
1081

M. Kebschull1,7, P. Guarnieri2,3,  
R.T. Demmer4, A.L. Boulesteix5,  
P. Pavlidis6, and P.N. Papapanou1*

1Division of Periodontics, Section of Oral and Diagnostic Sciences, 
Columbia University College of Dental Medicine, New York, NY, 
USA; 2Biomedical Informatics Shared Resources, Bioinformatics 
Division, Herbert Irving Comprehensive Cancer Center; 3Columbia 
Initiative in Systems Biology, Columbia University Medical Center, 
New York, NY, USA; 4Department of Epidemiology, Mailman School 
of Public Health, Columbia University, New York, NY, USA; 
5Computational Molecular Medicine Research Group, Department of 
Medical Informatics, Biometry and Epidemiology, University of 
Munich, Munich, Germany; 6UBC Centre for High-Throughput 
Biology, Michael Smith Laboratories, University of British Columbia, 
Vancouver, BC, Canada; and 7Present address, Department of 
Periodontology, Operative and Preventive Dentistry, University of 
Bonn, Bonn, Germany; *corresponding author, pp192@columbia.edu

Abstract
The 2 major forms of periodontitis, chronic (CP) and 
aggressive (AgP), do not display sufficiently distinct his-
topathological characteristics or microbiological/ 
immunological features. We used molecular profiling to 
explore biological differences between CP and AgP and 
subsequently carried out supervised classification using 
machine-learning algorithms including an internal valida-
tion. We used whole-genome gene expression profiles 
from 310 ‘healthy’ or ‘diseased’ gingival tissue biopsies 
from 120 systemically healthy non-smokers, 65 with CP 
and 55 with AgP, each contributing with ≥ 2 ‘diseased’ 
gingival papillae (n = 241; with bleeding-on-probing, 
probing depth ≥ 4 mm, and clinical attachment loss  
≥ 3 mm), and, when available, a ‘healthy’ papilla (n = 69; 
no bleeding-on-probing, probing depth ≤ 4 mm, and 
clinical attachment loss ≤ 4 mm). Our analyses revealed 
limited differences between the gingival tissue transcrip-
tional profiles of AgP and CP, with genes related to 
immune responses, apoptosis, and signal transduction 
overexpressed in AgP, and genes related to epithelial 
integrity and metabolism overexpressed in CP. Different 
classifying algorithms discriminated CP from AgP with an 
area under the curve ranging from 0.63 to 0.99. The small 
differences in gene expression and the highly variable 
classifier performance suggest limited dissimilarities 
between established AgP and CP lesions. Future analyses 
may facilitate the development of a novel, ‘intrinsic’ clas-
sification of periodontitis based on molecular profiling.
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Introduction

Two principal forms of periodontitis are currently recognized, chronic (CP) 
and aggressive periodontitis (AgP). Despite differences in their clinical 

phenotypes (Armitage and Cullinan, 2010), no unequivocal pathophysiologi-
cal foundation that differentiates between CP and AgP has been established. 
Chronic and aggressive periodontitis lesions cannot be distinguished on the 
basis of histopathologic features (Smith et al., 2010) or microbial colonization 
profiles (Armitage, 2010), although there is evidence of immunological differ-
ences, including the presence of neutrophil abnormalities in AgP (Ryder, 2010).

In other fields, most notably in oncology, tumors of similar histology but 
disparate clinical behavior are distinguishable based on genome-wide molec-
ular analyses. Specifically, the study of gene expression signatures in tumors 
with different prognosis has led to an improved classification of breast cancer 
and has translated into improved therapeutic management (Prat et al., 2012).

We hypothesized that the 2 currently accepted major forms of periodonti-
tis, CP and AgP, display characteristic gene expression signatures that allow 
for a molecular distinction between the 2 entities and reveal differences in 
underlying pathophysiology.

To address this hypothesis, we utilized whole-genome gene expression 
profiles of gingival tissue samples from patients with CP or AgP. Based on 
gingival transcriptomes, we then performed a supervised classification of CP 
and AgP using machine-learning algorithms.

