REVIEW

URRENT
PINION

Pathogenic mechanisms and clinical implications of

congenital neutropenia syndromes
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Purpose of review

The purpose of this review is o summarize pathogenic mechanisms and clinical implications of the most
illustrative genetic entities of congenital neutropenia syndromes.

Recent findings

Congenital neutropenia comprise monogenetic entities with or without additional immunologic and
extrahaematopoietic syndromatic features. Continuous careful explorations of known entities such as
ELANE, GFI1, HAX1, G4PC3 deficiency and XLN help to define principles controlling differentiation and
function of neutrophil granulocytes. Furthermore, the identification of novel genetic defects associated with
congenital neutropenia, such as VPS45 deficiency, broadens our understanding of neutrophil biology.
Pathogenic mechanisms imply protein and vesicle mistrafficking, endoplasmic reticulum stress, the unfolded
protein response, destabilization of the mitochondrial membrane potential, disturbed energy metabolism,
dysglycosylation and deregulated actin polymerization.

Summary

Advanced genetic and biochemical techniques have helped to expand our knowledge of congenital
neutropenia syndromes. Known and novel genetic entities shed light on fundamental biological processes
important for the homeostatis and functioning not only of the neutrophil granulocyte but as well of the entire
haematopoietic system. Furthermore, treatment decisions become more tailored and might pave the road

towards personalized molecular medicine.

Keywords
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neutropenia, vacuolar protein sorting 45 homolog, X-linked neutropenia

Neutrophil granulocytes are the most abundant type
of leukocytes and their inherited quantitative dis-
orders are referred to as congenital neutropenia with
or without additional immunologic and extra-
haematopoietic manifestations (Table 1 [1-14,15",
16-41,42"%,43-53,54%,55-61,62"%,63%,64"",65-76,
77%,78-95,96"%,97-102]). The absolute neutrophil
count (ANC) in the peripheral blood is used for
dividing congenital neutropenia into mild (1.0-
1.5 x 107/1), moderate (0.5-1.0 x 10°/1) and severe
(<0.5 x 10?/1) subtypes. Neutropenia may be con-
stant, intermittant or periodic such as in cyclic
neutropenia (CyN). Frequently, in congenital
neutropenia, compensatory monocytosis is seen
[103%,104-106].

Patient registries founded in the early 1990s
have allowed calculating an estimated incidence
of 10-15/1x 10° birth and a prevalence of more
than 10/1 x 10°inhabitants. Concerted international
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collaborations have facilitated the discovery of
genetic defects associated with severe congenital
neutropenia (SCN). However, even in the era
of next-generation sequencing, the genetic cause
of congenital neutropenia remains unknown in
30-50% of patients [107%].

Clinically, congenital neutropenia are character-
ized by acute and life-threatening invasive bacterial
and fungal infections such as cellulitis, pneumonia
and sepsis and chronic stomatologic infections such
as recurrent aphthosis, paradontopathy and tooth
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KEY POINTS

e Congenital neutropenia comprises monogenetic entities
with or without additional immunologic and
extrahaematopoietic manifestations.

e Pathogenic mechanisms imply RNA processing, protein
and vesicle mistrafficking, endoplasmic reticulum stress,
the unfolded protein response, destabilization of the
mitochondrial membrane potential, disturbed energy
metabolism and dysglycosylation, as well as
deregulated actin polymerization.

e Molecular diagnosis is important for risk stratification,
treatment choice and prognosis.

loss [107"]. Moreover, congenital neutropenia is con-
sidered a premalignant state of haematopoietic stem
or progenitor cells and may degenerate into myelo-
dysplastic syndrome (MDS) and acute myeloblastic
leukaemia (AML) [108,109].

Granulocyte colony stimulating factor (G-CSF),
which has been commercially available since 1993,
has emerged as an effective first-line treatment and
importantly reduced the mortality of congenital
neutropenia [110,111]. However, a cumulative
G-CSF dose of more than 10000 p.g/kg and a mean
G-CSF dose per injection of more than 10 pg/kg are
significantly related to malignant transformation
[108,109]. The individual phenotype and the risk
of malignancy vary for each genetic subtype of
congenital neutropenia [112].

