The Archaebacteria: Biochemistry and Biotechnology

ORGANIZED AND EDITED BY
M. J. DANSON, D. W. HOUGH AND G. G. LUNT

PORTLAND PRESS
London and Chapel Hill
Contents

Preface ... vii
Abbreviations ... ix
What are the archaebacteria and why are they important?
 By W. Ford Doolittle ... 1
The enzymology of archaebacterial pathways of central metabolism
 By Michael J. Danson and David W. Hough 7
Bioenergetics and autotrophic carbon metabolism of chemolithotrophic
 archaebacteria
 By Georg Fuchs, Axel Ecker and Gerhard Strauss 23
Biochemistry of methanogenesis
 By Ralph S. Wolfe .. 41
Archaebacterial lipids: structure, biosynthesis and function
 By Morris Kates .. 51
Progress in developing the genetics of the halobacteria
 By W. Ford Doolittle, Wan L. Lam, Leonard C. Schalkwyk, Robert L.
 Charlebois, Steven W. Cline and Annalee Cohen 73
RNA polymerases and transcription in archaebacteria
 Hüdepohl and J. Hain .. 79
Structure, function and evolution of the archaenal ribosome
 By Alastair T. Matheson ... 89
Chromosome structure and DNA topology in extremely thermophilic
 archaebacteria
 By Patrick Forterre, Franck Charbonnier, Evelyne Marguet, Francis Harper
 and Gilles Henckes .. 99
Halophilic malate dehydrogenase — a case history of biophysical investiga-
 tions: ultracentrifugation, light-, X-ray- and neutron scattering
 By Henryk Eisenberg ... 113
Proteins from hyperthermophilic archaea: stability towards covalent modi-
 fication of the peptide chain
 By Reinhard Hensel, Irmgard Jakob, Hugo Scheer and Friedrich Lottspeich
 ... 127
Biotechnological potential of halobacteria
 By Francisco Rodriguez-Valera ... 135
Enzymes from thermophilic archaebacteria: current and future applications
 in biotechnology
 By Don A. Cowan .. 149
Thermoacidophilic archaebacteria: potential applications
By P. R. Norris .. 171

Biotechnological potential of methanogens
By Lacy Daniels .. 181

Where next with the archaebacteria?
By Otto Kandler .. 195

Subject Index .. 209
Abbreviations

APS Sulphuric acid–phosphoric acid anhydride
BR Bacteriorhodopsin
C_carb. Carbonate carbon
CDR factor Carbon dioxide reduction factor
CH₃-S-CoM 2-(methylthio)ethanesulphonic acid
CODH Carbon monoxide dehydrogenase
C_org. Organic carbon
DGA Desulphated diglycosylarchaeol
DGC Diglycosylcardarchaeol
DHA Dihydroxyacetone
DPE Distal promoter element
EF Elongation factor
EOR Enhanced (or tertiary) oil recovery
F₄₂₀ Factor 420
F₄₃₀ Factor 430
FAF Formaldehyde activation factor
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GNC Glucosylnonitolcaldarchaeol
HB 3-Hydroxybutyrate
hMDH Halophilic malate dehydrogenase
H₄MPT Tetrahydromethanopterin
HS-CoM 2-Mercaptoethanesulphonic acid/Coenzyme M
HS-HTP 7-Mercaptoheptanoylthreonine phosphate
HV 3-Hydroxyvalerate
LDH Lactate dehydrogenase
LS Light scattering
M₂ Molar mass
MDH Malate dehydrogenase
MPT Methanopterin
MT Methyltransferase
NS Neutron scattering
ORF Open reading frame
PA Phosphatidic acid
PAPS 3’-Phosphoadenosine-5’-phosphosulphate
PCR Polymerase chain reaction
PE Phosphatidylethanolamine
PG Phosphatidylycerol
PGC Phosphodiglycosylcaldarchaeol
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGNC</td>
<td>Glc-nonitolcaldarchaeol-P-inositol</td>
</tr>
<tr>
<td>PGP</td>
<td>Phosphatidylglycerol phosphate</td>
</tr>
<tr>
<td>PGS</td>
<td>Phosphatidylglycerol sulphate</td>
</tr>
<tr>
<td>PHA</td>
<td>Polyhydroxyalkanoate</td>
</tr>
<tr>
<td>PHB</td>
<td>Poly-3-hydroxybutyrate</td>
</tr>
<tr>
<td>PI</td>
<td>Phosphatidylinositol</td>
</tr>
<tr>
<td>PM</td>
<td>Purple membrane</td>
</tr>
<tr>
<td>PPE</td>
<td>Proximal promoter element</td>
</tr>
<tr>
<td>PS</td>
<td>Phosphatidylserine</td>
</tr>
<tr>
<td>RuBP</td>
<td>Ribulose bisphosphate carboxylase</td>
</tr>
<tr>
<td>S-DGA</td>
<td>Sulphated diglycosylarchaeol</td>
</tr>
<tr>
<td>S-TeGA</td>
<td>Sulphated tetracygosylarchaeol</td>
</tr>
<tr>
<td>S-TGA</td>
<td>Sulphated triglycosylarchaeol</td>
</tr>
<tr>
<td>SD</td>
<td>Sedimentation velocity and diffusion</td>
</tr>
<tr>
<td>SE</td>
<td>Sedimentation equilibrium</td>
</tr>
<tr>
<td>TeGA</td>
<td>Desulphated tetracygosylarchaeol</td>
</tr>
<tr>
<td>TGA</td>
<td>Desulphated triglycosylarchaeol</td>
</tr>
<tr>
<td>TMP</td>
<td>Trimethylpsoralen</td>
</tr>
<tr>
<td>$T_{\text{opt.}}$</td>
<td>Optimal growth temperature</td>
</tr>
<tr>
<td>TPP</td>
<td>Thiamine pyrophosphate</td>
</tr>
<tr>
<td>XS</td>
<td>X-ray scattering</td>
</tr>
<tr>
<td>YFC</td>
<td>Yellow fluorescent compound</td>
</tr>
</tbody>
</table>
Proteins from hyperthermophilic archaea: stability towards covalent modification of the peptide chain

