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Abstract: An extensive literature has studied ambiguity aversion in economic decision 

making, and how ambiguity aversion can account for empirically observed violations of 

expected utility-based theories. Almost all relevant applied models presume a general 

dislike of ambiguity. In this paper, we provide a systematic experimental assessment of 

ambiguity attitudes in different likelihood ranges and in the gain domain, the loss domain 

and with mixed outcomes. We draw on a unified framework with more than 500 

participants and find that ambiguity aversion is the exception, not the rule. We replicate 

the usual finding of ambiguity aversion for moderate likelihood gains. However, when 

introducing losses or lower likelihoods, we observe either ambiguity neutrality or even 

ambiguity seeking behavior. Our results are robust to different elicitation procedures. 
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1. Introduction 

In decision under uncertainty, risky prospects with known probabilities are often 

distinguished from ambiguous prospects with unknown or uncertain probabilities. 

Inspired by a classic article by Ellsberg (1961), it is typically assumed that people dislike 

ambiguity in addition to a potential dislike of risk, and that they adjust their behavior in 

favor of known-probability risks, even at significant costs. A large literature has studied 

the consequences of such ambiguity aversion for decision making in the presence of 

uncertainty. Building on decision theories that assume ambiguity aversion, this literature 

shows that ambiguity can account for empirically observed violations of expected utility-

based theories (“anomalies”). In financial economics, ambiguity aversion has been 

employed to explain phenomena such as the equity premium and risk-free rate puzzles 

(Collard et al. 2011; Gollier 2011; Ju and Miao 2012; Maenhout 2004), and the stock 

market participation puzzle (Dow and Werlang 1992; Easley and O’Hara 2009). Alary et 

al. (2013) and Snow (2011) show that ambiguity aversion influences optimal insurance 

take-up, deductible choice, and self-protection activities. In health economics, Berger et 

al. (2013) find that ambiguity about the diagnosis or the treatment of a medical condition 

affects patients’ treatment choices, while Hoy et al. (2014) explain the low take-up of 

costless genetic tests by ambiguity aversion. Ambiguity aversion has also been employed 

in economic models of climate change to motivate rapid emission cuts (Farber 2011; 

Millner et al. 2013). Many of these results have served to motivate regulation and policy 

(Farber 2011). 

These and many other theoretical contributions presume a universally negative 

attitude toward ambiguity. Such an assumption seems, at first sight, descriptively justified 

on the basis of a large experimental literature following Ellsberg’s original article. A 

sizable number of experimental studies have implemented an urn-choice experiment, 

whose design was proposed by Ellsberg to identify ambiguity attitudes (see section 2), 

and have predominantly found evidence for ambiguity aversion. However, as Ellsberg 

(2011) argues in a recent commentary on the occasion of the 50th anniversary of his 

seminal article, the predominance of ambiguity aversion in experimental findings might 

be due to a narrow focus on the domain of moderate likelihood gains, as in his original 

examples. While fear of a bad unknown probability might prevail in this domain, people 
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might be more optimistic in other domains, hoping for ambiguity to offer better odds than 

a known-risk alternative. 

Notably, many of the theoretical contributions in economics and finance mentioned 

above concern applications in which unlikely events and loss outcomes are important. If 

likelihood and domain are relevant determinants of ambiguity attitudes, there is a 

potential mismatch between empirical evidence and theoretical interpretation. The 

existing experimental evidence on ambiguity attitudes for losses and for rare events 

indicates ambiguity aversion in the domain of low likelihood losses; for moderate 

likelihood gains and low likelihood losses ambiguity seeking is sometimes reported (see 

Trautmann and van de Kuilen, 2014, for an overview). While the basic Ellsberg paradigm 

is easy to implement and has consequently been studied in hundreds of experiments, 

conducting experiments with losses and identifying ambiguity attitudes for low likelihood 

events is complex and fewer studies have considered the loss and low-likelihood 

domains. Importantly, the complexity in implementing these domains in experiments has 

led to significant design heterogeneity across domains, which could potentially explain 

any differences in observed attitudes. Of the relatively low number of studies on domains 

beyond the standard Ellsberg setup, none considered all four domains within an identical 

design in terms of financial incentives and elicitation procedures (see Appendix A.1 for 

an overview of existing studies that report on all four domains and Table A1 for their 

design features). Given the importance of ambiguity attitudes for economic theorizing 

and policy, a careful measurement of these attitudes across the gain and loss domains, 

and across the low and moderate likelihood ranges is warranted. 

In this paper, we provide a systematic assessment of ambiguity attitudes in different 

likelihood ranges and in the gain domain, the loss domain, and with mixed outcomes, i.e. 

where both gains and losses may be incurred. We draw on a unified experimental 

framework that allows comparing the relevant parameters, and we use different elicitation 

methods to address potential measurement effects on results. Our between-subjects 

design with more than 500 experimental participants exposes participants to exactly one 

of the four domains, reducing any contrast effects that may affect the preferences in the 

laboratory context. 
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Our main result can be summarized in one sentence: Ambiguity aversion is the 

exception, not the rule. We replicate the finding of ambiguity aversion for moderate 

likelihood gains in the classic Ellsberg (1961) two-color design. However, once we move 

away from the gain domain or from the two-color choice to more colors, thus introducing 

lower likelihoods, we observe either ambiguity neutrality or even ambiguity seeking 

behavior. These results are robust to the elicitation procedure. 

Our rejection of universal ambiguity aversion does not generally contradict 

ambiguity models, but it has important implications for the assumptions in applied 

models that use ambiguity attitudes to explain real-world phenomena. Theoretical 

analyses should not only consider the effects of ambiguity aversion, but also potential 

implications of ambiguity loving for economics and finance, particularly in contexts that 

involve rare events or perceived losses such as with insurance or investments. Policy 

implications should always be fine-tuned to the specific domain, because policy 

interventions based on wrong assumptions regarding the ambiguity attitudes of those 

targeted by the policy could be detrimental. 

