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Abstract
Background: Photorhabdus luminescens and Yersinia enterocolitica are both enteric bacteria which
are associated with insects. P. luminescens lives in symbiosis with soil nematodes and is highly
pathogenic towards insects but not to humans. In contrast, Y. enterocolitica is widely found in the
environment and mainly known to cause gastroenteritis in men, but has only recently been shown
to be also toxic for insects. It is expected that both pathogens share an overlap of genetic
determinants that play a role within the insect host.

Results: A selective genome comparison was applied. Proteins belonging to the class of two-
component regulatory systems, quorum sensing, universal stress proteins, and c-di-GMP signalling
have been analysed. The interorganismic synopsis of selected regulatory systems uncovered
common and distinct signalling mechanisms of both pathogens used for perception of signals within
the insect host. Particularly, a new class of LuxR-like regulators was identified, which might be
involved in detecting insect-specific molecules. In addition, the genetic overlap unravelled a two-
component system that is unique for the genera Photorhabdus and Yersinia and is therefore
suggested to play a major role in the pathogen-insect relationship. Our analysis also highlights
factors of both pathogens that are expressed at low temperatures as encountered in insects in
contrast to higher (body) temperature, providing evidence that temperature is a yet under-
investigated environmental signal for bacterial adaptation to various hosts. Common degradative
metabolic pathways are described that might be used to explore nutrients within the insect gut or
hemolymph, thus enabling the proliferation of P. luminescens and Y. enterocolitica in their
invertebrate hosts. A strikingly higher number of genes encoding insecticidal toxins and other
virulence factors in P. luminescens compared to Y. enterocolitica correlates with the higher virulence
of P. luminescens towards insects, and suggests a putative broader insect host spectrum of this
pathogen.

Conclusion: A set of factors shared by the two pathogens was identified including those that are
involved in the host infection process, in persistence within the insect, or in host exploitation. Some
of them might have been selected during the association with insects and then adapted to
pathogenesis in mammalian hosts.
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Background
Pathogenicity as well as symbiosis plays a key role in the
interaction of bacteria with their hosts including inverte-
brates. Despite the relevance of this relationship for the
evolution of bacterial pathogenicity, few studies have
addressed this subject at the genomic level. We therefore
decided to perform a comparative study of the genomes of
Photorhabdus luminescens and Yersinia enterocolitica. The
former bacterium is a representative of pathogens highly
virulent towards insects, but apathogenic against men. Y.
enterocolitica, an example of a primarily human pathogen,
also confers toxicity to insects, but is less toxic towards
these hosts than P. luminescens.

Members of the genus Yersinia are primarily considered as
mammalian pathogens. However, Y. pestis, a blood-borne
pathogen and the etiological agent of human plague, has
long been known to be transmitted by insects, specifically
by rat fleas. Y. enterocolitica strains have been isolated from
flies that are assumed to play an important role in food
contamination by this pathogen [1-3], and Y. pseudotuber-
culosis strains were recovered from fly larvae isolated in the
wild [4]. More recent data strongly support the idea that
yersiniae are capable to interact with insects. Loci encod-
ing the insecticidal toxin complexes (Tc) have been iden-
tified in the genomes of Y. pestis KIM [5], Y.
pseudotuberculosis [6], and Y. enterocolitica [7]. Y. pseudotu-
berculosis, in contrast to Y. pestis, has been shown to be
orally toxic to flea [8]. This toxicity revealed to be inde-
pendent of tc genes, suggesting that loss of one or more
insect gut toxins is a critical step in the change of the Y. pes-
tis lifestyle compared with the Y. pseudotuberculosis and
thus in evolution of flea-borne transmission [8]. While Y.
enterocolitica and Y. pseudotuberculosis have diverged
within the last 200 million years, Y. pestis has emerged
from Y. pseudotuberculosis only 1,500–20,000 years ago
[9]. Bacterial lysates both of Y. enterocolitica and Y. pseudo-
tuberculosis are toxic for Manduca sexta neonates, and sig-
nificant levels of natively or heterologously expressed
toxins were observed in both species at 15°C, but not at
mammalian body temperature [7,10]. Furthermore, Y.
pseudotuberculosis and Y. enterocolitica have been demon-
strated to adhere to and invade cultivated insect cells [10].
Thus, the interaction of Y. enterocolitica with insects is an
important link in the ecological range of bacteria-host
interactions extending from entomopathogenic to
humanpathogenic bacteria.

In contrast, Photorhabdus luminescens is predominantly an
insect pathogenic enterobacterium which maintains a
mutualistic interaction with heterorhabditid nematodes,
and can infect a wide range of insects [11,12]. Interest-
ingly, another Photorhabdus species, P. asymbiotica, has
been described as a human pathogen. It was isolated from
human clinical specimens where the cells caused locally

invasive soft tissue infections [13,14]. It is assumed that
these strains are associated with spiders, because spider
bites where attended with Photorhabdus human infections
[15]. However, bacteria of the species P. luminescens are
exclusively known to be associated with nematodes and
insects. Generally, the bacteria colonise the gut of the
infective juvenile stage of the nematode Heterorhabditis
bacteriophora. Upon entering an insect host, the nema-
todes release the bacteria by regurgiation directly into the
insect hemocoel, the open circulatory system of the insect.
Once inside the hemocoel, the bacteria replicate rapidly
and establish a lethal septemica in the host by the produc-
tion of virulence factors such as the insecticidal toxin com-
plexes that kill the insect within 48 hours. Bioconversion
of the insect's body by P. luminescens produces a rich food
source for the bacteria as well as for the nematodes. Nem-
atode reproduction is supported by the bacteria, probably
by providing essential nutrients that are required for effi-
cient nematode proliferation [16]. Further properties of P.
luminescens are the production of many antimicrobial sub-
stances to defend the insect cadaver from bacterial com-
petitors, and glowing due to bacterial luciferase
production. When the insect cadaver is depleted, the nem-
atodes and bacteria reassociate and emerge from the car-
cass in search of a new insect host (Fig. 1, right
circle)[17,18]. Photorhabdus species exist in two forms,
designated as primary and secondary phenotypic colony
variants, which differ in morphological and physiological
traits. Primary variants are found to produce extracellular
protease, extracellular lipase, intracellular protein crystals
CipA and CipB, antibiotics, and are bioluminescent. Sec-
ondary variants lack protease, lipase and antibiotic activ-
ity, and bioluminescence is strongly decreased. They also
differ in colony morphology, pigmentation, dye adsorp-
tion, metabolism, and the ability to support growth and
reproduction of the nematodes. It is assumed that primary
variants correspond to the nematode-associated form,
and secondary variants to the insect-associated form of
the bacteria [19,20]. Therefore, P. luminescens serves as an
ideal model to study the switch from a symbiotic state
with nematodes to one in which the bacterium is patho-
genic to insects [21,22].

In the following comparative genome analysis, we exam-
ined the extent to which P. luminescens and Y. enterocolitica
share factors that are probably attributed to insect associ-
ation. We identified genes and the corresponding proteins
involved in signalling, regulation, pathogenicity, as well
as in metabolism, and suggest their possible function dur-
ing colonization and infection of non-mammals. The
results obtained not only improve our understanding of
the biology of both pathogens, but also reveal some
implications on the evolution of invertebrate and verte-
brate virulence factors.
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Results and Discussion
The genomes of P. luminescens ssp. laumondii TT01 and Y.
enterocolitica 8081 have completely been sequenced. The
genome of the latter strain has a size of ~4.6 Mbp and
encodes 4037 putative proteins [23]. Its genome size is
exceeded by the ~5.7 Mbp genome of P. luminescens
encoding 4839 putative proteins [24]. To uncover candi-
date genes which are involved in insect pathogenicity, a
total of 424 (P. luminescens) and 386 (Y. enterocolitica)
genes and proteins predicted to belong to one of the func-
tional categories described in the text were analysed for
their presence or absence in both organisms, and for their
degree of similarity. House-keeping genes and genes of
unknown function were not considered. The set of shared
genes or proteins, respectively, indicates mechanisms of
regulation, virulence and metabolic pathways similar for
both pathogens, and moreover unraveled novel candidate

genes/proteins which presumably are involved in insect
association and/or pathogenicity. Proteins which are
solely present in either one of the organisms suggest a dis-
tinct function of these factors, or different strategies fol-
lowed by the two pathogens during their life cycles.

Sensing, signalling, and regulation
Bacteria have evolved several regulation mechanisms to
ensure a proper answer to changing environments. Upon
entering their insect hosts, P. luminescens and Y. enterocol-
itica are challenged by varying and detrimental surround-
ing conditions which they have to sense and adapt to for
further persistence. In addition, both pathogens must be
capable to withstand the insect's immune response. In the
following chapter we compare sensing and regulating
mechanisms of the two insect-associated organisms, P.
luminescens and Y. enterocolitica, thus identifying strategies

The life cycles of P. luminescens and Y. enterocoliticaFigure 1
The life cycles of P. luminescens and Y. enterocolitica. Right: P. luminescens is an endosymbiont of the nematode species H. 
bacteriophora, both living in a highly specific symbiosis. When the nematodes once have infected the insect larvae, they release 
the highly entomopathogenic bacteria directly into the hemocoel, resulting in a rapid death of the host. The carcass is a rich 
food source allowing proliferation of both the nematodes and the bacteria. When the cadaver is depleted, nematodes and bac-
teria reassociate, emerge from the insect, and scan the soil for new victims. Left: Y. enterocolitica is found in the soil, in water, in 
meat or within the gastrointestinal tract of birds [130] or mammals, but is primarily considered as a human pathogen. Middle: 
Y. enterocolitica are able to infect mammals, but are also toxic to insects which are assumed to play a role in evolution and 
transmission of this bacterium. In contrast to P. luminescens which is infectious only towards insect larvae, Y. enterocolitica has 
also been isolated from adult insects [1]. The life cycle stage shared by P. luminescens and Y. enterocolitica corresponds to a com-
mon pool of virulence factors as shown by genome dissection presented here.
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which might be important for insect colonization and
pathogenicity.

