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Proteins from 
hyperthermophilic archaea: 
stability towards covalent 
modification of the peptide 
chain 
Reinhard Hensel*f, Irmgard Jakob, Hugo Scheerij: 
and Friedrich Lottspeich 

Max-Planck-Institut f ü r Biochemie, 8033 Martinsried, Germany 

Introduction 

One of the most striking features of the Archaea is their extraordinary 
thermophilic potential. Thus, hyperthermophiles with optimal growth temperatures 
above 80 °C are for the most part archaea and all organisms with growth temperatures 
above 100 °C isolated up to now belong exclusively to the domain of Archaea [1,2]. 

Life at these high growth temperatures requires provision by the cell of 
proteins which are stable and biologically active at these extreme temperatures. 
Al though several archaeal proteins exhibiting astonishingly high thermostabilities 
and high temperature optima of activity have been characterized, only in a few cases 
are structural data available. The primary structures of only about a dozen proteins 
from archaeal hyperthermophiles have been analysed. In no case could the three-
dimensional structure be resolved, which might have allowed insights into the 
construction principle of these proteins. 

Thus, the question remained unanswered as to how the proteins from these 
hyperthermophiles are protected against covalent damage at temperatures which 
induce chemical modiflcations in ' no rma l ' mesophilic proteins. As has been shown 
by several authors [3-8] these chemical modifications comprise deamidation of Asn 

* To whom correspondence should be addressed. 
f Present address: Universität GHS Essen, Universitätsstr. 2, 4300 Essen 1, 
Germany 
$ Present address: Botanisches Institut der Universität München, Menzingerstr. 
67, 8000 München 19, Germany 
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Fig. 1. Ammonia liberation kinetics of the G A P D H s from 
M . fervidus and P. woesei. The ineubations were performed at pH 7.3 
(10 mM-potassium phosphate buffer containing 150 mM-2-mercapto-
ethanol; protein concentration: 2 mg/m!) in sealed glass capillaries under 
anaerobic atmosphere. Before the determination of ammonia by an amino 
acid analyser, the samples (70 /J) were cooled down immediately after 
ineubation and mixed with 210//I of 0.2M-citrate buffer, pH 2.2. (a) 
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and G i n , hydrolysis of Asp-containing peptide bonds and Asn-Xaa bonds as well as 
destruction of cystine bonds. 

Here we describe the susceptibility of archaeal hyperthermophilic proteins to 
thermogenic covalent modifications. The studies were performed with the glycer-
aldehyde-3-phosphate dehydrogenase ( G A P D H ) from Methanothermus fervidus 
(optimal growth temperature 83 °C [9]) and Pyrococcus woesei (optimal growth 
temperature 100 °C [10]) [11,12]. We have focused on deamidation and hydrolysis of 
the peptide bonds at high temperatures. T o avoid oxidation reactions all incubations 
were performed under anaerobic conditions in the presence of reducing agents. 
Destruction of disulphide bonds was disregarded, since no indications for cystinyl 
cross-links in these proteins are available [12,13]. 

Results and discussion 

Deamidat ion reactions at high temperatures 

T o investigate the susceptibility of the G A P D H s from the hyperthermophiles 
M . Jervidus and P . woesei to deamidation reactions, ammonia liberation from the 
protein Solutions (2.0 mg/ml ) was followed at different temperatures. The proteins 
were incubated at low ionic strength (10 mM-potassium phosphate buffer, p H 7.3), at 
which the proteins show only a low stability as measured by inactivation kinetics 
[12,14]. Thus, at the respective optimal growth temperatures of the organisms the 
enzymes exhibit half-lives of inactivation of 60 min at 83 °C ( G A P D H from M . 

fervidus) or of 44 min at 100 °C ( G A P D H from P. woesei). 
As shown in F i g . \ a and \by ammonia liberation can be observed with both 

enzymes. The G A P D H from M . fervidus exhibits, however, a higher susceptibility to 
deamidation than that from P . woesei; at 85 °C the M . fervidus enzyme already shows 
the same ammonia liberation rate as that obtained for the more stable P . woesei enzyme 
at 100 °C. Quite obviously, the enzyme proteins of the hyperthermophilic archaea are 
not resistant per se to chemical modification but must be protected against covalent 
damage. 

Does the native conformat ion protect the A s n and G i n residues 

against deamidat ion? 

T o investigate whether the Asn and G i n residues are protected in the native 
conformation, the deamidation reaction was analysed in proteins with destabilized or 
disturbed conformation. 

