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Abstract We compute the fully differential rate for the
Higgs-boson decay h → Z�+�−, with Z → �

′+�′−. For
these processes we assume the most general matrix elements
within an effective Lagrangian framework. The electroweak
chiral Lagrangian we employ assumes minimal particle con-
tent and Standard Model gauge symmetries, but it is oth-
erwise completely general. We discuss how information on
new physics in the decay form factors may be obtained that
is inaccessible in the dilepton-mass spectrum integrated over
angular variables. The form factors are related to the coeffi-
cients of the effective Lagrangian, which are used to estimate
the potential size of new-physics effects.

1 Introduction

The recent discovery of a light scalar h by ATLAS [1] and
CMS [2] has been a major step forward in our understanding
of electroweak symmetry breaking. The first run of the LHC
has established its mass with an accuracy of better than 1 %
and has provided evidence for its scalar nature with spin-
parity 0+ [3]. Furthermore, decay rates to gauge-boson pairs
show no significant deviations from their Standard Model
(SM) values [4,5] within the present accuracy of around
20–30 % [6,7]. The overall agreement with the Standard
Model is so far impressive.

However, theoretical arguments suggest that deviations
should be expected. Their absence would actually be rather
puzzling and would point to a fine-tuned solution for elec-
troweak symmetry breaking, where the lightness of the Higgs
would remain unexplained. Deviations from the Standard
Model parameters open the gate to new physics, expected to
lie at the Terascale in the form of weakly or strongly coupled
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new interactions. So far the LHC has been able to test total
decay rates of h into gauge-boson pairs. However, LHC run 2,
with a substantial increase in luminosity, will provide enough
statistics to probe also differential distributions, thereby test-
ing the Standard Model in much greater detail.

In this paper we will study in a model-independent way
the impact of new physics in the full angular distribution
of h → Z�+�− decay, with the Z on-shell and eventually
decaying into a lepton pair. We will argue that h → Z�+�−
is a useful channel not only for spin identification [8–12],
but also to test nonstandard couplings: it provides a rich 4-
body angular distribution with a clean 4-lepton final-state
signature. For earlier work see [13,14].

Our results can be parametrized in terms of six indepen-
dent dynamical form factors, which include the effects of vir-
tual electroweak bosons (γ and Z ) as well as heavier states,
whose effects at the electroweak scale are encoded in con-
tact interactions. Since we aim at model independence, we
will study the new physics contributions using the effective
field theory (EFT) scheme developed in [15,16], which is
the most general EFT of the electroweak interactions. As
opposed to particular models, the resulting set of new-physics
coefficients will remain undetermined. However, their natu-
ral sizes can still be estimated with the aid of power-counting
arguments.

Certain aspects of this decay mode have already been
discussed recently [17–19], with a focus on the dilepton-
mass distribution. The observation there is that mass distri-
butions can unveil new-physics structures in an otherwise
SM-compatible integrated decay rate. This, however, comes
at the expense of some fine-tuning in the new-physics param-
eters. In contrast, by exploiting angular distributions one can
identify structures that do not contribute to the integrated
decay rate. Thus, one can still be compatible with the SM
decay rates without tuning the new-physics parameters.
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As opposed to loop-induced processes, such as h → γ Z ,
h → Z�+�− does not look a priori like a promising testing
ground for new-physics effects. As we will show below, they
are expected, at most, at the few % level in certain observ-
ables. h → Z�+�− is, however, an exceptionally clean decay
mode and the natural suppression of new physics can be com-
pensated with statistics. In fact, the LHC running at 14 TeV
with an integrated luminosity of 3000 fb−1 will potentially be
sensitive to new-physics effects in h → Z�+�−. Our analysis
also shows that CP-odd effects in h → Z�+�− are expected
only at the per-mille level.

The remainder of this paper will be organized as fol-
lows: in Sect. 2 we will derive the full angular distribution
for h → Z�+�−. Expressions for the dynamical form fac-
tors in terms of EFT coefficients will be given in Sect. 3,
with a discussion of their expected sizes in both weakly
and strongly coupled scenarios. In Sect. 4 we will discuss
some selected angular observables. Conclusions are given
in Sect. 5, while an appendix with kinematical details is
provided for reference.