Two-component signal transduction
To sense their environment and to react rapidly to chang-
ing surrounding conditions, bacteria have evolved so
called two-component systems (TCSs) [25] which have
been found to be involved in the control of virulence or
symbiosis, in metabolite utilization, and also in the adap-
tation to various stress factors [26]. A basic TCS consists of
two proteins, a sensor histidine kinase and a response reg-
ulator performing a His-Asp phosphotransfer. The con-
sisting domains or proteins can also be organized as more
complex systems using a His-Asp-His-Asp phosphorelay.
The number of TCSs ranges from zero in Mycoplasma gen-
italium to 80 in Syncheocystes spp. [25,27]. Eighteen of
these TCSs are present in P. luminescens, and 28 in Y. ente-
rocolitica, of which 17 are shared by both organisms (Fig.
2, depicted in grey). The additional set of eleven TCSs in
Y. enterocolitica (Fig. 2, shown in red) might reflect the
high number of different environments this pathogen is
exposed to during its life cycle, namely soil, water and
invertebrates as well as mammalian hosts. In contrast, P.
luminescens cells are primarily restricted to symbiosis with
the nematode species H. bacteriophora and the insect lar-
vae as hosts, thus encountering a more homeostatic
milieu. Among the eleven TCSs of Y. enterocolitica not
shared by P. luminescens are duplicates of the CitA/CitB
system (YE2505/YE2506 and YE2654/YE2655) and of the
LytS/LytR system (YE1228/YE1227 and YE4014/YE4015).
The principal biological reason for this redundancy
remains unclear. Interestingly, one TCS (Plu0102/Plu103
and YE4185/YE4186) is unique for the genera Photorhab-
dus and Yersinia. Both sensor kinases Plu0102 and YE4185
are of moderate similarity (31.5% identity, 48.5% homol-
ogy). They are anchored to the membrane with one trans-
membrane domain, and have a large periplasmic sensing
domain which is proposed to bind a specific ligand.
Therefore, Plu0102 and YE4185 are interesting candidates
for unravelling invertebrate-specific signals. The putative
target genes of Plu0102/Plu0103 and Ye4185/Ye4186,
plu0104 and ye4187, respectively, are homologues and
encode putative secreted proteins which might act in a
similar, yet unknown manner.

All TCSs present in both organisms are depicted in grey in
Fig. 2, and include PhoP/PhoQ, and AstS/AstR (BvgS/
BvgR) which have been identified to be involved in viru-
lence [28]. The role of PhoP/PhoQ in regulating virulence
gene expression has been characterized mainly in Salmo-
nella species, but has also been shown, in addition to three
other TCSs, to be important for virulence of Y. pseudotuber-
culosis [29,30]. In P. luminescens, this TCS controls the
expression of the pbgPE operon which is involved in lipid
A modification and thus plays a role in colonization and

infection of the invertebrate hosts [18,31]. Furthermore,
PhoP has also been found to be important for virulence of
Y. pestis [32], but its function in Y. enterocolitica during its
insect-associated phase remains hypothetical. The AstS/
AstR TCS is required for the correct timing of phase variant
switching in P. luminescens [28]. BvgS/BvgR is the TCS of
Y. enterocolitica that corresponds to AstS/AstR. Because Y.
enterocolitica is not known to switch to another pheno-
typic variant, the possible role in virulence regulation still
remains to be elucidated. Both Y. enterocolitica and P. lumi-
nescens produce the KdpD/KdpE system that regulates K+

homeostasis and osmotic stress. It has recently been
found that the Kdp-system of P. luminescens is important
for insect pathogenicity (S. E. Reynolds and N. R. Water-
field, University of Bath, UK, personal communication).
Therefore, the KdpD/KdpE system is also a further candi-
date system which might be involved in the regulation of
insecticidal activity of Y. enterocolitica.

The only TCS of P. luminescens absent in Y. enterocolitica is
TctE/TctD (Fig. 2, marked in blue), which, however, is
found in the genomes of Y. intermedia and Y. frederiksenii.
Beside these microorganisms, TctE/TctD homologues
controlling the transport of tricarboxylic acid (see section
"Tricarboxylate utilization") are present in the genera Sal-
monella, Burkholderia, Agrobacterium, Bordetella, Collinsella,
Xylella, Xanthomonas, and Pseudomonas, particularly P.
entomophila, all of which are found in association with
eukaryotes.

To summarize, the comparison of the P. luminescens and
the Y. enterocolitica TCSs reveals a basal set of signal sens-
ing mechanisms which are used by both organisms.
Whether the stimulons or regulons which are regulated by
these sets of TCSs are also similar remains to be examined.
In comparison to P. luminescens, Y. enterocolitica uses an
expanded set of TCSs, possibly to adapt to its various hosts
(Fig. 1).

Quorum sensing-like gene regulation
Regulation by AHL-LuxR-like receptors
Virulence, bioluminescence, mutualism, antibiotic pro-
duction and biofilm formation are often regulated by
LuxI/LuxR quorum sensing systems in Gram-negative bac-
teria. They produce membrane diffusible signalling mole-
cules, acyl homoserine lactones (AHLs), which are sensed
by the receptor/regulator LuxR when exceeding a thresh-
old concentration. These AHLs are produced by an autoin-
ductor synthase named LuxI. Upon autoinductor-
binding, the receptor LuxR binds to the promoter/opera-
tor regions of the target genes or operons, resulting in the
regulation of gene expression in response to the cell
number [33]. Y. enterocolitica possesses a typical quorum
sensing pair of homologues, YenI/YenR (YE1600/
YE1599), and it has recently been shown that swimming
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Two-component systems in P. luminescens and Y. enterocoliticaFigure 2
Two-component systems in P. luminescens and Y. enterocolitica. 18 TCSs are present in P. luminescens, and 28 TCSs in 
Y. enterocolitica. Both organisms share 17 of these systems (grey colour). One is singular to P. luminescens (coloured in blue), but 
11 to Y. enterocolitica (red colour). Basic TCSs (His-Asp phosphotransfer) and complex phosphorelay systems (His-Asp-His-Asp 
phosphorelay) are distinguished by different drawings. The 17 systems shared by the two pathogens, and also present in other 
(enteric) bacteria, are CpxAR and BaeSR (Envelope stress, [131]), CheAYW (motility, [132]), PhoRB (Phosphate starvation, 
[133]), UhpBA (Sugar uptake, [134]), ArcBA (aerob/anaerob respiration, [135]), BarA/UvrY (carbon metabolism, motility, bio-
film formation, [136]), RcsC/RcsD (capsular synthesis, virulence, [137]), KdpD/KdpE (K+-limitation, osmotic stress, [138]), 
EnvZ/OmpR (osmotic stress, [139]), NtrB/NtrC and GlnL/GlnG (nitrogen assimilation, [140]), PhoQ/PhoP (Mg2+ sensing, viru-
lence, [141]), BvgSR/AstSR (virulence, phenotypic switching, [28, 142]), RcsC/RcsB and YojN/RcsB (capsule synthesis, cell divi-
sion, motility, virulence, [143, 144]), and YfhK/YfhA, a system of unknown function. Furthermore, a TCS exists in both 
organisms which is unique for the genera Photorhabdus and Yersinia and cannot be found with a comparable homology/identity 
degree in any other yet known organism (Plu0102/Plu0103 and YE4185/YE4186). The 11 systems which are present in Y. ente-
rocolitica, but not in P. luminescens, are YsrS/YsrR (activation of a Yersinia specific type-III secretion system, [87]), LytS/LytR (cell 
autolysis, [145]), CitA/CitB (citrate metabolism, [146]), TtrS/TtrR (tetrathionate respiration, [99]), and six systems of unknown 
function (YE3579/YE3578, YE1202/YE1201, YE1684/YE1683, CreC/BlrA, RstB/RstA, and BasS/BasR).
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and swarming motility is regulated by 3-oxo-C6-AHL and
C6-AHL, which are synthesized by YenI [34]. In Y. pestis,
the production of YspI and YspR, the homologues of YenI
and YenR, is induced at 26°C (Table 1). Moreover, we
identified a second AHL-LuxR regulator, YE1026, which
lacks a separate AHL synthase (Fig. 3). It is not known if
this receptor also binds the AHLs produced by YenI. In the
genome of P. luminescens, two genes encoding putative
AHL-LuxR-like receptors, plu0320 and plu4562, but no luxI
genes are present (Fig. 3). This suggests that P. luminescens
does not produce its own AHL signalling molecule, but
might be able to sense those produced by other bacteria
and therefore to detect mixed microbial communities as
demonstrated for Salmonella enterica and Escherichia coli
[35-37]. A similar function in Y. enterocolitica might be
provided by YE1026. It is interesting to note that Sodalis
glossinidius strain morsitans, an endosymbiont of the tse tse
fly Glossina morsitans morsitans [38], also has two ponten-
tial AHL-LuxR receptors, SG1740 and SG0285, but no luxI
homologue (Fig. 3). Instead of producing AHLs to regu-
late quorum dependent genes, a common strategy of
insect-colonizing bacteria might be the detection of AHLs
as a signal for the presence of other bacteria such as those
colonizing the insect intestinal tract or living in soil.

