FRONTIERS OF PHOTOBIOLOGY

Proceedings of the 11th International Congress on Photobiology, Kyoto, Japan, 7–12 September 1992

Editors:

AKIHIRO SHIMA
University of Tokyo, Laboratory of Radiation Biology,
Tokyo, Japan

MASAMITSU ICHIHASHI
Kobe University, Department of Dermatology,
Kobe, Japan

YOSHISADA FUJIWARA
Kobe University, Department of Radiation Biophysics and Genetics,
Kobe, Japan

HIRAKU TAKEBE
Kyoto University, Department of Experimental Radiology,
Kyoto, Japan

1993

EXCEP'TA MEDICA
AMSTERDAM - LONDON - NEW YORK - TOKYO
Sponsored by:
Science Council of Japan
Photobiology Association of Japan

Supported by:
The Commemorative Association for the Japan World Exposition (1970)
Japanese Dermatological Association
Japanese Society for Investigative Dermatology
CONTENTS

CONGRESS LECTURE: Japan as a theatre state
 T. Yano

PHOTOSYNTHESIS

Molecular organization of the photochemical apparatus of oxygenic photosynthesis
 K. Satoh
 Photosystem I can control photosystem II in leaves
 U. Heber, E. Katona, G. Schònknchte and K. Asada
 Fucoxanthin-chlorophyll α/c protein in brown algae: Their molecular assembly and energy transfer
 T. Katoh
 Location and relaxation paths of the carotenoid S1 state and its role in energy transfer
 Phycoerythrocyanin: A photoreceptor pigment with two faces
 K.-H. Zhao, Q. Hong, S. Siebzehnrübl and H. Scheer
 Blue-light regulation of Cab gene expression in the apical buds of peas and the cotyledons of Arabidopsis
 Molecular-genetic analysis of Mg-tetrapyrrole biosynthesis in bacteria and algae
 C.E. Bauer, D. Bolllivar, J. Dobrowolski and J. Suzuki
 Phosphoenolpyruvate carboxylase for C4 photosynthesis in maize
 K. Izui, S. Yanagisawa, A. Morishima and N. Ogawa

PHOTOPHYSICS, PHOTOCHEMISTRY AND PHOTOBIOCHEMISTRY

Photochemistry of nucleic acids

Photooxidation reactions of nucleic acids
 J. Cadet, M. Berger, G. Buchko, J.-L. Ravanat and H. Kasai
 Photoinduced reactions of organic and inorganic substrates with DNA
 H. Morrison, W.M. Baird, S. Farrow, T. Mohammad and L. Paredes
Photofootprinting of DNA
 P.E. Nielsen 61

Chemical aspects of DNA-protein cross-linking by UV light
 M.D. Shetlar 67

Photochemistry of 5-halouracil-containing DNA
 H. Sugiyama, Y. Tsutsumi, E. Yamaguchi and I. Saito 73

Furocoumarnes

The solution structures of psoralen cross-linked and monoadducted DNA oligomers by NMR spectroscopy and restrained molecular dynamics
 H.P. Spielmann, T.J. Dwyer, J.E. Hearst and D.E. Wemmer 79

C4-cycloaddition reactions between furocoumarins and unsaturated fatty acids or lecithins
 S. Caffieri, Z. Zarebska and F. Dall’Acqua 85

Photochemistry of furocoumarins
 Sang Chul Shim and Mi Hong Yun 91

Psoralen photochemotherapy and its action mechanisms
 K. Danno 97

An animal model and new photosensitizers for extracorporeal photochemotherapy
 H.P. van Iperen and G.M.J. Beijersbergen van Henegouwen 101

Synchrotron-radiation photobiology

Structural analysis of antigenic variation in Borrelia burgdorferi using ultraviolet synchrotron radiation
 L.L. France, B. McGrath, J.J. Dunn, B.J. Luft, J. Kieleczawa, G. Hind and J.C. Sutherland 107

