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Combined treatment with lexatumumab and irradiation leads to 
strongly increased long term tumour control under normoxic and 
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Abstract
Purpose: The combination of ionizing radiation with the pro-apoptotic TRAIL receptor antibody
lexatumumab has been shown to exert considerable synergistic apoptotic effects in vitro and in
short term growth delay assays. To clarify the relevance of these effects on local tumour control
long-term experiments using a colorectal xenograft model were conducted.

Materials and methods: Colo205-xenograft bearing NMRI (nu/nu) nude mice were treated with
fractionated irradiation (5× 3 Gy, d1-5) and lexatumumab (0.75 mg/kg, d1, 4 and 8). The tumour
bearing hind limbs were irradiated with graded single top up doses at d8 under normoxic (ambient)
and acute hypoxic (clamped) conditions. Experimental animals were observed for 270 days.
Growth delay and local tumour control were end points of the study. Statistical analysis of the
experiments included evaluation of tumour regrowth and local tumour control.

Results: Combined treatment with irradiation and lexatumumab led to a pronounced tumour
regrowth-delay when compared to irradiation alone. The here presented long-term experiments
revealed a highly significant rise of local tumour control for normoxic (ambient) (p = 0. 000006)
and hypoxic treatment (p = 0. 000030).

Conclusion: Our data show that a combination of the pro-apoptotic antibody lexatumumab with
irradiation reduces tumour regrowth and leads to a highly increased local tumour control in a nude
mouse model. This substantial effect was observed under ambient and more pronounced under
hypoxic conditions.

Background
Lexatumumab is a fully human agonistic antibody with a
distinct tumour cell specifity via activation of TRAIL (TNF-

related apoptosis inducing ligand) receptor 2 (TRAIL-R2)
induced apoptosis. Although TRAIL-R2 stimulation alone
is highly effective in a wide range of cancer cell lines, effi-
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cacy can be increased by combination with other gyro-
static drugs (for review see [1]). We have already shown
that a combined treatment with TRAIL and irradiation
exerts highly synergistic effects regarding apoptosis induc-
tion. This enhanced efficacy was detectable in various
solid tumour cell lines and lymphoid tumour cells[2,3].

Since discovery of TRAIL and its receptors in 1997 a panel
of agonistic antibodies for TRAIL-receptors R1 and R2
have been developed and tested in clinical phase I and II
trials [4-18]. However, up to now only little data are avail-
able concerning interaction of agonistic TRAIL receptor
antibodies and irradiation ([7,19,20]. Besides our recently
published report no data on experiments with a combina-
tion of a fully human TRAIL receptor antibody and irradi-
ation have been published[21].

Combining mapatumumab or lexatumumab with irradi-
ation, we have demonstrated that this combination exerts
strong additive and synergistic effects on apoptosis induc-
tion in vitro and in short-term growth delay experi-
ments[10]. However, to proof that induction of apoptosis
evidently translates into definitive tumour stem cell erad-
ication long-term experiments with local tumour control
as primary endpoint might provide a reliable model for
clinical potency [22-26].

Therefore, we decided to perform long-term experiments
in a nude mouse xenograft model. As radiation sensitivity
becomes affected by limiting intratumoural hypoxia we
run experiments under both ambient and hypoxic condi-
tions to mimic realistic tumour conditions[27].

Taken together, our experimental series was designed to
confirm the striking principle that radiation mediated
TRAIL sensitization effectively increases long-term local
tumour control.

Materials and methods
Animals and tumours
Immunodeficient NMRI-(nu/nu)-nude mice were pur-
chased from a specific pathogen free colony at the Univer-
sity of Essen (Germany) at the age of 4-6 weeks. Animals
were kept in an individually ventilated cage rack system
(Techniplast, Italy) and fed with sterile high calorie labo-
ratory food (Sniff, Germany). Drank water was supple-
mented by chlorotetracycline and potassium sorbate
acidified to a pH of 3.0 with hydrochloric acid.

