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Abstract

Background: Stochastic simulation can be used to illustrate the development of biological systems
over time and the stochastic nature of these processes. Currently available programs for stochastic
simulation, however, are limited in that they either a) do not provide the most efficient simulation
algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c)
do not allow to monitor and intervene during the simulation process in an easy and intuitive way.
Thus, in order to use stochastic simulation in innovative high-level modeling and analysis
approaches more flexible tools are necessary.

Results: In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java
framework for the efficient simulation of chemical reaction networks. FERN is subdivided into
three layers for network representation, simulation and visualization of the simulation results each
of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic
simulation algorithms for well-mixed chemical systems and a powerful observer system, which
makes it possible to track and control the simulation progress on every level. To illustrate how
FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and
CellDesigner are included. These plugins make it possible to run simulations and to observe the
simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner
environment.

Conclusion: FERN addresses shortcomings of currently available stochastic simulation programs
in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact
and approximate stochastic simulation and a simple interface for extending to new algorithms.
FERN's implementations are considerably faster than the C implementations of gillespie2 or the
Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand-
alone program and within new systems biology applications. Finally, complex scenarios requiring
intervention during the simulation progress can be modelled easily with FERN.

Background level approaches have become common which make it
Traditionally, wet-lab experiments were focused on  possible to identify the interactions between the individ-
describing the function of individual genes or proteins.  ual elements of the cell. Here, mathematical models are
With the advent of high-throughput technologies, system-  crucial in understanding these biological systems. In par-
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ticular the dynamic simulation of these models can illus-
trate and predict quantitative aspects of the system such as
gene expression in regulatory networks or signal amplifi-
cation in signal transduction networks [1].

The most common approach to modeling dynamics is via
ordinary differential equations (ODEs) which describe
deterministically how the system evolves with time (see
e.g. [2-4]). Since the simulation of ODEs is deterministic,
successive simulations starting from the same initial con-
ditions lead to the same results. Biological systems, how-
ever, are not deterministic which can lead to quite
different outcomes for the same initial conditions.

The stochastic nature of biological systems can be simu-
lated using numerical simulation algorithms such as the
stochastic simulation algorithm (SSA) of Gillespie [5].
The Gillespie algorithm simulates the system reaction by
reaction. A reaction step in this case consists of two parts
(see Figure 1). First, the time interval zuntil the next reac-
tion is drawn from the exponential distribution P(7) = a
exp(-a7) using the inversion method. Here, a is the sum
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over all reaction propensities a,. Second, the reaction
which is to occur in this time interval is drawn with prop-
ability P(u|7) = a,/a. At the end of each step, molecule
numbers and reaction propensities are updated. Both sim-
ulations via ODEs and SSAs assume a well-mixed system
with a homogeneous distribution of molecules.

The original Gillespie algorithm (also called the direct
method) has been modified in several ways to improve
runtime. Here, the most commonly used modification is
the next-reaction method by Gibson and Bruck [6]. This
algorithm improves on a less efficient variant of the direct
method which generates 7, for each reaction R;, and then
fires the reaction with the minimum 7, The minimum g,
and the corresponding reaction are obtained from a prior-
ity queue and time intervals are updated without drawing
new random numbers only for those reactions whose pro-
pensity was changed by the firing of the reaction. Reac-
tions with changed propensities are identified with a
dependency graph which contains an edge from reaction
R; to reaction R; if R; changes the molecule number of at
least one reactant of R;. It has been been suggested that the
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Stochastic simulation. This figure shows the flow of one simulation step. On the left-hand side the flow for the original
Gillespie algorithm can be seen. On the right-hand side, we illustrate how the different steps are modified by the Gibson-Bruck,
enhanced Gillespie and tau-leaping algorithms. Here, U(0, 1) denotes the uniform distribution on the range of 0 to | and a, the

reaction propensity for reaction .
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next-reaction method is actually less efficient than
improved versions of the direct method [7]. Indeed, we
could show in our implementation that a variant of the
direct method which uses the dependency graph tech-
nique to update propensities is significantly faster than
the Gibson and Bruck algorithm.

