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Abstract

Background: Multivariate analysis of interval censored event data based on classical likelihood
methods is notoriously cumbersome. Likelihood inference for models which additionally include
random effects are not available at all. Developed algorithms bear problems for practical users like:
matrix inversion, slow convergence, no assessment of statistical uncertainty.

Methods: MCMC procedures combined with imputation are used to implement hierarchical
models for interval censored data within a Bayesian framework.

Results: Two examples from clinical practice demonstrate the handling of clustered interval
censored event times as well as multilayer random effects for inter-institutional quality assessment.
The software developed is called survBayes and is freely available at CRAN.

Conclusion: The proposed software supports the solution of complex analyses in many fields of
clinical epidemiology as well as health services research.

Background

Interval-censored survival data occur when the appear-
ance of an event is assessed by means of an examination
method that cannot tell the exact time of change in dis-
ease status, but only that the change has happened since
the last examination. This is in contrast to the standard
(naive) thinking that change in status coincides with the
time of its first positive examination.

For example, the recurrence of a tumor during the follow-
up of a treated cancer patient is an event which happens
between two follow-up (FU) examinations. Often it is not
possible to connect this event with an exact time (like
time of first symptoms, time of first palpable presence,

time of death,...) The information for a patient with recur-
rence is therefore as follows: it is known that up to a cer-
tain time (last FU examination at time t1) the patient is
free of a recurrence. The recurrence happened between
time t1 and t2 (present FU examination at time t2). This
is less informative as the usual situation of right censor-
ing. Non- or semi-parametric methods for interval cen-
sored data are not frequently used in clinical research
papers. The reason may be that these methods are techni-
cally more complicated than standard survival methods
based on exact or right-censored times. There is a a rich
methodological body of methods and algorithms. But
there is no easy to use software package in a popular sta-
tistical software environment.
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The first frequentist work on interval censored event data
is the model of Finkelstein. Finkelstein [1] first introduced
a quasi semi-parametric model for regression analysis of
interval-censored failure time data based on a finite
dimensional maximum likelihood problem. For large
datasets the information matrix is sparse and may not be
invertible. Therefore, it is often to difficult to derive stand-
ard errors of the parameter estimates. Huang [2], Huang
and Wellner [3] and Lin, Oakes and Ying [4] present alter-
native models for semi-parametric regression analysis on
interval censored data. Pan [5] proposes the use of the
iterative convex minorant algorithm (ICM) to handle the
complex likelihood. He avoids the full information
matrix and uses a bootstrap procedure to quantify the
uncertainty of the inferred regression coefficients. Other
approaches to likelihood estimates can be found in the
work of Satten [6], or Huber, Solev and Vonta [7]. These
methods assume independent observations.

Bellamy et al. [8] extend parametric event time models to
clustered and interval censored settings by introducing
additive frailties to the linear predictor. Frailty comes into
play when multiple events are considered for a given unit.
Frailty can also count for unobserved covariates. Bellamy
et al. implement their algorithm in existing commercial
statistical computing software Bellamy et al. [8]. The
authors model dependency between multiple events of a
patient by frailty: doctor visits during the subject's time in
study. Bellamy's idea is easily implemented in a Bayesian
framework. WinBUGS [9] allows to implement analyses
for interval censored data with frailty in the same model.
A parametric approach via Weibull model or Accelerated
Failure Time (AFT) model is easily realized. One can
accommodate a frailty to the linear predictor part. But, the
implementation of semiparametric proportional hazards
models in WinBUGS is cumbersome (see Example Leuk in
Example Volume 1 of the WinBUGS software).

Bayesian analysis of event data using non-or semi-para-
metric models started immediately after Cox [10] with
work of Ferguson [11] and Kalbfeisch [12]. A summary of
the current state of the art is given in Dey, Miiller and
Sinha [13] and Ibrahim, Chen and Sinha [14].

Many authors discuss a Bayesian approach to interval cen-
sored data with different forms of frailty. They demon-
strate the advantageous combination of Bayesian
inferential methods and MCMC sampling in this specific
setting. The basic strategy is formulated by Harkidnen, Vir-
tanen and Arjas [15]. They avoid complex likelihoods by
Bayesian data augmentation of censored lifetimes. They
study a problem of dentistry where the dependence of
event times between the teeth of a subject are accounted
for by introducing subject-specific frailty parameters.
Given such frailty parameters, the tooth lifetimes are inde-
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pendent. The hazard functions are defined non-paramet-
rically by using piecewise constant functions. Finally, the
interval censoring is handled by augmenting the data with
unobserved exact event times. The authors also offer soft-
ware described in Hiarkdnen [16].

Another, more general methodology with similar ingredi-
ents has been published by Hennerfeind, Brezger and
Fahrmeir [17]. In their work, Hennerfeind et al. do not
consider explicitly interval censoring, however this is
done by Kneib [18]. Kneib avoids the augmentation
approach and handles the likelihood of interval censored
observations by numerical integration techniques.

