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Abstract

Numerous high-throughput sequencing studies have focused on detecting conventionally spliced mRNAs in
RNA-seq data. However, non-standard RNAs arising through gene fusion, circularization or trans-splicing are often
neglected. We introduce a novel, unbiased algorithm to detect splice junctions from single-end cDNA sequences. In
contrast to other methods, our approach accommodates multi-junction structures. Our method compares favorably
with competing tools for conventionally spliced mRNAs and, with a gain of up to 40% of recall, systematically
outperforms them on reads with multiple splits, trans-splicing and circular products. The algorithm is integrated into
our mapping tool segemehl (www.bioinf.uni-leipzig.de/Software/segemehl/).

Background
The term splicing refers to a post-transcriptional process
in which the raw transcript (pre-mRNA) is cleaved from
intronic DNA fragments. In general, the splicing mech-
anisms allow the recombination of protein-coding and
non-coding RNA fragments and thus greatly increase the
repertoire of potentially functional transcripts. While the
overwhelming majority of splicing events occurs within
the same pre-mRNA at consensus splice sites, some
mRNAs are spliced at non-consensus sites. Many tran-
scripts derived at non-consensus splice sites may have
escaped detection in the past because of the assumptions
built into the in silico analysis pipelines or due to the
limited throughput of earlier RNA sequencing (RNA-seq)
protocols.
Some species have developed mechanisms to fuse sep-

arately transcribed mRNAs. These mRNAs may stem
from distant loci, opposite strands or homologous chro-
mosomes. A prominent physiological example is the
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mod(mdg4) trans-splicing for Drosophila melanogaster
[1]. Chimeric transcripts from different loci may be func-
tional even in mammals [2]. Circular RNAs [3,4] are
recognizable in RNA-seq data in the form of reads that
contain apparent splice junctions that connect the end
(start) of a split read fragment to the start (end) of
a downstream (upstream) fragment. Very recently, they
have been identified as an abundant class of regula-
tory transcripts functioning as microRNA sponges [5,6].
In addition to physiological trans-splicing, a number of
transcripts potentially derived from the fusing of genes
have been observed in different types of cancer, such
as melanoma [7] and breast cancer [8]. In the follow-
ing, we use for brevity the term ‘fusion transcript’ to
refer to RNAs that stem from a fused gene or a trans-
splicing event. Although trans-splicing and mRNA fusion
events appear to be rare compared to the regular local and
collinear splicing, fusion transcripts indicate potentially
important functional entities or diagnostic marker genes.
Their emerging importance mandates the use of analy-
sis pipelines for RNA-seq data that ensure their efficient
detection and inclusion in the subsequent data analysis
workflow.
Several different algorithms for splice site detection

have been devised so far. The original version of TopHat
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[9] predicts exon locations from the coverage data and
attempts split read alignments across neighboring exons.
This algorithm was not able to detect fusion events,
so a new algorithm, TopHat-Fusion [10], was pub-
lished and has since been integrated into TopHat2
along with some other modifications to the original algo-
rithm. SpliceMap [11] starts by splitting the reads
into fragments of 25 nucleotides and then attempts
to align all fragments separately with a limited num-
ber of mismatches. Subsequently, canonical splice junc-
tions are searched within a genomic interval of 400 Mb.
The specificity of splice junctions may be improved by
providing paired-end information. SpliceMap’s junc-
tion search is significantly distinct from TopHat2’s. The
MapSplice algorithm [12] resembles SpliceMap. It
also performs a segmentation of reads into tags and han-
dles each tag individually. The tags are aligned to exons
and junctions inferred from tags mapping to consecutive
exons.
SplitSeek [13] also uses both the 5′ and 3′ ends of

reads to infer spliced exons. SplitSeek does not make
use of canonical splice site information and is not lim-
ited to a common locus. Another tool that was specifically
designed for the detection of fusion transcripts, deFuse
[14], makes use of paired-end information and triggers
local alignments at positions of discordant paired-end
reads.
Like TopHat2, SOAPsplice [15] is based on a

