Research in Photosynthesis

Volume I

Proceedings of the IXth International Congress on Photosynthesis, Nagoya, Japan, August 30–September 4, 1992

edited by

NORIO MURATA

National Institute for Basic Biology, Okazaki, Japan

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

GENERAL CONTENTS

Volume I

1.	Antenna Systems in Photosynthetic Procaryotes	1
2.	Antenna Systems in Algae and Higher Plants	169
3.	Bacterial Reaction Center	339
4.	Photosystem I	485
Vol	lume II	
5.	Photosystem II	1
6.	Oxygen Evolution	255
7.	Electron Transport System	445
8.	Energy Transduction	643
9.	Chemical Models and Artificial Photosynthesis	785
Vol	lume III	
10.	Synthesis and Function of Pigments and Lipids	1
11.	Protein Import and Processing	131
12.	Expression of Plastidic Genes	217
13.	Genetic Approaches in Photosynthesis Research	347
14.	Evolution of Photosynthesis	473
15.	Design and Action of Herbicides	535
16.	Rubisco	583
17.	Metabolic Interaction between Chloroplasts and Cytosol	657
18.	Specialization in Carbon Assimilation	745
Vo	lume IV	
19.	Nitrogen and Sulfur Metabolism	1
20.	Temperature Stress	111
21.	Water and Salt Stresses	193
22.	Light Acclimation	299
23.	Photoinhibition	393
24.	Photosynthesis in Intact Leaf	585
25.	Photosynthesis Control by Sink	727
26.	Photosynthesis and Global Climate Change	793

CONTENTS TO VOLUME I

General Contents	v
Contents Volume I	vii
Preface	xvii
Japanese Organizing Committee	xix
International Photosynthesis Committee	xix
Number of Participants	xxi
Acknowledgements	xxiii
Opening Speeches	xxvii
Obituaries	xxxiii

1. ANTENNA SYSTEMS IN PHOTOSYNTHETIC PROCARYOTES

The structure of bacterial antenna complexes. R.J. Cogdell, A.A. Freer, G. McDermott, N. Guthrie, M. Thunnissen, N. Isaacs, J.G. Lindsay, E. Halloren, M.Z. Papiz	3
The bacterial photosynthetic light-harvesting antenna: Aggregation state, spectroscopy and excitation energy transfer.R. van Grondelle, F. van Mourik, R.W. Visschers, O.J.G. Somsen, L. Valkunas	9
Excitation energy transfer processes in green photosynthetic bacteria: Analysis in a three- dimensionally oriented system in the picosecond time range.M. Mimuro, M. Hirota, K. Shimada, Y. Nishimura, I. Yamazaki, K. Matsuura	17
Energy transfer processes in phycobilisomes as deduced from analyses of mutants of <i>Synechococcus</i> sp. PCC7002.J. Zhao, J. Zhou, D.A. Bryant	25
Characterization of the core light-harvesting complex B875 of <i>Rhodocyclus gelatinosus</i> and of its B820 derivative.V. Jirsakova, I. Agalidis, F. Reiss-Husson	33
Fluorescence site selection spectroscopy of the B820 subunit from the core antenna from <i>Rhodospirllum rubrum G9</i>.R.W. Visschers, F. van Mourik, R. Monshouwer, R. van Grondelle	37
Cloning and sequencing of the genes encoding the polypeptides of the B806-866 light- harvesting complex of <i>Chloroflexus aurantiacus</i> . Y. Watanabe, R.G. Feick, J.A. Shiozawa	41
Protein structure of the light-harvesting pigment-protein complexes isolated from <i>Rhodobacter sulfidophilus</i> . M. Doi, W. Mäntele	45
Biochemical and structural characterization of the photosynthetic apparatus of a purple- sulfur bacterium: <i>Chromatium purpuratum</i>.C. Kerfeld, P. Thornber, T. Yeates	49
Cloning and sequencing of the FMO-protein gene from <i>Chlorobium tepidum</i> . S. Dracheva, J.C. Williams, R.E. Blankenship	53
The three-dimensional structure of the light harvesting pigment protein phycoerythrin from red algae. R. Ficner, R. Huber	57
	57

