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Abstract: Motivated by the construction of spectral manifolds in noncommutative ge-

ometry, we introduce a higher degree Heisenberg commutation relation involving the Dirac

operator and the Feynman slash of scalar fields. This commutation relation appears in

two versions, one sided and two sided. It implies the quantization of the volume. In the

one-sided case it implies that the manifold decomposes into a disconnected sum of spheres

which will represent quanta of geometry. The two sided version in dimension 4 predicts

the two algebras M2(H) and M4(C) which are the algebraic constituents of the Standard

Model of particle physics. This taken together with the non-commutative algebra of func-

tions allows one to reconstruct, using the spectral action, the Lagrangian of gravity coupled

with the Standard Model. We show that any connected Riemannian Spin 4-manifold with

quantized volume > 4 (in suitable units) appears as an irreducible representation of the

two-sided commutation relations in dimension 4 and that these representations give a se-

ductive model of the “particle picture” for a theory of quantum gravity in which both the

Einstein geometric standpoint and the Standard Model emerge from Quantum Mechanics.
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1 Introduction

The goal of this paper is to reconcile Quantum Mechanics and General Relativity by show-

ing that the latter naturally arises from a higher degree version of the Heisenberg com-

mutation relations. One great virtue of the standard Hilbert space formalism of quantum

mechanics is that it incorporates in a natural manner the essential “variability” which is

the characteristic feature of the Quantum: repeating twice the same experiment will gen-

erally give different outcome, only the probability of such outcome is predicted, the various

possibilities form the spectrum of a self-adjoint operator in Hilbert space. We have discov-

ered a geometric analogue of the Heisenberg commutation relations [p, q] = i~. The role of

the momentum p is played by the Dirac operator. It takes the role of a measuring rod and

at an intuitive level it represents the inverse of the line element ds familiar in Riemannian
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geometry, in which only its square is specified in local coordinates. In more physical terms

this inverse is the propagator for Euclidean Fermions and is akin to an infinitesimal as seen

already in its symbolic representation in Feynman diagrams where it appears as a solid

(very) short line •−−−−−−• .

The role of the position variable q was the most difficult to uncover. It has been

known for quite some time that in order to encode a geometric space one can encode it by

the algebra of functions (real or complex) acting in the same Hilbert space as the above

line element, in short one is dealing with “spectral triples”. Spectral for obvious reasons

and triples because there are three ingredients: the algebra A of functions, the Hilbert

space H and the above Dirac operator D. It is easy to explain why the algebra encodes

a topological space. This follows because the points of the space are just the characters

of the algebra, evaluating a function at a point P ∈ X respects the algebraic operations

of sum and product of functions. The fact that one can measure distances between points

using the inverse line element D is in the line of the Kantorovich duality in the theory of

optimal transport. It takes here a very simple form. Instead of looking for the shortest

path from point P to point P ′ as in Riemannian Geometry, which only can treat path-wise

connected spaces, one instead takes the supremum of |f(P ) − f(P ′)| where the function

f is only constrained not to vary too fast, and this is expressed by asking that the norm

of the commutator [D, f ] be ≤ 1. In the usual case where D is the Dirac operator the

norm of [D, f ] is the supremum of the gradient of f so that the above control of the norm

of the commutator [D, f ] means that f is a Lipschitz function with constant 1, and one

recovers the usual geodesic distance. But a spectral triple has more information than just a

topological space and a metric, as can be already guessed from the need of a spin structure

to define the Dirac operator (due to Atiyah and Singer in that context) on a Riemannian

manifold. This additional information is the needed extra choice involved in taking the

square root of the Riemannian ds2 in the operator theoretic framework. The general

theory is K-homology and it naturally introduces decorations for a spectral triple such as

a chirality operator γ in the case of even dimension and a charge conjugation operator J

which is an antilinear isometry of H fulfilling commutation relations with D and γ which

depend upon the dimension only modulo 8. All this has been known for quite some time

as well as the natural occurrence of gravity coupled to matter using the spectral action

applied to the tensor product A⊗ A of the algebra A of functions by a finite dimensional

algebra A corresponding to internal structure. In fact it was shown in [4] that one gets

pretty close to zooming on the Standard Model of particle physics when running through

the list of irreducible spectral triples for which the algebra A is finite dimensional. The

algebra that is both conceptual and works for that purpose is

A = M2(H)⊕M4(C)

where H is the algebra of quaternions and Mk the matrices. However it is fair to say that

even if the above algebra is one of the first in the list, it was not uniquely singled out by

our classification and moreover presents the strange feature that the real dimensions of the

two pieces are not the same, it is 16 for M2(H) and 32 for M4(C).
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One of the byproducts of the present paper is a full understanding of this strange

choice, as we shall see shortly.

Now what should one beg for in a quest of reconciling gravity with quantum mechan-

ics? In our view such a reconciliation should not only produce gravity but it should also

naturally produce the other known forces, and they should appear on the same footing as

the gravitational force. This is asking a lot and, in the minds of many, the incorporation of

matter in the Lagrangian of gravity has been seen as an unnecessary complication that can

be postponed and hidden under the rug for a while. As we shall now explain this is hiding

the message of the gauge sector which in its simplest algebraic understanding is encoded

by the above algebra A = M2(H) ⊕M4(C). The answer that we discovered is that the

package formed of the 4-dimensional geometry together with the above algebra appears

from a very simple idea: to encode the analogue of the position variable q in the same way

as the Dirac operator encodes the components of the momenta, just using the Feynman

slash. To be more precise we let Y ∈ A⊗Cκ be of the Feynman slashed form Y = Y AΓA,

and fulfill the equations

Y 2 = κ, Y ∗ = κY (1.1)

Here κ = ±1 and Cκ ⊂ Ms(C), s = 2n/2, is the real algebra generated by n + 1 gamma

matrices ΓA, 1 ≤ A ≤ n+ 1,1

ΓA ∈ Cκ,
{

ΓA,ΓB
}

= 2κ δAB, (ΓA)∗ = κΓA

The one-sided higher analogue of the Heisenberg commutation relations is

1

n!
〈Y [D,Y ] · · · [D,Y ]〉 =

√
κ γ (n terms [D,Y ]) (1.2)

where the notation 〈T 〉 means the normalized trace of T = Tij with respect to the above

matrix algebra Ms(C) (1/s times the sum of the s diagonal terms Tii). We shall show

below in theorem 1 that a solution of this equation exists for the spectral triple (A,H, D)

associated to a Spin compact Riemannian manifold M (and with the components Y A ∈
A) if and only if the manifold M breaks as the disjoint sum of spheres of unit volume.

This breaking into disjoint connected components corresponds to the decomposition of

the spectral triple into irreducible components and we view these irreducible pieces as

quanta of geometry. The corresponding picture, with these disjoint quanta of Planck

size is of course quite remote from the standard geometry and the next step is to show

that connected geometries of arbitrarily large size are obtained by combining the two

different kinds of geometric quanta. This is done by refining the one-sided equation (1.2)

using the fundamental ingredient which is the real structure of spectral triples, and is the

mathematical incarnation of charge conjugation in physics. It is encoded by an anti-unitary

isometry J of the Hilbert space H fulfilling suitable commutation relations with D and γ

and having the main property that it sends the algebra A into its commutant as encoded

by the order zero condition : [a, JbJ−1] = 0 for any a, b ∈ A. This commutation relation

allows one to view the Hilbert space H as a bimodule over the algebra A by making use of

1It is n+ 1 and not n where Γn+1 is up to normalization the product of the n others.
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the additional representation a 7→ Ja∗J−1. This leads to refine the quantization condition

by taking J into account as the two-sided equation2

1

n!
〈Z [D,Z] · · · [D,Z]〉 = γ Z = 2EJEJ−1 − 1, (1.3)

where E is the spectral projection for {1, i} ⊂ C of the double slash Y = Y+ ⊕ Y− ∈
C∞(M,C+ ⊕ C−). More explicitly E = 1

2(1 + Y+)⊕ 1
2(1 + iY−).