Burrows-Wheeler transform and attempts to map the
reads completely to the genome with no more than three
mismatches or one gap. All unmapped reads are subse-
quently subjected to a split mapping with two segments.
Each segment has to fulfill a number of quality criteria.
GSNAP [16] uses hash tables to retrieve position lists and
subsequently merges and filters them efficiently. It is able
to allow for multiple mismatches and long indels and can
detect short- and long-distance splicing. The RNA-seq
mapper RUM [17] uses Bowtie [18] and BLAT [19] to
detect annotated as well as de novo splice junctions. In a
first step, reads are mapped against the genome as well as
the user-supplied transcriptome. All unmapped reads are
forwarded to BLAT and split alignments are merged. One
of the latest tools for RNA-seq alignment, STAR [20], uses
maximal mappable prefixes that are identified using suffix
arrays. In a second step, the prefixes are ‘stitched’ together
to reconstruct the isoforms. This algorithm was reported
to be very fast – in fact it was shown to be more than 50
times faster than some of its competitors.
Here, we present a unified unbiased algorithm to

detect splicing, trans-splicing and gene fusion events
from single-end read data. The method, based on an
enhanced suffix array, chaining and dynamic program-
ming algorithms, is integrated into the mapping tool
segemehl [21].

Results and discussion
The algorithm presented here makes use of a read match-
ing method with enhanced suffix arrays (ESAs) published
earlier [21]. In brief, for a read of length m, the algorithm
evaluates the best alignments with a limited number of
mismatches, insertions and deletions for all 2(m − �)

suffixes of the read and its reverse complement, where
� is the minimum suffix length. An alignment qualifies
as a seed if a score-based maximum E-value criterion
and a maximum occurrence threshold are met. Subse-
quently, full reads will be aligned to all distinct seed
locations in the reference genome using Myers’ semi-
global bit-vector alignment [22]. All alignments passing
a minimum accuracy threshold are reported. While the
E-value, minimum accuracy and maximum occurrence
parameter control the specificity and limit the number
of multiple hits, the potentially large number of seeds
from the beginning to the end of the read ensure a high
sensitivity. For spliced or fusion transcripts, a successful
semi-global alignment of the read is likely to fail. Instead,
the ESA-based method will identify several seeds match-
ing different locations or strands. The algorithmic strategy
to identify splicing, trans-splicing or gene fusion sites is
based on a greedy, score-based seed chaining followed by
a Smith-Waterman-like transition alignment. This align-
ment optimizes the total score of a number of local align-
ments at different locations and strands. The algorithm
does not have any effective length restrictions. Details are
given in the Materials and methods section.

Simulated data
The algorithm’s performance was compared with seven
alternative split read methods: TopHat2, RUM, STAR,
SOAPsplice,MapSplice, SpliceMap and GSNAP. In
principle, all tools were run with default parameters for
split-read mapping. Where available, fusion and trans-
splice sensitive alignment parameters were turned on.
With the exception of RUM, no extra annotations were
given to any of the programs (see Materials and methods
and Additional file 1).
To test the algorithm’s precision and sensitivity in all

applicable scenarios, Illumina and 454 reads were simu-
lated for regular splice junctions and a mixture of regular
and non-regular splice junctions, i.e., splice junctions that
connect opposite strands (strand-reversing) and splice
junctions that connect distant exons (long-range splicing);
see Materials and methods. The simulated Illumina and
454 reads were 100 bp and 400 bp long, respectively. Fur-
thermore, we tested the recall on short circular transcripts
(100 bp) as well as long linear and long circular reads
of length 0.5 to 5 kB. The latter is the typical size range
for circular transcripts in mammals. Short circularized
RNAs are abundant in Archaea [23]. In accordance with
other work in this field, Illumina and 454 error models
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were applied to the simulated reads. These models intro-
duce mismatches, insertions and deletions to the reads to
emulate sequencing artifacts (seeMaterials andmethods).
The results for simulated 454 and Illumina reads are

summarized in Figure 1. segemehl performed best in
both 454 simulations. In the data set with regular splice
junctions, segemehl consistently recovered more than
90% of all simulated splice junctions. Its closest competi-
tor, GSNAP, achieved a recall of between 81% and 92%.
STARwas third, with less than 87% of recalled splice junc-
tions. Probably due to length restrictions, TopHat2 did
not report any results after running for over 1 week and
was terminated. For irregular splice events, the differ-
ence was even more striking: while segemehl recovered
approximately 90% of all simulated splice junctions, the
next best competitor, STAR, achieved a recall of approxi-
mately 55%.
The improved performance for 454 reads did not signifi-