i

VIII

Studies on the fluorescence emission spectra and energy transfer of phycobilisomes from <i>Spirulina platensis</i> in the course of dissociation. RZ. Lu, B. Liu	61
The light-regulated biogenesis of subunit V (PsaG) of the photosystem I reaction center. O. Lotan, R. Nechushtai	65
Genes encoding chlorosome components in the green sulfur bacteria Chlorobium vibrioforme 8327D and Chlorobium tepidum. S. Chung, D.A. Bryant	69
The phycocyanin operon of the thermophilic cyanobacterium Synechococcus elongatus. M. Hirano, M. Soga, T. Shimazu, S. Katoh	73
 The genes for the peripheral antenna complex apoproteins from <i>Rhodopseudomonas</i> acidophila 7050 form a multigene family. A.T. Gardiner, R.C. M^{ac}Kenzie, S.J. Barrett, K. Kaiser, R.J. Cogdell 	77
 Composition and organization of chlorosome-like bacteriochlorophyll c-lipid aggregates in aqueous solution. M. Hirota, K. Tsuji, K. Shimada, K. Matsuura 	81
Structure and interconversion of bacteriochlorophyll c aggregates in solid films. K. Uehara, T. Tachibana, M. Tsunooka, Y. Ozaki	85
Chlorosome formation in <i>Chloroflexus aurantiacus</i> . J. Oelze, M. Foidl, J.R. Golecki	89
 Oligomerization-state dependent spectroscopic properties of the B850 light-harvesting complex of <i>Rhodobacter sphaeroides</i> R-26.1. W.H.J. Westerhuis, Z. Xiao, R.A. Niederman 	93
CP/MAS ¹³ C NMR studies on antenna structures in green bacteria. T. Nozawa, K. Ohtomo, M. Suzuki, Y. Morishita, H. Konami	97
 Self assembly of the LH-1 antenna of <i>Rhodospirillum rubrum</i>, a time-resolved study of the aggregation of the B820 subunit form. F. van Mourik, E.P.M. Corten, I.H.M. van Stokkum, R.W. Visschers, P.A. Loach, R. Kraayenhof, R. van Grondelle 	101
Energy transfer in <i>Heliobacterium chlorum</i> at room temperature and at 15 K. P.I. van Noort, T.J. Aartsma, J. Amesz	105
Ultrafast processes in bacterial antennas studied by nonlinear polarization spectroscopy (frequency domain). D. Leupold, B. Voigt, J. Ehlert, H. Schroth, M. Bandilla, H. Scheer	109
Pigment orientation and energy transfer kinetics in chlorosomes of green photosynthetic bacteria.K. Matsuura, M. Hirota, T. Moriyama, K. Shimada, Y. Nishimura, I. Yamazaki, M.	
Mimuro	113
Energy-collecting antennae complexes in purple bacteria. A. Borisov, H. Zuber	117
Low temperature studies on green photosynthetic bacterial chlorosomes. P. Cheng, R.E. Blankenship	121
Molecular features that control the efficiency of carotenoid-to- chlorophyll energy transfer in photosynthesis. H.A. Frank, R. Farhoosh, B. Decoster, R.L. Christensen	125

Triplet energy transfer from bacteriochlorophyll to carotenoids in photosynthetic bacteria. A. Angerhofer, V. Aust, U. Hofbauer, H.C. Wolf	129
Energy transport in spectrally inhomogeneous pigment complexes from photosynthetic bacteria.O. Somsen, L. Valkunas, F. van Mourik, R. van Grondelle	133
Excitation energy flow in Roseobacter denitrificans (Erythrobacter sp. OCh 114) at low temperature.	
K. Shimada, M. Hirota, Y. Nishimura, I. Yamazaki, M. Mimuro Excitation energy transfer from phycobilisomes to photosystem I and photosystem II in a cyanobacterium.	137
C.W. Mullineaux	141
Orientation of light adapted cyanobacteria in skew stretched polymer films. D. Frackowiak, B. Zelent, A. Skibiński, R.M. Leblanc	145
Pigment composition of light-harvesting pigment-protein complexes from <i>Rhodopseudomonas acidophila</i> : Effect of light intensity. S. Takaichi, A.T. Gardiner, R.J. Cogdell	149
Assembly of pigment-protein complexes in mutant strains of <i>Rhodobacter capsulatus</i> . G. Drews, M. Brand, P. Richter	153
RcaC, a novel bacterial regulator protein involved in complementary chromatic adapta- tion.	
M.R. Schaefer, G.G. Chiang, A.R. Grossman	157
Fluorescence yield and singlet-singlet annihilation measurements in <i>Rhodopseudomonas</i> viridis.	
G. Deinum, T.J. Aartsma, J. Amesz	161
The characteristic of the chlorophyll-protein complexes from thylakoid membranes of blue algae Spirulina platensis.	
RY. Ma	165