It is the classification of finite geometries of [4] which suggested to use the direct sum

C+ ⊕ C− of two Clifford algebras and the algebra C∞(M,C+ ⊕ C−). As we shall show

below in theorem 6 this condition still implies that the volume of M is quantized but no

longer that M breaks into small disjoint connected components. More precisely let M be

a smooth connected oriented compact manifold of dimension n. Let α be the volume form

(of unit volume) of the sphere Sn. One considers the (possibly empty) set D(M) of pairs

of smooth maps φ± : M → Sn such that the differential form3

φ#+(α) + φ#−(α) = ω

does not vanish anywhere on M (ω(x) 6= 0 ∀x ∈M). One introduces an invariant q(M) ⊂ Z
defined as the subset of Z:

q(M) := {degree(φ+) + degree(φ−) | (φ+, φ−) ∈ D(M)} ⊂ Z.

where degree(φ) is the topological degree of the smooth map φ. Then a solution of (1.3)

exists if and only if the volume of M belongs to q(M) ⊂ Z. We first check (theorem 10)

that q(M) contains arbitrarily large numbers in the two relevant cases M = S4 and M =

N × S1 where N is an arbitrary connected compact oriented smooth three manifold. We

then give the proof (theorem 12) that the set q(M) contains all integers m ≥ 5 for any

smooth connected compact spin 4-manifold, which shows that our approach encodes all

the relevant geometries.

In the above formulation of the two-sided quantization equation the algebra

C∞(M,C+ ⊕ C−) appears as a byproduct of the use of the Feynman slash. It is pre-

cisely at this point that the connection with our previous work on the noncommutative

geometry (NCG) understanding of the Standard Model appears. Indeed as explained above

we determined in [4] the algebra A = M2(H)⊕M4(C) as the right one to obtain the Stan-

dard Model coupled to gravity from the spectral action applied to the product space of

a 4-manifold M by the finite space encoded by the algebra A. Thus the full algebra is

the algebra C∞(M,A) of A-valued functions on M . Now the remarkable fact is that in

dimension 4 one has

C+ = M2(H), C− = M4(C) (1.4)

More precisely, the Clifford algebra Cliff(+,+,+,+,+) is the direct sum of two copies of

M2(H) and thus in an irreducible representation, only one copy of M2(H) survives and

2The γ involved here commutes with the Clifford algebras and does not take into account an eventual

Z/2-grading γF of these algebras, yielding the full grading γ ⊗ γF .
3We use the notation φ#(α) for the pullback of the differential form α by the map φ rather than φ∗(α)

to avoid confusion with the adjoint of operators.
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gives the algebra over R generated by the gamma matrices ΓA. The Clifford algebra

Cliff(−,−,−,−,−) is M4(C) and it also admits two irreducible representations (acting in

a complex Hilbert space) according to the linearity or anti-linearity of the way C is acting.

In both the algebra over R generated by the gamma matrices ΓA is M4(C).

This fact clearly indicates that one is on the right track and in fact together with the

above two-sided equation it unveils the following tentative “particle picture” of gravity

coupled with matter, emerging naturally from the quantum world. First we now forget

completely about the manifold M that was used above and take as our framework a fixed

Hilbert space in which C = C+⊕C− acts, as well as the grading γ, and the anti-unitary J all

fulfilling suitable algebraic relations. So far there is no variability but the stage is set. Now

one introduces two “variables” D and Y = Y+ ⊕ Y− both self-adjoint operators in Hilbert

space. One assumes simple algebraic relations such as the commutation of C and JCJ−1, of

Y and JY J−1, the fact that Y± =
∑
Y ±A ΓA± with the YA commuting with C, and that Y 2 =

1+⊕(−1)− and also that the commutator [D,Y ] is bounded and its square again commutes

with both C± and the components Y A, etc. . . One also assumes that the eigenvalues of

the operator D grow as in dimension 4. One can then write the two-sided quantization

equation (1.3) and show that solutions of this equation give an emergent geometry. The

geometric space appears from the joint spectrum of the components Y ±A . This would a priori

yield an 8-dimensional space but the control of the commutators with D allows one to show

that it is in fact a subspace of dimension 4 of the product of two 4-spheres. The fundamental

fact that the leading term in the Weyl asymptotics of eigenvalues is quantized remains true

in this generality due to already developed mathematical results on the Hochschild class of

the Chern character in K-homology. Moreover the strong embedding theorem of Whitney

shows that there is no a-priori obstruction to view the (Euclidean) space-time manifold as

encoded in the 8-dimensional product of two 4-spheres. The action functional only uses

the spectrum of D, it is the spectral action which, since its leading term is now quantized,

will give gravity coupled to matter from its infinitesimal variation.

2 Geometric quanta and the one-sided equation

We recall that given a smooth compact oriented spin manifold M , the associated spectral

triple (A,H, D) is given by the action in the Hilbert space H = L2(M,S) of L2-spinors of

the algebra A = C∞(M) of smooth functions on M , and the Dirac operator D which in

local coordinates is of the form

D = γµ
(

∂

∂xµ
+ ωµ

)
(2.1)

where γµ = eµaγa and ωµ is the spin-connection.

2.1 One sided equation and spheres of unit volume

Theorem 1. Let M be a spin Riemannian manifold of even dimension n and (A,H, D)

the associated spectral triple. Then a solution of the one-sided equation (1.2) exists if and

only if M breaks as the disjoint sum of spheres of unit volume. On each of these irreducible
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components the unit volume condition is the only constraint on the Riemannian metric

which is otherwise arbitrary for each component.

Proof. We can assume that κ = 1 since the other case follows by multiplication by i =
√
−1.

Equation (1.1) shows that a solution Y of the above equations gives a map Y : M → Sn

from the manifold M to the n-sphere. Given n operators Tj ∈ C in an algebra C the

multiple commutator

[T1, . . . , Tn] :=
∑

ε(σ)Tσ(1) · · ·Tσ(n)

(where σ runs through all permutations of {1, . . . , n}) is a multilinear totally antisymmetric

function of the Tj ∈ C. In particular, if the Ti = ajiSj are linear combinations of n elements

Sj ∈ C one gets

[T1, . . . , Tn] = Det(aji )[S1, . . . , Sn] (2.2)

Let us compute the left hand side of (1.2). The normalized trace of the product of n + 1

Gamma matrices is the totally antisymmetric tensor

〈ΓAΓB · · ·ΓL〉 = in/2εAB...L, A,B, . . . , L ∈ {1, . . . , n+ 1}

One has [D,Y ] = γµ ∂Y
A

∂xµ ΓA = ∇Y AΓA where we let ∇f be the Clifford multiplication by

the gradient of f . Thus one gets at any x ∈M the equality

〈Y [D,Y ] · · · [D,Y ]〉 = in/2εAB...LY
A∇Y B · · · ∇Y L (2.3)

