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Abstract. We consider non-interacting particles subject to a fixed external potential V and a self-
generated magnetic field B. The total energy includes the field energy β

∫
B2 and we minimize

over all particle states and magnetic fields. In the case of spin-1/2 particles this minimization leads
to the coupled Maxwell–Pauli system. The parameter β tunes the coupling strength between the
field and the particles and it effectively determines the strength of the field. We investigate the
stability and the semiclassical asymptotics, h → 0, of the total ground state energy E(β, h, V ).
The relevant parameter measuring the field strength in the semiclassical limit is κ = βh. We are not
able to give the exact leading order semiclassical asymptotics uniformly in κ or even for fixed κ .
We do however give upper and lower bounds on E with almost matching dependence on κ . In the
simultaneous limit h→ 0 and κ →∞ we show that the standard non-magnetic Weyl asymptotics
holds. The same result also holds for the spinless case, i.e. where the Pauli operator is replaced by
the Schrödinger operator.

Keywords. Semiclassical eigenvalue estimate, Maxwell–Pauli system, Scott correction

1. Introduction

An important problem in spectral analysis is to determine or bound the sum of the negative
eigenvalues of a Schrödinger operator −1− V (x), i.e.,

Tr (−1− V (x))−

under appropriate conditions on the potential V . We use the convention that x− = (x)− =
min{x, 0} when x is either a real number or a self-adjoint operator. This problem is of
particular interest in quantum mechanics as it gives the ground state energy of a gas of
free fermions moving in the exterior potential V .

A generalization of this problem is to consider not only a potential V but also an
exterior magnetic field given by the vector potential A. The corresponding magnetic
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Schrödinger operator is (−i∇+A)2−V (x) acting in L2(Rd). A further generalization is
to consider the particles as having spin −1/2 and introduce the magnetic Pauli operator
[σ · (−i∇ + A)]2 − V , where in d = 3 dimensions σ = (σ1, σ2, σ3) denotes the vector
of 2× 2 Pauli matrices. The Pauli operator acts in L2(R3

;C2). Much work has gone into
understanding the semiclassical asymptotics of the sum of negative eigenvalues, i.e., the
asymptotics for small h > 0 of

Tr ((−ih∇ + A)2 − V (x))− or Tr ([σ · (−ih∇ + A)]2 − V (x))−.

It is well known that under appropriate conditions on A and V the leading behavior as h
tends to zero is given by the Weyl formulas

(2πh)−d
∫ ∫

Rd×Rd
(p2
− V (x))− dx dp or 2(2πh)−3

∫ ∫
R3×R3

(p2
− V (x))− dx dp,

respectively. Here the factor of 2 on the second integral is due to the spin degrees of
freedom in the Pauli operator, i.e., the fact that it is a 2× 2-matrix valued operator. Note
that the limiting semiclassical behavior is non-magnetic, i.e. fixed magnetic fields do
not influence the leading order semiclassics. For simplicity we will consider the d = 3
dimensional case only and we denote the Schrödinger operator T S

h (A) = (−ih∇ + A)
2

and the Pauli operator T P
h (A) = [σ · (−ih∇ + A)]

2. The magnetic field is B = ∇ × A.
In this paper we will address a related and equally important issue, namely the case

when the magnetic field is not a fixed external field, but the self-generated classical mag-
netic field generated by the particles themselves.

We will consider the external potential V to be a fixed (given) function in R3, we
assume V ∈ L1

loc(R
3) and we will always work with the flat Euclidean metric. The vector

potential A will be optimized to minimize the total energy consisting of the energy of the
particles and the field energy ∫

B2
=

∫
|∇ × A|2

(we use the convention that unspecified integrals are always on R3 with respect to the
Lebesgue measure). The problem we consider is thus to determine the energy

ES,P(β, h, V ) = inf
A

[
Tr (T S,P

h (A)− V )− + β

∫
|∇ × A|2

]
(1)

for β, h > 0, where the infimum runs over all vector fields A ∈ H 1(R3
;R3); in fact

minimizing only over all A ∈ C∞0 (R
3
;R3) gives the same infimum. See Appendix A for

a discussion of equivalent variational spaces for this energy and for the precise definition
of the operator T S,P

h (A) − V and the sum of its negative eigenvalues. We will omit the
superscripts S, P when making general statements valid for both the Schrödinger and
Pauli cases.

Here β is an additional parameter setting the strength of the coupling of the particles
to the field. In a given physical system the values of h and β are given, but as is standard in
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semiclassical analysis, we leave them as free parameters. Formally β = ∞ corresponds
to the non-magnetic case; smaller β means that a larger effect of the magnetic field is
expected.

The Euler–Lagrange equation corresponding to the variational problem (1) above is

β ∇ × B = JA, (2)

where JA is the current of the Fermi gas, which in the Schrödinger case is

JA(x) = −Re
[
(−ih∇ + A)1(−∞,0](Th(A)− V )

]
(x, x)

and in the Pauli case is

JA(x) = −Re
[
TrC2

(
σ (σ · (−ih∇ + A))1(−∞,0](Th(A)− V )

)]
(x, x).

In other words the Euler–Lagrange equations are the non-linear coupled (time indepen-
dent) Maxwell–Schrödinger or Maxwell–Pauli equations where we deliberately ignored
Gauss’ equation for V in order to obtain a general result. In the application to large atoms
discussed below we will consider the special case when V solves Gauss’ equation.

There are three natural questions about the energy E(β, h, V ). First of all we may
ask whether the energy is finite, i.e., not negative infinity. We refer to this as stability.
In Theorem 2.1 we give bounds on the energy in the Pauli case under essentially sharp
assumptions on V . The corresponding results for the Schrödinger case are well known
and are also discussed in Section 2.

The second natural question is whether the inclusion of the self-generated magnetic
field will actually lower the energy at all. For both the Pauli and the Schrödinger cases
this is indeed true (see Appendix B), i.e., there exist potentials V and parameters β, h (not
necessarily the same for the Pauli and Schrödinger cases) such that

E(β, h, V ) < E(β = ∞, h, V ). (3)

The third and, actually, main question we address is how the inclusion of the mag-
netic field influences the semiclassical asymptotics (h → 0) for the sum of the negative
eigenvalues. Standard semiclassical results typically assume that the physical data (ex-
ternal potential, vector potential, metric etc.) are smooth. If as above these data arise as
self-generated and thus determined internally via a variational principle, the smoothness
is not a priori given.

In Theorem 2.2 we establish under appropriate assumptions on V that the semiclas-
sical, i.e., h→ 0, asymptotics of E(β, h, V ) in the case when βh→∞ simultaneously
with h→ 0, is given by the standard non-magnetic Weyl formula. The case of large βh is
the case of greatest physical interest as the magnetic field in general gives rise to a small
effect. In [EFS1] we give improved estimates on the error term to the non-magnetic Weyl
term.