DNA damage induced by monochromatic vacuum-UV radiation in solids
 K. Hieda 115

Rhodopsins and light receptor molecules

25 years of bacterial rhodopsins
 W. Stoeckenius 123

Structure changes of bacteriorhodopsin in the L-to-M and M-to-N conversions
 A. Maeda 135
Ring demethylated 6-s locked methano-bacteriorhodopsins
 M. Groesbeek and J. Lugtenburg 139

Photochemistry and functions of bilirubin
 A.F. McDonagh 145

Hydrophobic interaction between retinal analogues and aporetinochrome in the pigment formation

Structure and function of the ciliate photoreceptors
 Pill-Soon Song 153

Visual pigments and transduction

Vision in photobiology
 T. Yoshizawa 159

19F-NMR studies of fluorinated visual pigment analogs
 R.S.H. Liu, L.U. Colmenares and W. Niemczura 171

Excited state dynamics of retinal proteins by FTOA method
 T. Kakitani, Y. Hatano, Y. Shichida, Y. Imamoto, F. Tokunaga and H. Kakitani 173

Primary processes in rhodopsin and iodopsin
 Y. Shichida 179

N-terminal heterogeneous acylation of phototransduction proteins

Regulation of signal coupling proteins in octopus photoreceptors
 M. Tsuda, T. Iwasa, M. Nakagawa, S. Kikkawa and T. Tsuda 189

Roles of lipids linked to α- and γ-subunits of photoreceptor G protein
 Y. Fukada 195

Role of rhodopsin kinase and arrestin in the quenching of phototransduction
 K. Palczewski 201

Ultrafast reaction by laser light and spectroscopy

Recombination dynamics of photodissociated CO of myoglobin and its E7 mutants studied by time-resolved resonance Raman spectroscopy
 T. Kitagawa, Y. Sakan, T. Ogura, F.A. Fraunfelter, R. Mattera and M. Ikeda-Saito 205

Femtosecond spectroscopy of the primary electron transfer in photosynthetic reaction centers
 C. Lauterwasser, U. Finkele, A. Struck, H. Scheer and W. Zinth 209
DNA-protein interaction imagery using high-intensity lasers
D. Angelov and I. Pashev

Recent solid state NMR studies of bacteriorhodopsin

Femtosecond studies of primary photoprocesses in octopus rhodopsin
T. Kobayashi, M. Taiji, K. Bryl, M. Nakagawa and M. Tsuda

Structure and dynamics of the charge separated state P^+Q^- of photosynthetic reaction centres from transient EPR spectroscopy
D. Stehlik, I. Sieckmann and A. van der Est

Bio- and chemi-luminescence

Bioluminescence of the Ca$^{2+}$-binding photoprotein aequorin
F.I. Tsuji, S. Inouye, Y. Ohmiya and M. Ohashi

Recent advances of chemiluminescent and bioluminescent enzyme immunoassay
A. Tsuji, M. Maeda, H. Arakawa, K. Itoh, M. Kitamura and N. Murakami

The role of superoxide anion in bioluminescence
O. Shimomura

PHOTOBIOLOGY AND PHOTOIMMUNOLOGY

Chronobiology

A circadian pacemaker in the suprachiasmatic nucleus and its interaction with light
S.-I.T. Inouye, K. Shinohara, K. Tominaga, Y. Otori, C. Fukuhara and J. Yang

Circadian organization in birds: Different pacemakers for feeding and locomotor activity rhythms?
S. Ebihara and E. Gwinner

Circadian photoreception in reptiles and mammals
R.G. Foster, S. Argamaso, W.J. DeGrip, J.M. Garcia-Fernandez and I. Provencio
Molecular approaches to plant development

Phytochrome-mediated light signal transduction in plants: Structure function and possible involvement of G-proteins
 Pill-Soon Song
 273
Genetic engineering of phytochrome molecules
 M. Furuya
 279
Control of gene expression by light, nitrate and a plastidic factor
 H. Mohr, A. Neininger and B. Seith
 283
Molecular genetic approaches to plant photomorphogenesis
 A. Pepper, T. Delaney, P. Nagpal, J. Reed, D. Poole, M. Furuya and J. Chory
 285
Cytoskeletal rearrangement during photomorphogenesis of fern protonemata
 M. Wada
 291