The rest of the paper is organized as follows. The next section presents the design of 

the tasks and incentives. We have been careful in minimizing differences across domains 

and in minimizing potential biases that could have led to ambiguity seeking results in 

previous studies. Section 3 describes basic properties of our experimental data, and 

section 4 presents results for the pure outcome domains (either gain or loss) for low and 

medium likelihoods. Section 5 provides results for mixed prospects. In section 6, we 

discuss our findings and their implications for the modeling of ambiguity attitudes. 

 

2. Measurement of Ambiguity Attitudes 

2.1. Prospects, Domains, and Predictions 

We elicit attitudes toward uncertain prospects defined on the outcome domain of gains or 

losses, and involving either low or moderate likelihoods. Participants make choices 

between ambiguous prospects and risky prospects. A risky prospect that pays €x with 

probability p[0,1] and €y otherwise is denoted xpy. An ambiguous prospect that pays €x 

if event E occurs and €y otherwise is denoted xEy. Ambiguity attitudes are identified by 

comparing participants’ preferences between risky prospect xpy and ambiguous prospect 
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xEy, where E is defined such that exchangeability of events implies that the subjective 

probability B(E) equals p. In particular, the ambiguous prospects are implemented as bets 

on the color of colored chips drawn from an opaque bag with an unknown distribution of 

colors, but with the participant being indifferent between betting on either of these colors. 

Details on the procedure used in the laboratory are given in section 2.3. 

 

Table 1: Experimental Treatments in a Between-subjects Design 

Treatmenta 
Outcome 
domain 

(Subjective) 
probability 

# colors used to 
implement 
ambiguous 

events 

Expected 
value of risky 

prospect 

Predicted 
attitudeb 

20.50 Gain p = .5 2 10 AA 

(-20).50 Loss p = .5 2 -10 AS 

20.10 Gain p = .1 10 2 AS 

(-20).10 Loss p = .1 10 -2 AA 

(-10).510 Mixed p = .5 2 0 (AA) 

(-10).110 Mixed p = .1 10 8 (AA) 

10.1(-10) Mixed P = .1 10 -8 (AA) 
Notes: a: risky prospect shown in choice between this risky prospect and the analogous ambiguous prospect; b: 
based on pattern observed in the literature; AA=ambiguity aversion; AS=ambiguity seeking.  

 

In the experiment, we implement either moderate likelihood events with p=.5, or low 

likelihood events with p=.1. The outcomes x and y vary across experimental conditions. 

In treatments with pure outcome domains, x equals either €20 in the gain conditions, or 

−€20 in the loss conditions, while y always equals €0. In treatments with mixed 

prospects, x equals €10 and y equals −€10, or vice versa. All conditions are shown in the 

first three columns of Table 1, which defines the conditions in terms of the properties of 

the risky prospect employed in the comparison between risk and ambiguity. The last 

column of Table 1 shows our predictions, as derived from the pattern identified in the 

existing literature (e.g., Trautmann and van de Kuilen 2014). We predict a fourfold 

pattern of ambiguity attitudes, with ambiguity aversion for moderate-likelihood gain and 

low-likelihood loss prospects, and ambiguity seeking for moderate-likelihood loss and 

low-likelihood gain prospects. No evidence exists on the mixed outcome domain; thus the 
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canonical assumption of ambiguity aversion is our benchmark prediction for the mixed 

prospects. 

 

2.2. Measurement 

We measure ambiguity attitudes in a between-subjects design with each subject 

participating in exactly one of the seven treatments shown in Table 1. Our preference 

elicitation procedures are designed to minimize (and control for) potential biases due to 

the measurement method itself. To this end, we measure attitudes in two stages. In stage 

1, we elicit a direct binary choice between a risky prospect and its matched ambiguous 

prospect. While this choice provides the simplest test of ambiguity attitudes and involves 

basically no design issues, it allows us to only categorize subjects into ambiguity averters 

and ambiguity seekers (with neutrals potentially included in both categories), without 

being able to assess the strength of these preferences. 

In stage 2, we then elicit probability equivalents q for the ambiguous prospect: we 

find the risky prospect xqy such that the participant is indifferent between the prospect 

xqy and xEy. Note that if attitudes are not ambiguity neutral, B(E) implied by 

exchangeability need not be equal to q. Differences in q across subjects allow us to 

identify ambiguity attitudes more precisely. In particular, for gain prospects, a smaller 

q<B(E) implies stronger ambiguity aversion as the decision maker is willing to accept a 

lower known chance of a gain in exchange for the unknown chance implied by E. For 

loss prospects, a larger q>B(E) implies stronger ambiguity aversion as the decision maker 

is willing to accept a larger known chance of a loss in exchange for the unknown chance 

implied by E. 

We elicit probability equivalents using a choice list consisting of nine binary choices, 

where choice i elicits the preference between the ambiguous prospect xEy and a risky 

prospect xqiy. The known probability qi increases when going down the list of choices, 

while the outcomes x and y, and event E remain constant across choice items i. Table 2 

shows the probabilities qi used in the choice lists for moderate and for low likelihood 

events. 

