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Clustering in linear mixed models with approximate
Dirichlet process mixtures using EM algorithm
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Abstract: In linear mixed models, the assumption of normally distributed random effects is often inap-
propriate and unnecessarily restrictive. The proposed approximate Dirichlet process mixture assumes a
hierarchical Gaussian mixture that is based on the truncated version of the stick breaking presentation
of the Dirichlet process. In addition to the weakening of distributional assumptions, the specification
allows to identify clusters of observations with a similar random effects structure. An Expectation-
Maximization algorithm is given that solves the estimation problem and that, in certain respects,
may exhibit advantages over Markov chain Monte Carlo approaches when modelling with Dirichlet
processes. The method is evaluated in a simulation study and applied to the dynamics of unemployment
in Germany as well as lung function growth data.
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1 Introduction

Linear mixed models (LMMs), which were proposed by Laird and Ware (1982), are
a common tool for the modelling of longitudinal data. The classical model has the
form
yilb % NGB+ 2hb, o), =1, j=1,m, (1.1)
where y;; denotes the response observed for subject i at observation times ;; with z;; <
. < tij < ... <t Population effects of covariates x;; are collected in the parameter
vector 8, whereas individual-specific effects of covariates z;; are represented in the
parameter vector b;. The classical assumption in (1.1) is a Gaussian distribution
for the random effects, i.e., b; is i.i.d. N(0, D), see e.g., Verbeke and Molenberghs
(2000) and Ruppert et al. (2003). While this choice is mathematically convenient, in
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applications it is often questionable for several reasons. The normal distribution is
symmetric, unimodal and has light tails. Since the distributional assumption is made
on unobserved quantities, it is typically hard to validate these properties. Possible
skewness and multimodality (arising, e.g., from an unconsidered grouping structure
in the data) may be masked when checking the normal distribution in terms of
estimated random effects. A finite mixture of normal distributions as a random effects
distribution as suggested by Verbeke and Lesaffre (1996) is much more flexible. One
assumes

N
b ~ ) m Ny, D), (1.2)

h=1
where 71, ...,y are mixture weights. Several extensions and alternatives to this

heterogeneity model have been proposed. For example, Gaffney and Smyth (2003)
used random effects regression mixtures in the context of curve clustering. Approaches
for clustering functional data were proposed by James and Sugar (2003) and Liu and
Yang (2009). Celeux et al. (2005), Ng et al. (2006) and Scharl et al. (2010) dealt with
mixtures of linear mixed effects models. In these approaches, the mixture weights, the
variance parameters and all fixed effects are cluster specific, whereas in equation (1.2)
just the mixture weights and the locations corresponding to the time trend depend on
the cluster. While Booth et al. (2008) extended this concept by proposing a stochas-
tic search algorithm for finding the partition that maximizes an objective function
based on the classification likelihood, De la Cruz-Mesia et al. (2008) generalized
the approach to a mixture of non-linear hierarchical models. Villarroel et al. (2009)
extended the heterogeneity model to allow for a multivariate response variable. In
addition, a heteroscedastic normal mixtures in the random effect distribution for
multiple long1tud1nal markers was considered by Komarek et al. (2010) for LMMs
and by Komarek and Komarkova (2012) for generalized linear mixed models. How-
ever, in all these approaches, it is necessary to fix the number of mixture components
for estimation even though in most applications the number of mixture components
is unknown. Further procedures are typically provided for selecting this number,
which are usually based on information criteria. A data-driven choice of this num-
ber is desirable and could be achieved by a penalization of the mixture weights 7y,
For example, Komarek and Lesaffre (2008) penalized differences between repara-
meterized weights. In contrast, Magder and Zeger (1996) used component-specific
covariance matrices subject to the constraint that their determinants are greater than
or equal to some minimum value.

In this paper, we present an alternative penalization approach. The basic concept
is to shrink the weights m;, towards zero in order to reduce the number of clus-
ters. Therefore, we consider an approximate Dirichlet process mixture (DPM) for
the random effects distribution by using the truncated version of the stick break-
ing presentation of the Dirichlet process (DP); see Ferguson (1973) for the theory
behind the DP and Sethuraman (1994) for the stick breaking presentation of the
DP. The main advantage of DPs is the cluster property: by using a DPM for the
random effects distribution, we obtain automatically a clustering of individuals.
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Under the assumption that the population can be described by few clusters we want
to identify and interpret them. Since a DP allows to specify a prior on probabil-
ity measures, it has been widely used in Bayesian inference. For LMMs, DP priors
for random effects were first proposed by Bush and MacEachern (1996). The first
application of a DPM of Gaussian distributions to random effects was given by
Miiller and Rosner (1997).

We aim at establishing the DP as a tool for frequentist modelling. Therefore,
instead of using Markov chain Monte Carlo (MCMC) methods, which are usually
applied for estimation in random effects models with DPs (compare, e.g., Heinzl
et al., 2012), we extend the traditional Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) used in the heterogeneity model of Verbeke and Lesaffre
(1996) and refer to it as DPM-EM model. We will illustrate that the EM algorithm
has an essential advantage over MCMC methods, as far as DPs are concerned. In
summary, on the one hand, our DPM-EM model provides a regularization approach
for the number of mixture components in (1.2). On the other hand, our model is a
method to obtain clustering of individuals in longitudinal data.

The paper is organized as follows: In Section 2.1, the model hierarchy as well
as the cluster property of DPs are illustrated. In Section 2.2, we present our DPM-
EM algorithm in detail. Simulation results can be seen in Section 3 while applica-
tions are shown in Section 4. Finally, Section 5 subsumes the main aspects of our
approach.

