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Introduction

The light-harvesting complexes of cyanobacteria and red algae, are supra-
molecular aggregates, so-called phycobilisomes (PBS), situated at the
outer surface of the thylakoid membranes (1,2,3). They are composed of

a central core of 2-3 cylinders to which usually six rods are connec-
ted. The core is mainly composed of allophycocyanin (APC) trimers, whi-
le the building block$ol the rods are hexameric units of phycocyanin

(PC), phycoerythrocyanin (PEC) or phycoerythrin (PE) (1).

Due to the complex structure of phycobilisomes and the presence of
several hundred chromophores that interact with each other in a compli-
cated way it is difficult to determine experimentally the rate of each
individual transfer step.One way to obtain a more detailed understand-
ing of the excitation energy transfer between neighbouring chromopho-
res would be to study the energy transfer in smaller biliprotein aggre-
gates. Of special interest are C-phycocyanin (C-PC) aggregates, since

the structures of C-PC trimers of Mastigocladus (M.) laminosus (5,6)

and C-PC hexamers of Agmenellum quadruplicatum (4) have recently been

determined at high (2.1-2.5 A)resoultion by X-ray crystallography. From
the crystallographic and spectroscopic (7,8) data it should in princip-
le be possible to calculate the energy transfer rates in these systems

assuming that the Fdrster merchanism (9) for energy transfer is in

Photosynthetic Light-Harvesting Systems
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operation. Efforts in this direction have already been made by Sauer

et al (10). The aim of this work was to study the energy transfer kine-
tics of C-PC and APC monomers and trimers of M. laminosus on the pico-
second and femtosecond scale and to study the relaxation of the light-
induced anisotropy. One interesting aspect would be to compare the ener-
gy transfer in C-PC and APC monomers and trimers. For structural and
spectral reasons one might expect that the transfer rate between the

o -84 and B -84 chromophores should be similar in C-PC and APC mono-

mers.

Experimental

The C-PC and APC trimers of M. laminosus were prepared according to the
method given in ref 11 and 12, respectively. Monomers were obtained by
adding NaSCN to 1.2 M. No further check of the aggregation state for

the monomers was made. The absorption maximum was at 615 and 611 nm

for the C-PC trimer and the monomer, respectively. For APC trimers it
was 652 nm and for monomers 615 nm. The picosecond measurements were
made in a rotating cell of lmm optical pathlength and the absorbance
for both the trimers and the monomers were in the range 0.8-02 (in

lmm cells).

In order to follow the kinetics of energy transfer we employed the pico-
second absorption recovery method with continuously tunable excitation
and probing ligth. The laser system used to generate the picosecond pul-
ses as well as the measuring technique have previously been described

in detail (13). In short, the picosecond pulses were generated in a mo-
de-locked and cavity-dumped dye laser, which was syncronously pumped

by a mode-locked argon ion laser. The cavity dumper was operated in the
80-800 kHz range and typically gave ca. 10 ps long pulses (FWHM) of

1-2 nJ energy in the 580-670 nm wavelength range. The polarization of
the pump and probe beams were controlled by a Soleil-Babinet compensa-
tor and prism polarizers, so that the absorption recovery kinetics could

be measured with any relative orientation of the pump and probe polari-
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zations. Measurements with parallel (Ill) and perpendicular ({l)
polarization were used to monotor the decay of induced anisotropy,

r(t)= (Ill -Il) / (Ill+ Z;l) and measurements at the magic angle (54.7%
were used to obtain the isotropic decay, free of depolarization effects.
In some pump-probe experiments we used ca. 400 fs pulses from a fiber-

grating pulse compressor.

Results and discussion
C-Phycocyanin monomers and trimers
In Fig. 1 we show the absorption recovery kinetics of C-PC monomers at

580 nm with different polarization of the excitation and the probe pul-

ses. The data were analyzed by fitting them to a sum of two or three

C-PC MONOMER 580 nNm
> IlI
z
@
p4
w
=
z
)
R4
4
6]
o I
0 200 400 600 800 1000 1200
TIME /ps
Fig.l

exponentials. The mean values of lifetimes and amplitudes obtained at
different wavelength intervals are shown in table 1. In table 2 the cor-
responding anisotropy relaxation times and amplitudes are shown. From

these data it is clear that besides a long lifetime in the ns range.
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Table 1

Lifetimes ( Tl) and relative amplitudes (R1 ) obtained from isotro-—

pic signals of C-PC monomers at different wavelength, intervals.