Qualitative neutrophil disorders such as myeloper-
oxidase deficiency (MPD), chronic granulomatous
disease (CGD) and leukocyte adhesion deficiencies
(LADs) are reviewed in great depth elsewhere. This
review focuses on recent major progress in science
on diseases associated with reduced numbers of
neutrophil granulocytes [113"-115"].

Benign neutropenia is a mild to moderate
(0.5-1.5 x 10°/1) congenital neutropenia without
numerical or morphological bone marrow abnor-
malities and without increased risk of bacterial or
fungal infections [14,15%,116,117]. Benign neutro-
penia is prevalent in approximately 4.5% of black
and 0.8% of white Americans and can be found in
the Arabian Peninsula and in various European
regions as well [118-120].

In individuals from geographic regions where
Plasmodium spp. are endemic, benign neutropenia is
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associated with an autosomal recessive promotor
polymorphism in the Duffy blood group chemokine
receptor gene (DARC c.T-46>C) that abrogates the
binding of the transcription factor GATA binding
protein 1 (GATA1) and leads to a loss of DARC
expression on erythrocytes [1-3]. Even though
the resulting Duffy null blood group has been found
protective against Plasmodium vivax infection and is
associated with an increased susceptibility towards
human immunodeficiency virus (HIV) infection,
the precise molecular mechanism of benign neutro-
penia remains elusive [4-6,121%]. Current attempts
to explain the phenotype of benign neutropenia
often invoke nonhaematopoietic cells such as the
endothelium and consecutive aberrant response
to chemokines and transendothelial migration of
neutrophil granulocytes [122,123].

Genome-wide association studies (GWAS)
[124,125%] for benign neutropenia in the remaining
ethnicities have identified a locus on chromosome
17q and further genetic regions.

Heterozygous mutations in the elastase neutrophil
expressed gene (ELANE) coding for the neutrophil
elastase cause CyN and SCN type 1 (SCN1) in an
autosomal dominant way and are the most common
cause of congenital neutropenia in the Caucasian
population (41% in Europeans and 55.6% in North
Americans) [7,8]. More than 100 defined genetic
variants in ELANE have been associated with
SCN1 [126™].

CyN is characterized by an ANC that oscillates
with a periodicity of approximately 21 days between
almost normal values and complete disappearance
of neutrophil granulocyte and that exhibits a reverse
monocyte cycling, that is monocytes increase when
neutrophil granulocytes decrease [9]. SCN1, how-
ever, displays a permanent bone marrow maturation
arrest at the promyelocyte stage [7].

Even though specific ELANE mutations may
lead to CyN and SCNI1, respectively, there is no
established firm genotype-phenotype correlation
and we face a continuum rather than a clear-cut
separation [7,8,10]. This might be due to inappro-
priate ANC monitoring, G-CSF treatment related
cycle modification, incomplete mutation spectrum
data, phenotype diversification by modifier genes
and additional somatic mutations, especially in the
colony stimulating factor 3 receptor gene (CSF3R)
[11-14,15%,127,128].

Nevertheless, on the basis of recent findings,
several general conclusions may be justified. First,
all known mutations lead to protein expression,
so mere haploinsufficiency is not causing ELANE
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deficiency. Second, truncating mutations in the ter-
minal exon 5 lead to expression of neutrophil elastase
that lacks a binding site for the adaptor protein 3
(AP3) and are predominantly associated with SCN1.
Third, missense mutations of the consensus splice
acceptor in intron 4 lead to the use of a cryptic splice
site in exon 5 and to the deletion of the catalytic site
(A161-170) and are predominantly associated with
CyN. Fourth, the common p.G815R mutation leads
to G-CSF-refractory SCN1 with frequent progression
to MDS and AML [15%,16,17].