Reinhard Hensel*†, Irmgard Jakob, Hugo Scheer‡ and Friedrich Lottspeich

Max-Planck-Institut für Biochemie, 8033 Martinsried, Germany

Introduction

One of the most striking features of the Archaea is their extraordinary thermophilic potential. Thus, hyperthermophiles with optimal growth temperatures above 80 °C are for the most part archaea and all organisms with growth temperatures above 100 °C isolated up to now belong exclusively to the domain of Archaea [1,2].

Life at these high growth temperatures requires provision by the cell of proteins which are stable and biologically active at these extreme temperatures. Although several archaeal proteins exhibiting astonishingly high thermostabilities and high temperature optima of activity have been characterized, only in a few cases are structural data available. The primary structures of only about a dozen proteins from archaeal hyperthermophiles have been analysed. In no case could the three-dimensional structure be resolved, which might have allowed insights into the construction principle of these proteins.

Thus, the question remained unanswered as to how the proteins from these hyperthermophiles are protected against covalent damage at temperatures which induce chemical modifications in ‘normal’ mesophilic proteins. As has been shown by several authors [3–8] these chemical modifications comprise deamidation of Asn

* To whom correspondence should be addressed.
† Present address: Universität GHS Essen, Universitätsstr. 2, 4300 Essen 1, Germany
‡ Present address: Botanisches Institut der Universität München, Menzingerstr. 67, 8000 München 19, Germany
Fig. 1. Ammonia liberation kinetics of the GAPDHs from *M. fervidus* and *P. woesei*. The incubations were performed at pH 7.3 (10 mM-potassium phosphate buffer containing 150 mM-2-mercaptoethanol; protein concentration: 2 mg/ml) in sealed glass capillaries under anaerobic atmosphere. Before the determination of ammonia by an amino acid analyser, the samples (70 µl) were cooled down immediately after incubation and mixed with 210 µl of 0.2 M-citrate buffer, pH 2.2. (a)
and Gln, hydrolysis of Asp-containing peptide bonds and Asn-Xaa bonds as well as destruction of cystine bonds.

Here we describe the susceptibility of archaeal hyperthermophilic proteins to thermogenic covalent modifications. The studies were performed with the glycer-aldehyde-3-phosphate dehydrogenase (GAPDH) from Methanothermus fervidus (optimal growth temperature 83 °C [9]) and Pyrococcus woesei (optimal growth temperature 100 °C [10]) [11,12]. We have focused on deamidation and hydrolysis of the peptide bonds at high temperatures. To avoid oxidation reactions all incubations were performed under anaerobic conditions in the presence of reducing agents. Destruction of disulphide bonds was disregarded, since no indications for cystinyl cross-links in these proteins are available [12,13].