For fixed A, and x ∈M the sum over the other indices

εAB...LY
A∇Y B · · · ∇Y L = (−1)AY A[∇Y 1,∇Y 2, . . . ,∇Y n+1]

where all other indices are 6= A. At x ∈ M one has ∇Y j = γµ∂µY
j and by (2.2) the

multi-commutator (with ∇Y A missing) gives

[∇Y 1,∇Y 2, . . . ,∇Y n+1] = εµν...λ∂µY
1 · · · ∂λY n+1[γ1, . . . , γn]

Since γµ = eµaγa and in/2[γ1, . . . , γn] = n!γ one thus gets by (2.2),

〈Y [D,Y ] · · · [D,Y ]〉 = n!γDet(eαa )ω (2.4)

where

ω = εAB...LY
A∂1Y

B · · · ∂nY L

so that ωdx1 ∧ · · · ∧ dxn is the pullback Y #(ρ) by the map Y : M → Sn of the rotation

invariant volume form ρ on the unit sphere Sn given by

ρ =
1

n!
εAB...LY

AdY B ∧ · · · ∧ dY L

Thus, using the inverse vierbein, the one-sided equation (1.2) is equivalent to

det
(
eaµ
)
dx1 ∧ · · · ∧ dxn = Y #(ρ) (2.5)

– 6 –
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This equation (2.5) implies that the Jacobian of the map Y : M → Sn cannot vanish

anywhere, and hence that the map Y is a covering. Since the sphere Sn is simply connected

for n > 1, this implies that on each connected component Mj ⊂ M the restriction of the

map Y to Mj is a diffeomorphism. Moreover equation (2.5) shows that the volume of each

component Mj is the same as the volume
∫
Sn ρ of the sphere. Conversely it was shown

in [8] that, for n = 2, 4, each Riemannian metric on Sn whose volume form is the same

as for the unit sphere gives a solution to the above equation. In fact the above discussion

gives a direct proof of this fact for all (even) n. Since all volume forms with same total

volume are diffeomorphic [17] one gets the required result.

The spectral triple (A,H, D) is then the direct sum of the irreducible spectral triples

associated to the components. Moreover one can reconstruct the original algebra A as

the algebra generated by the components Y A of Y together with the commutant of the

operators D,Y,ΓA. This implies that a posteriori one recovers the algebra A just from the

representation of the D,Y,ΓA in Hilbert space. As mentioned above the operator theoretic

equation (1.2) implies the integrality of the volume when the latter is expressed from the

growth of the eigenvalues of the operator D. Theorem 1 gives a concrete realization of

this quantization of the volume by interpreting the integer k as the number of geometric

quantas forming the Riemannian geometry M . Each geometric quantum is a sphere of

arbitrary shape and unit volume (in Planck units).

2.2 The degree and the index formula

In fact the proof of theorem 1 gives a statement valid for any Y not necessarily fulfilling the

one-sided equation (1.2). We use the non-commutative integral as the operator theoretic

expression of the integration against the volume form det
(
eaµ
)
dx1∧· · ·∧dxn of the oriented

Riemannian manifold M . The factor 2n/2+1 on the right comes from the factor 2 in

Y = 2e − 1 and from the normalization (by 2−n/2) of the trace. The
∫
− is taken in the

Hilbert space of the canonical spectral triple of the Riemannian manifold.

Lemma 2. For any Y = Y AΓA, such that Y 2 = 1, Y ∗ = Y one has∫
−γ 〈Y [D,Y ]n〉D−n = 2n/2+1degree(Y ) (2.6)

Proof. This follows from (2.4) which implies that

γ 〈Y [D,Y ] · · · [D,Y ]〉 det
(
eaµ
)
dx1 ∧ · · · ∧ dxn = n!Y #(ρ)

while for any scalar function f on M one has (see [7], Chapter IV,2,β, Proposition 5), with

Ωn = 2πn/2/Γ(n/2) the volume of the unit sphere Sn−1,∫
−fD−n =

1

n
(2π)−n2n/2Ωn

∫
M
f
√
gdxn

Thus the left hand side of (2.6) gives∫
−γ 〈Y [D,Y ]n〉D−n =

1

n
(2π)−n2n/2Ωnn!

∫
M
Y #(ρ)

– 7 –
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One has ∫
M
Y #(ρ) = degree(Y )Ωn+1

and
1

n
(2π)−n2n/2Ωnn!Ωn+1 = 2n/2+1.

using the Legendre duplication formula 22z−1Γ(z)Γ(z + 1
2) =

√
πΓ(2z).

3 Quantization of volume and the real structure J

We consider the two sided equation (1.3). The action of the algebra C+⊕C− in the Hilbert

space H splits H as a direct sum H = H(+) ⊕ H(−) of two subspaces corresponding to

the range of the projections 1 ⊕ 0 ∈ C+ ⊕ C− and 0 ⊕ 1 ∈ C+ ⊕ C−. The real structure

J interchanges these two subspaces. The algebra C+ acts in H(+) and the formula x 7→
Jx∗J−1 gives a right action of C− in H(+). We let Y ′ = iJY−J

−1 acting in H(+) and

Γ′ = iJΓ−J
−1 for the gamma matrices of C−. This allows us to reduce to the following

simplified situation occurring in H(+). We take M of dimension n = 2m and consider two

sets of gamma matrices ΓA and Γ′B which commute with each other. We consider two fields

Y = Y AΓA, Y
′ = Y ′BΓ′B A,B = 1, 2, . . . , n+ 1 (3.1)

The condition Y 2 = 1 = Y ′2 implies

Y AY A = 1, Y ′BY ′B = 1 (3.2)

Let e = 1
2 (Y + 1) , e′ = 1

2 (Y ′ + 1) , E = ee′ = 1
2 (Z + 1) then Z = 2ee′ − 1 and thus

Z =
1

2
(Y + 1)

(
Y ′ + 1

)
− 1 (3.3)

Z2 = 4e2e
′2 − 4ee′ + 1 = 1 (3.4)

This means that Z2 = 1 and we can use it to write the quantization condition in the form

1

n!
〈Z [D,Z]n〉 = γ (3.5)

where 〈〉 is the normalized trace relative to the matrix algebra generated by all the gamma

matrices ΓA and Γ′B.

3.1 The normalized traces

More precisely we let Mat+ be the matrix algebra generated by all the gamma matrices ΓA
and Mat− be the matrix algebra generated by all the gamma matrices Γ′B. We define 〈T 〉±
as above as the normalized trace, which is 2−m times the trace relative to the algebras

Mat± of an operator T in H. It is best expressed as an integral of the form

〈T 〉± =

∫
Spin±

gTg−1 dg (3.6)

where Spin± ⊂ Mat± is the spin group and dg the Haar measure of total mass 1.

– 8 –
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Lemma 3. The conditional expectations 〈T 〉± fulfill the following properties

1. 〈STU〉+ = S 〈T 〉+ U for any operators S,U commuting with Mat+ (this holds simi-

larly exchanging + and −)

2. 〈T 〉 =
〈
〈T 〉+

〉
− =

〈
〈T 〉−

〉
+

for any operator T .

3. 〈ST 〉 = 〈S〉+ 〈T 〉− for any operator S commuting with Mat− and T commuting with

Mat+.

4. 〈ST 〉 = 〈S〉− 〈T 〉+ for any operator S commuting with Mat+ and T commuting with

Mat−.

Proof.

1) follows from (3.6) since gSTUg−1 = SgTg−1U for S,U commuting with Mat+ and

g ∈ Spin+.