It is however at least of mathematical interest to understand the behavior ofE(β, h, V )
also when βh is smaller, i.e., when the effect of the magnetic field is greater. Unfortu-
nately, we have not been able to establish the exact semiclassical asymptotics in this case.
We do show however in Theorem 2.1 again under appropriate assumptions on V that the
Pauli energy h3EP(β, h, V ) is bounded from above and below by functions of κ := βh.
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These functions have almost matching asymptotics in the regime of small βh. In proving
the upper bound we rely heavily on the construction of zero-modes in [ES1]. The similar
result for the Schrödinger case is well-known and, in fact, here the bounds do not depend
on κ (see (6) below).

Theorem 2.1 moreover shows that for sufficiently small κ = βh (depending on V )
the magnetic and non-magnetic energies are different, i.e., (3) holds, since the former is
independent of κ , while the latter scales at least as κ−3+ε for any ε > 0. In summary, we
have established that β ∼ h−1 is the correct threshold for the Pauli operator to observe
the effect of the magnetic field in the leading order semiclassics.

Our results will be stated and proved for the Pauli operator and we will indicate the
modifications for the Schrödinger case.

1.1. Applications to large atoms

One of the main applications of precise semiclassical estimates is to investigate the ground
state energy of large atoms and molecules. It is a celebrated result of Lieb and Simon [LS]
(see also [L]) that the energy of a neutral atom or molecule with nuclear charge Z obeys
the Thomas–Fermi asymptotics, −const · Z7/3, in the large Z limit. The subleading cor-
rection to order Z2 is known as the Scott correction and was established for atoms in [H,
SW1] and for molecules in [IS] (see also [SW2, SW3, SS]). The next term in the expan-
sion of order Z5/3 was rigorously established for atoms in [FS]. The large Z asymptotics
can be viewed as a semiclassical limit with h = Z−1/3 being the semiclassical parameter.
The Scott term thus corresponds to the next order semiclassical estimate. In the results
mentioned so far on the large Z asymptotics, magnetic interactions are ignored.

Magnetic fields in this context were first taken into account as external fields, ei-
ther a homogeneous one [Y, LSY1, LSY2] (see also [Sob1, Sob2, Sob3] for improved
semiclassical estimates and [Iv1, Iv2] for inclusion of the Scott correction) or an inhomo-
geneous one [ES1] but subject to certain regularity conditions. Self-generated magnetic
fields, obtained from Maxwell’s equation (2) are not known to satisfy these conditions.
In [ES3] the validity of Thomas–Fermi theory was extended by allowing a self-generated
magnetic field that interacts with the electrons. This means that the focus was on the abso-
lute ground state of the system, after minimizing for both the electron wave function and
for the magnetic field. Without going into details we mention that Thomas–Fermi theory
can be viewed as the semiclassical approximation to our Maxwell–Pauli system but with
Gauss’ equation included. It was shown that the additional magnetic field does not change
the leading order Thomas–Fermi energy. This holds if Zα2 is sufficiently small, where α
is the fine structure constant; for large values of Zα2 the system is unstable (see [ES3] for
more details).

The semiclassical problem corresponding to a self-generated magnetic field is exactly
of the type (1) we discuss in the present paper for βh→∞. In order to establish the Scott
correction for self-generated magnetic fields, it is necessary to establish the semiclassical
expansion of E(β, h, V ) up to subleading order if βh2 is bounded from below. Such an
improved semiclassical estimate is proven in a separate paper [EFS1] and the Scott term
asymptotics is proved in [EFS2].
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2. Results

In this section we will state and discuss our two main theorems. The proofs are given in
the following sections.

Theorem 2.1 (Stability bounds for the Pauli energy). Assuming V ∈ L1
loc(R

3) and
[V ]+ ∈ L

5/2(R3) ∩ L4(R3), we have, for the Pauli operator,

h3EP(β, h, V ) ≥ −C

∫
[V ]

5/2
+ − C(βh)

−3
∫
[V ]4+ (4)

for some C > 0 and all h ∈ (0,∞) and β ∈ (0,∞]. On the other hand, if V ∈ C1
0(R

3)

then for all 0 < ε < 1/3, h ∈ (0,∞) and β ∈ (0,∞],

h3EP(β, h, V ) ≤ −C′
∫
[V ]

5/2
+ − Cε(βh)

−3+2ε
∫
[V ]4−ε+ + EV (h) (5)

for some positive constants C′ and Cε, the latter depending on ε, and with an error
function h 7→ EV (h), depending only on ε, h, and V and satisfying limh→0 EV (h) = 0.

For reference, we mention the analogous result for the Schrödinger case. If V ∈ L5/2(R3),
we have, for all h > 0 and β ∈ [0,∞],

−C

∫
[V ]

5/2
+ ≤ h

3ES(β, h, V ) ≤ −
1

15π2

∫
[V ]

5/2
+ + EV (h) (6)

with some positive constant C and with an error function depending on V and h and
again satisfying limh→0 EV (h) = 0. The lower bound in (6) is the classical Lieb–Thirring
inequality [LT], which holds also for magnetic Schrödinger operators (see, e.g., [S]). The
upper bound is achieved by setting A = 0 and using the standard Weyl semiclassical
estimate for the non-magnetic operator.

Not only does Theorem 2.1 give the almost sharp asymptotics of h3EP(β, h, V ) in the
limit of small κ = βh, it also essentially gives the optimal condition on which Lp-norms
of V are needed to bound the energy h3EP(κh−1, h, V ) uniformly in h for small h and
fixed κ . From the lower bound in the theorem the L5/2 and L4 norms bound the energy.
Conversely, from the upper bound all Lp norms with p ∈ [5/2, 4) are needed since if
Vn ∈ C

1
0 is a sequence such that ‖[Vn]+‖p →∞ as n→∞ for some p ∈ [5/2, 4), there

is a sequence hn tending to zero such that h3
nE

P(κh−1
n , hn, V )→−∞.

Remark 1. We can also ask a slightly different question: What Lp-norm condition on V
will ensure finiteness of the energy, but not necessarily a bound in terms of this norm?
For the Schrödinger operator the answer is that V+ ∈ L3/2(R3) ensures finiteness of
ES(β, h, V ) and this is essentially sharp as far as the local singularity is concerned, since
for the critical case V (x) = c|x|−2 the energy is finite if c ≤ h2/4 and infinite otherwise.
For the Pauli case we do not know a similar sharp result.