2 Angular distribution for h → Z�+�−

We denote the amplitude for the h → Z�+�− decay of a
Higgs boson by εμM3,μ, and for the decay of an on-shell
Z -boson into a lepton pair by εμM2,μ, where εμ is
the Z -boson polarization. The fully differential decay rate
for h(k) → Z(p)�+(q1)�

−(q2), followed by Z(p) →
�

′+(p1)�
′−(p2), is then given, in the narrow-width approxi-

mation, by

d�

ds d cosα d cosβ dφ
= λ

(2π)5 210
√

r�Z

∣
∣Mμ

3 M2,μ
∣
∣
2

(1)

where we have defined

r = m2
Z

M2
h

, s = q2

M2
h

,

λ = (1 + r2 + s2 − 2r − 2s − 2rs)1/2 (2)

and �Z is the total width of the Z . The kinematics is further
discussed in Appendix A.

For massless leptons the decay amplitudes can be written
as (ε0123 = +1)

M3,μ = i
21/4G1/2

F r

s − r
· ū(q2)

[

2F1γμ(GV − G Aγ5)

+ qμ
M2

h

� k(HV − HAγ5)+ εαμβλ

M2
h

pαqβγ λ(KV − K Aγ5)

]

× v(q1) (3)

and

M2,μ = i ū(p2)γμ(gV − gAγ5)v(p1). (4)

The form of the amplitude in (3) is valid through next-to-
leading order (NLO) of the general electroweak effective
Lagrangian described in [16] and in Sect. 3. The form fac-
tors GV,A, HV,A, KV,A are functions of r and s. The global
normalization of the amplitude has been chosen such that in
the Standard Model at leading order F1 ≡ 1, GV = gV , and
G A = gA.

Summing over the final-state lepton polarizations gives

∣
∣Mμ

3 M2,μ
∣
∣
2 = √

2G F M4
h

(
r

r − s

)2

J (r, s, α, β, φ) (5)

where

J (r, s, α, β, φ) = J1
9

40
(1 + cos2 α cos2 β)

+ J2
9

16
sin2 α sin2 β + J3 cosα cosβ

+ (J4 sin α sin β +J5 sin 2α sin 2β) sin φ

+ (J6 sin α sin β +J7 sin 2α sin 2β) cosφ

+ J8 sin2 α sin2 β sin 2φ + J9 sin2 α sin2 β cos 2φ. (6)

The previous expression factors out the angular depen-
dence, Ji being dynamical functions which depend only on
the invariant masses r , s. They are given by

J1 = 640

9
F2

1 (G
2
V + G2

A)(g
2
V + g2

A)rs

J2 = 32

9
F1(g

2
V + g2

A)
[

2F1(G
2
V + G2

A)(λ
2 + 2rs)

+ (GV HV + G A HA)λ
2(1 − r − s)

]

J3 = 128F2
1 GV G AgV gArs

J4 = 8F1(GV K A + G A KV )gV gAλ
√

rs(1 − r − s)

J5 = F1(GV KV + G A K A)(g
2
V + g2

A)λ
√

rs(1 − r − s)

J6 = −8F1gV gA
√

rs
[

8F1GV G A(1 − r − s)

+(GV HA + G A HV )λ
2
]

J7 = −F1(g
2
V + g2

A)
√

rs
[

4F1(G
2
V + G2

A)(1 − r − s)

+ (GV HV + G A HA)λ
2
]

J8 = −4F1(GV KV + G A K A)(g
2
V + g2

A)λrs

J9 = 8F2
1 (G

2
V + G2

A)(g
2
V + g2

A)rs. (7)

As will be explained in more detail in Sect. 3, the form
factors GV,A receive leading-order contributions in the Stan-
dard Model, whereas HV,A and KV,A only arise as next-to-
leading-order corrections and capture, respectively, CP-even
and CP-odd contributions. In writing the expression for the
Ji , we have therefore consistently neglected terms of second
order in HV,A and KV,A. It follows that to leading order in the
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Standard Model the observables J4, J5, and J8, which carry
the dependence on KV,A, are zero, as one would expect from
general CP considerations.

With sufficient data, a general fit to the angular distribution
of the four final-state leptons could in principle extract all
nine terms Ji in the fully differential decay rate (1), (5) and
(6). From (7) we see that measuring J1, . . ., J6, for example,
would determine the 6 independent combinations

G2
V + G2

A, GV G A

GV HV + G A HA, GV HA + G A HV

GV KV + G A K A, GV K A + G A KV

. (8)

All of the six form factors GV,A, HV,A, KV,A could then
be obtained. The remaining three observables J7, J8, and
J9 give no independent information on these form factors.
They can be used for a cross-check or as alternative input.
The coefficients gV,A are not directly related to the process
h → Z�+�− and have to be constrained independently from
properties of Z decays.