IX

2. ANTENNA SYSTEMS IN ALGAE AND HIGHER PLANTS

Macrodomain organization of complexes in the thylakoid membranes. Structural and regulatory roles. Conclusions from macroscopic and microscopic circular dichroism of chloroplast thylakoid membranes and aggregates of LHCII.	
G. Garab	171
Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: Light harvesting and non- photochemical fluorescence quenching.	150
T.G. Owens, A.P. Shreve, A.C. Albrecht	179
Exciton dynamics in antennae and reaction centers of photosystems I and II. A.R. Holzwarth	187
Evolution of structure and function in the Chl <i>a/b</i> and Chl <i>a/c</i> antenna protein family. B.R. Green, D. Durnford, R. Aebersold, E. Pichersky	195
Pigment-protein complexes of <i>Nannochloropsis</i> sp. (Eustigmatophyceae): An alga lacking chlorophylls b and c.	
A. Livne, D. Katcoff, Y.Z. Yacobi, A. Sukenik	203

х	
43	

Analysis of photosystem I and photosystem II enriched fractions from <i>Prochlorothrix</i> <i>hollandica</i> by non-denaturing (green) gel electrophoresis. G.W.M. van der Staay, H.C.P. Matthijs, L.R. Mur	207
Characterization of the light-harvesting antenna of the Raphidophyte alga, <i>Olisthodiscus</i> <i>luteus</i> (<i>Heterosigma</i>). D.G. Durnford, B.R. Green	211
A pheophytin triplet detected in the D1-D2-cyt b-559 complex of spinach. R. van der Vos, A.J. Hoff	215
Chlorophyll forms and excitation energy transfer pathway in light-harvesting chlorophyll <i>a/b</i> protein complexes from the siphonous green alga, <i>Bryopsis maxima</i> . K. Nakayama, M. Mimuro, Y. Nishimura, M. Okada	219
Ultrastructure and pigment composition of chloroplasts in photoautotrophically cultured tobacco cells.S. Takeda, K. Ida, F. Sato, Y. Yamada, Y. Kaneko, H. Matsushima	223
 S₁ state of fucoxanthin involved in energy transfer to chlorophyll <i>a</i> in the light-harvesting proteins of brown algae. T. Katoh, M. Mimuro 	227
The role of the chlorophyll <i>a/b</i> binding complex CP29 in thylakoid membranes. C.E. Bratt, HE Åkerlund	227
Copper present in photosystem II is associated with CP26. PO. Arvidsson, C.E. Bratt, LE. Andréasson, HE. Åkerlund	235
Characterization of a histidine to glutamine substitution at residue 469 in CP47 of photosystem II. J.J. Eaton-Rye, W.F.J. Vermaas	239
Molecular structural effects of protein phosphorylation in regulation of photosynthesis. J.F. Allen	243
Some fluorescence emission characters of PSII's antenna and reaction center complex. DC. Peng, TY. Kuang, CQ. Tang, ZB. Yu, Q. Zhao, PS. Tang	247
Comparative studies on Mg ²⁺ -induced excitation energy distribution change between two photosystems in the chloroplasts from barley and <i>Codium fragile</i> . LB. Li, ZP. Gao, H. Ma, HR. Zhao, XJ. Zhai, GZ. Ma	251
Zeaxanthin-dependent quenching of the variable fluorescence arising from ATP-induced reverse electron flow. A.M. Gilmore, H.Y. Yamamoto	255
Identification of the long-most antenna in green plants by the time-resolved fluorescence spectrum at -196°C.	
M. Mimuro Spectroscopic comparison of D1-D2-cytochrome <i>b</i> -559 and CP47 complexes of photosys- tem II.	259
S.L.S. Kwa, P.J.M. van Kan, M.L. Groot, R. van Grondelle, C.F. Yocum, J.P. Dekker Resolution of the fluorescence emission spectra for the various lifetime components of	263
D1/D2/cyt b-559 complex. TY. Kuang, ZB. Yu, CQ. Tang, DC. Peng, Q. Zhao, CY. Li, PS. Tang	267
Chlorophyll triplet states in the CP47 core antenna protein of photosystem II. P.J.M. van Kan, M.L. Groot, I.H.M van Stokkum, S.L.S. Kwa, R. van Grondelle, J.P. Dekker	271
	211