DNA damage, repair and UV mutagenesis

Analysis of DNA excision repair genes in XP
 K. Tanaka
 293
DNA repair genes and proteins of yeast and human
 S. Prakash and L. Prakash
 303
Recent biochemical studies of the xeroderma pigmentosum group A complementing protein involved in nucleotide excision repair of DNA
 C.J. Jones and R.D. Wood
 309
Symposium: Human DNA repair diseases
 315
Isolation of Arabidopsis thaliana mutants hypersensitive to UV-B light or ionizing radiation
 G.R. Harlow, M.E. Jenkins, C. Davies and D.W. Mount
 319
SOS-inducible recombination repair genes: Products of the ruvA, ruvB, and ruvC genes are Holliday junction specific enzymes
 323
Regulation of DNA repair genes in Saccharomyces cerevisiae
 G.B. Sancar and J. Sebastian
 329
Two types of photoreactivation enzyme identified in Drosophila melanogaster
 T. Todo, H. Takemori and H. Ryo
 333
Biological role of (6-4) photoproducts and cyclobutane dimers

Photoreactivation in human skin in situ

B.M. Sutherland, H. Hacham, R.W. Gange and J.C. Sutherland

Photoreactivation: Perspectives and dimensions

B.M. Sutherland and T. Ohnishi

Neurospora crassa photolyase: Diversity in photoreactivation action spectra

A.P.M. Eker, H. Yajima and A. Yasui

Regulation of photorepair in fish cells

H. Mitani, S. Yasuhira, T. Funayama, M. Kondo and A. Shima

Functional analysis of Escherichia coli DNA photolyase

K. Yamamoto, M. Ihara and T. Ohnishi

Primary structures of photolyases from microorganisms

A. Yasui

Understanding spectra of UV-induced mutations: Studies with individual photoproducts

P. Gibbs, M. Horsfall, A. Borden, B.J. Kilbey and C.W. Lawrence

Molecular analysis of UV and EMS induced mutations in a human tumor cell line

M. Meuth and A. Tachibana

Two umuDC-like operons in Salmonella typhimurium: Their roles in UV mutagenesis

T. Nohmi, M. Yamada, M. Watanabe, M. Matsui, S.Y. Murayama and T. Sofuni

Gene specific DNA repair and molecular mutation spectra

A.A. van Zeeland, L.F.H. Mullenders, M.Z. Zdzienicka and H. Vrieling

Symposium - Historical background of DNA repair

C.S. Rupert, R.B. Setlow, K.C. Smith, J.E. Cleaver, S. Kondo and J. Jagger

Photoimmunology

The role of Interleukin-10 in the induction of systemic immunosuppression following UV exposure

S.E. Ullrich and J.M. Rivas

Effects of ultraviolet radiation on granuloma formation

PHOTOMEDICINE

Photocarcinogenesis

Photocarcinogenesis: Past, present and future
F. Urbach 403

Sunlight exposure and melanoma - Is timing and character of exposure important?
R. P. Gallagher 415

Action spectrum for melanoma induction
R. B. Setlow and E. Grist 421

Advances in photodermatology

Boundary between UVA and UVB
M. J. Peak and J. C. van der Leun 425

Human skin photoprotection and advances in sunscreens
M. A. Pathak 429

Changes of elastic fiber according to ageing process in human skin
C. H. Oh 437

Oxidative stress in cutaneous photoaging
Y. Miyachi 443

The pathogenesis of solar urticaria
T. Horio 447

The porphyrias
M. Kondo, Y. Yano, G. Urata and M. Shirataka 449

Skin photosensitivity reactions in porphyrias
M. A. Pathak 455

Biological significance of photosensitized lipid peroxidation in drug-induced phototoxicity
I. Matsuo, M. Ohkido, H. Fujita and M. Sasaki 461

Recent advances in polymorphous light eruption
E. Hölzle 463

Chronic actinic dermatitis
Y. Funasaka, M. Kondoh, A. Itoh, M. Ueda and M. Ichihashi 469