cantly impair segemehl’s performance for Illumina data.
All tools, including segemehl with a recall at the 95%
level, found more than 90% of all simulated splice junc-
tions. RUM, gaining an advantage by simultaneously align-
ing the reads to the genome and transcriptome, performed
best in this scenario. The best genome-only aligner was
STAR with a recall of 98%.
When trans-splicing events were included, five of the

seven alternative tools recovered less than 80% of all splice
junctions. TopHat2 had the best sensitivity and found
more than 90% of the junctions. However, its false pos-
itive rate of more than 10% was quite high. In contrast,

segemehl identified about 95% of all junctions in this
data set and found only 2% false positives. For Illumina
reads, the runtime of segemehlwas comparable to most
of the tools tested. Only MapSplice, GSNAP and STAR
were significantly faster than segemehl (Additional
file 1: Table S1).
In addition to these benchmarks with Illumina and 454

error models, we also wanted to investigate segemehl’s
behavior for reads with higher error rates, for example
caused by multiple single nucleotide variations or, more
importantly, less successful sequencing runs. Therefore,
we carried out further benchmarks with higher error rates
(up to 5% mismatches and indels) and varying coverage.
As expected, the recall increased with higher coverage and
dropped with higher error rates. However, segemehl’s
specificity was consistently at a very high level for all types
of splice junctions (Additional file 1: Figure S1).
The performance for artificial short circular (100 bp),

long circular and long linear reads (0.5 to 5 kb) is summa-
rized in Figure 2. For the short reads, segemehl achieved
a recall of 85% of all circular junctions using uniquely
mapping split reads. The closest competitor, TopHat2,
achieved a recall of 55%. SpliceMap, RUM and STAR did
not find any circular junctions (Figure 2A). In contrast,
STAR and GSNAP were the only tools that in principle
were able to handle long reads. For linear transcripts,
GSNAP was slightly ahead of segemehl by 6%, whereas
STAR was merely able to recall 40% of all junctions. No
circular junctions were recovered by STAR or GSNAP
(Figure 2B).
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Figure 1 Performance of various read aligners on simulated data sets with different splice events. For simulated 454 reads (400 bp),
segemehl performed significantly better in detecting conventional and ‘non-conventional’ (strand-reversing, long-range) splice junctions.
segemehl was the only tool that consistently recalled more than 90% of conventional splice junctions. For ‘non-conventional’ splice events,
segemehl extended its lead to 40% for recall without losing precision. Likewise, compared to three of the seven alternative tools, segemehl had
a 30% increase in recall for irregularly spliced Illumina reads (100 bp). Compared to TopHat2, it had a slight increase while reporting significantly
fewer false positives. At the same time, segemehl’s performance with simulated, regularly spliced Illumina reads was comparable with the other
seven tools tested. gs, GSNAP; ms, MapSplice; ru, RUM; se, segemehl; sm, SpliceMap; so, SOAPsplice; st, STAR; to, TopHat2.
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Figure 2 Recall and precision for short circular, long circular and long collinear transcripts. For this benchmark, we tested segemehl’s
performance with sequence reads that were generated from the RefSeq database (A). To simulate sequencing errors, we applied an Illumina error
model to the short circular reads (100 bp) and a 454 error model to the long circular and collinear transcripts (0.5 to 5 kB). For short circular
transcripts, segemehl achieved a recall of more than 85%, outcompeting all other tools while maintaining a high precision of 98%. Using RefSeq
transcripts of length 0.5 to 5 kB, segemehl achieved a recall of more than 80% for circular and linear transcripts. Among the tools that were able to
handle such long transcripts, segemehl was the only tool that was able to detect the circularization. For long collinear transcripts, GSNAPwas
slightly better than segemehl by 6%, at the expense of a nearly twofold increase in runtime (Additional file 1: Table S1). (B) The RefSeq TTC22
transcript is an example of a simulated circularization. The arrow indicates where the transcript has been artificially circularized. SpliceMap, RUM
and STAR did not find any circular junctions (not shown). STAR and GSNAP were the only tools able to handle long reads. gs, GSNAP; ms,
MapSplice; se, segemehl; so, SOAPsplice; st, STAR; to, TopHat2.