Materials & Methods

We used 310 Affymetrix HG-U133Plus2.0 microarray samples (GEO acces-
sion number GSE16134) of ‘healthy’ [n = 69, no bleeding on probing (BoP), 
probing depth (PD) ≤ 4 mm, and clinical attachment loss (CAL) ≤ 4 mm)] or 
‘diseased’ gingival tissue samples (n = 241; with BoP, PD ≥ 4 mm, and CAL 
≥ 3 mm), obtained from 120 non-smoking, systemically healthy individuals 
with moderate/severe periodontitis (65 with CP and 55 with AgP), as previ-
ously described (Demmer et al., 2008; Kebschull and Papapanou, 2010). 
Excellent correlation of array data and confirmatory qPCR was shown previ-
ously (Papapanou et al., 2009).
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The diagnosis of either CP or AgP was assigned according to 
established criteria (Armitage, 1999) after review of patient his-
tory and clinical/radiographic records. The characteristics of the 
participants are described in Appendix Table 1, and those of the 
sampled sites in Appendix Table 2.

Pre-processed data were analyzed for differential expression 
by R/Bioconductor (Gentleman et al., 2004) and limma (Smyth, 
2004). Patients were modeled as random effects to account for 
the within-subject correlation of the tissue samples. To account 
for a potential influence of aging on gingival tissue gene expres-
sion – since AgP patients were younger than CP patients – we 
replicated the aforementioned analyses correcting for partici-
pant age.

The resulting ranked gene lists were analyzed for enrichment 
of functional groups by GSEA (Subramanian et al., 2005) and 
visualized using a Cytoscape/Enrichment Map (Shannon et al., 
2003; Merico et al., 2011).

To test the supervised classification performance, we com-
pared several class prediction algorithms with CP/AgP as the 
dependent variable using the CMA package (Slawski et al., 
2008).

First, the available patients (n = 120) were randomly assigned 
to either a training set (consisting of 2/3 of all patients) or an 
evaluation set (the remaining patients). The sets were then 
populated with all samples belonging to the assigned patients, 
ensuring that evaluation of the classifiers was performed on 
samples not previously used for training. The partitioning pro-
cedure into training/evaluation sets was repeated 1,000 times.

For each partition, the selection of features (i.e., genes) that 
could best distinguish between the 2 entities was performed 
based on the training set using limma’s moderated t statistics. 
Different classifier algorithms were then applied to the training 
set with the top-ranking genes as predictors.

Several candidate classifiers were considered, including: (i) 
diagonal linear discriminant analysis (DLDA); (ii) partial least-
squares (PLS) analysis combined with linear discriminant anal-
ysis (PLS-LDA), with the number of PLS components as the 
tuning parameter; (iii) shrunken centroids discriminant analysis, 
with the shrinkage parameter as the tuning parameter (scDA, 
without preliminary feature selection); or (iv) a support vector 
machine with a linear kernel (SVM), with the cost as the tuning 
parameter. Where applicable, parameter tuning was performed 
by 3-fold cross-validation as implemented in the CMA package.

Evaluation of different classifiers and variable numbers of fea-
tures was then performed in the evaluation set based on sensitivity/
specificity of AgP detection, and ROC area under the curve (AUC).

A detailed description is provided in the online Appendix.

Results

AgP and CP Lesions Display Limited Differences

To identify potential differences between AgP and CP at the tran-
scriptome level, we first compared gene expression in ‘diseased’ 
tissue samples. This analysis identified a total of 248 differentially 
regulated probes at an absolute fold change (FC) of ≥ 1.19 
(log2FC 0.25) and a false discovery rate (FDR) of < 0.05 (Tables 
1 and 2; Supplemental Material 1, Results from Differential 

Expression Analyses, panel 1a). The magnitude of the differences 
was generally modest, with 30 overexpressed and only one under-
expressed probe by an absolute change of >1.5 fold in AgP vs. CP 
lesions. A probe coding for Fc receptor-like 5 (FCRL5) was the 
most overexpressed (by 1.56-fold) and the yet-uncharacterized 
chromosome 4 open reading frame 26 (C4orf26) was the most 
repressed probe (by 1.65-fold) in AgP vs. CP lesions.

To assess the functional relevance of the identified genes, we 
performed gene set enrichment analysis. Twenty-five functional 
groups were significantly enriched in AgP lesions and 14 in CP 
lesions (Fig. 1; Supplemental Material 1, panels 1b, 1c). Notably, 
gene sets linked to apoptosis, immune response, and signal 
transduction were enriched in AgP lesions, while genes sets 
signifying epithelial integrity and cellular metabolism were 
enriched in CP lesions.