If we require instead the finiteness of only one eigenvalue, i.e., the one-electron energy

E
S,P
0 (β, h, V ) = inf

A

[
inf Spec(T S,P

h (A)− V )+ β

∫
|∇ × A|2

]
(7)
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we have a sharp result for both Pauli and Schrödinger. Of course E0(β, h, V ) ≥

E(β, h, V ) and hence instability for E0 implies instability for E. The situation for
Schrödinger is exactly the same forES

0 andES, i.e. if V+ ∈ L3/2(R3) thenES
0 is finite and

for the critical case V (x) = c|x|−2 the energy is finite if c ≤ h2/4 and infinite otherwise.
For Pauli,Ep

0 is finite if V+ ∈ L3(R3) and for the critical case V (x) = c|x|−1 there ex-
ists a critical value γcr > 0 such that Ep

0 is finite if c < γcrβh
2 and infinite if c > γcrβh

2.
This is essentially contained in [FLL] and we shall review it briefly in Appendix C. We
will also discuss in the appendix that the sum of all eigenvalues Ep likewise remains
bounded for the cutoff Coulomb potential V (x) = [c|x|−1

− 1]+ if c > 0 is small
enough.

Finally, we give the exact spectral asymptotics in the case of weak magnetic fields.

Theorem 2.2 (Semiclassics for weak fields). Assume that V ∈ L5/2(R3)∩L4(R3). Then

lim
h→0
βh→∞

h3EP(β, h, V ) = lim
h→0

h3EP(∞, h, V ) = −
2

15π2

∫
[V (x)]

5/2
+ dx. (8)

Likewise for the Schrödinger case we have, for V ∈ L5/2(R3),

lim
h→0
βh→∞

h3ES(β, h, V ) = lim
h→0

h3ES(∞, h, V ) = −
1

15π2

∫
[V (x)]

5/2
+ dx. (9)

Remark 2. This result is a strengthening of Theorem 1.3 from [ES3], where the same
conclusion was proved under the condition βh2

≥ c > 0.

Remark 3. We conjecture that in the case of the Schrödinger operator the Weyl term is
the correct asymptotics uniformly in β, i.e. if V ∈ L5/2(R3), we conjecture that

lim
h→0

h3ES(β, h, V ) = −
1

15π2

∫
[V (x)]

5/2
+ dx (10)

uniformly in β ∈ [0,∞). The upper bound (5) shows that the same statement cannot hold
for the Pauli case.

Remark 4. Subleading error estimates were established first in [EFS1] and later in [Iv3].

Remark 5. The subleading error estimates in [EFS1] were used in [EFS2] to give the
two-term energy asymptotics, i.e., up to the Scott correction, in the large nuclear charge
limit for atoms and molecules in a self-generated magnetic field.

3. Stability bounds: Proof of Theorem 2.1

The lower bound in Theorem 2.1 establishes the stability of the system, i.e., boundedness
of the energy from below. As the sum of the negative eigenvalues for the Pauli operator
T P
h (A)−V goes to minus infinity (if [V ]+ 6= 0) as the magnetic field increases (e.g. for a

constant magnetic field [AHS]), the addition of the field energy is necessary for stability.
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Moreover, stability will also require sufficient decay of the potential V at infinity and
control of the local singularities.

The basic tool for the proof in the Pauli case is the magnetic Lieb–Thirring inequality
from [LLS]:

Theorem 3.1 (Magnetic Lieb–Thirring inequality [LLS]). There exists a universal con-
stant C > 0 such that for the Pauli operator Th(A) − V with potential V ∈ L1

loc(R
3)

and V+ ∈ L5/2(R3) ∩ L4(R3) and magnetic field B = ∇ × A ∈ L2(R3) we have, for all
h > 0,

Tr [Th(A)− V ]− ≥ −Ch−3
∫
[V ]

5/2
+ − C

(
h−2

∫
|B|2

)3/4(∫
[V ]4+

)1/4

. (11)

Proof of the lower bound in Theorem 2.1. Using the magnetic Lieb–Thirring inequality
(11), we have

Tr [Th(A)− V ]− + β
∫
|∇ × A|2

≥ −Ch−3
∫
[V ]

5/2
+ − Ch

−3/2
(∫
[V ]4+

)1/4(∫
B2
)3/4

+ β

∫
B2

≥ −Ch−3
∫
[V ]

5/2
+ − Ch

−3(βh)−3
∫
[V ]4+, (12)

where we have set B = ∇ × A and optimized over
∫
B2. ut

3.1. Upper bound in Theorem 2.1

In order to construct a trial state that will give the upper bound in Theorem 2.1 we first
use the method of [ES2] to show that there exist compactly supported magnetic fields and
corresponding Pauli operators with zero-modes with arbitrarily fast decay. The original
construction of zero-modes in [LY] leads neither to compactly supported magnetic fields
nor to arbitrarily fast decaying modes.

Proposition 3.2. Given m ∈ N. There exist a smooth magnetic field of compact support
B : R3

→ R3 with a corresponding smooth vector potential A : R3
→ R3, a smooth and

non-vanishing ψ ∈ C∞(R3
;C2), and a constant C > 0 such that

σ · (−i∇ + A)ψ = 0 and |ψ(x)| ≤ C|x|−m−1.

Proof. We use the construction and notations from [ES2]. Consider the map

8 : R3
3 x = (x1, x2, x3) 7→ 2

x3 + i(−1+ |x|2/4)
x1 + ix2

∈ C ∪ {∞}.

This map is 8 = τ2 ◦ φ ◦ τ
−1
3 |R3 , where τ3 : S3

→ R3
∪ {∞} and τ2 : S2

→ R2
∪ {∞}

are stereographic projections (we have identified C and R2) and φ : S3
→ S2 is the Hopf
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map (see Lemma 34 in [ES2]). Note that

1+ 1
4 |8(x)|

2
=
(1+ |x|2/4)2

x2
1 + x

2
2
≥ |x|2/16. (13)

Consider the real 2-form on C, which by stereographic projection pulls back to (1/4
times) the volume form on S2, i.e.,

ω = 1
8 (1+ |z|

2/4)−2idz ∧ dz.

We have
∫
C ω = π . For a real smooth compactly supported function g ∈ C∞0 (C) we

define the 2-form
β3 = 8

∗(gω)

on R3. Note that β3 is a closed 2-form. We can therefore define a (divergence free) vector
field B such that B · (X × Y) = β3(X,Y) for all vector fields X and Y. By (13), β3
and hence B has compact support in R3. Moreover we will assume that (2π)−1 ∫

C gω =
m+ 1/2.