Drug-induced photosensitive skin diseases
R. Kamide 475

Protective effect of 1α,25-dihydroxyvitamin D3 against UVB injury - Possible role of the vitamin D3-induced metallothionein
K. Hanada, T. Sugawara, Y. Ohishi and I. Hashimoto 479
Photoprotection: Possible role of metallothionein against UVB injury
 K. Hanada 483
Topical PUVA for psoriasis
 S. Kawara and T. Hirone 487

Photosensitizers and photodynamic therapy

Photo-chlorin (ATX-S10) as a new photosensitizer for PDT
 S. Nakajima, I. Sakata, T. Takemura and H. Hayashi 493
Detection of bronchial dysplasia and carcinoma *in-situ* using laser induced fluorescence
 S. Lam, C. MacAulay, J.C. Leriche, J. Hung and B. Palcic 497
Optimizing the photodetection of early cancer
 G. Wagnières, D. Braichotte, Ph. Monnier, R. Bays, J.-M. Calmes,
 J.-C. Givel, S. Folli, A. Pèlerin, J.-P. Mach and H. van den Bergh 499
Modes of biodistribution of photosensitizing agents
 D. Kessel 501
Mechanism of photodynamic therapy: Exploration by photophysicochemical study
 T. Takemura, S. Nakajima and I. Sakata 503
Integral laser-photodynamic treatment of refractory multifocal bladder tumors with special reference to carcinoma in situ
 K. Naito and H. Hisazumi 507
Photodynamic therapy and early response gene induction
 C.J. Gomer, M. Luna, S. Wong, P. Ziolkowski and A. Ferrario 511

SOLAR UV LIGHT AND ENVIRONMENT

Environment and solar UV light

UV-B observation network in the Japan Meteorological Agency
 T. Ito 515
UV-exposure and ozone monitoring with a dual bandpass solar UVA-UVB meter in Stockholm since 1989
 U. Wester 519
UV radiation in the tropics (1979-1989)
 M. Ilyas 523
UV solar spectral irradiance in New Zealand
 R.L. McKenzie 527
Biological and medical consequences of ozone depletion

Biological consequences of stratospheric ozone depletion
 T.P. Coohill
 531

Immunological effects of UV-B radiation
 M.L. Kripke and A. Jeevan
 537

Effects of elevated ultraviolet-B-radiation, temperature and CO₂ on growth and function of sunflower and corn seedlings
 M. Tevini and U. Mark
 541

UV-B effects on phytoplankton
 D.-P. Häder
 547

Effects of solar UV light on plants

Harmful and beneficial effects of solar UV light on plant growth
 T. Hashimoto, N. Kondo and T. Tezuka
 551

UV-induced events at plant plasma membranes
 T.M. Murphy, Y.C. Qian, C.K. Auh and C. Verhoeven
 555

Solar UV and oxidative stress in algal-animal symbioses
 J.M. Shick
 561

Index of authors
 565
Femtosecond Spectroscopy of the Primary Electron Transfer in Photosynthetic Reaction Centers

C. Lauterwassera, U. Finkeleb, A. Struckc, H. Scheerc, W. Zintha

a Institut für Medizinische Optik der Ludwig-Maximilians-Universität München, Barbarastr. 16, 8000 München 40, Germany

b Physik Department E 11 der Technischen Universität München, James-Franck-Str., 8046 Garching/München, Germany

c Botanisches Institut der Ludwig-Maximilians-Universität München, Menzinger Str. 67, 8000 München 19, Germany

