A. 1113 Kleier, D. A. 733 Klöck, G. 567 Klüter, U. 1269 Kluge, A. 1370 Kneifel, H. 873 Knobloch, K. 502 Knöpfel, Th. 986 Knörzer, E. 1303 Kobek, K. 1275 Koch, E. 873 Koch, M. H. J. 1303 Koch, W.-G. 159 Kochs, G. 343 Köhler, U. 1339 Koenig, F. 727 König, W. A. 1165 Köster, J. 251 Kötter, C. 704 Kolar, G. F. 41 Kolkmann, R. 542, 1207 Komae, H. 1001 Kong, Fanlei 1347 Konecki, J. 637 Kovács, P. 932 Kowalski, T. 1 Krause, G. H. 581 Kreimer, G. 283 Kresze, G. 446 Kreuzberg, K. 567

Kroll, C. 991

Kroll, W. 991 Kühn, S. 47 Kula, M.-R. 1082, 1187 Kulamowicz, I. 970 Kull, U. 808 Kumagai, H. 307 Kunert, H. 1006 Kunesch, G. 657 Kunze, R. 1328 Kuśmierek, J. T. 589

Laasch, H. 581 Lacey, J. C. 129 Lambert, R. 819 Lamprecht, I. 1367 Landler, U. M. 1135 Langlotz, P. 1364 Laskay, G. 783 Lassota, P. 589 Latzko, E. 283 Laufer, K. 360 Lawyer, A. L. 834 Lehmann, U. 1030 Lehoczki, E. 783 Leistner, E. 542, 1207 Lemmen, P. 442 Lentz, H. 1370 Leonhardt, K. 420 Li, S. W. 921 Li, Kedong 435 Lichtenthaler, H. K. 1275, 1361 Lingens, F. 387 Lissowska, L. 288 Lloyd, H. A. 1027 Lotina-Hennsen, B. 1265 Lotter, H. 507 Lubosch, J. 31 Lüdemann, H.-D. 205 Lueger, A. 173 Lüttge, U. 279 Lusini, P. 1009

Madubungi, I. 855 Mahdi, F. M. 17 Maier, I. 948 Maier, W. 381 Mangold, H. K. 1035 Mantsch, H. H. 1339 Marekov, N. 147 Markham, K. R. 849, 1039 Marner, F.-J. 191 Marsh, D. C. 1043 Martelli, P. 1009 Martin, F. 205 Maurer, E. 907 Mayer, W.-E. 553 Mazzini, A. 217 McNeil, P. H. 829 Mees, K. 999 Melkonian, M. 283 Melø, Th. B. 123, 152

Mach, F. 941

Machoy, Z. 215

Metschulat, G. 885 Meyer, H. E. 739, 1231 Michel, H. 751 Misumi, E. 1055 Mitsui, K. 297 Mizuno, M. 1063 Mizutani, J. 1055 Moche, W. 1151 Möhwald, H. 109 Mollenschott, Ch. 1101 Moreland, D. E. 718 Morgan, E. D. 141, 955 Morganti, M. C. 1313 Mosandl, A. 1159 Moschidis, M. C. 1023 Moser, I. 1116 Mosler, E. 1303 Müller, D. G. 948 Müller, F. 425 Müller, G. 1291 Mues, R. 863, 1039 Mukherjee, K. D. 1285 Muratti, E. 1313 Murray, K. E. 178

Nakajima, N. 353 Naumann, C. M. 1319 Nemetschek, Th. 1303 Nemetschek-Gansler, H. 1303 Neubauer, Ch. 1246, 1255 Neubert, D. 613 Nickl, J. 465 Niedermeyer, I. 530 Niester, Ch. 858 Nishi, A. 1001 Nishida, Y. 1358 Nordtug, T. 152 Novitzky, W. P. 718

Oberhack, M. 300
Oettmeier, W. 491, 690, 693, 698
Ofenloch-Hähnle, B. 162
Ogoński, T. 215
Ohad, N. 758
Ollett, D. G. 141
Opferkuch, H.-J. 7
Osswald, W. F. 879
Oster, U. 1179
Otsuka, H. 449
Otto, J. 1231
Outlaw, W. H. 1092