With limited data, it is more efficient to extract the differ-
ent Ji projecting them from (6). Integrating the distribution
in (6) over φ we are left with J1, J2, and J3 as the only
observables. Integrating in addition over α and β eliminates
J3. Thus, the differential rate d�/ds, fully integrated over
the angular variables, remains sensitive only to J1 + J2. Per-
forming the angular integrations one obtains the dilepton-
mass spectrum of the h → Z�+�− rate, multiplied by the
Z → �

′+�′− branching fraction B�. From (1) one finds

d�

ds
= B�

G F M3
h√

2 192π3

λr

(r − s)2

× F1

[

2F1(G
2
V + G2

A)(λ
2 + 12rs)

+ (GV HV + G A HA)λ
2(1 − r − s)

]

(9)

where

B� = (g2
V + g2

A)m Z

12π�Z
. (10)

In contrast, J3, . . ., J9 have to be accessed with appro-
priate angular asymmetries. For instance, the term J3 can
be extracted by integrating over φ and forming a suitable
forward–backward asymmetry in cosα and cosβ. In Sect. 4
we examine this and other angular asymmetries in detail.

The angular distribution in h → Z�+�− is similar to
the one in the rare B-meson decay B → K ∗�+�−, which
has been discussed for instance in [20–23]. However, in the
present case the angles α and β are on an equal footing,
and accordingly the angular dependence in (6) is symmetric
under the interchange of α and β. Note in particular that the
forward–backward asymmetry term J3 is proportional to the
product cosα cosβ, thus representing a kind of correlated
double asymmetry in α and β. It vanishes when either α or
β are integrated over their full range. This is in contrast to

B → K ∗�+�−, where a forward–backward asymmetry in
the single angle α exists due to the more complicated struc-
ture of the hadronic transition B → K ∗.

3 Form factors from effective Lagrangian

In order to estimate the form factors GV,A, HV,A, KV,A in
(3) and gV,A in (4) we will work with the nonlinear effec-
tive Lagrangian discussed in [15,16]. A subset of the rel-
evant operators has also been discussed in [24,25]. In this
framework, electroweak symmetry breaking is realized by
spontaneously breaking a global SU (2)L × SU (2)R down to
SU (2)V . The resulting Goldstone modes are then collected
into a matrix U transforming as gLUg†

R under the global
group. One also defines

DμU = ∂μU + igWμU − ig′BμU T3 (11)

such that the SM subgroup SU (2)L × U (1)Y is gauged. For
convenience we will use the shorthand notation

Lμ = iU DμU †, τL = U T3U † (12)

for the Goldstone covariant derivative and the custodial sym-
metry breaking spurion T3. The Higgs field h is introduced as
an additional light (pseudo-Goldstone) boson, singlet under
the SM gauge group.

With these definitions one has at leading order [16,26,27]

LL O = −1

2
〈WμνWμν〉 − 1

4
BμνBμν + i

∑

f

ψ̄ f �Dψ f

+v
2

4
〈LμLμ〉 f

(
h

v

)

− 1

2
h(∂2 + M2

h )h − V (h).

(13)

For h → Z�+�− the final-state fermions can be taken
massless to an excellent approximation and therefore we have
omitted the Yukawa terms above. The main contribution to
h → Z�+�− comes from the subprocess h → Z Z∗, which
is described by the gauge-boson mass term, where f (h/v)
can be truncated at linear order for the process of interest
here:

f

(
h

v

)

= 1 + 2a
h

v
. (14)

At next-to-leading order (NLO) there are eight relevant
CP-even operators

OXh1 = g′2 BμνBμν
h

v
fXh1

(
h

v

)

,

OXh2 = g2〈WμνWμν〉h

v
fXh2

(
h

v

)

,

OXU1 = g′gBμν〈WμντL〉 fXU1

(
h

v

)

,
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OXU2 = g2〈WμντL 〉2 fXU2

(
h

v

)

,

OV 7 = −l̄γμl〈τL Lμ〉 fV 7

(
h

v

)

,

OV 8 = −l̄γμτLl〈τL Lμ〉 fV 8

(
h

v

)

,

OV 10 = −ēγμe〈τL Lμ〉 fV 10

(
h

v

)

,

Oβ1 = −v2〈τL Lμ〉2 fβ1

(
h

v

)

, (15)

and four CP-odd ones:

OXh4 = g′2εμνλρBμνBλρ
h

v
fXh3

(
h

v

)

,

OXh5 = g2εμνλρ〈WμνW λρ〉h

v
fXh4

(
h

v

)

,

OXU4 = g′gεμνλρBμν〈W λρτL〉 fXU4

(
h

v

)

,

OXU5 = g2εμνλρ〈τL Wμν〉〈τL W λρ〉 fXU5

(
h

v

)

. (16)

Some comments are in order:

• Fermionic tensor operators are in principle also present,
but they turn out to be negligible: first, they have a chiral
suppression and second, they do not interfere with the
Standard Model and thus can only appear at NNLO.