The Colo205 tumour cell line (established from a colorec-
tal adenocarcinoma) was acquired from ATCC (Bethesda,
MD, USA). In NMRI-(nu/nu)-nude mice Colo205 cells
form solid, roundly shaped tumours without indication
for metastasis.

Transplantation and experimental design
Tumour lumps of about 2 mm diameter from a source
tumour were implanted subcutaneously into the right
hind limb of 6-10 week old animals. Approximately 2-3
weeks after transplantation tumour growth was measura-
ble. Tumour size was quantified with calipers in two per-
pendicular diameters. The tumour volume (V) was
calculated as V = (a × b2)/2, where a and b are the long axis
and the short axis, respectively. Scoring of tumour sizes
took place three times per week before start of treatment.
Body weight was monitored once a week.

The median tumour volume at the start of experiments
was 116 ± 31 mm3. Animals were randomly allocated to
24 treatment arms (scheme see Figure 1): lexatumumab at
day 1, 4 and 8 (0.75 mg/kg body weight intraperitoneally
(i.p.)) alone, fractioned radiotherapy (5 × 3 Gy within five
subsequent days) alone. Single dose top up irradiations
(0, 10.0, 14.5, 21.0, 30.4, 44.2 Gy) were performed on day
8. Combined treatment was performed at day 1, 4 and 8
with lexatumumab (0.75 mg/kg) (figure 1). Control ani-

Experimental designFigure 1
Experimental design. Small bolt = fractionated irradiation at d 1-5, large bolt = graded top up doses 0-44.2 Gy (under ambi-
ent/hypoxic conditions, depending on stratification), small arrowhead: application of lexatumumab (0.75 mg/kg body weight), d 
= day.
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mals were treated only with an i.p. injection of medium
without antibody or irradiation.

To minimize toxic side effects and to apply high irradia-
tion doses in an easy comparable, time saving schedule we
choose a combination of fractionated and graded single
high dose (top up) irradiation. 3 Gy single dose was cho-
sen for fractionated irradiation based on previous experi-
ments (Marini et al., Oncogene 2006). Fractionated
irradiation of tumours was applied in inhalation (Isoflu-
rane) narcosis. Top up irradiation under ambient condi-
tions or under clamped hypoxia was performed with i.p.
narcosis (fentanyl, midazolam, medetomidine), as rec-
ommended by the university veterinarian department. For
animals, whose tumours were clamped irradiation was
performed 10 minutes after applying a narrow lace to the
right hind limb just at the proximal end of the tumour to
make the hypoxic radiation conditions as consistent as
possible. Experiments were performed in one run with
252 animals.

Tumour volumes were scored twice a week, no blinding
took place. Follow up was discontinued after 270 days or
in case of intercurrent death or if tumours had grown to
eight-times the initial tumour volume at the start of treat-
ment. Growth delay and local tumour control were end-
points of the study. All animal experiments were
accomplished in accordance with the guidelines of the
local authorities (Regional Board Tuebingen, Germany,
appl.no. R4/04) and the German animal welfare regula-
tions.

Statistical Analysis
Statistical analysis was performed as described before[21].
In short terms, an exponential regression model was used
to interpolate median tumour regrowth times. Regrowth
delay was compared by unparametric Kruskal-Wallis tests
with Dunn's post tests. Tumour control rates were calcu-
lated accounting for censored animals as described by
Walker and Suit[28]. Data were analysed by a probit non
linear regression analysis. Parameters were estimated
using the maximum likelihood method. Statistical signif-
icance was calculated asymptotically by means of a Hes-
sian matrix (STATISTICA 6.0 StatSoft, Hamburg,
Germany).

Results
Treatment with lexatumumab failed to induce any
immune reactions of the irradiated skin. No evidence of
acute toxicity was observed. Follow up revealed no signif-
icant differences in frequency of intercurrent deaths after
irradiation alone or combined treatment with lexatumu-
mab (5.6% vs. 4.6%).