2 LMMs with DPMs
2.1 Model hierarchy

Collecting observations y;;, j = 1,...,n;, for individual i in the vector y;, model
(1.1) can be written in matrix notation as

¥;|bi S N(XB + Zib;, o’l,), i=1,...,n,

where I, is the identity matrix with dimension #; and X; and Z; denote the individual
design matrices constructed from covariates x;; and z;;, respectively. For the random

effects distribution, we assume a hierarchical Gaussian mixture

bi10; " N@:, D), i=1,....n,

01’Glfl\5i G, i=1,--~7n’ (2.1)
G ~ DP(aa GO)'

Here, DP(«, Gy) is a distributional assumption for the unknown mixing distribution
G. A special feature of the DP is that each realization of G is a discrete probabil-
ity measure (Blackwell, 1973). So in the DPM specification, choosing a DP for the
0;, i =1,...,n, creates ties among these and therefore forms clusters of subjects,
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whereas each subject still has its own unique random effects value. In general, there
are k < n clusters and 04, ..., 0, can be represented by cluster locations g4, ..., @
and cluster allocation variables. The strength of clustering and therefore the number
of clusters is determined by the parameter «, which controls the confidence in the
base distribution Gy. According to the relationship between Bayesian and likelihood
inference, we choose a diffuse uniform distribution on (—o0, 00) for Gy. So, in prin-
ciple, no cluster location is preferred over others. Although in theory, an automatic
clustering structure is induced by the DP, a severe practical problem arises within
the Bayesian framework when using MCMC methods, namely how to obtain a sin-
gle clustering estimate ¢ based on an MCMC sample of clusterings ¢!V, ..., ¢™),
where ¢ = 1,..., M, describes the cluster allocation at iteration 7 and ¢ the
final cluster allocatlon By using MCMC methods in each iteration, ties among the
0;, i =1,...,n, are created and clusters are formed. But when approximating the
posterior means by the means over MCMC samples 6; = +- fozl 0", i=1,....n
the clustering of subjects gets lost. Fritsch and Ickstadt (2009) gave an overview on
operations of how the MCMC sample of clusterings ¢!V, ..., ¢! can be aggregated
to a single clustering ¢ but due to the high number of possible clusterings, these
methods are typically not feasible in larger problems. By using EM type algorithms
all these strategies for rescuing the cluster property of the DP are unneeded. The
reason is that the EM algorithm converges to fixed values, whereas MCMC methods
converge to distributions. So with EM type algorithms, the cluster property of the
DP can be used more directly. While other alternatives to the MCMC methods as
the recursive algorithm of Newton and Zhang (1999) or the variational method of
Blei and Jordan (2006) are based on approximative posterior distributions, our EM
algorithm aims at maximizing the posterior given in Section 2.2 directly.

In practice, inference with DPs can be built on the constructive definition of
the DP by Sethuraman (1994). This stick breaking representation implies that G ~
DP(a, Gy) is equivalent to

G-= Z TTh O, s
h:l

with locations simulated by u,, i Gy and weights constructed through the stick
breaking procedure

Ty, = vhHl<h hEN

vy & Be(1, ), heN,

where Be(-) denotes the beta distribution and vj,, b € N, are reparameterized weights.
Here, 8, denotes the Dirac measure on p,. Thus the random measure G is represented
as a weighted sum of point masses with random weights 7, linked to the locations
-

The recursive definition of weights 7, = vy, (1 —> m) ,h € N, which is clarified
in Appendix A.1, and is visualized in Figure 1, gives the procedure its name. It works
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Figure 1 Construction of m1, 72, ... by stick breaking
Source: Authors’ own.

as follows: first, for getting 71, a piece is broken away from a stick of length one.
Next, from the remainder of the stick, 1 — 7y, breaks a further piece away, called
7, and so on. So the random weights decrease stochastically as the index b grows.
More concretely, E() .2, 75) converges to zero exponentially with N — oo (see
Appendix A.2). So an established concept to make the stick breaking procedure
applicable in practice is to approximate the DP by considering

N
G= Zﬂb 8#19’
h=1

with large enough N. Here, all locations u;, and all weights v, and 7, are constructed
as before with the exception of vy = 1. In summary, by using the stick breaking
procedure, the distribution assumption for the random effects (2.1) can be rewritten
as

zzd
bl| Zh 17-[/7 N(IL[,),D), l 1 n,
m, = v, —w), hb=1,. N, (2.2)
v, "5 Be(1, ), h=1,..., N—1
with v = (v, ..., vn_1)T. Therefore, for the random effects distribution, we get a

finite mixture of normal distributions as in equation (1.2) in which the number of
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Figure 2 Realizations of G ~ DP(«a, Gp) with Go = N(0, 1)

Source: Authors’ own.

mixture components with 7, # 0 is penalized. It should be noted that a generalization
to a heteroscedastic normal mixture with different covariance matrices over com-
ponents is also possible—following, e.g., the approach of Yao and Holmes (2011).
Nevertheless, the assumption (2.2) seems to be sufficiently flexible and avoids numer-
ical problems, which arise in the case of a heteroscedastic normal mixture (Verbeke
and Molenberghs, 2000).

In the following, the order of uy, ..., uy is given by the corresponding weights
in decreasing order under the restrictions Z,ﬁl 7y, = 0 and Zﬁil 7y, = 1. The first
restriction ensures E(y;) = X;B. The second constraint is standard and is automati-
cally fulfilled by vy = 1. See Figure 2 for an illustration of two discrete probability
measures simulated by DPs with different values of @. Obviously « controls the
number of cluster locations u; with weights 7, # 0 and thus the effective number of
clusters.