The direct and next-reaction methods are exact methods.
This means reaction propensities are updated after each
reaction. Recently, Gillespie [8] proposed an approxima-
tive method, tau-leaping, which performs all reactions in a
certain interval z before updating the propensity func-
tions. The interval size 7is chosen such that the propensity
functions remain almost constant in this interval and
reactions may fire multiple times. This, however, can
sometimes lead to negative populations and as a conse-
quence, this method has been improved later by Cao et al.
[9,10] to avoid this problem. The modified tau-leaping
algorithm automatically switches to the exact SSA for a
few steps if the choice of rbecomes too small.

Both exact and tau-leaping models cannot be used to effi-
ciently simulate models with multiple scales in molecule
concentrations or reaction rates. Exact methods are too
inefficient to simulate many fast reactions and high mol-
ecule concentrations. On the other hand, the presence of
low molecule concentrations and slow reactions in the
systems will effectively lead to small 7 values for the tau-
leaping methods and thus make them behave as the exact
methods. To circumvent these problems, hybrid methods
have been developed which partition the system into fast
and slow reactions [11-26]. The slow reactions are then
generally simulated using the exact SSA. The fast reactions
are solved either deterministically or with the Langevin
equation [11-18] or simulated with tau-leaping methods
[18,19]. Alternatively, the model is simplified such that
the effect of the fast reactions is incorporated in the simu-
lation of the slow reactions, e.g. using quasi-steady-state
assumptions, without actually firing the fast reactions [20-
26].

Several implementations of stochastic simulation algo-
rithms are already available, e.g. COPASI [27], Dizzy [28]
using the SSA implementations of the ISBJava library,
gillespie2 [29], STOCKS [30], StochKit [31], and BioNetS
[32]. In general, these programs were designed as stand-
alone programs and as a consequence the user is limited
to the functionalities of the user interface. This makes it
difficult to use the implementations of the SSAs within
other programs. Furthermore, most of these programs
provide only one implementation of an exact SSA which
is not always fast enough for practical systems biology
applications. However, faster SSAs such as e.g. the approx-
imative tau-leaping procedure or new hybrid algorithms
cannot be added to the programs easily by the users.
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The StochKit software and ISBJava library provide these
faster tau-leaping algorithms and the latter was also
designed to be used within other systems biology pro-
grams. The output of the corresponding SSA implementa-
tions, however, is limited to the molecule concentrations.
More flexible implementations are necessary to simulate
complex high-level models and integrate stochastic simu-
lation algorithms in new and innovative analysis and
modeling tools. Two examples which illustrate the need
for more flexible tools (see also results) are the visualiza-
tion of the simulation progress directly in a network and
the simulation of cell growth and division. With current
simulation tools, it is not possible to implement both
examples without having to change the code of the actual
simulation algorithms considerably.

In this article, we present FERN, a Java framework for
modeling and simulating biological systems which pro-
vides accurate and state-of-the-art simulation algorithms
(exact, approximate and hybrid) and has been designed to
be easily extendable to new ones (see Figure 2). With the
help of observers, the simulation progress can be moni-
tored on every level and modifications to the systems can
be introduced during simulations in an intuitive way.
Even with these additional functionalities, the imple-
mented algorithms are faster than the ISBJava implemen-
tations. Results can be visualized easily and networks can
be loaded from different sources. Contrary to ISBJava,
FERN supports the most current version of SBML and
allows arbitrary rate law definitions. FERN can be used as
an integral part of other Java applications or as a stan-
dalone program in the form of a command-line tool and
plugins to Cytoscape and CellDesigner.

Implementation

FERN is an object oriented library implemented in Java
(see Additional file 1). Although it consists of more than
100 classes and interfaces, most classes are just implemen-
tations of one of three major interfaces and abstract
classes (see Figure 2):

1. The interface Network provides the network structure of
the model.

2. The abstract class Simulator performs simulations on a
Network. It additionally calls the registered observers dur-
ing the simulation run.

