Das Leben Fraunhofer's.

R e d e

an die

Studirenden der kgl. Ludwig-Maximilians-Universität

zu München,

gehalten

am 2. December 1865

von

Dr. Ph. Jolly,

v. J. Rektor.

München 1865.

Druck von C. R. Schurich.
Hochachtung! Versammlung!

Nach einem alten Brauche soll der Rector nach dem Schlusse der Immatrikulation die neuen akademischen Bürger in feierlicher Versammlung an die Pflichten mahnen, welche die neuernobenen Rechte mit sich bringen. Es wird nicht gegen diesen Brauch anstoßen, wenn ich statt der Lehren, die ich überdies in vollendetem Weise gar nicht geben könnte, als es durch meine Vorgänger im Amt längst geschehen ist, ein Beispiel wähle und das Leben eines Mannes vorführe, der in seinem Entwickelungsgange Schwierigkeiten wie Wenige vor sich fand, der aber durch feste Willen und nie ermutende Energie sie alle besiegte, der wenn auch nicht in München geboren so doch in München seine Entwicklung gewann, und der mit seinem Namen den Namen der Stadt überall hintrag, wo Kulturleben bestehet. Ich will versuchen ein Lebensbild von Fraunhofer zu geben.

Das Lebensbild eines Mannes, der Alles entbehren mußte, was wissenschaftlicher Entwicklung förderlich ist, der bei dem mangelhaften Unterricht der Volkschule — der Schule vor 70 Jahren — in der Jugend nur notdürftig des Lebens und Schreibens kundig wurde, der früh verwaist, in die Fremde geschickt und, um das Lehrgeld zu eriparren, auf die lange Zeit von sechs Jahren einen Glaser in die Lehre gegeben wurde, d. h. der, wie damals die Lehrzeit war, auf sechs Jahre sich verbindlich machen mußte ohne Lohn die Dienste von Magd und Knecht zu leisten, der schwach und schmächtig und von
zarter Gesundheit, nur durch eine um so bewunderungswürdigere Willensstärke und durch den angestrengtesten Fleiß alle Ungunst des Geschickes überwinden, den Geist in sich wach erhalten und das ihm anvertraute Pfund zur Geltung bringen konnte — das Lebensbild eines solchen Mannes wird nicht allein die berechtigte Mahnung für den stetswährenden Jüngling sein in seinem Fache und nach seinen Gaben in Ausbauer und Willensstärke nie zu ermatten, es kann zugleich unter menschlichem Interesse in Anspruch nehmen.


Der stets und so gerne hilfreiche König Maximilian Joseph befahl für die Heilung des Knaben Sorge zu tragen, ließ ihn nach der Wiederherstellung zu sich kommen, beschenkte ihn mit 18 Ducaten und mahnte ihn sich wieder an ihn zu wenden, wenn es einmal mangeln sollte. Gerne füge ich gleich hier hinzu, daß wenn auch viele dieser: leisten Theil der Mahnung eifrig benützt hätten, dies nicht die Art von Fraunhofer war. Das Geschenk von 18 Ducaten verbunden mit Fraunhofer's Energie mußten ausreichen noch manche schwere Stunde heilreich zu bekämpfen.
Sonntagen und Feiertagen ins Freie, ein stiller Play unter einem
Baume erteilt ihm das Studierzimmer und dürftige Lehrbücher der
Geometrie bilden seine Lehrer. Aber doch bringt er es bei seiner
Ausbauer zu Stande bald die Lehrbücher der Optik von Klügel,
Kästner und von Priestley, die ihm Ubschneider in der früheren
Unterredung nur nebenbei genannt hatte, verstehen zu können. Vier
Jahre hat er auf diesen Selbstunterricht verwendet, und es waren
ohne Zweifel wenn nicht die schwersten seines Lebens, so doch die,
welche die größte Energie des Charakters verlangten.

Um vom Zwange der Lehrzeit, die immer hemmender seiner
Ausbildung entgegentrat, sich zu befreien, kaufte er mit dem Rest seines
Geldes das letzte halbe Jahr seiner Lehrzeit seinem Lehrherrn ab. Die
Prüfungszeit war hiermit noch nicht zu Ende, denn mittellos, wie
er war, muß er, bevor er Studien und Versuche fortfahren kann,
darauf Bedacht nehmen einen Lebensunterhalt sich zu erwerben. Da
eignet er sich ohne alle Anleitung die Kunst des Gravirens in Metall
an, eine Kunst, die ihm später bei der Publikation seiner wissen-
schaftlichen Arbeiten in der Herstellung der Kupferstichen so günstig
tat, die aber diesmal auf das Geringere auf die Her-
stellung von Visitenkarten mit erhobenem Druck, wie man noch welche
im Gebrauch sieht, gerichtet war. Er erwarb sich einiges Geld,
aber bald vermindern die Kriegszeiten den Absatz, und noch einmal
muß er aus Roth zu dem ihm verleiheten Gewerbe eines Spiegel-
machers zurückkehren. Erst im Jahre 1807, in seinem zwanzigsten
Lebensjahre trat eine bessere Wendung seines Geschickes ein.

