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An extrapolation method for the efficient
calculation of molecular response properties
within Born–Oppenheimer molecular dynamics

Denis Flaigab and Christian Ochsenfeld*ab

The calculation of molecular response properties in dynamic molecular systems is a major challenge that

requires sampling over many steps of, e.g., Born–Oppenheimer molecular dynamics (BO-MD)

simulations. We present an extrapolation scheme to accelerate such calculations for multiple steps

within BO-MD trajectories or equivalently within other sampling methods of conformational space. The

extrapolation scheme is related to the one introduced by Pulay and Fogarasi [Chem. Phys. Lett., 2004,

386, 272] for self-consistent field (SCF) energy calculations. We extend the extrapolation to the

quantities within our density matrix-based Laplace-transformed coupled perturbed SCF (DL-CPSCF)

method that allows for linear-scaling calculations of response properties for large molecular systems.

Here, we focus on the example of calculating NMR chemical shifts for which the number of required

DL-CPSCF iterations reduces by roughly 40–70%.

1 Introduction

The reliable description of dynamic effects on molecular response
properties represents a major challenge for quantum chemistry.
It entails a huge computational effort to calculate response
properties in following, e.g., Born–Oppenheimer molecular
dynamics (BO-MD) trajectories or in scanning the change in
properties by relevant variations of the molecular structure, e.g.,
in particular individual binding modes within supramolecular
systems. This renders the restriction to just a few snapshots
often mandatory, which typically leads to insufficient sampling
for reliable predictions. The difficulties of sufficient and efficient
sampling for the ab initio simulation of, e.g., NMR spectra
characterized by chemical shieldings, spin–spin coupling constants,
chemical shift anisotropies (CSA), and nuclear spin relaxation1–5 are
abundant, so that increased efficiency by transferring information
between sampling points in order to speed up calculations is
important and the focus of the present paper.

While there has been much progress in calculating molecular
response properties for larger systems by the introduction of
linear- or even sublinear-scaling quantum-chemical methods

(see, e.g., ref. 6 for a recent review), there is much need to
reduce the prefactors for performing calculations on molecular
systems, in particular, in following MD trajectories or in scanning,
e.g., interaction domains in complex systems. Although there has
been some progress in reducing the necessary quantum-chemical
(QM) sphere by combination with simple empirical molecular-
mechanical (MM) methods in so-called QM/MM schemes,7–10

it has been shown crucial to systematically converge the QM
sphere and to typically include large QM spheres of more than
300–1000 atoms for reliable results,11–15 so that the prefactors of
the calculations still remain large.

In our present work, we focus on how to speed up the
calculation of molecular response properties within consecutive
time steps in MD simulations for the example of NMR chemical
shieldings. Here, calculating the response of the one-particle
density matrix with respect to the magnetic field16 or alternatively
to the nuclear-magnetic moment is required,17 which is obtained
by solving the so-called coupled perturbed self-consistent field
equations (CPSCF).18–21 This holds for the response both within
Hartree–Fock (HF) and Kohn–Sham density functional theory
(KS-DFT) including exact exchange (hybrid functionals) that are
solved for in a very similar fashion. In the molecular-orbital (MO)
basis the solution of the CPSCF equations scales as O(M5) with
molecular size M, since a transformation of the atomic-orbital
(AO) four-center two-electron integrals into the MO basis is
necessary. For NMR shieldings this effort can be conventionally
reduced to O(M3) by a direct contraction of AO-integrals.22,23
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Despite this reduction, the application to larger molecular
systems is strongly hampered in these schemes due to the
steep cubic increase of the computational effort. In order to
overcome these limitations, several alternative methods have
been introduced in recent years to reduce the computational
effort for the calculation of molecular response properties to
linear21,24–28 or even sublinear17 (i.e., to be asymptotically
independent of molecular size in the rate-determining steps);
see also ref. 6 for a recent review.

While the linear- and sublinear-scaling methods allow for
tackling new molecular systems with more than a 1000 atoms,
sampling over molecular-dynamic (MD) simulations or scanning
surfaces in general is still a major challenge. The ultimate goal is to
perform sufficient sampling for the reliable prediction of
molecular properties for complex and dynamic molecular systems.
This also includes the highly challenging description of solvent
effects. At the same time the calculations should be feasible on
simple workstations or cheap workstation clusters instead of
supercomputer applications that are accessible in a dedicated
fashion only for a few benchmark calculations in general.