3. The abstract class Observer traces the simulation
progress and creates the simulation output.

A simple simulation can be performed in only five lines of
code, one line for each of: loading a network file, creating
a simulator, creating and registering an observer, running
the simulations and printing the results (see Figure 3).
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FERN design. The figure illustrates the overall design of FER

N into three layers. Each layer is represented by one interface or

abstract class: Interface Network and abstract classes Simulator and Observer.

More complex examples for using FERN can be found in
the FERN distribution. In the following the three layers of
FERN are described in more detail.

Networks

The interface Network describes the network's structure,
i.e. the reactions and species in the networks. For this pur-
pose, each reaction and each species is described by an
integer value. Furthermore, the network stores basic infor-

mation like species names and their initial molecule num-
bers. For the simulation more information is necessary
which is stored in three additional classes (see Figure 4):

¢ The AmountManager controls the amount of each molec-
ular species during the course of a simulation.

¢ The AnnotationManager can store additional annotations

for the network, its species and reactions.
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public static void main(String[] args)
throws FeatureNotSupportedException

{

// Load network

SBMLNetwork net = new SBMLNetwork(
new File("some_net.xm1"));

// Create simulator

Simulator sim = new GillespieEnhanced(het);

// Register observer
Observer obs =

sim.addObserver(

new AmountIntervalObserver(sim,1,"X"));

// Register events

net.registerEvents(sim);

J/ Start simulation
sim.start(50);

J// Print results

System.out.printin(obs);

Figure 3

Example program. This figure shows a small example on how to use FERN for running a simulation on a network. First, a
network is loaded from an SBML file and then a simulator is created. In the next step, an observer is created and registered

with the simulator. In this example, the observer records the current amount of molecule X every second of simulated time.
The SBML events are registered with the simulator and the simulation is started to run for 50 seconds. Finally, the recorded

results for X are printed.

e The PropensityCalculator calculates the propensities for
the reactions by the specified kinetic laws.

There are three types of implementations of the Network
interface:

® Readers which can read network data from files (e.g.
FernMLNetwork, SBMLNetwork)

e Wrappers which redirect method calls to existing net-
work classes (e.g. CytoscapeNetworkWrapper)

o Evolution algorithms which create networks from scratch
by certain rules (e.g. AutocatalyticNetwork)

For each network, stochastic simulations can be per-
formed with all implemented simulation algorithms.

Import and export of networks

FERN supports two formats for loading and exporting net-
works: the SBML format [33] as well as the simpler but
also XML based FernML format. For reading and writing
the SBML format, FERN uses the Java bindings of the C
library (libSBML) available at http://www.sbml.org. Thus,
it can be easily adapted to new developments of the SBML
format. Currently, SBML version 2 levels 1-3 are sup-
ported.

From the model loaded by 1ibSBML from the SBML file, a
FERN SBMLNetwork is created using the list of compart-
ments, species, reactions, parameters and events in the
model. Events have to be registered with a simulator by
the SBMLNetwork if they are to be triggered during the
simulation (see Figure 3 for an example). Triggering of
events is handled by specific observers.
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UML diagram of Network related classes. This figure shows an UML diagram for the Network interface and related inter-

faces and classes.

Currently, the SBMLNetwork class uses only the features of
SBML necessary for the simulation of the network. It sup-
ports MathML to define complex reaction mechanisms
but not rules, constraints or function definitions. If these
features are required they can be incorporated easily by
extending the SBMLNetwork class and loading these fea-
tures from the SBML model created by libSBML. Since
many systems biology applications support SBML (e.g.
CellDesigner [34]), the SBML format can be used as an
interchange format between FERN and these other appli-
cations.

SBML is a powerful format which can provide lots of
information about a model. In contrast, FernML stores
only the topology of the reaction network, optional anno-
tations and the simulation parameters (see Additional file
2 and Additional file 3). This results in a much more sim-
plified input format. More complex aspects, such as vol-
ume change due to cell growth and division, can then be
modeled in Java using the FERN library in a straightfor-
ward way (see Results for an example). As a consequence,
arbitrarily complex models can be designed.

