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Abstract

Background: Detailed knowledge of spatial and temporal variation in the genetic population structure of hosts and
parasites is required for understanding of host − parasite coevolution. As hot-spots of contemporary coevolution in
natural systems are difficult to detect and long-term studies are restricted to few systems, additional population genetic
data from various host − parasite systems may provide important insights into the topic. This is particularly true for
parasites, as these players have been under-investigated so far due to the lower availability of suitable molecular
markers. Here, we traced genetic variation (based on sequence variants in the internal transcribed spacer region, ITS)
among seven geographically isolated populations of the ichthyosporean Caullerya mesnili, a common microparasite of
the cladoceran Daphnia (here, the D. longispina hybrid complex). At three sites, we also studied parasite genetic variation
over time (three to four sampling points) and tested for associations between parasite genotypes and host species.

Results: Parasite (and host) populations were significantly structured across space, indicating limited dispersal. Moreover,
the frequency of parasite genotypes varied significantly over time, suggesting rapid evolutionary change in Caullerya.
However, the distribution of parasite genotypes was similar across different host species, which might in turn have
important consequences for parasite epidemiology.

Conclusions: The approach proposed here can be applied to track spatial and temporal changes in the population
structure of other microparasite species for which sequence variation in the ITS or other highly variable genome regions
has been documented but other types of polymorphic markers are lacking. Screening of parasite sequence variants
allows for reliable detection of cross-species infections and, using advanced sequencing techniques in the near future,
for detailed studies of parasite evolution in natural host − parasite systems.

Keywords: Caullerya mesnili, Host − parasite coevolution, ITS region
Background
Host − parasite coevolutionary dynamics can be studied
using experimental frameworks (e.g. [1-3]). However, given
the increasing evidence that coevolution is highly sensitive
to environmental variation, and thus possibly affected by
experimental conditions (reviewed in [4,5]), it is crucial to
assess the strength of coevolutionary interactions in the
wild. Obtaining field data for coevolutionary dynamics
presents practical difficulties, such as the necessity of long-
term surveys. Despite that, field studies over time have
been conducted within some natural host − parasite sys-
tems, e.g., in Daphnia–microparasites (e.g. [6-8]), chytrid–
diatoms [9], bryozoans–myxozoans [10], plants–fungi (e.g.
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[11,12]), and freshwater snails–trematodes (e.g. [13,14]). In
these and in many other field surveys to date, genetic vari-
ation over time has been investigated for the host alone, in
most cases because of difficulties in obtaining suitable
molecular markers for parasites. Given that time-lagged
coevolution requires changes in the population genetic
structure of both players [15,16], there is a need for studies
directly tracking such changes in natural populations of
parasites, in addition to their hosts.
Genetic studies of parasite populations over time have

focused mainly on human parasites or economically im-
portant plant pathogens (e.g. [17-20]). For example, in fun-
gal rust epidemics of cultivated flax, changes in allele
frequencies were tracked at pathogen infectivity loci [21].
This deep insight at the allelic level became possible only
because the genetics behind the plant − pathogen interac-
tions had been studied for a long time (reviewed in
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[22,23]). Beyond the scope of such societally important
pathogens, there has been relatively little work on genetic
changes in parasite populations over time. Interactive
effects among gene flow, local adaptation and the level of
sexual reproduction will shape spatial and temporal popu-
lation structures of parasites during host − parasite co-
evolution [24-26]. However, relevant studies in natural
animal −microparasite systems have become feasible only
recently, due to progress in the development of molecular
markers for parasites.
One of the recently established models for host −

parasite coevolution involves waterfleas of the genus
Daphnia (Crustacea: Cladocera), key components of zoo-
plankton in many lakes and ponds across the globe, and
their microparasites (e.g. [8,27]). In natural populations of
Daphnia, however, temporal changes within gene pools,
resulting from host − parasite coevolution, have thus far
been studied for host populations only (e.g. [6,28]). For
example, it has been observed that the most common
Daphnia genotypes decreased in frequency over successive
generations across several heavily infected host populations,
whereas such decreases were not detected in uninfected
populations [7]. These results are consistent with the idea
that parasites track common host genotypes and, conse-
quently, exert negative frequency-dependent selection on
their hosts [13,16]. We do not know, however, if and how
the apparent changes in the relative genotype frequencies
of hosts trigger responses in the relative genotype fre-
quencies of parasites infecting these populations. Although
genetic markers, such as allozymes (e.g. [6,7,28]) or, more
recently, microsatellites (e.g. [29,30]), have been widely
applied to track changes in genotype frequencies in natural
Daphnia populations, markers for their microparasites are
in a developmental phase [31,32].
In the present study, we analysed infections of Daphnia