Real data
We applied segemehl to a number of real data sets.
Split-mapping of a Drosophila melanogaster RNA-seq
data set resulted in the successful recovery of the pre-
viously described trans-splicing of the MODMDG4 gene
(Figure 3A) [1]. Most notably, segemehl revealed three
alternative strand-reversing junctions consistent with a
splice event between a common exon on the reverse
strand to three exons encoded on the forward strand.
For a human melanoma transcriptome data set, the

method identified the recently described CDK2-RAB5B
read-through transcripts on chromosome 12 (cf. [7])
(Figure 3B). In addition, segemehl identified a huge
number of strand-reversing split reads located at the

locus of the premelanosome protein (PMEL). This gene is
also known as Silver Homolog (SILV ). This gene located
on chromosome 12 encodes a melanocyte-specific trans-
membrane glycoprotein and is expressed under physiolog-
ical conditions in melanosomes. It plays an essential role
in the structural organization of premelansomes and has
been suggested as a potential serummarker for melanoma
(Figure 3C). More than 20% of the trans-splicing events
detected in the sample occurred at this locus, making gen-
eral errors in the RNA preparation and analysis highly
unlikely. Thus, the PMEL locus might be an interesting
target for further investigations.
We additionally applied our algorithm to a 454 data set

published by [24] generated from RNA from human foot
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Figure 3 Examples of (re-)discovered splicing events from single-end split reads. (A) For Drosophila melanogaster, segemehl recovered
three different previously described splice junctions linking the minus encoded exon three ofMODMDG4 on chromosome 3R to exons on the
opposite strand. The strand-reversing splice junctions are annotated between the plus and minus strands. The direction of the strand-reversing
splice junctions, i.e. from the minus to the plus strand, was inferred from annotation and prior knowledge. This was necessary because the RNA-seq
library used was not strand specific. (B) For the human melanoma transcriptome data set, segemehl identified a very large number of
strand-reversing splice junctions in the premelanosome protein (PMEL) gene locus. The split reads that support these junctions split from the plus
strand to the minus strand and vice versa. Since we lack additional information, a direction for these junctions cannot be given. Only a selection of
strand-reversing PMEL junctions is shown here. (C) For the same data set, segemehl found two alternative transcripts linking CDK2 and RAB5B
encoded on human chromosome 12. These junctions (dashed lines) are supported by split reads whose fragments map to the same strand, i.e. split
reads that were not strand-reversing. Since the junctions exactly hit the annotated borders of the CDK2 and RAB5B exons, we assigned them to the
minus strand. chr, chromosome; PMEL, premelanosome protein.
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fibroblasts. As an example demonstrating the efficiency
of segemehl, we considered the tumor suppressor gene
p53 (Figure 4A). This key regulator of the cell cycle is
one of the most intensely studied genes because of its
importance in cancer research. The functionally distinct
variants and isoforms of p53 have been the focus of an
intense research effort [25,26]. Despite the attention this
gene has already received, a reanalysis of the raw data
[24] identified three previously unrecognized canonical
splice variants. We have validated all three novel isoforms
in venous fibroblasts using PCR and sequencing (see
Materials and methods and Additional file 1). Since
we failed to validate the p53 isoforms in HUVEC cells
(data not shown), these splice variants might be tissue-
specific.
Novel transcripts were also predicted in a HUVEC 454

RNA-seq data set [27]. The example in Figure 4B shows

two isoforms whose start is located anti-sense within the
intronless TACSTD2 gene. Their first intron contains on
the opposite strand the entire MYSM1 gene, which codes
for a histone H2A deubiquitinase.
For a human prostate carcinoma cell line, we identi-

fied a transcript that aligns to adjacent regions on the
plus and minus strands of the genome. We validated the
occurrence of this split using RT-PCR followed by cloning
and Sanger sequencing. Interestingly, the split was located
in the 3′ UTR of the stearoyl-CoA desaturase gene SCD
(Additional file 1 and Additional file 1: Figure S5), which
has been implicated in prostate cancer [28].
For the RNA-seq data from HEK293 cells analyzed

