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Abstract

A gap exists between paleontological and neontological approaches to ruminant phylogenetics, despite great increases in phyloge-

netic resolution through molecular work of the last three decades, and a large and growing fossil record. This gap is reflected in differing 

methodological approaches, with insufficient integration of the large fossil record by molecular studies on the one hand, and insufficient 

consideration of highly resolved genomic work by paleontological studies on the other. Both paleontological and molecular approaches 

seek to answer similar broad evolutionary questions, and a synthetic approach is in the interest of all. I demonstrate this by reviewing the 

development of each field, noting many examples in which paleontological or molecular approaches to ruminant phylogenetics are, on 

their own, inadequate compared to an approach which considers all sources of data together. In particular, cases such as those of Bison, 

Capra, and Pelea have shown that integration of genomic and anatomical data presents better resolution of relationships, and I suggest 

Antilocapra and Moschus may benefit from a similar approach, especially with the integration of fossil taxa into a combined (supermatrix) 

analysis. I present preliminary results of a new and large (in progress) morphological matrix that is intended to be used for the incorpo-

ration of anatomical data and fossil taxa into a combined analysis. The new matrix is much larger than previous morphological matrices 

assembled for ruminant phylogenetics, meaning it can support a larger number of fossil taxa than was previously possible. Preliminary 

analysis with 18 taxa recovers a highly supported tree that is mostly compatible with both traditional and molecular phylogenies, alt-

hough problems of convergence remain, such as between Antilocapra and Bovidae. Finally, I propose standardization of ruminant clade 

names in order to limit miscommunication between paleontological and neontological workers. I propose phylogenetic definitions based 

on crown (extant) clades for the names Ruminantia and Pecora, and the use of Pan-Ruminantia and Pan-Pecora to accommodate each 

respective crown clade plus its stem group.
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1. Introduction

In 1968, Alan Gentry published a letter in Na-
ture challenging the constancy of modern biogeo-
graphic boundaries into the deep past based on a 
study of the bovid fossil record. A few years later, 
Elisabeth Vrba published two papers presenting 
the chronology and ecology of important hominid 
sites South Africa, also through the bovid fossil re-
cord, and also in the pages of Nature (Vrba 1974; 
Vrba 1975). Though studies and descriptions of ru-
minants both living and fossil already had an esta-
blished scientific history (e.g. Frick 1937; Lydekker 
1898; Pilgrim 1947), these may have been the first 
and clearest demonstrations, in such a widely read 
journal, of the power of a diverse and widespread 
clade of ruminants to directly address and resolve 

large-scale questions of evolution, biogeography, 
and ecology.

Early molecular papers of the 1980s and 1990s 
would regularly cite these and other ecological or 
paleontological papers. Today, however, it seems 
that many molecular investigations into ruminant 
phylogenetics make little to no reference to the fos-
sil record, and paleontological studies on ruminants 
too often make no mention whatsoever (whether 
to support or challenge) of the results of the many 
molecular phylogenetic advances of the last two 
decades. In that vein, the first International Confe-
rence on Ruminant Phylogenetics was held in Mu-
nich in September 2013, bringing together over 
fifty specialists from around the world with diverse 
interests in the anatomy, physiology, ecology, bi-
ogeography, phylogenetics, ontogeny, behavior,  
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The floodgates opened in the mid to late 90s, with 
an explosion of molecular phylogenetic work on all 
aspects of life, tracking technological improvements 
allowing faster sequencing of ever longer portions 
of genomes from ever greater numbers of taxa. Ru-
minant phylogenetics, but especially that of bovids, 
greatly profited. Monophyly of Pecora, and of the five 
pecoran families (Antilocapridae, Bovidae, Cervidae, 
Giraffidae, Moschidae), was supported throughout 
(e.g. Cronin et al. 1996; Randi et al. 1998), though 
the exact relationships among these families conti-
nued to elude satisfactory resolution (and arguably 
still do). In fact, early on it was recognized that the 
poor resolution at the base of Pecora probably re-
flected rapid cladogenesis as a result of an adap-
tive radiation early in the clade’s history (Hassanin & 
Douzery 2003; Kraus & Miyamoto 1991).

Within Cervidae, the monophyly of morphological-
ly defined clades Cervinae (aka Plesiometacarpalia, 
Old World deer) and Capreolinae (aka Odocoilein-
ae, Telemetacarpalia, or New World deer) was sup-
ported, while the antlerless water deer (Hydropotes) 
was found to be sister to roe deer (Capreolus) and 
close to Capreolinae, partly supporting the propo-
sal of Bouvrain et al. (1989) and contradicting others 
based on morphological grounds (Cronin et al. 1996; 
Gilbert et al. 2006; Pitra et al. 2004; Randi et al. 
1998; Randi et al. 2001). The molecular phylogenetic 
placement of Antilocapra as basal to all remaining 
pecorans (Cronin et al. 1996; Hassanin & Douzery 
2003) was also something of a surprise, rather than 
it being more closely related to cervids or bovids as 
had often been proposed (Gentry & Hooker 1988; 
Janis & Scott 1987).

Within Bovidae, we have seen confirmation of 
Kingdon’s (1982) hypothesis of a basal split of 
this clade into Bovinae and Antilopinae (Gatesy et 
al. 1997; Gatesy et al. 1992; Hassanin & Douze-
ry 1999b; Lowenstein 1986; Matthee & Robinson 
1999); the polyphyletic status of ‘Neotragini’ and its 
inclusion into a larger Antilopini clade (Georgiadis et 
al. 1990; Rebholz & Harley 1999); a total reorganiza-
tion of the clades within Caprini (formerly Caprinae) 
(Groves & Shields 1996; Hassanin et al. 1998; Ropi-
quet & Hassanin 2005); clarification of genus-level 
clades among Antilopini (Nanger, Eudorcas, Gazella, 
etc.) (Bärmann et al. 2013), Cephalophini (van Vu-
uren & Robinson 2001), Bovini (Hassanin et al. 2013; 
Miyamoto et al. 1989), Tragelaphini (Moodley et al. 
2009; Willows-Munro et al. 2005), and Reduncini (Bi-
rungi & Arctander 2001; Cotterill 2005); placement of 
some of the most enigmatic taxa including the rhe-
bok (Pelea capreolus), chiru (Pantholops hodgsonii), 
saiga (Saiga tatarica), impala (Aepyceros melampus), 
and the recently discovered saola (Pseudoryx nghe-
tinhensis) (Decker et al. 2009; Gatesy & Arctander 
2000; Hassanin & Douzery 1999a; Robinson et al. 
2013); demystification of the linh duong (Pseudono-
vibos spiralis) (Hassanin et al. 2001); and sequen-
cing of recently extinct species including the blue 

genomics, and fossil record of ruminant species 
(Rössner 2013). This conference was timely, given 
the massive increases in phylogenetic information of 
the last two decades, and the need to develop an 
integrative approach to ruminant phylogenetics.