species from the D. longispina hybrid complex. In Europe
this complex includes, among other taxa, the widespread
and ecologically important species D. cucullata, D. galeata
and D. longispina, as well as their interspecific hybrids
[33,34]. These Daphnia are frequently infected by a
variety of parasites (e.g. [35]). Among these, the proto-
zoan Caullerya mesnili (class Ichthyosporea, order
Ichthyophonida, [36]) is particularly common. Caullerya
forms spore clusters in the gut epithelium of Daphnia [36].
This parasite is likely to cause significant selection pressure
on Daphnia populations because of its high virulence (up
to 95% fecundity reduction, [36,37]). Indeed, our previous
laboratory and field results indicate that Caullerya can alter
host genetic structures, both at the community and popula-
tion levels [29,37]. For example, in artificial communities
consisting of a mixture of several genotypes from two
Daphnia species, the competition outcome between spe-
cies and genotypes differed between Caullerya-infected
and non-infected treatments [37]. Since Caullerya causes
apparent changes in its host genetic structure, this parasite
might, in turn, respond genetically to its changing host. To
address potential genetic responses in populations of
Caullerya, polymorphism in the internal transcribed spacer
region (ITS1) of ribosomal DNA can be used [36,38].
Specifically, applying this ITS marker revealed that
Caullerya populations collected from three geographically
isolated lakes were distinct from each other [38].
Here, we applied the same ITS marker to study genetic

changes in Caullerya populations in more detail. We stud-
ied parasite genetic variation over space (seven geographic-
ally isolated sites). We expected to observe substantial
spatial isolation among parasite populations, as Caullerya
appears to have no transmission vector other than its pas-
sively dispersing Daphnia hosts [39]. We then followed
changes in parasite population structure over time (five of
the seven sites were sampled over a period of two to five
years). We hypothesized that Caullerya populations should
change genetically, to remain infective to their ever-
changing host. For Caullerya populations from three of
the studied sites, we simultaneously collected genetic data
from their individual Daphnia hosts. At this point, we
aimed to compare the distribution of parasite genotypes
across different coexisting host Daphnia species and their
hybrids. We expected that host species would exhibit dif-
fering spectra of parasite genotypes, as previous experi-
mental studies showed a varying likelihood of infection
when these species were exposed to Caullerya [37].

Results
Parasite: spatio-temporal variation
Altogether, 16 zooplankton samples, collected across
seven water reservoirs in the Czech Republic (see Figure 1),
were used for Caullerya genotyping. All 16 samples had
been genotyped after pooling of 20 infected hosts, per
sample. Additionally, three of those samples were geno-
typed on the individual level: ten infected hosts per sample
[40]. In total, 216 unique Caullerya ITS sequence variants
were identified among 795 obtained ITS sequences. These
ITS variants were further assigned by statistical parsimony
network analysis to ten different representative sequence
variants, TCS-types (C1 to C10 Table 1; for more details
see [40]); 40% of sequences were classified to the most
abundant TCS-type, C6. In contrast, four TCS-types (C3,
C7, C9 and C10) were present just once among 795 ana-
lysed sequences [40] and were therefore excluded from
subsequent analyses. The spatial and temporal population
structure of parasites is displayed in a PCA plot based on
frequencies of specific TCS-types in 19 parasite population
samples (Figure 2). The Římov, Vír and Želivka samples
from 2004, which were analysed from pooled host DNA,
clustered together with the subsamples from the same
three populations processed independently by analysing
parasite DNA from single hosts, confirming that both



Figure 1 Location of sampling sites in the Czech Republic and schematic outlines of their morphology. A small arrow indicates the
position of the dam and outflow of each reservoir. Map modified after Seda et al. [57].