For this purpose the velocity of deamidation was determined with Ree 42, an 
enzyme mutant of the M . fervidus G A P D H . This mutant enzyme represents a hybrid 
enzyme construeted by recombination of the structural G A P D H genes from the 
thermophile M . fervidus and the mesophile Methanobacterium bryantii [14]. The hybrid 
G A P D H consists mainly of the M . fervidus G A P D H sequence but exhibits at its C-
terminus a 42 residue fragment of the M b . bryantii enzyme. This exchange resulted in 

M. fervidus wild-type GAPDH incubated at different temperatures. ( b ) 
Native and pre-denaturated (see text) P. woesei GAPDH incubated at 
100 ° C . (c) M . fervidus wild-type and mutant (Ree 42) GAPDH incubated 
at 85 ° C . 
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10 nM-KH2P04 300 nM-KH2P04 

85° 89° 93° 97° 100° 85° 89° 93° 97° 100° 

Fig. 2. Hydrolysis of peptide bonds. Electropherogram of M. fervidus 

GAPDH incubated for 1 h at different temperatures at low (10 mM-

potassium phosphate buffer, pH 7.3 containing 150 mM-2-mercapto-

ethanol) or at high ionic strength (300 mM-potassium phosphate buffer, 

pH 7.3 containing 150 mM-2-mercaptoethanol). 

real Subs t i tu t ion o f o n l y 10 residues [14]. N o a d d i t i o n a l A s n o r G i n residues were 

inser ted i n the r e c o m b i n a n t s t ructure . O n the c o n t r a r y , t w o A s n residues were 

subs t i tu ted and the C - t e r m i n a l G i n residue was e l i m i n a t e d b y this r e c o m b i n a t i o n . 

As d o c u m e n t e d p r e v i o u s l y [14], this rather m i n o r exchange great ly destabi l izes 

the p r o t e i n s t ruc ture (half-l ife o f i n a c t i v a t i o n at 85 °C : 0.5 m i n (Ree 42) as o p p o s e d 

to 20 m i n d e t e r m i n e d for the w i l d - t y p e G A P D H f r o m M . fervidus). With the l o w e r 

s tabi l i ty o f the na t ive c o n f o r m a t i o n the suscep t ib i l i t y to d e a m i d a t i o n react ions also 

increases, as s h o w n i n F ig . \c. Thus, the re ta rda t ion o f a m m o n i a e v o l u t i o n , 

character is t ic fo r the w i l d - t y p e e n z y m e f r o m M . fervidus^ d i sappeared i n the case o f 

Ree 42. Quite o b v i o u s l y , the c o n f o r m a t i o n a l s tab i l i ty o f the m u t a n t e n z y m e is too l o w 

to retard the d e a m i d a t i o n reac t ion . 

The a s s u m p t i o n that the n e t w o r k of n o n - c o v a l e n t b o n d s i n the na t ive State 

protects the pep t ide cha in against d e a m i d a t i o n is also s u p p o r t e d by d e a m i d a t i o n 

exper iments w i t h the P. woesei G A P D H d i s r u p t e d i n its na t ive c o n f o r m a t i o n by 
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F r a g m e n t S e q u e n c e 

M . f e r v i d u s P. w o e s e i 

1 GLSFN Y SLSN QVSFVSSSN 

2 Ä I I P NTP P K L A I K P . S V T I 

3 MHQHNTVMVE MHVHSIMVE 

4 V V S C N TT T G L VVSCNTTGL 

5 K G P I N V A I I P RGPINAIKP 
Fig. 3. Cleavage sites of the non-enzymic hydrolysis of the M . 
fervidus G A P D H and comparison with homologous sequences of 
the P. woesei G A P D H . The positions of cleavage sites (marked by 
arrows and large type-size Symbols) were deduced from the N-terminal 
amino acid sequence of the respective peptide fragments. Positions 
homologous to the cleavage sites in the M. fervidus GAPDH are underlined. 
Sequencing of the peptides was performed on a gas-phase sequencer (A470 
from Applied Biosystems) after electroblotting on glass flbre sheets [18]. 

pretreatment with 8 M-guanidium chloride at 70 °C (Fig. \ b ) . This irreversibly 
denatured protein (after denaturation the denaturant was removed by dialysis to 
avoid interference with ammonia liberation) shows a significantly faster ammonia 
liberation than the native enzyme, indicating that in the disrupted conformation more 
residues are susceptible to covalent modification than in the native State. Nevertheless, 
as in the case of the pretreated enzyme a sigmoidal curvature can be observed, which 
accounts for a certain conformational stability of the wrongly refolded State. 

