The petrosal bone and inner ear of *Micromeryx flourensianus* (Artiodactyla, Moschidae) and inferred potential for ruminant phylogenetics

Loïc Costeur

Naturhistorisches Museum Basel, Augustinergasse 2, 4001 Basel, Switzerland,

E-mail: loic.costeur@bs.ch

Abstract

While petrosal bones have a long research history in artiodactyl phylogenetics, the inner ear embedded in this bone has rarely been investigated. I describe here a set of petrosals and the associated inner ears of the Middle Miocene moschid *Micromeryx flourensianus* from the German locality Steinheim and compare them to the extant musk deer *Moschus moschiferus* (Moschidae), the four-horned antelope *Tetracerus quadricornis* (Bovidae) and the white-tailed deer *Odocoileus virginianus* (Cervidae). Inner ears were reconstructed using high resolution x-ray computed tomography scans. In phylogenetic reconstructions built on morphological and molecular data, Moschidae has variously been shown to be a sister taxon to Bovidae or Cervidae. Its position hasn’t reached a consensus yet. Studying the inner ear morphology adds new morphological characters that will help resolving this question. *Micromeryx flourensianus* is an abundant fossil moschid and I show indeed that its petrosal bone and inner ear share several similarities with that of the extant musk deer such as a ventral basicapsular groove, a well-developed anterior process of the tegmen tympani, or a fossa for the tensor tympani muscle in the musk-deer that may well have evolved from a *Micromeryx*-like condition. Inner ears share a thick basal cochlear whorl, a bulky vestibule, or a short and thick cochlear aqueduct. This shows that inner ears have a high potential for taxonomy and phylogenetics. Including the inner ear of a fossil skull of *Micromeryx flourensianus* also from Steinheim, four inner ears are described here and give insights into the morphological variability of this structure at an intraspecific level as well as into the post-natal ontogenetic changes that occur. This contribution is a first step towards a comprehensive understanding of the evolution of the ruminant inner ear.

Key words: Ruminantia, Moschidae, Cervidae, Bovidae, bony labyrinth, computed tomography, phylogeny, morphology, Middle Miocene.

1. Introduction

The petrosal bone of mammals has long been a source of phylogenetically relevant morphological information. Petrosal characters have brought complementary information that helped resolving phylogenetic issues (Spaulding et al. 2009; O’Leary 2010). Studies on the origin of mammal clades in the fossil record have also benefited from the abundance of this often well preserved bone (e.g., Webb & Taylor 1980; Luo & Gingerich 1999). Its compactness makes it one of the most preserveable bones of the mammal skeleton and allows it to be exquisitely preserved as a fossil. Recent scientific advances have made it possible not only to study the external morphology of the petrosal bone but also to investigate its internal structures which are the organs of balance and hearing, i.e., the bony labyrinth or inner ear. These long-known structures in extant (Hyrtl 1845; Gray 1907, 1908) or extinct mammals (Hürzeler 1936; Russell 1964, Ladèvèze et al. 2008; Theodor 2010; Luo et al. 2011) also yield phylogenetic information but difficulty in accessing this embedded-in-bone information led to its under-usage. Recent studies based on high resolution x-ray computed tomography of petrosal bones indicate how powerful the morphology of the inner ear is to resolve taxonomic, phylogenetic or ecological-palaeoecological questions (Spoor et al. 2002, 2007; Gunz et al. 2012; Alloing-Seguier et al. 2013).

Attempts to use fossil petrosal bones in ruminant or more broadly Artiodactyla research have been carried out successfully (e.g., Webb & Taylor 1980; O’Leary 2010; Orliac 2012) but very few studies focused on the inner ear itself (e.g., Theodor 2010 for *Cainotherium*; Orliac et al. 2012 for the oldest artiodactyl *Diacodexis*).

As far as ruminants are concerned, several main
2. Material and Methods

The fossil material analysed in this study comes from the German Middle Miocene locality Steinheim. Its fauna is very well known and is one of the reference faunas for the Middle Miocene of Europe (ca. 14.5 My, Groschopf & Reiff 1969). Almost all the bones of the skeleton of the common moschid *Micromeryx flourensianus* are known from this locality. Although never published, hundreds of specimens of this species are stored in the collections of the Natural History Museum Basel. A crushed skull NMB Stth.833 and three isolated petrosals confidently attributable to *M. flourensianus* (NMB Stth.828a, NMB Stth.865, and NMB Stth. 866) are studied here. Comparative material of extant ruminants from the family Moschidae and from its two closest living families Cervidae and Bovidae is also studied. A petrosal of *Moschus moschiferus* (NMB 4201), a petrosal of the odocoiline cervid *Odocoileus virginianus* and a petrosal of the boselaphine bovid *Tetracerus quadricornis* (NMB 10472) constitute the comparative sample. Odocoileini and Boselaphini are here chosen on availability of material. Representatives of the Boselaphini are further interesting because the tribe is considered by some authors one of the most basal in bovids (Hernández Fernández & Vrba 2005 but contra Hassanim et al. 2012).