Consider also the real 2-form β2 = (g − 1)ω on C. It satisfies (2π)−1 ∫
C β2 = m. If

we set

h(z) = π−1
∫
C

ln |z− z′|2β2(z
′),

then β2 = dα2, where α2 is the real 1-form α2 = 2 Re
(
i
4∂zh(z)dz

)
. According to the

Aharonov–Casher Theorem (see [ES2, Theorem 37 and Appendix A]) the magnetic Dirac
operator on C corresponding to the metric with volume form ω and conformal to the
standard metric and one-form (magnetic vector potential) α2 has an (unnormalized) zero-
mode, i.e., element in the kernel, of the form f (z)

(
1
0
)
, where

f (z) = (1+ |z|2/4)1/2 exp(−h(z)/4).

In the standard metric on C the same would be true with a zero-mode without the prefactor
(1+|z|2/4)1/2, which comes from the conformal factor according to [ES2, Theorem 23].

Note that |f (z)| ≤ C|z|1−m. In fact, there will be m zero-modes, but we need only
the one given above which has the fastest decay.

Let us turn to the construction of the zero-mode in R3. Let� : R3
→ R3 be the vector

field corresponding to the 2-form8∗(ω), i.e., such that� · (X×Y) = ω(8∗(X),8∗(Y)).
We may choose a smooth unit vector field ξ : R3

→ C2 such that σ ·�ξ = |�|ξ . In fact,
an explicit choice is

ξ(x) = (1+ |x|2/4)−1/2
(

1+
i

2
σ · x

)(
1
0

)
.

According to Section 8 in [ES2] we can find a smooth A with ∇ × A = B and such that
σ · (−i∇ + A)ψ = 0, where

ψ(x) = (1+ |x|2)−1f (8(x))ξ(x).
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Here again (1 + |x|2)−1 is the conformal factor coming from the stereographic projec-
tion τ3 (see Theorem 23 in [ES2]). Thus we see that |ψ(x)| ≤ C|x|−m−1. ut

We can use this proposition to construct a low energy one-electron state localized in a
ball.

Proposition 3.3. For all 0 < δ < 1 there is a constant Cδ > 0 such that for all h, β > 0
and all balls BR with radius R we can find a smooth magnetic field B supported in BR
such that for all smooth magnetic vector potentials A with ∇ ×A = B in BR we can find
an L2-normalized ψ ∈ C∞0 (BR,C

2) satisfying∫
|σ · (−ih∇ + A)ψ |2 + β

∫
B2
≤ Cδh

2β1−δR−1−δ.

Proof. This is a simple localization and scaling argument based on the result in the pre-
vious proposition. First note that we may assume that βR is small enough. In fact, if
βR > c for some constant c then h2β1−δR−1−δ

≥ c1−δh2R−2 and an upper bound of
the form Ch2R−2 can be achieved by choosing A = B = 0.

Without loss of generality we may assume that the ball BR is centered at the origin.
Choose an integer m such that (2m)−1

≤ δ. Let ψ̃ be a zero-mode as constructed in
Proposition 3.2, i.e.,

σ · (−i∇ + Ã)ψ̃ = 0

with decay |ψ̃(x)| ≤ C|x|−m−1 and corresponding magnetic field B̃ = ∇×Ã of compact
support. We may assume that ψ̃ is normalized. For ` > 0 we define

ψ`(x) = `
−3/2ψ̃(x/`), A`(x) = `

−1hÃ(x/`).

Then B`(x) = h`−2B̃(x/`) and

σ · (−ih∇ + A`)ψ` = 0.

We can assume B̃ to be supported in a ball of radius 1 centered at the origin (otherwise
we rescale as just explained). Hence B` is supported in a ball of radius `.

Choose χ ∈ C∞0 (R
3) with support in the unit ball centered at the origin and such that

0 ≤ χ(x) ≤ 1 for all x and χ(x) = 1 if |x| < 1/2. Set

ψ(x) = N−1χ(x/R)ψ`(x),

where the normalization constant is N =
(∫
|χ(x/R)ψ`(x)|

2 dx
)1/2. Then ψ is sup-

ported in BR . Moreover, 1− C(`/R)2m−1
≤ N 2

≤ 1, and thus, if R > 2`,∫
|σ · (−ih∇ + A`)ψ |

2
= h2N−2

∫
(∇(χ(x/R)))2|ψ`(x)|

2 dx ≤ Ch2R−2(`/R)2m−1.

Hence ∫
|σ · (−ih∇ + A`)ψ |

2
+ β

∫
B2
` ≤ Ch

2R−2(`/R)2m−1
+ Ch2β`−1

= Ch2βR−1(βR)−1/(2m)

with the optimal choice ` = CR(βR)1/(2m) ≤ R/2 if βR is small enough.



2102 László Erdős et al.

Finally, ifA is any smooth vector potential with ∇×A = B` in BR then we can gauge
transform, i.e., find a smooth φ : BR → R such that A` = A+∇φ in BR . Then

σ · (−ih∇ + A)eih
−1φψ = eih

−1φσ · (−ih∇ + A`)ψ

and thus the above bound holds with ψ replaced by e−ih
−1φψ . ut

Proof of the upper bound in Theorem 2.1. By choosing A = 0 we can always achieve a
Weyl upper bound

h3E(β, h, V ) ≤ −C

∫
[V ]

5/2
+ + EV (h).

Let us now show that if (βh)−3+2ε ∫
[V ]4−ε+ >

∫
[V ]

5/2
+ then we can achieve the bound

h3E(β, h, V ) ≤ −Cε(βh)
−3+2ε

∫
[V ]4−ε+ (14)

for h small enough depending on V and ε. Divide space into cubes of side length
√
h.

For each cube consider the minimal value Vmin of V . Then in the cube, V ≤ Vmin +√
3h‖∇V ‖∞. If Vmin ≤

√
h‖∇V ‖∞ we do nothing in that cube. If we denote the union

of all these cubes by WQ (for weak cubes) we find that∫
WQ

[V ]4−ε+ ≤ CV h
2−ε/2 (15)

for CV > 0 a constant depending only on V (in particular on the support of V ).
In each cube where Vmin ≥

√
h‖∇V ‖∞ we have V ≤ (1+

√
3)Vmin. We fill each of

these cubes with the maximal number of disjoint balls of radius

R = κ2h(βh)
1−2ε/3V

−1+ε/3
min ,

where κ2 > 0 is a constant which we will choose below depending only on ε. Note that

R ≤ κ
−1+ε/3
2 h1/2+ε/6(βh)1−2ε/3

‖∇V ‖
−1+ε/3
∞ ≤

√
h/2 (16)

if h is small enough depending only on V and ε (recall that βh is bounded from above in
terms of V ). In particular, we can then fit at least one ball in the cube.