Wolinska et al. BMC Evolutionary Biology 2014, 14:247 Page 3 of 11
http://www.biomedcentral.com/1471-2148/14/247
methodological approaches result in comparable patterns
see [40].
Parasite populations from different lakes were in most

cases separated and the spatial separation usually per-
sisted over time. However, populations from different
lakes sometimes clustered together at the same point in
time (e.g. Římov 2004 and Stanovice 2004) or after a
shift in time (Římov 2004 and Vír 2005). The extent of
the spatial and temporal separation of Caullerya popula-
tions was supported by hierarchical analysis of molecular
variance (AMOVA tests). The spatial (i.e., among lakes)
variance component was significant in all three cases
analysed (years 2004, 2005 and 2009), explaining up
to ~22% of the parasite genetic diversity (Table 2). The
temporal (i.e., among years) component was also signifi-
cant in all three cases (for Římov, Vír and Vranov), and
explained up to 12% of the variation in the parasite data
(Table 2).

Parasite and host: genetic associations
Parasite ITS-data were obtained from individual Daphnia
hosts selected from Římov, Vír and Želivka, sampled in
2004. These individual Daphnia (i.e., 3 lakes × 10 individ-
uals) were analysed at 15 microsatellite loci. The position
of Daphnia individuals relative to reference genotypes in
the FCA plot (Additional file 1: Figure S1) revealed that
these individuals belonged to three species, D. cucullata,
D. galeata and D. longispina, and no hybrids were de-
tected in this small dataset. Overall, the distribution of
parasite representative sequence variants (TCS-types) was
more similar across different host species originating from
the same lake than within host species from different lakes
(Figure 3). This was confirmed by AMOVA, where the
degree of variation explained by the differences among
host species was negligible (<0.01%, Table 3), indicating
that all host species were infected by the same array of
parasite genotypes.

Host: spatial variation
Out of the larger subset of randomly selected Daphnia
from Římov, Vír and Želivka, sampled in 2004 (i.e., ~50 in-
dividuals per lake), the only host species present in all
three lakes was D. galeata (47 individuals from Římov, 23
from Vír and 9 from Želivka). AMOVA tests revealed that
a significant amount of genetic variation in the D. galeata
dataset was explained by the among-lakes component
(14%, see Table 4). Thus, D. galeata populations were
significantly structured across space.

Discussion
The reservoirs studied are geographically isolated, pre-
venting any direct dispersal of Daphnia hosts or their
parasites through flowing water. Indeed, we show here
that Caullerya populations originating from seven lakes
were significantly structured across space, as were their
host populations (at least D. galeata, a species for which
sufficient data were available). The latter finding is
consistent with previous studies on the D. longispina



Table 1 Summary of analysed Caullerya mesnili samples from seven lakes in the Czech Republic