R (Z T R (% T (ps) R (2)
nm Tl(Ps) N (%) 5 (ps) 5 (%) , (P 3
580-  57+4 27+2 665+101 62+1 4000 1449
600

635-

640 . 178+64 25+5 893+151 75+5

Table 2

Anisotropy relaxation times ( Trl) and amplitudes (r ) of C-PC monomers

at different wavelength intervals.

nm Tr, (ps) r 1 Tr, (ns) r, r(0)

580-

590 52419 0.13+0.03  2.6+1.5 0.28+0.03 0.41+0.01
635-

640  36+8 0.08+0.04  4.4+0.1 0.29+0.04 0.37+0.02

we observe a lifetime of ca. 57 ps at shorter wavelength (™ 590 nm),
where the B -155 chromophore absorbes strongly (7,10). At longer wave-
length, i.e. 635-540 nm, the fastest lifetime increases to 178 + 64 ps.
The most direct iaterpretation of these data is that the 57 ps life-
time is due to enzrgy transfer between B -155 and R -84 within a C-

PC monomer unit. As can bee seen in table 2 this transfer step is
accompanied by an equally fast relaxation of the anisotropy from 0.41 +
0.01 to 0.28 + 0.)3. This last anistropy is similar to that found in
steady state fluorescence measurements (7).The centrum distance (R)

between R -155 aad B -84 in C-PC of M. laminosus 34.3 & (5) and the
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orientation factor k=0.84., With the radiative lifetime To= 2 ns we

obtain a Fdérster radius (R) of 61 A, using the equation;

1=36r)°
T 2T R
(o)

where T is the measured lifetime of energy transfer and under the as-
sumption that the rate of back transfer is comparatively small. Because
the observed transfer rate (k) between two chromophores is the sum of
the ratios in the forward (kl) and back directions ng and inclusion of
25 % back transfer would just reduce the calculated value of RO with

3.5 %Z. The calculated FOrster radius is in fair agreement with littera-
ture data and (10) thus one might conclude that the Fdrster mechanism
for energy transfer is in operation in the C-PC monomers. A similar ana-
lysis of the long wavelength lifetime of 178 ps indicates that this is
due mainly to the transfer step « -84 > (-84. Assuming similar rates
for the forward (kz) and back (k_2) energy transfer, we calculate (with
R = 50.2 & and k = 1.73) that Ro = 52 A.This value is reasonable and as
expected, due to the smaller overlap between donor emission and accep-

tor absorption, lower than for the B-155 - f -84 transfer.

Table 3

Lifetimes (71 ) and relative amplitude (R, ) obtained from the isotro-

pic signals of C-PC trimers at different wavelengths.

nm Tl(pS) R, (%) T, (ps) R, () T3 (ps) R3 (%)
580-

590 2743 4047 106+27 14+5 1162467 46+5
616-

625 27+6 40+7 173+85 27+8 12284242 33+8
635-

645 48+12  35+9 429+143 2449 1190+287 41417
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Turning now to the C-PC trimers, we observe (see table 3) that the
fastest process has a lifetime of 27 ps at 625 nm and increases to
48 ps at about 640 nm. There is also a long (fluorescence) lifetime of
about 1.2 ns at all wavelengths. In addition, there is an intermediate
lifetime that varies from about 200 to 400 ps when going to longer ex-
citation wavelengths. Similar lifetimes were observed in the anisotro-

py measurements (table 4).

Table 4

Anisotropy relaxation lifetimes ( Tr, ) and amplitudes (r;) of C-PC tri-

mers at different wavelengths.

nm 'frl(PS) ) T,(ps) T, r(0) r(«)

580~
600  24+5 0.18+0.02 108+36 0.1040.02  0.42+0.02  0.14+0.03

616-
635 2148 0.17+0.03 222477 0.06+0.03  0.38+0.02  0.15+0.03

The final anisotropy at longer times of 0.05 is just about half the ani-
sotropy found for the monomers. This of course is a refiexion of the fi-
nal distribution of the excited state is over more chromophores in the

trimers.