The goal of the current paper is to present a sum-
mary of accomplishments to date in ruminant phylo-
genetic work and to present some preliminary data 
from ongoing work. This includes outlooks for future 
progress, especially for combining data from extant 
taxa and molecular work with that from fossil taxa 
and morphological studies. I will also present preli-
minary results of a new large skeletal morphological 
dataset (matrix) intended for use in combined (super-
matrix) phylogenetic analyses. Bovids make up some 
two-thirds of all ruminants, so the focus of much of 
the work reviewed here is based on this clade.

2.1 Molecular Phylogenetics

Domestic animals, especially goats, sheep, and 
cattle, form an essential economic and dietary com-
ponent of human societies around the world. As a 
result, studies into the biology of these animals are 
common, from anatomical and veterinary works of 
centuries past, to physiological and histological in-
vestigations of the twentieth century. With the disco-
very of nuclear cell structures, chromosomal investi-
gations in the 1960s and 1970s began to investigate 
phylogenetic relationships directly, giving some in-
dication of the power of molecules to resolve rela-
tionships from the level of populations upwards to 
entire phyla (e.g. Buckland & Evans 1978; Wurster & 
Benirschke 1968). With the development of immu-
nological distance techniques, Lowenstein (1986) 
constructed a molecular tree of Bovidae, substantia-
ting a basal split of bovids into two major subclades. 
This supported (unknowingly it seems) a phylogene-
tic tree that Kingdon (1982) had proposed four years 
earlier on the basis of ecological and morphological 
features. In an early example of the molecular clock, 
Lowenstein also estimated the origins of crown Bo-
vidae at around 25 Ma, a surprisingly good assess-
ment for the time.

Mitochondrial DNA (mtDNA) sequencing threw 
open the doors for a genomic phylogenetic revoluti-
on that continues to this day. An early examination of 
the mtDNA of Bovini (Miyamoto et al. 1989) recove-
red initial molecular support for a deep split between 
Bovina (oxen: Bos spp.) and Bubalina (buffaloes: Bu-
balus, Syncerus), and the synonymy of Bison with 
Bos (supporting previous suggestions by van Gelder 
1977, Gentry 1978, Groves 1981, and others). Broa-
der mtDNA sampling soon established, much as Lo-
wenstein had, the monophyly of Bovidae, its divisi-
on into two major subclades, and the monophyly of 
most of its traditionally recognized tribes (Allard et 
al. 1992; Gatesy et al. 1992). Relationships among 
genera and species within tribes were, however, still 
not well resolved or supported in these early studies.
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have proposed, with high precision, the locations of 
several biodiversity refugia in western, eastern, and 
southern Africa (Arctander et al. 1999; Lorenzen et 
al. 2010; Lorenzen et al. 2012; Moodley & Bruford 
2007; Nersting & Arctander 2001). The recognition 
of such major phylogeographic distinctions nicely 
showcases the degree of phylogenetic, geographic, 
and chronological resolution provided by molecular 
phylogenetics and the fertile ground it produces for 
both proposing and testing new evolutionary scena-
rios. Such phylogeographic reconstructions are also 
important because they reconstruct major events re-
levant to speciation and extinction dynamics that oc-
cur at the sub-specific level, and evidence for which 
might be impossible to spot independently in the 
morphological (including fossil) record. In the case 
of the bushbuck (Tragelaphus scriptus), for example, 
Moodley & Bruford (2007) and Moodley et al. (2009) 
mapped 23 different bushbuck haplotype groupings 
across 28 African biogeographic ecoregions, de-
monstrating the sheer diversity of this species, as 
well as the patterns of geographic and ecological 
relationships among widely dispersed populations. 

Molecular phylogeography, however, comple-
ments but does not substitute for geographic range 
reconstruction based on the fossil record. I have pre-
viously (Bibi 2013) pointed out the case of the spring-
bok clade (Antidorcas spp.), restricted to southwe-
stern Africa today but ranging widely across the 

antelope (Hippotragus leucophaeus) (Robinson et al. 
1996) and the bizarre insular Myotragus balearicus 
(Lalueza-Fox et al. 2002). The impressive culminati-
on of most of this work is exemplified by the recent 
analysis of the complete mtDNA genomes of most 
artiodactyl species by Hassanin et al. (2012).

Ruminants, making up about half of all artiodactyl 
species, have greatly benefitted from the phylogeno-
mic revolution, and have been greatly restructured in 
terms of their phylogenetic relationships and taxo-
nomy. There have been countless changes since the 
1990s, both minor and major, to all parts and levels of 
the artiodactyl tree based on a better understanding 
of the evolutionary relationships among species. In 
some cases, molecular results have supported or 
helped choose among a number of hypotheses pre-
viously developed through anatomical data. In other 
cases, molecular results have proposed entirely new 
relationships or have discovered cryptic species. 
The effect of highly resolved molecular phylogenies 
on taxonomy is starkly illustrated by the recent un-
gulate taxonomy of Groves & Grubb (2011) which re-
lies heavily on molecular phylogenies in order to gre-
atly revise our understanding of the recognition and 
richness of extant ungulate species diversity. This is 
a commendable approach as it seeks to identify and 
diagnose monophyletic clades at all levels. How- 
ever, the elevation by Groves & Grubb to the level 
of species of entities traditionally considered sub-
species or populations has resulted in a vociferous 
debate, currently ongoing, on the numerous implica-
tions of recognizing either far too many (Heller et al. 
2013; Zachos et al. 2013) or far too few (Cotterill et 
al. 2014) species. This debate, however, concerns 
disagreements on what defines a species, and not 
on the basic principle that systematics should be 
guided by the search for monophyletic clades at all 
levels.