Figure 2 shows a chronological sequence of the impressive
tumour regression after treatment with lexatumumab
(0.75 mg/kg) for one test animal, exemplarily. Obviously,
tumour growth reduction started after the second applica-
tion i.p., already. However, lacking consolidating irradia-
tion in this example tumour regrowth is evident four
weeks after start of treatment.

However, combination of very low doses of irradiation
with lexatumumab led to an unexpected high local
tumour rate, already. Tumour regrowth after combined
treatment was observed in less than 50% of the animals.
Figure 3 shows data on the 2-, 4- and 8-fold tumour
regrowth after single and combined treatment with a 10
Gy top up dose, exemplarily. In this subset of experi-
ments, five of nine mice were lacking any tumour
regrowth 270 days after start of treatment. Analysis of the
median time of tumour regrowth after combined treat-
ment was impaired by an unexpected high rate of local
control (figure 3). Therefore, we decided to choose the
more complex probit non linear regression analysis.

Figure 4 depicts the extraordinary efficacy of the com-
bined treatment by the probit analysis. Irradiation with
graded top up doses from 0 to 44.2 Gy alone resulted in
local tumour control from 0 to 52% under ambient con-
ditions (figure 4a, grey solid line). Addition of lexatumu-
mab after fractionated irradiation alone already caused
very high tumour control rates of 85-87%, regardless of
the top up dose (p = 0.000006, figure 4a, black solid line).
Under clamped bloodflow, treatment with lexatumumab
enhanced local tumour control after irradiation with frac-
tionated irradiation and graded top up doses (0 to 44.2
Gy) alone from 0% - 30% (figure 4b, grey solid line) up to
43 - 87% (p = 0.00003, figure 4b, black solid line). Statis-
tical analysis unveiled a highly significant increase of
tumour control rates under both, ambient (p < 0.0001)
and hypoxic (p < 0.0001) conditions (table 1).

Discussion
Our data prove that the combination of the proapoptotic
human antibody lexatumumab with ionizing radiation
has an obvious influence on local tumour control in a
long-term xenograft model. The effect is evident after irra-
diation with low doses, already.

It is important to note that these experiments with an ago-
nistic antibody against TRAIL receptor DR5 corroborate
our recently published data on a high efficacy of a com-
bined treatment with another proapoptotic antibody
(mapatumumab, anti-DR4) and irradiation. Both models
are in line with in vitro data from our and other labs dem-
onstrating that irradiation acts as a TRAIL sensitizer and
not obversely[3,29,30].
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Photographic showcase of the chronological sequence of tumour regression and tumour regrowth after i.p. application of lexa-tumumab (0.75 mg/kg; d 1, 4 and 8) from day 1(d1) up to day 81 (d81) of treatmentFigure 2
Photographic showcase of the chronological sequence of tumour regression and tumour regrowth after i.p. 
application of lexatumumab (0.75 mg/kg; d 1, 4 and 8) from day 1(d1) up to day 81 (d81) of treatment.
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This principle diverges from other combined approaches
where classical chemotherapeutic or other molecular tar-
geted agents act as radiosensitizer. E.g. the synergizing effi-
cacy of cisplatin is based on increased oxygenation of
hypoxic cells and an influence in DNA-repair and cell
cycle regulation [31-33]. Cetuximab, an antibody against
epidermal growth factor receptor, seems also to influence
long-term tumour control by affecting DNA damage
repair[34,35].

In contrast to former reports the mitochondrial pathway
has a strong impact in TRAIL induced apoptosis. Depend-
ing on the cell system applied mitochondrial amplifica-
tion loops account for its high efficacy[36,37]. In
combination with TRAIL, irradiation increases apoptosis
in tumour cells with an impaired mitochondrial pathway.
Furthermore, preirradiation of bcl-2 overexpressing lym-
phoma cells raises cell death rates after TRAIL receptor
stimulation[38]. In several tumour cell systems, the proa-
poptotic molecule Bax was shown to be essential for the
combined effect of TRAIL and ionizing radiation suggest-

ing a considerable mitochondrial relevance for this syner-
gizing principle[10,39,40].