specifically for circular RNAs in [5], we were able
to recover all circular RNAs that were experimentally
validated by the authors of the original study (see
Additional file 1).
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Figure 4 Novel and known spliced transcript isoforms identified with long single-end 454 RNA-seq split reads. (A) Transcript isoforms of
the p53 gene. In addition to previously reported isoforms, (i) to (iv) [24], we identified three novel canonically spliced isoforms, (v) to (vii). Consistent
with [24], the β and γ isoforms were not expressed here. Each splice junction is labeled with its read support, i.e. the number of reads that map
across this junction. For better comparability with [24], the p53 gene, encoded on the minus strand of chromosome 17, is shown in the direction of
transcription from left to right. The junctions marked with an asterisk have been experimentally validated. (B) Unannotated transcripts in the vicinity
of the TACSTD2 andMYSM1 genes recovered from a HUVEC RNA data set [27]. segemehl revealed the exon structure of two novel transcript
isoforms comprising at least four exons. One exon common to both isoforms was mapped to the TACSTD2 gene. The associated introns enclose the
MYSM1 gene locus. The putative gene structure is supported by three exemplary multi-split reads (not strand-reversing). Some of the splice
junctions have already been reported by ENCODE/CSHL (HUVEC polyA+ RNA-seq). The strandedness of the isoforms cannot be inferred.
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Finally, we tested our algorithm on the transcriptome
of the nematode Caenorhabditis elegans. The roundworm
is known to have an extensive number of trans-spliced
transcripts. In particular, spliced leader sequences (SLs)
of about 22 nucleotides were spliced to the trimmed 5′
ends of many mRNAs [29]. The spliced leader sequences
were encoded as part of small non-coding RNAs, the
SL RNAs, in 28 loci scattered throughout the genome
(Additional file 1: Table S3). To test whether SL trans-
splicing can be detected directly from the segemehl
mapping results, we reanalyzed a small part of the publicly
available sequencing data generated by [30]. All trans-
splicing junctions reported by the segemehl mapping
(see Additional file 1) were required to have a minimum
split read support of three. After masking rRNAs, we
obtained approximately 9,000 junctions linking loci with
a distance of more than 200 kb or on different chro-
mosomes. These were supported by about 139,000 split
reads. More than 90% of them connect to the genomic
coordinates of the 3′ end of one of the annotated spliced
leader sequences. This simple survey accurately repro-
duces results from a recent detailed analysis of C. elegans
trans-splicing [31]. In particular we found that 70% of
the ce6 mRNAs annotated in the UCSC genome browser
were trans-spliced. We also recovered the expected dis-
tribution of spliced leader usage: SL1 is by far the most
frequently used leader sequence (85.9% of all SL junctions)
followed by SL2 (13%), SLf (0.4%), SLb (0.3%), SLc (0.2%),
SLd (0.2%) and SLa (<0.1%) (Additional file 1: Table S5).
Other trans-splice junctions found during this exercise are
subject to further research.
To benchmark the speed of our split-read aligner, we

aligned four different data sets with segemehl, STAR,
SOAPsplice, GSNAP, TopHat2 and RUM. With the
exception of STAR, in most scenarios segemehl was
faster or on a par with the other tools tested (Additional
file 1: Table S2). Because it uses a full ESA, the memory
consumption of segemehl depends on the size of the
reference genome (cf. [21]). Thus, it has the highest mem-
ory consumption among all tools tested. For large mam-
malian genomes, segemehl may not be feasibly applied
on computers with less than 50GB of memory. The size
of the read library, however, does not affect the memory
consumption. Note that for smaller genomes the mem-
ory consumption is considerably smaller, e.g. C. elegans
1.5 GB, Drosophila melanogaster 2.6 GB and Arabidopsis
thaliana 1.8 GB.

