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The necessity to replace smoothing approaches with a global
amount of smoothing arises in a variety of situations such as ef-
fects with highly varying curvature or effects with discontinuities.
We present an implementation of locally adaptive spline smooth-
ing using a class of heavy-tailed shrinkage priors. These priors
utilize scale mixtures of normals with locally varying exponential-
gamma distributed variances for the differences of the P-spline coef-
ficients. A fully Bayesian hierarchical structure is derived with infer-
ence about the posterior being based on Markov Chain Monte Carlo
techniques. Three increasingly flexible and automatic approaches
are introduced to estimate the spatially varying structure of the vari-
ances. In an extensive simulation study, the performance of our ap-
proach on a number of benchmark functions is shown to be at least
equivalent, but mostly better than previous approaches and fits both
functions of smoothly varying complexity and discontinuous func-
tions well. Results from two applications also reflecting these two
situations support the simulation results.

1. Introduction

In many regression applications, the assumption of a linear dependence of the
response on predictor variables is inappropriate. One appealing solution to the
problem of modeling smooth functions of an unknown shape, that is, fitting
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models of the form

y = f (x) + ε; ε ∼ Nn(0, σ2
ε I),

where f (·) is a smooth function of a covariate x, is P-spline smoothing
[Eilers and Marx, 1996]. The idea behind this approach is conceptually sim-
ple: The unknown function is approximated by a piecewise polynomial func-
tion subject to some differentiability constraints at the interval boundaries. The
resulting function can be represented as a linear combination of B-spline basis
functions, i.e. basis functions with local support. The number of basis func-
tions must be large enough to allow for sufficient flexibility in the shape of the
estimated function. However, due to the high dimension of the basis, an un-
regularized fit would result in a very variable estimate. In order to avoid this
overfitting problem, the basis coefficients are penalized to enforce smoothness
of the resulting fit. Let X denote the matrix of the j basis functions, evaluated at
x. The objective function for the P-spline fit is then the penalized least squares
criterion

‖y− Xβ‖2 +
1
τ2‖∆

(d)β‖2 → min
β

,

where ∆(d) of dimension (j− d)× j is the dth-degree difference operator matrix
and τ2 is the smoothing parameter controlling the amount of penalization. In
effect, this form of penalization penalizes deviations of the fitted curve from a
(d− 1)-degree polynomial [Eilers and Marx, 1996] since the dth order deriva-
tive of B-splines essentially depends on dth order differences. From a Bayesian
perspective, dth order differences correspond to a Gaussian random walk prior
of order d for the vector β [Lang and Brezger, 2004].

For functions with locally varying complexity (e.g. oscillations with varying
frequency and/or amplitude, or functions with discontinuities), a global penalty
with constant smoothing parameter over the range of x is inappropriate, as it
would lead to overfitting in the smooth parts of the function and underfitting
at the more wiggly or discontinuous parts of the function. This problem can be
tackled by introducing a penalty that varies spatially in order to reflect the spa-
tial heterogeneity of the function [Lang et al., 2002]. Previous suggestions for
locally adaptive smoothing include Bayesian and frequentist approaches that
allow for (smoothly varying) spatial heterogeneity by fitting a smooth penalty
function τ(x) represented as a second P-spline [Ruppert and Carroll, 2000, Bal-
adandayuthapani et al., 2005, Krivobokova et al., 2007], or reweighting the
individual penalty terms so that(

∆(d)β
)

i
∼ N (0, τ2

δi
) [Lang and Brezger, 2004], with δi ∼ Γ( ν

2 , ν
2 ) leading to

a marginally t-distributed random walk prior, as well as knot-selection based
approaches [Denison et al., 1998, Biller, 2000].
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Similar to Lang and Brezger [2004], the main idea of our fully Bayesian ap-
proach is to replace the homoskedastic Gaussian random walk prior for ∆(d)β
with a heteroscedastic heavy-tailed random walk prior. Unlike Lang and Brezger
[2004], we assume piecewise constant variances, however, and, unlike the so-
lutions based on the original idea by Ruppert and Carroll [2000], we make no
smoothness assumptions about the shape of the resulting variance step func-
tion. The prior we use is a scale mixture of normals introduced by Griffin and
Brown [2007]. The variance of the normal follows an exponential distribu-
tion with a gamma-distributed rate resulting in a Normal-Exponential-Gamma
(NEG) prior. This mixture distribution is strongly peaked in the origin and has
heavy tails leading to advantageous adaptivity properties.

We propose a hierarchy of estimation schemes based on Markov chain Monte
Carlo simulation (MCMC) techniques that introduce increasing flexibility in es-
timating the variance step function. Starting with fixed number and locations
of the changepoints, we then introduce a more flexible alternative in which the
locations of the changepoints are estimated as well. In a final step, the number
of steps is included as a further unknown parameter, leading to a reversible
jump MCMC algorithm. All the NEG-based algorithms are implemented in R [R
Development Core Team, 2007], the code is available from the first author.

Results from an extensive simulation study show that these approaches, un-
like previous suggestions, can deal equally well with both smoothly varying
local complexity and functions with discontinuities and usually converge very
fast due to the excellent mixing properties of the sampling steps we use. For
all practical purposes, the reversible jump algorithm is fully automatic in the
sense that results are very robust against changes in the only two hyperparam-
eters supplied by the user. The applicability of the proposed approach in both
situations with discontinuous functions and functions with varying curvature is
demonstrated in applications on the estimation of fractionation curves in qual-
ity control of cDNA microarray experiments and the analysis of CP6 sales data.

The rest of the paper is structured as follows: Section 2 describes the hier-
archy of our model and discusses the three implementations of our approach.
Results of a fairly extensive simulation study are given in section 3, followed by
two exemplary applications to real data in section 4.