The purpose of the paper is to introduce an algorithm
which uses a general software framework for statistical
applications http://www.R-project.org and which is easy
to apply to a large range of practical applications. We illus-
trate the theory behind the different modules of the algo-
rithm and describe the specific MCMC strategies used to
sample the posterior distribution. We restrict our consid-
eration to specific submodels of Hennerfeind et al. and
Kneib which are relevant for specific applications in clini-
cal epidemiology. This is an advantage for many analysts.
It bewares of the need to win a full understanding of the
more general model classes.

Our approach is structured as follows: The working engine
is a Bayesian model for right censored event data which is
flexible with respect to the frailty structure underlying the
data. We use standard frailty models like log-normal and
gamma frailty. Second, we apply a fast data imputation
algorithm: a piecewise exponential distributed event
times which can easily sampled from piecewise constant
hazard functions.

Being Bayesian we have to specify the priori belief in the
shape of the baseline hazard which we assume to be
smooth. A first order random walk is chosen.

The technical advantage with respect to the data augmen-
tation given by a stepwise baseline hazard function may
be offset by its possibly suboptimal fit to the true baseline
hazard function. Therefore, we additionally implemented
a spline based estimation of the log baseline hazard func-
tion. The draw back when performing the data imputation
for the interval censored data is the need to linearly
approximate the cumulative hazard function.

In Section 'Methods' the methods are described. Subsec-
tion 'The basic model' discusses the basic model for right-
censored event data. Subsection 'Sampling procedure'
describes the sampling procedure needed for estimating
the posterior distributions in the basic model. Subsection
'Extensions of the basic model' introduces the technique
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of data augmentation and the concept of frailty into the
model. In Section 'Results' the results are given. Subsec-
tion 'Simulation' shows the results of a simulation and
Subsection 'Examples' presents two examples, one of cur-
rent status event data with frailty and one with right cen-
sored data and two frailty terms.

Methods

The basic model

This subsection sketches a Bayesian approach to a multi-
variate fixed effects proportional hazards model for right
censored data. The specification of its posterior distribu-
tion needs the following ingredients: First, the likelihood
of the observed data; second, specific prior distributions
for regression parameters, hyperparameters, and baseline
hazard; third, a Markov Chain Monte Carlo (MCMC)
algorithm which can be used to sample the posterior dis-
tribution of the parameters of interest.

The data, based on a sample of size n, consists of the n tri-
ples (t;, &, x;), i = 1,..., n where t; is the time on study for
subject i, ¢; is the event indicator for subject i (5, = 1 if the
event has occurred, &, = 0 if the observation is right cen-
sored), x; is the r-dimensional vector of covariate values
for subject i.

The basic quantity for likelihood construction is the sur-
vival function of an individual surviving beyond time ¢

S(t | x) = exp[-eP*A ()] (1)

given x, the r-dimensional covariate vector, and S, the r-
dimensional vector of regression coefficients. A(t) is the
cumulative baseline hazard at time ¢:

Ao(t) = -[Ot Ao(s)ds. (2)

The likelihood contribution of the i-th single observation
is given by

Aolti | %)% 8(t; | x;) = exp{éi[h(ti) +B'x]- e”"‘jt‘ exp[h(s)]ds}
0

3)

where h(s) = In[4,(s)] is the log transformed baseline haz-
ard function. The function h will be modeled as a stepwise
constant function as well as a cubic spline. The stepwise
approach results piecewise exponential survival distribu-
tions. The use of cubic splines makes the estimated base-
line hazard function smoother. Both concepts can be
formulated as B-splines, see de Boor [19]. Therefore the
time axis [0, o) is partitioned into disjoint intervals I, =
[6,:, 6,) fork=1,..., K+ 1.
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The times 6, k = 1,..., K are chosen to create intervals with
comparable information content, i.e. similar number of
events. To this end a Kaplan Meier estimator is applied to
the right censored data. It is interpolated linearly. Spacing
the range of the resulting survival curve into K equal parts
and using the inverse function of the modified Kaplan
Meier estimator for the interval boundaries gives the times
6, k=1,..., K. We observed that a large K destabilized the
mixing properties of the MCMC chain by resting in a state
for long periods. Therefore, we chose K as large as possible
by keeping an acceptable mixing of the chain.

The priors for the components of the vector Swill be inde-
pendently normal distributed with mean 0 and a small
precision 7 (Precision is defined as the inverse of the vari-

ance: r= T = % ), see Gamerman [20].
o

The prior for the coefficients of the spline function h, the
approximated version of the log-transformed baseline
hazard function, will be a first order process which gives
prior information on smoothness. This is a Bayesian P-
spline approach, see Lang and Brezger [21].