For example, the truncated DP was used by Muliere and Tardella (1998),
Ishwaran and James (2002), Kottas and Gelfand (2001), Gelfand and Kottas (2002)
and Ohlssen et al. (2007), see Section 2.2 for a strategy of choosing N. Even though
other methods exist that are based on the stick breaking representation and that avoid
the truncation (see, e.g., Walker 2007 and Papaspiliopoulos and Roberts 2008) the
truncated version distinguishes oneself by simplicity and theoretical justifications
as shown in Muliere and Tardella (1998), Ishwaran and James (2001) as well as
Ishwaran and James (2002). In our case, this truncation is still more attractive because
our approach is formally similar to the heterogeneity model of Verbeke and Lesaffre
(1996) but with ‘penalized’ weights referred to the stick breaking procedure which
induces that only the relevant clusters get comparably high weights. Inference is pos-
sible by extending the EM algorithm of the heterogeneity model. Another inference
approach within the framework of DPs is based on Polya urn scheme (Blackwell and
MacQueen, 1973) and thus on integrating out the unknown distribution G (compare
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Escobar, 1994, MacEachern, 1994, Escobar and West, 1995 as well as MacEachern
and Miiller, 1998). Nevertheless when using this marginal method instead of the stick
breaking procedure, the connection between the DP and the heterogeneity model of
Verbeke and Lesaffre (1996) is hidden. This is the main reason why the stick breaking
presentation is much more appealing to us and seems to be more user-friendly than
the Polya urn inference scheme, which also has other drawbacks (see, e.g., Ishwaran
and James, 2001). In the next section, we will explain how DPs can be embed-
ded in the EM framework. As is seen, elaborate handling of the DP parameters is
necessary.

2.2 Inference

In the following, we give an EM algorithm for the LMM described in Section 2.1. The
algorithm is based on derivations by McLachlan and Peel (2000) and McLachlan and
Krishnan (1997) and is similar to the algorithm used by Verbeke and Lesaffre (1996)
but includes a penalty term. The following approach can be parameterized either by
= (mq,...,7Nn)T or by v. Since the latter parametrization simplifies calculations,
it is used in the following. Nevertheless, only for a compact presentation, we write
mp instead of v, [[,_,(1 — v)). Let & = (&, v, ¥)T, where ¥ is the vector containing
all the remaining parameters g, fty, ..., fn, D, 0. The cluster membership of each
individual can be described by the latent variable z; := (zi1, ..., zin)", where zj, = 1
if subject i belongs to cluster / and 0 otherwise. Marginalization over the random
effects yields the complete model with observed data vy; as well as unobserved data

2 and v:
ind.

yilzi ~ NXiB+Zpy,, Vi),i=1,...,n,
&lv X M1, w), i=1,....m, (2.3)
vy &8 Be(1, ), h=1,....N—1,

with V; = Z;DZ! + 521, and M(-) denoting the multinomial distribution. Equation
(2.3) describes the data generating process for the data (y;,z;,v) given the parameters

(a,¥), Le.,
p(yi’ i, v, 'ﬁ) = p(yz|zl’¢) : p(zl|v) : p(v;a)’ I = 1? B (2

This can also be viewed as product of p(y;, z;|v; ¥) with the prior p(v;«). Following
this formulation, the posterior for & is proportional to the product of the likelihood
and the prior, which is given by

n N N-1
Lp€) = [ [ms fin(yis )1 -« L1 = wa) ",
h=1

i=1 h=1

when assuming a flat prior for @ and ¥. Here f;;(-) denotes the density function of
N(X;B+Z;n,, V;). Note that from a Bayesian point of view ¥ and v are parameters,
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whereas « is the hyperparameter for the prior on v. In an empirical Bayes context,
such a hyperparameter would be estimated by maximizing the marginal incomplete
likelihood (Maritz and Lwin, 1989). However, in the present case, the marginaliza-
tion is analytically not feasible. Following the strategy of McAuliffe et al. (2006), in
the case of a DPM model, such an integration could be avoided by many alternations
between an inference phase where the parameters v and ¥ are estimated and an
estimation phase where the hyperparameter « is estimated. This procedure would be
very time-consuming in our case. Thus we prefer to handle « like any other parameter
and to estimate a conditionally on the actual state of the other parameters during
the algorithm. In general, vague priors like our diffuse prior for « are an alternative
to empirical Bayes inference for achieving robustness (McAuliffe et al., 2006).
Finally, as log-posterior one obtains

n N N—-1
=Y > zullogm, +log fin(y;;¥)] + (N— 1) loga + (@ — 1) Y _ log(1 — vy).
i=1 h=1 h=1

This function can be seen either as log-posterior in the Bayesian context or as penal-
ized log-likelihood whose penalization term results from the stick breaking procedure
of the DP. Obviously, for @ = 1, the penalization term drops out. According to the
general EM algorithm procedure, we alternate between taking the expectation of
Ip(&) over all unobserved z;;, in the E-step and maximization of this expected value
in the M-step instead of maximizing the penalized incomplete likelihood function
based only on the observed data directly.