All the specimens for this work were scanned with high resolution x-ray computed tomography at the Biomaterial Science Center of the University of Basel using a phoenix nanotom® (General Electric Wunstorf, Germany) equipped with a 180 kV / 15 W nanofocus x-ray source. Various scanning resolutions were employed based on specimen sizes, densities and scan measurement time: NMB Stth.833 (skull of *M. flourensianus*) was scanned at a 60 µm resolution; NMB Stth.828a at 30 µm (*M. flourensianus*); NMB Stth.865 (*M. flourensianus*), NMB Stth.866 (*M. flourensianus*), and NMB 4201 (*Moschus moschiferus*) at 18.5 µm; NMB 10472 at 25 micrometers (*Tetracerus quadricornis*) and NMB 9872 at 20 micrometers (*Odocoileus virginianus*). Raw data are available upon request. 3D reconstructions of the inner ears were achieved using the segmentation editor of software AVIZO® 7.0. Difference in resolution has no impact on the reconstructions of petrosals or on the segmentation of inner ears. All the extant specimens were isolated petrosals taken from adult skulls stored in the collection of the NMB; the fossil skull is that of an adult and the fossil petrosals are also most probably those of adults except NMB Stth.828a (see discussion). Figure 1 shows the position and orientation of a petrosal bone within the braincase. Petrosals illustrated in Figs 2 to 7 are the results of the 3D reconstructions from the DICOM slices showing surface views of the bones. Since the petrosal bone of *Tetracerus quadricornis* was attached inside the skull and has not been segmented, Fig. 7 also shows surface views of the bone and not a 3D reconstruction of the volu-
Figure 1: a-d. Position and orientation of the left petrosal bone in NMB 10472 (*Tetracerus quadricornis*). a, dorsal view of the skull with position of left petrosal; b, latero-occipital view of the skull with dorsomedial surface of left petrosal bone visible; c, close-up of left petrosal bone as positioned on the skull showing the orientation of the surfaces; d, transparent 3D reconstruction of the petrosal bone with the inner ear inside, the orientation of the petrosal is the same as in c. e, two views of the transparent 3D reconstruction of the right petrosal bone NMB Sth.828a (*Micromeryx fliorensianus*) showing the orientation of the inner ear within the bone.
Zitteliana B 32 (2014) 102

Prior vs. lateral; posterior vs. lateral), height and width of the semicircular canals (sensu Ekdale 2013; not given here but briefly discussed) were measured. Degree of coiling of the cochlea was measured on apical views. Measurements follow Ekdale (2013).

Nomenclature and orientation for petrosals follow the seminal work of O’Leary (2010). Nomenclature and orientation for inner ears follow Orliac et al. (2012) and Schwarz (2012).

2.1 Abbreviations

aa, asc ampulla; asc, anterior semicircular canal; ca, cochlear aqueduct; cc, common crus; co, cochlea; es, endolymphatic sac; fc, fenestra cochleae; fv, fenestra vestibuli; la, lsc ampulla; lsc, lateral semicircular canal; pa, psc ampulla; pl, primary lamina; psc, posterior semicircular canal; sac, saccule; sl, secondary lamina; ut, utricule; va, vestibular aqueduct.
3. Results

3.1 Petrosal bones of *Micromeryx* (Figs 2, 3 and 4) and comparison to *Moschus* (Fig. 5), *Odocoileus* (Fig. 6), *Tetracerus* (Fig. 7).

The three studied petrosal bones of *Micromeryx flourensianus* are remarkably similar (Figs 2, 3 and 4). Preservation state is not identical with a less well-preserved mastoid part on NMB Stth. 865 and NMB Stth.866. The epitympanic wing of both specimens is also slightly less expanded than on NMB Stth.828a because of preservation issues.