The log baseline hazard function h is approximated by B-
spline functions, h(t) = Z;Ij:o hybj(t), where b, - (1)
denotes a B-spline function of degree j. In our approach j
is zero for the step functions or three for the cubic splines.
The first order process is defined as hj, = h; ; + ;, with |, ~
N(0, o} ) and hy~ N(0, o), where hyand |, k = 1,..., K
are pairwise independent. The choice of the mean of the
h, prior looks quite arbitrary. We try to compensate for
this by choosing its variance ¢} as quite large. This

defines a prior with hardly any influence and allows the
data to determine the value of the hazard function at t =
0. The variances for later time points are chosen as

o} = A,o1 and A, may be defined by the mean of the cor-

responding interval lengths, where the B-splines are differ-
ent from zero. The inverse of the covariance matrix

2 = (E(h )0, 27, can  be

,,,,,

written as

-L-Q, +-1-Q,, where Q, is a null matrix except at posi-
0 %1

tion (0, 0) where it is 1 and Q, is a simple structured band
matrix of bandwidth one, due to the first order process.
The parameters % = 7pand % = 7, are treated as hyper-
%0 %1

parameters with flat gamma priors.
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Sampling procedure

Sampling for the parameter vector

Aitkin and Clayton [22] pointed out that the proportional
hazards model can be interpreted as a generalized linear
model by writing the likelihood function L in the form

L=T e ise)r (4)
i=1
: 20t
— Si olti
[0 ]{Aom] (4b)

i=1

where ;= Ay(t;) exp(fx;). With a given cumulative base-
line hazard A,(t;) this is the likelihood function of a Pois-
son sample where the observations are the survival
indicators J, the link function is the canonical link "log"
and there is the offset In(A,(t;)).

Gamerman [23] describes how to sample effectively the
vector of covariates in generalized linear mixed models in
a block updating step. This is a combination of the iter-
ated least squares method (IWLS) with a Metropolis-Hast-
ings sampling.

For the prior a weak informative normal distribution N(0,
R1), R = ¢21,is chosen. The start of the iteration is with g
= fyand t = 1. One has to sample g* from N(m(), C()
where

CO = [R1+ X'W(A-D)X] L, (5)

m® = C(t)XW(ﬁ(t_l))}Nl(ﬁ(t_l)). (6)

B* is accepted with probability o ft1), £*) and then ) =
p*, else 0 = f+1) and t is increased by one.

Sampling for the baseline hazard

With the given structure of the log baseline hazard func-
tion one has to sample the spline coefficients h from a
Gaussian Markov Random Field (GMRF). Here we follow
Knorr-Held and Rue [24] and Rue [25] and sample the
log-baseline hazard in one step. The posterior of h is

n(h| B, 7y, 7y, Data) e exp{—%h’):’lh

n K ’ t K
+18> byut) - Texp| Y mibu(o) [ds | e 0.3

i=1 k=0 0 k=0
(7)

Knorr-Held and Rue [24] propose to approximate the
exponent by a quadratic form, to use the resulting Gaus-
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sian random field (multivariate normal distribution) to
sample a proposal for h, and to accept or to reject the pro-
posal according to a Metropolis-Hastings step. The cumu-
lative baseline hazard which is part of the exponent can be
calculated in a closed form in the case of the degree zero
B-splines (step functions). A detailed calculation is given
in the appendix [see Additional file 1]. The cumulative
baseline hazard in the case of the B-splines of degree three
is approximated by the trapezoidal rule because it can not
be integrated analytically. The trapezoidal rule results in
complex terms which contain the exponent of linear
terms of h. The calculation of a good quadratic approxi-
mation to this terms allows to derive the multivariate nor-
mal distribution.

Sampling for the dispersion parameters
For the dispersion parameters o and o} a flat gamma
prior with rate x and shape v is chosen. The full condi-

tional distribution of 62 is again gamma distributed and

2
h
has rate k + TO and shape v + % and the full conditional

K
7

distribution of 0'12 hasrate k + %h’th and shape v +
Extensions of the basic model

Data augmentation is used to impute unobserved event
times which creates right censored data from interval cen-
sored data. An unit specific random effect or frailty term is
introduced to the proportional hazards model to account
for potential clustering of event times within a statistical
unit.

Chained Data augmentation

The chained data augmentation algorithm applied to
interval censored data imputes candidates of possible
event times conditional to the model and the data
observed. To obtain the posterior z{w|Data), where w =
(B h, o, o), one proceeds iteratively by generating right
censored imputations of event times T from the predictive
distribution 7(T|w, Data), and calculates 7{w|T, Data),
from the augmented data, see Tanner [26].

This suggests that one may draw a value of the parameter
vector of interest w* from #{w|T*, Data) where T* is
drawn from 7(T|®, Data). In the given case the vector w
contains all information on 4, h, g, and ;. To initialize
the sampling the interval censored event data is treated as
right censored (event times in finite intervals are set to the
interval midpoint, event time in infinite intervals are con-
sidered as right censored) and the basic model (Subsec-
tion 'The basic model') is applied. The imputation is
applied to all interval censored events. The times of the
right censored events are unchanged. The imputation is a
straightforward sampling procedure based on the individ-
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ual survival functions which can be calculated from @ for
every event in every unit. The individual survival function
has to be conditioned on the interval in which the event
happens, see also Bebchuk and Betensky [27].

exp{-ePXing(ur;)}-expi-ePXin (1))
exp{-ePXing(ur;)}-expi-ePXing(ig,)}

(8)
The cumulative baseline hazard A(t) is piecewise linear
within the defined intervals for B-splines of degree zero.
This implies a piecewise exponential survival distribution
and a straight forward sampling of the imputed times. The
piecewise linear approximation for B-splines of degree
three makes a good proposal for the imputed times.
Unfortunately the numerics to calculate an acceptance
score relies on an approximation of the numerically not
treatable true distribution function. Therefore we skipped
the acceptance step.