Since FernML supports only the reaction rate equations
used by Gillespie [5], the propensities can be recalculated
at each step efficiently by a few arithmetic operations.
SBML uses MathML to store the kinetics of a reaction. This
allows for more complex reaction mechanisms and is par-
ticularly useful if the model cannot be formulated exclu-
sively with first or higher order rate equations. To evaluate
MathML expressions, FERN creates expression trees from
them which have to be evaluated every time a propensity
is calculated. Since this is one of the essential steps of
SSAs, the simulation of an SBML network in FERN can be
significantly slower than the simulation of the same net-
work as a FernML network (see Figure 5). Thus, if only
simple reaction rate equations are used, an SBML network
should be converted to a FernML network using the pro-
vided conversion methods before performing the simula-
tion.

FERN is not restricted to the input formats currently avail-
able. Any new input format can be easily included by
implementing the Network interface or extending the
AbstractNetworkImpl class.
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Runtime Comparisons. The EGF signaling pathway
described by Lee et al. [38] was simulated with the three
exact methods provided by FERN (original and enhanced
Gillespie algorithm and the next reaction method by Gibson
and Bruck) for a simulated time of 800 seconds both with an
SBML network using expression trees to represent MathML
expressions and a FernML network. For each combination of
network type and stochastic simulation algorithm, 1,000 sim-
ulations were performed and the average runtime in millisec-
onds was calculated. The same simulations were performed
with the Gillespie and Gibson-Bruck algorithms of ISBJava. All
results were obtained on one processor of an Intel
Core2Duo with 2.4 GHz. Standard errors in all cases were <
.5 milliseconds.

Simulation algorithms

FERN provides implementations for three exact stochastic
simulation algorithms, three state-of-the-art tau leaping
procedures (see [8,10]) and a hybrid method combining
SSA and tau-leaping [19]. The exact SSAs implemented
include the original direct method of Gillespie [5], the
next reaction method of Gibson and Bruck [6] and an
enhanced version of the direct method. This enhanced
method uses the dependency graph technique of the next
reaction method to only update the propensity functions
which are affected by the firing of a reaction. Apart from
this improvement, it is identical to the direct method.

The tau-leaping algorithms are all based on the modified
tau-leaping procedure proposed by Cao et al. [9] which
avoids the problem of negative populations observed for
the original tau-leaping procedure. This method switches
to an exact SSA (in our implementations the enhanced
Gillespie) for a few steps if the selected 7 becomes too
small. The three implementations differ only in the way
the error is bounded (see [10] for details). The error is
bounded either by the sum of all propensity functions
(TauLeapingAbsoluteBoundSimulator), the relative changes
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in the individual propensity functions (TauLeapingRela-
tiveBoundSimulator) or the relative changes in the molecu-
lar populations (TauLeapingSpeciesPopulationBound
Simulator).

Furthermore, FERN implements the hybrid method by
Puchalka and Kierzek [19] which partitions the system
during the simulation into slow reactions which involve
only small molecule numbers and fast reactions which
involve large molecule numbers. The slow reactions are
then simulated using an exact SSA while the fast reactions
are simulated with tau-leaping. This algorithm was chosen
over other hybrid methods for two reasons. First it uses
only stochastic simulation algorithms, i.e. exact SSA and
tau-leaping, and no further assumptions such as quasi-
steady state. Second, the partitioning of the system is per-
formed dynamically according to the state of the system
and updated after each reaction step. Our implementation
of the hybrid method uses our more efficient enhanced
Gillespie algorithm (see Figure 5) instead of the Gibson
and Bruck algorithm used by Puchalka and Kierzek. On
the model of LacZ and LacY gene expression by Kierzek
[30], the hybrid method speeds up the runtime by a factor
of 98 compared to the enhanced Gillespie algorithm.

Each simulation algorithm is implemented by extending
the abstract class Simulator or one of its subclasses. A sim-
ulation consists of the following steps (see also Additional
file 3). First, the data structures are initialized and the sim-
ulation is started by passing a simulation controller
implementing the SimulationController interface. The sim-
ulation controller decides after each step if the simulation
can continue. The most basic one is the DefaultController
which lets the simulation run until a given simulated time
is reached.