• For simplicity, the list above includes only fermions of the
first family. The extension to include the second family
is, however, trivial.

• The fi (h/v) above are generic functions with model-
dependent coefficients [16]. As a result, the previous
operators contain all the possible powers of h. In the
following, ai and bi will denote, respectively, the dimen-
sionless Wilson coefficients for the pieces without h/v
and linear in h/v, which are the relevant ones for the
process under study.

The operators above give the most general direct contribu-
tions to the vertices of Fig. 1, but they also lead to a renormal-
ization of the fields and parameters [28,29]. These effects will
be consistently included in all our results. As the fundamental
electroweak parameters we will employ αem = e2/4π , m Z

and G F (Z -standard definition). Then the NLO corrections
can finally be expressed in terms of the following effective
interactions:

LN L O = 21/4G1/2
F m2

Z F1 h ZμZμ + b2
h

v
Zμν Zμν

+bγ2
h

v
Zμν Aμν + b3

h

v
εμνλρ Zμν Zλρ

+bγ3
h

v
εμνλρ Zμν Aλρ + Zμl̄γ μ

[

gV − gAγ5
]

l

+h

v
Zμl̄γ μ

[

hV − h Aγ5
]

l. (17)

For convenience, we have defined

gV = g

4cZ
(κ1 − 4s2

Zκ2),

gA = g

4cZ
κ1 (18)

such that at leading order in the Standard Model κi = 1. Here
sZ (cZ ) denotes the sine (cosine) of the Weinberg angle in
the Z -standard definition (α = α(m Z ))

s2
Z c2

Z ≡ πα√
2G F m2

Z

(19)

and g is the SU (2)L gauge coupling, where gsZ = e =√
4πα. By analogy to (18) we have defined

hV = g

4cZ
(ω1 − 4s2

Zω2),

h A = g

4cZ
ω1. (20)

In terms of the coefficients of (17), the form factors read

GV = gV

(

1 − b2

F1

1 − r − s

r

)

− bγ2 e

2F1

(1 − r − s)(s − r)

rs

+ hV

2F1

s − r

r
,

G A = gA

(

1 − b2

F1

1 − r − s

r

)

+ h A

2F1

s − r

r
,

HV = 4b2

r
gV + 2bγ2 e

s − r

rs
,

HA = 4b2

r
gA,

KV = −8b3

r
gV − 4bγ3 e

s − r

rs
,

K A = −8b3

r
gA. (21)

In turn, the operators in the Lagrangian (17) can be expressed
in terms of the basic EFT operators listed before. For the
coefficients this implies (tZ = sZ/cZ ),

F1 = a(1 + 2β1 − δG)− bβ1 ,

b2,3 = e2

2

(

2t2
Z bXh1,4+t−2

Z bXh2,5 − bXU1,4+ t−2
Z

2
bXU2,5

)

,

bγ2,3 = e2
(

− 2tZ bXh1,4 + t−1
Z bXh2,5

+1

2
(t−1

Z − tZ )bXU1,4 + t−1
Z

2
bXU2,5

)

, (22)
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Fig. 1 Different contributions
to h → Z�+�−

and

κ1 ≡ 1 − aV 7 + 1

2
aV 8 + aV 10 + β1 − δG ,

κ2 ≡ 1 + 1

2s2
Z

aV 10 + δG − β1 − aXU1e2/s2
Z

c2
Z − s2

Z

,

ω1 ≡ −bV 7 + 1

2
bV 8 + bV 10,

ω2 ≡ 1

2s2
Z

bV 10. (23)

For simplicity, in (23) we have dropped the family indices, but
one should keep in mind that the NLO corrections are in gen-
eral different for electron and muon final states. Incidentally,
notice that κi also contain a universal (family-independent)
contribution, proportional to β1, δG , and aXU1, which results
from taking into account the NLO renormalization effects.
δG above stands for the renormalization of the Fermi con-
stant, which includes 4-fermion operators not listed in (15).
More details can be found in [29].