Pal, G. P. 1089
Palcic, M. M. 307
Palm, D. 394
Pasteels, J. M. 627
Pataki, Sz. 783
Pauli, G. 1328
Pechan, R. 1006
Pecker, I. 758
Perides, G. 47
Peschke, J. 109
Pfleiderer, G. 907

Phillips, J. N. 670, 674, 679, 684
Pilz, I. 1089
Platz, H. 631
Platzek, T. 613
Pölös, E. 783
Polz, L. 333
Ponsold, K. 935
Popov, S. 147, 1019
Pouvreau, A. 657
Pretorius, P. J. 1355
Preuße, S. 690
Priesner, E. 1349, 1352
Prox, A. 465

Radunz, A. 965 Rahat, A. 758 Rahm, U. 613 Rambeck, W. A. 430 Randall, D. D. 1113 Rao, N. U. M. 921 Rehm, H. J. 408 Reich, S. 902 Reinertshofer, Th. 1140 Reinier, N. 837, 965 Rembold, H. 4 Renger, G. 698 Rensen, J. J. S. van 794 Rétey, J. 349 Reupke, H. 1328 Richter, A. 941 Rieth, B. 1165 Roelofs, W. L. 961 Roitman, J. N. 73 Rubin, B. 779 Rüdiger, W. 845, 1179 Rueffer, M. 319 Rühle, W. 263, 270 Rüther, E. 1140 Ruge, W. A. 553 Ruhenstroth-Bauer, G. 999, 1140 Ruhnau, B. 1146

Sabuni, M. 446 Sadowski, H. 1280 Saenger, W. 1089 Sahm, H. 401 Salasoo, I. 499 Sanborn, J. R. 663 Sandhagen, R. 999 Sandmann, G. 803, 819 Santel, H.-J. 693 Sauer, H. 263, 270 Sauter, F. 1151 Sawada, S. 307 Sayed, M. A. 21 Scheele, C. 1063 Scheer, H. 258, 845, 855 Schell, J. 1011 Schendzielorz, M. 41 Schepers, H.-J. 401 Scherbarth, A. 47 Scherer, S. 1280 Schiel, O. 1075

Authors Index 1405

Schildknecht, H. 31
Schilling, G. 87
Schillo, D. 1030
Schindler Ch 103
Schingel D 204
Schimzer, R. 394
Schleicher E 207
Schleicher, E. 307
Schlimme, E. 603
Schindler, Ch. 103 Schindler, Ch. 103 Schinzel, R. 394 Schirmer, T. 845 Schleicher, E. 307 Schlimme, E. 603 Schmid, G. H. 525, 965
Schmid, J. 465
Schmidt, A. 245, 530, 891
Schmidt, J. 465 Schmidt, A. 245, 530, 891 Schmidt, G. 231, 845
Schmidt, St. W. 87 Schmidtberg, G. 1070
Schmidtolerg, G. 10/0
Schmidtchen, F. P. 476
Schneider, B. 486 Schneider, F. 991
Schneider, F. 991
Schneider, S. 1269 Schönfeld, M. 779 Schreiber, U. 1246, 1255 Schreibmayer, W. 173
Scholleid, M. 7/9
Schreiber, U. 1246, 1255
Schreibmayer, W. 173
Schreier, P. 1097
Schriek, U. 93 Schröder, W. 169
Schrönnel Maior C 1100
Schröppel-Meier, G. 1109
Schroeter, A. 941
Schuch, R. 1285 Schübel, H. 333
Schütte H. D. 494
Schütte, HR. 486 Schulte, E. 1035
Schulten II D 179
Schulter, HR. 178
Schultz, G. 570 Schulze-Siebert, D. 570
Schumonn P 391
Schumann, B. 381
Schwarz, E. 1089 Schwarz, HJ. 631 Schwenker, G. 7 Schwenn, J. D. 93 Sedlmaier, H. 425
Schwarker G 7
Schwenker, G. /
Schweini, J. D. 93
Solder A M 77
Seldes, A. M. 77 Semler, U. 1070
Sen, A. 1153
Songer H 970
Senger, H. 879
Shafagati, A. 1345