The role of radiation induced TRAIL receptor upregulation
has been discussed extensively. However, we and others
found an only weak or lacking correlation between upreg-
ulation and synergism [10,41,42]. Although, other mech-
anisms like cell cycle regulation might play a role [43].

It is important to note, that this synergistic principle
works under ambient and hypoxic conditions as well.
Weinmann et al. demonstrated an undiminished efficacy
of TRAIL alone under hypoxia in a lymphoma cell
model[44]. Takahashi at al. reported similar observations
on clonogenic cell kill of A549 cells after treatment with
TRAIL and irradiation[45]. However, it remains specula-
tive why this effect on local tumour control is more pro-
nounced under normoxia than under hypoxia. The
known increase of intrinsic radioresistance of hypoxic
cells will be responsible for this reduced susceptibility.

Median tumour regrowth times, calculated for two-, four-, and eight-fold tumour size of the initial tumour volume at start of treatmentFigure 3
Median tumour regrowth times, calculated for two-, four-, and eight-fold tumour size of the initial tumour vol-
ume at start of treatment. Crossbars show 25-75% quartiles for each tumour volume and each treatment. Control; small 
circle, solid line = animals receiving only i.p. injection with medium, without any further treatment. 10 Gy, square, solid line = 
fractionated irradiation (3 × 5 Gy) + 10 Gy single top up irradiation. Lexa; triangle, solid line = lexatumumab (0.75 mg/kg body 
weight, i.p. injection d 1, 4, 8). 10 Gy + lexa; large circle, solid line = fractionated irradiation (3 × 5 Gy) + 10 Gy single top up 
irradiation and lexatumumab (0.75 mg/kg body weight, i.p. injection d 1, 4, 8). a = Treatment under ambient conditions.
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The strong request on the development of personalized
targeted therapies has amazingly changed the general
approach to cancer treatment. In contrast to cytostatic
drugs being prescribed on base of classical features as
TNM classification and histology, targeted drugs require

an accurate identification of patient collectives who bene-
fit from a given treatment. Therefore, a specific subset of
marker molecules should be identified for each targeted
drug [46-48].

Conclusion
The here presented data provide evidence that the combi-
nation of apoptosis inducing antibodies with irradiation
strongly increases long-term tumour control. Since
murine long-term control experiments are the only cur-
rently accepted functional approach to simulate the effi-
cacy of radiation based treatments the given data are an
optimal scientific base for subsequent clinical trials.
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Dose-response relation between tumour control probability and top up irradiation dose for Colo205 xenograft tumoursFigure 4
Dose-response relation between tumour control probability and top up irradiation dose for Colo205 xenograft 
tumours. Grey circle, solid grey line = tumours treated with fractionated irradiation (5 × 3 Gy) and graded single top up 
doses (0-44.2 Gy) alone. Black diamond, solid black line = tumours treated with fractionated irradiation (5 × 3 Gy) and graded 
single top up doses (0-44.2 Gy) and lexatumumab (0.75 mg/kg body weight, i.p. injection d 1, 4, 8) a: under ambient conditions, 
b: under hypoxic conditions. Dashed lines represent the 95% confidence level.
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Table 1: Results of the probit regression analysis comparing 
combined treatment (lexatumumab (= lexa, 0.75 mg/kg) and 
irradiation (= RT, 5 × 3 Gy and graded top up doses 0-44.2 Gy) 
with irradiation alone

const. B0# RT-dose (B1) lexa (B2)

normoxia

Parameter (MLE*) - 1.729 0.028 2.062
SE§ 0.386 0.012 0.343
p-value 0.0002 0.0294 <0.0001

clamped hypoxia

Parameter (MLE) - 2.424 0.035 2.097
SE 0.489 0.013 0.396
p-value <0.0001 0.0147 <0.0001

# Regression constant B0
* Maximum likelihood estimate
§ Standard error
Page 6 of 8
(page number not for citation purposes)



Radiation Oncology 2009, 4:49 http://www.ro-journal.com/content/4/1/49
Acknowledgements
We thank Human Genome Sciences, Inc. for providing lexatumumab and 
Dirk Schiller, University of Tübingen, for providing the pictures on tumour 
growth after treatment with lexatumumab. In addition, we like to thank 
Katrin Stasch and Stefan Ablasser for technical assistance. This work was 
supported by a grant from the Federal Ministry of Education and Research 
(Fö: 1456-00) to CB and VJ and by the 'Deutsche Krebshilfe' (Grants10-
1764 Be1 and 10-2220 Be4) to CB, PM and WB.