2.2 Molecular Phylogeography

The production of highly resolved molecular phy-
logenies has also opened doors to new and more 
powerful forms of evolutionary analysis. These inclu-
de comparative anatomical approaches whereby in-
vestigation of structural and developmental homolo-
gies are guided by molecular phylogenies (e.g. Maier 
1999; Maier 2013). Dated molecular phylogenies 
also produce fertile ground for testing evolutionary 
hypotheses of character evolution as well as spe-
ciation dynamics in deep time (Cantalapiedra et al. 
2011; Cantalapiedra et al. 2014; Hernández Fernán-
dez & Vrba 2005).

Another byproduct of the highly resolved molecular 
phylogenies is a new and powerful phylogeographic 
approach for the reconstruction of species dispersal 
events as well as population dynamics. In the case 
of African ruminants, for example, phylogeographic 
studies on allopatric populations of impala, kudu, 
hartebeest, bushbuck, and giraffe, among others, 

Figure 1: The living springbok (Antidorcas marsupialis, bottom 
left) and gerenuk (Litocranius walleri, top right) are sister taxa that 
reside in arid environments and have restricted and non-over-
lapping geographical distributions. Any attempt to reconstruct 
biogeographic and ecological patterns based only on the extant 
distribution would be incorrect, however, as fossil Antidorcas ran-
ged widely across Africa during Pliocene and Pleistocene times 
(white stars; fossil is Antidorcas recki from Olduvai Gorge, Tanza-
nia, specimen M 21462 in the Natural History Museum, London). 
(Image credits: springbok - Yathin S. Krishnappa, gerenuk - Steve 
Garvia, both from Wikimedia Commons.)
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rived with respect to late Miocene and Pliocene tra-
gelaphines, and is therefore unlikely to have evolved 
twice independently (Bibi 2009). The issue of bush-
buck monophyly now awaits nuclear DNA (nuDNA) 
testing, as several cases have already been docu-
mented in which nuDNA agrees with morphologi-
cal data, but contrasts with mtDNA, regarding the 
monophyly of clades such as Bison (Hassanin et al. 
2013; Janecek et al. 1996; Verkaar et al. 2004) and 
Capra (Bibi et al. 2012; Pidancier et al. 2006; Ropi-
quet & Hassanin 2006). Such findings highlight the 
importance of phylogenies based on nuDNA, sin-
ce mtDNA is inherited only maternally and is more 
strongly affected by introgression and homoplasy 
than is autosomal nuDNA (Funk & Omland 2003). 
Further nuDNA investigation of large parts of the 
ruminant tree will be crucial to help independently 
verify numerous relationships proposed on the basis 
of mtDNA data.

In yet other cases, the availability of both mtD-
NA and partial nuDNA datasets has still not provi-
ded sufficiently stable resolution of relationships. A 
recent example is a study by Robinson et al. (2013) 
on the relationship of Pelea to the Reduncini (Kobus 
+ Redunca) and in which the inclusion of morpho-
logical data was necessary to produce a more cre-
dible phylogenetic placement of the rhebok as the 
sister taxon to the Reduncini. While we may certainly 
look forward to the increasing availability of whole 

continent in the Pliocene and early Pleistocene. The 
fact that the living springbok (Antidorcas marsupialis) 
and the gerenuk (Litocranius walleri) are sister taxa 
on a molecular phylogenetic tree might lead to an 
interpretation of a long (late Miocene) separation of 
eastern and southwestern semi-arid regions. Howe-
ver, the widely distributed fossil record of Antidorcas 
spp. quickly discounts the idea of a long geographic 
isolation of springboks in southwestern Africa (Fig. 
1). Or, for example, Reduncini, which are exclusively 
African today, but had significant occurrences in the 
Indian subcontinent in Miocene and Plio-Pleistocene 
times (Gentry et al. 2014; Vrba et al. in press). There 
is no shortage of other cases whereby past distri-
butions of ruminant clades cannot be reconstructed 
from molecular evidence. The fossil record provides 
the most direct method to infer the biogeographic his- 
tory of populations, species, and higher clades that 
are now totally extinct.

2.3 Molecular relationships needing further 
investigation

On the basis of mtDNA investigations, Moodley 
et al. (2009) discovered that bushbuck (Tragelaphus 
scriptus) is polyphyletic, and apparently comprised 
two distantly related tragelaphine species. From a 
morphological point of view, the fossil record indi-
cates that the bushbuck’s horn morphology is de-

Figure 2: Consensus tree resulting from parsimony analysis of the complete mitochondrial genome of the ruminant subset (162 taxa) from 
the matrix of Hassanin et al. (2012). Bootstrap values for all nodes shown are 100% unless otherwise indicated. Relationships among 
and within families (here simplified) are not significantly different from the results of maximum likelihood or Bayesian analyses of the same 
data, with the exception of the placement of Moschus which emerges as the sister clade to Cervidae, rather than Bovidae. The reasons for 
this major topological switch are probably worth further investigation, particularly since morphological studies had previously determined 
a closer relationship of Moschus to Cervidae as well (Janis & Scott 1987).
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the amount of genetic difference between taxa.
Such molecular age estimations abound for rumi-

nants, but their utility has often proved limited given 
a large range of published age estimates from diffe-
rent studies, and estimates that are themselves often 
bracketed by very large confidence intervals. In the 
end, molecular age estimation requires information 
from the fossil record for calibration, and it is clear 
that not enough information has been exploited from 
the large fossil record of Ruminantia. To explore this 
idea, I re-analyzed the ruminant subset of Hassanin 
et al.’s (2012) complete mtDNA matrix. While Has-
sanin et al. had used six fossil calibrations for the 
entirety of Artiodactyla, I came up with 16 calibra-
tions for the ruminant subset alone. My re-analysis 
using a large number of new calibrations (Bibi 2013) 
produced younger age estimates for nodes across 
the ruminant tree and smaller confidence intervals 
for those node age estimates.