Ventrolateral surface (Figs 2a, 3a, 4a, 5a, 6a, 7a). The promontorium on *Micromeryx*’s petrosals has a hemi-ellipsoid shape showing two distinct bulges corresponding to the whorls of the cochlea. The epitympanic wing is large and ends in a pointed apex in *Micromeryx* (Figs 2a, 3a and 4a) and *Tetracerus* (Fig. 7a); it is blunter in *Moschus* (Fig. 5a) and *Odocoileus* (Fig. 6a). All taxa have a more or less expanded posterior flange of the promontorium which is continuous with the epitympanic wing. The three isolated fossil petrosals show a transpromontorial groove on the promontorium which is rather posteriorly placed and has a curved course from a position close to the fenestra cochleae (i.e., round window) towards the apex of the epitympanic wing. By comparison all three extant ruminants have a transpromontorial groove (contra O’Leary 2010 for *Odocoileus* for which it is evidenced here; it is faint but present), which is anteriorly positioned. It also
anchored in the tegmen tympani. This renders the promontorium more elongate whereas it is more bulbous on Micromeryx and Moschus. The fossa for the head of the malleus, usually situated in the vicinity of the fenestra vestibuli when present like in cetaceans (see O’Leary 2010), always seems to be absent as in other artiodactyls (O’Leary 2010). A secondary facial foramen next to the fenestra vestibuli is always recorded although preservation may obliterate its extent on the fossils. It opens on the facial sulcus. A somewhat ovoid stapedial muscle fossa is visible on NMB Sth.828a (Fig. 2a) and NMB Sth.865 (Fig. 3a). It is less large in Moschus and more elongate in Odocoileus and Tetracerus. A blunt ventrolateral tuberosity is found anteriorly to the external acoustic meatus in Micromeryx; its morphology is different in the extant taxa where it can be very flat in Tetracerus to high in Odocoileus or spike-like in Moschus. The tympanic and the petrosal come into contact on the medial border of the pars cochlearis of the petro-

![Figure 4: 3D reconstruction of the right petrosal bone NMB Sth.866 of Micromeryx flourensianus. a, ventrolateral surface; b, dorsolateral surface; c, dorsomediaal surface; d, ventromedial surface. Scale bar: 1 cm.](image)

shows a curved course but is positioned downslope on the promontorium towards the epitympanic wing. The round opening for the fenestra cochleae is much bigger, at least twice as big as the oval-shaped opening for the fenestra vestibuli (i.e., oval window). As a comparison it is slightly more anteriorly positioned on Odocoileus where the fenestra cochleae is also as big as the fenestra vestibuli (Fig. 6a; O’Leary’s specimen having a much bigger fenestra cochleae). The fossa for the tensor tympani muscle is not very extended in Micromeryx, it has a characteristic slightly curved shape around the posterior part of the promontorium, just below the fenestra vestibuli. Its end next to the latter is quadrangular in shape. It is reminiscent of the more extreme curved situation seen in Moschus (Fig. 5a) where it extends longer along the side of the promontorium. It is also slightly deeper in Micromeryx than in Moschus. The morphology is very different in Odocoileus and Tetracerus where the fossa has a more rounded to ovoid shape deeply anchored in the tegmen tympani. This renders the promontorium more elongate whereas it is more bulbous on Micromeryx and Moschus. The fossa for the head of the malleus, usually situated in the vicinity of the fenestra vestibuli when present like in cetaceans (see O’Leary 2010), always seems to be absent as in other artiodactyls (O’Leary 2010). A secondary facial foramen next to the fenestra vestibuli is always recorded although preservation may obliterate its extent on the fossils. It opens on the facial sulcus. A somewhat ovoid stapedial muscle fossa is visible on NMB Sth.828a (Fig. 2a) and NMB Sth.865 (Fig. 3a). It is less large in Moschus and more elongate in Odocoileus and Tetracerus. A blunt ventrolateral tuberosity is found anteriorly to the external acoustic meatus in Micromeryx; its morphology is different in the extant taxa where it can be very flat in Tetracerus to high in Odocoileus or spike-like in Moschus. The tympanic and the petrosal come into contact on the medial border of the pars cochlearis of the petro-
sal, where the posteromedial flange of the promontorium is extended. Two other articulation surfaces are found below the anterior process of the tegmen tympani for the anterior bulla, and above the caudal tympanic process for the posterior bulla. At this place, the surface is elongate and ellipsoid in shape much like in *Moschus*, whereas it is more elongate in *Odocoileus* and bump-like in *Tetracerus*. The articulation surface with the anterior bulla is longer than in *Moschus* (very fine and elongate and as long as the whole promontorium length) but does not reach the breadth seen in *Tetracerus* and particularly in *Odocoileus*.