2. Models and Algorithms

Conventional Bayesian P-spline smoothing [Lang and Brezger, 2004] is based
on a homoscedastic Gaussian prior for the dth differences ∆(d)β of the j P-spline
coefficients β: ∆(d)β ∼ N(0, τ2I j−d). This corresponds to a ridge-type reg-
ularization of the fitted function, leading to a proportional shrinkage of the
unregularized random walk. An improved prior distribution, however, should
be designed to allow for high penalisation in areas with low variability and, vice
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versa, low penalisation in areas with high curvature or discontinuities. Trans-
lated to the form of the prior distribution this means that a prior with a peak
at zero on the one hand but heavy tails on the other hand should be consid-
ered. Such types of priors have received considerable attention in recent years
in applications on variable selection and regularisation in high-dimensional re-
gression models [Griffin and Brown, 2005, Park and Casella, 2006]. One par-
ticularly promising candidate is the Normal-Exponential-Gamma (NEG) prior
by Griffin and Brown [2007] that combines the desired properties with compu-
tational convenience in a hierarchical Bayesian updating scheme.

The prior πτ(τ2|z) for τ2
b , b = 1, . . . , B is assumed to follow an exponential

distribution with rate zb, b = 1, . . . , B. This rate, in turn, is assigned a Γ(az, bz)-
prior. Following Griffin and Brown [2007], we set az = 0.5, since a sufficiently
flexible family of distributions is obtained by letting bz vary all by itself. The
prior for bz is a discrete uniform distribution on a log10-regular grid with 550
values between 10−3 and 105. The resulting scale mixture NEG-prior for ∆(d)β
has the desired properties: Its mass is concentrated around zero, with a finite
spike in the origin, leading to the desired regularization properties, and yet has
heavy tails which allow for the possibility of large jumps in the random walk
and therefore sudden jumps or curvature changes of the fitted function.

Griffin and Brown [2007] show that the maximum a posteriori (MAP) es-
timate for β based on this hierarchy also fulfills the so-called oracle property
since the derivative of the scale-mixture prior tends to zero for increasing |β|.
It is reasonable to assume that posterior means based on a prior with this de-
sirable property also benefit from this fact and our simulation results (Section
3) confirm this intuition: Using this hierarchy, we obtain a strong shrinkage of
∆(d)β where differences are small, increasing the smoothness of the fitted curve,
while simultaneously allowing faithful modeling of jumps or sudden curvature
changes.

The assumption of a homogeneous random walk on the coefficients is ob-
viously problematic for functions with locally varying complexity. To further
increase adaptivity, we replace the conventional homoscedastic prior for the
dth differences ∆(d)β of the j P-spline coefficients β with a heteroscedastic prior.
Specifically, we replace the sequence of identical variances for the random walk
increments in ∆(d)β with a piecewise constant variance list consisting of B dif-
ferent values, i.e. τ2

b , b = 1, . . . , B. To characterize the piecewise constant vari-
ance step function, we can either consider the changepoints of the step function
or the lengths of the constant pieces. Let s = (s1, . . . , sB−1) denote the vector
of interior changepoints and set s0 = 1 and sB = j− d. From the changepoints
we can derive the lengths of the intervals via l = (l1, . . . , lB) = ∆(1)(1, s, j− d)′
and vice versa sb = l1 + . . . + lb. The variance for the Gaussian random walk
on ∆(d)β at indices i ∈ {sb−1, . . . , sb − 1} is then given by τ2

b . By designating a
random walk prior with piecewise constant variances, we reduce the numbers
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of parameters to be sampled. Furthermore, this allows us to take into account
local information about the variability of the function to be fitted and thereby
increases robustness of the fitted function to outliers compared to using indi-
vidual variances τ2

i , i = 1, . . . , j for the random walk increments.
The following directed acyclic graph (DAG) gives the basic hierarchy for the

proposed model specification:

zb ∼ Γ(az, bz); b = 1, . . . , B
↓

τ2
b ∼ Exp(zb); b = 1, . . . , B
↓ (1)

∆(d)β ∼ Nj−d(0, T(τ2, l)); T(τ2, l) = blockdiag
(

τ2
1 I l1 , . . . , τ2

B I lB

)
↓

y ∼ Nn(Xβ, σ2
ε )

and the corresponding posterior p(y, σ2
ε , β, τ2, z, bz|x) is given by

p(y, σ2
ε , β, τ2, z, bz|x) =

πy(y|Xβ, σ2
ε )πβ(∆(d)β|τ2)πτ2(τ2|z)πz(z|az, bz)πbz bz.

Despite the appealing theoretical properties of the MAP estimates we use a full
MCMC approach instead of, say, an EM-type algorithm, because of the impor-
tance of reliable variability measures for function estimation and because an
implementation based on a full MCMC approach will facilitate inclusion into
the general structured additive regression context f.e. as part of a Bayesian
backfitting algorithm for (G)AMs. The rate bz is sampled with a Metropolis-
Hastings-Step. The remaining parameters z, τ2, β and σ2

ε are updated from
their full conditionals (see App. A) via Gibbs-Sampling. We use a weakly infor-
mative inverse gamma prior, IG(aσ = 10−5; bσ = 10−5), for the variance σ2

ε of
the errors.

In the following we describe and compare three approaches with increas-
ing flexibility for the variance function given by τ2: The first approach uses
a piecewise constant variance function with fixed number and positioning of
changepoints as described in this section. In the second approach, we sample
the locations of the changepoints while leaving their number fixed. In the third
approach we use reversible jump MCMC methodology to sample the number of
changepoints B as well.