References
1. Ashkenazi A, Holland P, Eckhardt SG: Ligand-based targeting of

apoptosis in cancer: The potential of recombinant human
apoptosis ligand 2/tumor necrosis factor-related apoptosis-
inducing ligand (rhapo2l/trail).  J Clin Oncol 2008, 26:3621-3630.

2. Belka C, Schmid B, Marini P, Durand E, Rudner J, Faltin H, Bamberg
M, Schulze-Osthoff K, Budach W: Sensitization of resistant lym-
phoma cells to irradiation-induced apoptosis by the death
ligand trail.  Oncogene 2001, 20:2190-2196.

3. Marini P, Schmid A, Jendrossek V, Faltin H, Daniel PT, Budach W,
Belka C: Irradiation specifically sensitises solid tumour cell
lines to trail mediated apoptosis.  BMC Cancer 2005, 5:5.

4. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM:
The receptor for the cytotoxic ligand trail.  Science 1997,
276:111-113.

5. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin
W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG,
Rauch CT, Schuh JC, Lynch DH: Tumoricidal activity of tumor
necrosis factor-related apoptosis-inducing ligand in vivo.  Nat
Med 1999, 5:157-163.

6. Camidge DR: An agonist monoclonal antibody directed
against death receptor 5/trail-receptor 2 for use in the treat-
ment of solid tumors.  Expert Opin Biol Ther 2008, 8:1167-1176.

7. Fiveash JB, Gillespie GY, Oliver PG, Zhou T, Belenky ML, Buchsbaum
DJ: Enhancement of glioma radiotherapy and chemotherapy
response with targeted antibody therapy against death
receptor 5.  Int J Radiat Oncol Biol Phys 2008, 71:507-516.

8. Humphreys R, et al.: HGS-TR2J, a human, agonistic, trail recep-
tor-2 monoclonal antibody, induces apoptosis, tumor regres-
sion and growth inhibition as a single agent in diverse human
solid tumor cell lines.  Abstract #204.: 16th EORTC-NCI-AACR Sym-
posium on Molecular Targets and Cancer Therapeutics. Genevre, Swiss
2004.

9. Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, Ohtsuka T, Zhang H,
Mountz JD, Koopman WJ, Kimberly RP, Zhou T: Tumoricidal
activity of a novel anti-human dr5 monoclonal antibody with-
out hepatocyte cytotoxicity.  Nat Med 2001, 7:954-960.

10. Marini P, Denzinger S, Schiller D, Kauder S, Welz S, Humphreys R,
Daniel PT, Jendrossek V, Budach W, Belka C: Combined treat-
ment of colorectal tumours with agonistic trail receptor
antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy:
Enhanced effects in vitro and dose-dependent growth delay
in vivo.  Oncogene 2006, 25:5145-5154.

11. Mom CH, Sleijfer S, Gietema JA, Fox NL, Piganeau C, Lo L, Uges DRA,
Loos W, de Vries EGE, Verweij J: Mapatumumab, a fully human
agonistic monoclonal antibody that targets TRAIL-R1, in
combination with gemcitabine and cisplatin: A phase 1b
study in patients with advanced solid malignancies.  EORTC-
NCI-AACR Prague, Czech Republic; 2006. 

12. Motoki K, Mori E, Matsumoto A, Thomas M, Tomura T, Humphreys
R, Albert V, Muto M, Yoshida H, Aoki M, Tamada T, Kuroki R, Yosh-
ida H, Ishida I, Ware CF, Kataoka S: Enhanced apoptosis and
tumor regression induced by a direct agonist antibody to
tumor necrosis factor-related apoptosis-inducing ligand
receptor 2.  Clin Cancer Res 2005, 11:3126-3135.