When going through the list, a participant is presented with choices in which the 

known-risk prospect is initially very unattractive (for gains; opposite reasoning for 
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losses), and subsequently becomes more attractive. If the initial risky prospect is less 

attractive than the ambiguous prospect and the ninth risky prospect is more attractive than 

the ambiguous prospect (vice versa for losses), there will be a probability qi at which the 

decision maker is indifferent between the two prospects. We use the choice item at which 

the participant switches from a preference for ambiguous to a preference for risky to 

approximate her probability equivalent. Formally, for a subject who switches to the risky 

prospect after item i  {0, 1, 2,…, 9} the probability equivalent q is given by 

q ൌ ൞ ଵݍ െ	 భమሺݍଶ െ ݅	݂݅					ଵሻݍ ൌ 0;ଵଶ ሺݍ௜ାଵ ൅ 	݅	݂݅				௜ሻݍ ∈ ሼ1,2, … ,8ሽ;ݍଽ ൅	 భమሺݍଽ െ ݅	݂݅				ሻ଼ݍ ൌ 9;    (1) 

where i=0 means that the participant chooses the risky prospect already in the first 

choice option, and i=9 means that she never switched to the risky prospect. Hence, we 

take the midpoint between probabilities as an estimate for the probability equivalent, or, 

if necessary, extrapolate a probability equivalent at the boundaries of the choice list.1  

While the binary choices in stage 1 should not be prone to biases caused by the 

elicitation procedure, elicitation procedures that measure the strengths of preferences are 

typically affected by design choices. Our choice list design used to measure probability 

equivalents intends to minimize design-driven biases, while accounting for the prior 

evidence and the structural differences between low and moderate likelihood prospects. 

Thus, we included the direct choice between xEy and xpy roughly in the middle of the 

choice list, skewing the list modestly toward the direction of ambiguity aversion for 

modest likelihood prospects and toward ambiguity seeking for low likelihood prospects. 

Such a setups aims to reduce biases resulting from highly skewed choice lists for low 

likelihood prospects relative to modest likelihood prospects, while at the same time 

                                                 

1 In a third stage of the experiment we also elicited certainty equivalents for the risky prospect xpy as an 

individual measure of risk attitude. We observe the typical reflection effects between gains and losses, and 

overweighting of small and underweighting of large probabilities. In particular, we find significant risk 

aversion for gains with moderate likelihoods and for losses with low likelihoods; and significant risk 

seeking for the mirrored domains and likelihoods. We do not observe any significant correlations between 

ambiguity and risk attitudes, similar to findings reported by Cohen et al. (1987), Di Mauro and Maffioletti 

(2004), or Levy et al. (2010). 
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reducing the risk of having many subjects at the boundary of the choice lists by 

disregarding the previous evidence. In particular, because some previous studies reported 

probability equivalents in the range of q=.3 for modest (p =.5) and q=.2 for low 

likelihood (p=.1) prospects (Trautmann and van de Kuilen 2014), we wanted the choice 

list to cover these values away from the boundaries of the list. 

 

Table 2: Elicitation Tasks for Ambiguity Attitudes 

 
Prob. qi conditional on baseline 

likelihood p 

Decision item p = .50 p = .10 

1 .25 .01 

2 .30 .04 

3 .35 .07 

4 .40 .10 

5 .45 .13 

6 .50 .16 

7 .55 .19 

8 .60 .22 

9 .65 .25 
Notes: Entries are known probabilities qi; x, y, and E are constant across choices 
in this list and depend on the treatment (see Table 1). 

 

The inclusion of the basic comparison between xEy and xpy allows us to assess the 

robustness of the initial choice from stage 1, and in particular when it is included in a full 

list of choices. The comparison of the option selected in stage 1 and stage 2 for this 

choice item provides us with a measure for the consistency of ambiguity attitudes across 

tasks (Binmore et al. 2012; Charness et al. 2013). It is also an indication for the 

robustness of our results. 

 

2.3. Experimental Procedures 

Following the classic Ellsberg thought experiments, risky and ambiguous prospects are 

implemented as opaque bags which are filled with exactly 100 chips of different colors. 

In the moderate likelihood treatments (p=.5), bags contain at most two colors; in the low 

likelihood treatments (p=.1), bags contain at most ten different colors. At the beginning 

of the experiment, and before any instructions for stage 1 are handed out, we ask each 
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participant to choose a personal “decision color” from the list of possible colors, which 

remains fixed throughout the experiment. At that point, participants are not aware of any 

experimental details, thus their beliefs about events in the Ellsberg tasks cannot affect 

their color choice. Participants are informed that the selected color will be relevant for 

determining their payoffs. 

For the ambiguous prospect, an opaque bag has already been filled with 100 colored 

chips when subjects enter the laboratory. The distribution of colors is unknown to 

subjects as well as to the experimenters. However, we do allow participants to inspect 

this bag as soon as the experiment is over, and this is announced.2 For each risky prospect 

xqiy we prepare a bag that contains exactly qi×100 red chips and (1-qi)×100 chips of the 

remaining colors (either one other or nine other colors). Thus, the prospect pays x if a red 

chip is drawn from the respective bag, and y if another chip is drawn. In contrast, the 

ambiguous prospect pays x if a chip of the participant’s personal decision color is drawn 

from the ambiguous bag, and y otherwise. By letting subjects choose their personal 

decision color it is obviously impossible for the experimenter to trick subjects or bias the 

distribution of colors in the ambiguous bag (Charness et al. 2013; Pulford 2009). In the 

instructions of each part, we remind subjects that they have chosen their decision color 

themselves. Further, to facilitate an understanding of risky prospects, the corresponding 

distributions of chips are placed on a table in the lab room, visible to participants during 

the experiment (see Figure A1 in Appendix A.2), before they are filled into bags to 

determine outcomes at the end of the experiment. 

At the beginning of the experiment subjects receive an endowment of €20. This 

endowment is identical in all treatments to avoid any effects from variations in initial 

wealth. One stage of the experiment is randomly selected to be payoff relevant for all 

participants in a particular session at the end of the experiment. Within a choice list, if 

relevant, one decision item is randomly selected to be paid out. This selection is 

randomized at the individual level. Because the experiment was computerized (using z-

                                                 

2 Before the experiment, a student assistant blindly drew 100 chips from an opaque bag filled with in total 

roughly 1000 chips of all relevant colors. From the instructions subjects learn that a student assistant drew 

100 chips from a bag that contains considerably more than 100 chips of all relevant colors. 
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Tree; Fischbacher 2007), we aimed to ensure credibility regarding our procedures (i) by 

implementing prospects in a concrete and verifiable way; (ii) allowing subjects to define 

the ambiguous prospect through their individual decision color; and (iii) by randomly 

selecting one participant as an assistant at the end of the experiment. This person was in 

charge of randomly selecting the payoff-relevant stage, of filling the risky bags, and of 

finally drawing one chip out of each bag. Each step is performed in front of the other 

participants, and outcomes are entered on the assistant's computer screen.3 Any earnings 

are added to or subtracted from the initial endowment. 