2.1. Blockwise NEG P-spline

In this formulation, the number of blocks B as well as the positions and lengths
of the blocks in the variance function are fixed. Simulation results were ob-
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tained using blocks of (approximately) equal length. The resulting posterior
variance function is piecewise constant. We investigate the robustness with re-
spect to the number of blocks in section 3.6.2. The hierarchy for this model is
given in (1). In the following, this algorithm will be referred to as NEG.

2.2. Flexible Blockwise NEG P-spline

In this model, we let B remain fixed and sample the locations of the steps
s1, . . . , sB−1 at which the variance of ∆(d)β changes. The prior for the vector of
interior changepoints s = (s1, . . . , sB−1) is assumed to be the distribution of the
order statistic of a discrete uniform distribution on {1, . . . , j− d− 1}. The rest
of the hierarchy and the sampler remains unchanged.

zb ∼ Γ(az, bz); b = 1, . . . , B s ∼ (B− 1)!
(j− d− 2)B−1 ;

↓ si ∈ {2, . . . , j− d− 1};
τ2

b ∼ Exp(zb); b = 1, . . . , B (l1, . . . , lB) = ∆(1)(1, s, j− d)′

↘ ↙

∆(d)β ∼ Nj−d(0, T(τ2, l)); T(τ2, l) = blockdiag
(
τ2

1 I l1 , . . . , τ2
B I lB

)
↓

y ∼ Nn(Xβ, σ2
ε )

We use the following Metropolis-Hastings step to update the vector of change-
points s:

Updating s:

• Define the tuning parameter ms, which is the maximal number of indices
that the new proposal can move the selected changepoint. In our imple-
mentation, ms defaults to d(j − d)/Be, the length of the random walk
divided by the number of blocks and rounded to the next highest integer.

• Draw b? uniformly from the set of indices of movable changepoints

Bs = {1, . . . , B− 1} \ {b : lb = 1 and lb+1 = 1}.

Indices b where lb = 1 and lb+1 = 1 are not permitted, because both
neighboring intervals only span a single index so that the changepoint in
the middle cannot move. Let Bm = |Bs| denote the number of movable
indices.
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• Determine the minimal index i− = max(sb?−1 + 1, sb? −ms) and maximal
index i+ = min(sb?+1 − 1, sb? + ms) and draw the proposal s?

b? to replace
sb? uniformly from {i−, . . . , i+}.

• Update s?, l?, i?−, i?+ and T(τ2, l?) accordingly.

• Accept the new vector of change points s? with probability α(s?):

log α(s?) = log ((i+ − i−) Bm)− log ((i?+ − i?−) B?
m)

+0.5
(

diag(T(τ2, l?))− diag(T(τ2, l))
diag(T(τ2, l?)) · diag(T(τ2, l))

)′
(∆(d)β)2

+0.5(l − l?)′ log(τ2),

where the expression in the first line is the proposal ratio for s?, and the
second and third line come from the prior ratio for the random walk.

This model gives substantially more flexibility with regard to the estimated vari-
ance function τ by averaging over the step functions drawn in each iteration.
In effect, we use Bayesian model averaging to arrive at posterior estimates for
f (x) and τ2

i , i = 1, . . . , j− d. In the following, this algorithm will be referred
to as FlexNEG.

We also experimented with another, more elaborate proposal scheme for
s?: In this scheme we drew the proposed new changepoint s? uniformly from
{1, . . . , j− d} \ {s} and let the probability with which to propose replacing the
changepoint to the left (s−) or to the right (s+) of s? with s? depend on the dis-
tances from s? to the neighboring changepoints s− and s+ and on the change
in the logarithm of the variance function at the changepoints neighboring s? .
Specifically, we set the probability to propose replacing the neighboring change-
point s− on the left with s? to

(s+ − s?)| log(τ2
+)− log(τ2

? )|
(s? − s−)| log(τ2

−)− log(τ2
? )|+ (s+ − s?)| log(τ2

+)− log(τ2
? )|

,

where τ2
? denotes the current value of the variance function at s?. This prob-

ability is large if s? is further removed from s+ than from s− and if the value
of the variance function at s? is more different from the variance in the neigh-
boring block to the right (τ2

+) than from the variance in the neighboring block
to the left (τ2

−). However, this proposal usually performed less well than the
simpler one described above.

2.3. Flexible Blockwise NEG P-spline with variable number

of blocks

As the most flexible alternative, we also implemented a reversible jump-type
algorithm [Green, 1995] to determine the number of changepoints B auto-
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matically in a data-driven way. We used a truncated Poisson distribution on
{1, . . . , smax} with rate smean as prior πB(B) for the number of blocks B. The
rest of the hierarchy remains unchanged:

B ∼ Potrunc(λ = smean, max = smax)

↙ ↘

zb ∼ Γ(az, bz); b = 1, . . . , B s = (s1, . . . , sB−1) ∼
(B− 1)!

(j− d− 2)B−1 ;

↓ si ∈ {2, . . . , j− d− 1};
τ2

b ∼ Exp(zb); b = 1, . . . , B (l1, . . . , lB) = ∆(1)(1, s, j− d)′

↘ ↙

∆(d)β ∼ Nj−d(0, T(τ2, l)); T(τ2, l) = blockdiag
(
τ2

1 I l1 , . . . , τ2
B I lB

)
↓

y ∼ Nn(Xβ, σ2
ε )

The reversible jump algorithm has three move types: birth (adding a change-
point), death (removing a changepoint), and position change. The latter is
identical to the update procedure for s described in the previous section. Let
pb(B) and pd(B) denote the probability for a birth and death step, respectively,
given the number of blocks B. To satisfy detailed balance, we set pb(B) =
c min (1, πB(B + 1)/πB(B)); pd(B) = c min (1, πB(B− 1)/πB(B)), where c is
chosen so that pb(B) + pd(B) < 0.8 ∀ B [Green, 1995]. The birth and death
moves to increase or decrease B are as follows:

Birth Move: B → (B + 1)

• Draw the proposed new changepoint s? uniformly from
{2, . . . , j− d− 1} \ {s}.