Dorsolateral surface (Figs 2b, 3b, 4b, 5b, 6b, 7b). The tegmen tympani is rather small in moschids and moderately inflated in *Odocoileus* and especially in *Tetracerus*. It is smooth and lacks vascular groves in *Odocoileus* and *Tetracerus* but shows traces of vascular grooves in *Moschus* (Fig. 5b) and in *Micromeryx* (particularly on NMB Sth.865 and NMB Sth. 866, Figs 3b and 4b). The anterior process of the tegmen tympani is longer and pointed in *Micromeryx* and *Moschus*. It is small in *Tetracerus* and *Odocoileus*; in the latter it is almost absent and very blunt. The hiatus Fallopii is always distinct and sits within a deep groove in *Moschus* because of the extended anterior process of the tegmen tympani.

Dorsomedial surface (Figs 2c, 3c, 4c, 5c, 6c, 7c). No prefacial commissure fossa (sensu O’Leary 2010) is visible. *Odocoileus* has a large prefacial commissure running almost perpendicularly across the surface. *Moschus*, NMB Sth. 865 and NMB Sth.866 (Figs 3c and 4c) show a clear and similar-shaped prefacial commissure. The latter is not really visible

Figure 5: Mirrored 3D reconstruction of the left petrosal bone NMB 4201 of *Moschus moschiferus*. a, ventrolateral surface; b, dorsolateral surface; c, dorsomedial surface; d, ventromedial surface. Scale bar: 1 cm
on the other specimens, although a slight and anteriorly placed bar of bone can be evidenced on NMB Sth.828a. The internal acoustic meatus is very variable in shape, being sometimes quite round (NMB Sth. 828a, Fig. 2c and the other fossil petrosals to a lesser extent) to elongate (NMB 10472, Fig. 7c) or triangular (NMB 9872, Fig. 6c). Its shape in *Micromeryx* is most similar to that in *Moschus*. *Odocoileus* and *Tetracerus* have a basicapsular groove running on the ventromedial edge of the petrosal from the tip of the epitympanic wing down to more or less the level of the internal acoustic meatus i.e., (along the pars cochlearis). This groove is also present in *Moschus* and *Micromeryx*, but is not visible on this view (see below in section ventromedial surface). The basicapsular groove is thus dorsal in *Odocoileus* and *Tetracerus* and ventral in the moschids. The subarcuate fossa is always shallow and wide although its extent and relative depth can slightly change, e.g., NMB Sth.866 (Fig. 4c) has a relatively deeper fossa than

Figure 6: 3D reconstruction of the right petrosal bone NMB 9872 of *Odocoileus virginianus*. a, ventrolateral surface; b, dorsolateral surface; c, dorsomedial surface; d, ventromedial surface. Scale bar: 1 cm.
the two other fossil isolated petrosals. The fossa is even shallower in the three extant species described here. The cochlear aqueduct opens posteroventrally to the internal acoustic meatus, its relative size and position can vary from one specimen to the other. The opening for the vestibular aqueduct has a variable position and size too (see also inner ear section below). It is often a large slit situated below the cochlear aqueduct that can run across the surface of the dorsomedial surface (see *Odocoileus* NMB 9872, Fig. 6c). It ends in a bony process (on all specimens studied here) such as already evidenced by O’Leary (2010) on deers. The mastoid region is always large and wedge-shaped.

Ventromedial surface (Figs 2d, 3d, 4d, 5d, 6d, 7d). The basicapsular groove is visible on this view and is ventrally positioned in all moschids (Figs 2d, 3d, 4d and 5d, facing the promontorium side) while it is dorsally positioned in *Odocoileus* (Fig. 6d) and *Tetracerus* (Fig. 7d). The basicapsular groove is wide and very marked in the three *Micromeryx* specimens while it is more delicate in the extant taxa (although well visible in *Odocoileus*). The groove extends down to the cochlear aqueduct (very clear on *Micromeryx*,

Figure 7: Mirrored 3D reconstruction of the left petrosal bone NMB 10472 of *Tetracerus quadricornis*. a, ventrolateral surface, the mastoid region is missing since it had to be virtually cut to help isolate the petrosal bone and make all its surfaces visible; b, dorsolateral surface; c, dorsomedial surface; d, ventromedial surface. Scale bar: 1 cm.
less visible in *Moschus*). *Odocoileus* has a foramen just above the cochlear aqueduct (see description of ventrolateral surface) where the basicapsular groove seems to end.

3.2 Inner ear of *Micromeryx* (Fig. 8) and comparison to *Moschus, Odocoileus, Tetracerus* (Fig. 9).

The reconstruction of the inner ear morphology of the *Micromeryx* skull (identified based on dentition morphology) allowed undoubted conspecific identification of the three isolated petrosals studied. All are remarkably similar (except NMB Sth.828a to a certain extent see below). NMB Sth.828a is a fully developed petrosal but the inner ear looks slightly different than the others. These differences will be noted here and most probably find an explanation in a juvenile stage (see discussion).