Shani, J. 637, 1323

Shen, SJ. 307
Shiraiwa, Y. 525 Shugar, D. 288, 589 Sibold, L. 373 Siebzehnrübl, S. 258, 84
Shugar D 288 589
Sibold I 373
Siehzehnrühl S 258 84
Simmleit, N. 178
Simon, Z. 935
Simoni S 1000
Simon, 3. 1009
Sinnual V 150 627
Simoni, S. 1009 Sinning, I. 751 Sinnwell, V. 159, 627 Skopp, G. 7 Soda, K. 353
Skopp, G. /
Soua, N. 333
Soll, J. 103
Sonnenbichler, J. 1, 4, 855
Sonntag, C. von 134
Sosnovsky, G. 921
Spätjens, L. EE. M. 79
Circomuth D 200
Süssmuth, R. 300
Sutteria, R. 883
Susshutin, N. 300 Sütfeld, R. 885 Starrach, N. 553 Staves, M. P. 129 Steglich, W. 420 Stein, W. 863 Steinbiß, HH. 1011
Staves, M. P. 129
Stegicn, W. 420
Stein, W. 803
Steinbill, HH. 1011
Stephan, L. 641 Stephan, R. 1343
Stepnan, R. 1343
Sterk, H. 1135 Stich, K. 1193 Stöckigt, J. 333
Stich, K. 1193
Stöckigt, J. 333
Stolarski, R. 589
Stoll, M. 1039
Strasser, R. J. 808
Strobl, H. 502
Struve, I. 279
Stumpf, B. 79, 559
Szigeti, Z. 783
Szkilnik, R. 637
Strasser, R. J. 808 Strobl, H. 502 Struve, I. 279 Stumpf, B. 79, 559 Szigeti, Z. 783 Szkilnik, R. 637 Szöcs, G. 165
Tahara, S. 510, 1050,

Tahara, S. 510, 1050, 1055
Taketo, A. 599
Taketo, Y. 599
Tanaka, H. 353

Tanaka, T. 1063 Tanizawa, K. 353 Tengö, J. 169 Terpstra, R. A. 916 Thauer, R. K. 360 Thierfelder, St. 461 Thomson, R. H. 507 Toraya, T. 353 Tóth, M. 165 Traub, P. 47 Trebst, A. 491, 704, 742 Tritthart, H. A. 173 Tumlinson, J. H. 165

Ugi, I. 442 Ukaji, T. 297 Upham, B. L. 824 Urbasch, I. 64

Van Assche, C. J. 837 Vaughn, K. C. 798 Vedaldi, D. 1009 Verbeeck, R. M. H. 916 Vermaas, W. F. J. 762 Vilain, Ch. 849 Virsik, W. 1143 Vlad, A. 935 Vogt, Th. 157 Vostrowsky, O. 165, 631

Wagner, H. 507
Wagner, K. G. 1003
Walter, Z. 970
Wanner, G. 245
Washausen, P. 414
Weber, G. 1
Weckesser, J. 1165
Wehner, G. 1143
Weidinger, G. 394
Weigel, H. 1030
Weiser, H. 430
Weldon, P. J. 1345
Welle, R. 1200
Werner, D. 537
Westfall, B. 775

Wheeler, J. W. 1345 Wich, G. 373 Wieczorek, P. 215 Wiermann, R. 858, 1223 Wietowska, H. 704 Wild, A. 263, 270 Wildner, G. F. 739 Williams, J. G. K. 762 Wink, M. 69, 197, 868 Winkel, Th. 1328 Witte, L. 69, 197, 1075 Witthohn, K. 1319 Wölfel, L. 941 Wöltgens, J. H. M. 916 Wolf, K. V. 977 Wolf, P. 173 Wolff, A. B. 537 Wollenweber, E. 73, 849, 1030, 1063 Wu, Cai-Hong 435, 631

Xu, Jianwei 1347

Yaacoby, T. 779 Yamada, H. 307 Yamazaki, Y. 1082, 1187 Yerushalmi, A. 1323 Youvan, D. C. 769 Yu, Shengdi 1347 Yu, Yongqing 1347

Zagatti, P. 657
Zayed, S. M. A. D. 17
Zeier, R. 394
Zeiher, C. A. 1113
Zenk, M. H. 319
Zgit-Wroblewska, A. 288
Zhu, Pingchou 1347
Ziegler, E. 502
Ziegler, H. 1092
Ziegler, H. 1092
Ziegler, I. 461
Zimmermann, U. 1143
Zinsmeister, H. D. 863, 1039
Zucker, H. 430