In each step, the behavior of the simulator depends on the
simulation algorithm implemented (see Figure 1). The
direct and enhanced Gillespie algorithms draw the time
interval 7 till the next reaction from an exponential distri-
bution. The reaction to be fired is then drawn with a prob-
ability proportional to its reaction propensity. For this
purpose, a random variable r, is first drawn from the uni-
form distribution between 0 and 1. The corresponding
reaction y is then identified via a linear search such that

u-1 u . .
Zi a; < Tzz,-ai < Zi a; . The Gibson-Bruck algorithm
generates 7, for each reaction R, and at each step fires the

reaction with the minimum 7, obtained from a priority

queue. Tau-leaping methods also choose a time interval 7
but in this case several reactions can be fired during this
interval (for more details see [9]).
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After each step, the molecule numbers for reactants and
products and the propensity functions for the reactions
are recalculated. Here, reactants and products of a reaction
can be identified efficiently from the adjacency list for this
reaction stored in the network structure. Propensities are
updated efficiently for all simulation algorithms apart
from the original Gillespie algorithm using a dependency
graph which stores for each reaction all reactions whose
propensity is changed by the firing of this reaction.

Future developments of the algorithms can easily be
included into FERN by extending one of the SSA imple-
mentations or the original Simulator class. In the same way
ODE solvers or simulators for spatial models which are
not provided by FERN can be integrated.

Observer system

FERN uses observers to trace the simulation progress and
react to events. For this purpose, each observer has to
implement functions which describe its response at spe-
cific time points of the simulations. Such responses may
occur either at the beginning or the end of a simulation,
before each step, after a reaction is fired or when a certain
time is reached. In order to be notified of these events,
observers have to be registered with the simulator.

Observer implementations are provided for tracing the
molecule numbers for some species in arbitrary intervals,
recording the firings of reactions, computing distributions
of molecule numbers at a certain time over many simula-
tion runs as well as many others. Several observers can be
registered for a simulation at the same time and most of
them can also handle repeated simulation runs, e.g. to cre-
ate average curves or curves containing all trajectories for
the individual simulation runs.

Visualization

In general, the observers use gnuplot to present their
results. Once gnuplot is installed on a system and accessi-
ble e.g. via the path variable, the Gnuplot class makes it
possible to easily create plots and retrieve them as Image
objects, save them as files or present them online in a win-
dow. Plots can be customized using appropriate gnuplot
commands.

Furthermore, FERN was used to implement Cytoscape
[35] and CellDesigner [34] plugins for running and visu-
alizing the simulations from within the Cytoscape or
CellDesigner environments (for more details see Results).

Stochastics

An important feature of FERN is that random number
generation is handled by the singleton class Stochastics.
Accordingly, only one instance of this class is instantiated
during a FERN run and all calls for random numbers are
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referred to this instance. This has several advantages. First,
the underlying random number generator can be easily
replaced if faster and better random number generators
are developed. Currently, the Mersenne Twister imple-
mentation of the Colt Project is used http://dsd.lbl.gov/
~hoschek/colt/. Second, by setting the seed value for the
random number generator explicitly, the simulation can
be made deterministic and e.g. interesting trajectories can
be reproduced. Third, it is possible to count the number
of random number generations necessary for different
implementations of SSAs.

Results

Cytoscape plugin for stochastic simulation

Cytoscape [35] is a software platform for visualizing and
integrating networks with an emphasis on biological data.
It provides a flexible plugin architecture which can be
used to enrich the platform with additional methods. We
used this functionality to create a plugin which uses FERN
to simulate networks loaded into Cytoscape (see Addi-
tional file 3). This plugin makes it possible to track the
simulation progress directly on the network. Furthermore,
it shows how FERN can be easily integrated into other
applications and how the observer system can be used to
visualize more than just the changes in molecule num-
bers. Each network readable by Cytoscape can be used for
simulation by the plugin if it consists of two distinct types
of nodes, namely reactions and molecular species. Fur-
thermore, the initial amount of each molecular species
and the reaction rate coefficient for each reaction have to
be given. These parameters and the node type (species or
reaction) can be read from arbitrary node attributes spec-
ified in Cytoscape. Additionally, the plugin provides
access to FernML files in both directions. Thus every Cyto-
scape network can be saved as FernML, and every FernML
file can be loaded into Cytoscape.