Figures 8 and 9 illustrate 5 views of the inner ears of *Micromeryx flourensianus* and *Moschus, Tetracerus* and *Odocoileus*, respectively. *Micromeryx*’s cochlea completes 2.5 full turns except for NMB Sth.828a which shows slightly more than 2 turns (Table 1). The aspect ratio of the cochlea is high and varies between 0.63 and 0.68 (Table 1). *Moschus* has a little more than two full whorls of the cochlea; *Odocoileus* and *Tetracerus* show 2.5 full turns too. Their aspect ratios are smaller than in *Micromeryx* with 0.56 for *Moschus*, 0.58 for *Tetracerus* and 0.54 for *Odocoileus* (Table 1), classifying the latter in Gray’s (1907, 1908) low aspect ratio “flattened cochlea” category (below 0.55). NMB Sth.828a shows a largely overlapping basal whorl, especially towards the fenestra cochleae, a slightly different situation from NMB Sth.865, NMB Sth.866 or NMB Sth.833, where the basal whorl is slightly more detached from the other whorls and less overlapping (Fig. 8 occipital view). All specimens studied here show a secondary lamina, which is long and extends over more than half the length of the basal cochlear whorl in all taxa (Fig. 8 and Fig. 9, medial views). A primary lamina inside the basal cochlear whorl is also visible on all specimens (Fig. 8 and Fig. 9, dorsal views). For *Micromeryx* and *Moschus* all whorls of the cochlea are in close contact, the very end of the basal whorl being sometimes slightly detached. This is not the case for the basal whorl in *Tetracerus* and *Odocoileus*, which is slightly more separated from the second one. The basal whorl of the cochlea is thick in *Micromeryx* and *Moschus* (Figs 8 and 9, rostral view) whereas it is less dorso-ventrally expanded in *Tetracerus* and *Odocoileus*. As visible on the ventrolateral surface of the petrosal, the fenestra cochleae is small in the specimen of *Odocoileus*. The fenestra vestibuli is oval-shaped and is more ventrally positioned on the vestibule of *Micromeryx* than on that of the extant species (see *Tetracerus* in particular, Fig. 9, lateral view). The cochlear aqueduct arises at the postero-dorsal edge of the fenestra cochleae. It is oriented posteriorly but takes up various morphologies from small and thick in *Micromeryx* and *Moschus* with a circular cross-section to long and fine in *Odocoileus* with a rather flattened ellipsoid cross-section; *Tetracerus* shows a somewhat intermediate condition.

The vestibule, housing the utricule and saccule between the cochlea and the semi-circular canals, is bulkier in *Micromeryx* and *Moschus* (Fig. 8, lateral view) than in *Tetracerus* and *Odocoileus*, where it looks more detached from the cochlea than on moschids (Figs 8 and 9, medial view). The sacculae and utricule are well visible in medial view. The saccule and utricule are wide visible in medial view. The saccule is slightly more inflated on *Micromeryx*, *Odocoileus*, and *Tetracerus* to a lesser extent, than on *Moschus* where both recessi occupy a similar surface. The vestibular aqueduct originates from the vestibule at the base of the common crus, aligned with its midline; it is a variably long structure in *Micromeryx* ending above the dorsalmost extension of the common crus (NMB Sth.833) or below (NMB Sth828a, NMB Sth865 and NMBSt866). The end of the vestibular aqueduct, i.e., the endolymphatic sac, is also variable in size and shape, either being long and narrow (i.e., *Micromeryx* NMB Sth.833) or very short and pouch-like in the other specimens. The vestibular aqueduct is attached to the common crus over most of its course and has a variable curved shape primarily bending to occipital dorsally along its course. The vestibular aqueducts of *Moschus* and *Odocoileus* look much like that of NMB Sth.833; that of *Tetracerus* is detached from the common crus over most of its course and ends in a small but broad pouch.

In *Micromeryx* the asc and lsc are wider than high (sensu Ekdale 2013). The psc is always higher than wide in all specimens. The asc of *Moschus* is higher than wide giving an overall stretched impression

Table 1: Number of turns, degree of coiling and aspect ratio of the cochlea of *Micromeryx flourensianus* (NMB Sth.828a, NMB Sth.833, NMB Sth.865, and NMB Sth.866), *Moschus moschiferus* (NMB 4201), *Tetracerus quadricornis* (NMB 10475) and *Odocoileus virginianus* (NMB 9872). ">2" refers to "slightly more than 2 turns but not reaching 2.5 turns; in these cases, degree of coiling gives a more precise indication.