In each of these balls we choose a magnetic field according to Proposition 3.3 with δ
chosen such that 3δ(1 + δ)−1

= ε. Let B : R3
→ R3 be the sum of all these disjointly

supported magnetic fields and let A be a corresponding vector potential. Let B(i) and Ri
for i = 1, 2, . . . denote the balls (there are only finitely many) and their radii. According
to Proposition 3.3 we can for each i find a normalized ψi supported in B(i) such that∫
|σ · (−ih∇ + A)ψi |

2
−

∫
|ψi |

2V + β

∫
B(i)

B2
≤ Cδh

2β1−δR−1−δ
i − Vmin,i

≤ (Cδκ
−1−δ
2 − 1)Vmin,i ≤ −Vmin,i/2
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if κ2 is large enough depending on δ, i.e., on ε. Here Vmin,i is the minimum of V in the
cube containing the ball B(i).

Since all the constructed balls are disjoint it follows that P =
∑
i |ψi〉〈ψi | is an

orthogonal projection and hence

E(β, h, V ) ≤ Tr
[(
(σ · (−ih∇ + A))2 − V

)
P
]
+ β

∫
B2

≤

∑
i

−Vmin,i/2 =
∑
i

−
1
2κ
−3
2 h−3(βh)−3+2εV 4−ε

min,iR
3
i

≤ −2Cεh−3(βh)−3+2ε
∫
R3\WQ

V 4−ε,

for some constant Cε > 0 depending only on ε. We have here used the fact that in each
of the cubes the balls take up a certain fraction bounded below of the volume and that
V ≤ (1 +

√
3)Vmin. Let us emphasize that κ2 was chosen depending only on ε. This

allows us to ensure that (16) is satisfied if h is small enough depending on V and ε.
Finally, from (15) we can choose h so small depending on V and ε that∫

WQ

[V ]4−ε+ ≤
1
2

∫
R3
[V ]4−ε+ .

This proves the claim (14). ut

4. Semiclassics for weak fields: Proof of Theorem 2.2

We discuss only the Pauli case; the Schrödinger case is similar but much easier and is left
to the reader. In the remaining part of the proof we will omit the superscript P.

For the upper bound on h3E(β, h, V ) we choose A ≡ 0 in the definition (1) and
then we have E(β, h, V ) ≤ E(∞, h, V ) and the second equality in (8) is just the usual
non-magnetic semiclassical asymptotics.

For the lower bound, we first remark V ≥ 0 can be assumed and that it is sufficient
to prove the result for V ∈ C∞0 (R

3) by a standard approximation argument. The error
between V ∈ L5/2

∩ L4 and its C∞0 -approximation Ṽ can be made arbitrarily small in
the ‖ · ‖5/2 + ‖ · ‖4 norm. Thus the replacement of V with Ṽ can be controlled by using
the magnetic Lieb–Thirring inequality (11) and borrowing a small part of the kinetic
energy and the magnetic energy. For more details, see Section 5.4 of [ES3] (with the only
modification that instead of [ES3, (5.58)] use (12)).

Secondly, as discussed in Appendix A we may in (1) replace
∫
R3 |∇ × A|2 by∫

R3 |∇ ⊗ A|
2, where the last integrand contains all derivatives.

Thirdly, we may replace E(β, h, V ) with a localized version of the total energy. Let
0 ≤ φ∗(x) ≤ 1 be a smooth function with suppφ∗ ⊂ B(1) and φ∗ ≡ 1 on B(1/2), where
B(r) denotes the ball of radius r centered at the origin. Denote φr(x) = φ∗(x/r). Using
a partition of unity, φ2

r + η
2
r ≡ 1, and the IMS localization, we have

Tr [Th(A)−V ]− ≥ Tr [φr(Th(A)−V−h2Ir)φr ]−+Tr [ηr(Th(A)−V−h2Ir)ηr ]−, (17)
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where Ir := (∇φr)2 + (∇ηr)2 is supported in the shell {r/2 ≤ |x| ≤ r}. The second term
is bounded by the magnetic Lieb–Thirring inequality similarly to (12). More precisely,
for any ε > 0 there is a sufficiently large r = rε ≥ 1 such that

Tr [ηr(Th(A)− V − h2Ir)ηr ]− ≥ Tr (Th(A)− V̂ )−

≥ −Ch−3
∫
|x|≥r

V̂ 5/2
− Ch−3(βh)−3

(∫
|x|≥r

V̂ 4
)
−
β

2

∫
|∇ × A|2

= −εh−3
−
β

2

∫
|∇ × A|2 (18)

if h ≤ hε, where V̂ (x) := V (x) + h2Ir . Here we used the integrability conditions on V
and that βh is bounded from below.

It is therefore sufficient to give a lower bound on the first term in (17), more precisely,
we have

E(β, h, V ) ≥ −εh−3
+ inf

A

[
Tr [φ(Th(A)−W)φ]− +

β

2

∫
R3
|∇ ⊗ A|2

]
, (19)

where we set W := V + h2Ir and φ = φr for brevity.
To estimate the right hand side of (19), we will follow the argument of Section 5

of [ES3]. We choose a length L with h ≤ L ≤ h1/2. Let �L := B(r + L) be the L-
neighborhood of� := B(r). LetQk := {y ∈ R3

: ‖y−k‖∞ < L/2}with k ∈ (LZ)3∩�L
denote a non-overlapping covering ofB(r)with boxes of sizeL. In this section the index k
will always run over the set (LZ)3 ∩ �L. Let ξk be a partition of unity,

∑
k ξ

2
k ≡ 1,

subordinated to the collection of boxes Qk , such that

supp ξk ⊂ (2Q)k, |∇ξk| ≤ CL
−1,

where (2Q)k denotes the cube of side-length 2L with center k. Let ξ̃k be a cutoff function
such that ξ̃k ≡ 1 on (2Q)k (i.e. on the support of ξk), supp ξ̃k ⊂ Q̃k := (3Q)k and
|∇ ξ̃k| ≤ CL

−1.
Let 〈A〉k = |Q̃k|

−1 ∫
Q̃k
A, Ak := (A − 〈A〉k )̃ξk and Bk := ∇ × Ak . Then by the

Poincaré inequality we have∫
R3
B2
k ≤

∫
Q̃k

|∇ ⊗ Ak|
2
≤ C

∫
Q̃k

|∇ ⊗ A|2 + CL−2
∫
Q̃k

|A− 〈A〉k|
2

≤ C

∫
Q̃k

|∇ ⊗ A|2. (20)

From the IMS localization with a phase function ψk satisfying h∇ψk = 〈Ak〉 we have

Tr [φ(Th(A)−W)φ]− +
β

2

∫
R3
B2
= inf

γ
Tr(γ φ[Th(A)−W ]φ)+ β

∫
R3
|∇ ⊗ A|2

≥ inf
γ

∑
k∈(LZ)3∩�L

Ek(γ ) (21)
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with

Ek(γ ) := Tr
[
γ ξke

−iψkφ[Th(A− 〈A〉k)−W − Ch
2L−2
]φeiψkξk

]
+ c0β

∫
Q̃k

|∇ ⊗ A|2

with some universal constant c0 and after reallocating the localization error. In (21) the
infimum is taken over all density matrices 0 ≤ γ ≤ 1. We also reallocated the second
integral to account for the finite overlap of the cubes Q̃k . We introduce the notation

Fk := c0β

∫
Q̃k

|∇ ⊗ A|2.