We then compared clinically ‘healthy’ gingival tissues from 
the two disease entities and observed that only 11 probes were 
differentially expressed at an absolute FC of ≥ 1.19 and an FDR 
of < .05 (Supplemental Material 1, panel 2), 5 of which were 
also differentially expressed between ‘diseased’ tissues.

Next, we identified differentially expressed genes between 
‘diseased’ and ‘healthy’ gingival tissues in the entire data-
base, regardless of periodontal diagnosis, as well as sepa-
rately in each diagnostic category (AgP and CP). When 
‘diseased’ and ‘healthy’ gingival tissues from all 120 patients 
were compared, regardless of diagnosis, 9,258 probes were 
differentially expressed at the above-described thresholds 
(Supplemental Material 1, panel 5). The same comparison 
yielded 9,833 differentially expressed probes in the subset of 
the 55 AgP patients, and 9,161 probes in the subset of 65 CP 
patients (Supplemental Material 1, panel 3). Of these, a 
majority (8,602 probes) were differentially regulated in a 
similar fashion (3,520 commonly up-regulated, 5,082 down-
regulated) between ‘diseased’ and ‘healthy’ gingival tissues 
in both CP and AgP.

Supplemental Material 1 (panels 6a/6b and 7a/7b) lists all 
probes that were exclusively differentially regulated between 
healthy and diseased gingival tissues in one of the two diagnostic 
categories. The above analyses were repeated after adjustment for 
age, yielding essentially identical results (data not shown).

Supervised Classification of CP and AgP

To examine whether molecular differences could reliably dis-
criminate CP from AgP lesions, we proceeded with a supervised 
classification of the 2 disease entities.

Discrimination of the 2 forms of disease ranged from fair to 
excellent, depending on algorithm and number of features used 
(Fig. 2, Appendix Figs. 1-3; Supplemental Material 2, Results from 
Machine Learner Analyses). It was found that scDA and DLDA 
performed substantially worse than did SVM or PLS-LDA.

Discussion

This study represents the first systematic evaluation of molecu-
lar differences between the 2 principal forms of periodontitis, 
chronic and aggressive. We used high-throughput technology 
and assessed simultaneously the expression level of > 38,000 
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Table 1.  Probe Sets Overexpressed in ‘Diseased’ Gingival Tissues of AgP vs. CP Patients (FDR < .05, absolute fold change ≥ 1.25)