While subjects might earn up to €40.00 in the gain treatments, they might end up 

with zero income in the loss treatments. In order to smooth expected income across 

treatments at least slightly we added an effort task based on Raven’s progressive matrices 

(Raven et al., 1998) at the end of the experiment, in which subjects could earn an 

additional amount, which is negative in the gain, and positive in the loss treatments. The 

effort stage of the experiment was announced after all stages and decisions described in 

this paper.4  

We do not provide any feedback on the outcome of preceding stages during the 

experiment and instructions are generally not handed out until the previous task had been 

                                                 

3 First, the assistant drew one ball out of an opaque bag containing three numbered balls to determine the 

payoff relevant stage. If stage 1 was selected, the assistant filled one opaque bag with the distribution of 

chips defining the risky prospect xpy. If stage 2 was selected, the assistant filled nine opaque bags, one for 

each decision item of the respective choice list. In total, ten different bags could be payoff relevant, one 

ambiguous and nine risky ones. She then drew one chip from each bag to determine the individual 

outcomes for everyone in the room. If applicable, the random item from the list is selected for each 

individual by the computer program before chips are drawn. The procedure is clearly described in the 

instructions at the beginning of the experiment. 

4 Subjects have to solve ten effort tasks, which presented them with 3x3 matrixes of graphical figures, with 

one cell left blank. Within 45 seconds, the subject had to select the correct figure out of six different 

options, filling in the blank to complete the logical sequence of the matrix. In the gain treatments subjects 

incur a loss for every incorrect answer; in the loss treatments subjects earn a positive amount for every 

correct answer; in the mixed treatments subjects either face positive, negative or no incentives, which 

depends on whether xpy yields a negative, positive or zero expected value, respectively. 
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finished. Sample instructions for the 20.50 treatment are provided in Appendix A.2. The 

instructions use neutral terms for all prospects. 

 

3. Data Description 

In total 501 subjects (invited with the organization software Orsee (Greiner 2004)) 

participated in 21 experimental sessions, with three sessions for each treatment condition. 

58% of participants were female, the average age was 24.5 years, and 21% were 

economics or business students. The experiment lasted roughly one hour and participants 

earned on average €22.30 (approx. $29.30 at the time the experiment was conducted). 

We did not enforce single switching points in the choice list of stage 2, and as often 

observed, some subjects switched more than once between ambiguous and risky 

prospects when moving down the list. If the person chooses ambiguity in the first and risk 

in the last choice item (for gains and mixed prospects with x>0; vice versa for losses and 

mixed prospects with x<0), we deal with these violations of monotonicity by calculating 

the probability equivalent as the midpoint over the range defined by her first and by her 

last switching point. If the person does not start from ambiguous and eventually switch to 

and remain at risky, the midpoint is not defined, and we drop the respective observation 

from the sample of stage 2 choices.5 This leaves us with 289 stage 1 choices and 280 

valid stage 2 probability equivalents in the pure outcome treatments, and 212 stage 1 

choices and 204 valid stage 2 probability equivalents in the mixed outcome treatments. 

We classify subjects as ambiguity averse or ambiguity seeking as follows. In the 

stage 1 direct choice, a subject is classified as ambiguity averse (seeking) if she prefers 

the risky (ambiguous) prospect. In stage 2, for gain treatments (and in mixed with x>0) a 

subject is classified as ambiguity averse (seeking) if the probability equivalent q is 

smaller than p (larger than p). Analogously, in the loss treatments (x<0) a subject is 

                                                 

5 Overall the rate of inconsistency was low: 5.8% of all choice lists involved inconsistencies (5.2% in pure 

domains and 6.6% in mixed domains), and only 3.4% of all choice lists had to be dropped from the sample 

(3.1% in pure domains and 3.8% in mixed domains). These numbers are well within the bounds typically 

observed in empirical studies. Our results do not change substantially if we instead drop all choice lists 

involving multiple switching, or if we exclude stage 1 observations for those subjects who provided 

inconsistent lists in stage 2 (shown in Tables A4 and A5 in Appendix A.4).  
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classified as ambiguity averse (seeking) if the probability equivalent q is larger than p 

(smaller than p). 

While binary choices in stage 1 do not allow identifying indifference between the 

ambiguous and risky prospect, ambiguity neutrality can be detected on the basis of stage 

2 probability equivalents. Ambiguity neutrality implies indifference between risky and 

ambiguous prospect if and only if q=p (where p=.5 or p=.1). Thus, ambiguity neutral 

subject will either switch in the decision item in which the known probability qi is equal 

to p, or in the subsequent one.6 In the following we first provide results without specific 

consideration of ambiguity neutrality and then discuss its extent and its impact on the 

elicited pattern of attitudes in greater detail. We subsequently analyze the consistency of 

ambiguity attitudes across stages 1 and 2. 

 

4. Ambiguity Attitudes for Pure Outcome Domains 

4.1. Basic Results 

The left panel of Table 3 summarizes the results for the pure-domain treatments based on 

the whole sample.7 The table indicates the direction of ambiguity attitudes in each 

condition and stage (AA for ambiguity aversion; AS for ambiguity seeking; results that 

are insignificantly different from ambiguity neutrality in parentheses). We replicate the 

typical finding of ambiguity aversion in the classic Ellsberg setting (i.e., 20.50): a 

minority of 38.9% prefers the ambiguous prospect in stage 1 (binomial test, p=.076; 

N=72), and probability equivalents are modestly, but significantly smaller than .5. 