 Wenige Jahre später war der unternehmende Ubschneider mit
dem genialen Mechaniker und Ingenieur Georg Reichenbach zur
Gründung eines mechanischen Institutes in Verbindung getreten. Ge-
odätische und astronominische Instrumente, wie solche zu den Landes-
Vermessungen und topographischen Aufnahmen erforderlich waren, konn-
ten damals nur aus dem Auslande, und die besseren nur aus England
bezogen werden. Der Zweck des Institutes war solche Instrumente und zwar in größerer Vollendung im Inlande herzustellen. Reichenbach hatte schon seine Kreistheismaschine erfunden und zahlreiche Verbesserungen in der Construktion der Instrumente zu Stande gebracht. Nur Eines fehlte, die Anrüstung mit Gläsern, die, wenn sie nicht zu Stande kam, das ganze Unternehmen musste fallen machen. Man hatte den geschickten Optiker Riggl herangezogen, man hatte zur Erzeugung des Glases einen Flint-Glas-Ofen errichtet und erhielt auch manches Stück brauchbaren Glases, auch gelang es hier und da ein gutes Fernrohr herzustellen, aber Alles hing von Zufall ab, und es war ein schlechter Trost, daß Ubschneider von ausgedehnten Reisen, die er unternommen hatte um die Leistungen in anderen Ländern kennen zu lernen, die Niederung mitbrachte, daß es anderwärts nicht besser sei. Der Fortschritt hing eben ab von der Lösung neuer technischer und wissenschaftlicher Probleme, wie sie nur ein schöpferischer Kopf zu Stande bringen konnte. Da erinnerte sich Ubschneider des talentvollen Fraunhofer, und noch im Jahre 1807 wurde Fraunhofer in das Institut aufgenommen. Für den Anfang war ihm nur eine untergeordnete Stelle und eine bescheidene Existenz geboten, aber zweierlei war damit verbunden, was für seine Entwicklung wesentlich förderlich sein mußte, er fand in Riggl einen erfahrenen praktischen Optiker und in Professor Schiegg, dem Freund Ubschneiders, einen einflüchtigen Ratgeber für die Fortsetzung seiner Studien. Mehr bedurfte es für Fraunhofer nicht. Gestärkt durch eine harte Jugend, und doch noch in aller jugendlichen Frische, gewohnt die Erleichterung, die der Schulunterricht gewähren kann, durch die Kraft des Denkens zu erheben, und geübt in einer Festigkeit des Willens die, unterstützt von dem Talente des Experimentators und dem Genie des Erfinders, vor keiner Schwierigkeit zurückzweicht, reicht die geringe Hilfe, die ihm geboten war, hin die praktische Optik zu einer nicht geahnten Vollendung zu bringen,
Instrumente herzustellen durch die in der beobachtenden Astronomie und in der Physiologie neue Bahnen der Forschung erst betreten werden konnten, und zugleich die physische Optik durch eine Reihe der schönsten Entdeckungen zu bereichern und zu erweitern. Eine kurze Darstellung der ruhmvollen Leistungen Fraunhofer's ist zugleich eine Schilderung der zweiten und wichtigeren Hälfte seines Lebens, der Wanderjahre nach sehr mühevollen Lehrjahren, und ist identisch mit einem Theile der Entwicklungsgeschichte der Optik.

Auf die Gefahr hin in den Ton des Docenten zu verfallen muß ich das Verständnisses halber mit einigen Strichen den Entwickelungsgang der optischen Forschungen vor Fraunhofer kennzeichnen.

Licht und Farbe, die alltäglichen und doch die reizendsten Erscheinungen, wurden erst sehr spät Gegenstand aufmerksamster Betrachtung. Die Kulturepoche der Griechen ging vorüber ohne daß man Zeit gewann an Fragen dieser Art heranzutreten. Die Warnung Plato's „in die Geheimnisse des Lichtes eindringen zu wollen, sei so viel als die Vorrechte der Gottheit antasten“ ist wie der ältere Ausspruch von Sokrates „den Göttern selbst könne es nicht anders als unangenehm sein, wenn die Menschen dasjenige zu entdecken suchen, was ihnen jene so sorgfältig zu verbergen sich bemühen“, wohl nur dahin zu deuten, daß es an Wegen zur Erkenntnis und an Zeit zur Forschung fehlte. Die begabtesten der Nationen versäumten, noch bevor sie die Principien der Naturforschung auffand, in Genussucht und büßte die Kräfte ein, die zu so ernster Arbeit des Geistes erforderlich sind. Es schließt dies nicht aus, daß man nicht im Alterthume einige Eigenschaften des Lichtes kannte. Die Zurückversetzung des Lichtes von spiegelnden Flächen und die Ablenkung des Lichtes beim Übergang von einem Medium in ein anderes drängen sich der Beobachtung unabweisbar auf. Warum aber der Thautropfen die Blattstelle, auf der er aufliegt, vergrößert zeigt, wurde wohl schon