The younger ages produced by using a larger 
number of fossil calibrations are closer to estimates 
based on the fossil record alone. This is perhaps not 
surprising, as a larger number of fossil calibrations 
would be expected to constrain the age estimates 
towards ages determined by the fossil record. This 
does bring up the question, however, as to whether 
a large number of discrepancies between molecular 
and fossil dates in countless studies in the literature 
(typically with molecular ages being older than allo-
wed by the fossil record) are a result of too few fossil 
calibrations being used to calibrate molecular rates 
of change across the tree in question. All analyses 
permit some degree of variation and uncertainty in 
rates of molecular evolution across a tree. Perhaps 
the use of dense fossil calibration with appropriate 
parameters is the safest and most direct way to 
address this uncertainty (Bibi 2013; dos Reis et al. 
2012; Parham et al. 2012).

The second main result, smaller error bars, has 
the benefit of providing ages that are less ambiguo-
us to interpret and test. For example, if Pecora is 
estimated to have arisen anytime between 35 and 20 
Ma (95% interval from Hassanin et al. 2012), the en-
vironmental events during this time period (the entire 
Oligocene) are many and correlations are difficult to 
draw and test from the large fossil record. However, 
using more calibrations produced the smaller age 
range of 23–19.4 Ma (Bibi 2013), which can be rela-
ted to a narrower window of environmental events, 
and therefore can more easily be tested by the fossil 
record.

Ultimately, then, molecular dating is reliant on in-
formation from the fossil record. Molecular data can 
provide masses of evolutionary information unattai-
nable through the anatomical and fossil records, but 
it is unlikely to ever provide a single material exam-
ple of a long extinct common ancestor or any of the 
many lineages of organisms that have gone totally 
extinct. Furthermore, while a molecular tree can pro-
vide numerous hypotheses of biogeographic chan-

genome sequences to provide further resolution of 
such issues, the fact is that morphological and fossil 
data are not being adequately incorporated into phy-
logenetic work on ruminants.

Two further examples where the addition of mor-
phological (including fossil) datasets might help 
clarify relationships are those of the Moschidae 
and Antilocapridae. On the basis of morphological 
characters, Moschidae has been placed at the base 
of Pecora (Webb & Taylor 1980), close to Cervidae 
(Gentry & Hooker 1988; Janis & Scott 1987), or close 
to Bovidae (Sánchez et al. 2010). Hassanin and Dou-
zery (2003) proposed a sister relationship of Moschi-
dae to Bovidae, and while this has been replicated 
in numerous analyses, a close genomic relationship 
to cervids has not been totally discounted (Hassanin 
et al. 2012). A maximum parsimony analysis of the 
ruminant subset of Hassanin et al.’s (2012) complete 
mtDNA matrix produces a tree that is similar to these 
authors’ Bayesian or maximum likelihood analyses, 
but with Moschus firmly allied with Cervidae (Fig. 2). 
Nicola Heckeberg (pers. comm.) has also found con-
flicting results in the placement of Moschus on indi-
vidual mtDNA or nuclear DNA gene trees, and dos 
Reis et al.’s (2012) mammal-wide analysis placed 
Moschus spp. close to cervids. I have previously 
commented on the shifting positions of Pelea ca-
preolus and Pseudoryx nghetinhensis on genomic 
phylogenies as a result of the use of different search 
parameters (Bibi 2013), and perhaps Moschus is a 
similar case. Could long branches leading to a very 
small number of surviving species be producing ar-
tifactual relationships? This probably warrants fur-
ther investigation.

Likewise, Antilocapridae has, on the basis of mor-
phological evidence, found to be close to either cer-
vids or bovids (Gentry & Hooker 1988; Janis & Scott 
1987). Instead, molecular phylogenies unanimously 
place Antilocapra as basal within Pecora, either alo-
ne (e.g. Hassanin et al. 2012) or as a sister taxon 
to Giraffidae (e.g. Bininda-Emonds et al. 2007; Me-
redith et al. 2011). As with Moschidae, renewed inve-
stigation of potential morphological synapomorphies 
(especially in the fossil record), as well as of the mo-
lecular characters most influencing the topology, is 
needed to make better sense of these results.

2.4 Molecular Age Estimation

The nature of genetic data (nucleotide bases) me-
ans phylogenetic distances between taxa can be 
simply quantified by counting the number of nucle-
otide differences, which is a much more objective 
process than attempting to quantify anatomical dif-
ferences. Add to this some estimate of the rate of 
accumulation of nucleotide differences and you have 
a molecular ‘clock’ that permits dating phylogenetic 
divergences far back in time. As a result, molecular 
phylogenetics has since its early days produced es-
timates of evolutionary divergence events based on 
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any known node ages, and ages of any included fos-
sil taxa (tip dating) to produce a tree that includes 
both fossil and living taxa and that is also dated. The 
small size of morphological to molecular datasets 
is not as big a problem as it may seem, as studies 
show that even a few morphological characters can 
influence a large molecular dataset, as shown with 
phylogenetic analyses of Capra (Bibi et al., 2012) 
and Pelea (Robinson et al. 2013). However, an ide-
al morphological matrix should have a large enough 
character list to be able to resolve relationships 
among a large number of ruminant species. Such a 
morphological dataset should also be able to resolve 
relationships well without the aid of molecular data.

The lack of such a large and equally powerful 
morphological matrix is a problem for ruminant phy-
logenetics. Compared to the number of molecular 
phylogenies being regularly produced, there are rela-
tively few studies of ruminant phylogenetics from the 
perspective of organismal-level characters (skeletal 
morphology, soft tissue morphology, and behavior). 
The small number is not to be underestimated, ho-
wever, as many of the functional, ecological, geo-
graphical, and morphological patterns of ruminant 
evolution since the Eocene were discovered on the 
basis of such studies well before the arrival of mole-
cular investigation.

Anatomical and paleontological investigations of 
ruminants (especially bovids) were already in high 
gear by the late 19th and early 20th Century. Among 
these are the works of Lydekker (1878; 1898), Frick 
(1937), and Pilgrim (1911, 1939). With the arrival of 
cladistic methods, detailed analyses of character 
evolution and ruminant phylogenetics were underta-
ken by Webb & Taylor (1980), Janis & Lister (1985), 

ge, adaptive radiation, and changes in diversification 
rates, the fossil record provides a direct and inde-
pendent test of all such scenarios. Fossil data are 
therefore crucially needed to: 1) calibrate molecular 
clocks for dating phylogenetic trees; 2) independent-
ly and directly generate and test phylogeographic 
and diversification scenarios; 3) discover clades of 
organisms which have no living descendants, and 4) 
help resolve ambiguous phylogenetic relationships 
through combined analyses.