<table>
<thead>
<tr>
<th></th>
<th>NMB Sth.828a</th>
<th>NMB Sth.833</th>
<th>NMB Sth.865</th>
<th>NMB Sth.866</th>
<th>NMB 4201</th>
<th>NMB 10475</th>
<th>NMB 9872</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of turns</td>
<td>>2</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>>2</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>degree of coiling</td>
<td>755°</td>
<td>900°</td>
<td>900°</td>
<td>900°</td>
<td>785°</td>
<td>900°</td>
<td>900°</td>
</tr>
<tr>
<td>aspect ratio</td>
<td>0.685</td>
<td>0.686</td>
<td>0.63</td>
<td>0.667</td>
<td>0.558</td>
<td>0.58</td>
<td>0.536</td>
</tr>
</tbody>
</table>
Table 2: Angles (degrees) between the semicircular canals of Micromeryx flourensianus (NMB Sth.828a, NMB Sth.833, NMB Sth.865, and NMB Sth.866), Moschus moschiferus (NMB 4201), Tetracerus quadricornis (NMB 10475) and Odocoileus virginianus (NMB 9872). asc, anterior semicircular canal; lsc, lateral semicircular canal; psc, posterior semicircular canal.

<table>
<thead>
<tr>
<th></th>
<th>NMB Sth.828a</th>
<th>NMB Sth.833</th>
<th>NMB Sth.865</th>
<th>NMB Sth.866</th>
<th>NMB 4201</th>
<th>NMB 10472</th>
<th>NMB 9872</th>
</tr>
</thead>
<tbody>
<tr>
<td>asc-psc</td>
<td>89°</td>
<td>91°</td>
<td>86°</td>
<td>91°</td>
<td>101°</td>
<td>89.5°</td>
<td>88°</td>
</tr>
<tr>
<td>asc-lsc</td>
<td>78°</td>
<td>83°</td>
<td>82°</td>
<td>86°</td>
<td>86°</td>
<td>79°</td>
<td>81°</td>
</tr>
<tr>
<td>psc-lsc</td>
<td>90°</td>
<td>89°</td>
<td>87°</td>
<td>90°</td>
<td>91°</td>
<td>89.5°</td>
<td>87°</td>
</tr>
</tbody>
</table>

(Fig. 9, medial view). The same is almost true for Tetracerus where both height and width are equal in length. The asc of Micromeryx is slightly curved in dorsal view (Fig. 8); this condition is a little more pronounced in Tetracerus (Fig. 9, dorsal view) and Moschus to a lesser extent. The asc is straighter in dorsal view in Odocoileus. The asc constantly shows the greatest dorsal extension of all semicircular canals. The lsc is always straight in lateral view, except for a slight deviation in NMB Sth.865 (Fig. 8, lateral view) and in Odocoileus (Fig. 9, lateral view), but it generally does not show any significant deviation from its plane (sensu Ekdale 2013). It always shows some degree of anteroposterior compression. The psc looks similar in Micromeryx, Moschus, and Odocoileus to a lesser extent, but is different in Tetracerus. In the latter it shows a characteristic mediolateral flattening towards the ampulla so that it does not look as circular as in the other specimens.

In occipital and rostral views the lsc lies at a level within the ventral and occipital extension of the psc. Its position varies slightly from not exceeding the psc extension (e.g., Fig. 8, NMB Sth.828a or Fig. 9, Moschus NMB 4201) to slightly exceeding the psc extension (e.g., Fig. 8, NMB Sth.865 or Fig. 9, Odocoileus NMB 9872). Angles between the canal planes were measured and are constant in Micromeryx, except for the asc-lsc angle of NMB St. 828a which seems slightly smaller than in the three other specimens although no significant difference can be detected (Table 2), a situation that also occurs in Tetracerus. Moschus stands out with a large asc-psc obtuse angle of 101°. Apart from these exceptions, all other angles in Micromeryx and the three extant species are in the same ranges.

The semicircular canals of Micromeryx connect to the vestibule through their ampullae at their anterior limbs. The asc and psc ampullae are the most inflated like in Tetracerus while the posterior ampulla is the most inflated in Moschus and Tetracerus. The lsc ampulla lies anteriorly and above the fenestra vestibuli (Figs 8 and 9, lateral and rostral views). As in modern artiodactyls no secondary common crus between the lsc and psc is evidenced. Near the psc ampulla, the lsc enters the vestibule above the ampulla in Micromeryx, Tetracerus and particularly in Moschus and at the level of the ampulla in Odocoileus (Figs 8 and 9, occipital and lateral views). Some variability exists in Micromeryx with the posterior limb of the lsc entering the vestibule closer to the psc ampulla in NMB Sth.833 (Fig. 8, occipital view).