Regulation by AI-2
Beside AHL, other putative quorum sensing signalling
molecules have been identified. One of them is autoin-
ductor 2 (AI-2), furanosyl borate diester, which is synthe-
sized by the luxS product [39,40] of which homologues
are present in P. luminescens and Y. enterocolitica (plu1253,
ye0839). It has been shown that the luxS pathway nega-
tively controls the expression of genes for carbapenem
antibiotic biosynthesis in P. luminescens [41]. Overall,
more than 300 AI-2 regulated genes involved in regula-
tion, metabolic activity, stress response and pathogenicity
are known in P. luminescens [42]. For example, the expres-
sion of tcdA1 and tccC1 encoding subunits of the insecti-
cidal toxin complexes and the production of mcf2
encoding the "Makes caterpillar floppy" toxin was identi-
fied to be luxS dependent. The ΔluxS mutant also showed
decreased expression of virulence factors such as the cyto-
toxic protein CcdB, the hemolysin secretion protein HlyD
(Plu0635), and the toxin ABC transporter subunits RtxD/
RtxB. Homologues of these proteins are present in Y. ente-
rocolitica (see chapter 2), suggesting their possible regula-
tion by AI-2 also in this bacterium. Furthermore, the P.
luminescens luxS-negative strain exhibited decreased bio-
film formation, increased type IV/V pilus-dependent
twitching motility, and attenuated virulence against insect
larvae [42]. Taken together, a similar and AI-2 dependent
mechanism for the regulation of insect colonization and
insect pathogenicity might be used by both organisms.
Whether they sense self-produced or external AI-2, or a
combination of both, indicating a quorum sensing mech-

anism or a regulation similar to AHL as described above,
remains to be elucidated.

Regulation by PAS_4/LuxR-like receptors
In P. luminescens, the amount of luxR-like genes is overrep-
resented with 39 copies in the genome. 35 of these poten-
tial LuxR-like receptors exhibit PAS_4 signal binding
domains instead of an AHL-binding domain, and two
have a signalling domain with a yet unidentified motif
(Fig. 3). Most of the genes are located in two large gene
clusters (plu0918-0925 and plu2001-2019). Interestingly,
eleven of those LuxR-like receptors are present in Y. ente-
rocolitica of which five are located in a cluster (ye0035-
0039). Nine of these have a so-called PAS_4 signal bind-
ing domains of yet unknown function. It is interesting to
note that there is only one bacterium else, the insect colo-
nizing S. glossinidius, whose genome also carries a series of
unclustered genes coding for PAS_4/LuxR-like receptors,
indicating that this kind of receptors plays a role during
insect infection. PAS-domains have been suspected to act
as insect juvenile hormone (JH) receptors in the fruit fly
Drosophila melanogaster [43,44]. The methoprene-tolerant
gene (met, also called Resistance to Juvenile Hormone
Rst1JH) of D. melanogaster encodes a helix-loop-helix
transcriptional regulator combined with a PAS_3 domain
[45]. Met has been shown to bind JH at physiological con-
centrations and is therefore suspected to act as a JH recep-
tor [46,47]. Therefore, the potential PAS_4/LuxR-like
receptors of P. luminescens, Y. enterocolitica, and S. glossi-
nidius might sense JH or other eukaryotic hormones of the
insect to adapt their gene expression to the insect host.
The high number of 35 highly homologous receptor pro-
teins in P. luminescens might be the reason for the wide
insect host spectrum this pathogen is capable to infect.
Although Y. enterocolitica protein extracts confer toxicity
against M. sexta larvae [7], its host spectrum still remains
to be defined. The difference in the number of the uncom-
mon LuxR-like receptors (35 in P. luminescens, nine in Y.
enterocolitica) gives rise to speculations that the insect host
spectrum is constricted for Y. enterocolitica compared with
P. luminescens. This hypothesis is underlined by the fact
that not more than five PAS_4/LuxR-like receptors are
present in S. glossinidius for which only one insect host has
been reported.

Regulation by uncommon LuxR-like receptors
LuxR-like receptors in Y. enterocolitica with a yet unidenti-
fied signalling binding-site are YE2705 and YE3014, both
of which are also present in Y. pestis (YPO2955 and
YPO2593) and in S. glossinidius (SGP1_007, SG1174,
SG1480, and SG1698), but not in P. luminescens (Fig. 3).
It might be possible that signalling molecules of mam-
mals and hormones of adult insects are sensed via these
receptors by Y. enterocolitica and S. glossinidius, respec-
tively, hosts which P. luminescens does not specifically
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Table 1: Low-temperature induced genes and proteins and their putative function during the bacterial lifestage in insects. The 
differential expression was observed in (1, 2, 8, 9, 10, 12) Y. enterocolitica [7, 78, 87, 94, 147, 148], (3, 4, 7) Y. pestis [149-151], (5) Y. 
ruckeri [152], (11) Y. pseudotuberculosis [153] and (6) P. luminescens [154].

Class Name Function Y. enterocolitica P. luminescens Distribution among 
bacterial genera

Possible role in insect 
gut/hemolymph

Substrate 
transport

gltP/dctA (1) glutamate-aspartate 
symport/transport of 
C4- dicarboxylates 
across the membrane

0310 (gltP)/4067 (dctA) dctA (Plu3205) ubiquitous uptake of peptides following 
protease activity

- (1) permease YE3697 Plu4591 ubiquitous unknown
uhpABC (1) hexose phosphate 

transport
YE4089-4087 Plu0815-0813 ubiquitous exploitation of carbon 

sources
mgtC (1) Mg2+ transport ATPase 

protein
YE2586 Plu1843 ubiquitous virulence factor in 

Salmonella
hemHFRS (3, 4) hemin storage YE2481-2484 no homologue ubiquitous storage of excess hemin
irp1/irp2 (7) yersiniabactin 

biosynthesis
YE2617/YE2618 Plu2320/Plu2321 ubiquitous iron acquisition

fepG (5) iron-siderophore 
transport

YE3620 Plu4625 ubiquitous iron acquisition

Membrane 
proteins

- (1) unknown YE1324 no homologue ubiquitous unknown

ompN homologue (1) pore formation YE2463 Plu1751 ubiquitous osmolarity
crcB (1) unknown YE0964 Plu1290 ubiquitous unknown
- (1) unknown YE2063 no homologue Yersinia, Burkholderia, 

Pseudomonas
unknown

- (1) hypothetical membrane 
protein

YE2063 no homologue Yersinia, Burkholderia, 
Pseudomonas,

unknown

rfb (9) synthesis of LPS O 
antigen

YE3072-3087 Plu4817-4819, 
Plu4824, Plu4831

ubiquitous blocking the access of bile 
salts and complement to the 
outer membrane

- (1) putative lipoprotein YE2793 no homologue species-specific unknown
Substrate 
utilization

urease (1, 3, 10) urea amidohydolase YE0951-0958 Plu2171-2177; 
transporter missing

ubiquitous pH adaptation, ammoniak 
degradation

hutH (1) histidine ammonia-lyase YE3021/YE4094 Plu3192 ubiquitous histidine utilization
prtA (6) alkaline metalloprotease YE4052 Plu0655 Yersinia, Serratia, 

Pseudomonas, Erwinia
bioconversion

glgB (1) 1,4-a glucan branching 
enzyme

YE4013 no homologue ubiquitous storage of surplus primary 
carbohydrates

Regulation arcAB (1) TCS controlling the 
response to respiratory 
conditions

YE0595 Plu0562 ubiquitous (virulence) regulation during 
anaerobic growth

- (1) putative transcription 
regulatory protein

YE1436 Plu2862 Yersinia unknown

- (1) EAL domain; 
hypothetical

YE4063 no homologue Yersinia, Shigella, 
Escherichia

regulation of virulence via c-
di-GMP

- (1) EAL domain; 
hypothetical

YE1324 no homologue Yersinia, Shigella, 
Escherichia, Vibrio

regulation of virulence via c-
di-GMP

yenI/yenR (yspI/yspR) 
(3)

N-acylhomoserine 
lactone synthase YenI/
transcriptional regulator 
YenR

YE1600/YE1599 no homologue Sodalis, Serratia, Erwinia, 
Aeromonas, 
Pectobacterium, 
Pseudomonas, 
Agrobacterium,

quorum sensing 
contributing to the 
regulation of virulence gene 
expression

Virulence 
factors

srfA (1) putative virulence factor, 
ssrAB activated in S. 
typhimurium

YE2057 no homologue Yersinia, Salmonella, 
Pseudomonas, 
Enterobacter

unknown

fhaC (1) hemolysin secretion YE0480 no homologue Yersinia, Burkholderia, 
Pseudomonas, Bordetella, 
Haemophilus

cytolytic effect on 
immunocytes and hemolytic 
effect on blood cells

yst (2) heat-stable enterotoxin not annotated no homologue Yersinia release of nutrients from 
gut cells

tcdA, tcdB and tccC-
like elements (1)

insecticidal toxin 
complex

tc-PAIYe numerous loci Yersinia, Xenorhabdus, 
Serratia

cytotoxic activity against 
insect tissue

phlA/B (5) hemolysin secretion YE2407/YE2408 Plu0316/Plu0317 ubiquitous cytolytic effect on 
immunocytes and hemolytic 
effect on blood cells

invE (11) adhesion/invasion YE3547 no homologue ubiquitous colonization of insect gut
ysa (12) T3SS see Fig. 5 see Fig. 5 Yersinia, Burkholderia, 

Erwinia, Xanthomonas, 
Salmonella

colonization of insect gut

fleABC etc.(1) flagellar genes Flag-1 genes Flag-1 genes ubiquitous motility
yplA (8) Phospholipase YE1005 Plu3370 Yersinia, Serratia, 

Xanthomonas
survival within the insect 
host
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interact with during its life cycle. In P. luminescens, two
LuxR-like receptors with a yet unidentified signalling
binding site are present, Plu4274 and Plu1817, the latter
of which is shared by Y. enterocolitica (YE1621), but not by
S. glossinidius.