E-step
Collecting all observed data by y = (y!, ..., yI)T for the E-step, we get

O&) = E (Ip(&)]y, £Y)

n N N—-1
=Y > minEW)logmy +log fin(y;3 ¥)] + (N— 1) loge + (@ — 1) > log(1 — vp),
i=1 h=1 h=1

where 7;,(£"") is the probability at iteration # that subject i belongs to cluster b and
is given by
fin 33 ¥y

in(E") =
i Zzl\il fz‘l(yﬁ'/’(t)

M-step

For clarity, in the following we write 7;,:= 7;,(€®) but note that for the M-step it is
essential that 7;;, is fixed from the last iteration ¢ because then using that Q() is the
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sum of Q(a, v) and Q(¥) the optimization problem in the M-step can be separated
into two parts: The maximization of

n N N-1
= Zth logm, + (N—1)loga + (¢ — 1) Zlog(l — vp)
i=1 h=1 h=1

with respect to o and v and the maximization of

n N
- Zth log fin(y;; ¥)

i=1 h=1

with respect to ¥. The first optimization problem is solved by alternating updates of
the first-order conditions

2 i T h=1,.

7 N ) ., N—-1, (2.4)
Doict Doy il v — 1

v, =

and
1-N
o Hog(1 — vy)
Without further restrictions it could happen that vj, ¢ [0, 1]. To avoid this we use
the following correction approach: Update vj, by (2.4) for increasing h. If vy« > 1

set v, to 1 for b = b*, ..., N — 1. This constraint for v is equivalent to the following
restriction on « by usmg ‘the stick breaking procedure:

1 n
n+a—1 Zi=1 Tih, for b < b*,

Tp,=91— fz_llm, for b = b*,

0 for h > b*,

where h* is the lowest index b for which the cumulative sum of the original weights
7 exceeds one: Zle 7 > 1. Here the idea of the penalization approach becomes
evident. First note that for o = 1 we get the usual estimators for 7, and no restrictions
are needed. Compared to these estimators, for a € (0, 1), all weights 7, for b < b*
are stretched by the factor —"—, while all weights ), for » > h* are set to zero.
The amount of stretching is controlled by the parameter «. If @ &~ 0 a very strong
clustering is achieved while for larger values of @ only few clusters drop out. In order
to avoid log(0) we choose v, = 1 — 1073% instead of vj, = 1 in the algorithm. Then
w, ~ 0 for b > b*.

In the second part of the M-step, we get the current state for ¥ by alternating
separate maximization of Q(¥) to B, to iy, ..., iy and to the variance parameters
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D and o2. Conditional on the actual state of the other parameters, the maximization
of B results in

n -1 n N
= (vt (S (v Somarv ) )

i=1 i=1 h=1

Setting the derivative of O(y) with respect to w,, » = 1,..., N, given 8, D and ¢?
yields

n -1 n
my = (Z ﬂiniTVilzi> (thZiTV,-l(yi - Xiﬂ))-
i-1 i1

For the simultaneous maximization of the variance parameters given g and p, ...,
i, a numerical procedure like the Nelder-Mead method is necessary.

Choice of N

By truncation of the DP, the originally infinite constraints > ,-, mpps, = 0 and
> oy, = 1 are converted into finite ones, which can be handled easily. Concretely,
the second constraint is fulfilled by vy = 1. On the one hand, this idea avoids repa-
rameterizations as in Jara et al. (2009) or post-processing strategies as in Li et al.
(2011). On the other hand, vy = 1 actually means that the last weight 75 absorbs all
the remaining probabilities 7y, . .., 7o of the untruncated DP, which can be seen as
zero in the truncated version. But this is only correct if N is large enough, so that

N-1
E (1 - Z”b> <e (2.5)
h=1

with ¢ > 0. So it is crucial to choose N correctly. This is still more challenging
because the choice of N depends on «, which itself is estimated. As proposed by
Ohlssen et al. (2007) the postulation (2.5) can be transformed into

N>1+ log#’
log(a/(1+))

which can be seen from Appendix A.2. Thus for a given range on «, a lower bound
for N can be determined. For inducing a very strong clustering and according to the
previous considerations within this section, we allow only the range « € (0, 1) which
is automatically fulfilled by a very low starting value for «. This means that even for
N > 15 a good approximation can be achieved (¢ = 0.0001). So in the majority of
cases, N = min{n, 100} is a satisfying choice.
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Start and stop of the algorithm

For EM algorithms it is essential how to choose the starting values because the
(penalized) incomplete log-likelihood is ascending at each step and the algorithm can
converge to a local but not a global maximum. Because there is an agglomerative
attempt in each M-step, it is reasonable to choose starting values for an agglomerative
clustering method generally. Therefore, each subject starts in its own cluster. So there
are n = N clusters with weights 7, = 1/N, b = 1, ..., N in the beginning. As cluster
locations pq, ..., uy we consider the predicted random effects by, ..., b, of the
former fitted LMM with Gaussian random effect distribution. This fit yields starting
values for B, o2 and D, too. For o we use zero as starting value to induce a very
strong clustering.

The algorithm starts with N = 7 clusters and successively merges clusters during
the iterations. Rearranging the weights after each step has the effect that only the
relevant clusters keep positive probabilities. So the LMM with DPM as a random
effects distribution can be seen as an agglomerative cluster analysis.

The EM algorithm stops if the penalized incomplete log-likelihood is not ascending
any more. After convergence we get the cluster membership by the matrix of estimated
;. Individual i is assigned to that cluster » for which 7;;, is maximal. If there are a
lot of small weights 7, we get only a few relevant clusters k. Based on the weights of
all clusters the random effects are predicted by using the mean of the posterior b;|y;,
which is given by

N
A A A—1 ~ A A —1 A
b= DZV, (v, — XiB)+ (I, — DZ]V, 7)) iy,
h=1

where g denotes the dimension of random effects. A proof of this formula is given in
Appendix A.3.