Farbenstrahlen wurde es erst klar, daß die chromatische Abweichung
von den größeren Nachtheil bewirken müsse. In der That müssen
die stärker brechbaren violetten Strahlen näher hinter dem Glase als
die minder brechbaren rothen Strahlen vereinigt werden, und für
die unzählbar vielen zwischen violet und roth gelegenen Farbenstrahlen
gibt es eben so viele verschiedene Brennpunkte. An welchem Punkt
dieser verschiedenen Vereinigungsörter man das Bild auffangen mag,
immer wird es von Farbenäumen benachbarter Strahlen umgeben
erscheinen, und also jeder scharfen Begrenzung entbehren.

Es war hiermit nur der Fehler ausgedeckt, mit welchem die
ersten und einfachsten Fernrohren behaftet sind, und durch den sie für
stärkere Vergrößerungen geradezu unbrauchbar werden. Die Beant-
wortung der Frage ob die chromatische Abweichung, sich seiteigen
lasse, hängt von dem Gesetz der Farbenzerstreuung ab. Ist es, wie
Newton annahm, der Fall daß alle brechenden Medien eine, der
Brechung proportionale, Wirkung auf gleichartige Strahlen aus-
üben, so gibt eine Combination von Prismen, so verbunden daß sie
nach entgegengesetzten Richtungen das Licht brechen, nur in dem einen
Falle keine Farbenzerstreuung, wenn der einfallende und der austräte Strahl parallel sind, weil nur in diesem Falle die Farben-
zerstreuung des einen Prismas die des andern aushebt. Es ist also
dann keine Ableitung des Lichtes ohne Farbenzerstreuung möglich,
und da die Wirkung der Objectivgläser durch die Ableitung des
Lichtes bedingt ist, so gibt es keine Objectivgläser ohne Farben-
zerstreuung. Dies war auch der Schluss von Newton. Aber die
Voraussetzung war irrig. Die Farbenzerstreuung ist so verschieden,
wie die Medien verschieden sind, die sie bewirken, und hat keine einfache Beziehung zur Brechung. Zwei durchsichtige Medien können,
bei geringer Verschiedenheit der Brechbarkeit der mittleren Strahlen,
einen großen Unterschied der Brechbarkeit der violetten und der rothen
Strahlen besitzen. Newton hatte indes nicht verfaunt zum Versuche
überzugehen, er hatte Glas- und Wasserprismen kombiniert, hatte aber unglücklicher Weise, um das Brechungsvermögen des Wassers zu erhöhen, demselben eine Bleizuckerlösung zugefügt, durch welche, wie wir jetzt wissen, auch die Farbenzerstreuung wesentlich geändert wird, und dem Entdecker der verschiedenen Brechbarkeit der Farbenstrahlen entging eine der wichtigsten Folgerungen, die sich an die Verschiedenheit in der Farbenzerstreuung anschließt, die Entdeckung der Zusammensetzung achromatischer Gläser.

Wer um ein Beispiel verlegen ist zum Beweise, daß in der Wissenschaft keine Autorität, sondern nur die Erkenntnis der Wahrheit der Leitstern sein darf, kann kein schlagenderes ausstellen als dieses aus der Geschichte der Optik. Man kann behaupten, und hat sicher keine Einrede zu befürchten, daß es in den exakten Wissenschaften keine bessere begründete Autorität als die von Newton gibt, und doch war es eben diese Autorität auf die hin durch 80 Jahre eine Verbesserung der dioptrischen Fernrohren für ein vergebliches Bemühen gehalten wurde.