Influence of Ca ²⁺ on the Chl-protein complexes and the fluidity of chloroplast membrane. Z.X. Chu, M.H. Mu, C.P. Song, F. Huang	275
Influence of ∆pH and of membrane localized protons on PS II efficiency. G. Forti, G. Finazzi, A.M. Ehrenheim	279
Localization of 64 kDa LHCII-kinase in the thylakoid membrane from spinach. SG. Yu, H. Stefansson, PÅ. Albertsson	283
Identification of violaxanthin and zeaxanthin binding proteins in maize photosystem II. P. Dainese, J. Marquardt, B. Pineau, R. Bassi	287
Equilibrium distribution of excited states in photosystem II antenna. R.C. Jennings, R. Bassi, G. Zucchelli, P. Dainese, F.M. Garlaschi	291
5-Aminolevulinic acid feeding stimulates the accumulation of LHCII in cucumber cotyledons.Y. Tanaka, A. Tanaka, H. Tsuji	295
Calcium-induced accumulation of light-harvesting chlorophyll <i>a/b</i> -protein complex. A. Tanaka, Y. Tanaka, H. Tsuji	299
Photosynthetic organ-specific expression of <i>Arabidopsis</i> cab promoters in transformed tobacco plants.S. Hong, Y. Ko, HK. Choi, T.H. Rhew, CH. Lee	303
 A proteolytic activity associated with loss of LHC II during acclimation of spinach leaves from low to high light. M. Lindahl, B. Andersson 	307
ΔpH-Dependent control of chloroplast light harvesting by binding of DCCD to LHCII. P. Horton, A.V. Ruban, R.G. Walters	311
In the red alga <i>Porphyridium cruentum</i> photosystem I is associated with a putative LHC I complex.	
G.R. Wolfe, F.X. Cunningham, Jr., E. Gantt	315
Expression of genes coding for light-harvesting complex proteins of photosystem II during chloroplast development. D.T. Morishige, J.P. Thornber	319
Correlation of the apoproteins of LHC I to their respective <i>Lhc</i> (<i>cab</i>) genes in barley. B.A. Welty, J.P. Thornber	323
On the co-ordination of chlorophyll and polypeptide synthesis in leaves. J.B. Marder, V.I. Raskin	327
Pigment distribution in photosystem II. Y. Lemoine, G. Zabulon, S.S. Brody	331
Spectral hole burning study of photosystem II and of bacterial chlorosomes. M. Vácha, J. Psencík, F. Adamec, M. Ambroz, J. Dian, J. Bocek, J. Komenda, J. Hála	335

3. BACTERIAL REACTION CENTER

Structure-function relationships in the photosynthetic reaction centre from the purple bacteria as revealed by X-ray crystallography: Analysis of a new, trigonal crystal form of the photosynthetic reaction centre from *Rhodobacter sphaeroides* at 2.65 Å resolution.

U. Ermler, G. Fritzsch, S. Buchanan, H. Michel

341

XI

XII

Proton transfer in bacterial reaction centers: Second site mutations Asn M44 Æ Asp or Arg M223 Æ Cys restore photosynthetic competence to Asp L213 Æ Asn mutants in RCs from <i>Rb. sphaeroides</i> .	
M.Y. Okamura, M.L. Paddock, P.H. McPherson, S. Rongey, G. Feher	349
Dynamics of excited state of primary electron donor P in bacterial reaction centers. V.A. Shuvalov	357
Gene structure of the reaction center of <i>Rhodocyclus gelatinosus</i> . K.V.P. Nagashima, K. Matsuura, K. Shimada	365
Analysis of spontaneous herbicide resistant revertants derived from <i>Rhodobacter cap-</i> sulatus in which serine L223 of the reaction center is replaced with alanine. E.J. Bylina, R. Wong	369
Site-specific mutagenesis of the photosynthetic reaction center in <i>Rhodopseudomonas</i> viridis. E. Laußermair, D. Oesterhelt	373
Changes in the oxidation potential of the bacteriochlorophyll dimer due to hydrogen bonds in reaction centers form <i>Rhodobacter sphaeroides</i>.J.C. Williams, R.G. Alden, V.H. Coryell, X. Lin, H.A. Murchison, J.M. Peloquin, N.W. Woodbury, J.P. Allen	377
Mutational investigations of the carboxyl terminus of the M subunit of bacterial reaction centers. S. Wang, J.C. Williams, J.P. Allen	381
Isolation and characterization of the photoactive reaction center complex from the green sulfur bacterium <i>Chlorobium limicola</i>.H. Oh-oka, S. Kakutani, S. Itoh, H. Matsubara, R. Malkin	385
Preparation of reaction center particles containing photoreducible and dithionite- reducible Fe-S centers from a green sulfur bacterium, <i>Chlorobium tepidum</i> . N. Kusumoto, K. Inoue, H. Nasu, H. Takano, H. Sakurai	389
Pigment composition of heliobacteria and green sulfur bacteria. M. Kobayashi, E.J. van de Meent, H. Oh-oka, K. Inoue, S. Itoh, J. Amesz, T. Watanabe	393
Linear dichroism spectra of crystals from bacterial reaction centers at various redox potentials and under the influence of light. G. Fritzsch, H. Michel, E. Laußermair, D. Oesterhelt	397
Circular dichroism of the 1160-nm band of P840 ⁺ in the reaction center of <i>Chlorobium</i> tepidum.	401
J.M. Olson, M. Miller, J.G. Trunk, K. Polewski, D. Monteleone Low temperature Fourier transform resonance Raman spectroscopy of the primary donor in <i>Rb. sphaeroides</i> .	401
T.A. Mattioli, D. Sockalingum, M. Lutz, B. Robert Observation of only one population of BChl <i>c</i> -type pigments in the <i>Chlorobium</i> reaction	405
centre. U. Feiler, M. Lutz, B. Robert	409
Spectroscopic characterization of reaction centers of the M ^{TYR210/ETRP} mutant of <i>Rhodobacter sphaeroides</i> .	
S. Shochat, P.I. Van Noort, R. Van der Vos, S.C.M. Otte, H. Schelvis, J. Vrieze, F.A.M. Kleinherenbrink, P. Gast, A.J. Hoff	413