Universal stress proteins
Universal stress proteins (Usp) are small soluble proteins
found in bacteria, archaea and plants. The production of
these proteins is induced upon global stress conditions
such as nutrient starvation, heat stress, osmotic stress, oxi-
dative stress, or the presence of toxic compounds. The pro-
tein family is divided into the UspA subfamily and the
UspFG subfamily. The functional mechanism of these

Usp proteins is not known [48]. Because P. luminescens
and Y. enterocolitica are exposed to those stresses upon
infecting and colonizing the insect host, we compared
their set of Usp proteins (Table 2). Both genomes share an
UspA-like (Plu0121 and YE4050) and an UspE-like
(Plu2178 and YE2076) homologue. In E. coli, the
sequence motif of Usp proteins is not highly conserved:
UspA and UspC show a sequence identity of 37% and a
homology of 57%, for example. In contrast, the UspA and
the UspE homologues of P. luminescens and Y. enterocol-
itica are nearly similar, indicating that an identical stress
response is regulated by these proteins. Homologues of
these proteins are also present in P. aeruginosa, namely
PA4352 and PA3309, a tandem-type Usp protein and a

Table 2: Universal Stress Proteins (Usp) in P. luminescens and Y. enterocolitica

Name Y. enterocolitica P. luminescens Coherence with insect association

UspA YE4050 Plu0121 infection, colonization, anaerobiosis? switch to pathogenicity
UspE YE2076 Plu2178 infection, colonization, anaerobiosis?
UspC YE2583 no homologue ?
UspG no homologue Plu2030, Plu2032 ?

LuxR-like receptors in P. luminescens, Y. enterocolitica, and S. glossinidiusFigure 3
LuxR-like receptors in P. luminescens, Y. enterocolitica, and S. glossinidius. The five types of different LuxR-like recep-
tors and their homologues in these three organisms are shown (see text for details). The "HTH_LuxR" motif (SMART00421) is 
indicated by a circle, the "autoinductor-binding"-domain (PFAM03472) and the "PAS_4"-domain (PFAM08448) by boxes. TM: 
transmembrane domain.
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UspA-like protein, respectively. They are essential for sur-
vival under anaerobic growth and therefore biofilm for-
mation, a situation cells are exposed to when colonizing
the cystic fibrosis lung in hosts [49,50]. The Usp homo-
logues of P. luminescens and Y. enterocolitica might also be
important during infection of the insect host.

In P. luminescens, expression of UspA has been shown to
be under control of the AstS/AstR TCS, which is important
for the correct timing of phase variant switching [28]. It is
discussed that the AstS/AstR-system prevents or delays
phenotypic variation by protecting the cell from stress
[18]. Because Y. enterocolitica produces the corresponding
TCS BvgS/BvgR, but is not known to switch to another
phenotypic variant, the possible role of UspA in global
regulation still remains to be elucidated. Phenotypic vari-
ation and thus the switch between mutualism and patho-
genicity in P. luminescens is proposed to be regulated by a
Ner-like and a HexA-like regulator that repress primary
variant specific genes in the stage of the secondary variant
[17]. Therefore, UspA might have a global importance in
P. luminescens notifying stress and transmitting signals for
HexA [18]. In Y. enterocolitica, the transcriptional repressor
RovM (YE1343) is similar to HexA of P. luminescens (61%
identity and 75% homology), and has only recently been
shown to control cell invasion, virulence and motility in
Y. pseudotuberculosis, Y. pestis and Y. enterocolitica [51-53].
This fact suggests a similar UspA-dependent regulatory
mechanism used by the two bacteria compared here.

P. luminescens, but not Y. enterocolitica, produces two
members of the UspFG family, the UspG homologues
Plu2030 and Plu2032 (Tab. 2), indicating a global stress
response induced by those Usp proteins that is different in
both organisms. It is known that UspG of E. coli interacts
with the chaperonin GroEL [54], which promotes the cor-
rect folding of many cytosolic proteins [55]. A GroEL
homologue is present in P. luminescens (Plu4134) which
the P. luminescens UspG homologues might interact with.
In contrast to P. luminescens, Y. enterocolitica encodes
another member of the UspA subfamily, the UspC homo-
logue YE2583 (Tab. 2), which is not present in P. lumines-
cens. Therefore, an UspC mediated stress response is not
assumed to play a major role in insect pathogenicity.

Summarizing, the set of the shared and different Usp pro-
teins reveals a partially similar and a partially different
(fine)-regulation of the global stress response modules in
P. luminescens and Y. enterocolitica. This pattern corre-
sponds to the overlapping life cycles of both pathogens
(Fig. 1). The UspA and the UspE homologues are pre-
dicted here to be relevant for insect infection, whereas
UspC is assumed be more important for Y. enterocolitica in
other environments/hosts. The two UspG homologues
might constitute a set of Usp proteins that play a specific

role in P. luminescens infection or in symbiosis with the
nematode host.

Regulation via c-di-GMP as a second messenger
Cyclic diguanylate (c-di-GMP) is a bacterial second mes-
senger that activates biofilm formation while inhibiting
motility, thus regulating the switch between a planktonic
and a sessile lifestyle. In addition to phenotypes that affect
virulence properties indirectly, c-di-GMP can also directly
regulate virulence factors [56,57]. Proteins containing a
so-called GGDEF domain are responsible for the synthesis
of c-di-GMP, and those with a so-called EAL domain for
its degradation. The expression and activity of those
GGDEF and EAL domain containing proteins is regulated
by factors with a PilZ domain that binds c-di-GMP. The
PilZ domain is found as a stand-alone domain or in com-
bination with GGDEF, EAL and other domains, thus
assumed to function also as an allosteric domain to con-
trol other regulatory enzymes [58,59]. In Y. enterocolitica,
we identified 22 putative proteins containing GGDEF and
EAL domains. Eleven of these proteins solely contain a
GGDEF-domain and six solely an EAL-domain, and both
domains are found in tandem in five proteins. The protein
AdrA (YE3010, GGDEF domain) is annotated as a puta-
tive diguanylate cyclase, YE2278 (GGDEF+EAL) as a puta-
tive phosphodiesterase, YE3818 (GGDEF) as a putative
regulator, and YE3806 (GGDEF+EAL) as a putative
exported protein. All other GGDEF and EAL domain-con-
taining proteins are of unknown function. Furthermore,
two proteins with PilZ domain exist in Y. enterocolitica,
namely YE3197 and BcsA (YE4074), a putative cellulose
synthase. Cellulose synthesis in bacteria has been identi-
fied to be important for the protection from chemical or
mechanical stress by forming a hydrophobic extracellular
matrix [60]. The expression of two of those EAL-domain
containing proteins, YE4063 and YE1324, is induced at
low temperature (Tab. 1). These two factors might there-
fore be important for insect colonization instead for viru-
lence against mammals. The presence of c-di-GMP
mediated regulation in Y. enterocolitica is therefore sug-
gested to play a central role in switching from biofilm for-
mation to the human as well as to the insect environment.
P. luminescens contains no protein with GGDEF, EAL or
PilZ domain. This phenomenon is quite surprising,
because with few exceptions such as Helicobacter pylori,
nearly all pathogenic bacteria use c-di-GMP as a second
messenger. It has been reported that P. luminescens forms
biofilms in vitro, and that a luxS-deficient mutant unable
to synthesize the quorum-sensing inducer AI-2 showed a
decreased biofilm formation [42]. The lack of these pro-
tein domains in P. luminescens reveals that c-di-GMP sig-
nalling plays a major role in pathogenic bacteria when
colonizing a mammalian host, and a minor for inverte-
brate colonization of entomopathogenic or entomoin-
fecting bacteria.
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Virulence factors
So-called offensive virulence factors actively contribute to
a successful infection by colonization of and toxicity
towards the host organism. We compared both genomes
with respect to genes encoding toxins, adhesins or
invasines that are common to both pathogens. All viru-
lence factors described in the following are summarized in
Fig. 4.