Therefore, we focus in our present work to make another
small step towards this goal by introducing an extrapolation
method for accelerating response calculations in consecutive
time steps of BO-MD simulations (or similarly in scanning
properties depending on structural arrangements). While we
currently focus on the calculation of NMR chemical shieldings,
we expect our method to be useful also for other response
properties that require the solution of the CPSCF equations. In
order to exploit information of previous time steps, we develop
an extrapolation scheme closely related to the one for extrapolating
Fock matrices between consecutive SCF energy calculations
introduced by Pulay and Fogarasi in 2004.29 By adapting the
extrapolation within our linear-scaling DL-CPSCF theory, we are
able to significantly reduce the number of iterative cycles for
converging the DL-CPSCF (or analogously the equivalent CPSCF)
equations. After a brief description of our DL-CPSCF extrapola-
tion method, we present the first results for analyzing the
efficiency gains for various molecules.

2 An extrapolation method for response
quantities

For calculating molecular response properties of dynamical
systems, the CPSCF equations need to be solved for many
points in conformational space, which represents the rate-
determining step. The sampling points for describing dynamic
molecular systems can be accessed either by molecular
dynamics (MD) simulations, Monte Carlo methods (MC), or
other conformational sampling techniques. Here, a very successful
pathway is provided by MD simulations within the Born–
Oppenheimer approximation (BO-MD) – for an introduction

and overview see, e.g., ref. 30. By solving the CPSCF equations
in all steps within BO trajectories, in principle, the complete
time evolution of response properties due to conformational
changes is accessible (see, e.g., ref. 1–5, 31, and 32).

In order to exploit information of previous time steps efficiently
for computing response properties, we employ our linear-scaling
DL-CPSCF method introduced earlier26 and adopt an extrapolation
scheme closely related to the one for extrapolating Fock matrices
between consecutive energy calculations introduced by Pulay and
Fogarasi.29 The original scheme allows for accelerating SCF energy
calculations and has been further studied by Herbert and Head-
Gordon;33 see also related work for calculating energies within
BO-MD by Niklasson et al.34

The original Fock matrix dynamics approach by Pulay and
Fogarasi29 is based on a polynomial expansion of order M,
yielding a linear equation system for N preceding Fock
(or Kohn–Sham) matrices F (n):

Fð1Þ ¼ K0 þ 1 � K1 þ 1 � K2 þ � � � þ 1 � KM

Fð2Þ ¼ K0 þ 2 � K1 þ 4 � K2 þ � � � þ 2M � KM

..

.

FðNÞ ¼ K0 þN � K1 þN2 � K2 þ � � � þNM � KM

(1)

The coefficient matrices Km are determined by solving the
corresponding matrix equation

f = X�k, (2)

with f ¼
Fð1Þ

..

.

FðNÞ

0
B@

1
CA; k ¼

K0

..

.

KM

0
B@

1
CA, and Xnm = nm�1 (1 r n r N;

1 r m r M + 1; M o N). Accordingly, the matrix F (N + 1) for the
time step N + 1 can be extrapolated as:

F (N + 1) = K0 + (N + 1)�K1 + (N + 1)2�K2 +� � �+ (N + 1)M�KM (3)

The coefficient matrices Km contain individual coefficients
for all elements Fmn of the matrix F. However, the matrix X is
independent of basis set indices m and n. Therefore the equation
system has to be solved only once (independently of indices m
and n), which makes the extrapolation procedure very efficient.
In our present work, we adopt this extrapolation approach for
calculating response properties within our linear-scaling density
matrix-based Laplace-CPSCF (DL-CPSCF) formalism.26 While our
approach is expected to be quite generally applicable to response
properties, we currently focus on NMR shieldings (by calculating
the response with respect to components B of an external
magnetic field) and extrapolate an initial CPSCF guess by a
similar polynomial expansion, such that the number of iterations in
solving the DL-CPSCF equations is reduced. Here, the iterative
procedure consists of solving the following linear-equation system:17