2) The representation of the product group G = Spin+×Spin− given by (g, g′) 7→ gg′ ∈
Mat+Mat− is irreducible, and thus parallel to (3.6) one has

〈T 〉 =

∫
G
gg′T (gg′−1dgdg′ =

〈
〈T 〉+

〉
− =

〈
〈T 〉−

〉
+

(3.7)

using the fact that any g commutes with any g′.

3) This follows from (3.7) since one has

gg′ST (gg′−1 = gg′S(gg′−1gg′T (gg′−1 = gSg−1g′Tg′−1

4) The proof is the same as for 3).

3.2 Case of dimension 2

This is the simplest case, one has:

Lemma 4. The condition (3.5) implies that the (2-dimensional) volume of M is quantized.

If M is a smooth connected compact oriented 2-dimensional manifold with quantized volume

there exists a solution of (3.5).

Proof. We shall compute the left hand side of (3.5) and show that

〈Z [D,Z] [D,Z]〉 =
1

2
〈Y [D,Y ] [D,Y ]〉+

1

2

〈
Y ′
[
D,Y ′

] [
D,Y ′

]〉
(3.8)

Thus as above we see that (3.5) is equivalent to the quantization condition

det
(
eaµ
)

=
1

2
εµνεABCY

A∂µY
B∂νY

C +
1

2
εµνεABCY

′A∂µY
′B∂νY

′C (3.9)

which gives the volume of M as the sum of the degrees of the two maps Y : M → S2 and

Y ′ : M → S2. This shows that the volume is quantized (up to normalization). Conversely
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let M be a compact oriented 2-dimensional manifold with quantized volume. Choose two

smooth maps Y : M → S2 and Y ′ : M → S2 such that when you add the pull back of the

oriented volume form ω of S2 by Y and Y ′ you get the volume form of M . This will be

discussed in great details in section 4. However, it is simple in dimension 2 mostly because,

on a connected compact smooth manifold, all smooth nowhere-vanishing differential forms

of top degree with the same integral are equivalent by a diffeomorphism [17]. This solves

equation (3.9). It remains to show (3.8). We use the properties

[D, e] =
[
D, e2

]
= e [D, e] + [D, e] e

which can be written as

e [D, e] = [D, e] (1− e), [D, e] e = (1− e) [D, e] (3.10)

which imply

e [D, e] e = 0, e [D, e]2 = [D, e]2 e (3.11)

Now with Z = 2ee′ − 1 as above, one has

[D,Z] = 2
[
D, ee′

]
= 2 [D, e] e′ + 2e

[
D, e′

]
(3.12)

Now [D, e] commutes with e′ because any element of Mat+ (such as ΓA) commutes with

any element of Mat− (such as Γ′B) and for any scalar functions f, g one has [[D, f ], g] = 0]

so that [D,Y A] commutes with Y ′B. Similarly [D, e′] commutes with e (and e and e′

commute) one thus gets

[D,Z]2 = 4
(
[D, e] e′ + e

[
D, e′

])2
= 4

(
[D, e]2 e′ + e

[
D, e′

]2
+ [D, e] ee′

[
D, e′

]
+
[
D, e′

]
ee′ [D, e]

)
(3.13)

One has
1

4
Z [D,Z]2 = e′ (2e− 1) [D, e]2 + e

(
2e′ − 1

) [
D, e′

]2
+ (2e− 1) [D, e] ee′

[
D, e′

]
+
(
2e′ − 1

) [
D, e′

]
e′e [D, e] (3.14)

Using 4) of lemma 3, one has〈
e′ (2e− 1) [D, e]2

〉
=
〈
e′
〉
−

〈
(2e− 1) [D, e]2

〉
+

=
1

2

〈
(2e− 1) [D, e]2

〉
since

〈
(e− 1

2)
〉
− = 1

2 〈Y
′〉− = 0. Similarly one has〈

e
(
2e′ − 1

) [
D, e′

]2〉
=

1

2

〈(
2e′ − 1

) [
D, e′

]2〉
−

=
1

2

〈(
2e′ − 1

) [
D, e′

]2〉
Moreover one has 〈Y [D,Y ]〉 = 0. This follows from the order one condition since one gets,

using Y AY A = 1,

〈Y [D,Y ]〉 = Y A
[
D,Y A

]
=

1

2

(
Y A

[
D,Y A

]
+
[
D,Y A

]
Y A
)

= 0.

It implies that 〈e [D, e]〉 = 0 since it is automatic that 〈[D,Y ]〉 = 0. We then get〈
(2e− 1) [D, e] ee′

[
D, e′

]〉
= 〈(2e− 1) [D, e] e〉+

〈
e′
[
D, e′

]〉
− = 0

and similarly for the other term. Thus we have shown that (3.8) holds.
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3.3 The two sided equation in dimension 4

This calculation will now be done for the four dimensional case:

Lemma 5. In the 4-dimensional case one has〈
Z [D,Z]4

〉
=

1

2

〈
Y [D,Y ]4

〉
+

1

2

〈
Y ′
[
D,Y ′

]4〉
.

The condition 3.5 implies that the (4-dimensional) volume of M is quantized.

Proof. Now ΓA and Γ′A will have A = 1, · · · , 5. We now compute, using (3.13)

1

16
[D,Z]4 =

(
[D, e]2 e′ + e

[
D, e′

]2
+ [D, e] ee′

[
D, e′

]
+
[
D, e′

]
ee′ [D, e]

)2
using (3.11) to show that the following 6 terms give 0,

(1)× (4) = [D, e]2 e′
[
D, e′

]
ee′ [D, e] = 0, since e′

[
D, e′

]
e′ = 0,

(2)× (3) = e
[
D, e′

]2
[D, e] ee′

[
D, e′

]
= 0, since e [D, e] e = 0,

(3)× (1) = [D, e] ee′
[
D, e′

]
[D, e]2 e′ = 0, since e′

[
D, e′

]
e′ = 0,

(3)× (3) = [D, e] ee′
[
D, e′

]
[D, e] ee′

[
D, e′

]
= 0, since e′

[
D, e′

]
e′ = 0,

(4)× (2) =
[
D, e′

]
ee′ [D, e] e

[
D, e′

]2
= 0, since e [D, e] e = 0,

(4)× (4) =
[
D, e′

]
ee′ [D, e]

[
D, e′

]
ee′ [D, e] = 0, since e′

[
D, e′

]
e′ = 0.

We thus get the remaining ten terms in the form

1

16
[D,Z]4 =

(
[D, e]2 e′ + e

[
D, e′

]2
+ [D, e] ee′

[
D, e′

]
+
[
D, e′

]
ee′ [D, e]

)2
= [D, e]4 e′ + [D, e]2 ee′

[
D, e′

]2
+ [D, e]3 ee′

[
D, e′

]
+
[
D, e′

]2
e′e [D, e]2 + e

[
D, e′

]4
+
[
D, e′

]3
ee′ [D, e]

+ [D, e] ee′
[
D, e′

]3
+ [D, e] ee′

[
D, e′

]2
e′e [D, e]

+
[
D, e′

]
ee′ [D, e]3 +

[
D, e′

]
ee′ [D, e]2 e′e

[
D, e′

]
(3.15)

We multiply by Z = 2ee′ − 1 on the left and treat the various terms as follows.