Energy transfer and photochemistry in <i>Heliobacillus mobilis</i> . S. Lin, HC. Chiou, R.E. Blankenship	417
Excited state properties of a modified pigment of bacterial photosynthesis. H. Stiel, K. Teuchner, D. Leupold, H. Scheer	421
Theoretical study of temperature dependence of electron transfer in reaction centers. T. Kakitani, A. Okada	425
 Primary electron transfer kinetics in bacterial reaction centers with modified bacteriochlorophylls at the monomeric sites B_{A,B}. C. Lauterwasser, U. Finkele, A. Struck, H. Scheer, W. Zinth 	429
 ¹⁵N- and ¹H-ENDOR/triple resonance of the primary donor cation radical D⁺ in isotopically labeled reaction centers of <i>Rhodobacter sphaeroides</i>. F. Lendzian, C. Geßner, B. Bönigk, M. Plato, K. Möbius, W. Lubitz 	433
Proton transfer mutants of <i>Rb. sphaeroides</i>: Characterization of reaction centers by infrared spectroscopy.R. Hienerwadel, E. Nabedryk, M.L. Paddock, S. Rongey, M.Y. Okamura, W. Mäntele,	105
J. Breton Conversion of light energy into electrical one using reaction centers from photosynthetic bacteria.	437 441
A. Solov'ev, E. Katz, A. Shkuropatov, V. Shuvalov, Yu. Erokhin Photo-electric responses of chromatophores from <i>Rhodopseudomonas viridis</i> With a photocell made of two SnO ₂ electrode plates-	441
J. Miyake, T. Tarnura, M. Hara, Y. Hirata, Y. Asada, A. Sato Langmuir-Blodgett films of reaction centers from <i>Rhodopseudomonas viridis</i> .	445
Y. Hirata, K. Nukanobu, M. Hara, Y. Asada, M. Fujihira, J. Miyake	449
Secondary electron transport in heliobacteria. F.A.M. Kleinherenbrink, J. Amesz	453
Electron spin polarized ESE-spectra in reaction centers of the photosynthetic bacterium <i>Rb. sphaeroides</i> ; separation of P ⁺ and Q ⁻ spectra. M.K. Bosch, M. de Keyzer, P. Gast, A.J. Hoff	457
Transient EPR of photosynthetic reaction centers: Structural information on the radical pair P ⁺ Q ⁻ in Zn-substituted <i>Rb. sphaeroides</i> and photosystem I. R. Bittl, A. van der Est, G. Füchsle, W. Lubitz, D. Stehlik	461
The cytochrome of the photosynthetic reaction center complex from <i>Chlorobium vibrioforme</i> .	
B. Kjær, J.S. Okkels, B.L. Møller, H.V. Scheller Effect of tetraheme cytochrome redox state on the P ⁺ reduction kinetics in	465
<i>Rhodopseudomonas viridis</i> reaction centers at room temperature. J.M. Ortega, P. Mathis	469
Effect of cell age on photosystem I mRNA and polypeptide levels in light and dark grown barley seedlings. J.S. Okkels, H.V. Scheller, B.L. Møller	473
Hydrogenase-mediated hydrogen metabolism in some cyanobacteria. Y. Asada, M. Miyake, N. Tomizuka	477
Coherent and dissipative electron transfer dynamics of the primary charge separation in bacterial photosynthesis.	
Yu.I. Kharkats, A. Kuznetsov, J. Ulstrup	481