DNA Lake Year TCS-type No. of ITS

Extraction C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Sequences

20 pooled hosts/lake samplea

Brno 2004 6 0 0 10 0 11 0 0 0 0 27

Brno 2005 2 0 0 12 1 2 0 14 0 1 32

Římovc 2004 3 0 0 19 0 7 0 1 0 0 30

Římov 2005 2 0 0 22 0 4 0 0 1 0 29

Římov 2008 0 0 0 15 0 4 0 10 0 0 29

Římov 2009 3 0 0 15 0 8 0 4 0 0 30

Stanovice 2004 3 0 0 18 0 5 0 1 0 0 27

Stanovice 2005 3 0 0 11 1 10 0 0 0 0 25

Trnávka 2005 8 0 0 12 0 7 0 0 0 0 27

Vírc 2004 9 0 0 2 0 17 0 0 0 0 28

Vír 2005 3 0 0 15 0 6 0 1 0 0 25

Vír 2009 4 0 0 5 0 17 0 0 0 0 26

Vranov 2004 2 0 0 10 0 14 0 3 0 0 29

Vranov 2008 3 0 0 22 0 7 0 0 0 0 32

Vranov 2009 3 0 0 12 0 18 0 0 0 0 33

Želivkac 2004 1 0 0 8 2 6 0 11 0 0 28

∑ 55 0 0 208 4 143 0 45 1 1 457

10 single hosts/lake sampleb

Římovc 2004 19 3 0 66 0 20 0 9 0 0 117

Vírc 2004 34 1 1 20 0 56 0 0 0 0 112

Želivkac 2004 10 0 0 26 7 22 1 43 0 0 109

∑ 63 4 1 112 7 98 1 52 0 0 338

Specifically, the number of ITS sequences obtained from C. mesnili parasite DNA, as well as their assignment to representative sequence variants (TCS-types) by statistical
parsimony analysis (C1-C10, the labels are consistent with [38]) are provided. Parasite DNA was either extracted from 10 individual Daphnia hosts per sample or 20
pooled Daphnia hosts per sample. Table modified after Giessler and Wolinska [40].
aParasite data from Giessler and Wolinska [40].
bParasite data from Wolinska et al. [38].
cParasite DNA from these samples was analysed using both approaches (i.e. 10 single hosts and 20 pooled hosts were genotyped, respectively).
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complex; Daphnia populations from different lakes are
often genetically differentiated even within a single region
at relatively small spatial scales (e.g. [41-43]). The major
dispersal pathway for the host, Daphnia, is most likely via
transport of their diapausing eggs by water birds, which
are enclosed in a protective structure called an ephippium
[44,45]. Immigrant genotypes, however, have a low likeli-
hood of becoming established in already developed popu-
lations [41,46,47]. In the case of Caullerya, their spread
seems not to be linked directly to this major dispersal
stage of the host, diapausing eggs, because eggs and em-
bryos of infected mothers are not themselves infected
[39]. Instead, if infected Daphnia are ingested by water-
fowl, it is likely that Caullerya spores (but not Daphnia)
could survive the passage through the bird’s gut because
of a thick and robust spore wall [36], and then be excreted
into another lake. Alternatively, infective stages of para-
sites might be transported independently of the Daphnia
host on the body surface of waterfowl. However, even if
parasite spores are spread by birds in this way, such dis-
persal pathways would need to provide infective doses
high enough for successful transmission (e.g. [48]).
The significant genetic differentiation of spatially sep-

arated Caullerya populations observed here might also
be influenced by processes other than limited gene
flow. In particular, temporal changes within Caullerya
populations, as were observed in the studied reservoirs,
may cause rapid genetic divergence. Moreover, environ-
mental differences among the studied lakes such as the
trophic level (see [35]) might promote different parasite
genotypes (i.e., genotype-by-environment interactions,
a phenomenon reported for a number of Daphnia-
microparasite systems, reviewed in [4]). Finally, a low
level of sexual reproduction (and recombination) in
ichthyosporeans [49,50] might also result in a high level
of population structuring.



Figure 2 Spatio-temporal population structure of Caullerya mesnili parasites. Principal component loadings on the PCA-axes are based on
the frequency of parasite TCS-types; the first two axes account for 84% of the variation in the data. Parasite DNA was obtained from Daphnia
hosts originating from seven lakes; some of the populations were sampled over a period of two to five years, resulting in 16 samples altogether
(genotyped after pooling of 20 infected host, per sample; see Table 1). If the same lake was sampled 3–4 times, the samples are connected by a
line. Three additional subsamples, for which 10 infected individuals (per population) were genotyped individually (Table 1), are shown in grey.
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In addition to significant spatial genetic variation, we
found support for temporal variation in Caullerya. In
lakes Římov and Vír, for example, the genetic com-
position of Caullerya populations varied substantially
during the five-year study period. Again, it cannot be ex-
cluded that the observed temporal changes are not only
a result of adaptation of the parasite to its changing host,
but fluctuating environmental conditions might play a
role too. Indeed, genotype-by-environment interactions
have been previously observed in the Daphnia −Caullerya
system [51]. As far as we know, studies looking at tem-
poral changes in microparasite populations infecting wild
animal host populations are still rare (but see [20]). Thus,
the Daphnia −Caullerya system appears to be an attract-
ive model for studying host − parasite coevolution in the
wild, because of its accessibility (Caullerya infections are
common across European Daphnia populations, [35,37]),
the short generation time of both players and, finally, the
insights already available from molecular markers.
Another important finding of our study is that different

co-existing Daphnia host species were all infected by the
same genotypic array of the parasite Caullerya. This is
surprising at first sight, because a prerequisite for parasite-
driven, negative frequency-dependent selection is a strong
genetic specificity for infection, resulting in genetically dif-
ferent hosts being infected by genetically different parasite
strains [52]. In other words, parasite populations should
be well structured with respect to the host genotypes they
can infect (e.g. [53]). Despite this, patterns similar to our
results have already been observed elsewhere. For example,