Simulations can be performed with every stochastic simu-
lation algorithm provided by FERN and the simulation
progress can be visualized directly on the network. Reac-
tion nodes flash up whenever the corresponding reaction
is fired and the species nodes are colored according to
their molecule numbers. Furthermore, simulations can be
run in real-time, which causes the algorithms to pause
between two reaction events according to the simulated
time. Trend curves of molecular species can also be cre-
ated using gnuplot.

The implementation of the Cytoscape plugin is straight-
forward. A central plugin class integrates FERN into the
Cytoscape platform by creating a menu item to start the
plugin and to load the user interface. Apart from the
classes defining the user interface, only a few additional
classes are necessary. The most important ones are a wrap-
per class implementing the Network interface to map the

Page 8 of 12

(page number not for citation purposes)


http://dsd.lbl.gov/~hoschek/colt/
http://dsd.lbl.gov/~hoschek/colt/

BMC Bioinformatics 2008, 9:356

Cytoscape network structure to FERN and an Observer
class to make the visualization possible. Additionally,
FERN provides its own Visual Style (which defines how
nodes and edges are colored and shaped) to guarantee a
proper display of the network and to handle the flashing
and recoloring of reaction and species nodes, respectively.
The Cytoscape plugin was also adapted as a plugin to
CellDesigner [34] which now offers a plugin functionality
with the recent version 4.0 beta.

Simulation of cell growth and division using observers

The Cytoscape plugin is one example how observers can
be used to track the simulation progress on various levels.
Another example which illustrates the potential of the
observer system is the simulation of the LacZ model
described by Kierzek et al. [30,36] and based on experi-
mental results by Kennell and Riezman [37]. This model
requires the simulation of cell division. After each cell
division, the stochastic simulation is continued with one
promotor molecule and all other molecule numbers
divided by 2. RNA polymerase and ribosome molecules
are assumed to remain approximately constant with natu-
ral variations. For this purpose, the number of these mol-
ecules has to be adjusted after each simulation step by
drawing from normal distributions. Furthermore, cell
growth leads to a linear volume change.

http://www.biomedcentral.com/1471-2105/9/356

With existing stochastic simulation programs, this model
can, in general, only be simulated by changing the code of
the actual simulation algorithms. Contrary to that, the
model can be easily simulated with FERN by simply defin-
ing a cell growth observer. Before each simulation step,
the observer checks if a generation has been completed. If
this is the case, all molecule numbers are adjusted as
described before. In any case, the volume size is adjusted
to account for either cell division or cell growth, and the
RNA polymerase and ribosome molecule numbers are
drawn randomly.

This approximation was also used by Kierzek et al. and
assumes that cell volume does not change during a simu-
lation step. To perform an exact simulation of volume
change, propensity functions would have to be defined
which handle the cell volume as a function of time. How-
ever, since the volume change during one reaction is
extremely small, the differences between the approximate
and exact results should be negligible. Using the cell
growth observer, we simulated the LacZ model with the
enhanced Gillespie algorithm. Our results for the concen-
tration of the LacZ protein (see Figure 6) show clearly the
periodic oscillation in the protein numbers due to cell
growth and division. From these results, we can estimate
the rate of LacZ protein synthesis by a linear fit to the
increasing LacZ concentrations during the first generation.
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Figure 6

Results for the LacZ model. Average results of 1,000 simulations are shown for the LacZ protein over ten bacterial gener-
ations (red). After each generation (2100 s) the number molecules for each species was divided by 2 to simulate cell division.
The blue line shows a linear fit to the increasing LacZ concentration during the first generation. This yields a rate of protein

synthesis of 21s-!.
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Here, we obtained a rate of protein synthesis of 21s!
which is close to the 225! obtained by Kierzek et al. [30]
and the 20s! reported by Kennell and Riezman [37].