F ~P
B

voS � S ~P
B

voF

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{A1

þGvo
~P
B

ov þ ~P
B

vo

h izfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{A2

¼ �FðBÞvo þ SB
voPF þ F PQB

� �
vo
S � SðPQBÞvoF þ Gvo PSBP þ PQB

� �
ov
þ PQB
� �

vo

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bB

(4)
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Within the iterative solution, the terms on the left hand side can
be split into terms that involve only simple (and sparse) matrix
multiplications (denoted A1) and terms that require a contraction of
the perturbed one-particle density matrix P̃B

vo with the two electron
integrals leading to the G matrix. The latter terms are labelled A2

and are the computationally most intensive parts, since besides the
fairly cheap A1 part, the computation of the right-hand side needs to
be performed only once.

Therefore, in order to reduce the computational prefactor by
an extrapolation from previous time steps, we propose an
extrapolation employing the perturbed two-electron matrix A2

from preceding BO-MD steps. Here, the notation A2 refers to the
Laplace-based DL-CPSCF equations as specified in eqn (13) of
ref. 17 (see eqn (4) above). In this way, the matrix A2(N + 1)
within the BO-MD step N + 1 can be extrapolated from previous
A2 matrices by solving the matrix equation analogous to eqn (2),

a2 = X�k, (5)

with a2 ¼
A2ð1Þ

..

.

A2ðNÞ

0
B@

1
CA. The form of k and X is unchanged

compared to the Fock matrix extrapolation. By directly extra-
polating the A2 matrix, the time-consuming formation of the
Fock-like term Gvo[P̃B

ov + P̃B
vo] can be omitted, which would not

be the case, if the perturbed one-particle density matrix was
extrapolated (cf. the advantage of extrapolating the Fock matrix
instead of the one-particle density matrix within SCF energy
calculations).29,33

The proposed extrapolation method was implemented in a
development version of the program package Q-Chem35 based
on the DL-CPSCF method.17,26 All NMR shielding calculations
were performed with sufficiently tight thresholds for SCF conver-
gence, integral threshold, and verified accuracy for the chosen
Laplace expansion.

3 Results and discussion

In the following, we study the efficiency of the extrapolation
method in the context of solving the CPSCF equations for
calculating response properties. Similar to the earlier studies
for extrapolating between consecutive SCF energy calcula-
tions,29,33 where the reduction of required SCF iterations was
investigated, we list the reduction of the number of required
A2-builds (see discussion above), which are the dominant
calculation step in converging the CPSCF equations.17 The
correlation between the number of CPSCF iterations and the
CPU time for the A2-part is exemplarily shown in Fig. 1 for the
molecular systems that are investigated in Table 2 and in
addition for a larger amylose system consisting of 16 glucose
units.25 Here, we always used incremental A2-builds, which
leads to a reduction of the computational time in later itera-
tions. While there is a near linear correlation between the
iteration number and CPU time for the systems studied in
Table 2, there are some deviations from linear for the larger
amylose system. It is worth noting that we observe almost
exactly the same correlation behavior for the use of incremental
Fock-builds in SCF iterations.36–38 The data in Table 1 illustrate

the efficiency of the proposed method for a simple test case that
was also investigated in the context of Fock matrix extrapola-
tion:29,33 a tetrafluoroethylene molecule with time steps of
0.5 fs in the MD simulation. The table compares the required
number of CPSCF iterations by different extrapolation choices
(N/M: N preceding steps, polynomial of order M) with both the
most simple case of starting the CPSCF from the pure bx part as
an initial guess (which would correspond to no transfer of
information between time steps), as well as the most obvious
(and often conventional) exploitation of the previous perturbed
one-particle density matrix PB for the first DL-CPSCF iteration.

All calculations are based on an adaption of the DIIS
method39 for improving the CPSCF convergence (for details
see Appendix A) and results for three different DIIS norms as
convergence criteria (a) 10�6, (b) 10�8, and (c) 10�10 are listed.
The convergence criteria yield maximum errors for all atoms and
all approaches of (a) 2.2 � 10�1 ppm, (b) 1.8 � 10�2 ppm, and (c)
2.4� 10�3 ppm (in comparison to the approach with no transfer of
information between time steps and a DIIS error norm of 10�14).