For completeness we will also discuss the weakly cou-
pled case using the EFT developed in [30] using the notation
of [31] (for different approaches see [32,33]). The relevant
operators are now

OH B = g′2 BμνBμνH† H,

OH W = g2〈WμνWμν〉H† H,

OH W B = gg′H†WμνH Bμν,

OH D = |H† DμH |2,
O(1)

Hl = (H†i
↔
Dμ H)(l̄γ μl),

O(3)
Hl = (H†i

↔
Da
μ H)(l̄γ μτal),

OHe = (H†i
↔
Dμ H)(ēγ μe),

OH� = (H† H)�(H† H), (24)

and (X̃μν = εμνλρXλρ)

OH W̃ = g2〈W̃μνWμν〉H† H,

OH B̃ = g′2 B̃μνBμνH† H,

OH W̃ B = gg′H†W̃μνH Bμν (25)

for the CP-even and CP-odd sectors, respectively. The effect
of OH� is to renormalize the Higgs kinetic term. This shift

can be absorbed by a field redefinition of H , which then
affects the H → Z Z coupling. This is of no relevance for the
distributions but affects the global normalization of the decay
[34]. For comparison with the nonlinear case it is convenient
to define ᾱ j = v2α j . The result reads

F1 = (1 + ᾱH� + ᾱH D

4
− δG

)

,

b2,3 = e2

2

(

2t2
Z ᾱH B,H B̃ +t−2

Z ᾱH W,H W̃ + ᾱH W B,H W̃ B

)

,

bγ2,3 = e2
(

− 2tZ ᾱH B,H B̃ + t−1
Z ᾱH W,H W̃

−1

2
(t−1

Z − tZ )ᾱH W B,H W̃ B

)

(26)

and

κ1 ≡ 1 + (ᾱHl1 + ᾱHl3 − ᾱHe)− ᾱH D

4
− δG,

κ2 ≡ 1 − 1

2s2
Z

ᾱHe + 1

c2
Z − s2

Z

(
ᾱH D

4
+e2 ᾱH W B

2s2
Z

+ δG

)

ω1 ≡ 2(ᾱHl1 + ᾱHl3 − ᾱHe),

ω2 ≡ − 1

s2
Z

ᾱHe. (27)

It is worth noting that, while the contributions to h Z�+�−
and Z�+�−, encoded in ωi and κi , respectively, come from
the same (family-dependent) NLO operators, κi also receives
a universal NLO renormalization through OH D , OH W B , and
the operators associated with δG . Therefore, the contact term
contribution to h → Z�+�− is in general uncorrelated to
Z → �+�−, even in the case of the linearly realized Higgs
sector. Similarly, the Z mass term and the h → Z Z ver-
tex come from the same LO operator but NLO corrections
renormalize them differently. As a result, δF1 �= 0 in (26).

4 Observables and form factor determination

In Sect. 2 we pointed out that at NLO there are six indepen-
dent form factors entering the dynamical functions Ji . With
high enough statistics one can fit the full distribution J to
experimental data. However, at least in the first stages of the
run 2 at the LHC, where statistics will be rather limited, it is
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more efficient to devise a set of observables that can project
out the different form factor combinations through angular
asymmetries.

A possible strategy is to extract GV G A from the forward–
backward asymmetry Aαβ in α and β, after integration over
φ:

Aαβ =
(

d�

ds

)−1 1∫

−1

dcosα sgn(cosα)

1∫

−1

dcosβ sgn(cosβ)
d�

ds dcosα dcosβ

= J3

J1 + J2
(28)

and (G2
V + G2

A) from an asymmetry Aφ in the angle φ:

Aφ =
(

d�

ds

)−1 2π∫

0

dφ sgn(cos 2φ)
d�

dsdφ
= 32

9π

J9

J1 + J2
.

(29)

Knowing Aαβ and Aφ , HV,A can be determined through
the combinations gV HV + gA HA � gA HA and gV HA +
gA HV � gA HV . These can be extracted, respectively, from
the total rate given in (9) and the asymmetry Bφ ,

Bφ =
(

d�

ds

)−1 2π∫

0

dφ sgn(cosφ)
d�

dsdφ
= π

2

J6

J1 + J2
.