3. Combined analyses

Clearly then, both molecular as well as organis-
mal-level characters are needed to reconstruct the 
evolutionary history and organismal biology of Ru-
minantia. Each approach cannot afford to ignore the 
other, no less than a molecular study can ignore a 
certain genetic locus in favor of others, or a morpho-
logical study can ignore parts of the anatomy in favor 
of others.

In a phylogenetic analysis, there are many ways 
to combine such disparate datasets as nucleotide 
bases (A, C, T, G) and numerical codes (0, 1, 2…). A 
supertree is one such representation while a super-
matrix is another. Scaffold approaches are a further 
option. Much has been made of these approaches 
in the literature, and each comes with philosophical 
assumptions as well as different methodological re-
quirements, but a supermatrix approach has the ad-
vantage of including both types of data and using all 
data at once in an analysis. Bayesian phylogenetic 
methods can simultaneously analyze molecular and 
morphological data, while also taking into account 

Figure 3: (a) Parsimony analysis of the morphological character matrix of Gentry (1992). The results are not significantly different from 
those presented in the original study. Branch lengths are proportional to the number of character state changes. Only four clades are 
found to have bootstrap support of greater than 50%. (b) A handmade modification of the cladogram in A to reflect currently accepted 
phylogenetic relationships (mainly as a result of molecular studies). Branch lengths are proportional to the number of character state 
changes as optimized using Gentry’s matrix. This allows for morphological characters to be mapped onto a tree determined through other 
(molecular) means, and synapomorphies to be optimized despite high homoplasy in the dataset.
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ver, it would be useful to develop a morphological 
matrix that provides a highly resolved species tree 
with good support even when analyzed alone. Such 
a morphological character matrix requires that the 
number of informative characters (or character 
states) be large enough to permit the analysis of 
many taxa. A low number of characters is another 
problem affecting many morphological analyses of 
ruminants. With molecular data, the number of va-
riable nucleotide bases (informative characters, es-
sentially) can be very high, allowing for the analysis 
of hundreds or thousands of species together. With 
morphological data, this can be a problem, especial-
ly when high levels of homoplasy mean that many 
individual characters cannot provide unambiguous 
support for just a single clade. For example, a bo-
vid analysis that I previously undertook (Bibi 2009) 
attempted to resolve relationships among 76 living 
and fossil bovid species using 147 skull characters, 
a character to taxon ratio of just 2:1. It is therefore no 
surprise that the analysis generated over 3000 most 
parsimonious trees and a poorly resolved consensus 
tree with only four nodes with bootstrap values over 
50%. A larger matrix is necessary for the phylogene-
tic resolution of any significant number of ruminant 
taxa, especially considering the hundreds of living 
and fossil species of ruminants that could be inclu-
ded in a morphological phylogenetic analysis.

4. A new morphological matrix

To this end, I have recently compiled a large num-
ber of skeletal characters for a range of living and 
fossil ruminant taxa with the aim of producing a 
matrix that will allow for combined analyses of mor-
phology, molecules, fossil, and living taxa. So far 
the number of characters stands at 409, and while 
a good proportion of these are taken or modified 
from previous studies (cited above), many are also 
new. Almost 3/4 of the characters are from the skull. 
Fig. 4 shows the distribution of the character set on 
the skeleton. The number of scored taxa is still low, 
at 18, but these already include some crucial fos-
sils such as Archaeomeryx optatus, Parablastomeryx 
gregorii, as well as an un-named stem pecoran from 
the Oligocene Hsanda Gol Formation in Mongolia 
(McKenna expedition material at the American Mu-
seum of Natural History, New York, USA). The entire 
study, however, is still in the process of being com-
piled and completed, and here I only provide prelimi-
nary results that give some sense of the quality and 
potential of the character matrix.

I ran a heuristic search in PAUP* (Swofford 2002), 
using tree-bisection-reconnection with 1000 repli-
cates, random addition sequence, and using Archae-
omeryx optatus, Hyemoschus aquaticus, and Tragu-
lus napu as outgroups. Bootstrap was run at 100 
replicates of 100 search replicates each. The search 
produced three most parsimonious trees of 809 

Janis & Scott (1987), Gentry & Hooker (1988), and 
Scott & Janis (1993), followed later by Métais & Vis-
lobokova (2007), Sánchez et al. (2010), and Mazza 
(2013) among others. Analyses focusing just on bo-
vids (the majority of ruminant species) include Vrba 
(1979, 1997), Groves (1981), Gentry (1992), Geraads 
(1992), Vrba et al. (1994), Vrba & Gatesy (1994), Vrba 
& Schaller (2000), as well as Bibi (2009), and Bär-
mann (2012).

However, unless they dealt with limited taxono-
mic scope, or a limited set of characters, all these 
studies have lacked the power to confidently resol-
ve relationships at both deep and shallow nodes of 
the ruminant tree armed only with a matrix of mor-
phological characters. This has been reflected over 
the years, for example, in the continuously uncertain 
placement of Antilocapra and Moschus among Pe-
cora, as well as of enigmatic taxa such as Hydro-
potes among Cervids, and Pelea, Saiga, Pantholops, 
and Aepyceros among bovids, not to mention the 
relationships of numerous fossil taxa.

Perhaps the most significant large morphological 
character matrix of ruminant species constructed 
to date comes from Gentry’s (1992) study on Bovi-
dae, which includes 112 characters from across the 
skeleton, and which has been reused many times 
in further studies (e.g. Thomas 1994) including in 
combination with molecular datasets (Gatesy et al. 
1997; Gatesy & Arctander 2000; Hassanin & Douzery 
2003). However, as was apparent from Gentry’s own 
results, this morphological matrix provides only a 
coarse level of resolution within Bovidae. A re-analy-
sis of Gentry’s matrix recovers four most parsimoni-
ous trees of 537 steps, and a strict consensus of 546 
steps (Fig. 3a). This tree is not significantly different 
from that of the original study, and recovers mono-
phyletic groupings of certain Antilopini and also Ca-
prini. Otherwise, this tree bears little resemblance to 
either traditional or molecular taxonomies of bovids. 
Even a monophyletic Bovidae relative to the hypo-
thetical outgroup taxon is not recovered, and only 
four nodes on the tree have bootstrap values >50%.