In contrast, for the other outcome domains we do not find any evidence for 

ambiguity aversion. Behavior in the moderate likelihood loss domain is indistinguishable 

from ambiguity neutrality (defined here as 50% of subjects choosing either prospect in 

stage 1, and q=.5 in stage 2). For the two low-likelihood prospects we observe ambiguity 

                                                 

6 That is, in the comparison between qi and p they may choose either option since they are indifferent. 

Details and a graphical representation of switching behavior consistent with ambiguity neutrality are 

provided in Appendix A.3. 

7 All hypothesis tests reported in the paper are two-sided tests. We acknowledge that the prediction of a 

fourfold pattern of attitudes generates one-sided hypotheses in the pure outcome domains. The 

interpretation of our results would not change if less conservative one-sided tests were used accordingly. 
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seeking, although the preference is only statistically significant in stage 2 for 20.10 and in 

stage 1 for (-20).10. That is, considering all domains, there is no support for universal 

ambiguity aversion: Pooling all stage 1 choices from pure domain treatments does not 

indicate any ambiguity attitude (binomial test, p=.556; N=289). Classifying subjects as 

ambiguity averse or ambiguity seeking according to their probability equivalent, we again 

observe no significant tendency towards ambiguity aversion (binomial test, p=.106; 

N=280). However, we also observe that the pattern of attitudes shown in the left panel of 

Table 3 is not fully consistent with the fourfold pattern identified in the literature (shown 

in Table 1, column 6), because the pattern would predict ambiguity aversion for the (-

20).10 loss treatments. In contrast, significant ambiguity seeking is found in this domain. 

 

Table 3: Ambiguity Attitudes for Pure Outcome Domains 

 Whole Sample Distinct from Neutralityb 

 
 
Treatment 

# obs.  
Stage 1 

(Stage 2) 

Stage 1: 
ambiguous 

 choices (%) 

Stage 2: 
probability 
equivalenta

# obs.  
Stage 1 

(Stage 2) 

Stage 1: 
ambiguous 

 choices (%) 

Stage 2: 
probability 
equivalenta 

20.50 72 (70) 38.9 AA* .48 AA*** 26 (26) 15.4 AA*** .43 AA*** 

(-20).50 73 (71) 47.9 (AA) .53 (AA) 17 (16) 64.7 (AS) .43 AS** 

20.10 71 (67) 57.7 (AS) .12 AS*** 21 (20) 71.4 AS* .15 AS*** 

(-20).10 73 (72) 63.0 AS** .09 (AS) 25 (24) 28.0 AA** .15 AA* 
Notes: a: median reported; b: classification as described in section 3; direction of effect: AA = ambiguity aversion; AS 
= ambiguity seeking; *,**,*** denotes significance at the 10%, 5%, and 1% level; stage 1: two-sided binomial test 
against p=.5; stage 2: two-sided t-test against probability equivalent q=.5/.1. 

 

 

4.2 Accounting for Ambiguity Neutrality 

A significant share of the participants exhibits ambiguity neutrality as defined in section 

3. Columns 1 to 4 in Table 4 show that the share of ambiguity neutral subjects in the pure 

outcome domains falls in the range 62.9% up to 77.5%. These are large percentages. 

With respect to the basic Ellsberg domain 20.50 this suggests that while many subjects 

have a tendency to make ambiguity averse choices, the strength of these attitudes might 

in fact be modest. 
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Table 4: Ambiguity Neutral Subjects by Treatment 

20.50 (-20).50 20.10 (-20).10 (-10).510 (-10).1(10) 10.1(-10) 

62.9% 77.5% 70.2% 66.7% 82.4% 67.2% 81.2% 

Notes: Entries report percentages of subjects with probability equivalent in the interval [0.475, 0.525] in treatments 
with moderate likelihoods, and in [0.085, 0.115] in treatments with low likelihoods. See section 3 for details.  

 

As described in section 3, ambiguity neutral subjects may make choices in different 

ways that are both consistent with their attitudes and lead to different categorizations in 

terms of ambiguity attitude. This might affect the observed average patterns of attitudes 

in the four domains of interest. The right panel of Table 3 shows results including only 

those subjects who are not identified as ambiguity neutral according to our definition. 

Although the sample sizes are strongly reduced, a highly significant and consistent 

(across stages) pattern emerges: strong ambiguity aversion for moderate likelihood gains 

and low likelihood losses, and strong ambiguity seeking for moderate likelihood losses 

and low likelihood gains. That is, participants who are not ambiguity neutral strongly 

reveal the predicted fourfold pattern of ambiguity attitudes. Moreover, because the 

pattern obtains for both binary choices and probability equivalents, it seems unlikely that 

it is driven by choice list design effects that might have influenced previous results. 

However, we observe that the deviations from neutrality in the stage 2 task are much 

more modest than in some of the reports in the literature, suggesting that our design 

reduced biases in the elicitation methods. 

 

4.3 Consistency across Elicitation Tasks 

The consistency of ambiguity attitudes over repeated choices in the same experiment has 

been questioned in some studies (Binmore et al. 2012; Dürsch et al. 2013; Stahl 2014). 

The inclusion of the stage 1 choice between xEy and xpy in the stage 2 choice lists allows 

us to examine consistency on the individual level. Table 5 provides the results. 

Overall consistency across stages is high, with the standard Ellsberg task 20.50 being 

at the lower end of the range of consistency rates with about 72% of participants choosing 

consistently. Ambiguity neutrals may choose differently in both stages simply because 

they are indifferent between the risky and the ambiguous prospect. However, excluding 
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ambiguity neutral subjects, we find similar rates of consistency, with rates increasing in 

some treatments and decreasing in others. 