Table 2 Results of AMOVA to explore spatial and temporal population structure in Caullerya mesnili parasites

Lake samples Source of variation df Percent variation P-value

Spatial variation

All 2004 Among lakes 5 18.5 <0.001 ***

Within lake 163 81.5

All 2005 Among lakes 4 21.9 <0.001 ***

Within lake 133 78.2

All 2009 Among lakes 2 8.9 0.0029 *

Within lake 86 91.1

Temporal variation

All Římov Among years 3 9.4 0.001 **

Within year 114 90.6

All Vír Among years 2 12.5 0.001 **

Within year 76 87.5

All Vranov Among years 2 7.3 0.0039 *

Within year 91 92.7

Calculations were based on the frequency of representative ITS-sequence variants (TCS-types) in C. mesnili parasite DNA (20 pooled Daphnia hosts per sample; for
selection of samples see Table 1 and main text). Significance levels from separate analyses to test for structures in space and time, respectively, were Bonferroni
corrected (adjusted P-values: *P <0.05; **P <0.01; ***P <0.001).
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tight interactions between parasite and host genotypes
were reported in a bumblebee–trypanosome system at the
level of spatially isolated colonies within a single host spe-
cies [54], but identical parasite clones were found across
several coexisting bumblebee species [55]. Such horizontal
transmission of parasites was argued to be favoured by
niche overlap between bumblebee host species [56]. This
might also be the case in the D. longispina system studied
here, where different Daphnia species coexist despite some
differences in their ecological preferences [57,58]. Another
mechanism that might facilitate the homogenous distribu-
tion of Caullerya genotypes between different Daphnia
species is host hybridization. Specifically, Daphnia hybrids
might serve as ‘stepping stones’ that allow parasites to
switch among host species (i.e., the ‘hybrid bridge’ model,
[59]). Regardless of its cause, multi-host species infection
might have important consequences for parasite epidemi-
ology. Theory predicts that parasites which do not depend
on the population dynamics of a single host species should
consequently be able to maintain large effective population
sizes and high evolutionary potential [60,61], a prediction
further supported by empirical work [62].
Interestingly, previous field and experimental surveys

have shown that coexisting Daphnia host species and
even genotypes differ in their likelihood of becoming in-
fected with Caullerya (e.g. [29,37]). Still, as indicated by
present genetic results, same parasite genotypes seem to
be able to establish across various Daphnia species.
However, we should take the latter observation with cau-
tion, because the conclusions are based on screening of
a limited number of samples and host individuals. Thus,
this hypothesis should be further tested, for example by
conducting genetic analyses of a high number of infected
and randomly chosen Daphnia from lakes where dif-
ferent Daphnia species coexist which is a common
phenomenon (e.g. [58]). If a sufficient number of suit-
able samples from Caullerya-infected populations is ob-
tained, host species can be assessed for the likelihood of
infection (by comparing a distribution of species in
infected and random groups of hosts, see [37]), and
parasite genotypic arrays among host species can be
compared to test for potential specificity once the host
defence is broken. Experimental tests should follow as
well, where different Daphnia host species are exposed
to a mixture of parasite genotypes, and the genotypic
array of successful parasites is compared among these
hosts (see [63]).
Finally, the molecular approach used in this study, in-