The monomeric serine chymotryptic-type pro-
tease neutrophil elastase is a major component of
neutrophil granulocyte azurophilic granules and is
named after its first known substrate elastin [129].
Neutrophil elastase is synthesized as an inactive zym-
ogen of 267 amino acid (aa) residues and is activated
by limited proteolysis at both its amino and carboxy-
terminus. The cleavage of the N-terminal 27 aa pre
and two aa pro-signalling sequences and a C-terminal
20 aa propeptide is fundamental to neutrophil elas-
tase trafficking and enzymatic function [130,131].
Neutrophil elastase targets a variety of bacterial vir-
ulence factors and processes cytokines, chemokines,
G-CSF and G-CSFR. Thus, it is involved in bacterial
killing and in various signalling and homeostatic
circuits [132,133]. Activated neutrophil elastase is
kept in check by serine proteinase inhibitors, that
is serpins, such as al-protease inhibitor [134].

How exactly ELANE mutations lead to CyN and
SCN1 remains a matter of debate and the three prin-
cipal hypotheses that have emerged are not mutually
exclusive. The inhibitor hypothesis assumes that
ELANE mutations produce a negative feedback loop
that leads to periodic impairment of neutrophil pro-
duction and differentiation and uses mathematical
models to demonstrate the 21-day periodicity of CyN
[135].

The mislocalization hypothesis posits that neu-
trophil elastase is an AP3-cargo and trafficking
through the trans-Golgi network towards the azuro-
philic granules is hampered as a consequence of
C-terminal (truncating) mutations. Consequently,
neutrophil elastase devoid of correct posttransla-
tional processing accumulates in erroneous subcel-
lular compartments [16,18,19]. How this interferes
with (cyclic) neutrophil maturation arrest is not
resolved and the answer might, at least partially,
come from the unfolded protein response (UPR)
hypothesis.

The UPR hypothesis proposes that ELANE
mutations lead to neutrophil elastase misfolding
during protein biosynthesis and cause an endo-
plasmic reticulum stress response as deduced by
the upregulation of the stress marker heat shock
70-kDa protein 5 (HSPAS) and the splicing of

600 www.co-allergy.com

X-box-binding protein 1 (XBP1) mRNA. Endoplas-
mic reticulum stress then initiates autophagy or
apoptosis of neutrophil granulocyte and causes
SCNT1 as illustrated in cell culture systems and trans-
genic murine models [19,20,136].

Even though it has become clear the ELANE
mutation induced cell death is pivotal for the
phenotype of congenital neutropenia, it is still
unclear which factors determine CyN versus
SCN1, why G-CSF treatment can overcome the
observed maturation arrest and why MDS and
AML preferentially develop in SCN1, but are scarce
in CyN. It is noteworthy that leukaemogenesis in
SCN1 can proceed as a consequence of somatic
CSF3R mutations. The very mechanisms that
deviate ELANE mutations towards CyN versus
SCN1 may also control the threshold for selective
pressure and additional somatic hits required for
clonal outgrowth of leukaemia cells [137"].

Very rarely, congenital neutropenia has been found
to be associated with mutations in the transcription
factor growth factor independent 1 transcription
repressor (GFII). A murine knockout model for
the growth factor independent 1 gene (Gfil) has
been found to cause myeloid differentiation arrest
and to lead to SCN as well [138,139]. In addition, the
differentiation and function of further haemato-
poietic lineages such as dendritic cells, B cells and
T helper cells are disturbed in Gfil-deficient mice
[140-143]. Gfil is a predominantly repressive zinc-
finger transcription factor that governs haemato-
poietic stem cell homeostasis and especially myeloid
differentiation by regulating a plethora of biological
processes such as trancriptional networks, micro-
RNA processing and degradative ubiquitination-
mediated apoptosis [144-147].