Let [H ]Q denote the operator H with Dirichlet boundary conditions on the box Q.
For each fixed box Q̃k we apply the magnetic Lieb–Thirring inequality [LLS] together
with (20) to deduce that for any density matrix γ ,

Ek(γ ) ≥ Tr
[
[Th(Ak)−W − Ch

2L−2
]Q̃k

]
−
+ Fk

≥ −Ch−3
∫
Q̃k

[W +Ch2L−2
]
5/2
−C

(∫
Q̃k

[W +Ch2L−2
]
4
)1/4(

h−2
∫
Q̃k

B2
k

)3/4

+Fk

≥ −Ch−3L3
−Ch−6L3β−3

−
c0

2
β

∫
Q̃k

|∇ ⊗A|2+Fk

≥ −Ch−3L3
+

1
2
Fk

using h ≤ L and βh→∞. The constants C depend on ‖W‖∞.
Let S ⊂ (LZ)3 ∩�L denote the set of those indices k such that

Fk ≤ C1h
−3L3 (22)

with some large constant C1. In particular, by choosing C1 sufficiently large, we have

Ek(γ ) ≥ 0 for all k 6∈ S and for any γ . (23)

We use the Schwarz inequality in the form

Th(A− 〈A〉k) ≥ −(1− εk)h21− Cε−1
k (A− 〈A〉k)

2,

with some 0 < εk < 1/3, to obtain

Ek(γ ) ≥Tr
[
φξk[−(1− 2εk)h21−W − Ch2L−2

]ξkφ
]
−

+ Tr
[
1Q̃k [−εkh

21− Cε−1
k (A− 〈A〉k)

2
]1Q̃k

]
−
+ Fk. (24)

We will show at the end of the section that

Tr
[
φξk[−(1− 2εk)h21−W − Ch2L−2

]ξkφ
]
−

≥ Tr [φξk(−h21−W)ξkφ]− − Ch
−3(εk + h

2L−2)|Q̃k|. (25)
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Using (23) and (25), we obtain

inf
γ

∑
k

Ek(γ ) ≥ inf
γ

∑
k∈S

Ek(γ ) ≥
∑
k

Tr
[
φξk[−h

21−W ]ξkφ
]
−
+

∑
k∈S

Dk

≥

∑
k

inf
γk

Tr
[
ξkγkξkφ[−h

21−W ]φ
]
+

∑
k∈S

Dk

≥ Tr [φ(−h21−W)φ]− +
∑
k∈S

Dk (26)

with

Dk := Tr
[
[−εkh

21− Cε−1
k (A− 〈A〉k)

2
]Q̃k

]
−
− Ch−3

|Q̃k|(εk + h
2L−2)+ Fk. (27)

In the last step in (26) we used that for any collection of density matrices γk , the density
matrix

∑
k ξkγkξk is admissible in the variational principle

Tr [φ(−h21−W)φ]− = inf {Tr γ [−h21−W ] : 0 ≤ γ ≤ 1}. (28)

We estimate Dk for k ∈ S as follows:

Dk ≥− Cε−4
k h−3

∫
Q̃k

(A− 〈A〉k)
5
− Ch−3

|Q̃k|(εk + h
2L−2)+ Fk

≥ Fk − Cε−4
k h−3β−5/2L1/2F5/2

k − Ch
−3
|Q̃k|(εk + h

2L−2). (29)

In the first step we used the Lieb–Thirring inequality, and in the second step Hölder and
Sobolev inequalities in the form∫

Q̃k

(A− 〈A〉k)
5
≤ CL1/2

(∫
Q̃k

|∇ ⊗ A|2
)5/2

.

We choose
εk = β

−1/2L−1/2F1/2
k

and using the a priori bound (22), we see that

εk ≤ Ch
−1L(βh)−1/2.

Thus, choosing
L = h(βh)1/10, (30)

we get εk ≤ C(βh)−2/5
≤ 1/3 as βh → ∞. With this choice of εk and L we have

from (29)

Dk ≥ Fk − C(hβ)−1/4F1/2
k − Ch

−3L3(βh)−1/5
≥ −Ch−3L3(βh)−1/5. (31)

Summing up (31) for all k and using the estimate∑
k∈(LZ)3∩�L

L3
≤ Cr3,
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we deduce from (26) and (31) that

inf
γ

∑
k

Ek(γ ) ≥ Tr [φ(−h21−W)φ]− − Ch
−3(βh)−1/5r3

≥ −
2

15π2 (1+ o(1))
∫
W 5/2

− Ch−3(βh)−1/5r3 (32)

using the standard semiclassical asymptotics for

Tr [φ(−h21−W)φ]− ≥ Tr (−h21−W)−.

Together with (21) this proves the required lower bound for the second term in (19).
The difference between

∫
W 5/2 and

∫
V 5/2 is negligible as h → 0. Letting first h → 0

together with βh→∞ and then letting ε→ 0 we obtain the lower bound in (8).
Finally, we prove (25). Let γ be a trial density matrix for the left hand side of (25).

We can assume that

0 ≥ Tr
[
γφξk[−(1− 2εk)h21−W − Ch2L−2

]ξkφ
]
.

Recalling that εk ≤ 1/3, we have

0 ≥ Tr
[
γφξk

[
−

1
6h

21+ 1
]
ξkφ

]
+ Tr

[
γφξk

[
−

1
6h

21−W − Ch2L−2
− 1

]
ξkφ

]
≥Tr

[
γφξk

[
−

1
6h

21+ 1
]
ξkφ

]
− Ch−3

∫
Q̃k

[W + 1+ Ch2L−2
]
5/2, (33)

where we used the Lieb–Thirring inequality. Thus, using h ≤ L, we have

Tr
[
γφξk

[
−

1
6h

21+ 1
]
ξkφ

]
≤ Ch−3

|Q̃k|

with a constant depending on W . Therefore

Tr
[
γφξk[−(1− 2εk)h21−W − Ch2L−2

]ξkφ
]

≥ Tr[γφξk(−h21−W)ξkφ] − Ch
−3(εk + h

2L−2)|Q̃k|. (34)

Now (25) follows by the variational principle. ut

Appendix A. Equivalent forms of energy

We will consider the equivalent of the total energy where we have different restrictions
on the vector potentials. We allow the energy to possibly have an extra localization. So
we end up considering

E×(A) = Tr [ψ(Th(A)− V )ψ]− + β
∫
R3
|∇ × A|2, (35)

where ψ ∈ C∞(R3) satisfies 0 ≤ ψ ≤ 1. Similarly, we define

E⊗(A) = Tr [ψ(Th(A)− V )ψ]− + β
∫
R3
|∇ ⊗ A|2, (36)
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where |∇ ⊗ A|2 =
∑3
i,j=1 |∂iAj |

2. Some natural domains of definition are given below:

D1 =
{
A ∈ L6(R3,R3) :

∫
|∇ × A|2 <∞

}
,

D2 = C
∞

0 (R
3,R3),

D3 = H
1(R3,R3),

D4 = {A ∈ D1 : ∇ · A = 0}.