Results and discussion

Deamidation reactions at high temperatures

To investigate the susceptibility of the GAPDHs from the hyperthermophiles M. fervidus and P. woesei to deamidation reactions, ammonia liberation from the protein solutions (2.0 mg/ml) was followed at different temperatures. The proteins were incubated at low ionic strength (10 mM-potassium phosphate buffer, pH 7.3), at which the proteins show only a low stability as measured by inactivation kinetics [12,14]. Thus, at the respective optimal growth temperatures of the organisms the enzymes exhibit half-lives of inactivation of 60 min at 83 °C (GAPDH from M. fervidus) or of 44 min at 100 °C (GAPDH from P. woesei).

As shown in Fig. 1a and 1b, ammonia liberation can be observed with both enzymes. The GAPDH from M. fervidus exhibits, however, a higher susceptibility to deamidation than that from P. woesei; at 85 °C the M. fervidus enzyme already shows the same ammonia liberation rate as that obtained for the more stable P. woesei enzyme at 100 °C. Quite obviously, the enzyme proteins of the hyperthermophilic archaea are not resistant per se to chemical modification but must be protected against covalent damage.

Does the native conformation protect the Asn and Gln residues against deamidation?

To investigate whether the Asn and Gln residues are protected in the native conformation, the deamidation reaction was analysed in proteins with destabilized or disturbed conformation.

For this purpose the velocity of deamidation was determined with Rec 42, an enzyme mutant of the M. fervidus GAPDH. This mutant enzyme represents a hybrid enzyme constructed by recombination of the structural GAPDH genes from the thermophile M. fervidus and the mesophile Methanobacterium bryantii [14]. The hybrid GAPDH consists mainly of the M. fervidus GAPDH sequence but exhibits at its C-terminus a 42 residue fragment of the Mb. bryantii enzyme. This exchange resulted in

M. fervidus wild-type GAPDH incubated at different temperatures. (b) Native and pre-denaturated (see text) P. woesei GAPDH incubated at 100 °C. (c) M. fervidus wild-type and mutant (Rec 42) GAPDH incubated at 85 °C.
Proteins from hyperthermophilic archaea

10 mM-KH$_2$PO$_4$ 300 mM-KH$_2$PO$_4$

85° 89° 93° 97° 100° 85° 89° 93° 97° 100°

Fig. 2. Hydrolysis of peptide bonds. Electropherogram of M. fervidus GAPDH incubated for 1 h at different temperatures at low (10 mM-potassium phosphate buffer, pH 7.3 containing 150 mM-2-mercaptoethanol) or at high ionic strength (300 mM-potassium phosphate buffer, pH 7.3 containing 150 mM-2-mercaptoethanol).

real substitution of only 10 residues [14]. No additional Asn or Gln residues were inserted in the recombinant structure. On the contrary, two Asn residues were substituted and the C-terminal Gln residue was eliminated by this recombination.

As documented previously [14], this rather minor exchange greatly destabilizes the protein structure (half-life of inactivation at 85 °C: 0.5 min (Rec 42) as opposed to 20 min determined for the wild-type GAPDH from M. fervidus). With the lower stability of the native conformation the susceptibility to deamidation reactions also increases, as shown in Fig. 1c. Thus, the retardation of ammonia evolution, characteristic for the wild-type enzyme from M. fervidus, disappeared in the case of Rec 42. Quite obviously, the conformational stability of the mutant enzyme is too low to retard the deamidation reaction.

The assumption that the network of non-covalent bonds in the native state protects the peptide chain against deamidation is also supported by deamidation experiments with the P. woesei GAPDH disrupted in its native conformation by
pretreatment with 8 M-guanidium chloride at 70 °C (Fig. 1b). This irreversibly denatured protein (after denaturation the denaturant was removed by dialysis to avoid interference with ammonia liberation) shows a significantly faster ammonia liberation than the native enzyme, indicating that in the disrupted conformation more residues are susceptible to covalent modification than in the native state. Nevertheless, as in the case of the pretreated enzyme a sigmoidal curvature can be observed, which accounts for a certain conformational stability of the wrongly refolded state.

The conclusion that the deamidation requires an unfolding of the chain seems to be plausible considering the reaction mechanism proposed by Clarke [4]. As outlined, the reaction starts with a nucleophilic attack of the peptide amino group on the amide carbon, forming a cyclic intermediate, a succinimide derivative. This reaction pathway requires that the φ and χ angles assume values of −120° and 120°, which, however, is only possible in an unfolded state.