The LacZ model both in FernML and SBML format and the
code for running the simulation is included with the
FERN distribution along with several other models such
as the model of the EGF signaling pathway by Lee et al.
[38].

Accuracy of stochastic simulation algorithms

To test the accuracy of the implemented stochastic simu-
lation algorithms we used the Discrete Stochastic Models
Test Suite (DSMTS) [39]. This test suite provides 36 sto-
chastic models in the SBML format which have been
solved either analytically or numerically. To test the
implementation of a stochastic simulation algorithm,
simulations have to be performed a large number of times
(in general 10,000 times) for each individual model. The
test is failed for a model if the distribution of the results is
statistically significantly different from the known under-
lying distribution.

All three exact stochastic simulation algorithms in FERN
were tested with the DSMTS test suite. Of the 36 models
only the test 3.4 is failed. Models 1.10 and 1.11 are
rejected because hasOnlySubstanceUnits is not declared
to be true. If the rejection is overridden, Model 1.11 is
failed, too. According to the DSMTS user guide, failure is
expected for this model due to the inappropriate defini-
tion of the SBML model. In model 3.4, molecule numbers
are reset whenever one molecule exceeds a certain
number. This may lead to larger variations than accounted
for by the thresholds used in the tests.

To asses our results we also evaluated gillespie2, the sto-
chastic simulation program by some of the authors of the
test suite [29]. Since the version of gillespie2 available
online does not support level 2, version 3 of SBML, only
33 of the 36 models could be evaluated. We found that
tests for model 1.11 and 3.4 are also failed, as well as tests
for models 1.3, 1.14, 3.6 and 3.7. Two other models (1.17
and 1.18) could not be simulated as the rate law defini-
tion was not accepted by the program. Furthermore, we
compared the runtime of FERN and gillespie2 on the
DSMTS models which could be run by both programs and
found that the runtime of FERN was significantly less than
the runtime of gillespie2 (see Additional file 3).

Runtime performance

Runtime performance of the exact SSA implementations
of FERN was compared against the performance of the
Gillespie and Gibson-Bruck algorithms of ISBJava and the
Gillespie algorithm of gillespie2. For this purpose, simu-
lations were performed for the EGF signaling pathway by

http://www.biomedcentral.com/1471-2105/9/356

Lee et al. [38] which contains 39 molecular species and 19
reversible and 12 irreversible reactions. For each imple-
mentation, 1,000 simulations were performed for a simu-
lated time of 800 seconds and results were obtained for
the activated enzymes of the signaling cascade (see Figure
5 and Additional file 3).

Our results show that the implementations of the original
Gillespie and Gibson-Bruck algorithm of FERN are always
more efficient for the FernML network than the imple-
mentations provided by ISBJava. For the SBML network,
the performance is similar for the Gibson-Bruck simulator
but significantly worse for the original Gillespie algo-
rithm. This is due to the evaluation of the MathML expres-
sions required at each step of the simulation for each
molecular species. However, this allows for more complex
definitions of kinetic laws than possible in ISBJava which
supports SBML only up to level 1, version 2 without
MathML. If we compare FERN's implementation of the
Gillespie algorithm to gillespie2 which also supports
MathML, we observe that FERN is more than three times
faster than gillespie2 on the SBML network.

Furthermore, the enhanced implementation of the
Gillespie algorithm provided by FERN is more efficient
both for FernML and SBML than any of the exact methods
provided by ISBJava. This shows that the powerful
observer system of FERN does not come at the cost of a
reduced runtime performance. Accordingly, FERN is a use-
ful library for stochastic simulation even if the observer
tools are not used.

Discussion

In this article, we presented FERN, a Java framework for
modeling and simulating biological reaction networks.
FERN is subdivided into three layers which are repre-
sented by either one interface or abstract class. The func-
tionalities of the package are then provided by
implementations of these classes. Accordingly, FERN can
be easily extended. For instance, any network class can use
the algorithms of FERN by implementing the Network
interface. New simulation algorithms can be imple-
mented easily by overriding only a few methods of the
abstract Simulator class and filling them with the new
functionality. In this way, arbitrary FERN-readable net-
works can be simulated in different ways and the presen-
tation system can be exploited.