(30)

The observables discussed so far test new physics in the CP-
even sector. CP-odd contributions are parametrized by KV,A,
which can be determined through the structures gV KV +
gA K A � gA K A and gV K A + gA KV � gA KV . They can be
extracted from 2 additional asymmetries in φ:

Cφ =
(

d�

ds

)−1 2π∫

0

dφ sgn(sin 2φ)
d�

dsdφ
= 32

9π

J8

J1 + J2
,

Dφ =
(

d�

ds

)−1 2π∫

0

dφ sgn(sin φ)
d�

dsdφ
= π

2

J4

J1 + J2
.

(31)

Similar CP-odd observables have been discussed previously
in the literature [35–38].

In order to assess the experimental relevance of these
asymmetries, we will rely on numerical estimates of new-
physics effects based on general power-counting arguments.
Accordingly, one would naively expect the NLO coeffi-
cients given in the previous section to be generically of
O(v2/�2), with � ∼ 4πv. Therefore, keeping track of the

gauge couplings, we will assume F1 = a + O(v2/�2),
gV,A = g(0)V,A + gO(v2/�2), b(γ )2,3 ∼ e2O(v2/�2), and

hV,A ∼ gO(v2/�2).
The main source of deviations from the SM comes from

a in F1. This parameter measures the signal strength of
h → Z Z∗, and it is currently constrained to deviate less
than 20 % from the SM. Since our conclusions will be inde-
pendent of it, we will set a = 1 and F1 = 1 for simplic-
ity. New-physics corrections are then naturally dominated by
δgV,A and hV,A. δgV,A are constrained by the Z partial width
and LEP data sets bounds on them at the 10−3 level [33,39],
which is within the EFT expectation. hV,A are instead uncon-
strained, and might in principle attain values larger than
the naive EFT dimensional estimate because of numerical
enhancements. Consider, for instance, the local h → Z�+�−
couplings hV,A to be induced by the tree-level exchange of a
composite heavy vector resonance R, mediating h → Z R∗,
R∗ → �+�−. Then hV,A ∼ v2/M2

R ∼ v2/�2. If MR is
numerically smaller than � ≈ 3 TeV by a factor of three,
say, the resulting value of hV,A might be 5–10 times big-
ger than the naive EFT estimate. This assumes consistency
with other phenomenological constraints, which is plausible
in view of the free parameters in this scenario.

For simplicity we will consider a scenario where hV,A �=
0, with all other corrections set to zero. Due to the smallness
of gV in the SM, the most sensitive probes of new physics
are those linear in GV , namely Aαβ and Bφ , with corrections
that can easily reach 50–100 %. Incidentally, notice that nei-
ther Aαβ nor Bφ are constrained by the angular distributions
collected for the spin-parity analysis [3]. This has to be com-
pared with the mass distribution, with typical corrections of
a few %. However, both corrections are uncorrelated. Qual-
itatively, hV controls Aαβ and Bφ while h A affects the mass
distribution. Thus, one can get large corrections on the former
while barely affecting the latter.

The reason for this is the accidental suppression of gV rel-
ative to gA in the standard model by about an order of mag-
nitude. A typical correction from hV therefore has a larger
impact on GV than h A has on G A; see eq. (21). Asymme-
tries that are proportional to GV G A are then rather sensi-
tive to hV . On the other hand, the mass distribution is gov-
erned by G2

V + G2
A, which is approximately given by G2

A
and thus mainly affected by h A. Whereas hV and h A are
parametrically of the same order of magnitude, we find it
interesting for illustration to consider a situation where hV

is numerically enhanced over h A. This could be realized in
scenarios with a vector resonance that is lighter than the low-
est axial vector state. In Fig. 2 we illustrate such scenarios
for the parameter choices (hV , h A) = v2/�2(−2, 0.3) and
(hV , h A) = v2/�2(−6, 0.3).

With the LHC running at 14 TeV and with an integrated
luminosity of 3000 fb−1, one expects around 6400 recon-
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Fig. 2 Values for the angular
asymmetries Aαβ and Bφ
defined in the main text. The
dashed line corresponds to the
SM prediction, while the solid
lines incorporate potential
new-physics effects for the
parameter choices
(hV , h A) = v2/�2(−2, 0.3) (in
blue) and
(hV , h A) = v2/�2(−6, 0.3) (in
red). For comparison, the lower
panel shows the differential
mass distribution (in units of
10−6 GeV). The plots illustrate
the high sensitivity of the
angular asymmetries to new
physics for scenarios where the
mass distribution is left almost
unaffected
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structed events for h → Z�+�− [40]. With such statistics one
could in principle reach a 1–2 % sensitivity in the observables
that we are discussing. Since the overall effects for Aαβ and
Bφ lie around the % level, as illustrated in Fig. 2, they could
be accessible at the LHC, at least in its final stage. Regarding
the CP-odd sector, within the range of validity of our EFT,
the asymmetries Cφ and Dφ are expected to be below the
per-mille level and thus clearly out of reach for detection at
the LHC.