In the case of E⊗, the expression
∫
|∇ × A|2 in D1 should be replaced by

∫
|∇ ⊗ A|2.

We will only assume that V ∈ L1
loc(R

3). The trace in the above expressions should
then be interpreted as

inf
N∑
j=1

〈φj |ψ(Th(A)− V )ψφj 〉, (37)

where {φj }Nj=1 runs over all orthonormal subsets of C∞0 (R
3). If this infimum is different

from −∞, it implies in particular that the quadratic form of ψ(Th(A)− V )ψ defined on
C∞0 is semibounded from below. In that case (37) will be equal to the trace of the negative
part of the Friedrichs extension of this quadratic form, thereby justifying the notation.

Proposition A.1. For all i, j ∈ {1, 2, 3, 4},

inf
A∈Di

E×(A) = inf
A∈Dj

E⊗(A). (38)

Notice though that we do not prove that one can impose compact support and zero diver-
gence at the same time.

Proof. Consider first the E×. Clearly, D2 ⊂ D3 ⊂ D1 (using the Sobolev inequality to
get the last inclusion) which implies corresponding inequalities for the energies. We will
now prove that infA∈D1 E×(A) ≥ infA∈D2 E×(A). But for any A ∈ D1 and any finite
collection {φj } ⊂ C∞0 (R

3) we can get arbitrarily close to

N∑
j=1

〈φj |ψ(Th(A)− V )ψφj 〉 + β

∫
|∇ × A|2

by simultaneously approximating A in L6-norm and ∇ × A in L2, by a C∞0 vector field.
Therefore

inf
A∈D1

E×(A) = inf
A∈D2

E×(A) = inf
A∈D3

E×(A).

Clearly infA∈D1 E×(A) ≤ infA∈D4 E×(A). We will prove that infA∈D2 E×(A) ≥

infA∈D4 E×(A), thereby establishing the equality for all four energies E×. Let A ∈
C∞0 (R

3,R3) and {φj }Nj=1 ⊂ C
∞

0 (R
3). Then B = ∇×A ∈ L2(R3) and therefore there ex-

istsA′ ∈ D4 with∇×A′ = B (see [FLL]). It follows that there exists η withA−A′ = ∇η
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and therefore (since 1η = ∇ · A) η ∈ C∞(R3). But then

N∑
j=1

〈φj |ψ(Th(A)− V )ψφj 〉 =

N∑
j=1

〈eiηφj |ψ(Th(A
′)− V )ψ(eiηφj )〉,

which establishes the desired inequality. Since
∫
|∇ ⊗ A|2 =

∫
|∇ × A|2 +

∫
|∇ · A|2,

the same arguments give the identities for the E⊗ versions of the energies.
Finally we prove that infA∈D4 E×(A) = infA∈D4 E⊗(A). But this is obvious since the

field energies are identical when ∇ · A = 0. ut

Appendix B. Self-generated magnetic fields lower the energy

In this appendix we will show that self-generated magnetic fields may indeed decrease
the energy, i.e., inequality (3).

Proof of (3). For the Pauli operator we already remarked this fact as a consequence of
Theorem 2.1. Alternatively, it also follows from the instability in (41) in Appendix C be-
low, since the non-magnetic Hydrogen atom is stable. For the Schrödinger operator this
statement was essentially proved in [ELV] (see also [FLW]) by considering the pertur-
bative regime as a small magnetic field is turned on. A simple first order perturbation
argument shows that the lowest eigenvalue increases quadratically in B. In a spherical
geometry the higher non-magnetic eigenvalues are degenerate and some of them carry
non-trivial current. These eigenvalues will split linearly when a small magnetic field is
turned on. To see this explicitly, we can consider a spherically symmetric harmonic oscil-
lator in a constant magnetic field, i.e., V (x) = |x|2 and A(x, y, z) = (By/2,−Bx/2, 0)
with B > 0 constant. The eigenvalues of the operator (−i∇ − A)2 + |x|2 are (see [Fo])

e(n1, n2, n3) = (n1 + n2 + 1)
√

1+ B2 + (n3 + 1/2)+ (n1 − n2)B

with n1, n2, n3 ∈ N. Thus as an explicit example

Tr [(−i∇ − A)2 + |x|2 − 5/2]− = 3
√

1+ B2 − 4− B,

which of course explicitly decreases as a small B is increased from zero. It is now clear
that we can find Ã ∈ C∞0 (R

3
;R3) which approximates A such that

Tr [(−i∇ − Ã)2 + |x|2 − 5/2]− < Tr(−1+ |x|2 − 5/2)− = −1

and hence for β > 0 sufficiently small

Tr [(−i∇ − Ã)2 + |x|2 − 5/2]− + β
∫
|∇ × Ã|2 < Tr [−1+ |x|2 − 5/2]−. ut

Appendix C. Stability conditions

Using the argument in [FLL] it is easy to show the following stability result on the one-
electron energy.
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Proposition C.1. Let V ∈ L1
loc(R

3) with V+ ∈ L3(R3) ∩ L3/2(R3). Then for all ψ ∈
H 1(R3) with ‖ψ‖L2 = 1 we have

〈ψ, (T P
h (A)− V )ψ〉 + β

∫
B2
≥ 0

if β−1h−2
‖V+‖3 and h−2

‖V+‖3/2 are (universally) small enough.

Proof. Let CS > 0 be the Sobolev constant, i.e.,
∫
|∇ψ |2 ≥ CS‖ψ‖

2
6. Since

T P
h (A) = (−ih∇ + A)

2
+ hσ · B

we estimate, for all 0 < ε ≤ 1,

〈ψ, T P
h (A)ψ〉 + β

∫
B2
≥ CSh

2ε‖ψ‖26 − hε

∫
|B| |ψ |2 + β

∫
B2

≥ CSh
2ε‖ψ‖26 − (4β)

−1ε2h2
∫
|ψ |4

≥ CSh
2ε‖ψ‖26 − (4β)

−1ε2h2
‖ψ‖36‖ψ‖2.