It is possible to do reasonable simulations with FERN in
just five lines of Java code. Each of the five steps can be
expanded to cover more complex scenarios and simula-
tions can be controlled at different levels. For instance, to
simulate cell growth, an observer can be modified to
change the volume of the simulation space. Alternatively,
an interesting subnetwork can be selected on which simu-
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lations can then be run. FERN can be easily integrated into
other applications making its functionalities available
within different environments. We have illustrated this by
implementing FERN plugins to Cytoscape and CellDe-
signer. With only few additional classes, the Cytoscape
plugin enables the users to follow the simulation progress
directly on the network. This was made possible by the
powerful observer system provided by FERN which is one
of its major advantages compared to other available sim-
ulation programs.

The accuracy of our SSA implementations was analyzed by
applying them to the Discrete Stochastic Models Test
Suite. All three of the exact simulation algorithms passed
94.4% of the DSMTS models which is significantly better
than the performance of gillespie2 which passes only
80.6% of the tests. This shows that the SSAs provided by
FERN are highly accurate as well as fast. Even though
FERN is implemented in Java which is often claimed to be
less efficient than C, FERN's original gillespie algorithm is
significantly faster than the C implementation of
gillespie2 (see Additional file 3).

Compared with the ISBJava library, FERN has several
advantages. First, FERN is more flexible than ISBJava and
offers more functions for tracking and interacting with
simulations. Second, it implements both a hybrid algo-
rithm as well as the most current tau-leaping methods
which resolve the problem of negative concentrations.
Furthermore, its stochastic simulation algorithms are sig-
nificantly faster than the ISBJava implementations.
Finally, it supports the current version of SBML and allows
arbitrary rate laws.

Conclusion

FERN is an easy-to-use framework for modeling and sim-
ulating reaction networks and can be easily integrated into
other systems biology applications implemented in Java.
It provides state-of-the-art stochastic simulation algo-
rithms, efficient representations of networks with several
input and output options and various ways of tracing and
visualizing simulation data. Although some available sto-
chastic simulation programs offer a few specialized fea-
tures not yet supported by FERN such as e.g. time-delayed
dynamics, none of them offer such a wide range of fea-
tures and can be extended to new features as easily as
FERN. Thus, FERN is a useful tool for biochemical net-
work analysis or the development of new analysis meth-
ods or applications.

Availability and requirements
e Project name: FERN

¢ Project home page: http://www.bio.ifi.lmu.de/FERN

http://www.biomedcentral.com/1471-2105/9/356

e Operating system(s): Platform independent
¢ Programming language: Java

e Other requirements: Java 1.5 or higher; Colt package

http://dsd.Ibl.gov/~hoschek/colt/; JDOM http://www.jdo
m.org/

e Optional: libSBML http://www.sbml.org/software/
libsbml/ for SBML version 2 level 1-3 support; Cytoscape
2.4.0 or higher http://www.cytoscape.org/ to use the Cyto-
scape plugin; CellDesigner 4.0 beta or higher http://
www.systems-biology.org/cd/ to use the CellDesigner

plugin; gnuplot http://www.gnuplot.info/.

e License: FERN is freely available under the GNU Lesser
General Public License (LGPL).
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Additional material

Additional file 1

FERN distribution, Version 1.3. This archive contains the FERN source
code and binaries as well as documentation and example models in
FernML and SBML.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-356-S1.zip|

Additional file 2

FERN user guide. The user guide provides instructions on installing and
using FERN, as well as a description of the software architecture and a
specification of FernML and supported features of SBML.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-356-S2.pdf]

Additional file 3

Supplementary Figures. This file contains Supplementary Figures on
FernML, the simulation cycle, the Cytoscape plugin and runtime compar-
isons between FERN and gillespie2.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-356-S3.pdf]
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