In order to assess the distribution of the characters 
on a ‘true tree’, I manually modified the consensus 
tree to match the results of most molecular analy-
ses (Fig. 3b). This handmade tree requires 594 steps, 
i.e. it is about 10% longer than the most parsimoni-
ous trees. When branch lengths are assigned using 
Gentry’s matrix, the new tree shows relatively longer 
internal branch lengths, meaning many clades are 
found to have numerous morphological character 
state changes supporting them. Such synapomor-
phies can be considered ‘hidden morphological 
support’ (e.g. Gatesy & Arctander, 2000) in that they 
provide diagnostic support for clades post hoc, but 
are too affected by homoplasy to adequately resolve 
a parsimony analysis.

Gentry’s matrix therefore serves well for the ex-
ploration of character state changes on a tree de-
termined through other (molecular) means. Howe-
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of the Antilopinae, but bovid monophyly fails with 
the placement of Antilocapra americana among the 
antelopes. This appears due to convergence with 
Reduncini and Alcelaphini in features related to cur-
soriality and living in grassland habitats (long face, 
hypsodont dentition, long slender limbs) in addition 
to the similarities of the bony horn cores of Antiloca-
pra and bovids. Perhaps the addition of fossil anti-
locaprid taxa could help recover monophyletic anti-
locaprid and bovid clades. Besides Antilocapra, the 
placement of Cephalophus natalensis is uncertain in 
the analysis, this being at least in part due to con-
vergent or plesiomorphic similarities with Tetracerus 
quadricornis. Also Pelea capreolus (rhebok) is placed 
close to both Alcelaphini and Reduncini, while it 
should more likely be sister to Reduncini (Robinson 
et al. 2013; Vrba et al. 1994). The addition of further 
reduncin taxa, as well as hippotragins and caprins, 
could help better resolve this part of the tree.

Interestingly, the analysis cannot resolve the re-
lationships of Archaeomeryx relative to crown rumi-
nants. This reflects the difficulty of optimizing many 
of the morphological features of Archaeomeryx. 
While retaining numerous primitive non-ruminant 
features (such as upper incisors), Archaeomeryx 
also shares many characters in common with peco-
rans to the exclusion of tragulids (Tab. 1). This has 
no doubt contributed to the varied placement of 
Archaeomeryx with respect to Pecora in the litera-
ture. Archaeomeryx has previously been assigned to 
the Leptomerycidae and placed closer to pecorans 

steps, these differing only in the placement of Ce-
phalophus natalensis (as either basal within Bovidae, 
basal within Bovinae, or basal within Antilopinae). 
The resulting consensus tree is well resolved, with 
greater than 70% bootstrap support for all nodes, 
and several at 100% (Fig. 5). Clades such as Traguli-
dae, Pecora, Moschus + Parablastomeryx, Cervidae, 
Alcelaphini, and Reduncini are well defined. While 
skull characters make the largest contribution to the 
dataset and the analysis, the postcranial characters 
are crucial for resolving several important nodes, 
among these Tragulidae and Pecora. Among Bovi-
dae, the Bovinae have strong support, as do most 

Figure 5: Consensus tree of three most parsimonious trees resulting from the analysis of the new (in progress) morphological matrix of 
409 characters. Branch lengths are proportional to character state changes and these are indicated below branches. Bootstrap values 
above branches. The analysis recovers many of the established relationships among ruminants, through a few problems due to conver-
gence still remain (Antilocapra, Cephalophus), and further outgroups are required to resolve the relationship of Archaeomeryx relative to 
Pecora.

Figure 4: Distribution of 409 skeletal characters used in the new 
(in progress) morphological analysis. Skeleton of Ramoceros os-
borni from the American Museum of Natural History (credit: Ryan 
Somma, Wikimedia Commons).
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of further Eocene ruminants in addition to extant arti-
odactyls such as hippotamids and suids.

Despite a number of clear issues, however, the 
tree is well resolved and well supported. These pre-
liminary results indicate that the new morphological 
matrix has the power to resolve relationships among 
ruminant species with a high degree of confidence, 
and the relatively large number of characters should 
permit for the analysis of a large number of taxa. 
Such a morphological matrix could then be com-
bined with a molecular matrix for a broad analysis of 
both living and extinct ruminant taxa together.

than to tragulids (Janis 1987; Webb & Taylor 1980), 
or found to lie basal to tragulids and thereby outside 
the crown ruminant clade (Gentry & Hooker 1988; 
Mazza 2013; Métais & Vislobokova 2007). The addi-
tion of Archaeomeryx into the current analysis casts 
doubt on many of the supposedly ‘primitive’ features 
of tragulids. For example, the calcaneum in Archae-
omeryx bears a large tubercle on the fibular facet, a 
feature shared with pecorans, while in tragulids the 
facet is flat. Is the presence of the tubercle a derived 
feature uniting Archaeomeryx and pecorans? Or is 
the presence of a tubercle in fact the primitive condi-
tion among ruminants? Better resolution at the base 
of the ruminant tree can be achieved by the inclusion 

Table 1: Characters of Archaeomeryx optatus relevant to its phylogenetic relationship to Ruminantia. Based on specimens AMNH 20311, 
20311-8, and information in Matthew & Granger (1925) and Colbert (1941). The polarity of the tragulid and pecoran-like characters  
requires further outgroup assessment. AMNH = American Museum of Natural History, New York (USA)

Non-ruminant 
characters

Ruminant characters Tragulid-like 
characters

Pecoran-like 
characters

Unique characters

Upper incisors present Trapezoid and magnum 
fused (trapezo-magnum)