Conclusions
We have presented a novel algorithm for split-read map-
ping of single-end RNA-seq data that combines error-
tolerant ESA-based seed mapping with a fast bit-vector
alignment. It accommodates multiple splits within a single
read and makes no a priori assumptions on the transcript

structure. Implemented in the segemehl mapping tool,
it readily identifies conventional splice junctions, collinear
and non-collinear fusion transcripts, and trans-spliced
RNAs, without the need for separate post-processing
or an extensive computational overhead. Compared to
widely used competitors, the method has significantly
higher sensitivity and produces less false positives, espe-
cially for trans-splicing scenarios. This makes segemehl
the method of choice for annotating rare transcript vari-
ants. Indeed, previously undescribed exons and additional
splice junctions were readily identified.
Strikingly, the precision is maintained even for reads

with higher error rates (Additional file 1: Figure S1). This
feature is of particular interest when transcriptome data
from organisms with high allelic variations are processed.
It also makes it feasible to analyze transcriptome data by
mapping to the genome of a closely related species as a
reference.
Already the analysis of the few test data sets used here

to verify the viability of our approach, shows that RNA-
seq data sets readily contain evidence for a substantial
number of transcripts with atypical structures. In addition
to read-through transcripts, which preserve collinearity
and can be explained by conventional splicing from an
extended primary transcript, we also observed a moder-
ate number of products that violate collinearity. These fall
into at least three broad classes: strand-reversing RNAs,
such as the fruit fly MODMDG4 gene [1,32], that orig-
inate from both reading directions of a compact locus;
permuted RNAs and circular isoforms [3-6,33,34] as for
theANRIL non-coding RNA [35]; and RNAs that are com-
bined from components originating from different loci
such as the rat HongrES2 RNA [36] and several chimeric
human proteins recently described in [37]. A few of these
have been studied in some detail and at least in parts
have also been characterized functionally [2]. These stud-
ies suggest that a part of the non-collinear transcriptome
might be functional [38] and cannot be explained as a
consequence of chromosomal rearrangements relative to
the reference genome. An accurate mapping tool such as
segemehl, which is sensitive to split reads and operates
without an underlying model of valid transcript structure
and hence does not discard non-collinear mapping results
as artifacts, is therefore an indispensable tool for system-
atic investigations into this largely uncharted section of
the transcriptome.

Materials and methods
The algorithmic strategy for split-read alignments is
sketched in Figure 5.

Chaining
After matching a read we obtain at most 2(m − �) seed
alignments. Each seed may have multiple occurrences
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loci, strands or chromosomes (A) are chained. Subsequently, the order of the seeds within the chain guides a walk through the alignment cube
(B). For each genomic locus, a local alignment with the read is performed. In addition to the regular Smith-Waterman recursions, the local transition
alignment allows crossing between different reference loci.

in the genome. The start positions of each seed’s set of
alignments in the reference genome are represented by
the ESA interval [l, r]. In addition to the aforementioned
E-value and maximum occurrence parameters, the align-
ment seeds retrieved from the ESA are required to have a
minimum Shannon entropy of 1.5. The Shannon entropy
of a sequence S is defined by

H(S) = −
n−1∑
i=0

p(si) log2 p(si) (1)

where p(si) denotes the probability that the character si
occurs in S. This additional prerequisite is necessary to
drop low-complexity seeds caused, e.g., by poly-A tails or
repeats that bypass the maximum occurrence threshold
due to sequencing errors. In general, it cannot be ruled
out that the Shannon entropy filter affects the detection
of splice events in repetitive elements (cf. [39]). However,
our calculations show that themajority of 20-bp and 40-bp
windows in human ALU repeats have a Shannon entropy
well above our threshold of 1.5 (see Additional file 1).
Therefore, this filter does not impede the split-read map-
ping in ALU repeats per se. After passing the three filters,
each alignment start of a seed in the reference genome is
easily obtained in constant time using the suffix table of
the ESA. Let S denote the set of seeds. In the chaining
step, we aim to select an ordered chain of seeds c ⊆ S that
optimally covers the read from start to end while at the
same time maximizing the sum of alignment scores. Letψ
denote a function to obtain the alignment score of a seed
and let πs and πe be two functions to determine a seed’s
alignment start and end in the read, respectively. Finally,
the score of a chain is evaluated using

σ(c) =
|c|∑
k=1

ψ(c[k])−
|c|∑
k=2

|πe(c[k−1])− πs(c[k])| (2)

where c[k]∈ S denotes the kth seed in chain c. In
our implementation ψ(c[k]) is the number of correctly

matched nucleotides of fragment i minus the sum of mis-
matches, insertions and deletions in this fragment. A set
of chains is obtained using a greedy chaining algorithm
(Algorithm 1).