volving the combination of a transformed ITS dataset
and DNA-pooling of a moderate number of infected
host specimens, proved to be a simple but reliable
method to address parasite population differentiation
over space and time (see also [40]). In the long term,
however, results derived from a multi-copy gene should
be confirmed by single-copy molecular markers (e.g.
[64]). One also has to keep in mind that we have used
rather neutral genetic markers, both for Daphnia
(microsatellites) and for Caullerya (ITS region). Al-
though these markers would still be linked to loci
under selection in our (mainly) clonal host − parasite
system, the outcome of coevolution actually depends
on the loci coding for resistance in hosts and infectivity
in parasites see (e.g., [21,65,66]). Nevertheless, in terms
of the parasite Caullerya, ITS is the only available
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Figure 3 Distribution of representative ITS-sequence variants (TCS-types) in Caullerya mesnili. Parasite DNA was isolated from Daphnia hosts
belonging to three different species (10 infected Daphnia per lake were genotyped individually; Table 1), and sampled across three different lakes. Species
identity of Daphnia hosts was derived from the allelic variation at 15 microsatellite loci (see Additional file 1: Figure S1). Distribution of TCS-types varied
among lakes but not among host species: n: number of host individuals per lake and species; **P <0.01, ***P <0.001 (Fisher’s exact tests).
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marker to date. The ITS dataset generated here, by
standard Sanger sequencing, may in future serve as a
useful reference for higher-resolution datasets obtained
from more powerful markers and advanced sequencing
technologies [67-69].
Table 3 Results of AMOVA to explore the association between
(i.e., species) identity of Daphnia hosts

DNA extraction Source of variation

10 single hosts/lake sample

Among lakes

Among host species, within lake

Within host species

Daphnia species identity was assigned using 15 microsatellite loci (see Additional fi
ITS-sequence variants (TCS-types) in C. mesnili parasite DNA (10 individually genoty
Conclusions
In summary, by analysing ITS sequences, we successfully
addressed spatial and temporal variation in the genetic
structure of the ichthyosporean microparasite Caullerya
mesnili infecting the cladoceran Daphnia host. Our
Caullerya mesnili parasite genotypes and the genetic

df Percent variation P-value

2 25.2 0.013

3 −0.1 0.32

332 74.9 <0.001

le 1: Figure S1). Calculations were based on the frequency of representative
ped Daphnia hosts per sample; for selection of samples see Table 1).



Table 4 Results of AMOVA to explore the spatial
population structure in host species (Daphnia galeata)

Source of variation df Percent variation P-value

Among lakes 2 13.9 <0.001

Among individuals, within lake 155 86.1

Calculations were based on the frequency of alleles at 10 microsatellite loci in
Daphnia host DNA. DNA was extracted from D. galeata representing a random
host population sample, i.e., consisting of uninfected and infected individuals
originating from three lakes sampled in 2004 (Římov, Vír and Želivka; see Table 1).
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results suggest that Caullerya can evolve rapidly and is
thus likely to adapt to its hosts, as we detected significant
genetic variation in parasite populations across space and
time. When upcoming molecular and bioinformatic tools
allow changes in genotype frequencies of parasites and
hosts to be tracked together on a large scale and over the
long term, the Daphnia −Caullerya system might become
a useful model for host − parasite coevolution in the wild.
Moreover, the methods proposed here allow access to
molecular studies of other microparasite species, for
which sequence variation in the ITS or other highly
variable genome regions has been documented but other
types of polymorphic markers are lacking.

Methods
Study sites
In a previous work, Daphnia communities from eleven
drinking water reservoirs in the Czech Republic were
screened for parasite prevalence in summer and autumn
of 2004 and 2005, across three stations along each reser-
voir’s horizontal axis: upstream, middle and downstream
[35]. The Daphnia hosts in these lakes are represented
almost exclusively by members of the D. longispina com-
plex [29,34]. The parasite Caullerya mesnili was abun-
dant in seven of these lakes (Brno, Římov, Stanovice,
Trnávka, Vír, Vranov and Želivka), mainly in autumn
and at the upstream sites, infecting up to 40% of the en-
tire Daphnia community [35]. The position of the seven
lakes is indicated on a schematic map (Figure 1), basic
limnological characteristics are provided in [57]. For
the present study, we used ethanol-preserved samples
of Daphnia populations already collected for other
purposes. Collections were taken at all seven lakes in
autumn of 2004 and 2005 [35], as well as at three of
these lakes (Římov, Vír and Vranov) in autumn of 2008
and 2009.