Euler ausgehend von der Annahme, daß das Auge achromatisch sei, daß also die durchsichtigen Medien, aus denen es zusammengesetzt ist, eine Verschiedenheit der Farbenzerstreuung besitzen könnten, die sich gegenseitig aufheben ohne die Brechung zu beseitigen, unternahm es a priori festzustellen, welch eine Verschiedenheit in der Farbenzerstreuung hierzu nötig sei. Wie hiermit nur einmal der Zweifel an der Richtigkeit der Newton'schen Lehre rege gemacht war, schuf es nicht an aufmerksamen Forschern, die experimentell die Frage erneuert einer Prüfung unterzogen, und an andern, die auf eine Ausbildung und Erweiterung des Calculus bedacht waren. Der Schwede Klingensförtena findet in Folge hiervon die Irrung in dem Versuche Newton's auf, und kaum gelangt die Nachricht hiervon nach England, so macht Dollond mit Studien ähnlicher Art beschäftigt, bald zwei Glassorten ausfindig, Crown- und Flintglas, die in prismaer
Form, verbunden mit entgegengesetzt brechenden Winkeln, eine Brechung des Lichtes ohne merkbare Farbenzerstreuung bewirken. Das achromatische Prisma war hiermit erfunden. Der Übergang von diesem zum achromatischen Objektiv musste für Dollond naheliegend sein. Denn in Wahrheit sind sphärisch geschliffene Gläser nichts anderes als unendlich kleine, in concentrischen Ringen in der Art geordnete, Prismen, daß alle Strahlen nach einem Punkte gebrochen werden, und in konvexen und concaven Gläsern sind die brechenden Winkel dieser elementaren Prismen in entgegengesetzter Richtung gestellt. Also war mit einer Combination eines convexen Crownglases und eines concaven Flintglases bei richtig gewählten Krümmungen die Aufgabe des achronatischen Objectives gelöst.

oft sehr sinnreicher Methoden zur Messung des Farbenzerrreibungs-
Vermögens der Gläser, um hiernach die passende Auswahl treffen zu
können, man berechnete und construirte drei und mehrfache Objective,
und versuchte selbst Linsen anzuwenden, die mit Flüssigkeiten gefüllt
waren. Aber Alles zeigte sich als ungenügend, man konnte keine
achromatische Fernröhren für stärkere Vergrößerungen zu Stanbe
bringen, und selbst bei denen mit geringerer Vergrößerung war der
Zufall, mit dem man die passenden Gläser von getroffen hatte,
von all zu entscheidendem Einfluß.

Dies war die Stelle an der Fraunhofer die Aufgabe vorfand.

Der Weg, den er betrat, war entsprechend dem Entwickelungs-
gange des ungewöhnlichen Mannes. Beinahe von den Kinderyahren
an darauf angewiesen, wo Schwierigkeiten entgegentreten, die Mittel
zu deren Beseitigung durch Nachdenken aufzusuchen, ist er jetzt wo
es sich um die Lösung wissenschaftlicher und technischer Probleme
handelt, nie verlegen in der Wahl der passendsten Wege. Bedarf
er geometrischer und mathematischer Kenntnisse, so eignet er sich mit
sicherem Takte Das an, was zur Lösung der Aufgabe erforderlich ist,
bedarf er physikalischer und chemischer Kenntnisse, so versteht er mit
seiner unvergleichlich vorurteilsfreien Beobachtungsgabe rätsel immer
das Richtigste auszusuchen, und sind Probleme der Technik zu lösen,
so zeigt er sich überreich an Erfindungen, die eine fortschreitende
Technik zwar oft benutzt aber nur in wenigen Fällen übertroffen hat.

Die Erfahrung ist stets seines Lehrmeisters, und sein
geistiger Blick macht das keine Erfahrung nutzlos an ihm vorüber
geh. Die neue Stellung benutzt er vor Allem seine Erfahrung zu
erweitern. Er findet das achromatische Objective, ausgeführt nach
dem Borschisten der Theorie, in ihren Leistungen weit hinter der
Erwartung zurückbleiben. Das hatten schon Clairaut und b’Alem-
bert bemerkt, als sie Gläser nach der, von ihnen aufgestellten, Theorie
ausführen ließen. Fraunhofer’s erster Zweifel ist dahin gerichtet,
ob das übliche Verfahren zur Herstellung der sphärischen Gestalt der Gläser auch genügend genaue Resultate liefere. Um diesen Zweifel zu beseitigen erfindet er sofort Schleifs- und Polirmaschinen, deren Anwendung ihn nicht allein gegen jede Unachtsamkeit der Arbeiter sicher stellt, sondern die zugleich mit größter Präzision die verlangte sphärische Gestalt erreichbar machen. Gleich hier schon zeigt sich neben dem Talent des Erfinders das des Experimentators. Es handelt sich um die Prüfung der erreichten Genauigkeit und er verfällt auf ein Prüfungsmittel, das besser nicht erdacht werden kann, er wendet den feinsten Maßstab, die Wellenlänge der Farbenstrahlen, zur Messung an, er benützt die Newton'schen Farbenringe zur Prüfung der Gestalt der Gläser.