Almost paralleling these findings, heterozygous
human mutations in GFI1 leading to the dominant
negative p.N382S and p.K403R substitutions and
reducing the expression level of neutrophil elastase
have been described to cause SCN2 with an addi-
tional lymphocyte proliferation defect [21,22].
Mechanistically, NEDD4-binding protein 2-like 2
(N4BP2L2) has been shown to interact with neutro-
phil elastase and GFI1 and might link GFI1
mutations to reduced ELANE expression in SCN2,
even though there has not yet been any N4BP2L2
mutation found in SCN [23].

Interestingly, the very same mutations have
been found as monoallelic de-novo mutations in
one patient presenting with CyN. The authors found
cycling cytotoxic T cell responses against HLA-A2
presented neutrophil elastase epitopes as causing
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this autoimmune CyN and their study [24] expands
the pathogenetic mechanisms probably leading
to CyN.

Autosomal recessive mutations in haematopoietic
cell specific LYN substrate 1 (HCLS1)-associated
protein X-1 (HAX1I) cause SCN3, classically known
as Kostmann disease, and contribute to approxi-
mately 15% of SCN with a preponderance in the
Turkish and Middle Eastern population [25,26,148].

HAX1 deficiency is characterized by SCN (often
<0.2 x 10%/1) resulting from a maturation arrest at
the promyelocyte stage and presenting during the
first weeks of life with severe and life-threatening
bacterial infections [27]. Some patients additionally
display neurological impairment such as mental
retardation and epilepsy and this is thought to result
from HAXI1 mutations that do not only affect iso-
form A but also isoform B [28,29]. However, there
might be a more complex genotype-phenotype
relation, because compound heterozygous HAX1
mutations targeting both transcripts have been
described in SCN3 patients not affected by neuro-
pathology [149,150].

HAX1 was initially identified as a ubiquitously
expressed binding partner of HCLS1, which is
involved in SRC-kinase signalling downstream of
the B cell antigen receptor (BCR) [30]. HAX1 is an
intracellular 35-kDa protein that predominantly
localizes to the mitochondria but that can be detected
in the endoplasmic reticulum and nuclear envelopes
aswell [30]. Biochemical analyses established a role of
HAX1 in stabilizing the mitochondrial membrane
potential (Aym) and were congruent with increased
apoptosis observed in HAX1-deficient myeloid and
extrahaematopoietic cells [26,31]. HAX1 interacts
with presenilin-associated rhomboid-like (PARL)
and HtrA serine peptidase 2 (HTRA2) that activate
the pro-apoptotic BCL2-associated X protein (BAX)
pathway [31,32]. In addition, HAX has been shown
to protect the antiapoptotic X-linked inhibitor
of apoptosis (XIAP) from ubiquitination-mediated
proteasomal degradation [33]. Further evidence
for an antiapoptotic role of HAX1 stems from
the observation that it interacts with and down-
regulates the protein level of ATPase Ca”" transport-
ing cardiac muscle slow twitch 2 (ATP2A2) that
regulates the endoplasmic reticulum Ca®"-concen-
tration [34].

In line with an important function for HAX1 in
cellular homeostatis is the observation that a num-
ber of viruses such as Epstein-Barr virus (EBV),
human herpesvirus 8 (HHV-8), HIV and hepatitis
C virus (HCV), which partially establish latency,
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code for HAX-1 interacting proteins, even though
the mechanistic consequences of these interactions
remain elusive [151-156].

Additional HAX1-protein interactions that are
coupled to particular biological processes have been
elucidated and it seems that HAX1 is involved in Ras
homolog family member A (RHOA) mediated neu-
trophil cell adhesion and migration as well as in
posttranscriptional mRNA processing, stability and
localization [157,158].

Taken as a whole, HAX1 seems to balance proa-
poptotic and antiapoptotic signalling networks and
to modulate further biological processes, but the
precise mechanisms of increased apoptosis in devel-
oping myeloid cells have still to be determined.