Z [D, e]4 e′ = e′(2e− 1) [D, e]4

gives the contribution〈
Z [D, e]4 e′

〉
=
〈
e′
〉 〈
Y [D, e]4

〉
=

1

32

〈
Y [D,Y ]4

〉
The other quartic term

Ze
[
D, e′

]4
= e(2e′ − 1)

[
D, e′

]4
gives the contribution 〈

Ze
[
D, e′

]4〉
=

1

32

〈
Y ′
[
D,Y ′

]4〉
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For the cubic terms one has, using e [D, e]3 e = e [D, e] e [D, e]2 = 0,

Z [D, e]3 ee′
[
D, e′

]
= − [D, e]3 ee′

[
D, e′

]
and it gives as above a vanishing contribution since 〈e′ [D, e′]〉 = 0 (and similarly for e).

Similarly one has

Z
[
D, e′

]3
ee′ [D, e] = −

[
D, e′

]3
ee′ [D, e]

which gives a vanishing contribution, as well as

Z [D, e] ee′
[
D, e′

]3
= − [D, e] ee′

[
D, e′

]3
and

Z
[
D, e′

]
ee′ [D, e]3 = −

[
D, e′

]
ee′ [D, e]3 .

We now take care of the remaining 4 quadratic terms. They are

[D, e]2 ee′
[
D, e′

]2
+
[
D, e′

]2
e′e [D, e]2

+ [D, e] ee′
[
D, e′

]2
e′e [D, e] +

[
D, e′

]
ee′ [D, e]2 e′e

[
D, e′

]
One has, using the commutation of ee′ with [D, e]2

Z [D, e]2 ee′
[
D, e′

]2
= [D, e]2 ee′

[
D, e′

]2
so that the contributions of the two terms of the first line are〈

e [D, e]2
〉〈

e′
[
D, e′

]2〉
+
〈
e′
[
D, e′

]2〉〈
e [D, e]2

〉
(3.16)

Now for the remaining terms one gets, using e [D, e] e = 0

Z [D, e] ee′
[
D, e′

]2
e′e [D, e] = − [D, e] ee′

[
D, e′

]2
e′e [D, e]

To compute the trace one uses the fact that [D, e] e commutes with Mat− and property 1)

of lemma 3 to get〈
Z [D, e] ee′

[
D, e′

]2
e′e [D, e]

〉
−

= − [D, e] e
〈
e′
[
D, e′

]2〉
−
e [D, e]

Next one has, using
〈
Y ′ [D,Y ′]2

〉
= 0 and e′ = 1

2(Y ′ + 1),〈
e′
[
D, e′

]2〉
−

=
1

8

〈[
D,Y ′

]2〉
(3.17)

and this does not vanish but is a scalar function which is
∑[

D,Y ′A
]2

and commutes with

the other terms so that one gets after taking it across〈
Z [D, e] ee′

[
D, e′

]2
e′e [D, e]

〉
= −〈[D, e] e [D, e]〉

〈
e′
[
D, e′

]2〉
Next one has, using

〈
Y [D,Y ]2

〉
= 0, and Y [D,Y ] + [D,Y ]Y = 0

〈[D, e] e [D, e]〉 =
1

8

〈
[D,Y ]2

〉
=
〈
e [D, e]2

〉
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which shows that〈
Z [D, e] ee′

[
D, e′

]2
e′e [D, e]

〉
= −

〈
e [D, e]2

〉〈
e′
[
D, e′

]2〉
Note that to show that

〈[D, e] e [D, e]〉 =
〈
e [D, e]2

〉
one can also use (by (3.10))

[D, e] e [D, e] = (1− e) [D, e]2 ,
〈

(2e− 1) [D, e]2
〉

=
〈
Y [D, e]2

〉
= 0

Similarly one gets〈
Z
[
D, e′

]
ee′ [D, e]2 e′e

[
D, e′

]〉
= −

〈
e′
[
D, e′

]2〉〈
e [D, e]2

〉
Thus combining with (3.16), we get that the total contribution of the quadratic terms is 0.

Finally the second statement of lemma 5 follows from lemma 2.

3.4 Algebraic relations

It is important to make the list of the algebraic relations which have been used and do not

follow from the definition of Y and Y ′. Note first that for Y = Y AΓA with the hypothesis

that the components Y A belong to the commutant of the algebra generated by the ΓB,

one has

Y 2 = ±1 =⇒ [Y A, Y B] = 0, ∀A,B.

Indeed the matrices ΓAΓB for A < B, are linearly independent and the coefficient of ΓAΓB
in the square Y 2 is [Y A, Y B] which has to vanish. The similar statement holds for Y ′.

Moreover the commutation rule [Y, Y ′] = 0 implies (and is equivalent to) the commutation

of the components [Y A, Y ′B] = 0, ∀A,B. Thus the components Y A, Y ′B commute pairwise

and generate a commutative involutive algebra A (since they are all self-adjoint). This

corresponds to the order zero condition in the commutative case. We have also assumed

the order one condition in the from [[D, a], b] = 0 for any a, b ∈ A. But in fact we also

made use of the commutation of the operator
〈

[D,Y ]2
〉

with the elements of A and the

[D, a] for a ∈ A (and similarly for
〈

[D,Y ′]2
〉
).

3.5 The quantization theorem

In the next theorem the algebraic relations between Y±, D, J , C±, γ are assumed to hold.

We shall not detail these relations but they are exactly those discussed in section 3.4 and

which make the proof of lemma 5 possible.

As in the introduction we adopt the following definitions. Let M be a connected

smooth oriented compact manifold of dimension n. Let α be the volume form of the sphere

Sn. One considers the (possibly empty) set D(M) of pairs of smooth maps φ, ψ : M → Sn

such that the differential form

φ#(α) + ψ#(α) = ω

does not vanish anywhere on M (ω(x) 6= 0 ∀x ∈M). One defines an invariant which is the

subset of Z:

q(M) := {degree(φ) + degree(ψ) | (φ, ψ) ∈ D(M)} ⊂ Z.

– 13 –
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Theorem 6. Let n = 2 or n = 4.

(i) In any operator representation of the two sided equation (1.3) in which the spectrum

of D grows as in dimension n the volume (the leading term of the Weyl asymptotic

formula) is quantized.

(ii) Let M be a connected smooth compact oriented spin Riemannian manifold (of di-

mension n = 2, 4). Then a solution of (1.3) exists if and only if the volume of M is

quantized4 to belong to the invariant q(M) ⊂ Z.

Proof.

(i) By lemma 5 one has, as in the two dimensional case that the left hand side of (3.5)

is up to normalization,

L =
〈
Y [D,Y ]4

〉
+
〈
Y ′
[
D,Y ′

]4〉
(3.18)

so that (3.5) implies that the volume of M is (up to sign) the sum of the degrees of

the two maps. This is enough to give the proof in the case of the spectral triple of a

manifold, and we shall see in theorem 17 that it also holds in the abstract framework.

(ii) Using lemma 5 the proof is the same as in the two dimensional case. Note that the

connectedness hypothesis is crucial in order to apply the result of [17].

4 Differential geometry and the two sided equation

The invariant qM makes sense in any dimension. For n = 2, 3, and any connected M , it

contains all sufficiently large integers. The case n = 4 is more difficult but we shall prove

below in theorem 12 that it contains all integers m > 4 as soon as the connected 4-manifold

M is a Spin manifold, an hypothesis which is automatic in our context.