P(T<t;|Telty.tg))=

Potential clustering of event times

Unit-specific random effects are used to handle clustering
of event times within statistical units. Cluster specific cov-
ariates are introduced which takes the value 1 for every
observation corresponding to the relevant cluster and 0
else. It is assumed that observation i belongs to cluster j(i).
Different frailty distributions can be chosen.

Log-normal frailty

Log-normal frailty is difficult to handle in frequentist
frailty models, see Hougaard [28]. In the Bayesian setting
random effects (frailty terms) are treated like regression
coefficients

A(t]x3) = Ag(t;) exp{Bx;+ g} )

In case of log-normal frailty these coefficients have a nor-
mal prior with mean 0 and variance 62, a~N(0, 62 ). A

non-informative gamma prior is assumed for 7, = %

Oq

For the posterior holds

n n
, 1,
m(a | rest) = exp 261-05]-(,-)—Zap{aj(,-)}Ao(ti)eﬂ"*—z—zaa .

i=1 i=1 Oo
(10)

The sampling follows the ideas of Knorr-Held and Rue
[24] as described in Subsection 'Sampling procedure'. The
posterior of 7, is again gamma distributed.

Gamma frailty

A gamma frailty is proposed by Clayton [29]. The gamma
frailty distribution offers technical advantages in the max-
imum likelihood framework because it allows to express
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the likelihood as a Laplace transform, see Feller [30]. The
cumulative hazard function can be written as

A(t]x;) = 25y exp{Bx;} Ao(1)- (11)

The posterior of z is with the gamma prior Ga(x; p) again
gamma distributed 7(zj|rest) ~ Ga(y; + &, @; + p), where

n . n X o
®; =" S1(ji) and W; =" Ao(t;)eP I(j(i) .
For the gamma prior x = p is chosen such that the expected

value of the prior is one. The parameter x is updated by a
random walk proposal and a Metropolis-Hastings step.

Results

Simulation

The purpose of the simulation is to show that the theoret-
ical Bayesian framework gives the expected results given a
known true model. Let us summarize shortly the essence
of the Bayesian paradigm applied to the hazard function.

We define a prior distribution for the log-baseline hazard
as a random walk with mean 0 and a specific covariance
structure. Within the Bayesian framework the data
changes the prior distribution into the posterior distribu-
tion. The Bayesian procedure changes the random walk
structure of the log-baseline hazard in a two-fold way:

1.) The constant mean 0 is transformed to a specific form
of a drift. The drift of the posterior distribution (which is
arandom walk) of the log-hazard function inferred by our
procedure in the simulation study is shown in the accom-
panying figure and compares the inferred drift to the true
log-baseline hazard function used in the data generation.

2.) The quite variable covariance structure of the prior dis-
tribution (large variances) allows that the data have a
strong influence on shaping the posterior distribution.
Data with a lot of information on the process will remove
the variable covariance structure and will create a narrow
channel around the true drift where realizations of the
random walk can be found which represents the posterior
of the log-baseline hazard function. In spite the fact, that
the choice of the prior distribution is a random walk with
the constant mean 0, the choice of a variable covariance
structures allows the estimation procedure to come up
with a posterior distribution (again a random walk)
whose drift describes sufficient closely the true shape of
the log-baseline hazard.

The choice of the mean 0 drift for the prior of the log-base-
line hazard is motivated by the idea, that if there is a devi-
ation from a constant hazard the data should produce it
in the posterior distribution. Reducing the variance in the
covariance structure of the prior distribution has the effect
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that a deviation of the drift of the posterior distribution
from the constant mean O drift needs stronger support
from the data and a shrinkage effect toward the constant
function at 0 is executed.

Of course we could start by giving a drift to prior distribu-
tion which is close to the supposed true form of the log-
baseline hazard. But we rejected the idea of using inform-
ative priors. If the covariance structure of the prior is quite
variable then the actual drift of the prior distribution has
not a strong influence of the drift calculated for the poste-
rior distribution.

Data from a Weibull model is used to validate the pro-
posed MCMC procedure. At the one hand the Weibull
model is parametric at the other hand it fits many practi-
cally relevant situations. The hazard function is given by
A(t) = (t/b)* with shape a and scale b. The validation
model has four covariates and a gamma frailty. The cov-
ariates X; and X, are binary. X, is balanced: 50% of the
subjects in our virtual population take value one. The cov-
ariate X, is unbalanced: 70% of the subjects in our virtual
population take value one. The variable Xj is restricted to
a well defined range (uniformly distributed on [-1, 1]).
The variable X, is standard normal distributed.

Data for a subject is created by independent draws from
the relevant distributions (Binomial [1,.5], Binomial
[1,.7], Uniform [-1,1], Normal [0,1]). The survival time of
a subject is sampled from its individual survival distribu-
tion given frailty and covariate vector x = (xy, Xx,, X5, X4)".