Doch auch die, mit so viel größerer Exaktheit ausgeführten, Objective geben keine günstigeren Resultate.

Sein nächster Zweifel richtet sich gegen die Richtigkeit der Theorie. Um einfacher und für die Rechnungen bequemere Ausdrücke zu erzielen hatte man die Dicken der Gläser und die höheren Potenzen der Dichten, die in den vollständigen Gleichungen auftreten, vernachlässigt, aus dem gleichen Grunde hatte man in der Berechnung der Objective nur solche Strahlen berücksichtigt, welche von einem in der Achse der Gläser gelegenen Punkte ausgehen. Fraunhofer schlägt einen neuen Weg der Berechnung ein, bei welchem keiner dieser Umstände unberücksichtigt bleibt. Er kommt in Folge hiervon zu ganz andern Krümmungshalbmessern der Gläser als jene sind, die man bis dahin für die passendsten gehalten hatte, und namentlich zu ganz andern als die, welche in den seiner Zeit so berühmten Dollond'schen Objectiven angewendet sind. Da aber selbst diese Gläser richtigerer Gestalt noch immer nicht genügende Resultate liefern, so blieb für Fraunhofer kein Zweifel übrig, daß das Farbenzerstreungs-Vermögen der Gläser, welches in der
Theorie als bekannt vorausgesetzt wurde, einer neuen Prüfung unterzogen werden müsse.

Für Fraunhofer ist dies eine Aufforderung, in das Gebiet der Experimentalforschung einzutreten.

Wer nur einmal das glänzende prismatische Farbenbild der Sonne gesehen hat, oder wer sich nur der glänzenden Farben des Regenbogens erinnert, kennt die Continuität, mit der die Farben in einander übergehen, und kennt die Unmöglichkeit die Grenzen der einzelnen Farben zu bestimmen. Und doch hängt die Möglichkeit das Farbenzerstreunungs-Berechnen verschiedener Substanzen zu vergleichen davon ab, die Brechung eines jeden Farbenstrahles bestimmen zu können. Die Aufgabe war seit Newton ungelöst, und war in Exactheit für unlösbar gehalten. Für Fraunhofer scheinen aber Schwierigkeiten nur zu existieren um besiegt zu werden, um Mittel und Waffen ist er nie verlegen.

ihört und mit einem Fernrohr aufgesangen wird. Er erhielt dadurch das prismahe Bild in sechs Partien getheilt, und kann hiernach die Wirkung verschiedener Glassorten schon scharf genug unter einander vergleichen, um seine Rechnungen zu vervollständigen und bessere achromatische Objective herzustellen.


Die Aufgaben, die Fraunhorfer verfolgte, sind Aufgaben der praktischen Optik. Die neue Entdeckung benützt er begreiflich wesentlich in dieser Richtung. Die dunklen Linien sind ebenso viele Marken für bestimmte Stellen des Spectrums, und durch die große Zahl, in der sie auftreten, geben sie das kaum zu übertreffende Mittel ab die Brechbarkeit eines jeden Farbenstrahles einer jeden Substanz zu bestimmen.

Man würde eine sehr unrichtige Vorstellung von der Befähigung Fraunhöfers zu Experimental-Untersuchungen sich bilden, wenn man glauben wollte, daß der eine Erfolg ihm genügte. Seinem Blick entgeht keine auch der s. g. Nebenerscheinungen, und namentlich dann nie, wenn sie zur Erreichung des Zieles, das er verfolgt, irgend wie vielmehr sein kann. Sind die dunkeln Linien nur abhängig von der Natur des Sonnenlichtes und nicht abhängig von der Natur des brechenden Mediums, so hat doch die geringste Ungleichheit in der Beschaffenheit des Mediums eine Verzerrung und Verundeutlichung der Erscheinung zum Erfolg. Hiermit wurde aber die Fraunhofer'sche Entdeckung das feinste Mittel zur Prüfung der Homogeneität der Gläser. Der Praktiker Fraunhofer überzeugt sich hierdurch sogleich von der Unvollkommenheit aller englischen und französischen Gläser, überzeugt sich also auch warum mit diesen Gläsern nur so geringe Erfolge erreicht werden, und warum sie zur Herstellung größerer Objective geradezu unbrauchbar werden.
Eine neue Aufgabe rückt hierdurch an ihn heran, eine chemisch-technische Aufgabe, die Herstellung optischer Gläser von vollkommen gleichförmiger Beschaffenheit. Seine Versuche mit flüssigen Körpern hatten ihn belehrt, wie störend kleine Temperaturdifferenzen auf die Schärfe der dunklen Linien, also auch auf die Regelmäßigkeit der Farbenzerstreuung einwirken, wie durch die Mischung klarerer und wärmerer Flüssigkeitsteile eine Unhomogenität der Flüssigkeit eintritt. Es gab ihm dies einen Wink ab, was er wesentlich bei der Glasbereitung zu beachten hatte. Zwei Jahre ist er unablösig mit Versuchen beschäftigt, aber es gelingt ihm schließlich mit Sicherheit selbst das schwer zu erzeugende Flintglas in solcher Gleichförmigkeit herzustellen, daß bei Schmelzen von 4 Zentnern, Stücke von der Oberfläche oder vom Boden des Tiegels genommen, sich von gleicher Beschaffenheit des Glases zeigen.