INTRODUCTION

The primary photochemical event during photosynthesis of bacteriochlorophyll (BChl) containing organisms is a light induced charge separation within a transmembrane protein called the reaction center (RC). The crystal structures of the RCs from purple bacteria \cite{1-3} show that the chromophores are arranged to two branches (named A and B) forming a pseudo C\textsubscript{2}-symmetry. On the symmetry axis lies the primary electron donor P, a pair of strongly interacting BChl molecules. Along each branch a monomeric BChl molecule (BA and Bß) is located adjacent to P. Each branch is completed by a bacteriopheophytin (HA and HB) and a quinone (QA and QB). Following excitation of the special pair P an electron is rapidly transferred to the quinone QA. It has been shown that this process occurs predominantly along the A branch. There is general agreement that after 3-4 ps the electron reaches the intermediate acceptor HA from where it is transferred to QA within 200 ps. While it is accepted that spectral changes occur on a time scale shorter than P$^+$HA$^-$ formation \cite{4-10}, two different models are discussed for the multiexponential kinetics. In the superexchange electron transfer (ET) model the electron is transferred directly from the special pair P to the bacteriopheophytin HA on the A branch. The monomeric BChl is only used as a virtual electron carrier \cite{11-13}. Here the fast kinetic component is related most likely to rapid vibrational motion or relaxation in the excited state of P. In the stepwise ET model the monomeric bacteriochlorophyll BA is a real electron carrier and the electron undergoes two reaction steps before it reaches the bacteriopheophytin. This model is suggested by recent experimental results on RCs from \textit{Rhodobacter (Rb.) sphaeroides} which indicate that the electron transfer to BA occurs in approximately 3.5 ps while the second transfer step to the bacteriopheophytin HA should be faster taking less than one picosecond (0.9 ps) \cite{4, 5}.

In this paper we give additional information on the primary ET reaction obtained by transient absorption experiments on native RCs at various temperatures and on RCs where the monomeric bacteriochlorophylls BA and Bß have been modified.

MATERIAL AND METHODS

Native RCs from \textit{Rb. sphaeroides} R26.1 were prepared as described in Ref. 14. Measurements at low temperatures were performed on quinone depleted RC from \textit{Rb. sphaeroides} strain R26.1 desolved in glycerol (56 % v/v). RCs containing \textit{[3-vinyl]-132-hydroxy-bacteriochlorophyll} a were prepared after Struck et al. \cite{14, 15}. The BChl a exchange yielded values of 40 ± 5 %. Since the two BChl a-molecules of the primary donor P do not exchange, this value corresponds to an average exchange of 80 % at sites BA and Bß.
The time resolved absorption experiments used the excite-and probe technique. Details of the experimental set-up are described elsewhere [4, 16]. The main features of the experiments are: Excitation beam: short pulses of a duration of about 200 fs at a repetition rate of 10 Hz, excitation wavelength 875 nm, less than 10 % of the RC are excited per laser pulse. Probing pulses: 5-10 nm wide portion of a femtosecond white-light-continuum selected in front of the sample, parallel polarisations of exciting and probing pulses, probe intensities at least 30 times smaller than excitation intensities. The width of the instrumental response function was between 250 and 300 fs.

The signal points (full circles) were modelled (solid and broken curves) by a sum of exponentials convoluted with the instrumental response function (for details see [5]).

RESULTS
The Primary Reaction at Room Temperature

Investigations on the light induced kinetics in wild type reaction centers from Rb. sphaeroides have been published in detail in Ref. 5. In summary we have found: (i) The excited electronic level P* of the primary donor P decays with a time constant of about 3.5 ps. (ii) At various wavelengths in the visible and near infrared spectral range an additional faster kinetic component is needed to account for the experimental data. The amplitude of this kinetic is largest in spectral ranges where BChl (Q_x, Q_y) or BChl anions (640-670 nm) are known to have a strong absorption. From a series of measurements the time constant was determined to be 0.9 ± 0.3 ps. As an example three measurements are shown in Fig. 1A at probing wavelengths in the Q_y (B) band. From these data the existence of a fast process is evident.

Reaction Centers at Low Temperatures

A first set of experiments investigated the decay of the excited state P* via stimulated emission (not shown). At the low temperature of 25 K the absorbance change can be described by a monoexponential model function with a time constant of τ_1 = 1.4 ± 0.3 ps. This transient was followed up to room temperature where the value of 3.5 ps was reached as discussed above. The data are in agreement with previous experimental studies [17, 18]. Most interesting is the investigation of the temperature dependence of the fast kinetic component. To this end we studied the transient absorption changes at 25 K for 30 probing wavelengths ranging from 640 nm to 920 nm. The transient absorption data yielded the following results: One finds a complex time dependence of the absorbance changes which excludes the possibility that there is only one, namely the 1.4 ps kinetic component. The data can be well fit assuming an additional faster kinetic process with a time constant of 0.3 ± 0.15 ps.