 

Table 5: Consistency of Ambiguity Attitude 

 20.50 (-20).50 20.10 (-20).10 (-10).510 (-10).110 10.1(-10) 

Including 
ambiguity 
neutrals 

72.9%* 88.7%* 82.1%* 79.2%* 72.1%* 74.6%* 78.3%* 

Excluding 
ambiguity 
neutrals 

88.5%* 93.8%* 80.0%* 75.0%* 75.0% 63.6% 92.3%* 

Notes: Entries report percentages of subjects who make consistent choice for the identical choice item in stage 1 and 
stage 2 of the experiment. * indicates that the percentage is larger at the 5% significance level than expected under 
random choices (50% consistency). 

 

 

5. Ambiguity Attitudes in the Mixed Outcome Domain 

Under the benchmark assumption of universal ambiguity aversion, the mixed domain 

received little attention in ambiguity research. However, given results that emphasize the 

role of the outcome domain for ambiguity attitudes, the mixed domain becomes an 

important testing ground for models of ambiguity attitude that can account for domain 

specificity (Abdellaoui et al. 2011; Klibanoff et al. 2005; Tversky and Kahneman 1992). 

It also relates more directly to the type of prospects experienced by decision makers in 

financial markets, medical decisions, or decisions in legal contexts, for example. 

We consider three mixed prospects: a symmetric prospect with an equal chance to 

win or lose €10; an advantageous prospect (-10).110 with a low likelihood loss and a high 

likelihood gain event; and a disadvantageous prospect 10.1(-10) with a low likelihood 

gain and a high likelihood loss event. As Table 4 shows, there are many ambiguity 

neutral subjects also for the mixed outcome domain, and we therefore report results for 

both the whole sample and the sample restricted to subjects who are not classified as 

ambiguity neutral. Results are shown in Table 6.  

Three main insights obtain from Table 6. First, there is little evidence of (universal) 

ambiguity aversion for mixed prospects either. Second, there is less consistency of the 

pattern of attitudes across stages than for the pure domains: neither the full nor the 
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reduced sample reveals a consistent pattern for all three prospects. Third, the only robust 

finding concerns the ambiguity seeking observed for prospect 10.1(-10). 

 

Table 6: Ambiguity Attitudes for the Mixed Outcome Domain 

 Whole sample Distinct from Neutralityb 

Treatment 

# obs. 
Stage 1 

(Stage 2) 

Stage 1: 
ambiguous 
choices (%)

Stage 2: 
probability 
equivalenta 

# obs. 
Stage 1 

(Stage 2) 

Stage 1: 
ambiguous 
choices (%) 

Stage 2: 
probability 
equivalenta 

(-10).510 73 (68) 34.2 AA*** .53 (AA) 16 (12) 37.5 (AA) .43 (AS) 

(-10).110 69 (67) 58.0 (AS) .12 AA*** 23 (22) 56.5 (AS) .15 AA** 

10.1(-10) 70 (69) 67.1 AS*** .12 AS** 13 (13) 84.6 AS** .15 AS** 
Notes: a: median reported; b: classification as described in section 3; direction of effect: AA = ambiguity aversion; AS 
= ambiguity seeking; *,**,*** denotes significance at the 10%, 5%, and 1% level; stage 1: two-sided binomial test 
against p=.5; stage 2: two-sided t-test against probability equivalent q=.5/.1. 

 

 

6. Discussion 

In this paper we elicit ambiguity attitudes of more than 500 participants in four pure and 

three mixed outcome domains, at different levels of likelihood. Our measurement 

methods were designed to minimize biases caused by the elicitation method. In particular, 

we aimed to provide a conservative test of the ambiguity seeking tendencies observed in 

the previous literature. We also minimized design heterogeneity across domains: 

heterogeneity in terms of payoffs (real vs. hypothetical; endowment vs. no endowment), 

in terms of the presentation of the ambiguous prospects (Ellsberg urns, second order 

probabilities), and in terms of the degree to which participants’ beliefs about the 

distribution of colors in the Ellsberg urns are controlled for.  

We find no evidence for universal ambiguity aversion as it is assumed by basically 

all theoretical applications in various subfields of economics and finance today. In 

contrast, ambiguity attitudes are domain-specific and depend on likelihood ranges. A 

large share of the participants in our experiments can be categorized as ambiguity neutral. 

For those subjects who reveal clear deviation from neutrality, a fourfold pattern of 

ambiguity attitudes strongly emerges from the data: Ambiguity aversion is found for 

modest likelihood gain (as in the classic Ellsberg paradox) and low likelihood loss 

prospects. Ambiguity seeking is found for low likelihood gain prospects and modest 
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likelihood loss prospects. In all domains, a large group of subjects (a majority in fact) is 

close to ambiguity neutrality. This observation relates to the importance of individual 

heterogeneity in ambiguity attitudes (demonstrated for market outcomes in Bossaerts et 

al. 2010; Tymula et al. 2013), across all domains of interest. Overall, when looking at our 

evidence, the conclusion that ambiguity aversion is more an exception rather than the rule 

seems to be vindicated. 

We find high but not perfect rates of consistency across stage 1 and stage 2 choices 

in our experiment. The finding suggests that choice list format does affect respondents’ 

decisions. Consequently, estimates of the absolute degree(s) of ambiguity aversion 

observed in some specific measurement should be interpreted with care: these levels will 

be affected by idiosyncratic design effects. In contrast, as long as general patterns and 

comparative results are the researcher’s objective, more robustness can be expected.  

Finally, with virtually all relevant problems in economics and finance relating to the 

mixed outcome domain, more empirical investigation of this domain seems warranted. 