Fig. 1 Reduction of the total CPU time for the dominating A2 formation vs. the
reduction of CPSCF iterations. For all calculations incremental builds of the A2 part
(integral threshold of 10�10) were employed. With circles averages over all molecular
systems listed in Table 2 are shown (method and basis set according to Table 2); with
crosses the results for a larger amylose16 system25 are shown (HF/SVP). The reduction
of the number of CPSCF iterations refers to 8 CPSCF iterations (100%).

Table 1 Mean number of required CPSCF iterations without transfer from
previous steps, using the perturbed one-particle density matrix PB from the
previous time step, and with different extrapolation choices N/M for DIIS error
norms eDIIS of 10�6, 10�8 and 10�10 as a convergence criterion, respectively.
Averages for all steps in five trajectories are given (each 0.5 ps, T = 500 K, time
step 0.5 fs, GIAO-HF/6-31G**40,41)

Extr. choice

Number of required CPSCF iterations

eDIIS = 10�6 eDIIS = 10�8 eDIIS = 10�10

No transfer 6.00 7.24 8.96
PB prev. 4.01 5.84 7.01
1/0 3.35 4.97 6.61
2/1 2.00 3.68 5.03
4/2 2.00 2.30 4.22
6/3 2.00 2.00 3.66
8/4 2.00 2.00 2.49
12/6 2.00 2.00 2.02
16/8 2.00 2.00 2.03
20/10 2.00 2.01 2.04
22/11 2.00 3.92 5.17
24/12 5.00 6.36 7.96

PCCP Paper

Pu
bl

is
he

d 
on

 1
0 

M
ay

 2
01

3.
 

 
View Article Online

http://dx.doi.org/10.1039/c3cp50204j


This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 9392--9396 9395

All results in Table 1 are averaged over 1000 steps and five
independent trajectories.

Already the simple direct reuse of the A2 matrix from the
previous BO-MD step (formally a 1/0 extrapolation) while
employing a convergence criterion of 10�8 reduces the average
number of CPSCF iterations from 7.24 (where just the one-
electron part is employed as an initial guess – i.e., no data
transfer between time steps) to 4.97. In case the previous
perturbed one-particle density matrix (PB prev.) would have
been employed, the number of iterations is 5.84. By employing
the more elaborate extrapolation using the higher-order poly-
nomials the number of required iterations reduces further to
only 2.00. At the same time deviations with respect to the case
of no transfer between time steps are below 1.8 � 10�2 ppm.

For the tested convergence criteria (10�6, 10�8, 10�10) the
number of required iterations decrease with enlarging the N/M
values (as shown in Table 1) and reach a minimum before
increasing again (a similar behavior is also observed for the
Fock matrix extrapolation in ref. 33). For the DL-CPSCF case the
N/M combinations 4/2, 6/3, 8/4, and 12/6 result in the largest
savings regarding the number of DL-CPSCF iterations.

Further examples for the efficiency of the new extrapolation
for the CPSCF initial guess are presented for various other molecular
systems in Table 2. The BO trajectories at the HF/6-311G** 40,41

level were all started from minimum structures as obtained at
the same level, except for the glycine pentamer Glycine5, which
was described by HF/6-31G**.

The results are based on averages for three trajectories each
over 50 fs and a DIIS error norm of 10�8 as convergence criteria
(errors of all NMR shieldings are below 0.05 ppm). For all
molecular systems a similar trend for the reduction of the

required number of iterations is observed as for the C2F4

system, even though the reduction may vary to some extent
depending on the system and, e.g., the different flexibilities of
the structures. While reuse of the perturbed density matrix
from preceding iterations reduces the required number of
iterations by 14–32% (20% on average), the optimal extrapola-
tion scheme reduces the number of iterations by 31–74% (61%
on average). An analogous evaluation for a looser CPSCF
convergence criterion of 10�7 (maximum error 0.2 ppm) yields
a reduction of 3–34% (22% on average) for the reuse of the
perturbed density matrix from preceding iterations and 40–75%
(63% on average) for the optimal extrapolation scheme.