4. PHOTOSYSTEM I

Spectroscopic characterization of wild-type and genetically modified photosystem I. J.H. Golbeck	487
Chromosome location of photosystem I genes and the presence of the 4-kDa polypeptide CF_0 subunit III as a detergent introduced artefact in photosystem I preparations of barley.	
V.S. Nielsen, B. Andersen, P. Scott, S. Kjærulff, B. Kjær, J.S. Okkels, H.V. Scheller, B.L. Møller	497
 An insight into the assembly and organization of Photosystem I in the thylakoid membranes. Y. Cohen, C. Keasar, O. Lotan, T. Gilon, A. Menachem, D. Michaeli, R. Nechushtai 	505
A transcription unit for the photosystem 1-like P840-reaction center of the green S- bacterium <i>Chlorobium limicola</i> . DL. Xie, M. Büttner, H. Nelson, P. Chitnis, W. Pinther, G. Hauska, N. Nelson	513
Three-dimensional crystals of photosystem I from <i>Synechococcus sp.</i> and X-ray structure analysis at 6 Å resolution.	515
H.T. Witt, N. Krauß, W. Hinrichs, I. Witt, P. Fromme, W. Saenger	521
Identification of the quinone binding site in PS I reaction center complex by photoaffinity labeling.	
M. Iwaki, M. Takahashi, K. Shimada, S. Itoh	529
Quinone (Q) substitution in the A ₁ -site of photosystem I. Structure and dynamics of the P ₇₀₀ ⁺ Q ⁻ state from transient EPR. D. Stehlik, I. Sieckmann, A. van der Est	533
Interaction of PsaC with the PSI core heterodimer. Evidence for a functional domain containing arginine residues. S.M. Rodday, SS. Jun, J. Biggins	537
Organization of chlorophylls in photosystem I reaction center: Study by LD and fluores- cence measurements in the ether-extracted particles which contain 11 chlorophyll/P700. S. Itoh, M. Mimuro, M. Iwaki	541
Chemical environment around the two chlorophyll a' molecules at the core of photosys-	541
tem I. H. Maeda, T. Watanabe, K. Sonoike	545
P700-dependent variable fluorescence at 760 nm in photosystem 1 complex of cyanobac- teria at 77K.	
N.V. Karapetyan, V.V. Shubin, S.S. Vasiliev, I.N. Bezsmertnaya, V.B. Tusov, V.Z. Pashchenko	549
The structure of the reaction center of photosystem I investigated with linear-dichroic absorbance-detected magnetic resonance at 1.2 K. J. Vrieze, P. Gast, A.J Hoff	553
Structural and functional study of photosystem I using cyanobacterium <i>Synechocystis</i> sp. 6803 mutants.	
Y.M. Park, J.S. Kim, S.Y. Choi, M.D. Abarca, O. Vallon, N.K. Chang, L. Bogorad	557
Site-directed mutagenesis of the photosystem I reaction center in <i>Chlamydomonas</i> reinhardtii.A.N. Webber, S.E. Bingham, P.B. Gibbs, L.M. Misra, J.B. Ward	561
A MARINE TO COULT, S.L. DINGHAIH, I.D. OLUUS, L.IVI. IVIISIA, J.D. WAIU	201

The PsaE protein is required for cyclic electron flow around photosystem I in the cyanobacterium <i>Synechococcus</i> PCC7002.L. Yu, J.H. Golbeck, J. Zhao, W.M. Schluchter, U. Mühlenhoff, D. Bryant	565
Light sensitivity of photosystem II in photosystem I reaction center-deficient mutants of the cyanobacterium Anabaena variabilis ATCC 29413. K.J. Nyhus, H.B. Pakrasi	569
 Spectroscopic characterization of mutants in F_X and the proposed leucine zipper in photosystem I. P.V. Warren, L.B. Smart, L. McIntosh, J.H. Golbeck 	573
Some properties of iron-sulfur centers in the F _B -destroyed and F _B - reconstituted PSI particles. K. Inoue, N. Kusumoto, H. Sakurai	577
Stabilization of iron-sulfur centers A and B in photosystem I particles by chemical cross- linking.	501
S. Hoshina, S. Sue, K. Wada, I. Enami, S. Itoh	581
Oligomeric state of cyanobacterial photosystem II. D. Sofrová, T. Kucera, J. Hladík	585
Reconstitution of antenna chlorophyll a in spinach PS-I complex. I. Ikegami	589
Production of barley photosystem-I subunits in <i>E. coli</i> using cloned cDNAs. M.P. Scott, S. Kjærulff, H.V. Scheller, J.S. Okkels	593
Subunit composition of cucumber PSI complex that catalyzes electron transfer from plastocyanin to ferredoxin. H. Ishikawa, T. Hibino, T. Takabe	597
 Electron transfer from cytochrome c-553 to P-700 in cyanobacterial PS I reaction center complexes with and without the bound <i>psaF</i> gene product. H. Hatanaka, K. Sonoike, M. Hirano, S. Katoh 	601
The function of <i>psaE</i> gene product in reduction of ferredoxin by cyanobacterial PSI reaction center.K. Sonoike, H. Hatanaka, S. Katoh	605
A photosystem I preparation from barley highly active in NADP ⁺ photoreduction. B. Andersen, H.V. Scheller, Y. Lindqvist, G. Schneider, B.L. Møller	609
-	007
Comparison of photosystem I complex isolated with different methods. H. Nakamoto, T. Hiyama	613
Biochemical evidence for the role of the bound iron-sulphur centres A and B in NADP reduction by photosystem I. J.A. Hanley, P. Heathcote, M.C.W. Evans	617
The subunit stoichiometry of photosystem 1 reaction center. T. Hiyama, T. Oya, S. Kobayashi, M. Furuki, T. Shimizu, M. Senda, H. Nakamoto	621
Characterization of <i>psaF</i> gene product. T. Takabe, Y. Iwasaki, Y. Tanaka, Y. Numata	625
Structural investigations of cyt.b6/f-complex and PS I- complex from the cyanobacterium Synechocystis PCC6803.	
D. Bald, J. Kruip, E. Boekema, M. Rögner	629
Theory on the wavelength-dependent polarity of the light-gradient photovoltage. W. Leibl, G. Paillotin, A. Dobek, J. Gapinski, J. Breton, HW. Trissl	633