We provide a first measurement of ambiguity attitudes for mixed prospects. As for the 

pure domains, we find little evidence of universal ambiguity aversion. Results seem also 

less robust, however, than those for the pure domains. The challenge for descriptive 

theoretical work on ambiguity will be to provide a model that can account for both the 

pattern observed for the pure domains, as well as for the attitudes revealed in the mixed 

domain. To allow researchers to test or calibrate their models, our comprehensive data set 

of binary choices and certainty equivalents in the pure and mixed domains will be made 

available online.8 

  

                                                 

8 The data will be deposited at https://heidata.uni-heidelberg.de/dvn/dv/awiexeco.  
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Appendix 

A.1. Review of Ambiguity Measurements across Outcome and Likelihood Domains 

To provide a benchmark for the evaluation of the current design and results, Table A1 

gives a concise summary of previous studies that examined ambiguity attitudes in the 

four domains of to the current study (gains vs. loss outcomes; moderate vs. low 

likelihood events). The table illustrates the strong design heterogeneity within and across 

studies, and also shows the emerging evidence for the fourfold pattern of ambiguity 

attitude with ambiguity aversion for modest likelihood gains and low likelihood losses, 

and ambiguity seeking for low likelihood gains and modest likelihood losses. For a 

broader review, including studies that only consider a subset of these domains, we refer 

to the review chapter by Trautmann and van de Kuilen (2014).  
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Table A1: Design Properties and Findings of Experimental Measurements of Ambiguity Attitude  

Paper 

Ellsberg design  
(Controls for belief and trust if Ellsberga; 

stimuli if other than Ellsberg) Elicitation method 

Real incentives for all 
conditions 

(identical endowments) 
 Between- or within-

subjects design 
# of subjects 

(Country) 

Fourfold 
pattern 

reported 

Abdellaoui et al. 
(2005) 

No (variation in stock index) 
Elicit Cumulative 
Prospect Theory decision 
weighting functions 

No Within 
41 

(Germany) 
Yes 

Baillon and 
Bleichrodt (2015) 

No (variation in stock indices) 
Choice list for probability 
equivalents 

Yes (Yes) Within 
37 

(Netherlands)
Yes 

Budescu et al. 
(2002) 

No (vague probabilities) Certainty equivalents Yes Within 
23 

(USA) 
No 

Di Mauro and 
Maffioletti 
(2004) 

No (expert guess on unknown  
likelihoods) 

Second price auctions to 
insure against a loss or to 
assure a gain 

Yes (No) 
Within (probabilities) 

and between (outcomes)
116 

(UK) 
Yes 

Einhorn and 
Hogarth (1986) 

Yes (N) 
Direct choice between 
risk and ambiguity 

No 
Within (probabilities) 

and between (outcomes)
274 

(USA) 
No 

Kahn and Sarin 
(1988) 

No ("ambiguous versus 
unambiguous probabilities" in 
consumer context choices) 

Direct choice between 
risk and ambiguity 

Yes (No) Within 
60 

(USA) 
Yes 

Keren and 
Gerritsen (1999) 

Yes (CC) 
Direct choice between 
risk and ambiguity 

No Between 
258 

(Netherlands)
No 

Vieider et al. 
(2012) 

Yes (N) 
Choice lists for certainty 
equivalents 

Yes (No) Within 
157 

(Ethiopia) 
Yes 

This Paper Yes (FC) 

Direct choice between 
risk and ambiguity & 
choice list for probability 
equivalents 

Yes (Yes) Between 
501 

(Germany) 
Yes 

Notes: The table reports relevant design properties and findings for measurements of ambiguity attitudes that consider all four outcome  likelihood domains. a: N=not controlling 
for beliefs and trust; CC=color choice control for trust; FC=fully controlling for trusts and skewed beliefs.
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A.2 Instructions for the treatment for gains with moderate likelihoods (200.50) 

 
Welcome to the experiment and thank you for your participation! 

Please do not talk to other participants of the experiment from now on. 

 

General information on the procedure 

This experiment is conducted to investigate economic decision making. You can earn money during the 

experiment. It will be paid to you privately and in cash after the experiment. 

The entire experiment lasts about 1 hour and consists of 4 parts. At the beginning of each part you will 

receive detailed instructions. If you have questions after the instructions or during the experiment please 

raise your hand. One of the experimenters will then answer your question privately. During the experiment 

you will be asked to make decisions. Your own decisions will determine your payment which is a result of 

the following rules. While you will be making your decisions a clock will count down at the right upper 

corner of the screen. This provides you with an indication about how much time you should spend on your 

decisions. Of course you can take more time if you need to; this might be especially likely in the beginning 

of the experiment. Only the information screens where no decisions need to be made will disappear after 

the time has run out. 

Payment: In each part of the experiment your income is directly stated in Euro. Of Part I, Part II, and Part 

III only one part will be paid out. One participant will select which of those parts will be payoff relevant, 

randomly and with equal probability at the end of the experiment (after Part IV). As you do not know 

which part will be chosen, it is optimal for you to behave like each part was to be paid. Part IV is definitely 

relevant for your payment. 

In the beginning of the experiment you will also receive an endowment of 20 Euro. Your total income is 

then equal to the sum of your endowment, the income of the selected part (I, II, or III), and of Part IV. 

Anonymity: We evaluate any data of the experiment only in aggregate form and never connect personal 

information to individual data. At the end of the experiment you have to sign a receipt for the payment. 

This only serves for our internal accounting. 

Devices: At your place you find a pen. Please leave it on the table after the experiment. 

Start: In the beginning of the experiment we ask you to choose a color which will be your personal 

decision color during the experiment. In the following instructions you will learn how this color is 

important in determining payments. 

On the first screen a list of colors is displayed. Please mark exactly one of those colors and confirm your 

choice by clicking the OK-button in the lower part of the screen. All participants choose from the same list 

of colors. As soon as every participant has chosen her personal decision color the instructions for the first 

part of the experiment will be distributed.  
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Part I 

Task 

In this part you have to choose between two prospects. These prospects are described by two opaque bags, 

bag A and bag B. From each of these bags one chip is randomly drawn which will determine your payment 

as described further below. You choose whether your chip should be drawn from bag A or from bag B. 