The interpretation of the observed lifetimes is of course more complex
in the trimers than in the monomers, since the number of possible inter-
actions is larger. From the crystallographic data, however, the by far
closest pair of chromophores is o -84 and B -84 of adjacent monomers.
With R = 20.8 & and x= -1.34 and Ro= 52 A (see above) one would expect

lifetime of about 1.5 ps (assuming that the backward and forward rates
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are similar). No such fast process was found, however, in our picose-
cond study. We therefore also performed some experiments on C-PC tri-

mers at 618 nm with 400 fs pulses (Fig. 2)., but we were unfortunately

C-PC TRIMER
I

> "
[
@
-4
w
-
Z

1 1 1 1

0 15 30 45

TIME /ps

Fig.2

not able to resolve any lifetime (isotropic or anisotropic) in the in-
terval 0.5-25 ps. The 27 ps component thus seems to be to slow for an

o -84 - B-84 transfer. It has been attributed to transfer from 8 -155

to o -84 and/or B -84 from time-resolved fluorescence stdues (16) and
our data at 580-590 nm would support this interpretation, however, going
toward longer wavelengths, i.e. 616-625 nm, the relative amplitude of
this component should decrease and it should only be about 107 at 640 nm
Where the absorption of £-155 is small (7,10). Since this is contrary
to our data (see table 3) we must conclude that transfer among o -84

and ( -84 chromophores or other processes also contribute to this com-

ponent.
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Allophycocyanin monomers and trimers

Again we will start with the monomer units. In Fig. 3 and absorption re-
covery measured at 610 nm is displayed cleary shows a biphasic decay.
The fast small amplitude component has a lifetime of 144 ps, while the
dominating decay has a lifetime of 1.3 ns. Since APC monomers only have
two chromophores ( 0-80 and B -81) the short lifetime should be due to
energy transfer between these chromophores. The fact that we can obser-
ve this signal means that the absorption spectra are not identical, how-
ever, the small amplitude of the signal indicates that the spectra are
strongly overlapping. This might be expected when the spectral simila-
rity to C-PC monomers is considered. We also note that within the ex-
perimental error the 144 ps component is the same as the corresponding
energy transfer component found in C~-PC monomers. Thus one may can con-
clude that the chromophores are situated on similar positions in the
C-PC and APC monomers. This also what one would expect from the homolo-

gy between the two proteins (12).

APC-MONOMER

- T,=144 ps

INTENSITY

i
400 600 800
TIME /ps

Fig. 3
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APC trimers are the smallest aggregates of APC occuring in the core of
the phycobilisomers. So far there has been no report on subnanosecond
energy transfer processes in APC trimers. In this work we have observed
a fast process with a lifetime of 45 + 10 ps (see Fig. 4). Since the
amplitude of this component is substantial (ca 607) at 642 nm, the trans-
fer has to take place between chromophores with different absorption
spectra. The relative amplitude also increases in going from 670 to 630
nm as expected if this is a normal Fdrster (donor-acceptor) type of
transfer. It is interesting to compare the APC with the C-PC trimer da-
ta about 640 nm, where a 48 + 7 ps process was observed in CPC. This
suggests that a transfer between o =-80 and £ -8l chromophores is
responsible for this component. Since our preparation contained a small
amount (< 107) of chromophore with a red-shifted absorption spectrum
(max "~ 675 nm) it is however not possible to exclude that the process
is partly due to a transfer of excitation energy to this chromophore in
combination with a quenching process. We used 400 fs pulses at 648 nm
in some experiments (Fig. 4) to investigate it there is any fast pro-
cess in the range 0.5-10 ps. However, we could not observe such a pro-
cess in the isotropic or anisotropic decay. One interesting finding was
that the anisotropy at t=0 was only about 0.2 (Fig. 4) in stead of 0.4
as expected. This indicates that there is a fast (< 0.5 ps) unresolved
anisotropy relaxation process. This might be a transfer of excitation
between closely spaced states with differently directed transition di-
pole moments. Such states could for instance be formed in a strongly
coupled dimer, (excitonic states), which has been suggested to give
rize to the 652 nm absorption band in APC-trimeis (15). The anisotro-

py at longer times is similar to the steady state value (r v 0.05)
(14).
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It is clear from this study of APC trimers that the energy transfer and
related processes are more complex than what one would expect considering
the relative simplicity of the system. To understand the physical mean-

ing of these processes further work is urgently needed.
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