The parameter vector £ is chosen to be g = (0.5, -0.5, 0.5,
0.5)"' which represents effects of relevant size in terms of
epidemiology and clinic. The shape of the underlying
Weibull distribution is & = 0.75 which results in a singu-
larity at zero: a large hazard value at time 0 which
decreases over time. The resulting baseline hazard is mul-
tiplied by the factor exp{f,}, f,=0.1.

One thousand observations which are randomly assigned
to clusters. The cluster size is random but the number of
clusters is fixed: 100, 200, and 500. Each cluster carries a
gamma frailty. The frailty is sampled from a gamma distri-
bution with equal rate and shape parameters, Ga(q, q),
with ¢ € {0.5, 1, 2}. The mean of the gamma distribution
is one.

For each subject the interval [0, t,,,,) is randomly divided
into five intervals by uniformly sampling five random
numbers on [0, t,,,,). If the individual event time is at least
tnax the event time is taken to be right censored at t,,,,, else
the event time is interval censored with the interval it falls
in.

http://www.biomedcentral.com/1471-2288/9/9

In order to make the censoring mechanism independent
of the individual survival process t,,, has to be chosen
independent of the individual who has to be censored.
Therefore the value of ¢,,,, is the 0.9-quantile of a specific
Weibull distribution with shape a = 0.75 (see above) and
as scale the median of the individual scales which are
derived from the specific covariate configuration and the
random effect. The time axis was divided into 50 intervals
using the Kaplan Meier procedure as described in Subsec-
tion 'The basic model'.

The chain runs through 50 000 cycles. The cubic spline
model requires 70+#clusters parameters to be sampled
per cycle. The Raftery-Lewis diagnostic, see Mansmann
[31], was calculated for regression and baseline hazard
coefficients. The Raftery-Lewis diagnostics indicates a
burn in of 40 000 cycles to reach convergence for all
parameters. 10 000 additional samples of the parameters
were taken and thinned by the factor ten. The remaining
1000 samples were used for the analysis.

The trace of S for one of the scenarios studied can be seen
on Figure 1.

The estimates for the regression coefficients £ and the
frailty parameter ¢ and their 95% credibility intervals are
given in Table 1.

The bias for regression coefficients is in general moderate.
A pattern for the stronger biased results for the regression
coefficients can not be seen in the nine scenarios. The bias
for the frailty parameter is in general quite small.

We supposed that increasing the number of clusters
(decreasing cluster size) would improve the information
content of the data by allowing for more independent
observations. Therefore, we expected a clear improvement
from 100 clusters to 500 clusters with respect to the preci-
sion of estimates. A similar effect was expected from
changing the frailty. Reducing the dependency within a
cluster should have a similar effect. It was surprising not
to see clear trends in the simulation results.

We compared the bias in our strategy to the bias produced
by the ICM algorithm proposed by Pan [5], which we pro-
vide as R-package intcox. This algorithm is considered as
one of the best likelihood based estimation procedures for
multivariate interval censored survival data, see Zhang
and Jamdhidian [32]. Unfortunately the ICM algorithm is
not able to handle frailty. We estimate the parameters by
ignoring the clustering but apply clustered bootstrap to
calculate their confidence intervals. Table 2 summarizes
the estimation of regression coefficients for the different
frailty values where the number of clusters is 500. The
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Traces of the regression coefficients 5; 100 clusters, rate and shape of the frailty gamma distribution q = I.

sample size for the bootstrap confidence intervals was

999.

The bias in g, is comparable to the MCMC results. The
coefficients for the remaining variables show larger bias

compared to the MCMC results.

The estimates log baseline hazards of the nine onsets are
displayed and compared with the true one in Figure 2.

The samples with the larger frailty effect (¢ = 2) give the
closest estimates to the true baseline hazard. The Metrop-
olis-Hastings update rates for the coefficients S, h, and ¢
are about 92, 85 and 97%.
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Table I: Simulation: Posterior means and .95 credibility intervals of fand q

http://www.biomedcentral.com/1471-2288/9/9

q 0.5 | 2
#clusters mean 90.025 90.975 mean 90.025 90.975 mean 90.025 90.975
100 B 0.172 -0.030 0.359 0.709 0.534 0.884 0.557 0.396 0.719
yoA -0.445 -0.653 -0.234 -0.358 -0.544 -0.165 -0.518 -0.689 -0.346
i3 0.573 0.403 0.737 0.466 0.321 0.605 0.566 0.421 0.712
Ly 0.529 0.418 0.639 0.562 0.465 0.657 0.569 0.479 0.661
q 0.497 0.373 0.645 1.166 0.843 1.595 2.166 1.480 3.120
200 B 0.388 0.194 0.590 0414 0.232 0.591 0.671 0.506 0.849
5 -0.767 -0.984 -0.541 -0.525 -0.730 -0.296 -0.545 -0.733 -0.367
B 0.575 0.385 0.769 0.603 0.440 0.775 0.588 0.439 0.749
oA 0.484 0.379 0.595 0.476 0.369 0.574 0.517 0.427 0.610
q 0.554 0.434 0.709 0.953 0.729 1.211 1.821 1.330 2.454
500 B 0.484 0.240 0.745 0.615 0417 0.823 0.594 0.403 0.786
oA -0.588 -0.871 -0.309 -0.519 -0.740 -0.288 -0.359 -0.569 -0.145
B3 0.451 0.229 0.660 0.639 0.455 0.817 0.467 0.291 0.645
Ly 0.473 0.338 0.625 0.621 0.505 0.738 0.500 0.406 0.611
q 0.455 0.362 0.563 0.980 0.739 1.297 1.791 1.288 2.539
Examples able loc. Multiple aneurisms were observed per patient. In

In general flat priors are chosen in the R-package sur-
vBayes. The precision of the prior for 3, the rate and shape
of the priors for g, and o, and the precision of the random
walk for the gamma frailty are set to 0.0001. Possible devi-
ations from these values are indicated below.