Thermogenic hydrolysis of the peptide bond

Further hints that conformational stability governs the susceptibility of hyperthermophilic proteins to chemical modifications can be deduced from studies on the thermogenic hydrolysis of peptide bonds in the GAPDHs from *M. fervidus* and *P. woesei*.

As documented in the left part of Fig. 2, incubation at or above 85 °C causes a fragmentation of the peptide chain of the *M. fervidus* GAPDH, however, only at low ionic strength, i.e. under non-stabilizing conditions. At a high phosphate concentration (right part of Fig. 2), known to stabilize proteins from this methanogen [15], the reaction is hindered.

From the sequences of the N-termini of the fragments the respective cleavage sites could be deduced. As shown in Fig. 3, hydrolysis occurs exclusively next to Asn
residues. Obviously, the often described cleavage of the peptide bond at Asp residues takes place mainly at acidic pH and is not relevant at physiological (neutral) conditions.

The non-enzymic cleavage at Asn residues has already been described in proteins from mesophilic organisms [7,8]. Like the deamidation reaction, the cleavage also proceeds via a cyclic succinimide derivative, but in contrast with the deamidation reaction, the cyclization starts with a nucleophilic attack of the amide nitrogen on the carbonyl carbon of the peptide bond, thus leading to the cleavage.

As with the deamidation reaction [15a], since the cleavage reaction itself is favoured at high ionic strength, the hindrance of hydrolysis at high ionic strength, as observed in the case of the *M. fervidus* GAPDH, must be due to the extrinsic stabilization of the protein conformation.

Resistance of *P. woesei* GAPDH to non-enzymic hydrolysis: hints for deactivation of the weak links of the peptide chain by substitution or elimination of Asn residues

As one can expect from its higher resistance to deamidation, the GAPDH from *P. woesei* also shows a significantly lower susceptibility to hydrolysis of the peptide bonds. Thus, after incubation for 1 h at 100 °C no, or very few, hydrolysis products are visible in the respective electropherograms (not shown). We assume that, for the most part, the higher conformational stability of this protein causes its higher resistance to non-enzymic hydrolysis.

Additionally, we speculate that in proteins adapted to extremely high thermal conditions, ‘hot spots’ of chemical modification are avoided, especially in flexible structure elements.

In this regard we interpret the finding that the *P. woesei* GAPDH sequence lacks Asn residues at three positions, which are homologous to the ‘fragile’ positions in the *M. fervidus* sequence (Fig. 3).

At two ‘fragile’ positions, however, Asn residues are conserved in the *P. woesei* structure, probably for functional reasons. By analogy with the three-dimensional structure of the *Bacillus stearothermophilus* GAPDH [16], the conserved Asn residue in fragment 4 is the neighbour of the catalytically essential Cys residue, whereas the other conserved Asn residue in fragment 5 is located in the functionally important S-loop. Obviously, these residues are protected by the rigid conformation of the *P. woesei* GAPDH.

Because of their chemical lability we would expect that Asn residues are generally reduced in number in proteins adapted to the higher temperature range (above 80 °C). Comparing the GAPDH and 3-phosphoglycerate kinase sequences from mesophilic and thermophilic archaea [12,17] the expected tendency can be confirmed. Similar trends are also visible in bacterial proteins; strikingly low Asn content was found in enzyme proteins from *Thermus* strains with upper growth temperatures around 85 °C indicating that the requirements for the construction of proteins for the higher temperature range are similar in both domains.

The work was supported by grants from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.
References