Besides this acceleration of the electron transfer processes we find a close similarity in the transient spectral features between low temperature and room temperature data, if we take into account differences due to the narrowing of the absorption bands at low temperatures. Fig. 1B shows kinetic traces at 25 K in the Q_y (B) band (peak absorption at 802 nm). The qualitative agreement with the room temperature traces (Fig. 1A) is striking. In addition, there appear some weak oscillations at low temperature similar to those reported by Vos et al. [9] (probing wavelength 795 nm, Fig. 1B). In a set of measurements we have recorded the temperature dependence of the fast kinetic. We observe a smooth temperature dependence [16].
Fig. 1. Transient absorption data for RCs from *Rb. sphaeroides* recorded in the Q_y absorption band of the monomeric bacteriochlorophylls. A: room temperature data, B: data at 25 K. The solid curves are calculated for a three component (3.5 ps, 0.9 ps, ∞ at 298 K; 1.4 ps, 0.3 ps, ∞ at 25 K), the broken curves for a two component model (3.5, ∞ at 298 K; 1.4 ps, ∞ at 25 K). The data are normalized (peak values of ΔA between 0.03 and 0.08).

Reaction Centers with Exchanged Bacteriochlorophyll a

In another set of experiments, RC of *Rb. sphaeroides* were studied where the bacteriochlorophyll a molecule at the monomeric position B_A and B_B were exchanged by [3-vinyl]-13z-OH-BChl a molecules [19]. The modification due to the 3-vinyl group is expected to change the redox potential of the BChl and as a consequence the energy of the radical pair state $P^+B_A^-$. This change should have pronounced consequences on the ET when the accessory BChl B_A is involved as an intermediate electron carrier. Indeed, one finds a strong change of the transient absorption data. The experimental data indicate that the RC's containing [3-vinyl]-
132-OH-BChl a have a decay time of the excited electronic state P^* of the special pair of 32 ps. On the other hand a long-lasting bleaching of the special pair absorption band shows that the exchange leads to RC's which are still photochemically active. In the [3-vinyl]-132-OH-BChl a containing RC's the 0.9 ps component is not visible. However, there are some indications that a related process exists which would have a longer time constant in the 5 ps domain.

REACTION MODELS

The structural arrangement of the RC supports the idea that the electron is transferred in several steps from the special pair P via B_A, H_A to Q_A (Model A of Fig. 2). The transient experimental data presented here do not give any contradiction against this reaction model. In fact, the analysis of the transient data using reaction model A yields the spectra of the intermediates one would expect from in vitro measurements of the chromophores [20, 21].

However, most transient absorption data also fit to the two models B_1 and B_2 where the subpicosecond reaction is assumed to precede the 3.5 ps process: Here the intermediate I_2 is formed very fast. It decays with 3.5 ps in a second step. Calculating the absorption spectrum of I_2 for model B_1 and B_2 leads to the following characteristics: I_2 is similar to the electronically excited state P^*. It also exhibits gain; thus it should be another excited electronic state of the special pair - we call it P^{**}. Its further absorption properties differ only slightly from those of P^*. The most straightforward interpretation of P^{**} would be that P^{**} is a vibrationally relaxed P^* state (Model B_1). Here the electron will be transferred directly in a superexchange step from the special pair P to H_A. Somewhat different is the molecular interpretation for Model B_2, which is related to considerations given by H. Kuhn [22]. Model B_2 is based on the existence of an intermediate state $I_2 = P^{**}$ where the electron is delocalized over the special pair, the accessory BChl and the BPh. According to the experimental observations state $I_2 = P^{**}$ must be populated in the first 0.9 ps process. The slower 3.5 ps process is thought to be related to the trapping of the electron at the bacteriopheophytin H_A. Due to the delocalization of the electron in state P^{**} there is no need for a long-range superexchange ET in Model B_2.