Sample selection
From all collected zooplankton samples, we selected those
containing a substantial proportion of Caullerya-infected
Daphnia, for analyzing parasite genetic variation. This re-
sulted in 16 zooplankton samples across seven locations, 1
to 4 per lake (Table 1); mainly upstream samples were se-
lected (with two exceptions: Brno 2005 – downstream
sample, Stanovice 2005 – middle sample). It was impos-
sible to obtain a more balanced sample set, as the preva-
lence of Caullerya varies unpredictably from year to year
[35]. All 16 zooplankton samples served to analyze the
spatio-temporal variation (here, parasite DNA was ex-
tracted from pooled-host, see below). Three of the 16
samples were additionally used to analyze the genetic as-
sociation between parasites and hosts (parasite DNA was
extracted from individual-host). Thus, 19 parasite popula-
tion samples were obtained in total.

Parasite: spatio-temporal variation
We used Caullerya ITS data previously obtained from all
16 samples in a methodological study developing an effi-
cient approach to analysis of ITS sequences [40]. From
each of 16 samples, 20 Caullerya-infected Daphnia were
pooled before DNA extraction.

Parasite and host: genetic associations
We used additional Caullerya ITS data obtained from
Římov, Vír and Želivka, sampled in autumn 2004 [35].
DNA was extracted individually from 10 Caullerya-
infected Daphnia hosts per lake (Table 1). Whereas only
parasite genotypes were analysed previously [35], for the
purpose of this study, we determined the corresponding
host genotypes from the respective DNA samples (through
analyses of 15 microsatellite loci; 3 lakes × 10 infected
individuals).

Host: spatial variation
We randomly selected ~50 additional Daphnia individuals
(including both infected and non-infected individuals)
from Římov, Vír and Želivka, sampled in autumn 2004,
and determined host genotypes from the respective DNA
samples (through analyses of 10 microsatellite loci).

Genotyping
Parasite
Both ITS data sets (obtained by DNA extraction from
pooled or single hosts, see Table 1) have recently been
used for validation of DNA pooling and for comparison of
different statistical methods identifying representative
ITS-sequence variants (i.e., statistical parsimony networks
vs. neighbour-joining analysis, [40]). Consequently, all mo-
lecular procedures concerning genomic DNA extraction,
PCR conditions, cloning and Sanger sequencing are de-
scribed in detail elsewhere [38,40]. In short, for 16 popula-
tion samples genotyped after pooling of 20 infected host
individuals, between 25 and 33 ITS sequences were ob-
tained per population sample, while for the three popula-
tion samples where parasites were analysed on the level of
single hosts, between 109 and 117 ITS sequences were ob-
tained per population sample (about 10 sequences per in-
dividual host; Table 1). Both sets of sequences were of ca.
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600 bp in length. Sequences were aligned in BioEdit [70]
using the ClustalW algorithm and the alignment was then
corrected by hand when necessary. Then, in order to ad-
dress relevant genetic polymorphism in the ITS multi-
copy region, we assigned slightly different sequences to
the representative variants, using statistical parsimony net-
work analysis as implemented in TCS 1.21 [71]. Specific-
ally, we applied a cut-off of three connection steps (gaps
were considered as a fifth base; each 1 bp indel was
scored). This approach is described in detail and justified
in Giessler and Wolinska [40]. All further analyses of the
parasite data were then based on the dataset including
only representative ITS-sequence variants (“TCS-types”).
Host. Daphnia individuals were genotyped at poly-

morphic microsatellite loci [72]. First, to analyse the distri-
bution of parasite genotypes across different host species
or hybrids, the same genomic DNA that had been isolated
from 30 infected Daphnia specimens (used for parasite
genotyping on the level of single host individuals) was ge-
notyped at 15 microsatellite loci. These hosts originated
from Římov, Vír, and Želivka, sampled in 2004 (10 individ-
uals per lake, Table 1). List of loci and molecular protocols
are described elsewhere [43]. Daphnia individuals were
then assigned to different host species or hybrids, by a fac-
torial correspondence analysis (FCA) in GENETIX 4.05
[73]. As a reference, 49 well-defined genotypes (same as in
[43]) were used, representing each of the three dominant
parental species in the studied reservoirs (i.e., D. cucullata,
D. galeata and D. longispina), as well as their interspecific
hybrids. Thus, we obtained joint information on the taxo-
nomic classification of 30 host individuals (microsatellite
data) and the genotypes of parasites (ITS data) infecting
each of these Daphnia hosts. Second, to study the extent
of among-population genetic differentiation in hosts, we
genotyped approximately 50 randomly selected Daphnia
individuals from each of the three aforementioned lakes,
sampled in 2004, at 10 of the above used 15 microsatellite
loci (same set of microsatellites as in [29]). This random
sample consisted of both uninfected and infected individ-
uals, thus representing the whole host population. Since,
in the random population sample, only two parental spe-
cies were present but several individuals could not be
assigned unambiguously to clusters defined by the refer-
ence clones (data not shown), taxon membership was fur-
ther evaluated by a Bayesian method in NewHybrids 1.1
[74], using the same settings as in [29].