Aneurisms

Meisel et al. [33] present data on the shrinkage of aneu-
risms associated with cerebral arteriovenous malforma-
tions (cAVM) after embolization treatment. The time to a
shrinkage of the aneurism to below 50% of the baseline
volume was of interest. Several patients had multiple
aneurisms. Each patient was inspected at a random
inspection time. Thus, the data is current status censored,
the coarsest form of interval censoring (see example 3.4 in
Klein and Moeschberger [34]).

Two covariates were considered: the degree of cAMV
occlusion by embolization (dichotomized at 50%, varia-
ble mo) and the location of the aneurism, whether at the
midline arteries or at other afferent cerebral arteries, vari-

this case the aneurisms share the same "environment" and
may not behave independently.

The data set is analyzed with the model described in Sec-
tion 'Methods'. The log baseline hazard is modeled by
cubic splines as well as by a step function. There were
phases of no sampling in the Metropolis-Hastings steps
for the log baseline hazard coefficients. The problems
could be resolved by choosing a not too flat prior with rate
and shape q = 0.001 (cubic splines) or q = 0.01 (constant

splines) for the smoothness parameter 67 . The precision

for the random walk for the updating of the gamma frailty
parameter g was set to 0.01 in the case of the constant
splines. 20 000 samples of the parameters were taken and
thinned by the factor ten after a burn in of 80 000. The
remaining 2000 samples were used for the analysis. There
is still no convergence for the last parameters of the log
base line hazard while the results for the regression
parameters are stable (see Table 3). Inspecting the data

Table 2: Simulation: Estimates and .95 bootstrap confidence intervals of 5 with the intcox procedure

q 0.5 | 2
estimate 90.025 Qo975 estimate 90.025 Qo975 estimate 90.025 Qo975
B 0.363 0.188 0.519 0.360 0.221 0.612 0415 0.274 0.578
oy -0.180 -0.361 -0.037 -0.298 -0.444 -0.066 -0.223 -0.354 -0.053
B 0.179 0.045 0.325 0.298 0.175 0.451 0.272 0.159 0.408
La 0.186 0.110 0.271 0.362 0.294 0.474 0319 0.248 0.406
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Figure 2

Estimated and true log baseline hazards.

shows that only 54 of 149 aneurysms showed shrinkage.
This may impair precise estimation of the baseline hazard
function for larger times (above 3 years).

The estimates and the 95% credibility intervals of the log
baseline hazards for both models are shown in Figure 3.

The model with cubic splines gives the smoother fit.

We can compare the Bayesian results with the related max-
imum likelihood analysis using the Iterated Convex
Minorant algorithm as introduced by Pan [5]. The analy-
sis of the Aneurism data set with different likelihood
based tools is given in the Vignette accompanying the R-

package intcox. The results for the regression parameters
are shown in Table 3. The model proposed by Pan [5] con-
siders all observations as independent. This may explain
the smaller absolute effect estimates.

Colon cancer

The Tumour Register Munich (TRM) collects the data of
all cancer patients in Munich and the surrounding south-
ern Bavaria. Here we use data from patients with colorec-
tal carcinoma which includes 9985 patients without
metastases collected from 1988 to 2004. Their age distri-
bution at diagnosis is as follows: 621 were less than 50
years old, 1541 between 50 and 60, 2884 between 60 and
70, 2992 between 70 and 80 years old, and 1947 older

Table 3: Aneurisms: Summary of posterior distributions and the ICM algorithm for the regression parameters

cubic constant ICM algorithm
Parameter P. Mean 90.025 90975 P. Mean 90,025 90.975 Est. 90.025 90.975
Lo -1.408 -2.586 -0.451 -1.382 -2.452 -0.451 -1.007 -1.892 -0.417
Bioc -0.879 -1.649 -0.123 -0.868 -1.658 -0.144 -0.831 -1.139 -0.533
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Log baseline hazard with .95 credibility intervals modeled by cubic and constant splines.

than 80 years. A total of 5045 patients were male, 4940
female. The distribution of the pT-category 1-4 were
1004, 1482, 5777 and 1374 patients. In 348 patients the
pT-category was unknown. 6312 patients had no positive
lymph nodes where as in 3224 patients positive nodes
were documented. In 449 cases the pN-category was
unknown. The grading of the tumour was in 703 cases 1,
in 6772 cases 2, in 2117 cases 3 or 4. The grade was
unknown in 393 cases. The tumour could removed with-
out a residual in 9631 patients. 1639 patients were treated
by a chemotherapy, a neoadjuvant therapy or a combina-
tion of chemotherapy and radiation therapy. 8346
patients received no treatment or only a radiation therapy.
There were 47 hospitals where the patients were treated.
The focus of the analysis is if the institutions influence
prognosis. The institutional influence was modeled by a
gamma frailty term and not by 47 dummy variables. This
avoids arbitrariness related to the aggregation of smaller
institution to an artificial unit, Engel et al. [35].