• Determine the affected block b? : sb?−1 < s? < sb? and the (expanded)
proposal vectors s? and l?.

• Draw proposals z?
b? , z?

b?+1 ∼ Γ(az + 1, bz + τ2
b?) from the full conditional

based on τ2 from the previous iteration.
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• Draw proposals τ2?
b? , τ2?

b?+1 from their full conditionals (see app. A) based
on the updated vector z?.

• Accept B? = B + 1, s?, z? and τ2? with probability αb = AbPb, where Ab
is the prior ratio and Pb is the proposal ratio for the birth move.

The acceptance probability has this simple form because the likelihood ratio for
dimension changing moves is 1. In our context, the changed parameters do not
occur in the likelihood but only in a higher stage of the hierarchy. The Jacobian
is 1 as well since the mapping function between the parameter spaces is the
identity. The prior ratio is given by

Ab =
πB(B?|smean, smax)
πB(B|smean, smax)

πs(s?|B?)
πs(s|B)

πz
(
(z?

b? , z?
b?+1)|bz

)
πz(zb? |bz)

πτ

(
(τ2?

b? , τ2?
b?+1)|z?

)
πτ(τ2

b? |z)

π∆β

(
∆(d)β|T(τ2, l?)

)
π∆β

(
∆(d)β|T(τ2, l)

) ,

and the proposal ratio for the birth step is

Pb =
pd(B?)
pb(B)

|{2, . . . , j− d− 1} \ {s}|
B

π
(
zb? |az, bz, τ2

b?

)
π
(
(z?

b? , z?
b?+1)|az, bz, τ2

b?

)
π
(
τ2

b? |s, l, z̃b? = 0.5(z?
b? + z?

b?+1), β
)

π
(
(τ2?

b? , τ2?
b?+1)|s?, l?, z?, β

) ,

see App. B for detailed expressions. The required dimension matching [Green,
1995] is fulfilled since the dimension changes (in the notation for the birth
step) proceed from parameter vector

(
z, τ2, z?

b? , z?
b?+1, τ2?

b? , τ2?
b?+1

)
with dimen-

sion 2B + 4 to parameter vector
(
z?, τ2?, zb? , τ2

b?

)
with dimension 2(B + 1) + 2

and vice versa for the death step. We also experimented with more complex
proposal schemes for the birth and death moves and with replacing the trun-
cated Poisson prior for B with a discrete uniform prior. Neither of these changes
affected the performance of the algorithm decisively. We document the alter-
native proposal schemes in appendix B. Acceptance probabilities for the dimen-
sion changing moves were in the range of 0.3 to 0.6 and usually around 0.4.
We also experimented with alternating between the dimension-changing tran-
sition kernel implied by the update procedure above and the fixed-dimension
kernel described in section 2.2. This did not influence results in a systematic
way and usually increased the necessary burn-in period.
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Death Move: (B + 1) → B

• Draw index b? of the changepoint that is to be deleted uniformly from
{1, . . . , B− 1} and determine the reduced proposal vectors s?, l?.

• Draw the new proposal τ2?
b? to replace (τ2

b? , τ2
b?+1) from

π(τ2?
b? |s?, z̃b? = 0.5(zb? + zb?+1))

• Draw the new proposal z?
b? to replace (zb? , zb?+1) from π(z?

b? |az, bz, τ2?)

• Accept B? = B − 1, s?, z? and τ2? with probability αd = log(AdPd):
where Ad, the prior ratio, and Pd, the proposal ratio, are simply A−1

b and
P−1

b with indices appropriately changed.

In the following, this algorithm will be referred to as RJNEG.

3. Simulation Results

This section presents the results of a simulation study we did to evaluate the
performance of our method and to compare it with other approaches for spa-
tially adaptive spline estimation. We compared the performance of our meth-
ods to the performance of the spatially adaptive Bayesian P-Splines suggested
by Baladandayuthapani et al. [2005] and the R [R Development Core Team,
2007] implementation AdaptFit [Krivobokova, 2007] of the frequentist equiv-
alent of their model described in Krivobokova et al. [2007]. In the following,
these approaches will be referred to as BMC and AdaptFit, respectively. For both
algorithms we used the published hyperparameter settings, number of knots
etc. Both approaches are based on a representation of the logarithm of the
variance function log(τ2(x)) as a second P-spline. We use these two methods
for benchmarking since their performances are reportedly superior – or at least
equivalent – to those of the competing wavelet approach of Donoho and John-
stone [1994], to the knot-selection based approach by Denison et al. [1998]
and the approach based on a heteroscedastic heavy-tailed random walk priors
for ∆(d)β by Lang and Brezger [2004]. We also compared the performance of
our approach to the performance of the latter. Average MSEs were consistently
larger by an order of magnitude for the latter and we omit a detailed analysis
for these results in the following.

We consider 4 widely used benchmarking functions that, together, represent
a cross section of challenging functional forms encountered in real-world data.
We generated 100 datasets for every function and obtained the fits of the con-
sidered methods. Pointwise coverage values (calculated for a nominal level of
90%) should therefore be treated with caution, since the sample sizes are not
really large enough for reliable estimation. Graphical panels include boxplots
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of log10(
√

MSE), benchmarkplots (see App. C) based on MSE, as well as the
achieved coverage over the 100 replications for a nominal level of 90% for
pointwise intervals and a plot of the point-wise bias.