4 Conclusion

We have introduced an extrapolation scheme between consecutive
Born–Oppenheimer molecular dynamics steps for accelerating the
solution of the CPSCF equations being the rate-determining step
in calculating response properties. The extrapolation scheme is
closely related to the Fock-matrix extrapolation introduced by
Pulay and Fogarasi29 for the calculation of successive energies.
Here, we extend the extrapolation to the quantities of relevance in
our linear-scaling Laplace-based CPSCF theory (DL-CPSCF),26

where we employ the perturbed two-electron part of preceding
MD steps based on the simple polynomial expansion. For the
example of calculating NMR chemical shieldings, the simple
reuse of the perturbed density matrix from the preceding steps
saves roughly 10–30% of iterations, whereas with an optimal
choice of the investigated extrapolation schemes roughly 40–70% of
iterations can be saved.

A DIIS acceleration for DL-CPSCF

In our present work, the convergence of the CPSCF method is
accelerated by employing the DIIS method39 for the DL-CPSCF
run. In line with the SCF DIIS error matrix

eSCF � FPS � SPF, (6)

the DL-CPSCF DIIS error matrix is determined starting from
the ansatz

eCPSCF �
@

@B
eSCF: (7)

Within the framework of DL-CPSCF theory as specified by
eqn (4) (eqn (13) of ref. 17) the ansatz of eqn (7) results in

e
ðnÞ
CPSCF ¼ A2

ðnÞ � bB � A1
ðnÞ

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A2
ðn�1Þ

(8)

for the n-th DL-CPSCF iteration (the curly brace holds within
the limits of the accuracy of the chosen Laplace expansion).
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Table 2 Mean number of required CPSCF iterations without transfer from
previous steps, using the perturbed one-particle density matrix PB from the
previous time step, and with different extrapolation choices N/M. Averages over
all steps in three trajectories are given (each 50 fs, T = 300 K, time step 0.5 fs,
GIAO-HF/6-311G** a, DIIS error norm 10�8 as a CPSCF convergence criterion)

Molecule No transfer PB prev. 1/0 2/1 4/2 6/3 8/4 12/6 16/8

CH4 5.88 5.00 4.28 3.93 3.60 3.02 2.41 2.29 2.32
CH3CH3 6.00 5.07 4.80 3.98 3.79 3.34 2.71 2.06 2.13
CH3F 7.00 5.57 4.88 3.93 3.30 2.56 2.29 2.06 2.09
CH3OH 7.00 5.92 5.04 4.23 3.96 3.71 3.45 2.95 2.98
CH3NH2 7.00 5.93 5.00 4.12 3.97 3.69 3.35 2.65 2.68
CH3CHO 9.00 7.06 6.61 4.80 3.88 2.95 2.47 2.32 2.37
CH3COCH3 8.58 6.95 5.99 4.74 4.17 4.12 4.23 4.65 5.26
CH3CN 8.00 6.25 5.64 4.00 3.60 2.86 2.39 2.32 2.48
CO2 7.00 4.97 4.08 2.78 2.11 2.15 2.19 2.33 3.41
CF4 6.34 5.01 4.22 2.75 2.00 2.00 2.00 2.00 2.22
HCN 7.97 6.65 5.99 4.08 3.36 2.72 2.29 2.11 2.16
CH2CH2 7.00 6.00 5.45 4.16 3.87 3.44 2.95 2.55 2.63
CHCH 7.97 6.74 5.97 4.56 3.95 3.67 3.37 3.33 3.60
C6H6 7.13 6.00 5.63 4.94 4.93 4.99 5.00 5.10 5.79
CH2O 8.84 7.18 6.31 4.49 3.54 2.94 2.66 2.60 2.74
CH2CCH2 8.00 6.00 5.53 4.26 3.98 3.72 3.19 2.89 3.14
Thymine 9.00 6.16 5.79 4.47 4.44 4.76 5.05 5.36 5.76
Ribose 7.95 6.02 5.32 4.93 5.00 5.05 5.12 5.51 6.00
Glycine 8.55 6.19 5.61 4.30 4.18 4.23 4.33 4.85 5.36
Glycine5

a 9.43 6.98 6.02 4.93 4.21 4.15 4.34 5.00 5.17

a The calculations for the glycine pentamer were performed with a
6-31G** basis set.40,41
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