Algorithm 1
C = sort(S ,πs)
for i := 1 to |C| do

c′ = ε

for j := 1 to i − 1 do
if σ(g(Cj ,Ci)) > σ(Ci) then

c′ = Cj
end if

end for
if c′ �= ε then

Ci = g(c′,Ci)
end if

end for

Initially, seeds are sorted with respect to πs and the
sorted list is stored in C. In the first step, each single seed
is a chain of its own. The computation proceeds by iter-
ating over all chains in the list C. For each chain Ci, the
best preceding chain c′ is identified and concatenated with
it. For two chains, c′ and c, the concatenation operator is
denoted by g(c′, c).
It is easy to see that algorithm terminates after (|C| ·

(|C| − 1))/2 iterations. Since there are at most 2(m − �)

seeds, the algorithm is of complexity O(m2).

Local transition alignment
The chains are ranked with respect to their scores. To
ensure a high precision, only the highest ranking chain
is used in the subsequent alignment procedure. Further-
more, the chain by default should cover more than 80%
of the read. As pointed out above, each seed might
have multiple alignments across the genome. In this case
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segemehl selects those alignments that minimize the
distance on the genome and, if possible, are on the same
strand. Finally, for each seed we obtain exactly one posi-
tion in the reference.
Guided by the chain of seeds, the local transition

alignment algorithm maps the reads across multiple loci
(Algorithm 2). A similar idea was independently pro-
posed by [14]. Unlike McPherson et al., we devised an
algorithm that fully integrates the transition betweenmul-
tiple matrices to obtain an optimal local split alignment
across different genomic loci. The local transition align-
ment method is a modification of the Smith-Waterman
alignment.

Algorithm 2
for k := 1 to |c| do

for i := 1 tom do
lms[k, i]= lms[k, i− 1] *
for j := 1 to |γ (c[k])| do

a = getchar_read(r,i,κ(c[k]))
b = getchar_ref(γ (c[k]),j)
M[i, k, j]=

max

⎧⎨
⎩
M[i−1, k, j]+ δ
M[i, k, j−1]+ δ
M[i−1, k, j−1]+ s(a, b)

for q := 1 to k − 1 do
M[i, k, j]=
max

{
M[i, k, j]
lms[q, i−1]+ s(a, b) *

end for
lms[k, i]= max(M[i, k, j] , lms[k, i−1]) *

end for
end for

end for

The algorithmic parts that realize the transition to other
loci are marked by an asterisk. Note, that we have imple-
mented the algorithm using lazy evaluation schemes.
Furthermore, a penalty is applied to each transition in
practice (not shown). Let γ (c[k]) and κ(c[k]) be functions
that return the sequence and the strandedness for the
reference locus to which the seed c[k] was aligned, respec-
tively. Note, that in practice the sequence returned by γ
extends the exact alignment boundaries of c[k] by several
nucleotides to account for inaccuracies in segemehl’s
seed-finding heuristics. The algorithm iterates over all
seeds in the chain c and performs local alignments of
the read r with their respective reference locus. Inser-
tions and deletions are penalized with δ. s(a, b) scores
matches and mismatches. The resulting alignment scores
are stored in a three-dimensional matrix M. During the
local alignment at γ (c[k]), the algorithm keeps track
of the last maximum score lms[k, i] seen prior to the

alignment of the ith character of the read. This addi-
tional table is the key to the local transition alignment
algorithm. In addition to the local alignment recursions
that maximize the score of M[i, k, j], all k − 1 preceding
loci are checked for a possible transition using the lms
table.