Bag A: Bag A has already been filled with exactly 100 colored chips before the experiment. These chips 

are either red or blue. The distribution of the colors is unknown to you: A student assistant has randomly 

drawn 100 chips from a bigger bag that contained far more than 100 chips - only red and blue ones. Thus, 

you do not know how many of the 100 chips are red or blue.  

If you choose bag A, you receive 20 Euro if the color of the chip that will be drawn from bag A is equal to 

you personal decision color, and 0 Euro if the chip has a different color. 

Bag B: In a moment we will fill exactly 100 chips into bag B. Of those chips, exactly 50 are red and the 

remaining 50 are blue.  

If you choose bag B, you receive 20 Euro if the color of the chip that will be drawn from bag B is red, and 0 

Euro if the chip is not red.  

Part I ends as soon as everyone has made her decision; you will then receive the instructions for Part II.  

Random draw of the chips at the end of the experiment 

After the completion of Part IV the computer will randomly assign two participants as assistants. One 

assistant will first draw a ball from a bag filled with three balls - numbered from 1 to 3. The number of that 

ball determines the payoff relevant part. 

If Part I is selected for payment the assistant will draw one chip from each of the bags A and B. The colors 

of these chips are then relevant for your payment (depending on whether you have chosen bag A or bag B). 

The other assistant will enter the color of the chips on her screen. Whether you have been assigned the role 

of an assistant will be shown to you on your screen at that point.  

 

Part II 

Task 

In this part you will receive in total 9 decision problems. These will be displayed to you simultaneously on 

one screen.  In each of these problems you choose between two prospects which we will again describe by 

two opaque bags. 

In each of these problems you decide between bag A from Part I and a second bag, denoted by bag C. Bag 

C also contains exactly 100 - only red and blue - chips. How many of the chips are red and blue will be 

displayed on your screen. 

To remind you: bag A has been randomly filled with 100 chips before the experiment. These chips are 

either red or blue. You do not know how many are red and how many are blue.  

The decision problem from stage 1 is one example for a possible decision problem in this part. Another 

example is illustrated in the following table: 
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Bag A Bag C Your decision 

Bag A contains exactly 100 chips; you do 

not know how many are red or blue. 

If a chip is drawn that is of your personal 

decision color, you receive 20 Euro. If a 

different chip is drawn, you receive 0 Euro. 

Bag C contains exactly 100 chips of which 

exactly 40 are of red color. 

If a red chip is drawn, you receive 20 Euro. 

If a different chip is drawn, you receive 0 

Euro. 

BAG A 

OR 

BAG C 

 

Your decision is not valid before you have made a choice for all decision problems and then clicked on the 

OK-button in the lower part of the screen. Take enough time for your decisions, as each decision can 

determine your payment from this part. 

If Part II is selected as payoff relevant, your income from this part will be determined as follows: for each 

participant the computer selects randomly and with equal probability one of the 9 decision problems (i.e. 

each with a probability of 1/9). Each bag C will be filled with the corresponding number of red and blue 

chips. One assistant will draw one chip from each of these bags, and one chip from bag A, which will 

determine your payment as described above. 

If, for example, the upper decision problem is chosen and you have chosen bag C you will receive 20 Euro 

if the chip from this bag is red, and 0 Euro if it is not red. If you have chosen bag A you receive 20 Euro if 

the chip from this bag is of your personal decision color that you have chosen yourself in the beginning. 

Since you do not know which of the 9 decision problems will be selected for payment, it is optimal for you 

to behave as if each decision problem was relevant for payment. 

 

Instructions for Part III and IV can be received from the authors upon request. 
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A.4 Supplementary Tables 

 

 

Table A4: Ambiguity Attitudes for Restricted Samples in Stage 1 and Stage 2   

Treatment 

# obs. 
Stage 1 
and 2 

Stage 1: 
ambiguous 
choices (%) 

Stage 2: 
probability 
equivalenta 

Consistent between 
Stage 1 and 2b (%) 

20.5 70 37.1 AA** .48 AA*** 72.9 

(-20).50 71 49.3 (AA) .53 (AA) 88.7 

20.1 67 55.2 (AS) .12 AS*** 82.1 

(-20).10 72 62.5 AS** .09 (AS) 79.2 

Notes: a: median reported; b: classification as described in section 4.3; direction of effect: AA=ambiguity aversion; 
AS=ambiguity seeking; *,**,*** denotes significance at the 10%, 5%, and 1% level; stage 1: two-sided binomial test 
against p=.5; stage 2: two-sided t-test against probability equivalent=.5/.1. 
Data of subjects who violate consistency criteria in stage 2 excluded in stages 1 and 2. 

 

 

Table A5: Ambiguity Attitudes for Consistent Subjects 

Treatment  

# obs. 
Stage 1 
and 2 

Stage 1: 
ambiguous 
choices (%) 

Stage 2: 
probability 
equivalenta 

Consistent between 

Stage 1 and 2
b 
(%) 

20.50 51 17.6 AA*** .48 AA*** 100.0 

(-20).50 63 47.6 (AA) .53 (AA) 100.0 

20.10 55 60.0 (AS) .12 AS*** 100.0 

(-20).10 57 56.1 (AS) .09 (AS) 100.0 

Notes: a: median reported; b: classification as described in section 4.3; direction of effect: AA=ambiguity aversion; 
AS=ambiguity seeking; *,**,*** denotes significance at the 10%, 5%, and 1% level; stage 1: two-sided binomial test 
against p=.5; stage 2: two-sided t-test against probability equivalent=.5/.1. 
Data of subjects who violate consistency criteria in stage 2 and whose choices in stage 1 and stage 2 are not consistent 
excluded in stages 1 and 2. 

 