It should be noted that published results for AdaptFit are based on the S-PLUS
version of the algorithm while our results are based on the R implementation,
which seems to suffer from a less stable optimizer in the underlying mixed ef-
fects model software (nlme::lme, Pinheiro et al. [2006]). In order to avoid
large proportions of non-convergence errors, we relaxed the convergence crite-
rion for the estimated variance function, which may explain the discrepancies
between the results in Krivobokova et al. [2007] and ours. Discrepancies be-
tween our results for BMC in section 3.1 and published results are due to a
faulty simulation design in Baladandayuthapani et al. [2005]1.

3.1. Oscillating function

As an example for a function with smoothly varying curvature, we used the
doppler-like function

m1(x) =
√

x(1− x) sin
18π

x + 8

with n = 400 observations and σ2
ε = 0.04 (SNR ≈ 2.1) in accordance with the

set-up in Baladandayuthapani et al. [2005] and Krivobokova et al. [2007]. Re-
sults are based on cubic P-splines (j = 90; d = 2) with B = 15 for NEG, B = 10
for FlexNEG and smean = 5, smax = 40 for RJNEG. Although differences in MSE
between the two top competitors FlexNEG (average MSE (AMSE): 0.0034) and
AdaptFit (AMSE: 0.0035) are negligible, FlexNEG has a better coverage and
considerably smaller bias in the difficult region of the third to sixth oscillations
from the left. Average coverage for FlexNEG is slightly conservative (.93), the
average coverage of the other methods is between .895 and .905. We were un-
able to reproduce the results in Baladandayuthapani et al. [2005] which report
an AMSE of 0.00028. This is due to a mistake in their simulation design, our
results give an AMSE of 0.0044. The mean posterior median of B over the 100
simulations for RJNEG is 5. It should be noted that, in the case of FlexNEG,
convergence of bz for this function can be fairly slow if the chain is started
with smallish (< 10) values of bz. For most datasets, there seem to be multiple

1Because we could not find an explanation for the discrepancies between between our results
for BMC in section 3.1 and published results we requested the original simulation files used
by V. Baladandayuthapani, who was kind enough to oblige us. We found out that published
results are based on repeated fitting of identical data, because the random generator for the
errors was set to the same seed in each iteration of the data generating simulation. The
dataset they fit 100 times had a fairly small error variance (.0355 compared to the nominal
.04) and consequently produced fits with a fairly good MSE. The (small) variability in their
results was entirely due to the MC error of the MCMC chains.
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Figure 1: Simulation results for m1(·) (100 data sets). Upper left panel shows boxplots
of log10(

√
MSE) for the methods under consideration, upper right panel a

benchmark plot (see App. C) for the MSE. Lower row shows the pointwise bias
and the observed pointwise coverage based on a nominal level of .90.
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modes corresponding to different degrees of bz and the chain has to be long
enough (> 30000 iterations) to include visits to all of them. Differences be-
tween the function estimates from the basins of attraction of the various modes
are negligible, however.

3.2. Constant to Oscillating Function

An even greater smooth variation in curvature properties is evident in the func-
tion

m2(x) =

exp(−400(x− 0.6)2) +
5
3

exp(−500(x− 0.75)2) + 2 exp(−500 ∗ (x− 0.9)2)

with n = 1000 observations and σ2
ε = 0.25 (SNR ≈ 1.2) in accordance with

the set-up in Baladandayuthapani et al. [2005] and Krivobokova et al. [2007].
Results are based on cubic P-splines (j = 40; d = 2) with B = 4 for NEG, B = 16
for FlexNEG and smean = 2, smax = 10 for RJNEG. The NEG-based methods
show slightly stronger regularization and, therefore, smaller average bias for
the region x < 0.4 where the function is constant. We assume this is due to
the larger shrinkage of the strongly peaked NEG-prior. Note that the seemingly
large average bias values of FlexNEG in the oscillating part of the function are
negligible compared to the value of the true function - the function value at the
rightmost peak is underestimated by about 3% at most. AMSEs for RJNEG and
AdaptFit are about the same (0.0049) and slightly larger than those for FlexNEG
(0.0045) and NEG (0.0047). Average coverage for FlexNEG (.94), RJNEG(.93)
and NEG (.91) is conservative. Mean posterior median B for RJNEG is 3.

3.3. Blocks: Step Function

As an example for a very un-smooth function with many discontinuities, we
considered the blocks function as specified in Donoho and Johnstone [1994]
with n = 2048 observations and σ2

ε = 1 (SNR ≈ 3.7). Results are based on
cubic P-splines (j = 300; d = 1) with B = 60 for NEG, B = 45 for FlexNEG
and smean = 50, smax = 100 for RJNEG. As might be expected, both AdaptFit
and BMC, which attempt to model a smooth variance function do not perform
as well in this situation as the NEG models which use a more flexible piece-
wise constant representation of the variance function. This can also be seen
from the bias plot: It is apparent that bias is similarly large at the edges of the
respective plateaus for all methods. This is due to the assumption of a continu-
ous f (x) common to all the models we consider, which is inappropriate in this
case. However, the NEG-based fits have much smaller bias for the plateau re-
gions, because their underlying variance functions return more quickly to much

13



●

NEG FlexNEG RJ.NEG BMC AdaptFit

−
1.

3
−

1.
2

−
1.