Statistical analyses
Parasite: spatio-temporal variation
We applied a principal component analysis (PCA) on
the entire parasite sequence dataset (i.e., 16 population
samples that were genotyped after pooling of infected
Daphnia, and 3 of these population samples in which in-
fected Daphnia were also genotyped individually, see
Table 1). The PCA was calculated in SPSS 20.0 (using
varimax rotation) and was based on the frequencies of
Caullerya representative ITS-sequence variants (TCS-
types) in each sample. Then, to test for statistical differ-
entiation, we applied hierarchical analyses of molecular
variance, AMOVA (distance method and pairwise differ-
ences, calculated in Arlequin [75]), on subsets of parasite
data. Thus, to test for spatial patterns, we partitioned
the Caullerya genetic variation into two components: 1)
among lakes, and 2) within lake. AMOVA was applied
separately per year, focusing on years with more than
two spatially isolated population samples with sufficient
Caullerya prevalence (i.e., 2004, 2005 and 2009; Table 1).
Similarly, to test for temporal patterns, genetic variation
was partitioned into two components: 1) among years,
and 2) within year. Here, AMOVA was applied separ-
ately per lake, focusing on lakes with more than two
temporarily isolated population samples with sufficient
Caullerya prevalence (i.e., Římov, Vír and Vranov;
Table 1). The significance of each AMOVA run was
assessed relative to 1000 randomly permuted datasets.
Sequential Bonferroni corrections [76] were applied to
adjust significance levels from separate analyses con-
cerning space and time, respectively.

Parasite and host: genetic associations
Here, we used ITS parasite data combined with microsat-
ellite data from hosts, obtained from 30 host individuals
sampled in 2004 from Římov, Vír, and Želivka (3 lakes ×
10 individuals, Table 1). Host taxon identity was assigned
based on the position of individuals in the FCA in relation
to reference genotypes (see Additional file 1: Figure S1).
First, we compared (by Fisher’s exact tests in SPSS 20.0)
the distribution of parasite representative sequence vari-
ants (TCS types): (a) among (abundant) host species
within lakes, and (b) among lakes within each single
(abundant) host species. Second, to determine the associ-
ation between host species and certain parasite genotypes,
we applied AMOVA, partitioning the parasite genetic vari-
ation into three components: 1) among lakes, 2) among
host species within-lakes, and 3) within host species.

Host: spatial variation
Based on the microsatellite screening of ~50 randomly se-
lected Daphnia individuals from Římov, Vír and Želivka
sampled in 2004, the only host species present in all three
localities was D. galeata. Thus, an AMOVA test parti-
tioning the host genetic variance into two components
(i.e., among lakes and within lake) was performed for this
species only.

Availability of supporting data
The ITS data set supporting the results of this article
has been published elsewhere [40] and is available in the
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DRYAD repository: doi:10.5061/dryad.8c1d0 (DNA align-
ment of 795 ITS sequences) and in the GenBank: accession
no HQ219692–HQ219708 (ITS types). The microsatellite
data have been deposited in DRYAD: doi:10.5061/
dryad.6773h.
Additional file

Additional file 1: Figure S1. Factorial correspondence analysis (FCA)
showing taxon assignment and genetic similarity among 30 infected
Daphnia host individuals originating from three lakes sampled in 2004
(Římov, Vír and Želivka; see Table 1). Additionally, 49 reference clones are
shown (black dots, for a list of reference clones see [43]). Loadings on the
FCA-axes are based on the frequency of allelic variation at 15 microsatellite
loci; the first two axes account for 16% of the variation in the data: cuc –
D. cucullata, gal – D. galeata, lon – D. longispina (their respective hybrids are
also shown).
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