Subject Index

Acetyl-CoA pathway, 14, 15, 35, 198
Adaptation to changing world, 199–200
Alcohol dehydrogenases, 162–164
Ammonia liberation kinetics 128
Archaeol (diphytanylglycerol diether), 51–53
 biosynthesis of, 63–68
 function of, 68–70
 polar lipid analogues of, 54–59, 61–63
ATP, 47–48
Autotrophy,
 carbon dioxide fixation, 24
 carbon metabolism, 23–39
 primitive pathways, 198–199
Average molar mass (M_9), 116–118, 122, 123
Biohydrometallurgy, 174–178
Bioplastic production, 142–144
Biotechnology,
 alcohol dehydrogenases in, 162–164
 in bioplastic production, 142–144
 in cancer research, 138
 coenzymes in, 187–189
 DNA polymerases in, 155–158
 enzymes in, 140–141
 esterases in, 164–166
 ethane production in, 186–187
 halobacteria in, 135–147
 ligase chain reaction in, 161–162
 methane as alternative source of energy in, 182–185
 methanogens in, 181–193
 in oil prospection/recovery, 141
 polysaccharides in, 141–142
 reactors for anaerobic digestion in, 183–184
 retinal proteins in, 138–140
 thermophiles in, 149–169
 in waste treatment, 185
Caldarchaeol (diphytanyldiglycerol tetraether), 51–53
 biosynthesis of, 66–68
 function of, 68, 70
 polar lipid analogues of, 59–63
Calvin cycle, 36–37
Calvin–Benson cycle, 198–201
Cancer research, 138
Carbon dioxide fixation, autotrophic, 24
 in archaebacteria, 34–37
 in eubacteria, 37–38
Carbon metabolism (autotrophic), 23–39
Carbonyl dehydrogenase pathway, 35
Catabolism,
 acetyl-CoA, 14–15
 glucose, 9–10
Cell wall, 195–197
Central metabolism, 7–21
Chemolithoautotrophy, 197, 198
Chemolithotrophic archaebacteria, 23–39
 energy conservation in, 24–25
 growth of, 25
Chromosome structure, 99–112
Chromosome topology, 106–108
Citrate synthase, 17–19
Citric acid cycle,
 oxidative, 13–14
 partial, 14–15
 reductive, 14, 35, 198
Coal desulphurization, 174–175
Coenzyme F_{430}, 43–45
Coenzyme M, 31–34, 42, 43, 46, 47
Corrinoids, 187
Deamidation, 129
5-Deazaflavin, 181, 187
Density increment, 118–120, 122, 123
Dibiphytanylglycerol tetraether (see Caldarchaeol)
Dihydrolipoamide dehydrogenase, 12, 13, 16, 17
Diphosphotyglycerol diether (see Archaeol),
DNA polymerases, 155–158
DNA stability, 100–102
DNA topoisomerases, 102–104
DNA topology, 99–112
 in extreme thermophiles, 109–110
 in halophiles, 109

Embden–Meyerhof pathway (glycolysis), 8–9, 16
Endosymbiont hypothesis, 2–3
Entner–Duodoroff pathway, 8–12, 16

Enzymes,
 alcohol dehydrogenases, 162–164
 commerical applications of, 155–158
 DNA polymerases, 155–158
 esterases, 164–166
 future applications of, 158–166
 industrial applications of, 140–141
 ligase chain reaction, 161–162
 properties of, 150–155
 in thermophiles, 149–169

Esterases, 164–166

Ethane production, 186–187

Evolution,
 adaptation to changing world in, 199–200
 cautions in, 5–6
 endosymbiont hypothesis in, 2–3
 interdependence of archaea and environment in, 197–202
 natural (genealogical) system in, 203
 recognition of archaeabacteria in, 3–4
 roots in, 4–5, 204–205
 three domain system in, 203–204
 universal phylogenetic tree in, 200, 203

Extreme halophiles (see Halobacteria),

Extreme thermophiles,
 DNA topoisomerases in, 102–104
 DNA topology in, 109–110
 origin of, 110

Factor 420 (F_{420}), 181, 187
Factor 430 (F_{430}), 42

Genealogical (natural) system, 203–205
Geochemical processes, 202

Global warming, 182
Glucose, 9–10

Glucose dehydrogenase, 17

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 129–132
 ammonia liberation kinetics in, 128
 deamidation in, 129
 native conformation of, 129–131
 thermogenic (non-enzymic hydrolysis) in, 131–132

Glycolysis (Embden–Meyerhof pathway), 8–9, 16

Halobacteria (extreme halophiles), 51, 53, 69, 70, 73–78
 in bioplastic production, 142–144
 biosynthetic pathways of, 63–65
 biotechnological potential of, 135–147
 in cancer research, 138
 enzymes of, 140–141
 growth on salted food, 137
 in oil prospection/recovery, 141
 physical map of, 74–75
 polar lipids of, 54–58
 polysaccharides of, 141–142
 retinal proteins of, 138–140
 shuttle vectors in, 76–77
 singularities of, 136–137
 transformation in, 75–76
 tryptophan operon in, 77

Halogenated hydrocarbon waste treatment, 185–186

Halophiles,
 DNA topology in, 109
 malate dehydrogenase in, 113–125
 H^{+}-ATP synthase, 34
 Heterotrophic metabolism, 173–174
 Histone-like proteins, 100
 3-Hydroxypropionate cycle, 36–37
 Hyperthermophiles, 197–199
 biomass of, 201
 phylogeny of, 197–198
 primitive autotrophic pathways of, 198–199