13. Pacey S, Plummer RE, Attard G, Bale C, Calvert AH, Blagden S, Fox
NL, Corey A, de Bono JS: Phase I and pharmacokinetic study of
HGS-ETR2, a human monoclonal antibody to TRAIL R2, in
patients with advanced solid malignancies.  J Clin Oncol 2005,
23:3055. abstr

14. Saleh MN, Percent I, Wood TE, Posej J, Shah J, Carlisle R, Wojtowicz-
Praga S, Forero-Torres A: A phase I study of CS-1008 (human-
ized monoclonal antibody targeting death receptor 5 or
DR5), administered weekly to patients with advanced solid

tumors or lymphomas.ASCO Annual meeting. Orlando,
Florida, USA, .   J Clin Oncol 2008. May 20 suppl; abstr 3537

15. Sikic BI, Wakelee H, von Mehren M, Lewis NL, Plummer ER, Calvert
AH, Fox NL, Kumm EA, Jones DF, Burris HA: A phase 1b study to
assess the safety of lexatumumab, a human monoclonal anti-
body that activates TRAIL-R2, in combination with gemcit-
abine, pemetrexed, doxorubicin or FOLFIRI. Abstract, 2007.
Proceedings of the American Society of Clinical Oncology 25:14006.

16. Tolcher AW, Mita M, Meropol NJ, von Mehren M, Patnaik A, Padavic
K, Hill M, Mays T, McCoy T, Fox NL, Halpern W, Corey A, Cohen
RB: Phase I pharmacokinetic and biologic correlative study of
mapatumumab, a fully human monoclonal antibody with
agonist activity to tumor necrosis factor-related apoptosis-
inducing ligand receptor-1.  J Clin Oncol 2007, 25:1390-1395.

17. Vulfovich M, Saba N: Mapatumumab, human genome sciences/
glaxosmithkline/takeda.  Curr Opin Mol Ther 2005, 7:502-510.

18. Younes A, Vose JM, Zelenetz AD, Smith MR, Burris H, Ansell S, Klein
J, Kumm E, Czuczman M: Results of a phase 2 trial of HGS-ETR1
(agonistic human monoclonal antibody to TRAIL receptor
1) in subjects with relapsed/refractory non-hodgkin's lym-
phoma (NHL).  Blood 2005, 106:489. abstr

19. Straughn JM Jr, Oliver PG, Zhou T, Wang W, Alvarez RD, Grizzle
WE, Buchsbaum DJ: Anti-tumor activity of tra-8 anti-death
receptor 5 (DR5) monoclonal antibody in combination with
chemotherapy and radiation therapy in a cervical cancer
model.  Gynecol Oncol 2006, 101:46-54.

20. Buchsbaum DJ, Zhou T, Grizzle WE, Oliver PG, Hammond CJ, Zhang
S, Carpenter M, LoBuglio AF: Antitumor efficacy of tra-8 anti-
DR5 monoclonal antibody alone or in combination with
chemotherapy and/or radiation therapy in a human breast
cancer model.  Clin Cancer Res 2003, 9:3731-3741.

21. Marini P, Budach W, Niyazi M, Junginger D, Stickl S, Jendrossek V,
Belka C: Combination of the pro-apoptotic trail-receptor
antibody mapatumumab with ionizing radiation strongly
increases long term tumor control under ambient and
hypoxic conditions.  Int J Radiat Oncol Biol Phys 2009, 75:198-202.

22. Baumann M, Krause M, Zips D, Eicheler W, Dorfler A, Ahrens J,
Petersen C, Bruchner K, Hilberg F: Selective inhibition of the epi-
dermal growth factor receptor tyrosine kinase by
BIBX1382BS and the improvement of growth delay, but not
local control, after fractionated irradiation in human fadu
squamous cell carcinoma in the nude mouse.  Int J Radiat Biol
2003, 79:547-559.