Autosomal recessive mutationsin glucose 6 phospha-
tase catalytic subunit 3 (G6PC3) cause SCN4, a pre-
dominantly quantitative disorder of neutrophil
granulocytes with variable thrombocytopenia and
associated syndromatic features [159,160*]. The
most common extrahaematopoietic manifestations
of G6PC3 deficiency comprise congenital heart and
urogenital defects, failure to thrive, endocrine dis-
orders, facial dysmorphy, inner ear hearing loss,
hyperelastic skin, decreased subcutaneous fat tissue
and livedo reticularis [160*"]. Mutations in G6PC3
cluster in exons 1 and 6, which are coding for the C
and N-terminus of G6PC3, respectively. However, the
current mutational spectrum in a limited number
of patients has not yet allowed a clear genotype—
phenotype correlation [160™].

G6PC3 is a ubiquitously expressed metabolic
enzyme of the glucose 6 phosphatase (G6P) family,
thatis G6PC1-3, which localizes to the endoplasmic
reticulum membrane where it is supposed to form
a functional complex with glucose-6-phosphate
transporter (G6PT), also known as solute carrier
family 37 member 4 (SLC37A4) [161,162]. Neutro-
phil granulocyte G6PC3 deficiency deranges glucose
recycling between the endoplasmic reticulum and
the cytoplasm and leads to reduced levels of glucose
uptake and its energy-carrying catabolites obtained
by glycolysis [163]. In an experimental setting, this
metabolic starving induces pronounced apoptosis of
peripheral neutrophil granulocyte, whereas other
haematopoietic lineages are less affected [159].
Mechanistically, a nutrient-sensitive network gov-
erned by the proapoptotic and antiapoptotic mol-
ecules glycogen synthase kinase 3 beta (GSK3B) and
myeloid cell leukaemia sequence 1 (MCL1), respect-
ively, in case of starvation targets the outer mito-
chondrial membrane and induces the intrinsic
apoptotic pathway [164,165].
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Importantly, defective endoplasmic reticulum
glucose metabolism additionally interferes with
proper glycosylation patterns of various proteins,
such as components of the NADPH oxidase, which
are important for neutrophil granulocyte function-
ing [35]. Furthermore, apoptosis in G6PC3-deficient
myeloid cells might be linked to the UPR, but
whether this is linked to dysglycosylation has not
yet been examined [160™].

In G6pc3-deficient murine neutrophil granulo-
cytes, metabolic alterations and increased apoptosis
can be counteracted by application of G-CSF [36]. It
is tempting to speculate that the favourable clini-
cal response towards G-CSF reported for G6PC3-
deficient patients might follow similar correction
mechanisms [160™]. Currently, for G6PC3 defi-
ciency, no malignant transformation has been
reported, and in light of the particular pathogenesis
and comorbidity, this might be an important feature
of SCN4 and influence our therapeutic approach
[160%].

Mutations inactivating the Wiskott—Aldrich syn-
drome (WAS) gene product Wiskott—Aldrich
syndrome protein (WASP) cause classical Wiskott-
Aldrich syndrome (WAS) or X-linked thrombocyto-
penia (XLT). WAS and XLT determine a spectrum
rather than two distinct nosological entities
[166,167]. The former is characterized by lymphoid
and myeloid immunodeficiency, autoimmunity,
predisposition to malignant lymphoma, eczema
and microthrombocytoepnia, while the latter
presents predominantly with microthrombocytoe-
penia and bleeding diathesis [166,167].

WASP is central to actin dynamics and in the
haematopoietic system couples the membrane-pro-
ximal signalling layer to the cytoskeletal layer [168].
Consequently, a variety of cellular processes such as
immunological synapse and kinapse formation, TCR
and BCR signalling, integrin inside-out signalling,
vesicle trafficking and cellular morphogenesis are
critically hampered [169]. An important means of
WASP regulation is an autoinhibitory conformation
that is based on an intramolecular interaction
between the verprolin homology domain-cofilin
homology domain-acidic region (VCA) and the
GTPase-binding domain (GBD). This closed confor-
mation interferes with binding of the actin-related
protein 2/3 (ARP2/3) complex and with monomeric
actin to the carboxyl terminus of WASP [169].