The common crus between asc and psc is straight in all specimens but Tetracerus where its shape is slightly curved. It is relatively long in Moschus and Tetracerus and shorter in Odocoileus (Fig. 9). It is also rather short in Micromeryx (Fig. 8) in comparison to the extant moschid and bovid.

4. Discussion

The comparison of the external and internal anatomy of a set of petrosals including one embedded within a skull of the moschid Micromeryx flourensianus from the Middle Miocene German locality Steinheim to the extant moschid Moschus moschiferus, the bovid Tetracerus quadricornis and the cervid Odocoileus virginianus brings to light a number of additional characters that may be used in future phylogenetic analyses. Micromeryx flourensianus is a European Miocene taxon for which a moschid affinity is not debated (e.g., Gentry et al. 1999; Vislobokova 2007; Sánchez & Morales 2008; Sánchez et al. 2009, 2010; Aiglstorfer & Costeur 2012). It is the first European moschid with a first occurrence in the early Middle Miocene. It thus represents an interesting case-study to investigate deep time character evolution within family Moschidae.

The petrosal of Micromeryx flourensianus shares several characteristics with Moschus including a ventrally positioned basicapsular groove while this structure seems to be dorsal in cervids and bovids for which it is known (Cervus, Odocoileus, Bos and Ovis, see O’Leary 2010 and Tetracerus, Odocoileus in this study). The fossa for the tensor tympani muscle bears some resemblance between Micromeryx and Moschus with a curved and elongate shape, less pronounced in Micromeryx and much longer in

Figure 8: Inner ears of Micromeryx flourensianus (NMB Sth.828a right, NMB Sth.833 right, NMB Sth.865 left mirrored, and NMB Sth.866 right) in occipital, medial, dorsal, lateral and rostral views. See text for abbreviations (section Material and Methods).
Zitteliana B 32 (2014) 110

NMB Sth. 828a NMB Sth.833 NMB Sth.865 NMB Sth.866

occipital

medial

dorsal

lateral

rostral

Figure 8
Moschus. The shape of the fossa for the tensor tympani in cervids and bovids is either more quadrangular, or more circular to ovoid. Both moschids have a relatively shallow fossa in comparison to the condition seen in cervids and bovids for which it is known (O’Leary 2010 and this study). Correspondingly, the anterior process of the tegmen tympani is well-developed in moschids being elongate and spike-like especially in Moschus, responding to the elongate shape of the fossa for the tensor tympani muscle. An evolution of the fossa for tensor tympani muscle and anterior process of tegmen tympani from a Micromeryx condition to a Moschus condition would seem reasonable to hypothesize. The condition is very different in living bovids and cervids where the anterior process is smaller and blunt (this study; O’Leary 2010). The prefacial commissure on the dorsomedial surface has a similar shape and position in Micromeryx and Moschus, but some variability in the fossil taxon also exist with a very flat prefacial commissure in NMB Sth.828a. This structure is broad and long in Odocoileus and very flat in Tetracerus and is variably developed but always rather faint in other living ruminants (O’Leary 2010). The tegmen tympani on the dorsolateral surface is moderately inflated in cervids and bovids (O’Leary 2010; this study) but seems smaller in moschids. A common feature of Moschus and Micromeryx would be the presence of vascular grooves on the tegmen tympani, which are absent in Tetracerus, Odocoileus, Cervus, Bos or Ovis (O’Leary 2010; this study)

Pecoran ruminant inner ears have very rarely been investigated. After the two seminal works of Hyrtl (1845) and Gray (1907, 1908), where only a total of 7 extant pecorans are described, very little information on pecorans inner ears has been published. Also the data presented in these papers are not easily retrievable. Spoor et al. (2007) investigated some pecoran inner ears in an attempt to reconstruct locomotor abilities in terrestrial and marine mammals but they did not illustrate or describe the inner ears themselves. Maier (2013) recently dramatically increased the knowledge of pecoran inner ears by investigating histological serial sections for 17 extant pecorans. His purpose was to identify the entotympanic in late fetal stages, so that adult specimens were not dissected and the 3D morphology was not reconstructed. The 3D morphology of the inner ears of extant pecoran ruminants is thus virtually unknown, and to the best of my knowledge, that of fossil ruminant inner ears too.