Toxins
Insecticidal toxins
The insecticidal toxin complex (Tc) proteins were first
purified from P. luminescens [61]. Tc homologues have
also been described to be present in Yersinia spp. and in
other insect-associated bacteria such as Serratia ento-

mophila and Xenorhabdus nematophilus [62,63]. The respec-
tive genes encoding four high molecular weight toxin
complexes are termed tca, tcb, tcc and tcd. Further experi-
ments supported the hypothesis that TccC-like proteins
might act as universal activators of, or chaperons for, dif-
ferent toxin proteins, while Tca-like and Tcd-like proteins
contribute predominantly to the oral toxicity of bacterial
supernatants [17]. It is speculated that the Tc toxins are
active against different tissues within individual hosts,
namely Tcb against hemocytes and Tcd and Tca against
cells of the insect gut. In Y. enterocolitica, the insecticidal
toxin genes are located on a distinct genomic island
termed tc-PAIYe of 21 kb, and are low-temperature
induced [7]. Similar islands in which regulatory genes are
followed by three tca genes, phage-related genes and one

Virulence factors in P. luminescens and Y. enterocoliticaFigure 4
Virulence factors in P. luminescens and Y. enterocolitica. The different toxins shared by the two organisms are presented 
in grey colour, toxins only present in P. luminescens or in Y. enterocolitica are depicted in blue or in red, respectively. DNT: Der-
monecrotic Toxin, BT: Bacillus thuringiensis like toxin crystal, JHE: Juvenile Hormone Esterase, MCF: "Makes Caterpillars 
Floppy", MT: Macrophage Toxin, CNF: Cytonecrotic Factor, RTX: "Repeats in toxin", Ymt: Y. pestis murine toxin. The toxins 
are grouped in functional classes, and the respective homologues in P. luminescens and Y. enterocolitica are indicated. See text for 
further details.
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or two tccC genes, are present in the genomes of Y. pseudo-
tuberculosis IP32953 and Y. pestis KIM. In P. luminescens,
the insecticidal genes are organized in the tcd island har-
bouring nine tcd- and tcc-like genes and several non tc-like
genes, while further nine tcc-like genes are scattered over
the chromosome [24]. The reason for the over-represence
of tc-like genes in the P. luminescens genome might reflect
the different strategies followed by both bacteria within
insects, namely the rapid killing for exploiting the victim
as a food source in case of P. luminescens, and infection of
and persistance within the invertebrate host as possibly
preferred by Y. enterocolitica.

Hemolysins or hemagglutinin-related proteins
These extracellular toxins target red blood cells to provide
access to iron, but often show activity against immune
cells, thus contributing to the bacterial response to the
immune system of hosts, including phagocytosis by insect
blood cells [64]. Hemolysins or surface-associated adhes-
ins, together with their transporters, are sometimes organ-
ized as two-partner secretion (TPS) systems, a specialized
mechanism for the delivery of large exoproteins [65]. TPS
systems have been characterized mainly in pathogenic
bacteria, but are also present in other microorganisms. P.
luminescens and Y. enterocolitica TPS systems include the
calcium-independent hemolysin PhlA that is transported
through the outer membrane and activated by PhlB.
Remarkably, their expression is induced by low iron con-
centration as encountered in the insect host, and phlA/
phlB are up-regulated at 18°C compared to 28°C in Y.
ruckeri [66]. Eight other TPS systems are present in P. lumi-
nescens, namely Plu0225/Plu0226, Plu0548/Plu0549,
Plu1149/Plu1150, Plu1367/Plu1368, Plu3064/Plu3065,
Plu3125-3127/3128, Plu3667/Plu3668, and Plu3718/
Plu3719, and further three genes for which the partner
locus has not been identified (Fig. 4). In the genome of Y.
enterocolitica, only three complete TPS systems are present,
namely YE0479/YE0480, YE2407/YE2408,
(YE4084)YE4085/YE4086, and YE3454 which lacks the
activator partner. Except YE0479/YE0480, all have coun-
terparts in the P. luminescens genome. Recently, we have
shown that a luciferase reporter insertion into YE0480 is
induced at low temperature [67], indicating that this TPS
system might contribute to insect pathogenicity and pos-
sibly to the host-specificity of Y. enterocolitica. The
genomes of both pathogens also carry three and five,
respectively, further hemolysin/hemagglutinin-related
proteins which are absent in the other pathogen (Fig. 4).
FhaC which belongs to a family of hemolysin activator
proteins related to ShlA from Serratia marcescens is present
in both pathogens and also induced at low temperature
[67]. The genome sequence of P. luminescens exhibits
more toxin genes than found in any other bacterial
genome sequenced yet, including the genome of Y. entero-
colitica. Hemolysin-related factors and their transporters

discussed above are an example for this redundancy.
However, the majority of these P. luminescens toxins
exhibit highly significant similarities to those of Y. entero-
colitica, suggesting common progenitors of hemolysins. It
is therefore tempting to speculate that hemolytic activities
of bacteria had been evolved during the association with
insects and then adapted to mammalian hosts. Although
it can not be excluded that the hemolysins of Y. enterocol-
itica act on the immune systems of both the insect and the
mammalian host, the genetic overlap of this group of vir-
ulence factor between both pathogens, and the low-tem-
perature expression of YE0479/YE0480 and fhaC,
indicates the presence of insect-specific hemolysins in the
genome of Y. enterocolitica.

Repeats-in-toxin (RTX) and other toxins
RTX proteins constitute another family of toxins that may
contribute to the insecticidal activity of the two patho-
gens. A putative RTX-family toxin transporter is common
to both pathogens (YE1998-2000, Plu0634/Plu0635).
The P. luminescens genome comprises a gene cluster
encoding RTX proteins, namely plu1330-1369. Further
RTX toxins are encoded by plu3217, plu3324 (both RTX A-
family), plu4117 (own family), and plu3668 (RTX cyto-
toxin), none of which is present in Y. enterocolitica. This
pathogen produces only one RTX protein (YE1322) for
which a truncated homologue is found in P. luminescens
(Plu3209).

Other examples of toxins common for both bacterial spe-
cies compared here are homologues of XaxAB, an apop-
totic AB toxin of X. nematophila [68], and proteins
encoded by the macrophage toxin (mt)-like genes
Plu2288 and Plu0359 with high similarity to YE2685. cnf
encoding the cytonecrosis factor-like toxin is present in Y.
enterocolitica (YE2091) and P. luminescens ssp. akhurstii
strain W14, but not in P. luminescens ssp. laumondii strain
TT01 (Fig. 4). P. luminescens produces a series of proteins
similar to toxins that have been identified in other bacte-
ria, but are absent in Y. enterocolitica. Examples identified
are Txp40, a 40 kD insecticidal toxin [69], the nematicidal
toxin (Xnp2) first described in X. bovienii (accession
number AJ296651.1), galA (plu0840) similar to the enter-
otoxin Ast of Aeromonas hydrophila which is involved in
carbohydrate transport and metabolism [70], and two
dermonecrotizing toxin-(dnt-) like factors (plu2400 and
plu2420). In addition, neither the crystal proteins encoded
by cipA and cipB in P. luminescens nor a Bt-like toxin
(plu1537) could be found in Y. enterocolitica. A cytonecro-
sis factor (CNF)-like protein, Pnf, was identified in P.
luminescens ssp. akhurstii strain W14, but not in P. lumines-
cens ssp. laumondii strain TT01. In P. luminescens, the two
paralogs plu4092 and plu4436 encode juvenile hormone
esterases (JHE) for which insect toxicity has already been
demonstrated [24]. Additionally, neither the locus mcf
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that confers insecticidal activity of P. luminescens towards
M. sexta [71] by inducing apoptosis [72], nor the homol-
ogous gene locus mcf2 (plu3128) [73] are present in the
genome of Y. enterocolitica. Most of these toxins probably
contribute to the higher insect toxicity of P. luminescens
against the tobacco hornworm in comparison with Y.
enterocolitica. No homologues of the Y. pestis gene coding
for enhancin (YPO0339) could be found for which a role
in flea colonization was predicted [74].

We also identified several virulence genes and operons
that are present in Y. enterocolitica, but not in P. lumines-
cens, suggesting that they have been acquired by horizon-
tal gene transfer from other bacteria and do not play a role
in bacteria-insect association. Examples are SopB, a host
cell invasion factor translocated via the type-III secretion
system that is present in the emerging human pathogen P.
asymbiotica, but not in the insect pathogen P. luminescens
[14], a putative effector protein (YE2447) with proteolytic
activity, and a homologue of SrfA which is negatively reg-
ulated by PhoP in S. typhimurium [75]. The SrfA homo-
logue has been demonstrated to be up-regulated by
environmental temperature [67]. Other virulence factors
absent in P. luminescens are the opg cluster (YE1604-1606)
and ProP (YE3594), both involved in osmoprotection
[76], cellulose biosynthesis (YE4072-4078) associated
with protection from chemical and mechanical stress
[60], the methionine-salvage pathway (YE3228-3235)
also involved in AHL production [23], the putative ADP-

ribosyltransferase toxin encoded by ytxAB (ye2124/
ye2123) [77], and the Yersinia heat-stable toxin Yst [78]
which is stronger expressed at 28°C than at 37°C (Table
1).