These estimates could be made more precise by analysing
the size of the backgrounds associated to the specific angu-
lar dependences. Such an analysis goes beyond the scope of
the present paper, but naively they should be substantially
reduced as compared to the total decay rate [11,41–43]. In
this case, Aφ might turn out to be especially suited to extract
(G2

V +G2
A)with higher precision than through the total decay

rate.
Before closing this section, one should note that, strictly

speaking, the form factors Gi , Hi , Ki always appear in com-
bination with gV,A in the products

(G2
V + G2

A)(g
2
V + g2

A), (GV G A)(gV gA),

(GV HV + G A HA)(g2
V + g2

A), (GV HA + G A HV )(gV gA),

(GV KV + G A K A)(g2
V + g2

A), (GV K A + G A KV )(gV gA),

(32)

which account for the processes h → Z�+�− and Z →
�′+�′−, respectively. In order to determine Gi , Hi , Ki with
a certain precision, gV,A should be known comparably well.
Unfortunately, with LEP data the bounds on gV and gA are
too loose to be informative [39]. In contrast, the ILC could
offer a clean determination of the Ze+e− couplings, since the
center-of-mass enhanced corrections to W +W − production
can be cast entirely in terms of these corrections [29]. As a
result, they get singled out at high energies and, within the
ILC energy-range, they can naturally be boosted to a 20 %
correction to the production cross section. An analogous
mechanism for Zμ+μ− couplings could in principle be pur-
sued in a muon linear collider through μ+μ− → W +W −.

5 Conclusions

We have studied, in a general and systematic way, how the
decay h → Z�+�− can be used to probe for physics beyond
the Standard Model in the Higgs sector. For this purpose
we have employed a general parametrization of the ampli-
tude in terms of form factors, neglecting lepton masses. In
view of the large gap between the electroweak scale and
the expected scale of new physics, an effective field the-
ory approach appears to be the most efficient tool. We have
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computed the form factors in terms of the coefficients of
an effective Lagrangian, which is defined by the SM gauge
symmetries, a light scalar singlet h, and the remaining SM
particles, but is otherwise completely general.

The main points of our analysis can be summarized as
follows.

• We discuss the most general observables arising from
the full angular distribution of the 4-lepton final state
in h → Z�+�−, Z → �

′+�′−. The nine coefficients Ji

describing the angular distribution are expressed through
the six form factors GV,A, HV,A, and KV,A.

• Interesting observables, besides the dilepton-mass spec-
trum d�/ds, can be constructed from the angular distri-
bution. Examples are:

– The forward–backward asymmetry Aαβ measuring
J3 and Bφ measuring J6. These quantities are strongly
suppressed in the SM because of the smallness of the
vectorial coupling gV . On the other hand, this implies
an enhanced relative sensitivity to new physics. The
required precision of a few % might be within reach
of the LHC.

– J7 or J9 give similar information as d�/ds, but
should have different experimental systematics because
of the characteristic angular dependence associated
with them.

– CP violation in the coupling of h to electroweak
bosons is probed by J4, J5, J8, which enter the terms
in the decay distribution odd in the angle between
the dilepton planes φ. Their effects are, however,
expected at the per-mille level and thus out of reach
of the LHC.

• The form factors are expressed in terms of the coefficients
of the complete effective Lagrangian at next-to-leading
order, O(v2/�2 ∼ 1/(16π2)). We use the electroweak
chiral Lagrangian, extended to include a light Higgs sin-
glet h, and take into account all NLO new-physics effects
at tree level, including the renormalization of SM fields
and parameters. The effective Lagrangian for a linearly
realized Higgs is also considered with operators up to
dimension 6.

• Based on effective-theory power counting, the potentially
dominant impact of new physics arises from the leading-
order h Z Z coupling a, which only affects the overall
decay rate, but not the angular and dilepton-mass dis-
tributions. The latter can only be modified by the NLO
coefficients in the Lagrangian.