4.1 Case of dimension n < 4

Lemma 7. Let M be a compact connected smooth oriented manifold of dimension n <

4. Then for any differential form ω ∈ Ωn(M) which vanishes nowhere, agrees with the

orientation, and fulfills the quantization
∫
M ω ∈ Z, |

∫
M ω| > 3, one can find two smooth

maps φ, φ′ such that

φ#(α) + φ′#(α) = ω

where α is the volume form of the sphere of unit volume.

Proof. By [1] as refined in [20], any Whitehead triangulation ofM provides (after a barycen-

tric subdivision) a ramified covering of the sphere Sn obtained by gluing two copies ∆n
±

of the standard simplex ∆n along their boundary. One uses the labeling of the vertices of

each n-simplex by {0, 1, . . . , n} where each vertex is labeled by the dimension of the face of

which it is the barycenter. The bi-coloring corresponds to affecting each n-simplex of the

4Up to normalization.
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Figure 1. Triangulation of torus, the map φ maps white triangles to the white hemisphere (of the

small sphere) and the black ones to the black hemisphere.

triangulation with a sign depending on wether the orientation of the simplex agrees or not

with the orientation given by the labeling of the vertices. One then gets a PL-map M → Sn

by mapping each simplex with a ± sign to ∆n
± respecting the labeling of the vertices. This

gives a covering which is ramified only on the (n− 2)-skeleton of ∆n
±. After smoothing one

then gets a smooth map φ : M → Sn whose Jacobian will be > 0 outside a subset K of

dimension n− 2 of M . Using the hypothesis n < 4 (which gives (n− 2) + (n− 2) < n), the

set of orientation preserving diffeomorphisms ψ ∈ Diff+(M) such that ψ(K) ∩K = ∅ is a

dense subset of Diff(M)+, thus one finds ψ ∈ Diff+(M) such that the Jacobian of φ and

the Jacobian of φ′ = φ ◦ ψ never vanish simultaneously. This shows that the differential

form ρ = φ#(α) + φ′#(α) does not vanish anywhere and by the result of [17] there exists

an orientation preserving diffeomorphism of M which transforms this form into ω provided

they have the same integral. But the integral of ρ is twice the integral of φ#(α) which in

turns is the degree of the map φ and thus the number of simplices of a given color. As

performed the above construction only gives even numbers, since the integral of ρ is twice

the degree of the map φ, but we shall see shortly in lemma 9 that in fact the degree of the

map φ is in q(M) from a fairly general argument.

4.2 Preliminaries in dimension 4

Let us first give simple examples in dimension 4 of varieties where one can obtain arbitrarily

large quantized volumes.

First for the sphere S4 itself one can construct by the same procedure as in the proof of

lemma 7 a smooth map φ : S4 → S4 whose Jacobian is ≥ 0 everywhere and whose degree

is a given integer N . One can then simply take the sum ω = φ#(α) + α which does not

vanish and has integral N + 1.

Next, let us take M = S3 × S1. Then one can construct by the same procedure as

in the proof of lemma 7 a smooth map φ : M → S4 whose Jacobian is ≥ 0 everywhere

– 15 –
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Figure 2. Barycentric subdivision.

and which vanishes only on a two dimensional subset K ⊂ M . Let p : M → S3 be the

first projection using the product M = S3 × S1. Then p(K) is a two dimensional subset

of S3 and hence there exists x ∈ S3, x /∈ p(K). One can thus find a diffeomorphism

ψ ∈ Diff+(S3) such that ψ(p(K)) ∩ p(K) = ∅. Then the diffeomorphism ψ′ ∈ Diff+(M)

which acts as (x, y) 7→ ψ′(x, y) = (ψ(x), y) is such that ψ′(K) ∩ K = ∅. Thus it follows

that the Jacobian of φ and the Jacobian of φ′ = φ ◦ ψ′ never vanish simultaneously and

the proof of lemma 7 applies. Note moreover that in this case M = S3 × S1 is not simply

connected and one gets smooth covers of arbitrary degree which can be combined with the

maps (φ, φ′).

4.3 Necessary condition

Jean-Claude Sikorav and Bruno Sevennec found the following obstruction which implies

for instance that D(CP 2) = ∅. In general

Lemma 8. Let M be an oriented compact smooth 4-dimensional manifold, then, with w2

the second Stiefel-Whitney class of the tangent bundle,

D(M) 6= ∅ =⇒ w2
2 = 0

More generally if D(M) 6= ∅ and the dimension of M is arbitrary, the product of any two

Stiefel-Whitney classes vanishes.

Proof. One has a cover of M by two open sets on which the tangent bundle is stably

trivialized. Thus the product of any two Stiefel-Whitney classes vanishes.

Since a manifold is a Spin manifold if and only if w2 = 0 this obstruction vanishes in

our context.

4.4 Reduction to a single map

Here is a first lemma which reduces to properties of a single map.
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Lemma 9. Let φ : M → S4 be a smooth map such that φ#(α)(x) ≥ 0 ∀x ∈ M and let

R = {x ∈ M | φ#(α)(x) = 0}. Then there exists a map φ′ such that φ#(α) + φ′#(α) does

not vanish anywhere if and only if there exists an immersion f : V → R4 of a neighborhood

V of R. Moreover if this condition is fulfilled one can choose φ′ to be of degree 0.

Proof. Let first φ′ be such that φ#(α) + φ′#(α) does not vanish anywhere. Then φ′#(α)

does not vanish on the closed set R and hence in a neighborhood V ⊃ R. Its restriction

to V gives the desired immersion. Conversely let f : V → R4 be an immersion of a

neighborhood V of R. We can assume by changing the orientation of R4 for the various

connected components of V that f#(v) > 0 where v is the standard volume form on R4.

We first extend f to a smooth map f̃ : M → R4 by extending the coordinate functions.

We then can assume that f(M) ⊂ B4 ⊂ R4 where B4 is the unit ball which we identify

with the half sphere so that B4 ⊂ S4. We denote by β = α|B4 the restriction of α to B4.

We have f#(β) > 0 on V but not on M since the map f̃ : M → S4 is of degree zero. Let

ρ > 0 be a fixed volume form (nowhere vanishing) on M . Let ε > 0 be such that

φ#(α)(x) ≥ ερ(x), ∀x /∈ V

For y ∈ B4 and 0 < λ ≤ 1 we let λy be the rescaled element (using rescaling in R4). Then

for λ small enough one has

|(λf̃)#(α)(x)| ≤ 1

2
ερ(x), ∀x ∈M,

where the absolute value is on the ratio of (λf̃)#(α) with ρ. One then gets that with

φ′ = λf̃ one has

(φ#(α) + φ′#(α))(x) 6= 0, ∀x ∈M.

4.5 Products M = N × S1

Let N be a smooth oriented compact three manifold. Then N is Spin, thus the condition

w2
2 = 0 is automatically fulfilled by M = N × S1. In fact:

Theorem 10. Let N be a smooth oriented connected compact three manifold. Let M =

N × S1, then the set q(M) is non-empty, and contains all integers m ≥ r for some r > 0.

Proof. Let g : S3 × S1 → S4 be a ramified cover of degree m and singular set Σg. Let N

be described as a ramified cover f : N → S3 ramified over a knot K ⊂ S3 [13, 16]. One

may, using the two dimensionality of Σg, assume that

K ∩ p3(Σg) = ∅, p3 : S3 × S1 → S3.