Summarizing, the large variety of diverse toxins present in
P. luminescens, but absent in Y. enterocolitica, might con-
tribute to the higher toxicity towards insects of P. lumines-
cens in comparison to Y. enterocolitica. Toxins only present
in Y. enterocolitica are assumed to play a major role in its
pathogenicity towards mammalians, and some of them
might have been acquired by horizontal gene transfer.
Examples of those factors are shown in Fig. 5.

Adhesins and invasins
Colonization and penetration of epithelial cells, and
interaction with immune cells, are key steps during the
host infection by pathogens. Many of the pathogen-recep-
tor molecules such as Toll-like receptors or integrins are
conserved between invertebrates and mammalians [79].
We therefore investigated if P. luminescens and Y. enteroco-
litica that interact with the midgut of diverse hosts use the
same adhesion and invasive factors. The most prominent
protein of Y. enterocolitica involved in attachment to and
invasion of mammalian cells is Ail (YE1820) that is
homologue to three P. luminescens proteins encoded by
plu2481, plu2480, and plu1967, and InvA (YE2564) with
high similarity to Plu2057. Further invasin genes of Y.
enterocolitica with counterparts in P. luminescens are ysaV

Plasticity zone of Y. enterocolitica (YE3450-3644) compared to the P. luminescens genomeFigure 5
Plasticity zone of Y. enterocolitica (YE3450-3644) compared to the P. luminescens genome. YAPIYe, a genomic 
region highly similar to the adhesion pathogenicity island of Y. pseudotuberculosis and absent in Y. pestis. Sites marked with an 
asterisk are localized on genome island Plu0958-1166. In Y. enterocolitica biovars 2–5, a second flagellar gene cluster (Flag-2) is 
inserted next to ye3610 [120]. Genes, operons or proteins shared by Y. enterocolitica and P. luminescens are depicted in dark 
grey colour above the chromosomal scale, and genes without homologue in P. luminescens are shown in light grey below the 
line. See section "Evolution of pathogenicity" for further details.
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(ye3546/plu3761) and invF (ye3549/plu3775). Y. enterocol-
itica genes not present in P. luminescens are ye1873 encod-
ing the adhesin YadA which is maximally expressed at
37°C, and the invasin genes invE, ysaH, ye3550, and
ye3555. The function of the latter two in cell recognition is
predicted, but has not yet been demonstrated experimen-
tally. In contrast, P. luminescens produces several factors
involved in host cell interaction without homologues in
Y. enterocolitica, namely Plu2096 which is similar to lectin
PA-I, Plu1561 with strong homology to a Ca2+ dependent
adhesion molecule, the adhesin Plu2433 similar to a vir-
ulence factor of the Gram-negative plant pathogen Erwinia
carotovora, EvF, which is involved in colonisation of the D.
melanogaster gut epithelium [80], and the putative invasin
Plu2064. In P. luminescens, eleven fimbrial gene cluster
have been identified, four of which (V, VII, IX and X) are
also present in Y. enterocolitica. Unique for the human
pathogen in comparison to P. luminescens are the two fim-
brial gene cluster ye2664-2668 and ye2692-2700, both of
yet hypothetical function. Thus, invasin and adhesin
homologues similar in the two pathogens might contrib-
ute to the infection of insect or mammalian hosts, but
candidates for insect- and mammalian-specific coloniza-
tion factors have also been revealed by the genome com-
parison performed here.

Defensive mechanisms
Antimicrobials
The production of antibiotics is mainly restricted to P.
luminescens, whereas factors combating antimicrobial host
substances play an important role during the infection
process of both pathogens compared here. In the genome
of P. luminescens ssp. laumondii strain TT01, many loci
involved in the defense of the insect cadaver against differ-
ent microbial competitors are present, including nearly 50
genes encoding proteins such as polyketide and peptide
synthases putatively involved in antibiotic synthesis and
efflux. Interestingly, none of these genes showed signifi-
cant similarities to sequences of the Y. enterocolitica
genome. Phage-derived bacteriocins in entomopatho-
genic bacteria are also presumed to eliminate competing
bacteria. More than twenty colicin/pyocin-like factors and
putative immunity proteins are unique to P. luminescens in
comparison to Y. enterocolitica. Remarkable exceptions are
the toxin/antitoxin system ccdA/ccdB, the tolQRAB/pal
operon involved in group A colicin translocation, and a
colicin production and secretion system (Plu3168/
Plu3869; YE0791/YE1314). Recently, it was reported that
PrtS (Plu1382) secreted by P. luminescens, a metallopro-
tease without counterpart in Y. enterocolitica, specifically
induces melanization of the hemolymph, probably to cir-
cumvent the innate immune response of the insect [81].

Oxygenases and hydrolases
P. luminescens produces proteins similar to monooxygen-
ases, dioxygenases and hydroxylases that have been sug-
gested to play a role in rapid elimination of insect
polyphenols or in the detoxification of reactive oxygen
species generated by the invaded host [24]. Examples are
the product of plu4258, adjacent to a gene encoding glu-
tathione transferase (plu4259), a putative steroid
monooxygenase (Plu4232), and a glycine oxidase
(Plu2242), all of which have no counterparts in Y. entero-
colitica. Factors present in both pathogens are two
monooxigenases encoded by ye1945/hpaC (plu0974) and
ye3394/plu3599, and two hydroxylases encoded by ubiH
(ye3395/plu3600) and ubiF (ye2984/plu1313). It is there-
fore possible that the Y. enterocolitica homologues of these
enzymes are involved in persistence within the insect, a
mechanism which is also used by P. luminescens.

Secretion and exoenzymes
In Y. enterocolitica, two type-III secretion systems (T3SS)
essential for virulence in the mammalian host are
encoded on pYV and by the ysa operon (YE3533-3561)
[23,82]. The P. luminescens genome encodes one T3SS
which is highly similar to the plasmid-encoded T3SS of Y.
enterocolitica and probably involved in the secretion of vir-
ulence proteins or in immunomodulation of the insect
response to an infection. Interestingly, the T3SS of Y. pestis
has recently been demonstrated to translocate insecticidal
toxins, providing evidence that they support the transmis-
sion of the plague agent by insects [83]. Furthermore, the
flagellar export apparatus of Y. pseudotuberculosis functions
as a secretion system for the virulence-associated phos-
pholipase YplA [84]. The typical effector proteins of Y.
enterocolitica are also present in P. luminescens. The P. lumi-
nescens Lop effector proteins are homologs of the Yop
effector proteins of Y. enterocolitica [85]. The LopT effector
protein of P. luminescens can be injected by Y. enterocolitica
into mammal cells [86], underlining the idea that both
T3SS act similarly. Furthermore, we found homologues of
the Y. enterocolitica low-calcium-response genes (lcrH,
lcrV, and lrcD) in P. luminescens (plu3757, plu3758, sctV)
which further supports this hypothesis. The fact that Y.
enterocolitica a second T3SS (Ysa) is not shared by P. lumi-
nescens confirms its solely role in human pathogenicity
[87].

Both P. luminesens and Y. enterocolitica share a Sec protein
translocation system that belongs to the type-II secretion
systems (T2SS). These are substrate-specific secretion
machineries that share a similar architecture and secretion
mechanism [88]. Proteins secreted by these systems are
mainly virulence determinants such as exotoxins like the
Cholera toxin of Vibrio cholerae, pili, and S-layer compo-
nents (see [89] for review). Additionally to the Sec-system,
Y. enterocolitica produces a T2SS named Yts1, which has
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been found to be important for virulence in mice [90].
Because there is no counterpart of Yts1 present in P. lumi-
nescens, one can speculate that the major parts of type-II
dependent secreted proteins which are important for
insect association of Y. enterocolitica are translocated via
the Sec system.

Recently, a novel protein secretion mechanism translocat-
ing proteins without an N-terminal leader sequence has
been described, termed type-VI secretion system, T6SS
(see [91] for review). The genes encoding these kinds of
secretion systems were named vas (virulence associated
secretion), and homologues are widespread in Gram-neg-
ative bacteria. VAS-dependent secretion has been found to
be important for virulence of Vibrio cholerae [92] as well as
for Pseudomonas aeruginosa [93], and T6SS are assumed to
play a major role in virulence in many Gram-negative bac-
teria [91]. P. luminescens as well as Y. enterocolitica harbour
homologues of the vas genes, indicating that several pro-
teins involved in virulence are secreted via this pathway.

Both pathogens secrete lipases and proteases that are
assumed to contribute to immunosuppression, degrada-
tion of insect tissues or antibacterial peptides, and host
bioconversion (Fig. 4). One of those exoenzymes is the
phospholipase A (YplA) with an accessory protein (YplB)
of Y. enterocolitica (YE1005/YE1006) which are also
present in P. luminescens (Plu3370/Plu3369). YplA con-
tributes to pathogenesis of Y. enterocolitica in a mouse
model [94], suggesting a role in virulence against insects
for the P. luminescens homologue. Remarkably, yplA is
induced at low temperature (Table 1), and its expression
is known to be regulated by the master regulator FlhDC
[94], indicating that YplA plays a role in pathogenicity
both against human and insect hosts. Two additional
phospholipases are present in Y. enterocolitica, namely
PdlA (YE0203) and PdlB (YE0207), the latter one a
homologue of Plu4619. This overlap is another example
for Y. enterocolitica enzymes probably involved rather in
the association with invertebrates than in pathogenicity
towards mammalians. Plu1971 of P. luminescens is a pro-
tein which contains two phospholipase D motifs. Further-
more, it shares homologies to the plasmid (pMT1)-
encoded murine toxin (Ymt) of Y. pestis. It was suggested
that ymt has been acquired by Y. pestis from P. luminescens
or a close relative [24]. Ymt is essential for flea coloniza-
tion by Y. pestis and is regulated by AHL both in Y. pestis
[95] and P. luminescens (R. Heermann, unpublished data),
indicating that Ymt is also required for insect colonization
by P. luminescens. Due to its absence in Y. enterocolitica,
Ymt is another example for the high diversity of genetic
determinants that are used by closely related bacterial
pathogens to interact with their insect hosts.