1
−

1.
0

FM2: MSE

lo
g 1

0((
M

S
E

))

FM2: MSE Benchmark

M
S

E

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

●
●

●

●
●

●
●

● ●
●

● ●
● ●

●

●
●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

● ●
●●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

● ●
● ●

●
●

●

●
● ●

●
●

●

● ●
● ●

● ● ● ●

●

●
●

●
●

●
●

●

● ●

●

●

●
●

● ●

●
● ●

●
●

●

●
●

●

●

●

●

●

● ●

● ●

● ● ●

●

●
●

●

●

●

●
● ●

●

●

●

● ●
●

●

●

●
●

●

●
● ●

●

●

●

● ●
●

●

●

●

● ●

●

●

●
●

● ●

● ●
●

●

●

●
● ●

●
●

● ●

●
●

●

●
●

● ●
●

●

●
●

●

●

●

●
●

●

●
● ● ●

●

●

● ●
● ●

●

●
●

● ● ●

●

● ●

●

●

●

● ●

● ●

●

● ●
●

●

●
● ●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

● ●
●

●

●

●

● ●

●

● ● ● ●

●

●

● ●

● ●

●

● ● ●
●

●

● ●
●

●

●

● ●

●

●
●

● ●
●

●

●

● ●
●

●

●

●
● ●

●

● ● ●
● ●

●

●
● ●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ● ●

●

●
● ●

●

●

●
● ●

●
● ●

●

●

●

●

● ●

●

●

●

● ●
●

●

● ●

●
●

●

●

● ● ●

●

●
●

●

●

●

● ●

● ●

●

●
● ●

● ●

●

●

●
● ●

●
● ● ●

●

●

● ●
●

●

●
● ●

●

●

●

● ●
● ●

●

● ●
●

●

● ●

● ● ●

● ●

●
●

●

●
● ●

● ●

● ●

●
●

●

●
●

● ●
●

● ● ●
●

●

●

● ●
● ●

●

●
●

●

●

●

●
● ●

●

●

● ●

●

●

● ●

●
●

●
● ●

● ●
●

●

● ●

●

●

● ●
●

● ●

● ● ●

●

●

FlexNEG NEG RJ.NEG AdaptFit BMC

1. 2. 3. 4. 5.

Podium

0.
0

0.
5

1.
0

1.
5

2.
0

NEG

f(
x)

−
0.

05
0.

00
0.

05
B

ia
s

FlexNEG RJ.NEG BMC AdaptFit

0.
0

0.
5

1.
0

1.
5

2.
0

NEG.b4

f(
x)

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

C
ov

er
ag

e

FlexNEG.b16 RJ.NEG AdaptFit

Figure 2: Simulation results for m2(·) (100 data sets). Upper left panel shows boxplots
of log10(

√
MSE) for the methods under consideration, upper right panel a

benchmark plot (see App. C) for the MSE. Lower row shows the pointwise bias
and the observed pointwise coverage based on a nominal level of .90.
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Figure 3: Simulation results for blocks function (100 data sets). Upper left panel shows
boxplots of log10(

√
MSE) for the methods under consideration, upper right

panel a benchmark plot (see App. C) for the MSE. Lower row shows the point-
wise bias and the observed pointwise coverage based on a nominal level of
.90.
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Figure 4: Mean estimates for the blocks function for the discontinuity at x = 0.65

smaller values implying strong regularization and less wiggliness of the fitted
function. This can also be seen from the coverage plot: At the discontinuities,
FlexNEG’s coverage returns above the nominal level more quickly. Fig. 4 shows
the mean over the 100 estimated functions at the discontinuity at x = 0.65
for the various methods. It is easy to see that the NEG-based methods show
less oscillation and are better able to reproduce the jump. Average coverage
for AdaptFit is anti-conservative (.87) and conservative (.93− .94) for the NEG-
based methods. Mean posterior median B for RJNEG is 43.

3.4. Heavisine: Smooth Function with Discontinuities

A second function with discontinuities but non-constant function values be-
tween the jumps is given by the heavisine function as specified in
Donoho and Johnstone [1994] with n = 2048 observations and σ2

ε = 1 (SNR
≈ 8.8). Results are based on cubic P-splines (j = 100; d = 2) with B = 10 for
NEG, B = 30 for FlexNEG and smean = 60, smax = 95 for RJNEG. As for the
blocks function, the NEG models are better able to deal with the discontinuities
in this function because of the heavy tails of NEG prior and the ability of the
piecewise constant variance function to model short spikes in variability. While
the maximal bias values at the discontinuities themselves are practically iden-
tical for all methods, FlexNEG and RJNEG have much smaller bias and much
better coverage in the proximity of the discontinuities. Mean posterior median
B for RJNEG is 42. Fig. 6 shows the square root of estimated variance func-
tions for an exemplary dataset. FlexNEG, RJNEG and, to a lesser extent due
to the less flexible parametrization, NEG show pronounced spikes in variance
around the two discontinuities of the function, while the variance estimated
by AdaptFit is much too smooth and does not capture the true structure of the
variability.
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Figure 5: Simulation results for heavisine function (100 data sets). Upper left panel
shows boxplots of log10(

√
MSE) for the methods under consideration, upper

right panel a benchmark plot (see App. C) for the MSE. Lower row shows the
pointwise bias and the observed pointwise coverage based on a nominal level
of .90.
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Exemplary Variance Function Estimates for Heavisine
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Figure 6: Square root of exemplary estimated variance functions for the heavisine func-
tion. Note the much larger scale for AdaptFit given on the right side of the
plot.

3.5. Quantitative Analysis of Simulation Performances

Following the suggestions in Hothorn et al. [2005] we quantify the observed
differences in log10(

√
MSE) via a linear mixed effects model. We include ran-

dom effects for the simulated samples and an interaction term between function
type and algorithm. Fig. 7 shows estimated Tukey contrasts for the algorithms
with 95% confidence intervals corrected for multiple comparisons (single-step
correction as implemented in R-package multcomp [Hothorn et al., 2008]). All
three NEG-based algorithms are significantly better than both BMC and Adapt-
Fit. Note that the estimated differences are quite relevant: an average differ-
ence in log10(

√
MSE) of−0.04 corresponds to a decrease in MSE by about 17%.