The experimental data obtained for RC at low temperatures and with exchanged bacteriochlorophylls allow to restrict further on the number of reaction models: The discussion of the two reaction Models B_1 and B_2 requires a subtle consideration of the experimental observations: In the pure superexchange picture of Model B_1 the fast kinetic component is related to vibrational relaxation in the excited state. From the theory of vibrational relaxation of polyatomic molecules and from a number of experiments (e.g. on amino acids [23]) it is well known that vibrational relaxation slows down at low temperatures. However, the fast reaction observed in our experiment becomes considerably faster at low temperatures. This observation is incompatible with the interpretation of Model B_1. Additional arguments against vibrational relaxation come from experiments on modified RCs; e.g. on RCs where the monomeric BChl are exchanged by [3-vinyl]-132 OH-BChl and where the 3.5 ps time constant is increased to 32 ps. The molecular substitution leaves the special pair spectrally unaffected in the singlet and doublet (= radical cation) states [14, 15]; as a consequence a P^* vibrational process according to Model B_1 should be present and observable. However, the experiments do not exhibit the related 0.9 ps transient component.

The observed transient absorption data alone are not able to eliminate Model B_2. Additional information comes from hole-burning experiments (Johnson et al., [24]). In these experiments performed at very low temperatures narrow zero phonon holes were observed with a spectral width corresponding to a time constant of approximately 1 ps. From these data one can deduce that the first reaction process starting from the lowest vibrational level of P^* is the slower, the 1.4 ps process. As the faster 0.3 ps component is not related with vibrational relaxation (see above) it must then be the second process in the reaction scheme. Since the important features of the reaction processes do not change strongly with temperature it is likely that Model B_2 is not operative at room temperature either.
Oscillatory features in wild type RC have been observed recently under special experimental conditions [9]: at low temperatures and with a spectrally narrow pump pulse. It is not expected that they are relevant under physiological conditions at room temperature. In our view the stepwise reaction Model A with the radical pair state $P^+B^-_A$ as a real intermediate is compatible with the extensive time resolved absorption data available today. At room temperature the stepwise ET is well described by theoretical studies giving reasonable values for the energetics in the RCs. However, the discussion of ET and absorption at low temperatures within the framework of adiabatic theory remains to be done.

REFERENCES

Index of Authors

Andersson, P.-O., 25
Angelov, D., 215
Arakawa, H., 243
Argamaso, S., 267
Asada, K., 13
Asato, A.E., 25
Auger, M., 221
Auh, C.K., 555
Baird, W.M., 55
Bauer, C.E., 41
Bays, R., 499
Beijersbergen van Henegouwen, G.M.J., 101
Berger, M., 49
Bhattacharya, K., 37
Bollivar, D., 41
Borden, A., 357
Braichotte, D., 499
Bryl, K., 227
Buchko, G., 49
Cadet, J., 49
Caffieri, S., 85
Calmes, J.-M., 499
Ching-Kang Chen, 183
Chory, J., 285
Cleaver, J.E., 315, 379
Cogdell, R.J., 25
Colmenares, L.U., 171
Coohill, T.P., 531
Dall'Acqua, F., 85
Danno, K., 97, 395
Davies, C., 319
DeGrip, W.J., 267
Delaney, T., 285
Dizhoor, A.M., 183
Dobrowolski, J., 41
Dunn, J.J., 107
Dwyer, T.J., 79
Ebihara, S., 263
Eker, A.P.M., 349
Farrar, M.R., 221
Farrow, S., 55
Ferrario, A., 511
Finkele, U., 209
Folli, S., 499
Foster, R.G., 267
France, L.L., 107
Fraunfelter, F.A., 205
Fujita, H., 461
Fukada, Y., 195
Fukuhara, C., 257
Funasaka, Y., 469
Funayama, T., 351
Furuya, M., 279, 285
Gallagher, R.P., 415
Gange, R.W., 345
Gao, J., 37
Garcia-Fernandez, J.M., 267
Gibbs, P., 357
Gillbro, T., 25
Givel, J.-C., 499
Gomer, C.J., 511
Griffin, R.G., 221
Grist, E., 421
Groesbeek, M., 139
Guo, Z.-P., 395
Gwinner, E., 263
Hacham, H., 345
Häder, D.-P., 547
Hanada, K., 479, 483
Hara, R., 147
Hara, T., 147
Harlow, G.R., 319
Hashimoto, I., 479
Hashimoto, T., 551
Hatano, Y., 173
Hayashi, H., 493
Hearst, J.E., 79
Heber, U., 13
Herzfeld, J., 221
Hieda, K., 115
Hind, G., 107
Hirone, T., 487
Nakata, A., 323
Neisinger, A., 283
Neubert, T.A., 183
Nielsen, P.E., 61
Niemczura, W., 171
Nikaido, O., 337
Nohmi, T., 369