The annual number of patients per clinic in the years 2002
to 2004 were in 34 clinics below 30, in 9 clinics between

30 and 50 and in five clinics more than 50 patients (clinics
2,4,7,25 and 31).

The restricted documentation in clinical tumor registries
does not provided all relevant prognostic factors of a
patient. That is why a second individual gamma frailty
term was introduced. This model can not be fit with stand-
ard statistical software.

The data set is analyzed with the model described in Sec-
tion 'Methods'.
included into the model and hierarchy of frailty terms for
clinic and patient is added. The log baseline hazard is
modeled by cubic splines. A number of 20 time intervals
was chosen. There were sample problems with a flat

The covariates described above are

gamma prior for the smoothness parameter 7. But it is

known that the hazard rate of survival is quite constant
over time in colon cancer, i.e. there is a small variability of
the log baseline hazard. Therefore we chose a informative
prior Ga(1,0.1) with a high precision. The remaining
parameters were not influenced by the choice of this prior.
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After a burn in of 30 000 samples additionally 20 000
samples were taken and thinned by 10. The posterior
means and the credibility intervals for the regression
parameters are shown in Table 4.

The hazard of death increases with increasing age, pT and
pN category and with residual tumour and is lower in
women and if a chemotherapy could be applied.

The posterior means of the frailty coefficients of the clinics
and the 95% credibility interval belonging to them are
shown in Figure 4.

The credibility intervals of the clinics with high volume
are the smallest. There are only two clinics whose credibil-
ity intervals do not include the value one. This value indi-
cates that there is no frailty. Clinics with a high volume
tent to have a lower frailty (clinics 7, 31) but this is not
true for all of them. On the other hand there is no clear
pattern for clinics with lower volume. Clinics with low
patient volume may have low frailty (clinics 20, 45) as
well as higher frailty (clinics 26, 40).

Transforming the frailty into ranks allows to study the
posterior distribution of the rank of a specific clinic. These
distributions ar shown for some selected clinics in Figure
5.

The rankings are quite stable for clinics with extreme frail-
ties. Clinics with intermediate frailties range in general
over all ranks.

Discussion
Interval censored event data is a natural documentation
scheme for many observational studies. Often, events of

Table 4: Summary of posterior distributions for the regression
parameters

Parameter Post. Mean Go.025 Go.975
Age 50-60 0.163 -0.052 0.372
Age 60-70 0.530 0.334 0.736
Age 70-80 1.224 1.023 1.429
Age >= 80 2.081 1.858 2.301
Sex (female) -0.284 -0.361 -0.204
pT 2 0.086 -0.080 0.266
pT3 0.493 0.337 0.652
pT 4 1.275 1.088 1.473
pT X 0.185 -0.203 0.539
pN + 0.728 0.630 0.830
pN X 0.823 0.544 1.108
Grade 2 -0.118 -0.275 0.043
Grades 3 and 4 0.058 -0.124 0.241
Grade X 0.003 -0.270 0.287
Residual 0.994 0.804 1.184
Therapy c+ -0.234 -0.356 -0.112

http://www.biomedcentral.com/1471-2288/9/9

interest are not obvious and can only be detected with
special diagnostic procedures during follow-up examina-
tions. This is not only of interest for endpoints like disease
free survival in oncological studies but also of a broader
clinical interest as demonstrated in the aneurysm exam-
ple. Interval censoring may also help to avoid special
forms of bias in epidemiological studies like recall bias -
see example 3.4 in Klein and Moeschberger [34]. Includ-
ing random effects into the model handles unobserved
covariates, multiple events, or clustering. Interval censor-
ing and frailty may result in a complex likelihood which
is not easy to maximize.

Bellamy et al. [8] showed that within the framework of
Weibull models the likelihoods which incorporate inter-
val censoring and simple frailty can be solved by standard
software. Formulating the aneurysm example as a Weibull
problem in WinBUGS is also possible with a few lines of
code:

t.lower[i] <- (1-z[i]) *obs.t[i];
t.upper|i] <- [i]*obs.t[i]+(1-z[i]) *t.max;
t[i] ~ dweib(r,lambda[i]) I(t.lower[i],t.upper[i]);

log(lambda(i]) <-
alpha+b.mo*moli]+b.lok*lok[i]+b.ran|gr[i]]

b.ran[gr[i]] ~ dnormal(0, tau)

The treatment is more complex if the statistician decides
to use a semi- or non-parametric approach for the hazards
model. The example leuk in volume I of the examples
which come with the WinBUGS software demonstrates
the complexity of a code for a semiparametric Cox-model.
Its extension for frailty and interval censoring makes
things even more complex. Furthermore, the WinBUGS
software is quite restricted in the choice of updating
schemes for the MCMC procedure which improve mixing
effects of the chains.