Let h = f × id : N × S1 → S3 × S1. Let Σf ⊂ N be the singular set of f . one has

f(Σf ) ⊂ K and thus, with Σh ⊂ N × S1 the singular set of h,

Σh = Σf × S1, h(Σh) ∩ Σg = ∅
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since h(Σh) = f(Σf ) × S1 ⊂ K × S1 is disjoint from Σg. Let then φ = g ◦ h. The

singular set Σφ of φ is the union of Σh with h−1(Σg). This two closed sets are disjoint since

h(Σh)∩Σg = ∅. By lemma 9 it is enough to find immersions in R4 of neighborhoods V ⊃ Σh

and W ⊃ h−1(Σg). By construction Σh = Σf × S1 is a union of tori with trivial normal

bundle, since their normal bundle is the pullback by the projection of the normal bundle to

Σf which is a union of circles. This gives the required immersion V → R4. Moreover the

restriction of h to a suitable neighborhood W of h−1(Σg) is a smooth covering of an open

set of S3 × S1. On each of the components Wj of this covering, the local situation is the

same as for the inclusion of Σg in S3×S1. Thus one gets the required immersion W → R4.

This shows that the hypothesis of lemma 9 is fulfilled and one gets that D(M) 6= ∅ and that

degree(f) + degree(g) ∈ q(M)

Remark 11. Here is a variant, due to Jean-Claude Sikorav, of the above proof, also using

lemma 9. The 4-manifold M = N × S1 is parallelizable since any oriented 3-manifold is

parallelizable (see for instance [13] for a direct proof), and by [18] theorem 5, there is an

immersion ψ : M \ {p} → R4 of the complement of a single point p ∈M so that it is easy

to verify the hypothesis of lemma 9 and show that for any ramified cover φ : M → S4 one

has degree(φ) ∈ q(M).

4.6 Spin manifolds

Theorem 12. Let M be a smooth connected oriented compact spin 4-manifold. Then the

set q(M) contains all integers m ≥ 5.

Proof. We proceed as in the proof of lemma 7 and get from any Whitehead triangulation

of M (after a barycentric subdivision) a ramified covering γ of the sphere S4 obtained by

gluing two copies ∆4
± of the standard simplex ∆4 along their boundary. Let then V be a

neighborhood of the 2-skeleton of the triangulation which retracts on the 2-skeleton. Then

the restriction of the tangent bundle of M to V is trivial since the spin hypothesis allows

one to view TM as induced from a Spin(4) principal bundle while the classifying space

BSpin(4) is 3-connected. Thus the extension by Poenaru [18], theorem 5, (see also [19]),

of the Hirsch-Smale immersion theory [14, 22] to the case of codimension zero yields an

immersion V → R4. After smoothing γ while keeping its singular set inside V one gets

that the hypothesis of lemma 9 is fulfilled and this gives that m ∈ q(M) where 2m is the

number of simplices of the triangulation. For the finer result involving the small values

of m one can use the theorem5 of M. Iori and R. Piergallini [15], which gives a smooth

ramified cover φ : M → S4 of any degree m ≥ 5 whose singular set R ⊂ M is a disjoint

union of smooth surfaces Sj ⊂ M . As above, when M is a Spin manifold, the condition

of lemma 9 is fulfilled so that m ∈ q(M). Indeed as above, this shows that there exists an

immersion of a neighborhood of each Sj in R4. Thus q(M) contains any integer m ≥ 5 for

any Spin 4-manifold.

5This theorem is stated in the PL category but, as confirmed to us by R. Piergallini, it holds (for any

m ≥ 5) in the smooth category due to general results PL=Smooth in 4-dimensions.
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Remark 13. In fact in the above proof one needs to use immersion theory only when Sj is

non-orientable. If Sj is orientable, then by Whitney’s theorem ([23], §6.b)) the Euler class

χ(ν) of the normal bundle of φ(Sj) ⊂ S4 is χ(ν) = 0, while one has the proportionality

with the Euler class of the normal bundle ν ′ of Sj ⊂M . Thus χ(ν ′) = 0 and it follows that

there is an embedding of a tubular neighborhood of Sj in R4.

Remark 14. As a countercheck it is important to note why the above proof does not apply

in the case of CP 2 seen as a double cover of the 4-sphere which is the quotient of CP 2 by

complex conjugation and gives a ramified cover with ramification on RP 2. It is an exercice

for the reader to compute directly the second Stiefel-Whitney class of the tangent space of

CP 2 restricted to the submanifold RP 2 and check that it does not vanish.

Corollary 15. Let M be a smooth compact connected oriented spin Riemannian 4-manifold

with quantized6 volume ≥ 5. Then there exists an irreducible representation of the two-

sided quantization relation such that the canonical spectral triple (A,H, D) of M appears

as follows, where {Y A, Y ′B}′′ is the double commutant of the components Y A, Y ′B,

• Algebra: A = {f ∈ {Y A, Y ′B}′′ | fD ⊂ D}, D = ∩kDomainDk.

• Hilbert space: H =
∏
EAE

′
BH, EA = 1

2(1 + ΓA), E′B = 1
2(1 + Γ′B).

• Operator: the operator is the restriction of D to H.

Proof. By theorem 12 combined with theorem 6, a solution of (1.3) exists for the spectral

triple of M . Let φ, φ′ be the corresponding maps M → S4. By a general position argument

([10], Chapter III, Corollary 3.3) one can assume that the map (φ, φ′) : M → S4 × S4 is

transverse to itself, without spoiling the fact that φ#(α) + φ′#(α) does not vanish. The

existence of self-intersections of M ⊂ S4 × S4 prevents the components Y A, Y ′B from

generating the algebra of smooth functions on M but what remains true is that the double

commutant {Y A, Y ′B}′′ is the same as the double commutant of C∞(M) since the double

points form a finite set. One then concludes that, with D = ∩kDomainDk one has

C∞(M) = {f ∈ {Y A, Y ′B}′′ | fD ⊂ D}

and it follows that the representation of the two-sided quantization relation is irreducible.

The formulas for the Hilbert space and the operator are straightforward.

5 A tentative particle picture in quantum gravity

One of the basic conceptual ingredients of Quantum Field Theory is the notion of particle

which Wigner formulated as irreducible representations of the Poincaré group. When deal-

ing with general relativity we shall see that (in the Euclidean = imaginary time formulation)

there is a natural corresponding particle picture in which the irreducible representations of

the two-sided higher Heisenberg relation play the role of “particles”. Thus the role of the

6Up to normalization.
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Poincaré group is now played by the algebra of relations existing between the line element

and the slash of scalar fields.

We shall first explain why it is natural from the point of view of differential geometry

also, to consider the two sets of Γ-matrices and then take the operators Y and Y ′ as being

the correct variables for a first shot at a theory of quantum gravity. Once we have the Y

and Y ′ we can use them and get a map (Y, Y ′) : M → Sn × Sn from the manifold M to

the product of two n-spheres. The first question which comes in this respect is if, given

a compact n-dimensional manifold M one can find a map (Y, Y ′) : M → Sn × Sn which

embeds M as a submanifold of Sn × Sn. Fortunately this is a known result, the strong

embedding theorem of Whitney, [24], which asserts that any smooth real n-dimensional

manifold (required also to be Hausdorff and second-countable) can be smoothly embedded

in the real 2n-space. Of course R2n = Rn × Rn ⊂ Sn × Sn so that one gets the required

embedding. This result shows that there is no restriction by viewing the pair (Y, Y ′) as

the correct “coordinate” variables. Thus we simply view Y and Y ′ as operators in Hilbert

space and we shall write algebraic relations which they fulfill relative to the two Clifford

algebras Cκ, κ = ±1 and to the self-adjoint operator D. We should also involve the J and

the γ. The metric dimension will be governed by the growth of the spectrum of D.