Contrasting to WAS and XLT wherein inactivat-
ing WASP mutations lead to absent or residual
protein expression, activating WASP mutations that
target the GBD and interfere with autoinhibition
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cause X-linked neutropenia (XLN, SCN-XL) [37-39].
Constitutively active WASP results in intensified
and misplaced actin polymerization and results
in defective mitosis and cytokinesis as well as apop-
tosis-prone proliferation, especially in myeloid
lineages [40]. Apart from neutropenia and mono-
cytopenia, XLN shows reduced natural killer (NK)
and T cell counts, impaired T cell proliferation and a
genomic instability with a predisposition to MDS
[38-41].

In summary, distinct WAS mutations lead to
various disease entities and impressively highlight
the multifaceted biological roles of WASP at the
interface of the membrane-proximal signalling layer
with the cytoskeletal layer in the haematopoietic
system.

Lately, autosomal recessive mutations in vacuolar
protein sorting 45 homolog (VPS45) have been
ascribed to a congenital neutrophil defect syndrome
(SCNS) in seven patients from five consanguineous
families [42""].

VPS45 controls membrane trafficking through
the endosomal system and defective endosomal
trafficking and protein sorting/recycling appear to
be the pathogenic mechanisms [42%%,170,171].

Elegant phenotypic and functional analyses per-
formed with VPS45-deficient primary neutrophil
granulocyte and fibroblasts found quantitative
and qualitative neutrophil impairments due to
hampered development, decreased motility and
increased apoptosis of myeloid and mesenchymal
cells [42"]. In addition, complementation assays
reversed the phenotype in fibroblasts and a mor-
pholino-injected zebrafish model recapitulated the
SCN found in man [109].

Clinically, the patients presented SCN, throm-
bocytopenia, and anaemia, the latter probably due
to an important myelofibrosis. In addition, extra-
medullary haematopoiesis leads to hepatospleno-
megaly and nephromegaly [42%"]. All patients
were refractory to G-CSF treatment, and in one of
the affected kindred, additional neurodevelopmen-
tal sequelae were noted [42"].

VPS45 deficiency highlights the importance of
vesicle trafficking in the haematopoietic system, but
especially the pathogenic mechanism of myelofib-
rosis awaits further clarification.

Mutations in the U6 snRNA biogenesis 1 (USB1) gene
cause an autosomal recessive genodermatosis that
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associates poikiloderma, that is erythematous rash,
irrregular skin pigmentation, teleangiectasia and
hyperkeratosis, with neutropenia (PN), bone marrow
and peripheral blood abnormalities [74,75]. The syn-
drome was first described by Clericuzio in Navajo
Indians and consecutively found in Apache Indians
and other kindred [74,76,172]. Infrequently, short
stature, nail dystrophy and MDS have been reported
as well [173].

USB1 is a phosphodiesterase and its yeast ortho-
log is involved as a RNA exonuclease in posttransla-
tional processing of spliceosomal small nuclear RNA
(snRNA) that is important for cell viability [77%]. The
clinical phenotype of PN overlaps with those of
dyskeratosis congenita and Rothmund-Thomson
syndrome (RTS), and even though in PN telomere
shortage has not yet been described, this might be a
common pathomechanism [173,174].

With the advent of joint databases, commonly avail-
able G-CSF treatment and advanced genetic and
biochemical techniques, our knowledge of congen-
ital neutropenia syndromes is constantly growing.
Novel genetic entities pinpoint towards fundamen-
tal biological processes important for the homeo-
statis and functioning not only of the neutrophil
granulocyte but also of the haematopoietic system
and its niche. Even though not all aspects of mol-
ecular pathogenesis have been elucidated up to
now, treatment decisions, that is G-CSF application
versus haematopoietic stem cell transplantation,
become more sophisticated and might open up into
personalized molecular medicine.
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