Maxillary palatal ridges 
very wide apart

Upper and lower 
premolar rows slightly 
reduced in length

Distal radius with a 
shallow fossa and no 
trochlea

Metatarsals 3 & 4 totally 
unfused

Lower canine incisiform Protocone absent in P2  
and poorly developed 
in P3

Tibial medial malleolus 
present

Proximal humerus 
with sharp crest along 
posterior surface

Cubonavicular thick 
proximo-distally

P1 absent Styles on upper 
premolars and molars 
very low relative to 
cusps

p4 with relatively well-
developed metaconid

Calcaneum with large 
and deep fovea on 
lateral surface

Tail is long p2 is long, as long as p3 Calcaneum dorsal 
tubercle present, long 
and slender heel, less 
curled cnv facet

Astragalus with large 
antero-posteriorly 
oriented ridge along 
ventral surface

Metacarpal much 
shorter than metatarsal

Astragalus with crest on 
medial surface

Lateral tubercle on 
dorsal surface of 
astragalus is small

Metacarpals 3 & 4 
unfused (though weakly 
fused in Tragulus)

Posteromedial process 
on cubonavicular is 
strongly projecting

Metacarpals 2 & 5 fully 
formed, with phalanges

Metapodial distal keels 
not extending to anterior 
surface

Short metpodials that 
are about half the 
length of the femur 
(with convergence in 
Muntiacus, Syncerus, 
Caprini)

Flexed astragalus with 
long and narrow shape

Axis with small peg-
like dens and widely 
separated atlas articular 
facets



Zitteliana B 32 (2014) 206

features (e.g., a compact, parallel-sided astragalus) 
or as the crown clade encompassing giraffes, bovi-
ds, deer, Moschus and Antilocapra. Likewise a fossil 
may be attributed to Cervidae if it possesses antlers 
(e.g., Procervulus), while the node labelled Cervidae 
on a molecular tree defines only a subset of the ant-
lered clade. In all three cases, clades defined on the 
basis of morphological features are older and larger 
than those defined on the basis of extant taxa. This 
is because fusion of the cuboid and navicular occur-
red prior to the appearance of the most recent com-
mon ancestor of living ruminants, a short compact 
astragalus evolved prior to the most recent common 
ancestor of all living pecorans, and antlers appeared 
well before the most recent common ancestor of all 
living deer.

I here propose that we standardize our usage of 
ruminant clade names by using phylogenetically ba-
sed clade definitions (rather than apomorphically-de-
fined clade definitions). This affects paleontologists 
in particular, as neontologists are generally restricted 
to dealing with crown clades anyway. Following re-
commendations for phylogenetic nomenclature (de 
Queiroz & Gauthier 1994; de Queiroz 2007; Canti-
no & de Queiroz 2010), I here present phylogenetic 
definitions and diagnoses for the clades Ruminantia 
and Pecora based on crown clades. Total clades, 
which are made up of a crown clade plus taxa along 
its stem branch, are named by attaching the prefix 
‘Pan-’ to the crown clade name (Lauterbach 1989; 
Meier & Richter 1992; Joyce et al. 2004). As noted 
above, the following phylogenetically based clade 
definitions for Ruminantia and Pecora result in diffe-
rent (smaller) clades than those based on anatomi-
cal features (e.g. Janis & Scott 1987; Webb & Taylor 
1980). Determining whether a fossil taxon belongs 
within Ruminantia or Pecora naturally relies on the 
identification of diagnostic apomorphies, which are 

5. Taxonomic Nomenclature

Taxonomic nomenclature should reflect phyloge-
netic relationships, and should be standardized to 
minimize confusion among biologists from different 
specialities. Paleontologists often define clades on 
the basis of shared anatomical features, while neon-
tologists (particularly molecular phylogenetics) defi-
ne clades on the basis of phylogenetic composition. 
Therefore, clade names used by paleontologists will 
often refer to different and much larger entities than 
the same names as used by neontologists. For ex-
ample, to a paleontologist, Ruminantia may be the 
clade defined by the presence of fused navicular 
and cuboid tarsal bones and an incisiform lower ca-
nine (e.g. Janis & Scott 1987). Hypertragulids, then, 
would be considered ruminants (Ruminantia). To a 
neontologist, however, Ruminantia refers to a crown 
(extant) clade defined by the most recent common 
ancestor of all its living members. Lacking several 
synapomorphies of living ruminants places hypertra-
gulids outside the crown clade, which means, from 
a phylogenetic perspective, that hypertragulids can-
not be included in Ruminantia. The age and compo-
sition of the clade labelled ‘Ruminantia’ on the tree 
of Hassanin et al. (2012: fig. 1) is only a subset of that 
labelled ‘Ruminantia’ on the tree of Gentry & Hooker 
(1988: fig. 9.8). Besides the obvious confusion that 
this can cause, concrete problems can arise from 
such miscommunication. For example, in the pale-
onotological literature, a molecular phylogeneticist 
reads that the earliest ruminants arose in the Middle 
Eocene. The researcher then uses this information 
to date the node corresponding to ‘Ruminantia’ on 
a tree of extant species to a Middle Eocene age. 
This results in drastically inflated age estimates for 
the entire tree. The same problem applies to Pecora, 
variably defined either on the basis of morphological 

Figure 6: Representative phylogenetic tree indicating the composition of clade names defined in the text according to phylogenetic 
nomenclature. Commonly used clade names (Ruminantia, Pecora, Cervidae) are restricted to crown (extant) clades. Total clades, those 
comprising a crown clade plus the stem leading to it, are identified with the prefix ‘Pan-’ (Pan-Ruminantia, Pan-Pecora, Pan-Cervidae). 
Note that clade names are defined on the basis of crown clades, not apomorphies. Use of a standardized phylogenetic nomenclature will 
help reduce miscommunication between paleontologists and neontologists.
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of upper incisors and upper first premolars; an incisi-
form lower canine; a closed post-orbital bar (though 
this may be independently derived in tragulids and 
pecorans); fused magnum and trapezoid carpals; 
fused cuboid and navicular tarsals; and a fibula re-
duced to a malleolar bone (Janis & Scott 1987). Nu-
merous other characters, including many molecular 
characters, also diagnose Ruminantia. These dia-
gnostic characters are common to the ancestry of 
all living ruminants and therefore must have evolved 
some time prior to the origin of the clade. Therefore, 
to be determined as belonging within Ruminantia, an 
extinct taxon must possess these characters (to the 
degree determinable) plus at least one character al-
lying it to a crown clade taxon.