Name Fold Change p value
BH Adjusted  

p value

Fc receptor-like 5 1.57 2.09E-05 1.37E-03
Period circadian clock 3 1.46 6.73E-10 2.04E-06
Nuclear receptor subfamily 1, group D, member 2 1.46 4.45E-08 3.25E-05
Tyrosinase-related protein 1 1.46 5.43E-03 4.42E-02
Kelch-like family member 6 1.46 9.54E-07 1.92E-04
Ankyrin repeat domain 36B pseudogene 2 1.45 2.39E-04 6.21E-03
Churchill domain containing 1 1.44 6.81E-11 4.65E-07
Flavin containing monooxygenase 1 1.43 6.46E-11 4.65E-07
Fc receptor-like 5 1.42 9.19E-07 1.88E-04
Nuclear receptor subfamily 1, group D, member 2 1.41 2.67E-13 1.39E-08
Immunoglobulin kappa constant 1.41 4.27E-04 9.05E-03
Fc receptor-like A 1.41 1.00E-04 3.58E-03
Regulator of G-protein signaling 1 1.40 2.20E-04 5.92E-03
Membrane-spanning 4-domains, subfamily A, member 1 1.40 1.14E-04 3.87E-03
Immunoglobulin kappa constant 1.38 1.03E-03 1.55E-02
Fc receptor-like A 1.38 2.26E-05 1.42E-03
Immunoglobulin heavy constant m 1.38 9.22E-04 1.45E-02
Ankyrin repeat domain 36B pseudogene 2 1.37 1.08E-05 9.47E-04
Lymphocyte transmembrane adaptor 1 1.36 2.56E-05 1.54E-03
KIAA0125 1.35 7.45E-04 1.26E-02
Aldehyde dehydrogenase 1 family, member L2 1.35 7.78E-07 1.65E-04
Membrane metallo-endopeptidase 1.35 1.45E-06 2.53E-04
Fc receptor-like 5 1.34 1.68E-04 4.99E-03
CD38 molecule 1.33 1.74E-05 1.22E-03
CD79a molecule, immunoglobulin-associated alpha 1.33 1.77E-04 5.14E-03
ras homolog family member H 1.33 1.99E-04 5.58E-03
Membrane-spanning 4-domains, subfamily A, member 1 1.33 1.95E-05 1.31E-03
Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) 1.32 3.63E-04 8.10E-03
Membrane-spanning 4-domains, subfamily A, member 1 1.32 1.97E-05 1.32E-03
Protease, serine, 35 1.32 5.30E-05 2.41E-03
Platelet/endothelial cell adhesion molecule 1 1.31 1.57E-07 6.19E-05
CD79a molecule, immunoglobulin-associated alpha 1.31 3.77E-04 8.31E-03
Cytidine monophospho-N-acetylneuraminic acid hydroxylase, pseudogene 1.31 1.79E-08 1.74E-05
Fc receptor-like 5 1.30 1.76E-03 2.16E-02
Secreted frizzled-related protein 4 1.30 6.34E-05 2.71E-03
BMS1 homolog, ribosome assembly protein (yeast) pseudogene 1.30 4.65E-03 3.97E-02
Tumor necrosis factor receptor superfamily, member 17 1.30 5.23E-03 4.30E-02
Vimentin 1.29 3.65E-06 4.64E-04
Glucocorticoid induced transcript 1 1.29 4.52E-05 2.17E-03
Sperm associated antigen 4 1.29 1.76E-03 2.16E-02
Family with sequence similarity 46, member C 1.29 2.28E-03 2.54E-02
Period circadian clock 3 1.28 2.90E-08 2.27E-05
FBJ murine osteosarcoma viral oncogene homolog B 1.28 2.94E-03 2.98E-02
Regulator of G-protein signaling 1 1.28 8.58E-04 1.39E-02
sel-1 suppressor of lin-12-like (C. elegans) 1.28 1.43E-04 4.53E-03
Glycine dehydrogenase (decarboxylating) 1.28 5.66E-08 3.73E-05
SLAM family member 7 1.28 1.63E-03 2.05E-02
Marginal zone B and B1 cell-specific protein 1.28 1.45E-03 1.92E-02
Zinc finger protein 215 1.28 6.87E-06 6.95E-04
sel-1 suppressor of lin-12-like 3 (C. elegans) 1.28 1.03E-03 1.55E-02
Polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1 1.28 9.20E-06 8.49E-04
POU class 2 associating factor 1 1.28 2.65E-03 2.78E-02
Cytidine monophospho-N-acetylneuraminic acid hydroxylase, pseudogene 1.27 1.32E-07 5.70E-05

(continued)
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genes in clinically ‘healthy’ or ‘diseased’ gingival tissue biop-
sies from a well-phenotyped sample of 120 patients with either 
CP or AgP who were non-smokers and systemically healthy. 
Importantly, the analyzed tissue samples were harvested from 
patients who did not undergo initial non-surgical treatment, and 
thus reflect the gingival tissue transcriptomes of untreated peri-
odontitis. After rigorous quality control, we analyzed differ-
ences in gene expression between gingival lesions from CP and 
AgP, and carried out analyses to validate the diagnostic classifi-
cation at the molecular level.

We used several different approaches to identify molecular 
patterns that distinguish between the 2 forms. The primary 
analysis assessed expression differences, as well as enrichment 
of functional groups, between gingival lesions from AgP vs. CP 
patients. Next, we investigated differences in transcriptomes 
from healthy gingival tissues obtained from AgP or GP patients. 
In a third step, we examined whether the differences in gene 
expression between healthy and diseased tissues were similar in 
the two diagnostic categories.

The primary analysis showed relatively few significantly 
differentially regulated probes between AgP and CP lesions, all 
with limited fold changes. To put this observation into perspec-
tive, in an earlier comparison between ‘diseased’ and ‘healthy’ 
gingival tissue samples, we observed >10,000 differentially 
regulated probe sets after Bonferroni correction, with up to 
five-fold change in expression (Demmer et al., 2008). 
Nevertheless, these findings cannot preclude the presence of 
biological differences between the 2 entities, since we com-
pared established CP and AgP lesions with similar clinical 
characteristics. Thus, the obtained transcriptomes may fail to 
reflect the processes that led to various progression rates at dif-
ferent ages, and may partly represent homeostatic mechanisms 
rather than disease activity.