Implementation

All computations are implemented in C++ (Stroustrup, 1997), allowing for an effi-
cient treatment of loop-intensive calculations and with regard to slow convergence
of the EM algorithm. They are made accessible by the function ImmDPMEM()
within the R package clustmixed (Heinzl, 2012) using the statistical software R
(R Development Core Team, 2012). All variables are standardized internally for
calculations. For updating variance parameters, we use the C++ library ASA047
(Burkhardt, 2008), an implementation of the Nelder-Mead algorithm in C++, which
was used by Papageorgiou and Hinde (2012) for similar tasks. For the reflection,
extension and contraction coefficients, we choose the common settings 1.0, 2.0 and
0.5, respectively. See Nelder and Mead (1965) and O’Neill (1971) for more tech-
nical details of the algorithm. Note that for ensuring that the covariance matrix
D is nonnegative-definite, we parameterize the concerning variance parameters by
the entries of a lower triangular matrix L according to the Cholesky decompo-
sition D = LLT. Then D is nonnegative-definite for each L and positive-definite
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(and so invertible, too) if L is a matrix with exclusively nonzero diagonal entries
(Lindstrom and Bates, 1988).

3 Simulation study

3.1 Setting

In the following simulation study the performance of the DPM-EM is evaluated. The
study aims at clarifying in which data situations our approach improves estimation
compared to the LMM with a normal distribution or a finite mixture of normal
distributions as random effects distribution. Note that for prediction accuracy of
random effects, there is a trade-off with regard to the assumed number of clusters:
On the one hand, for prediction of b; it makes sense to borrow information from other
similar subjects. On the other hand, it is not reasonable to incorporate individuals
which show a basically different behaviour. For examining this trade-off, we compare
the commonly used LMM with Gaussian random effects distribution (one cluster
model) as well as the three, five and ten cluster model to our DPM-EM model with
a data-driven choice for the number of clusters. Moreover, in the simulation study,
we investigate the impact of the number of observations within clusters and the
separation between clusters. We generated datasets assuming a simple linear trend
model

d. . .
y,,|b an N(ﬂ0+b,0+(ﬂ1+b,1)t,],6 ), i=1,...,n, ]:1,...,7’1,‘.

The centered i.i.d. random effects b; = (b;o, bj1)T follow a mixture distribution with
three Gaussian components:

b; ~ 0.4 N(uy, D) + 0.3 N(u,, D)+ 0.3 N(u3, D), i=1,...,n,

imitating a population consisting of three clusters of overlapping subpopulations.
Throughout the simulations, we set 7 = 20 and

_ Bo\_(2 _( 95 on 0.02 0.01
=025, (181)_<1)’ D—(a(?l o2 0.01 0.02

We vary, however, the number of individual observations #;, the centers u,, p, and
3 of the clusters and the locations of observation times #;. To produce longitudinal
data with varying numbers of repeated observations per unit 7, we set 7; = 2 + X,
where X; follows a Poisson distribution with rate v. Setting v = 1 corresponds
to longitudinal data with only few (3 on average) repeated observations per unit,
v = 3 to a moderate number and v = 5 to (comparably) large numbers of repeated
observations.

Statistical Modelling 2013; 13(1): 41-67

Downloaded from smj.sagepub.com by guest on March 5, 2015


http://smj.sagepub.com/

Clustering in linear mixed models with approximate Dirichlet process mixtures 53

For given 7;, observation times are generated from

i~ U0,1), i=1,....m
Lij ~ U(t,"/‘_l+0.5,tl',/'_1+1.5), i=1,...,n, j=2,...,ni,

where U(-) denotes the uniform distribution. In this way, different numbers #;(s)

and 2;(s) are generated in each simulation run s = 1, ..., 100. Similarly, different

‘true’ random effects b;(s) are drawn from the Gaussian mixture distribution in each
simulation run. For the cluster locations, we chose

(=225 (075 [ 225
By = 1) F2=1{_-12) s =1{ -2/15

corresponding to clearly separated clusters,

_(-15 (05 (15
Ki=10.75 | F2=1_-09 ) Ps=1-01

corresponding to moderately separated clusters,

0
IL1=IL2=IL3=(0>

corresponding to only one cluster.

Combining these different settings for observation times and clusters results in
nine different scenarios. For each of them, we compare the estimation results from
the DPM-EM algorithm with results based on Gaussian random effects using the
R-function Imer() from the Ime4d package by Bates et al. (2012) and with results
of models using an unpenalized (¢ = 1) finite normal mixture as random effects
distribution. In each simulation run s, we calculate the average prediction error

n

1 A
PEk(s)=;Z( “ (s) — ;‘k(s>)2, k=0,1,

i=1
for uncentered random intercepts b}, = By + b;o and random slopes b}, = B; + bj1. In
addition, the estimation accuracy of the fixed effects is investigated by the relative
bias RB, = 100 - (B — Br)/Br, k=0, 1.
3.2 Results
In the following, we summarize results of the nine combinations. For some sce-
narios, the empirical distribution of P E(s) values obtained from simulation run

s=1,...,100 is represented through box plots.
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Figure 3 Trace plots (top) and clustering by DPM-EM model (bottom) with clearly separated clusters for few
individual observations (v = 1) (left) and a moderate number of observations on individuals (v = 3) (right)

Source: Authors’ own.