Industrial applications, 140–141
Iron oxidation, 177–178

Kingdoms of life, 1–2

L12–L10 complex, 92–95
Ligase chain reaction, 161–162
Light scattering, 113–125
Lipoic acid, 12, 13

Malate dehydrogenase, 113–125
 average molar mass (M) of, 116–118, 122, 123
 density increment of, 118–120, 122, 123
 interaction parameters of, 118–120
 light scattering studies of, 113–125
 neutron scattering studies of, 121, 123
sediment coefficient of, 118–120
translational diffusion coefficient of, 118–120
ultracentrifugation studies of, 113–125
X-ray scattering studies of, 114, 121, 122

7-Mercaptoheptanoylthreonine phosphate, 42

Methane, 181–191
as alternative source of energy, 182–185
in global warming, 190–191

Methanofuran, 43, 44

Methanogenesis, 23, 30–35, 41–49

Methanogens, 51, 53, 69, 70
ATP synthesis by, 47–48
in biocorrosion, 189
biosynthetic pathways of, 65–66
in biotechnology, 181–193
coenzymes in, 187–189
in global warming, 190
polar lipids of, 58–61
RNA polymerase subunits of, 79–86
in ruminants, 189–190

Methylreductase, 42–43, 46, 47

Mineral oxidation, 175–176

Natural (genealogical) system, 203–205
Neutron scattering, 121, 123
Non-enzymic (thermogenic) hydrolysis, 131–132
Nonitocaldarchaeol, 53
biosynthesis of, 67, 68
polar lipid analogues of, 60–63

Oil prospection/recovery, 141

Physical map, 74–75
Plasmid pGT5, 106

Polar lipids,
archaeol, 54–59, 61–63
biosynthesis of, 63–68
caldarchaeol, 59–63
of extreme halophiles, 54–58
function of, 67–69
of methanogens, 58–61
nonitocaldarchaeol, 60–63
of thermoacidophiles, 60–62
of Thermoaccales, 62
Polysaccharides, 141–142
Pyruvate dehydrogenase, 11
Pyruvate oxidoreductase, 11, 12, 16

R-protein, 89–92, 95–97
archaeal, 90
evolution of, 91, 95–96
genes of, 90–91

Recognition of archaea bacteria, 3–4
Retinal proteins, 138–140

Reverse gyrase, 102–104

Ribosomes, 89–98
archaeal, 89–90
evolution of, 95–96
L12–L10 complex in, 92–95
rRNA in, 89, 91–92

RNA polymerase, 79–88
phylogeny of, 82–84
promoter activity in, 84–86
structure of, 79–81
subunits of, 81–82
in Sulfolobus, 79–86
transcription of, 84–86
rRNA, 89, 91–92, 95

SDS-PAGE, 80, 172–173

Sedimentation coefficient, 118–120
Shuttle vectors, 76–77

SSV1 DNA, 104–105

in biohydrometallurgy, 174–178
in coal desulphurization, 174–175
chromosome topology in, 107–109
heterotrophic metabolism of, 173–174
in iron oxidation, 177–178
in mineral oxidation, 175–176
RNA polymerase of, 79–86
SSV1 DNA in, 104–105

Sulphate
metabolism, 23–25, 28–30
transport, 29

Sulphur
metabolism, 23–28
solubilization, 26–28

Tetrahydromethanopterin (H4MPT), 43–45

Thermoacidophiles, 51, 53, 69, 70, 171–180
in biohydrometallurgy, 174–178
biosynthetic pathways of, 66–67
in coal desulphurization, 174–175
heterotrophic metabolism of, 173–174
in iron oxidation, 177–178
in mineral oxidation, 175–176
polar lipids of, 60–62
SDS-PAGE of proteins from, 172–173
Tbermococcales, 62
Thermogenic covalent modification, 127–133
Thermogenic (non-enzymic) hydrolysis, 131–132
Thermophiles,
alcohol dehydrogenases in, 162–164
commercial applications of, 155–158
DNA polymerases in, 155–158
enzymes in, 149–169
esterases in, 164–166
future applications of, 158–166
ligase chain reaction in, 161–162
properties of, 150–155
thermostability of, 149–158
Thermostability, 149–158
Trimethylpsoralen (TMP), 107–108
Transformation, 75–76
Tryptophan operon, 77
Ultracentrifugation, 113–125
X-ray scattering, 114, 121, 122