We found several immunoglobulin-related overexpressed 
genes in AgP vs. CP lesions, while genes supporting epithelial 
integrity and focal adhesion (desmocollin 1, laminin γ2, keratin 
2, LCE2B) and metabolism-related pathways were underex-
pressed. Next, we observed that healthy gingiva from CP or AgP 
patients displayed largely similar expression patterns and path-
ways. Finally, only a limited number of probes were differen-
tially regulated between healthy and diseased gingival tissues 
exclusively in only one of the two disease entities—for exam-
ple, the epithelial and bone integrity-related genes BMP7 and 
keratin-17 that were found to be repressed only in ‘diseased’ (as 
compared with ‘healthy’) tissues of AgP patients, but not in 
those of CP patients.

When compared with CP gingival lesions, AgP lesions were 
largely characterized by the expression of 3 major clusters of 
functional groups, related to immune response, signal transduc-
tion, and programmed cell death. One of the immune response 
pathways found to be enriched in AgP lesions was the B-cell 
receptor signaling. B cells are considered critical players in 
periodontal pathogenesis (Berglundh et al., 2007) and have been 
shown to be elevated in both localized and generalized AgP vs. 
CP lesions (Sigusch et al., 2006). Analysis of our data indicating 
a 20% increased expression in the B-cell surface marker CD19 
in AgP corroborated these findings. Further, several of the top 
genes identified in the AgP-CP comparison belonged to the 
immunoglobulin families, encoding for structural elements of 
antibodies produced by B cells. Several genes with increased 
expression in AgP are important for antibody production by B 
cells, including MZB1 (marginal zone B and B1 cell-specific 
protein), CD79a, FC receptor-like A, and POU2AF1. Likewise, 
the induction of FK506 binding protein 11 in AgP suggests a 
plasmacytic differentiation of B cells. A potential explanation 
for these differences is that AgP lesions may have been  

Name Fold Change p value
BH Adjusted  

p value

Transmembrane protein 156 1.27 4.55E-09 7.56E-06
Programmed cell death 6 pseudogene 1.27 7.60E-05 3.03E-03
Prostate androgen-regulated mucin-like protein 1 1.27 1.27E-04 4.17E-03
DnaJ (Hsp40) homolog, subfamily C, member 3 1.27 1.48E-04 4.62E-03
Contactin 3 (plasmacytoma-associated) 1.27 1.69E-07 6.31E-05
Signal transducing adaptor family member 1 1.27 5.56E-05 2.49E-03
DnaJ (Hsp40) homolog, subfamily B, member 9 1.27 8.33E-05 3.19E-03
Activating transcription factor 3 1.26 4.39E-03 3.83E-02
RAB30, member RAS oncogene family 1.26 2.44E-06 3.51E-04
Immunoglobulin lambda variable 1-44 1.26 1.60E-03 2.03E-02
CD27 molecule 1.26 9.10E-04 1.44E-02
Chromosome 1 open reading frame 51 1.26 2.00E-06 3.10E-04
GTP binding protein overexpressed in skeletal muscle 1.26 5.00E-08 3.49E-05
Carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 2 1.26 1.44E-04 4.57E-03
Cytohesin 1 interacting protein 1.26 5.67E-04 1.08E-02

Eighty-six probe sets were significant at FDR [Benjamini-Hochberg (BH) adjusted p value] < .05, and 14 probe sets met the Bonferroni genome-
wide significance threshold (unadjusted p value < 9.15E-07). Note that several probes may map to the same gene (for detailed information 
on the individual probes, see Supplemental Material 1).

Table 1.  (continued)
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harvested at a state of ‘disease activity’ more frequently than CP 
lesions. Alternatively, these differences may represent responses 
to different bacterial challenges, as shown in our earlier work 
(Papapanou et al., 2009).