23. Borst P, Borst J, Smets LA: Does resistance to apoptosis affect
clinical response to antitumor drugs?  Drug Resist Updat 2001,
4:129-131.

24. Brown JM, Wouters BG: Apoptosis, p53, and tumor cell sensi-
tivity to anticancer agents.  Cancer Res 1999, 59:1391-1399.

25. Krause M, Prager J, Zhou X, Yaromina A, Dorfler A, Eicheler W, Bau-
mann M: EGFR-TK inhibition before radiotherapy reduces
tumour volume but does not improve local control: Differ-
ential response of cancer stem cells and nontumourigenic
cells?  Radiother Oncol 2007, 83:316-325.

26. Schmitt CA, Lowe SW: Apoptosis is critical for drug response
in vivo.  Drug Resist Updat 2001, 4:132-134.

27. Harris AL: Hypoxia-a key regulatory factor in tumour growth.
Nat Rev Cancer 2002, 2:38-47.

28. Walker AM, Suit HD: Assessment of local tumor control using
censored tumor response data.  Int J Radiat Oncol Biol Phys 1983,
9:383-386.

29. Shankar S, Singh TR, Chen X, Thakkar H, Firnin J, Srivastava RK: The
sequential treatment with ionizing radiation followed by
trail/apo-2l reduces tumor growth and induces apoptosis of
breast tumor xenografts in nude mice.  Int J Oncol 2004,
24:1133-1140.

30. Shankar S, Singh TR, Srivastava RK: Ionizing radiation enhances
the therapeutic potential of trail in prostate cancer in vitro
and in vivo: Intracellular mechanisms.  Prostate 2004, 61:35-49.

31. Douple EB, Richmond RC: Radiosensitization of hypoxic tumor
cells by cis- and trans-dichlorodiammineplatinum (II).  Int J
Radiat Oncol Biol Phys 1979, 5:1369-1372.

32. Hoebers FJ, Pluim D, Verheij M, Balm AJ, Bartelink H, Schellens JH,
Begg AC: Prediction of treatment outcome by cisplatin-DNA
adduct formation in patients with stage III/IV head and neck
squamous cell carcinoma, treated by concurrent cisplatin-
radiation (radplat).  Int J Cancer 2006, 119:750-756.
Page 7 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18640940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18640940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18640940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15651986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15651986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9082980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9082980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9930862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9930862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18613768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18613768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18613768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18474311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18474311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18474311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11479629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11479629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11479629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16636678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16636678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16636678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15837769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15837769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15837769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17416859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17416859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17416859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16248286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16248286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16271751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16271751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16271751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14506165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14506165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14506165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19695436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19695436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19695436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11512521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11512521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10197600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10197600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17531334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17531334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17531334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11512522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11512522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11902584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6841191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6841191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15067334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15067334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15067334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=575122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=575122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16550603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16550603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16550603


Radiation Oncology 2009, 4:49 http://www.ro-journal.com/content/4/1/49
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

33. Chu G: Cellular responses to cisplatin. The roles of DNA-
binding proteins and DNA repair.  J Biol Chem 1994,
269:787-790.

34. Dittmann K, Mayer C, Rodemann HP: Inhibition of radiation-
induced egfr nuclear import by c225 (cetuximab) suppresses
DNA-PK activity.  Radiother Oncol 2005, 76:157-161.

35. Huang SM, Harari PM: Modulation of radiation response after
epidermal growth factor receptor blockade in squamous cell
carcinomas: Inhibition of damage repair, cell cycle kinetics,
and tumor angiogenesis.  Clin Cancer Res 2000, 6:2166-2174.

36. Suliman A, Lam A, Datta R, Srivastava RK: Intracellular mecha-
nisms of trail: Apoptosis through mitochondrial-dependent
and -independent pathways.  Oncogene 2001, 20:2122-2133.