There are several other exoenzymes present either in Y.
enterocolitica or in P. luminescens, which do not have a
homologue counterpart in the other bacterium. Examples
are the ten triacylglycerol lipases of P. luminescens or the
three identified lipases of Y. enterocolitica. However,
homologies are observed for six secreted proteases of both
organisms. Among them is PrtA (Plu0655/YE4052), a
zinc metalloprotease that is involved in the immunosup-
pressive activity of X. nematophila [96], and that has also
been shown to be involved in insect gut colonization of P.
luminescens [97]. Further examples for shared proteases
are another Zn-dependent protease (Plu0306/YE4066),
the protease III (Plu0631/YE3311), and DegQ/DegS
(YE3744/YE3745/Plu4018/Plu4022). The high number
of homologs in both organisms suggests an important
and similar role of these exoproteases in the infection
process. We also identified two proteases in each patho-
gen (Plu4291, Plu0631, YE0320, and YE2087) without a
homologue in the other bacterium. We speculate that
these Y. enterocolitica proteases could be involved in the
infection process in mammals, whereas the P. luminescens
proteases are rather used for nutrient bioconversion than
for the infection process.

Metabolism
While many specific virulence factors, which enable the
microbes to overcome the various physical and biochem-
ical barriers of the infected hosts, have been investigated
in detail, little attention has been given to the metabolic
requirements and substrate availability of bacteria in vivo.
Both in insects and mammals, pathogens get access to
host-specific nutrients, but also encounter substrate limi-
tations such as low iron concentration. In this chapter, we
focus on metabolic pathways of P. luminescens and Y. ente-
rocolitica absent in E. coli, induced at low temperature, or
already known to be virulence-associated.

Degradative pathways
P. luminescens and Y. enterocolitica share loci encoding sev-
eral common degradation pathways that are absent in E.
coli K-12, including the urease operon (ureABCEFGD), the
genes involved in myo-inositol degradation, and the histi-
dine degradation operon (hutHUCGI). These pathways
might help the bacteria to gain access to sufficient
amounts of substrates and thus to proliferate in the hemo-
lymph of the insect larvae. We recently reported that the
genes of the urease operon as well as a histidine ammonia
lyase (ye3021/plu1240), which deaminates histidine to
urocanic acid, are highly induced in Y. enterocolitica upon
temperature decrease [67]. Beside arginine (5.17 μmol/g),
lysine (12.23 μmol/g), serine (6.77 μmol/g) and proline
(6.40 μmol/g), histidine (5.04 μmol/g) is the most abun-
dant free amino acids in the Hyalophora gloveri fat body
[98].
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The synthesis of vitamin B12 that occurs only anaerobi-
cally is required for the degradation of 1,2-propanediol by
the products of the pdu operon, as well as of ethanolamine
by the eutABC-encoded enzymes. The cobalamine-
dependent anaerobic growth of Salmonella typhimurium
on both these substrates has been shown to be supported
by the alternative electron acceptor tetrathionate whose
respiration is facilitated by the tetrathionate reductase
gene cluster ttr [99,100]. Beside S. typhimurium, all these
genetic determinants were found only in few other bacte-
ria, namely the human pathogens Listeria monocytogenes,
and Clostridium perfringens [101]. Y. enterocolitica carries
the genes encoding tetrathionate reductase (ttrABC) and
the TCS TtrRS (YE1613-1617). The gene clusters for
cobalamin synthesis and propanediol degradation are
located on a 40-kb genomic island (ye2707-2750), but the
eutABC operon is missing. Propanediol degradation by Y.
enterocolitica might also be supported by YE4187 with a
putative GlcG domain which is predicted to be involved
in glycolate and propanediol utilization. The cobalamine
synthesis genes and the eutABC operon, but not ttrC, ttrR,
ttrS and the propanediol utilization gene cluster, are also
present in the genome of P. luminescens, suggesting the
degradation of phosphatidylethanolamine as additional
energy source in the insect host [102].

Further metabolic genes common to both pathogens are
dctA responsible for transport of C4- dicarboxylates across
the membrane, the UhpABC regulatory system control-
ling the hexose phosphate transport by UhpT, and the
three Mg2+ transport systems CorA, MgtA and MgtB. The
uhpABC operon as well as mgtC encoding the Mg2+ trans-
port ATPase subunit have been found to be induced at low
temperature in Y. enterocolitica [67], indicating a relevance
for these metabolic genes for P. luminescens and Y. entero-
colitica during insect infection. Another gene, gltP encod-
ing a glutamate-aspartate symporter, is also up-regulated
at low temperature in Y. enterocolitica, but lacks a counter-
part in P. luminescens. Furthermore, both insecticidal bac-
teria produce a chitin-binding-like protein (Plu2352,
YE3576), but chitinase-like proteins (Plu2235, Plu2458
and Plu2461) are without homologues in Y. enterocolitica.
This fact correlates once more with the separate lifestyle of
both bacteria, e.g. association with the host and persist-
ence for Y. enterocolitica, and association and bioconver-
sion of the insect in case of P. luminescens.

Iron uptake
Bacteria use two different strategies to acquire sufficient
amounts of iron, namely the expression and secretion of
high-affinity iron-binding compounds called
siderophores, and the production of receptors for iron car-
riers such as heme. Genes involved in the biosynthesis,
transport and regulation of the siderophore yersiniabactin
are clustered in the high pathogenicity island of Y. entero-

colitica [103] and have counterparts in P. luminescens
(plu2316-2324). Remarkably, yersiniabactin is absent in
all Y. enterocolitica strains beside biovar 1B. Present in
both bacterial organisms compared here are also genes
encoding a hemine uptake system (ye0323-0332/plu2631-
2636), the YfeABCD transporter system of chelated iron,
the ferrous (Fe2+) iron transporter proteins FeoAB, the
AfuABC/SfuABC ferric (Fe3+) transporter, the enterobactin
and its transporter (FepBDCG), the FecABCDE ABC trans-
porter system, and several putative hemin/siderophore/
iron uptake proteins (YE1459-1461/Plu2850-2852),
YE3190/Plu2853, and YE0555/Plu3738). The proteins
encoded by the P. luminescens fecIRABCDE operon are
similar to the components of the E. coli Fe3+-dicitrate
transport system. Homologues are present in the genome
of Y. enterocolitica, but scattered over the chromosome. In
addition, Y. enterocolitica produces two heme-protein
acquisition sytems (YE0123-126, YE2180-2182), a sec-
ond SfuABC system, the ferrichrome binding and trans-
port proteins (YE0730-0732), a putative siderophore
(YE0704), and a hemin storage system (YE2481-2484).
None of these iron acquisition systems is present in P.
luminescens which in contrast produces the siderophore
photobactin [104]. Furthermore, P. luminescens encodes
two putative heme-binding hemopexin-like proteins, the
photopexins PpxA (Plu4242) and PpxB (Plu4243), which
are the first hemopexins found in bacteria. It is suggested
that the photopexins may be used by P. luminescens to
scavenge iron containing compounds from insects [105].
Interestingly, three gene loci involved in iron acquisition,
namely the genes encoding the hemin storage system, the
yersiniabactin and the enterobactin transporter FepG,
have been demonstrated to be up-regulated upon temper-
ature decrease in Y. pestis or Y. ruckeri, respectively (Table
1).

This large set of iron, hemin, heme and siderophore trans-
porters underlines the importance of iron availability for
the life cycles of P. luminescens and Y. enterocolitica. It also
indicates that iron acquisition is a prerequisite for the
infection process of pathogenic bacteria not only in mam-
malian, but also in invertebrate hosts, and underlines the
suggestion that genetic determinants of invertebrate path-
ogens such as P. luminescens include the progenitors of vir-
ulence factors against vertebrates [79,106].