Alle Vorbereitungen waren getroffen, die einen günstigen Erfolg in der praktischen Optik sichern konnten, und Fräunhofer säumte nicht zur Ausführung der Achromate zu schreiten, mit denen er weit Altes hinter sich zurückließ, was damals in dieser Richtung geleistet war, und was man unmittelbar zuvor für kaum erreichbar hielt. Selbst mit diesen Erfolgen begnügt sich nicht sein raubtloser Geist. Raum hat er das Werkzeug erfunden durch welches das Auge befähigt wird tiefer in den Weltraum einzudringen, so macht er sich vertraut mit den Aufgaben der beobachtenden Astronomie, und wie er bemerkt, daß es nicht allein darauf ankommt neue Räume am Himmel sichtbar zu machen, sondern die kleinsten Räume noch zu messen, so ist sein Erfindungsgeist erneuert in Thätigkeit, er rüstet das astronomische Fernrohr mit einer Reihe bewunderungswürdiger Meßvorrichtungen aus, und sichert Bequemlichkeit und Genauigkeit der Beobachtung noch dadurch, daß er den großen Refractoren, Refractoren von 1000 Pfund Gewicht, Bewegungsmechanismen befügt, durch die das Fernrohr ohne Schwanken mit einer Stetigkeit dem
Sterne folgt, das selbst bei den stärksten Vergrößerungen, wie Straube von dem dorpaten Refractor berichtet, man nach unbeweglichem Himmel zu sehen glaubt.

Man wird sich eine Vorstellung von der Leistungsfähigkeit der neuen Instrumente erst dann machen, wenn man daran erinnert, um welch kleine Größen in der Messung es sich handelt. Seit Kopernikus war eine der Aufgaben, die der beobachtenden Astronomie zufiel, die Entdeckung der scheinbaren Bewegung der Fixsterne, welche als eine Folge der Bewegung der Erde in ihrer Bahn auftritt, d. i. die Feststellung der jährlichen Parallaxe der Fixsterne. Je entlegener die Fixsterne sind, um so kleiner muß der Betrag ihrer scheinbaren Bewegung sein, um so seiner und exakter müssen also auch die Meßwerkzeuge sein, die zu ihrer Entdeckung führen sollen. Die kopernikanische Wahrheit war freilich auch sonst längst außer allem Zweifel. Die Aberration des Fixsternlichts spricht sie in so deutlicher Sprache aus, daß selbst die härtesten Widersager verstummen mussten. War die Entdeckung der Parallaxe nicht mehr zur Bestätigung des kopernikanischen Satzes erforderlich, so war sie doch zu einem Prüfungsmedium für die Leistungsfähigkeit der Mesinstrumente geworden, und war in ihrer endlichen Feststellung das einzige Mittel zur Bestimmung der Entfernung der Fixsterne. Erst mit der Vollendung, welche Fraunhofer den astronomischen Instrumenten gab, war es möglich zur Lösung der Aufgabe vorzudringen, und erst jetzt konnte durch den deutschen Astronomen Bessel in Königsberg, den Reformat der beobachtenden Astronomie, an einem der Fixsterne der Betrag der Parallaxe festgestellt werden. Es ergab sich, daß die scheinbare Länge der Bahn, welche die jährliche Parallaxe von Bessels Stern bildet, noch kaum den 75. Theil beträgt von der Dicke eines Kopfshaares, in der Entfernung des deutlichen Sehens betrachtet. Kopernikus war im Recht, aber die Grenzen des Ermeßlichen mußten durch Verfeinerung der Instrumente auf Ent-
Fernungen hinausgeschoben werden, von welchen das Licht 10 Jahre braucht um zur Erde zu gelangen, und Fraunhofer's Instrumente waren es, die die Messung ermöglichten. Struve konnte in seinem Berichte über den vorpeter Refractor mit der Sicherheit, die der Erfolg gewähret, sagen, daß das Werk von Fraunhofer das berühmtesthe der Spiegelteleskope an Schärfe der Messung und Mannigfaltigkeit der Anwendung weit hinter sich zurückläßt, und unbedingt als das vollkommenste Kunstwerk der Optik, welches bis dahin existire, zu bezeichnen sei. Denn er hatte mit denselben bei seinen berühmtesten Untersuchungen der Doppelterne das Ergebniß der Beobachtungen von Herschel wesentlich erweitern können.