Clearly separated clusters

Figure 3 (top) displays trace plots of typical longitudinal data generated in the setting
of clearly separated clusters that shows that cluster effects can easily be detected
visually. On the left, there are only a few observations for each subject while on
the right the mean of the number of repeated measurements is 5 corresponding to
several observations. Not surprisingly the DPM-EM model detects three clusters in
both cases (Figure 3 (bottom)). The thin line shows the overall effect and the thick
lines visualize the means of the resulting clusters. Which observation is assigned to
which cluster is marked by the same symbol.

LMMs with DPM penalty substantially improve upon results based on a mis-
specified Gaussian random effects assumption, especially in the case of several and
many observations (see Table 1 and, e.g., Figure 4). In general, models with a finite
mixture as random effects distribution yield better predictions for random effects
than the classical LMM with normally distributed random effects. Of course, the
best prediction can be observed for the model with fixed N = 3 clusters because this
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Table 1 Medians of PEx and RBx with k=0, 1 for clearly separated clusters

v=1 v=3 v=5
PEy PE; RBy RB; PEy PE; RBy RB; PEy PE; RBy RB;

Normal 0.373 0.185 —4.091 2.068 0.222 0.054 -1.048 4.710 0.148 0.015 -2.127 0.957
DPM-EM 0.135 0.063 -6.818 4.697 0.060 0.012 -5.212 6.935 0.048 0.006 —-1.377 0.887
N=3 0.111 0.058 —3.698 4.313 0.054 0.011 -2.914 5.197 0.045 0.005 -—0.457 1.741
N=5 0.145 0.062 —-2.906 4.802 0.072 0.015 —-2.760 4.387 0.050 0.006 —0.243 2.026
N=10 0.222 0.112 -3.331 2.062 0.101 0.020 -—-2.188 6.324 0.080 0.008 —0.240 1.514

Source: Authors’ own.

model is exactly the same as in the data generating process. However, the DPM-EM
model shows quite similar results although in this case the number of clusters was
determined by the model itself. The DPM-EM model as well as the other models
show a small bias concerning the estimation of fixed effects. The bias tends to be a
bit higher in the DPM-EM model.

Moderately separated clusters

In the following the differences between clusters get smaller. See Figure 5 for two
typical trace plots in the case of few, respectively, many individual observations.
Still the DPM-EM model outperforms both the homogeneity model (LMM with
normal random effect distribution) and the unpenalized heterogeneity model with
N = 5 and N = 10 clusters (Figure 6). Only the ‘true’ model with N = 3 clusters is
able to feature a lower error in predicting the random effects (Table 2). Note that
the superiority of the DPM-EM model over the classical LMM with normal random
effects distribution is even higher in the case of many individual observations.
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Figure 4 Box plots of PEy with clearly separated clusters for few individual observations (v = 1) (left) and a
moderate number of observations on individuals (v = 3) (right)

Source: Authors’ own.
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Figure 5 Trace plots with moderately separated clusters for few individual observations (v = 1) (left),
respectively, many individual observations (v = 5) (right)

Source: Authors’ own.
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Figure 6 Box plots of PEy with moderately separated clusters for few individual observations (v = 1) (left),
respectively, many individual observations (v = 5) (right)

Source: Authors’ own.

Table 2 Medians of PEx and RBi with k=0, 1 for moderately separated clusters

v=1 v=3 v=>5
PE, PE, RB, RB PE, PE, RB, RB PE, PE, RB, RB
Normal 0.335 0.164 -2.112 1.912 0.207 0.046 -0.751 2.204 0.138 0.015 -1.122 0.750
DPM-EM 0.204 0.114 -6.088 4.673 0.082 0.018 -3.104 2.335 0.048 0.005 -0.920 1.117
N=3 0.175 0.097 -3.799 2.111 0.063 0.014 -0.108 3.193 0.043 0.005 -1.275 0.945
N=5 0.224 0.122 -3.091 2.028 0.082 0.018 -0.108 3.089 0.050 0.006 -—-1.226 0.693
N=10 0.274 0.140 -—-2.987 1.381 0.126 0.025 -0.344 3.114 0.082 0.008 -—-1.304 1.469

Source: Authors’ own.
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Figure 7 Box plots of PEy with only one cluster for few individual observations (v = 1) (left), respectively,
many individual observations (v = 5) (right)

Source: Authors’ own.

Only one cluster

When regarding Figure 7 and Table 3 for only one cluster, we can conclude the
following: Only the LMM with normal random effects distribution which is the
‘true’ model in this setting is better than the DPM-EM model. The background for
this feature is that the DPM-EM model detects sometimes more than one cluster in
the data. Different patterns in the data are taken seriously. Nevertheless the DPM-
EM model exhibits lower prediction errors than all unpenalized heterogeneity models
because in the majority of cases less clusters than three are observed by the DPM-EM
model.

In summary, we draw the following conclusion: The DPM-EM models yield the
better estimates for random effects—in terms of prediction errors—the clearer the
clusters differ and the more observations are in the data. It makes a good job both
for normally distributed random effects and for random effects following a mixture
of three normal distributions and is only a little bit inferior to the corresponding
correctly specified model. Thus the DPM-EM model turns out to be very flexible

Table 3 Medians of PEy and RBi with k=0, 1 for only one cluster

v=1 v=3 v=>5
PEy, PE; RBy RB, PEy, PE; RBy RB, PEy, PE; RBy RB;

Normal 0.034 0.020 -0.277 -1.081 0.029 0.007 0.605 —-0.911 0.023 0.004 -0.163 —-0.261
DPM-EM 0.045 0.022 0.004 -1.465 0.040 0.009 0.437 -0.003 0.035 0.005 —-0.091 -0.205
N=3 0.066 0.027 0.372 -1.242 0.045 0.010 0.916 -0.848 0.036 0.005 —-0.077 —-0.421
N=5 0.083 0.034 0.277 -1.218 0.0563 0.012 0.493 -1.035 0.045 0.006 —0.782 —0.299
N=10 0.101 0.038 0.582 -1.804 0.062 0.012 0.499 -1.417 0.061 0.006 -0.166 —0.384

Source: Authors’ own.
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without risk of misspecifying the model like it can happen for the homogeneity
model and the unpenalized heterogeneity model.