FlexNEG outperforms both RJNEG and NEG, and RJNEG in turn outperforms
NEG.

3.6. Robustness

3.6.1. Signal-to-Noise Ratio

We investigated the change in MSE for various signal-to-noise ratios (SNR)
for both m1(x) (see section 3.1) and m2(x) (see section 3.2) for FlexNEG and
compared it with the results of AdaptFit. Figure 8 shows that the change in MSE
is about the same for both methods, with slight differences that do not yield a
conclusive picture for small and medium SNR. FlexNEG seems to improve more
strongly than AdaptFit for large SNR.
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3.6.2. Number of changepoints

We investigated the change in MSE for various specification of B or
(smean, smax) in a setting otherwise corresponding to the one given in section
3.1. Figure 9 shows that RJNEG’s performance is very stable if the number
of admitted changepoints is large enough, while FlexNEG and NEG lose a lit-
tle performance for both too small and too large B. Note, however, that the
performances of both NEG and FlexNEG are still very competitive even for sub-
optimally chosen B and that the increase in MSE is relatively small. In order to
see whether the best number of changepoints in real-world applications could
be determined by the deviance information criterion (DIC) [Spiegelhalter et al.,
2002] we computed DICs for the simulation runs. Model selection based on DIC
would have worked very well for all three methods and simulated datasets, con-
sistently selecting the MSE-optimal model or the next smallest candidate model
if MSEs were very similar. The only exception is RJNEG for the Blocks function,
where DIC would have selected the next larger model than the MSE-optimal
one 4 out of 10 times.

4. Applications

4.1. Fractionation Curves

We apply our method to exemplary data from “Specificity Assessment From
Fractionation Experiments” (SAFE) [Drobyshev et al., 2003] which are used
for quality control of cDNA microarray experiments. Specifically, SAFE is used
to investigate the degree of undesirable cross-hybridization of specific probe
strands, e.g. how often cDNA sections pair with cDNA probes on the chip which
have a similar, but not exactly equal, base sequence. For SAFE, microarrray
chips are repeatedly treated with formamide solutions of increasing concentra-
tion and intensities are recorded after each washing. The series of resulting
intensities for each probe on the chip is called a fractionation curve. As the co-
hesion between cross-hybridizing cDNA strands is weaker than between perfect
matches, they are washed away at lower concentrations. If cross-hybridization
occurs, there usually is a critical concentration in the lower range where a cer-
tain kind of cDNA sequence cross-hybridizing the probe sequence is abruptly
washed away and a drop in signal intensity occurs.

Fits are based on P-splines of degree 0 with j = 20 basis functions and first
order difference penalty for both the NEG-based methods and the non-adaptive
fit with mgcv::gam [Wood, 2006] we used for comparison.

The left panel of Fig. 10 shows an example of a spot binding only the correct
complementary cDNA. The location of the sharp decrease at about 65% indi-
cates that the binding energy between complementary strands was no longer
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Figure 10: Two exemplary fractionation data sets and fitted functions with pointwise
95% confidence intervals. Lower panel shows the square root of the esti-
mated variance functions for NEG, FlexNEG and RJNEG. Values on the ab-
scissa of the lower panel are jittered to avoid overplotting.
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sufficient for cohesion at this concentration . The right panel shows an example
of a spot with cross-hybridization, where cross-hybridizing strands are washed
away at a concentration of about 15%. We use the deviance information cri-
terion (DIC) [Spiegelhalter et al., 2002] to choose B from 3, 5, and 10 and
(smax, smean) from (19, 10), (10, 5), and (5, 3) for NEG, FlexNEG and RJNEG,
respectively. Even without the explicit monotonicity constraints appropriate for
this data, both FlexNEG and RJNEG fit the piecewise constant and decreasing
structure that is expected very well. While the variance function of NEG does
not seem interpretable due to the very low number of blocks in the DIC-optimal
model, peaks in the variance function for both FlexNEG and RJNEG correspond
exactly to the observable changepoints in the data. Note the excessive wig-
gliness of the non-adaptive fit for low concentrations in the left panel and for
intermediate concentrations in the right panel which shows the improvement
that can be gained by an adaptive fit in this context.

4.2. CP6 Data

We use the CP6 monthly sales data taken from West and Harrison [1989] and
compare the fits and estimated variance functions for the methods under con-
sideration. The data represent a time series of sales of tobacco and related prod-
ucts by a major UK company. Fits are based on cubic P-splines with j = 20 basis
functions and first order difference penalty for the NEG-based methods and 10
knots (thin plate splines) for the non-adaptive fit with mgcv::gam [Wood, 2006]
used for comparison.

The data seem to contain an additive outlier and a drastic change of slope in
the last quarter of 1955 as well as further change points in the first months of
1957 and 1958. We use DIC to choose B from 3, 5, 10, and 19 and (smax, smean)
from (19, 10) and (10, 5) for NEG, FlexNEG and RJNEG, respectively. The dif-
ferences between the fitted functions are fairly small (see Fig. 11), even be-
tween the adaptive methods and the conventional additive model fit (MGCV).
All the methods seem to fit the data fairly well. The adaptive methods, except
NEG, avoid the presumably spurious oscillations for 1959 and seem to identify
a plateau for the first 3 quarters of 1957. Also note that FlexNEG seems to be
more robust against the outlier in Dec. 1955 than the other methods. While the
variance function of NEG does not seem interpretable, peaks in the variance
function for both FlexNEG and, to a lesser degree, RJNEG correspond to the
changepoints in the data well.