Euler hielt den Achromatismus des Auges für eine ausgefechhte Sache. Wie aber Fraunhofer bemerkt, daß je nach der Farbe mit der die Mikrometerfaden durch verschiedene Theile des Spectrum beleuchtet werden, eine verschiedene Stellung der Deulart-linse erforderlich ist, um sie mit gleicher Deutlichkeit zu sehen, so steht es für ihn fest, daß das Auge eben nicht achronatisch ist. Er schreitet auch sogleich zur Messung der Abweichungen der verschiedenen
Farbenstrahlen, und ist darauf bedacht bei der Berechnung der Objective auf die Farbenzerrung des Auges Rücksicht zu nehmen.


Seine Untersuchungen führen ihn noch einmal zum Lampenlicht zurück, zur Untersuchung der hellen Linie, die ihm beim Ausgang der Forschungen zur Orientirungslinie gedient hat. Unter Anwendung stärkerer Vergroßerungen erkennt er, daß es zwei helle nahe bei einander stehende Linien sind, die mit den dunkeln Linien des Sonnenспектurms, die er mit den Buchstaben D bezeichnet hatte, exakt zusammentreffen. Auch das elektrische Licht zieht er in den Kreis der
Beobachtung, und bestimmt die Lage der hell glänzenden Linien, die in dem Falle auftreten, in welchem das Uberschlagen der elektrischen Funken von Messingkugeln längst einer Glasröhre hin erfolgt. Es ist ein bei Publicationen wissenschaftlicher Arbeiten nicht selten gebrauchtes Verfahren sich nicht allein auf das zu beschränken, was man in Einzeluntersuchungen gewonnen hat, sondern auch noch gewisser Maßen Besichtig zu legen auf das, was sich daran anschließen könnte oder was man Willens ist einmal später in den Kreis der Beobachtung zu ziehen. Das Verfahren von Fraunhofer ist das entgegengesetzte. Am Schlusse seiner berühmten Abhandlung *) sagt er ausdrücklich: "da der hier mit physisch optischen Versuchen eingesschlagene Weg zu interessanten Versuchen führen zu können scheint, so wäre sehr zu wünschen, daß ihm geübtere Naturforscher Aufmerksamkeit schenken." Und sein Wunsch sollte in Erfüllung gehen, wenn es auch 40 Jahre dauerte bis die geübteren Naturforscher kamen, bis Bunsen und Kirchhoff den Schritt machten, der die Ursache der dunklen Linien des Sonnenlichtes ausdeckte, und der zur Entdeckung neuer Metalle der Erde und zur Entdeckung der chemischen Bestandtheile des entlegenen Sonnentörpers und seiner Atmosphäre führte.


Das lehre Buch der Optik Newton's ist der Beugung des Lichtes gewidmet. Er, der Feind jeder Hypothese, der auch an keiner Stelle seiner Optik sich über die Natur des Lichtes anders als frageweise auspricht, ist um so mehr darauf bedacht die Erscheinung als solche zu prüfen, und das physische Gesetz, nach welchem sie auftritt festzustellen. Der Einfluß der Breite der Spalteöffnung auf die Ausdehnung und Zahl der Farbenfäden, die eigen tümlich krummen Linien, in welchen die Herter der Farbenfaßen mit successiver Entfernung des Papierschirmes von der Spalteöffnung verlaufen, und der Einfluß der Farbe des Lichtes, mit welcher man experimentiert, werden in acht newtonischer Weise erörtert. Er selbst bezeichnet indes seine Untersuchungen als nicht abgeschlossen, findet aber, nachdem er seine bewunderungswürdigen Forschungen über Gravitation begonnen hat, keine Zeit mehr auf Fragen der Optik zurückzukommen.

Eine neue Eigenschaft des Lichtes war aufgesunden, also war Veranlassung gegeben von Neuem die Fragen über die Natur des Lichtes einer Prüfung zu unterwerfen. Newton der am Schlufse seiner Optik die Fragen auwirft „Sind nicht die in der Brechbarkeit verschiedenen Strahlen auch in der Beugbarkeit verschieden, werden sie nicht durch die verschiedenen Beugungen von einander gesondert, und bringen dadurch die bunten Säume hervor? Wirfen nicht die Körper schon in einiger Entfernung auf das Licht und beugen dadurch die Lichtstrahlen? ... und geschieht nicht die Zurückversorgung, Brechung und Beugung durch ein und dieselbe Kraft, die sich unter verschiedenen Umständen verschieden äußert?“ hat entschieden nicht daran gedacht hiermit eine Erklärung der Erscheinung zu geben,
und hat noch weniger daran denken können, daß eine spätere Zeit das, was er als Fragen aufführte, zum Dogma umstempeln werde. Die Stimmen von Huygens und von Euler wurden überhört, und es dauerte noch lange, bis all die Vorbereitungen getroffen waren, die zu einer exakten Entscheidung nötig erschienen. Erst Dr. Thomas Young, desselbe der mit Erfolg die Entzifferung der ägyptischen Hieroglyphen anbahnte, entzifferte auch die Hieroglyphen der Farbensäume im gebeugten Lichte.