Tricarboxylate utilization
The TctE/TctD system is the only TCS of P. luminescens
without homologue in Y. enterocolitica (see section "Two-
component signal transduction", Fig. 2). It controls the
expression of the tctCBA operon encoding the tricarboxy-
lic acid transport system TctCBA [107]. The transporter is
supposed to facilitate uptake of citrate, fluorocitrate, isoc-
itrate and cis-acconitate for aerobic utilization [108,109].
The Na+ dependent citrate symporter CitS of S. enterica,
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which the Y. enterocolitica protein YE2507 is homologous
to, is induced by the CitA/CitB system for fermentation of
citrate under anoxic conditions [110], indicating a general
difference of citrate utilization in P. luminescens and Y.
enterocolitica. While Y. enterocolitica explores citrate for
anaerobic metabolism, it is most likely that the specific
uptake of citrate and other tricarboxylic acids by TctCBA is
used by P. luminescens upon entering the insect host where
enough citrate is available. The specific up-regulation of
the tricarboxylic acid cycle (TCA) enzymes within a host
has also been described for other microorganisms. For
example, sucA encoding a subunit of α-ketoglutarate syn-
thase and acnA encoding the aconitase have been found to
be induced in V. cholerae during host infection [111,112],
and a complete TCA cycle is also required for S. typhimu-
rium virulence [113]. We also observed induction of sucA
in P. luminescens in the insect host Galleria mellonella (R.
Heermann, unpublished data). This finding underlines
the hypothesis that the citric cycle enzymes used under
aerobic conditions are up-regulated as a specific adapta-
tion of the metabolic activity in the nutrient rich insect
host. To guarantee an optimal amount of tricarboxylic
acids within the cell, TctE might specifically sense the
presence of tricarboxylic acids and/or signals of the host.
Y. enterocolitica and Y. pestis, in contrast exhibit upregula-
tion of all TCA genes upon temperature shift from 26°C
to 37°C [114,115]. Therefore, it is obvious that Y. entero-
colitica and P. luminescens use different sensing and utiliza-
tion strategies for tricarboxylates.

Temperature-dependent genes
Temperature is a key environmental signal to enable bac-
terial adaptation to diverse hosts. In Yersinia, temperature-
dependent gene expression has been described to be an
important theme in bacterial mechanisms of pathogene-
sis towards humans [116]. However, the biological role of
genes repressed at body temperature, but induced at envi-
ronmental temperature, has been underinvestigated so
far. By data mining, we identified 32 genes or gene loci of
Yersinia spp. that exhibit stronger expression with temper-
ature decrease (Table 1). 19 of them have a homologue in
P. luminescens. Most genes belong to the groups of offen-
sive virulence factors, regulators, and metabolic enzymes.
The data have derived from expression profiling in vitro
and cannot directly be translated to the in vivo situation.
Moreover, several genes induced at lower temperature
such as inv, yst or yplA affect the virulence properties of Y.
enterocolitica in mice [87]. However, low temperature-
dependent expression of the genes in Table 1 suggests that
they also play a role during the insect stage of Y. enteroco-
litica, or that they have evolved from bacteria-insect inter-
action and then adapted to pathogenicity towards
mammals. Some of these low temperature-induced genes
are restricted to a narrow spectrum of bacterial genera
such as Burkholderia, Pseudomonas, Serratia, or Erwinia, all

of which are known to be associated with soil, plants or
insects. Other genes of Table 1 are present in a broader
range of bacteria, and their expression might depend on
regulatory mechanisms different from that of Y. enterocol-
itica. This pathogen is non-motile at body temperature,
and a connection between motility and virulence is well-
documented [116,117]. For example, a non-motile flhDC
mutant of Y. enterocolitica secretes larger amounts of Yop
proteins encoded by the pYV plasmid than the wild-type
bacteria [118]. Recently, it was shown that the flagellar
master-operon of X. nematophila regulates the expression
of a novel hemolysin which is required for full virulence
of X. nematophila against insects [119]. We therefore spec-
ulate that motility essentially contributes to the control of
the Y. enterocolitica switch between two pathogenicity
phases towards mammalians and invertebrates [120]. In
evolutionary terms, environmental temperature, but not
37°C, appears as the ancient signal for the expression of
many genes involved in pathogenicity, confirming the
idea that the biological function of many virulence factors
has been evolved during the association of bacteria with
poikilothermic organisms (see below).

Evolution of pathogenicity
It has been suggested that bacteria-invertebrate interac-
tions do not only play a role in the transmission of human
pathogens but have also shaped their evolution [79]. We
identified several common loci representing ancestral
clusters of genes important in Y. enterocolitica and P. lumi-
nescens pathogenesis that might have evolved during the
association of bacteria with invertebrates, the so-called
"pre-vertebrate" pathosphere [121] and then been
adapted to more recent pathologies in mammalians.
Examples are yersiniabactin, quorum sensing-like regula-
tors, or the urease operon. The complexity of this evolu-
tionary concept is also demonstrated by the fact that the
immune systems both of invertebrates and vertebrates are
based on phagocytic cells that are attacked by hemolysins,
T3SS effector proteins, and many other toxins described
above. Thus, it can not be excluded that these virulence
factors are able to act on both immune systems [121]. The
fact that P. asymbiotica has been found to be pathogenic
against humans [14] strengthens this hypothesis. Thus, P.
asymbiotica might be an evolutionary link that is evolving
from an insect to a mammal-pathogen. Another example
that might enlighten the evolution of bacterial patho-
genicity is the plasticity zone (PZ) of Y. enterocolitica, a 199
kb key locus for high pathogenicity that includes YAPIYe,
secretion systems, hydrogenase loci essential for gut colo-
nization of S. typhimurium and H. pylori [122], and iron
acquisition systems. A second flagellar cluster, Flag-2, is
also located within the PZ of Y. enterocolitica biotypes 2–5
[120]. It is assumed that the PZ has not been acquired by
a single event of gene transfer, but through a series of
independent insertions [23]. A comparison of the PZ
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sequence with the genome of P. luminescens is depicted in
Fig. 5. A region highly similar to YAPIYe is the genome
island plu0958-1166 carrying a hemolysin, hypothetical
genes, the toxin/antitoxin system CcdA/CcdB, and the
type IV pilus. Only few other genes or operons of the PZ
are also present in P. luminescens, namely a chitinase, two
iron acquisition systems, and three ysa genes, thus con-
firming the idea of a patchwork of horizontally acquired
genes within the PZ [23]. However, given the extensive
transfer of virulence factors between bacteria, the history
of pathogen evolution still requires further investigation.

Conclusion
The comparison of Y. enterocolitica and P. luminescens at
the genomic level performed here provides the database
for a better understanding of the genetic basis for their dis-
tinct behaviour towards invertebrates and mammals. Y.
enterocolitica is expected to switch between two patho-
genicity phases against insects and mammalians, while
the genome of P. luminescens must contain the modula-
tors and regulators necessary to change the bacterium
from a state of symbiosis with nematodes to pathogenic-
ity against insects, and also from symbiosis-proficient pri-
mary variants to symbiosis-deficient secondary variants
[17]. Those adaptational processes must be precisely reg-
ulated by the bacteria. It was assumed that there are paral-
lels in the regulation of pathogenicity in mammals and
insect pathogens [41,123]. However, molecular compo-
nents of the regulatory networks controlling pathogenic-
ity and mutualism have recently been demonstrated to be
very different between P. luminescens and X. nematophilus
with similar life cycles [124]. Dissecting the genomes of Y.
enterocolitica and P. luminescens for putative key regulators,
we identified factor groups (AI-2, PAS-4/LuxR like recep-
tors) possibly involved in pathogen-insect association
only, those with members contributing to either insect or
mammalian pathogenicity (QS, TKS, Usp), and c-di-GMP
signalling probably not involved in regulation of activities
against insects. Certainly, the question whether funda-
mental differences in regulatory networks reflect how
each of these two bacteria specifically interacts with either
the insect or the human host remains to be addressed in
more detail.

Bioconversion of its insect hosts is an important stage in
the lifecycle of P. luminescens. This fact might explain the
high number of antibacterial factors directed against pos-
sible competitors that are going to colonize the same
insect cadaver or that are already present in the insect gut
flora [17]. However, no corresponding determinants were
identified in the genome of Y. enterocolitica. Moreover, P.
luminescens is pathogenic to a variety of insect larvae, and
a dose of <5 colony-forming units directly injected into
the blood system is sufficient to kill within 48–72 h [124].
In contrast, only highly concentrated protein extracts of Y.

enterocolitica are toxic for M. sexta [7], and a low insect lar-
vae mortality has been observed following injection of
approximately 3.5 × 106 Y. enterocolitica cells into the
hemolymph (T. M. Fuchs, unpublished data). This data
strongly suggests that Y. enterocolitica, similar to Y. pestis,
has developed a strategy to infect and proliferate in
insects, and use these organisms rather as transmission
vectors than as pure nutrient source.

Summarizing, Y. enterocolitica and P. luminescens have
evolved partially different and partially similar and there-
fore probably conserved mechanisms to detect and to
react on the insect host. Up to the present time, we are far
away from understanding the complexity of bacteria-
invertebrate interactions. With the genome comparison
carried out here, however, we uncovered several genes
which are promising candidate genes involved in insect
association and pathogenicity, and therefore created a
promising basis for future experimental work.

Methods
Accession numbers of the genome of Y. enterocolitica strain
8081v are AM286415 and AM286416 (plasmid), of the
insecticidal toxin genes AJ920332, and of the genome of
P. luminescens subsp. laumondii strain TT01 BX470251. For
gene annotation, functional assignments and BLAST anal-
ysis, we used the server of the Sanger Institute and the Pas-
teur Institute. Genome comparison was performed using
the ACT software [125], and the GECO comparative
genome analysis software [126]. For protein domain anal-
ysis, we used the CDART [127], SMART [128] and Pfam
[129] algorithms on the NCBI web server. Proteins con-
taining special protein domains were identified by per-
forming a BLAST search of the domain sequence on the
genomes of the respective organisms. The threshold for
the consideration of protein homologies was a signifi-
cance value of <10-04 and an identity on the amino acid
level of >22% in the BLAST analysis.
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