We will also use for p ≥ 3/2 the Hölder inequality∫
V |ψ |2 ≤ ‖V+‖p‖ψ‖

3/p
6 ‖ψ‖

2−3/p
2 .

We consider two cases.

Case 1: ‖ψ‖6 ≤ 2CSβ. We set ε = 1 and p = 3/2 above and find, since ‖ψ‖2 = 1,

〈ψ, (T P
h (A)− V )ψ〉 + β

∫
B2
≥

1
2
Csh

2
‖ψ‖26 − ‖V+‖3/2‖ψ‖

2
6,

from which it follows that the energy is non-negative if ‖V+‖3/2 ≤ CSh2/2.

Case 2: ‖ψ‖6 ≥ 2CSβ. Let ε = 2CSβ‖ψ‖−1
6 ≤ 1 and p = 3. Then

〈ψ, (T P
h (A)− V )ψ〉 + β

∫
B2
≥ C2

Sh
2β‖ψ‖6 − ‖V+‖3‖ψ‖6.

Hence the energy is non-negative if ‖V+‖3 ≤ C2
Sh

2β. ut

It follows immediately from this proposition that the one-electron energy EP
0 (β, h, V )

is finite if V+ ∈ L3(R3). In fact, all we have to argue is that βh−2
‖[V − e]+‖3 and

h−2
‖[V − e]+‖3/2 can be made small enough by choosing e > 0 large enough. In this

way −e can be made a lower bound on EP
0 . Since V+ ∈ L3 we can of course make

‖[V − e]+‖3 arbitrarily small. Using [V − e]3/2+ ≤ (2e
−1)3/2[V − e/2]3+ we can do the

same with ‖[V − e]+‖3/2.
This stability criterion is essentially sharp. In fact, applying the method of proof as in

the proposition above and the construction of zero-modes in [LY] it was proved in [FLL]
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that for the Coulomb potential V (x) = c|x|−1 there is a critical value γcr such that the
one-electron energy satisfies

EP
0 (β, h, V ) > −∞ if γcrβh

2 > c (39)

and
EP

0 (β, h, V ) = −∞ if γcrβh
2 < c. (40)

Since EP
≤ EP

0 it is clear that (40) implies that even for the cutoff Coulomb potential
V = [c|x|−1

− 1]+ we have

EP(β, h, V ) = −∞ if γcrβh
2 < c. (41)

However there is also a value γ ′cr > 0 such that

EP(β, h, V ) > −∞ if γ ′crβh
2 > c. (42)

This stability statement follows, e.g., by localizing in an appropriate ball and then follow-
ing the proof of [ES3, Lemma 2.1] for the inner regime (with the choice of Z = h−2,
δ = Z1/3, D = RZ1/3 and 16πα2

= β−1). In the outer regime the operator has a com-
pactly supported bounded potential (that includes the localization error) so its energy is
controlled by the magnetic Lieb–Thirring inequality as in (12).
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[EFS1] Erdős, L., Fournais, S., Solovej, J. P.: Second order semiclassics with self-generated mag-
netic fields. Ann. Henri Poincaré 13, 671–730 (2012) MR 2913618
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[FLL] Fröhlich, J., Lieb, E. H., Loss, M.: Stability of Coulomb systems with magnetic fields.
I. The one-electron atom. Comm. Math. Phys. 104, 251–270 (1986) Zbl 0595.35098
MR 0836003

[H] Hughes, W.: An atomic energy bound that gives Scott’s correction. Adv. Math. 79, 213–270
(1990) Zbl 0715.46046 MR 1033078

[Iv1] Ivrii, V. I.: Asymptotics of the ground state energy of heavy molecules in a strong magnetic
field. I, II. Russian J. Math. Phys. 4, 29–74 (1996); 5, 321–354 (1998) Zbl 0958.35113(I)
Zbl 0958.35114(II) MR 1404501(I) MR 1605637(II)

[Iv2] Ivrii, V. I.: Heavy molecules in the strong magnetic field. Russian J. Math. Phys. 4, 449–
455 (1996) Zbl 0908.35106 MR 1470446

[Iv3] Ivrii, V. I.: Local trace asymptotics in the self-generated magnetic field. arXiv:1108.4188
[IS] Ivrii, V. I., Sigal, I. M.: Asymptotics of the ground state energies of large Coulomb systems.

Ann. of Math. (2) 138, 243–335 (1993) Zbl 0789.35135 MR 1240575
[L] Lieb, E. H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys.

65, 603–641 (1981) Zbl 1049.81679 MR 0629207
[LL] Lieb, E. H., Loss, M.: Stability of Coulomb systems with magnetic fields II. Comm. Math.

Phys. 104, 271–282 (1986) Zbl 0607.35082 MR 0836004
[LLS] Lieb, E. H., Loss, M., Solovej, J. P.: Stability of matter in magnetic fields. Phys. Rev. Lett.

75, 985–989 (1995) Zbl 1020.81957
[LS] Lieb, E. H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv.

Math. 23, 22–116 (1977) Zbl 0938.81568 MR 0428944
[LSY1] Lieb, E. H., Solovej, J. P., Yngvason, J.: Asymptotics of heavy atoms in high magnetic

fields: I. Lowest Landau band region. Comm. Pure Appl. Math. 47, 513–591 (1994)
Zbl 0800.49041 MR 1272387

[LSY2] Lieb, E. H., Solovej, J. P., Yngvason, J.: Asymptotics of heavy atoms in high magnetic
fields: II. Semiclassical regions. Comm. Math. Phys. 161, 77–124 (1994) Zbl 0807.47058
MR 1266071

[LT] Lieb, E. H., Thirring, W. E.: Bound for the kinetic energy of fermions which proves the
stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)

[LY] Loss, M., Yau, H.-T.: Stability of Coulomb systems with magnetic fields: III. Zero
energy bound states of the Pauli operator. Comm. Math. Phys. 104, 283–290 (1986)
Zbl 0607.35083 MR 0836005

[SW1] Siedentop, H., Weikard, R.: On the leading energy correction for the statistical model of
an atom: interacting case. Comm. Math. Phys. 112, 471–490 (1987) Zbl 0920.35120
MR 0908549

[SW2] Siedentop, H., Weikard, R.: On the leading correction of the Thomas–Fermi model: lower
bound. Invent. Math. 97, 159–193 (1990) Zbl 0689.34011 MR 0999317

[SW3] Siedentop, H., Weikard, R.: A new phase space localization technique with application to
the sum of negative eigenvalues of Schrödinger operators. Ann. Sci. École Norm. Sup. (4)
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