The next questions are: assuming that we now no-longer use a base manifold M ,

A: Why is it true that the joint spectrum of the Y A and Y ′B is of dimension n while

one has 2n variables.

B: Why is it true that the non-commutative integrals∫
−γ 〈Y [D,Y ]n〉D−n,

∫
−γ
〈
Y ′
[
D,Y ′

]n〉
D−n,

∫
−D−n

remain quantized.

5.1 Why is the joint spectrum of dimension 4

The reason why A holds in the case of classical manifolds is that in that case the joint

spectrum of the Y A and Y ′B is the subset of Sn × Sn which is the image of the manifold

M by the map x ∈M 7→ (Y (x), Y ′(x)) and thus its dimension is at most n.

The reason why A holds in general is because of the assumed boundedness of the

commutators [D,Y ] and [D,Y ′] together with the commutativity [Y, Y ′] = 0 (order zero

condition) and the fact that the spectrum of D grows like in dimension n.

5.2 Why is the volume quantized

The reason why B holds in the case of classical manifolds is that this is a winding number,

as shown in lemma 2.

The reason why B holds in the general case is that all the lower components of the

operator theoretic Chern character of the idempotent e = 1
2(1 + Y ) vanish and this al-

lows one to apply the operator theoretic index formula which in that case gives (up to

suitable normalization)

2−n/2−1
∫
−γ 〈Y [D,Y ]n〉D−n = Index (De)
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This follows from the local index formula of [9] but in fact one does not need the tech-

nical hypothesis of [9] since, when the lower components of the operator theoretic Chern

character all vanish, one can use the non-local index formula in cyclic cohomology and the

determination in [7] theorem 8, IV.2.γ of the Hochschild class of the index cyclic cocycle.

To be more precise one introduces the following trace operation, given an algebra A
over R (not assumed commutative) and the algebra Mn(A) of matrices of elements of A,

one defines

tr : Mn(A)⊗Mn(A)⊗ · · · ⊗Mn(A)→ A⊗A⊗ · · · ⊗ A

by the rule, using Mn(A) = Mn(R)⊗A

tr ((a0 ⊗ µ0)⊗ (a1 ⊗ µ1)⊗ · · · ⊗ (am ⊗ µm)) = Trace(µ0 · · ·µm)a0 ⊗ a1 ⊗ · · · ⊗ am

where Trace is the ordinary trace of matrices. Let us denote by ιk the operation which

inserts a 1 in a tensor at the k-th place. So for instance

ι0(a0 ⊗ a1 ⊗ · · · ⊗ am) = 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ am

One has tr ◦ ιk = ιk ◦ tr since (taking k = 0)

tr ◦ ι0 ((a0 ⊗ µ0)⊗ (a1 ⊗ µ1)⊗ · · · ⊗ (am ⊗ µm))

= tr ((1⊗ 1)⊗ (a0 ⊗ µ0)⊗ (a1 ⊗ µ1)⊗ · · · ⊗ (am ⊗ µm))

= Trace(1µ0 · · ·µm)1⊗ a0 ⊗ a1 ⊗ · · · ⊗ am
= ι0 (tr ((a0 ⊗ µ0)⊗ (a1 ⊗ µ1)⊗ · · · ⊗ (am ⊗ µm)))

The components of the Chern character of an idempotent e ∈Ms(A) are then given up to

normalization by

Chm(e) := tr ((2e− 1)⊗ e⊗ e⊗ · · · ⊗ e) ∈ A⊗A⊗ . . .⊗A (5.1)

with m even and equal to the number of terms e in the right hand side. Now the main

point in our context is the following general fact

Lemma 16. Let A be an algebra (over R) and Y =
∑
Y AΓA with Y A ∈ A and ΓA ∈

C+ ⊂ Mw(C) as above, n + 1 gamma matrices. Assume that Y 2 = 1. Then for any even

integer m < n one has Chm(e) = 0 where e = 1
2(1 + Y ).

Proof. This follows since the trace of a product of m+ 1 gamma matrices is always 0.

It follows that the component Chn(e) is a Hochschild cycle and that for any cyclic

n-cocycle φn the pairing < φn, e > is the same as < I(φn),Chn(e) > where I(φn) is the

Hochschild class of φn. This applies to the cyclic n-cocycle φn which is the Chern character

φn in K-homology of the spectral triple (A,H, D) with grading γ where A is the algebra

generated by the components Y A of Y and Y ′A of Y ′. By [7] theorem 8, IV.2.γ, (see

also [11] theorem 10.32 and [2] for recent optimal results), the Hochschild class of φn is

given, up to a normalization factor, by the Hochschild n-cocycle:

τ(a0, a1, . . . , an) =

∫
−γa0[D, a1] · · · [D, an]D−n, ∀aj ∈ A.
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Thus one gets that, by the index formula, for any idempotent e ∈Ms(A)

< τ,Chn(e) >=< φn, e >= Index (De) ∈ Z

Now by (5.1) for m = n and the fact that D commutes with the two Clifford algebras C±,

one gets, with Y = 2e− 1 as above, the formula

< τ,Chn(e) >=

∫
−γ 〈Y [D,Y ]n〉D−n

The same applies to Y ′ and we get

Theorem 17. The quantization equation implies that (up to normalization)∫
−D−n ∈ N

Proof. One has, from the two sided equation,

1

n!
〈Z [D,Z]n〉 = γ

so that ∫
−D−n =

∫
−γγD−n =

1

n!

∫
−γ 〈Z [D,Z]n〉D−n

and using (2.5)∫
−γ 〈Z [D,Z]n〉D−n =

1

2

∫
−γ 〈Y [D,Y ]n〉D−n +

1

2

∫
−γ
〈
Y ′
[
D,Y ′

]n〉
D−n

which gives the required result after a suitable choice of normalization since both terms on

the right hand side give indices of Fredholm operators.

6 Conclusions

In this paper we have uncovered a higher analogue of the Heisenberg commutation rela-

tion whose irreducible representations provide a tentative picture for quanta of geometry.

We have shown that 4-dimensional Spin geometries with quantized volume give such ir-

reducible representations of the two-sided relation involving the Dirac operator and the

Feynman slash of scalar fields and the two possibilities for the Clifford algebras which pro-

vide the gamma matrices with which the scalar fields are contracted. These instantonic

fields provide maps Y, Y ′ from the four-dimensional manifold M4 to S4. The intuitive pic-

ture using the two maps from M4 to S4 is that the four-manifold is built out of a very

large number of the two kinds of spheres of Planckian volume. The volume of space-time is

quantized in terms of the sum of the two winding numbers of the two maps. More sugges-

tively the Euclidean space-time history unfolds to macroscopic dimension from the product

of two 4-spheres of Planckian volume as a butterfly unfolds from its chrysalis. Moreover,

amazingly, in dimension 4 the algebras of Clifford valued functions which appear natu-

rally from the Feynman slash of scalar fields coincide exactly with the algebras that were
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singled out in our algebraic understanding of the standard model using noncommutative

geometry thus yielding the natural guess that the spectral action will give the unification

of gravity with the Standard Model (more precisely of its asymptotically free extension as

a Pati-Salam model as explained in [5]).

Having established the mathematical foundation for the quantization of geometry,

we shall present consequences and physical applications of these results in a forthcoming

publication [6].
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