5. Conclusions

We showed how the NEG prior, combined with a flexible piece-wise constant
representation of the local smoothing parameter, can be used for locally adap-
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tive smoothing in the linear model. We see the main strenghts of our approach
in

1. its ability to deal with both discontinuous changes in the (complexity of
the) fitted function and smoothly varying local complexity, while previous
approaches we are aware of usually only succeed at the latter. Results for
our approach are at least equivalent to the best previous approach (Adapt-
Fit) for smoothly-varying variability and considerably better for functions
with discontinuities. Both situations are also reflected in the applications
considered in Section 4.

2. its very fast convergence and insensitivity to starting values due to the
excellent mixing provided by the block-wise Gibbs samplers. Even for the
very heavily parameterized Blocks function (> 400 parameters) a burn-in
period of about 5000 iterations is sufficient, while a burn-in period of at
least 50000 iterations is recommended (personal comm. V. Baladanda-
yuthapani) for the approach by Baladandayuthapani et al. [2005], for
example.

3. its automatic applicability, since results for FlexNEG and RJNEG are fairly
robust against the (only) user-specified hyperparameters which limit the
maximal complexity of the implied variance function for the random walk
increments.

Further work should embed our approach in a Bayesian backfitting algorithm
and implement suitable update procedures for β to enable locally adaptive func-
tion estimation in the more general framework of structured additive regression
models for non-Gaussian responses.
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A. Posterior and full conditionals

For the hierarchy given in section 2.3, the full posterior with given hyperparam-
eters smean, smax, az, bz, aσ and bσ can be written as

p(B, s, l, z, τ2, β, σ2
ε , y) =(

1−
smax

∑
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Accordingly, the full conditionals are:

π(zb|az, bz, τ2
b ) ∝ zaz

b exp
(
−(bz + τ2

b )zb

)
⇒ zb|· ∼ Γ(az + 1, bz + τ2

b )

π(τb|s, l, β, zb) ∝
√

τ2
b

−lb
exp

(
− 1

2τ2
b

sb+1−1

∑
k=sb

(∆(d)β)2
k − zbτ2

b

)

= (τ2
b )−lb/2 exp

(
−1

2

(
sb+1−1

∑
k=sb

(∆(d)β)2
k(τ2

b )−1 + 2zbτ2
b

))

⇒ τ2
b |· ∼ GIG

(
χ =

sb+1−1

∑
k=sb

(∆(d)β)2
k; ψ = 2zb; λ = 1− lb

2

)

26



GIG(χ, ψ, λ) denotes the generalized inverse Gaussian distribution with den-
sity

f (x) =
(ψ/χ)λ/2

2Kλ(
√

ψχ)
xλ−1 exp

(
−1

2

(
χx−1 + ψx

))
for x > 0, where Kλ(·) is the modified Bessel function of the third kind of
(fractional) order λ [Jorgensen, 1982].
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B. Reversible Jump Algorithm

B.1. Birth and Death Moves

The prior ratio for the birth step is
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B.2. Alternative Proposals

We also experimented with a more complex proposal scheme for the birth and
death moves. Specifically, for the birth step we select interval
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b? ∈ {1, . . . , B− 1} \ {b : lb = 1} with probability
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placing a higher proposal density on selecting long intervals with a large vari-
ation coefficient of the errors of the random walk. This increases the chance
of splitting intervals in which both the proportion of small changes in β and
the variation in (∆(d)β) is large. Intervals with those properties are not homo-
geneous and can potentially benefit from at least one additional changepoint
separating the small changes, which may warrant stronger regularization, from
the larger ones responsible for the larger variation which potentially reflect
jumps or curvature changes in the function to be fitted. The location of the new
changepoint s?

b? is then drawn uniformly from
{sb? + 1, . . . , sb?+1 − 1}.
In the death step, we select the changepoint sb? ; b? ∈ {1, . . . , B − 1} to be
removed with probability

p(b) ∝
1

lb + lb+1

∣∣∣∣∣∣∑
sb−1
k=sb−1

(∆(d)β)k

lb
−

∑
sb+1−1
k=sb

(∆(d)β)k

lb+1

∣∣∣∣∣∣ .

This increases the chance of removing a changepoint sb with short adjacent in-
tervals and small difference between the neighboring local means of ∆(d)β.
The fitted functions based on these proposals and a uniform prior for the num-
ber of knots B were practically identical to fitted functions for the simpler al-
gorithm with a truncated poisson prior for B (see section 2.3). We did not ob-
serve any improvement in the sense of a more parsimonious representation of
the variance function of the random walk and acceptance probabilities for the
dimension changing moves were unreasonably low (0.1− 0.2) in most cases.

C. Benchmark plots

The benchmarkplot (see section 3 for examples) is a visualization method for
benchmark experiments described in Eugster and Leisch [2008]. It is a variant
of the dotplot. For every dataset in the benchmark study, algorithms are ranked
according to their performance. In the upper panel of the plot, a dotplot is
drawn separately for every rank, so that the leftmost part of the upper panel
contains a dotplot of the best performances for every dataset and the rightmost
part of the upper panel contains a dotplot of the worst performances for every
dataset. In this fashion, the ranks of the algorithms on each dataset are used
to stretch the plot horizontally. All the dots representing the various results for
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the same dataset are then connected by lines, similar to a parallel coordinates
plot, giving an impression of the differences in the achieved performances on
identical data. The order in which the algorithms are plotted for each rank is
determined by the frequency of their rankings: the algorithm with the most first
places is leftmost, the algorithm with the most last places is the rightmost. The
lower panel depicts the podium, a barplot for every rank showing how often
each algorithm achieved the respective rank. This plot allows a more detailed
visual analysis of benchmark experiments.
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