Simulations and tools
To simulate both regular and irregular splice junctions,
a sample of 10,000 isoforms was drawn from the ASTD
database [40]. For the non-regular data set, 20% of the
exons were either flipped to the opposite strand or sub-
stituted by a distant exon from the ASTD database. Any
exon with a distance > 200 kB from the isoform or on
a different chromosome was denoted as long-range splic-
ing. The isoforms of each data set were extracted from
the human genome (hg19) by concatenating their exon
sequences. Usingmason v.0.1.1 [41], we simulated Illumina
and 454-like single-end reads of length 100 nucleotides
and 400 nucleotides, respectively, from the isoforms of
each data set with 10-fold, 15-fold and 20-fold cover-
age. The parameter values of the Illumina and 454 error
model in mason were specified in accordance with the
Bowtie2 paper [42]. For simulated Illumina reads, we used
the default parameters; for 454, we used -k 0.3 -bm
0.4 -bs 0.1. Recall and false positive rates were cal-
culated using the splice junctions predicted by each tool.
Thus, the recall was calculated as the fraction of simulated
junctions correctly identified by a tool. For each tool, the
false positive rate was calculated by dividing the number
of wrong junctions by the number of predicted junc-
tions. For the comparisons we used TopHat2 (version
2.0.4), RUM (version 1.12_01), STAR (version 2.1.3e_r157),
SOAPsplice (version 1.9), MapSplice (version 2.1.2),
GSNAP (version 2013-11-27) and SpliceMap (version
3.3.5.2 (55)). All programs were run with default parame-
ters for split-readmapping. With the exception of RUM, no
additional annotation information was provided to any of
the tools. Further details are given in Additional file 1.

Split and isoform validation
To validate the newly identified canonical splice junc-
tions in p53, we used RNA from venous fibroblasts. The
RNA was isolated with TRIzol reagent (Life Technologies,
Carlsbad, USA) and treated with RNase-free DNase
(Qiagen, Hilden, Germany), according to the manufac-
turers’ instructions. The RNA samples were prepared in
the context of another study recently published in PLoS
Genetics [43]. The protocols for reverse transcription into
cDNA are described therein.
PCR reactions were prepared in a final volume

of 25 μl using AmpliTaq Gold(R) 360 DNA Poly-
merase (Life Technologies, Carlsbad, USA) and primers
were selected to span two exons to avoid co-ampli-
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fication of genomic DNA: common forward primer
(5′-CCGAGAGCTGAATGAGGCCTTG-3′, 300 nM)
and isoform-specific reverse primers (isoform (v) 5′-
CATCACACTGCATACCTTGAATGTATGC-3′; isoform
(vi) 5′-CAGGCTAGAGTGCAATGGCGC-3′; isoform
(vii) 5′-GGCTCACGCCTGTAATCCCAGTAC-3′; 300
nM each). The expected PCR product sizes were 322 bp,
213 bp and 178 bp for isoforms (v) to (vii), respectively.
Cycling conditions were 95°C for 10 min and 40 three-step
cycles of 95° for 20 s, 60°C (isoform (vi)) or 62°C (isoforms
(v) and (vii)) for 30 s, and 72°C for 30 s. PCR products
were subcloned using the TOPO TA Cloning Kit (Life
Technologies, Carlsbad, USA) and sequencing reactions
were performed with forward and reverse M13 primers
(5 μM, Life Technologies, Carlsbad, USA) and BigDye(R)
Terminator v 3.1 chemistry (Life Technologies, Carlsbad,
USA) according to the manufacturer’s instructions using
an Applied Biosystems 3730xl DNA Analyzer.

Data sets
Publicly available Illumina RNA-seq data sets of D.
melanogaster [SRA:SRR166809] and a human melanoma
sample [SRA:SRR018261-62] were downloaded from the
National Center for Biotechnology Information short read
archive. The 454 sequencing data for a human umbil-
ical vein RNA-seq experiment [27] and RNA capture
sequencing experiments of human fibroblasts [24] were
retrieved from the Gene Expression Omnibus under
[GEO:GSM951482] and [GEO:GSE29040]. The RNA-
seq sample for HEK293 cells investigated in [5] was
retrieved under [GEO:GSE43574]. Finally, we applied our
algorithm to a C. elegans data set [SRA:SRX151602]
to investigate RNA leader trans-splicing. All of these
data sets are non-strand specific. In addition, we ana-
lyzed a strand-specific prostate cancer data set (see
Additional file 1).

Additional file

Additional file 1: Supplementary benchmark. Supplementary data on
the parameters for all tools tested, the algorithms’ performance with real
and simulated data and the results of wet-lab experiments.
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