• Power counting gives a typical size of the NLO coeffi-
cients of ∼ v2/�2 ∼ 1 %, up to coupling constants and
numerical factors. With this estimate the new-physics
effects are typically small. In particular, the contribu-
tions of the virtual Z and γ , which could in principle

be inferred from the profiles of the different mass distri-
butions turn out to be at the per-mille level and therefore
too small to be detected. Somewhat larger effects (up to
5 %) may be possible in specific scenarios, for instance
from enhanced h Zl̄l local couplings hV,A in a strongly
interacting Higgs sector. Quantities such as Aαβ and Bφ ,
with their large sensitivity to NP corrections, could be
especially interesting in this respect.

• For the quantitative extraction of new-physics coeffi-
cients from data, radiative corrections have to be taken
into account. To NLO (one loop) in the Standard Model
they have been computed in [44,45].

New-physics effects in h → Z�+�− decay distributions
are expected to be small, even in the case of a strongly inter-
acting Higgs sector. The tree level SM contribution is the
dominating effect and NP can potentially show up typically
at the percent level. Nevertheless, this NP suppression can be
compensated by statistics, and we have shown that interesting
opportunities exist for precision measurements, already at the
LHC, which could provide valuable insight into electroweak
symmetry breaking. The rich subject of h → Z�+�− observ-
ables should therefore be fully explored by experiment.
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Appendix A: 4-body decay kinematics

In order to describe the full angular distribution of h(k) →
Z(p)�+(q1)�

−(q2), followed by Z(p) → �
′+(p1)�

′−(p2),
one needs to specify four variables. A convenient choice
is to select the invariant mass of the dilepton pair, q2 =
(q1 +q2)

2 ≡ M2
h s, together with 3 angles α, β, φ. The angu-

lar variables are defined as in [46,47]: α and β are the angles,
in the respective dilepton c.m.s., between the �+ momenta
and the direction of the dilepton systems as seen from the
Higgs rest frame, while φ is the angle between the dilep-
ton planes. Referring to the xyz-coordinate frame shown in
Fig. 3, the precise definition of the angles can be stated as
follows:
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Fig. 3 Definition of angles in h → Z�+�−, Z → �
′+�′−

• The dilepton momentum �q in the rest frame of h defines
the direction of the positive x-axis, �ex = �q/|�q|.

• α is the angle between �ex and the �+ momentum �q1 in
the �+�− c.m.s.

• β is the angle between −�ex and the �
′+ momentum �p1 in

the �
′+�′− c.m.s.

• φ is the relative angle between the normals of the decay
planes, �ex × �q1/|�ex × �q1| and �ex × �p1/|�ex × �p1|, counted
positive from the former to the latter in the positive direc-
tion around �ex .

In the following we will assume that the final-state lep-
tons are massless, which is a very good approximation at the
electroweak scale.

The lepton momenta in the respective dilepton center-of-
mass systems can then be parametrized as

qμ1 = Mh
√

s

2

(

1, n̂1
)

, qμ2 = Mh
√

s

2

(

1,−n̂1
)

,

pμ1 = Mh
√

r

2

(

1, n̂2
)

, pμ2 = Mh
√

r

2

(

1,−n̂2
)

, (33)

with the unit vectors

n̂1 = (cosα, sin α, 0),

n̂2 = (− cosβ, sin β cosφ, sin β sin φ). (34)

The range of the kinematical variables is

0 ≤ s ≤ (1 − √
r)2 = 0.076,

0 ≤ α, β ≤ π,

0 ≤ φ ≤ 2π. (35)

The momenta can be boosted to the Higgs rest frame with
the following velocities:

βq = λ

1 − r + s
, βp = λ

1 + r − s
(36)

where r , s, and λ are defined in (2). The relevant kinematical
invariants are then given by

q1 · p1 = M2
h

8

[ (

1 + cαcβ
)

gH + λ(cα + cβ)

−2
√

rs sαsβcφ
]

,

q1 · p2 = M2
h

8

[ (

1 − cαcβ
)

gH + λ(cα − cβ)

+2
√

rs sαsβcφ
]

,

q2 · p1 = M2
h

8

[ (

1 − cαcβ
)

gH − λ(cα − cβ)

+2
√

rs sαsβcφ
]

,

q2 · p2 = M2
h

8

[ (

1 + cαcβ
)

gH − λ(cα + cβ)

−2
√

rs sαsβcφ
]

,

q1 · q2 = M2
h

2
s,

p1 · p2 = M2
h

2
r,

εμνλρ pμ1 pν2qλ1 qρ2 = M4
h

8
λ
√

rs sαsβsφ (37)

where gH ≡ 1 − r − s, cχ ≡ cosχ , sχ ≡ sin χ , and ε0123 =
+1.
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