xv

XVI

The synthesis and insertion of the PSI-C subunit in photosystem I. H.V. Scheller, J.S. Okkels, V.S. Nielsen, B.L. Møller	637
Changes in the membrane topography of ferredoxin- NADP⁺ reductase during greening of etiolated barley leaves.K. Ohashi, N. Sakihama, A. Tanaka, M. Shin, H. Tsuji	ning 641 645
Polypeptides involved in excitation energy transfer to photosystem I in barley. J. Knoetzel, D. Simpson	
Index of Names	649

ULTRAFAST PROCESSES IN BACTERIAL ANTENNAS STUDIED BY NONLINEAR POLARIZATION SPECTROSCOPY (FREQUENCY DOMAIN)

LEUPOLD, D.¹, VOIGT, B.¹, EHLERT, J.¹, SCHROTH, H.¹, BANDILLA, M.², SCHEER, H.² ¹ MBI für NICHTLINEARE OPTIK und KURZZEITSPEKTROSKOPIE, D-1199 BERLIN, F.R.G., ² BOTANISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN, D-800 MÜNCHEN 19, F.R.G.

2 000 1101 01 21 17,1 100

I. I NTRODUCTION

The main absorption maxima of bacteriochlorophyll a (Bchla) in the light harvesting antennas (LH) of photosynthesizing bacteria are distinctly red-shifted as compared to the S_{0} -->S₁ transition of Bchla in solution. In *Rhodobacter sphaeroides* there are three basically different elementary cell-like arrangements of Bchla in the protein matrices, wich built the peripheral parts of LH with absorption maxima at 800 and 850 nm and the core LH (875 nm). Besides this global differentiation there are indications of a substructure (inhomogeneity) for each of these absorption bands, which seem to play in important role in the ultrafast energy transfer through the antennas to the reaction center. To characterize this substructure, up to now absorption and emission spectroscopy in the time domain (with ps/fs pulses) at room and low temperatures is used as well as spectral hole burning at low temperatures (cp. [1, 2, 3]). Recently we have shown [4] that the nonlinear polarization spectroscopy in the frequency domain (NLPF) [5], which was not applied in the field of photosynthesis before, is an additional informative method. It gives insight into band broadening and spectral heterogeneity as well as energy and phase relaxation in the ps/fs region.

In the following we report on NLPF measurements in the B850 region of chromatophores from *Rb. sphaeroides* and discuss the results in comparison with those obtained recently at the isolated B800-850 complex [4].

2. MATERIALS and METHOD

Chromatophores of *Rhodobacter sphaeroides 2.4.1.* (ATCC 17023) were prepared by repeated passage of bacteria through French pressure cell (20 000 Psi), centrifugation of raw cell fragments (1h at 15 000 \cdot g) and ultracentrifugation of supernatant (1h at 240 000 \cdot g). Chromatophores were washed 3 times with tris-buffer (20 mM tris/HCL pH 8).

Isolated B800-850 antennas were prepared as described elsewhere [4]. For the NLPF measurements samples with $OD_{850} \cong 2$ were used in 0.1 cm sample cells.

The principle of the NLPF method [5], the experimental set-up and the theoretical approach are described in detail elsewhere [4, 6]. In short, nonlinear interaction between a linearly polarized pump beam (frequency ω_1) and an also linearly polarized, but 45° twisted probe beam (ω_2) in the sample creates a new polarization component of the probe beam, which can be detected behind crossed polarizers. We register this NLPF signal under stationary conditions (15 ns-pulses) as a function of the frequency difference between the tuned ω_1 and the fixed ω_2 . Two dye lasers ($\delta\lambda \leq 0.2$ cm⁻¹) are used, which are simultaneously pumped by an excimer laser.

109

© 1992 Kluwer Academic Publishers. Printed in the Netherlands.