37. Cuello M, Coats AO, Darko I, Ettenberg SA, Gardner GJ, Nau MM,
Liu JR, Birrer MJ, Lipkowitz S: N-(4-hydroxyphenyl) retinamide
(4HPR) enhances trail-mediated apoptosis through
enhancement of a mitochondrial-dependent amplification
loop in ovarian cancer cell lines.  Cell Death Differ 2004,
11:527-541.

38. Belka C, Schmid B, Marini P, Durand E, Rudner J, Faltin H, Bamberg
M, Schulze-Osthoff K, Budach W: Sensitization of resistant lym-
phoma cells to irradiation-induced apoptosis by the death
ligand TRAIL.  Oncogene 2001, 20:2190-2196.

39. von Haefen C, Gillissen B, Hemmati PG, Wendt J, Guner D, Mrozek
A, Belka C, Dorken B, Daniel PT: Multidomain Bcl-2 homolog
bax but not Bak mediates synergistic induction of apoptosis
by TRAIL and 5-FU through the mitochondrial apoptosis
pathway.  Oncogene 2004, 23:8320-8332.

40. Deng Y, Lin Y, Wu X: TRAIL-induced apoptosis requires Bax-
dependent mitochondrial release of smac/diablo.  Genes Dev
2002, 16:33-45.

41. Griffith TS, Rauch CT, Smolak PJ, Waugh JY, Boiani N, Lynch DH,
Smith CA, Goodwin RG, Kubin MZ: Functional analysis of TRAIL
receptors using monoclonal antibodies.  J Immunol 1999,
162:2597-2605.

42. Luciano F, Ricci JE, Herrant M, Bertolotto C, Mari B, Cousin JL,
Auberger P: T and B leukemic cell lines exhibit different
requirements for cell death: Correlation between caspase
activation, dff40/dff45 expression, DNA fragmentation and
apoptosis in T cell lines but not in Burkitt's lymphoma.  Leuke-
mia 2002, 16:700-707.

43. Wu F, Hu Y, Long J, Zhou YJ, Zhong YH, Liao ZK, Liu SQ, Zhou FX,
Zhou YF, Xie CH: Cytotoxicity and radiosensitization effect of
TRA-8 on radioresistant human larynx squamous carcinoma
cells.  Oncol Rep 2009, 21:461-465.

44. Weinmann M, Marini P, Jendrossek V, Betsch A, Goecke B, Budach
W, Belka C: Influence of hypoxia on TRAIL-induced apoptosis
in tumor cells.  Int J Radiat Oncol Biol Phys 2004, 58:386-396.

45. Takahashi M, Inanami O, Kubota N, Tsujitani M, Yasui H, Ogura A,
Kuwabara M: Enhancement of cell death by TNF alpha-related
apoptosis-inducing ligand (TRAIL) in human lung carcinoma
a549 cells exposed to x rays under hypoxia.  J Radiat Res (Tokyo)
2007, 48:461-468.

46. Sturm I, Rau B, Schlag PM, Wust P, Hildebrandt B, Riess H, Haupt-
mann S, Dorken B, Daniel PT: Genetic dissection of apoptosis
and cell cycle control in response of colorectal cancer
treated with preoperative radiochemotherapy.  BMC Cancer
2006, 6:124.

47. Mrozek A, Petrowsky H, Sturm I, Kraus J, Hermann S, Hauptmann S,
Lorenz M, Dorken B, Daniel PT: Combined p53/Bax mutation
results in extremely poor prognosis in gastric carcinoma
with low microsatellite instability.  Cell Death Differ 2003,
10:461-467.

48. Kallioniemi A: CGH microarrays and cancer.  CurrOpin Biotechnol
2008, 19:36-40.
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8288625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8288625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10873065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10873065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10873065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14765134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14765134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14765134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11360204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15467752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15467752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15467752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11782443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11782443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10072501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10072501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11960352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11960352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11960352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19148523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19148523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19148523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16686938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16686938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16686938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12719723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12719723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12719723
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Purpose
	Materials and methods
	Results
	Conclusion

	Background
	Materials and methods
	Animals and tumours
	Transplantation and experimental design
	Statistical Analysis

	Results
	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