4 Applications

4.1 Unemployment

The practical use of the proposed method is investigated in two data examples. First,
the variation of the unemployment over the federal states of Germany across time is
considered (Weise et al., 2011). We examine the unemployment rate of each federal
state from 2005 to 2010 in order to identify differences between states. Figure 8 shows
different levels of the unemployment rates and a negative time trend which can be
regarded as approximately linear. Therefore we consider a random slope model for
the annual average of the unemployment rate y;; of state 7 and measurement j

ind. 2 . .
vii|bi ~ N(Bo + bio + (B1 + bin)year;;, o°), i=1,...,16, j=0,...,5.
MV Mecklenburg-Vorpommern (MV)
o ST Sachsen-Anhalt (ST)
<L - Berlin (BE)
Sachsen (SA)
BE Brandenburg (BB)
Thiringen (TH)
SA Bremeg (HB)
BB Nordrhein-Westfalen (NRW)
Niedersachsen (NI)
TH Schleswig-Holstein (SH)
HB Hamburg (HH)
—_ Saarland (SL)
= Hessen (HE)
S Rheinland-Pfalz (RP)
S v Bayern (BY)
8_ — — Baden-Wiirttemberg (BW)
2
e
1<
) NRW
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Figure 8 Unemployment rates of the federal states of Germany across time
Source: Authors’ own.
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Table 4 Estimation results for the fixed effects and variance
parameters by DPM-EM model for the unemployment data

standard 95%-Cl

estimate error lower upper
Bo 13.718 1.370 10.558 15.898
B —1.007 0.111 —1.201 —0.765
o2 0.521 0.063 0.388 0.632
ag 1.084 0.883 0.036 2.813
012 0.004 0.005 0.000 0.017
001 —0.062 0.063 —0.203 0.013

Source: Authors’ own.

Since there is no symmetric unimodal variation of the individual intercepts about the
overall mean it would not be appropriate to assume a Gaussian random effect dis-
tribution. Instead, the centered i.i.d. random effects b; = (b;o, b;j1)T follow a mixture
distribution of Gaussian components with penalized mixture weights (2.2).

We are looking for clustering the federal states in order to expose which states
show similar behaviour. Only for a better interpretability we change the zero point
of the time variable to 2005. Thus, during calculations, the time variable is labelled
by 0, 1, ..., 5 for the years 2005, 2006, ... 2010.

First, Table 4 shows the estimated fixed effects and variance parameters. The
standard errors and confidence intervals for the fixed effects have been estimated
by the nonparametric bootstrap method proposed by Efron (1979) using the Monte
Carlo approximation with 1000 replications. Obviously the time variable has a
significant effect on the unemployment rate on the 5% level.

Our DPM-EM model detects three clusters with estimated weights 7, = 0.467,
7, = 0.425 and 75 = 0.108. Figure 9 shows the population effect (thin line) as well
as the cluster effects (thick lines). Observations belonging to the same cluster are
marked with the same symbol. For identification, this symbol is also added to the
corresponding thick line. The southern federal states Bayern, Baden-Wiirttemberg
and Rheinland-Pfalz are assigned to cluster 3 (+) which features the lowest unem-
ployment rate and the weakest decrease over time. As Table 5 shows, here, the base
level in 2005 is —6.469 lower compared to the overall unemployment rate 13.718. In
the south also, the decrease of the unemployment rate is less distinct than in the other
states. A similar effect can be observed in cluster 2 (A\). Here, the gap to the global

Table 5 Estimates of the cluster locations by DPM-EM
model for the unemployment data

o ity i3
4.361 ~3.140 —6.469
~0.353 0.277 0.436

Source: Authors’ own.
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15

10

unemployment rate [percent]

2005

Figure 9 Clustering of unemployment data by DPM-EM model. Observations belonging to the same cluster
are marked with the same symbol. The thin line represents the population effect and the thick lines symbolize

the cluster effects

Source: Authors’ own.

2006 2007

year

2008

2009 2010

Table 6 Estimates of 7;; for unemployment data by DPM-EM model

cluster j
1 2 3
1  Schleswig-Holstein 0 0.998 0.002
2 Hamburg 0 1 0
3 Niedersachsen 0 0.999 0.001
4  Bremen 1 0 0
5 Nordrhein-Westfalen 0 1 0
6 Hessen 0 0942 0.058
7 Rheinland-Pfalz 0 0424 0.576
state i 8 Baden-Wirttemberg 0 0.008 0.992
9 Bayern 0 0.012 0.988
10 Saarland 0 0.997 0.003
11 Berlin 1 0 0
12 Brandenburg 1 0 0
13  Mecklenburg-Vorpommern | 1 0 0
14  Sachsen 1 0 0
15  Sachsen-Anhalt 1 0 0
16  Thiringen 1 0 0

Source: Authors’ own.
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intercept is considerably smaller. Furthermore, there is one cluster (O) with a much
more higher base level and a stronger decrease of the unemployment rates. It is
remarkable that these states are all in Eastern Germany or city states. Only the city
state Hamburg makes an exception to that feature and belongs to cluster 2.