The inner ears of Micromeryx and Moschus share a number of common features. While the number of turns of the cochlea is different, 2.5 in Micromeryx (degree of coiling: 900°) and a little more than 2 in Moschus (degree of coiling: 785°), the expansion of the vestibule, the tightly coiled cochlear spiral and thick basal whorl, the bulky shape of the cochlear aqueduct, the curved asc (also seen in Tetracerus) are shared by the fossil and living moschid. Moschus is different from Micromeryx in having a higher asc giving a slightly more stretched shape to the inner ear. Tetracerus stands out with a less circular psc. Odocoileus has a very different, very long and fine cochlear aqueduct and its cochlea is flatter. Tetracerus and Odocoileus have a basal cochlear whorl which is detached from the other whorls on a third of its length.

NMB Sth.828a looks like the other Micromeryx inner ears but has a number of notable differences. They include a smaller angle between the asc and lsc (Table 2), a bulkier cochlea with a more overlapping basal whorl and a lower degree of coiling (755° vs. 900° in the others, Table 1). Observations made on a post-natal ontogenetic series of living Tragulus kanchil (Tragulidae; personal observations) indicates that the cochlea is not fully formed in a very young individual. While the petrosal is fully ossified and the inner fully functional at birth in artiodactyls or other mammals (i.e., in primates Jeffery & Spoor 2004), it is not uncommon to see a smaller cochlea in early post-natal stages (i.e., in marsupials Sánchez-Villagra & Schmelzle 2007). Hence, I attribute this lower degree of coiling in NMB Sth.828a to a juvenile stage.

Intraspecific variability evidenced here on the three Micromeryx adult inner ears is minimal (very slight differences in angles between the canals, see Table 2, or in canal deviation, see Fig. 8, lateral view of NMB Sth.865). The most variable feature is the length of the vestibular aqueduct and morphology of the endolymphatic sac at its end. Observations made on several inner ears of adult Tragulus kanchil (work in progress) confirm this low intraspecific variability. This makes the inner ear a powerful object for phylogenetic reconstructions such as demonstrated in primates (Gunz et al. 2012).

5. Conclusions

This comparison of the petrosal bone of the Middle Miocene moschid Micromeryx flourensianus to the extant moschid Moschus moschiferus and to a bovid Tetracerus quadricornis and a cervid Odocoileus virginianus is the first of its kind in ruminants that includes the bony labyrinth.

Several characteristics of the petrosal show large coincidence between the extinct moschid and the living musk-deer (e.g, position of basicapsular
groove, shape of the fossa for the tensor tympani muscle, shape and extent of the anterior process of the tegmen tympani, or vascular grooves on tegmen tympani). Likewise, the inner ears of *Micromeryx* and *Moschus* share similarities that are not present in the cervid and bovid studied here (e.g., thick basal cochlear whorl, shape of cochlear aqueduct, or bulky vestibule).

These results provide a good basis for future use of ruminant inner ears in phylogenetic analyses. However, before doing so and tackling the question of moschid affinities, ontogenetic studies have to be carried out in order to better understand the development of this structure in ruminants since postnatal changes are known to occur. This is particularly important, since petrosals very quickly ossify in ontogeny, and hence it is not simple to discriminate between fossil isolated juvenile and adult petrosals. Accordingly this has bearings on the systematic ascription of fossil inner ears based on morphological characters, or more importantly on using characters of inner ears in phylogenetic analyses. The same is true for the study of intraspecific variability. First hints suggest it may be minimal in adult specimens and indicate the high potential of inner ears. Future research needs to focus on increased taxonomic, ontogenetic, and intraspecific sampling to identify macro- and micro-evolutionary patterns which might help establishing phylogenetic relationships. Additionally, 3D geometric morphometrics of the inner ears shape, which has recently proven to have a very high discriminative potential (Gunn et al. 2012), have to be considered for ruminants.

Acknowledgements

I warmly thank Georg Schulz and Bert Müller (Biomaterials Science Center, University of Basel) for their precious help and expertise in acquiring the CT-scans. I am grateful to the Stiftung zur Förderung des Naturhistorisches Museums Basel for financial help. I thank Gertrud Rössner for the organisation of the International Conference on Ruminant Phylogenetics (Munich, September 2013) which fostered very interesting discussions and eventually led to the publication of this paper. I thank Maëva Orliac (University Of Montpellier) for discussions on inner ears in previous works and Virginie Volpato for introducing me to 3D segmentation. I further thank Maëva Orliac, Israel Sánchez and Gertrud Rössner for their constructive reviews that greatly improved the manuscript.

6. References

Bibi F. 2013. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evolutionary Biology 13(166), 1-15.

925-945.