Moreover, analysis of our data indicates pronounced induc-
tion of NK-cell-mediated cytotoxicity in AgP lesions. 
Interestingly, activation of NK cells was recently associated 
with increased alveolar bone loss (Chaushu et al., 2012). 
Supporting this notion, we recently reported that a prominent 
activating receptor for NK cells (SLAMF7) was significantly 
induced in AgP lesions (Kramer et al., 2013) and identified 
invariant NK T-cells to be differentially activated in AgP vs. CP 
(Nowak et al., 2013). In agreement with this observation, the 

NK-cell-related gene NKTR, as well as the receptor for inter-
feron gamma (the principal cytokine secreted by NK cells), was 
down-regulated in diseased vs. healthy gingival tissues exclu-
sively in CP, but not in AgP.

Signal transduction pathways including Jun and Wnt sig-
naling appeared to be differentially regulated in AgP. Thus, Jun 
and Jun-related genes (JUND, TNIK) were found to be up-
regulated in diseased vs. healthy gingival tissues exclusively in 
AgP but not in CP patients, while Wnt-signaling-related genes 
such as SFRP4 were overexpressed in AgP vs. CP gingival 
lesions.

The strong enrichment of apoptosis-related pathways in AgP 
gingival lesions could conceivably relate to the severe loss of 

Table 2.  Probe Sets Underexpressed in ‘Diseased’ Gingival Tissues of AgP vs. CP patients (FDR < .05, absolute fold change ≥ 1.25)

Name Fold Change p value
BH Adjusted  

p value

Chromosome 4 open reading frame 26 –1.65 5.75E-09 8.98E-06
Cytochrome P450, family 3, subfamily A, polypeptide 5 –1.47 2.53E-08 2.16E-05
Keratin 2 –1.47 3.05E-03 3.06E-02
Hemoglobin, beta –1.44 1.22E-06 2.29E-04
Hemoglobin, beta –1.42 9.31E-07 1.89E-04
Endoplasmic reticulum aminopeptidase 2 –1.39 4.88E-04 9.82E-03
Histidine ammonia-lyase –1.38 2.09E-04 5.75E-03
Odontogenic, ameloblast-asssociated –1.38 4.40E-05 2.14E-03
Microsomal glutathione S-transferase 1 –1.37 2.16E-04 5.87E-03
Hemoglobin, beta –1.36 1.96E-06 3.07E-04
Filaggrin –1.36 1.27E-03 1.76E-02
Filaggrin family member 2 –1.36 3.12E-03 3.09E-02
Uncharacterized LOC654433 –1.35 2.43E-07 8.05E-05
Matrix metallopeptidase 28 –1.34 2.69E-09 6.12E-06
Desmocollin 1 –1.33 6.48E-03 4.91E-02
Neurofilament, light polypeptide –1.32 2.40E-04 6.21E-03
Solute carrier family 13 (sodium-dependent citrate transporter), member 5 –1.32 2.05E-06 3.16E-04
Regulator of G-protein signaling 4 –1.31 1.85E-05 1.27E-03
Uncharacterized LOC654433 –1.30 3.72E-06 4.67E-04
Uroplakin 1A –1.30 7.38E-04 1.26E-02
Endoplasmic reticulum aminopeptidase 2 –1.30 2.82E-03 2.90E-02
Aryl hydrocarbon receptor nuclear translocator-like –1.29 5.10E-08 3.49E-05
Pancreatic lipase-related protein 3 –1.28 1.49E-05 1.12E-03
MIR205 host gene (non-protein coding) –1.28 1.47E-10 7.29E-07
Late cornified envelope 2B –1.27 4.71E-04 9.59E-03
Glutathione S-transferase theta 2 –1.27 8.59E-04 1.39E-02
Microsomal glutathione S-transferase 1 –1.27 1.94E-04 5.47E-03
Microsomal glutathione S-transferase 1 –1.26 2.47E-04 6.33E-03
Chromosome 6 open reading frame 132 –1.26 9.32E-05 3.42E-03
Defensin, beta 1 –1.26 1.39E-06 2.48E-04
Regulator of G-protein signaling 4 –1.26 3.49E-04 7.91E-03
Uncharacterized LOC100130476 –1.26 2.44E-04 6.29E-03
MIR205 host gene (non-protein coding) –1.25 2.11E-06 3.22E-04
Hemoglobin, delta –1.25 2.41E-07 8.04E-05
Family with sequence similarity 213, member A –1.25 1.95E-06 3.06E-04
DEAD (Asp-Glu-Ala-Asp) box helicase 17 –1.24 5.54E-03 4.47E-02

Thirty-six probe sets were significant at FDR [Benjamini-Hochberg (BH) adjusted p value] < .05, and 7 probe sets met the Bonferroni genome-wide 
significance threshold (unadjusted p value < 9.15E-07). Note that several probes may map to the same gene (for detailed information on the 
individual probes, see Supplemental Material 1).
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attachment that commonly occurs in this disease entity. This 
finding is in line with prior evidence from in vitro studies  
demonstrating pronounced activation of apoptotic pathways in 
several cell types after infection with Aggregatibacter actinomy-
cetemcomitans that is intimately associated with AgP (Kebschull 
and Papapanou, 2011).