Table 6 shows the estimated probabilities 7;;. Here, it can be seen that for most
of the states, the assignment to a specific cluster is very distinct. Only for Rheinland-
Pfalz, the probability for cluster 3 and cluster 2 is very similar. The parameter «
which controls the number of clusters is estimated by & = 0.00155. It is a typical
feature that estimated as are very small. This means that the strongest clustering as
allowed by the data is the best one.

4.2 Lung function growth

In the second application, the lung function growth of girls in Topeka (USA) is
examined by our DPM-EM model. These data are a subsample from the six cities’
study of air pollution and health in Dockery et al. (1983). The response variable is

1.5

1.0

log(fev1) [log(liter)]

0.5

age [years]
Figure 10 Clustering of lung function growth data by DPM-EM model: Observations belonging to the same

cluster are marked with the same symbol. The thin line represents the population effect and the thick lines
symbolize the cluster effects

Source: Authors’ own.
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the logarithmic forced expiratory volume in one second (fevl). Our sample consists
of 100 girls, with a minimum of two and a maximum of 12 observations over time.
Again, we use a LMM with random intercepts and random slopes

log( fevl);j|b; (9 N(Bo + bio + (B1 + bi1)age;j, o%), i=1,...,100, j=1,...,m;,

and a DPM as random effects distribution (2.2). While the plot of all measurements
over time (Figure 10) is not very informative because of the large number of mea-
surements, the clustering effect of the DPM-EM model can be seen much easily from
Figure 11. Here the axes represent the intercepts and slopes, respectively. The square
at coordinates (0,0) marks the population effect. All other icons are interpreted as
deviations from the population effect. The thick big ones symbolize the cluster loca-
tions g, and the thin small ones the random effects b;. Girls assigned to the same
cluster are marked with the same symbol and are arranged around the three cluster
locations in the form of ellipses.

A
b= A
o 7] & A
A
2 A%
A
A
A
o
o
S
® A
Qo
o
w
A
S
CIS |
(0]
N
o
S -
|
T T T T T
-0.3 -0.2 -0.1 0.0 0.1

Intercept

Figure 11 Cluster locations and corresponding random effects of DPM-EM model for lung function growth
data: The thick big icons symbolize the cluster locations ji;, and the thin small ones the random effects b;.
The square at coordinates (0,0) marks the population effect. Ellipses with level 0.95 visualize the estimated
conditional distribution of random effects in the clusters

Source: Authors’ own.
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5 Conclusion

We introduced LMMs with a DPM for the random effects distribution in order to
penalize the number of clusters in the finite mixture of normal distribution. While
models with DPs are typically fitted by Bayesian methods like MCMC, we used the
EM algorithm because then the cluster property of the DP can be used directly. So
our method can be called an agglomerative clustering approach of individuals for
longitudinal data. The DPM-EM algorithm itself was presented in detail. Further-
more, we showed in a simulation study that our approach outperforms the classical
LMM in the case of an underlying grouping structure. Applications of this DPM-EM
algorithm were demonstrated by considering unemployment data and lung function
gfowthddata Extensions of this DPM-EM algorithm to additive mixed models are
planned.

Appendix

A.1 Recursive definition of weights

N N-1 N-1
[Ta-w=-v [JO-w)=][00-v)—7xn=...=
h=1 h=1 h=1
N
=(l—v)=Y m=1-> m,
h=2 h=1

A.2 Convergence of weights

E(i nb> :E(l—zN:nh> A:'1E<ﬁ(1—vb)) = 1 E(1—u,) =

h=N+1 h=1 h=1
N N 1 o
- Tt - Ew) - (1— )-( ) N
oa+1 oa+1
h=1 h=1

A.3 Prediction of random effects

Proposition:

N

A A A—1 R

E(bi|y,;) = fV<i—&mug—Dﬁvim§ﬁmM
h=1
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Proof:

According to (4) — (8) in Lindley and Smith (1972), it follows from

y|01 ~ N(A:04, Cy)
01 ~ N(A8,, Cy)

that
E(01]y) = (C;' + ATC{TA) AT CT y+ C T A20,)

holds. By defining

0,:=b;, A :=Z, Ci:=%;, y:=y —XB,
0, :=f,, Ay:=1I,, Cy:=D

and by assuming that individual i belongs to cluster b, one obtains

E(bly) = (D'

L ZIS7Z) N ZIE (v - XB) + D i)
W(D- DZI(Z,DZ + £ Z, DN ZT Sy, — XiB)+ D )
—
Vi
= DZI'$ \(y, — X,B) — DZIV; ' ZDZI$ (y, — XB)
+DD_1;lh — Dz,.TV,.‘lzii)i)‘lnh
= DZI(1, - V', DZ sy, — X;B) + (I, — DZTV, ' Z)i,
= DZIV,; 'V, =V, ' z,DZTis \y, — XiB) + (I, — DZTV, ' Z))j,
- DZTV; (zDZl + 5 — ZDZTix My, — XiB) + (I, — DZIV, ' Z)i,
- DZTV, 'y, — XiB) + (I, — DZTV, ' Z)iu,.
Note that in (*), the matrix lemma (10) in Lindley and Smith (1972) with A, := ZiT,
C:= D' and C, := 7! is used.

1

Thus without knowing the cluster membership one obtains

N
~ A—1 ~ A ~—1 A
E(bi|y) = DZI'V; (y, — XiB) + (1, — DZIV; Z)> " 7y,
h=1
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