Therefore, this paper proposes a Bayesian concept for the
simultaneous treatment of frailty and interval censored
event times. Data augmentation reduces the interval cen-
sored situation to the right censored case and allows to
handle frailty in the framework of a semi-parametric pro-
portional hazards model for right censored data. A MCMC
procedure was introduced to estimate the parameters of
interest. Gamerman's block updating was used to sample
the regression coefficients. A block updating based on
ideas of Knorr-Held and Rue [24] and Lang and Brezger
[21] allowed a simultaneous sample of the baseline haz-
ard function. The incorporation of frailty into the MCMC
scheme was straightforward. Data augmentation could
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Posterior means and .95 CI of the frailty coefficients of the clinics.

make efficient use of piecewise exponential distributions.
This is a consequence from a stepwise log baseline hazard
function or a piecewise linear approximation to the cumu-
lative hazard function when the log baseline hazard is
modeled by cubic splines.

The algorithm is tailored to a wide class of event data
problems which are typical for studies in clinical epidemi-
ology, quality control, prognosis, and epidemiological
risk assessment. The ideas on which the algorithm is built
are also discussed by other groups like Hirkdnen et al.
[15], Kneib [18], Komarek, Lesaffre, Hirkdnen, Declerck

and Virtanen [36], Hennerfeind et al. [17]. The focus of
our paper is not to present novel methodology, but to give
a full methodological account on a practical algorithm
and the accompanying software.

A software which offers comparable functionality is BITE
by Hérkdnen [16]. It is designed for the analysis of event
history data using flexible hierarchical models and Baye-
sian inference. BITE is a stand-alone software while our
package uses the full functionality of the R-environment.
The handling of BITE is not straight forward. While sur-
vBayes is independent of the machine platform, BITE is
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Sampling of the ranks of selected clinics.

written for Unix-like operating systems such as Linux. It
can also be run on 32-bit Microsoft systems, but a Unix-
emulator is needed. Its output files have to be processed
with PERL scripts to be read into other statistical software
like R or CODA which is needed to present the results of
the analysis.

Two examples were worked out. The first example fits in
the structure of the model presented in Section 'Methods'.
The data consist of multiple current status observations
on patients. The example was run with cubic and constant
P-splines. The cubic P-spline estimate of the baseline haz-
ard shows comparable results to the constant P-spline in
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the part of the time spectrum with the most events. The
regression parameter estimates also remain comparable.
We could compare our results with estimates based on
maximum likelihood theory. The Bayesian results are
more pronounced compared to the maximum likelihood
estimates because the frailty effect is included in the
model. This example is in line with the typical problems
also discussed by Harkdnen [16] and observed in applica-
tions of BITE.

The second example presents a two level frailty structure
which includes individual frailty of patients but also
frailty related to single hospitals. The data describe the
survival of colon cancer patients collected in a tumor reg-
istry (Engel et al. [35]). The focus of the analysis was on
the estimates of the frailty of each individual clinic. A sec-
ond frailty term is needed to adjust for unobserved indi-
vidual prognostic covariates. The result indicates that
there are remarkable clinic effects in the survival of colon
cancer patients. The credibility intervals for the frailties of
the clinics with the highest volume are the smallest but for
all clinics reasonable estimates of the frailties are
obtained. The analysis is of interest for the benchmarking
of institutions.

A simulation study based on a Weibull model with three
different gamma frailties Ga(q, q), ¢ € {0.5, 1, 2}, was
used to validate our approach. One thousand events were
randomly distributed among 100, 200 or 500 patients
(conditioned on the fact that each cluster received at least
one event). For the regression parameters we got sensible
estimates. The bias for the regression coefficients is in gen-
eral lower than 20%. No clear pattern for the bias could
be detected. A relevant result of the simulation study was
the reliable estimation of the frailty parameter which is of
primary interest in many problems. The baseline hazard is
fitted best for larger frailty values (g = 2).

In general we got the impression that the modeling of
interval censored event data needs a very careful analysis.
Especially convergence of the sampler chains may be not
straightforward in small datasets. The proposed procedure
needs data sets of sufficient size. Then it will produce in
general reasonable estimates of the parameters. But there
is always some bias possible with no clear pattern when it
happens. Our concept is implemented into the R-package
survBayes and is available at the CRAN depository http://
www.R-project.org.

Conclusion

Occurrence of diseases, their progression and death con-
stitute complex event patterns in time. There are two
pending problems: (1) There are interval censored events
which can only be observed between two examinations.
(2) Unspecific and not observable effects have to be taken

http://www.biomedcentral.com/1471-2288/9/9

into account by more or less complex random effect struc-
tures. We present a practical solution to both challenges
by the software bayesSurv. The paper presents the theory
which motivates the algorithms, evaluates the algorithm
by a simulation study and applies our approach to two rel-
evant clinical examples. The presented software supports
the solution of complex analyses for event data in many
fields of clinical epidemiology as well as health services
research. It helps to build quantitative models for com-
plex observational data and contributes to an improved
quantitative modeling of individual disease histories.
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