The conclusion that the deamidation requires an unfolding of the chain seems 
to be plausible considering the reaction mechanism proposed by Clarke [4]. As 
outlined, the reaction Starts with a nucleophilic attack of the peptide amino group on 
the amide carbon, forming a cyclic intermediate, a succinimide derivative. This 
reaction pathway requires that the y/ and / angle assume values of —120° and 120°, 
which, however, is only possible in an unfolded State. 

T h e r m o g e n i c hydrolysis of the peptide bond 

Further hints that conformational stability governs the susceptibility of 
hyperthermophilic proteins to chemical modihcations can be deduced from studies 
on the thermogenic hydrolysis of peptide bonds in the G A P D H s from M . fervidus and 
P . woesei. 

As documented in the left part of F ig . 2, incubation at or above 85 °C causes 
a fragmentation of the peptide chain o f the M . fervidus G A P D H , however, only at low 
ionic strength, i.e. under non-stabilizing conditions. A t a high phosphate con-
centration (right part of F ig . 2), known to stabilize proteins from this methanogen 
[15], the reaction is hindered. 

From the sequences of the N-termini of the fragments the respective cleavage 
sites could be deduced. As shown in F ig . 3, hydrolysis occurs exclusively next to Asn 
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residues. Obviously, the often described cleavage of the peptide bond at Asp residues 
takes place mainly at acidic p H and is not relevant at physiological (neutral) 
conditions. 

The non-enzymic cleavage at Asn residues has already been described in 
proteins from mesophilic organisms [7,8]. L ike the deamidation reaction, the 
cleavage also proceeds via a cyclic succinimide derivative, but in contrast w i t h the 
deamidation reaction, the cyclization Starts with a nucleophilic attack of the amide 
nitrogen on the carbonyl carbon of the peptide bond, thus leading to the cleavage. 

As with the deamidation reaction [15a], since the cleavage reaction itself is 
favoured at high ionic strength, the hindrance of hydrolysis at high ionic strength, as 
observed i n the case of the M . fervidus G A P D H , must be due to the extrinsic 
stabilization of the protein conformation. 

Resistance of P. woesei G A P D H to non-enzymic hydrolysis: hints 

for deactivation of the weak links of the peptide chain by 

Substitution or e l iminat ion of A s n residues 

As one can expect from its higher resistance to deamidation, the G A P D H from 
P . woesei also shows a significantly lower susceptibility to hydrolysis o f the peptide 
bonds. Thus, after incubation for 1 h at 100 °C n o , o r very few, hydrolysis products 
are visible i n the respective electropherograms (not shown). We assume that, for the 
most part, the higher conformational stability of this protein causes its higher 
resistance to non-enzymic hydrolysis. 

Additionally, we speculate that in proteins adapted to extremely high thermal 
conditions, 'hot spots' of chemical modification are avoided, especially in flexible 
structure elements. 

In this regard we interpret the finding that the P . woesei G A P D H sequence lacks 
Asn residues at three positions, which are homologous to the ' fragile' positions i n the 
M . fervidus sequence (Fig. 3). 

A t two 'fragile ' positions, however, Asn residues are conserved in the P . woesei 
structure, probably for functional reasons. By analogy with the three-dimensional 
structure o f the Bacillus stearothermophilus G A P D H [16], the conserved Asn residue in 
fragment 4 is the neighbour o f the catalytically essential Cys residue, whereas the 
other conserved Asn residue in fragment 5 is located in the functionally important 
S-loop. Obviously, these residues are protected by the rigid conformation o f the 
P . woesei G A P D H . 

Because of their chemical lability we would expect that Asn residues are 
generally reduced i n number i n proteins adapted to the higher temperature ränge 
(above 80 °C). Comparing the G A P D H and 3-phosphoglycerate kinase sequences 
from mesophilic and thermophilic archaea [12,17] the expected tendency can be 
confirmed. Similar trends are also visible in bacterial proteins; strikingly low Asn 
content was found i n enzyme proteins from Thermus strains with upper growth 
temperatures around 85 °C indicating that the requirements for the construction o f 
proteins for the higher temperature ränge are similar i n both domains. 

The work was supported by grants from the Deutsche Forschungsgemeinschaft 
and the Fonds der Chemischen Industrie. 
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