N. Murata (ed.), Research in Photosynthesis, Vol. I, 109-111.

I.1.110

In case of a homogeneously broadened band with band maximum at ω_0 the NLPF signal shows (for $\omega_2 = \omega_0$) two maxima: one at resonance between pump and probe frequency ($\omega_1 = \omega_2$), the second one at resonance between pump frequency and ω_0 . Increasing inhomogeneity (increasing spectral width of distribution of the center wavelengths of the homogeneous subbands) diminishes the height of the second maximum; in case of extremely inhomogeneous broadening it is completely absent. The energy and phase relaxation times (T_1 , T_2) are obtained by fitting the NLPF signals with the appropriate lineshape functions [7].

T₁ determines mainly the half-width of the signal around $\omega_1 = \omega_2$ whereas T₂ is reflected in the wings of the signal.

3. RESULTS and DISCUSSION

NLPF signals of the chromatophores from *Rb. sphaeroides* were measured at room temperature at several frequencies in the B850 region. A typical result is given in Fig. 1a: With probe frequency ω_2 at 11 634 cm⁻¹ (859.5 nm), the NLPF signal for a large ω_1 - scanning range is shown. For comparison, in Fig. 1b the corresponding NLPF signal with the isolated B800-850 complex is shown, registered unter identical conditions.

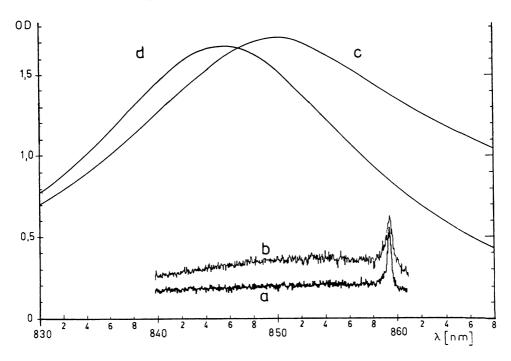


Figure 1. NLPF signals of chromatophores from *Rb. sphaeroides* (a) and of B800-850 complex from *Rb. sphaeroides*/LDAO (b), both probed at 859.5 nm. Corresponding absorption spectra: chromatophores (c), B800-850 complex (d).

Also shown are the relevant parts of the absorption spectra of both samples. Obviously, the NLPF signal from the chromatophores represents the case of extremely inhomogeneous broadening.

From the NLPF shape the values $T_2=40$ fs and a corresponding homogeneous with of 260 cm⁻¹ were obtained. There is little change of these values when changing ω_2 in the B850 region of the chromatophores. This is different from the result with the B800-850 complex, where we have found variations in the homogeneous widths between 30 and 210 cm⁻¹ in the also inhomogeneously broadened B850 band, dependent on ω_2 [4]. Whereas hints to heterogeneity of B850 at room temperature came also from time resolved energy transfer [1, 2] and fluorescence quenching measurements [7], Reddy et al [3] have found a homogeneous behaviour with a line width of 220 cm⁻¹ for B850 of chromatophores at 4.2 K.

To compare results at these different temperatures, one has to take into consideration, that

- i) there is a change in the fwhm of the B850 absorption band of the chromatophores from 280 cm⁻¹ (4.2 K) [3] to 550 cm⁻¹ (293 K)
- ii) there is a change in the number of Bchla 850 per domain from about 30 (4.2 K) to at least several hundreds (293 K) [2].

Measuring NLPF signals with highest spectral resultion around $\omega_1 = \omega_2$ gives information on T_1 . At $\omega_2 = 11$ 634 cm⁻¹ we obtained $T_1 \cong 8$ ps, which indicates a contribution of exciton annihilation.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft, Bonn (AZ Sche 140/13-1 and Le 729/1-1).

REFERENCES

- [1] Zhang, F. G., van Grondelle, R. and Sundström, V. (1992) Biophys. J. 61, 911-920
- [2] Vos, M., van Dorssen, R. J., Amesz, J., van Grondelle, R. and Hunter, C. N. (1988) Biochim. Biophys. Acta 933, 132-140
- [3] Reddy, N.R.S., Small, G. J., Seibert, M. and Picorel, R. (1991) Chem. Phys. Lett. 181, 391-399
- [4] Leupold, D., Voigt, B., Pfeiffer, M., Bandilla, M. and Scheer, H. (1993) Photochem. Photobiol., in print
- [5] Song, J. J., Lee, J. H. and Levenson, M. D. (1978) Phys. Rev. A 17, 1439-1447
- [6] Mory, S. and Neef, E. (1992) Exp. Techn. Phys., in print
- [7] Trautmann, J. K., Shreve, A. P., Violette, C. A., Frank, H.A., Owens, T. G. and Albrecht, A. C. (1990) Proc. Natl. Acad. Sci. USA 87, 215-219