Pecora Linnaeus, 1758 converted clade name
Pan-Pecora new clade name

Synonym of Pecora: Eupecora Webb & Taylor, 
1980

Definition: Pecora refers to the crown clade ori-
ginating from the most recent common ancestor 
of Antilocapra americana Ord, 1815; Moschus mo-
schiferus (Linnaeus, 1758); Giraffa camelopardalis 
(Linnaeus, 1758); Cervus elaphus Linnaeus, 1758; 
and Bos taurus Linnaeus, 1758. This definition is 
node-based and designates a crown clade. 

Pan-Pecora refers to the total clade composed of 
the crown clade Pecora and all extinct organisms or 
species that share a more recent common ancestor 
with Pecora than with any extant organism or spe-
cies that is not a member of Pecora. In other words, 
Pan-Pecora includes Bos taurus Linnaeus, 1758 and 
all organisms or species that share a more recent 
common ancestor with Bos taurus Linnaeus, 1758 
than with Tragulus javanicus (Osbeck, 1765). This is 
a branch-based definition and designates a crown 
clade plus a stem group.

Reference phylogenies: Fig. 6 here and fig. 1 in 
Hassanin et al. (2012).

Composition: Pecora includes around 204 living 
species (Wilson & Reeder 2005), or many more fol-
lowing the taxonomy of Groves & Grubb (2011). 
Extant species are divided among five subclades, 
traditionally given family rank. In order of increasing 
species richness, these are: Antilocapridae, Moschi-
dae, Giraffidae, Cervidae, and Bovidae. All members 
of Pecora are also by definition members of the more 
inclusive clade Pan-Pecora. Ruminant clades such 
as Lophiomerycidae and Bachitheriidae possess 
some of the diagnostic apomorphies of pecorans 
and are therefore members of Pan-Pecora (i.e., they 
are closer to Pecora than to Tragulidae). However, 
these also lack characters diagnostic of crown pe-
corans, placing them on the stem branch leading to 
Pecora, and not within Pecora itself. Such clades are 

also provided. However, the highly functional (loco-
motory, dietary) role of many of these features me-
ans the probability of convergent evolution is very 
high, and in many cases certain (Janis & Theodor 
in press; Janis & Scott 1987). This results in a grim 
but not insurmountable challenge to phylogenetics, 
one that I hope can be overcome by the combined 
analytical approach advocated above.

Ruminantia Scopoli, 1777 converted clade name
Pan-Ruminantia new clade name

Definitions: Ruminantia refers to the clade origi-
nating from the most recent common ancestor of 
Tragulus javanicus (Osbeck, 1765) and Bos taurus 
Linnaeus, 1758. This definition is node-based and 
designates a crown clade.

Pan-Ruminantia refers to the total clade compo-
sed of the crown clade Ruminantia and all extinct 
organisms or species that share a more recent com-
mon ancestor with Ruminantia than with any extant 
organism or species that is not a member of Rumi-
nantia. In other words, Pan-Ruminantia includes Bos 
taurus Linnaeus, 1758 and all organisms or species 
that share a more recent common ancestor with Bos 
taurus Linnaeus, 1758 than with Hippopotamus am-
phibius Linnaeus, 1758, Balaena mysticetus Linnae-
us, 1758, Camelus dromedarius Linnaeus, 1758, or 
Sus scrofa Linnaeus, 1758. This is a branch-based 
definition and designates a crown clade plus a stem 
group.

Reference phylogenies: Fig. 6 here and fig. 1 in 
Hassanin et al. (2012).

Composition: Ruminantia contains around 212 li-
ving species (Wilson & Reeder 2005) or many more 
following the taxonomy of Groves & Grubb (2011). 
Extant species are divided among two subclades, 
Tragulidae (equivalent to Tragulina) and Pecora. There 
are countless extinct fossil ruminant taxa that are 
members of Pan-Ruminantia, but not Ruminantia. 
Hypertragulids, lacking several diagnostic apomor-
phies of crown ruminants, are not included in Rumi-
nantia. Possession of a fused navicular and cuboid, 
however, does place them on the stem branch lea-
ding to ruminants. If Archaeomeryx optatus is clo-
ser to pecorans than are tragulids, then A. optatus 
belongs in Ruminantia. If A. optatus is basal to the 
clade defined by tragulids and pecorans, then it be-
longs outside the crown clade and among the stem 
ruminants.

Diagnostic apomorphies: Members of Ruminan-
tia are differentiated from other living artiodactyls by 
the development of foregut fermentation that takes 
place through a three or four-chambered stomach 
that includes a rumen, reticulum, abomasum, and in 
pecorans an omasum (camelids have independently 
evolved a three-chambered stomach); the absence 
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forward, focusing especially on the challenge of 
bridging molecular and morphological approaches 
to the study of this clade. Molecular phylogenetics 
has in just two decades produced very large and 
strongly supported phylogenies that include almost 
every single extant ruminant species. A major task 
for the near future then is the integration of organis-
mal-level data and the large ruminant fossil record 
with the existing molecular phylogenetic picture. 
This will require collaboration between genomic 
and ‘phenomic’ workers in order to develop, grow, 
maintain, combine, and analyze disparate sources 
of data that will allow for the creation of such an 
all-inclusive and dated phylogenetic tree. Such a 
collaborative spirit also requires a common taxo-
nomic language and I have proposed standardizing 
the use of clade names to refer exclusively to crown 
(extant) clades, and I have given examples of phy-
logenetically-based definitions for Ruminantia and 
Pecora. The sheer size of the ruminant fossil record 
also means larger collaborations aimed specifically 
at reconstructing phylogenetic relationships among 
fossil taxa are needed among paleontologists. To 
this end, I have compiled a large morphological 
character list to aid the integration of fossil taxa 
from across the ruminant tree into a combined mo-
lecular and morphological phylogenetic framework. 
Preliminary results from the analysis of this matrix, 
as yet being compiled, recover many of the mono-
phyletic clades expected by both anatomical and 
molecular phylogenetic studies, and bode well for 
coming efforts to reconstruct the phylogeny of both 
living and fossil ruminants through analysis of both 
molecular and morphological data. 
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therefore members of Pan-Pecora but not Pecora. 
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