Die Beugungen des Lichtes waren erst mit sehr unvollkommenen Mitteln untersucht. Ein Blatt Papier, auf dem man die Erscheinung auffing, und eine Luppe mit der man sie beobachtete, waren der ganze Messapparat. Jetzt nachdem die theoretischen Forschungen
Young's zeigten, daß die Beugung des Lichtes nicht allein zu einem Prüfungsmittel der Hypothesen über die Natur des Lichtes werden könnte, sondern daß, wenn die Undulationstheorie sich bewährten sollte, man durch exactere Messung der Beugung auch die Wellenlänge eines jeden Farbenstrahles finden müsse, war der Experimentalforschung eine neue für die physische Optik sehr wichtige Aufgabe zugefallen.


Mit dem nächsten Schritt geht er schon zu neuen Entdeckungen über.

Die Modifikation, die das Licht beim Durchgang durch eine einfache Spaltöffnung erfährt, wird sich in einer zweiten und dritten

Erst nachdem all die Erfahrungsgefühle festgestellt sind, geht er zur Prüfung der Undulationstheorie über. Das Interferenzprinzip führt zu Folgerungen, die tatsächlich in den Erscheinungen eine exakte Bestätigung finden, und da die dunklen Linien der mittleren Spektra Anhaltpunkte geben für jede Stelle des Spektroms die Begunterschiede der zusammen treffenden Strahlen zu messen, so gelingt es ihm mit fraunhofer'scher Genauigkeit die Wellenlänge jedes Farbenstrahles festzustellen. Jeht erst ergibt sich die winzig kleine Größe der Oscillationen der Aethertheilchen, die die Lichterscheinungen bedingen, denn die ganze Wellenlänge des rothen Lichtes ist so klein, daß 150 dieser Wellen auf der Dicke eines Haares Raum haben, und das violette Licht hat eine Wellenlänge, die kaum die Hälfte der Aetherwellen des rothen Lichtes überschreitet.


Fraunhofer war noch durch eine Tugend ausgezeichnet, die man wohl nur bei wahren innern Gehalt antrifft, er war im höchsten Grad selbstlos und bescheiden. Es ist der Ausspruch eines unserer


Der Magistrat der königl. Residenzstadt ehrte das Andenken Fraunhofer's indem er sich beilte Hrn. v. Ubschneider zu ersuchen freie Disposition wegen des Begräbnisplatzes und eines Monumentes zu treffen, und die Mitglieder der Akademie und die zahlreichen Verehrer des Verstorbenen, Männer aller Klassen und Stände, geleiteten den Mann zur Ruhestätte, dem ein kurzes Leben ausreichend war, seinem Vaterlande unvergänglichen Ruhm einzutragen und die Forschung und Erkenntnis in bewunderungswürdiger Weise zu fördern.
Im Rückblick auf die Lebensbahn dieses ungewöhnlichen Mannes wird es gewiß nicht an solchen fehlen, die es als einen glücklichen Zufall rühmen, daß Fraunhofer nach einer lebensgefährlichen Katastrophe mit Uhschneider bekannt wurde, und die es als ein weiteres Glück bezeichnen, daß Fraunhofer Gelegenheit erhielt, in das optische Institut von Uhschneider einzutreten. Unzweifelhaft würde ohne diese Zufälle der Weg Fraunhofer's ein anderer geworden sein, aber ebenso unzweifelhaft würde eine Kraft, die mit solcher Energie zur Entwicklung strebt, durch einen anderen Zufall ebenfalls zur Entwicklung gekommen sein. Die glücklichen Zufälle treten an jeden heran, aber nicht jeder ist darauf vorbereitet, sie zu ergreifen und zu nützen. Wer nicht versäumt in seinem Fach und nach seiner Umgebung sich wach und vorbereitet zu halten, für den werden die glücklichen Zufälle des Lebens nie ausbleiben. Nur der Träge wird vergebens auf das Glück warten, es geht an ihm vorüber, ohne daß er es erkennt oder nützen könnte.