Nevertheless, it must be emphasized that the differential 
expression of several genes between the 2 forms of periodontitis 
alone does not necessarily demonstrate the presence of a bio-
logically distinct ‘intrinsic’ disease classification. To formally 
investigate whether transcriptional profiles of CP and AgP gin-
gival lesions are sufficiently distinct to form individual entities, 
we adopted a classification approach using machine learning 
classifier algorithms followed by internal validation procedures 
(i.e., repeated splitting into training and evaluation sets). Gene-
expression-based classifiers have been frequently explored in 
recent years for several pathologic conditions, and resulted in 
FDA-approved diagnostics for early breast cancer (Gluck et al., 
2012). However, there is still no universally accepted methodol-
ogy for this task, and it is impossible to determine a priori the 
optimal classifier for a particular dataset. Therefore, we used 4 
different algorithms to distinguish between AgP and CP lesions 
and present the diagnostic performance of each, as suggested by 
good practice guidelines (Dupuy and Simon, 2007), since exclu-
sive focus on the performance of the best classifier results in 
substantial optimistic bias (Boulesteix and Strobl, 2009). Thus, 
we acknowledge that application of the algorithms to a new, 
independent validation dataset would likely lead to worse dis-

criminatory capacity than the one indicated by the largest AUC 
observed in this study. Interestingly, the ability to distinguish 
between AgP and CP varied considerably depending on the type 
of machine learner and the number of features involved. 
Excellent discrimination was achieved with computationally 
intensive, tuned algorithms, such as SVM, that incorporate large 
feature sets, while other classifiers yielded substantially higher 
misclassification rates. The variable discriminatory performance 
of the tested algorithms suggests that the molecular differences 
between AgP and CP were not trivially ‘learnable’. This may 
suggest that the 2 forms represent heterogeneous entities that 
include multiple subclasses with individual molecular signa-
tures that are diluted when aggregated under the current classi-
fication scheme.

We acknowledge that inferences based on linear associations 
between and among mRNA, protein expression, and phenotypes 
are crude and simplistic. For example, translation is influenced 
by small regulatory RNAs, and protein signatures are subject to 
post-translational modifications. Thus, although expression pro-
filing is a powerful means of analyzing potential molecular 
mechanisms, it may still fail to account for substantial biological 
variability. Our group has recently embarked upon the analysis 
of miRNA expression and function in gingival tissues (Stoecklin-
Wasmer et al., 2012). Ultimately, transcriptomic data of gingival 
tissues, along with data on miRNA expression and target genes, 
epigenetic regulation, and protein expression, may form the 
basis for a systems biology approach to the study of the complex 
pathobiology of periodontitis. Future research will focus on the 

Figure 1.  Enrichment map of differences between chronic and aggressive periodontitis lesions. Visualization of gene sets (from the Broad Institute’s 
Molecular Signature Database, collection C2 containing 4,722 curated gene sets) significantly (p < .05) enriched in diseased gingival tissues 
from patients with chronic or aggressive periodontitis. Gene sets are depicted as nodes in a network. Color describes the disease entity (red for 
AgP and blue for CP), and the color intensity represents the degree of enrichment. The size of the node represents the size of the enriched gene 
set, and the thickness of the connectors stands for the degree of overlap between the nodes (Merico et al., 2011). The only gene groups that 
fulfilled the Bonferroni threshold of p < 1.05x10E-05 were immune response in AgP, and 7 metabolism and epithelium-related groups in CP (see 
Supplemental Material 1).
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biological significance of the identified 
differentially expressed genes between 
CP and AgP. Alternatively, identification 
of de novo patient clusters sharing com-
mon molecular patterns that translate 
into distinct clinical phenotypes may 
lead to a novel, ‘intrinsic’ classification 
of periodontitis.
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