Ogawa, N., 43
Oh, C.H., 437
Ohashi, M., 147, 239
Ohishi, Y., 479
Ohkido, M., 461
Ohmiya, Y., 239
Ohnishi, T., 347, 353
Okamoto, H., 395
Olshevskaya, E., 183
Otori, Y., 257
Ozaki, K., 147

Palcic, B., 497
Palczewski, K., 201
Paredes, L., 55
Pashev, I., 215
Pathak, M.A., 429, 455
Peak, M.J., 425
Pelegrin, A., 499
Pepper, A., 285
Pfeifer, G.P., 337
Pill-Soon Song, 153, 273
Poole, D., 285
Prakash, L., 303
Prakash, S., 303
Provencio, I., 267

Qian, Y.C., 555
Raap, J., 221
Ravanat, J.-L., 49
Reed, J., 285
Rivas, J.M., 389
Rupert, C.S., 379
Ryo, H., 333

Saito, I., 73
Sakan, Y., 205
Sakata, I., 493, 503
Sancar, G.B., 329
Sang Chul Shim, 91
Sasaki, M., 461
Satoh, K., 3
Scheer, H., 31, 209
Schönknecht, G., 13
Sebastian, J., 329
Seith, B., 283
Setlow, R.B., 379, 421
Shetlar, M.D., 67
Sheves, M., 147
Shiba, T., 323
Shichida, Y., 173, 179
Shick, J.M., 561
Shima, A., 351
Shimomura, O., 249
Shinagawa, H., 323
Shinohara, K., 257
Shirasaka, Y., 147
Shirataka, M., 449
Siebzehnrübl, S., 31
Sieckmann, I., 233
Smith, K.C., 379
Sofuni, T., 369
Spielmann, H.P., 79
Stefanini, M., 315
Stehlik, D., 233
Stoeckenhuis, W., 123
Struck, A., 209
Sugawara, T., 479
Sugiyama, H., 73
Sutherland, B.M., 345, 347
Sutherland, J.C., 107, 345
Suzuki, J., 41

Tachibana, A., 363
Taiji, M., 227
Takahagi, M., 323
Takebe, H., 315
Takemori, H., 333
Takemura, T., 493, 503
Tanaka, K., 293
Taylor, J.-S., 337
Tevini, M., 541
Tezuka, T., 551
Thompson, L.K., 221
Tilghman, J., 37
Todo, T., 333
Tokunaga, F., 173
Tominaga, K., 257
Tsuda, M., 189, 227
Tsuda, T., 189
Tsuji, A., 243
Tsuji, F.I., 239
Tsujimoto, K., 147
Tsutsumi, Y., 73

Ueda, M., 469
Ullrich, S.E., 389
Urata, G., 449
Urbach, F., 403

Van den Bergh, H., 499
Van der Est, A., 233
Van der Leun, J.C., 425
Van der Wielen, C.M., 221
Van Iperen, H.P., 101
Van Zeeland, A.A., 375
Verhoeven, C., 555
Vrieling, H., 375

Wada, M., 291
Wagnières, G., 499
Walsh, K.A., 183
Warpeha, K.M.F., 37
Watanabe, M., 369
Wemmer, D.E., 79
Wester, U., 519
Wong, S., 511
Wood, R.D., 309

Yajima, H., 349
Yamada, M., 369
Yamaguchi, E., 73
Yamamoto, K., 353
Yanagisawa, S., 43
Yang, J., 257
Yano, Y., 449
Yasuhiro, S., 351
Yasui, A., 349, 355
Yoshizawa, T., 159

Zarebska, Z., 85
Zdjenicka, M.Z., 337, 375
Zhao, K.-H., 31
Zinth, W., 209
Ziolkowski, P., 511